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ABSTRACT 

Let ~: y ---* X be a morphism of finite type between schemes of locally 

finite type over a non-Archimedean field k, and let ~" be an dtale con- 

structible sheaf on y. In [Ber2] we proved that if the torsion orders of ~" 

are prime to the characteristic of the residue field of k then the canoni- 

cal homomorphisms (Rq~o.~') an --~ Rq~.an~ -an are isomorphisms. In this 

paper we extend the above result to the class of sheaves ~- with torsion 

orders prime to the characteristic of k. 

I n t r o d u c t i o n  

In [Ber2] (see also [Ber3]), an dtale cohomology theory for non-Archimedean an- 

alytic spaces has been constructed. In particular, the following two comparison 

theorems have been proved. Let ~o: Y --~ X be a morphism between schemes of 

locally finite type over a non-Archimedean field k, and let Y be an dtale abelian 

torsion sheaf on y .  The comparison theorem for cohomology with compact sup- 

port ([Ber2], 7.1.4) states that if the morphism ~o is compactifiable, then there 

are canonical isomorphisms 

( Rq~!F)an-~-~ Rq~an.T "an . 
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The comparison theorem ([Ber2], 7.5.3) states that if ~ is of finite type and ~- is 

constructible with torsion orders prime to char(k), where k is the residue field of 

k, then there are canonical isomorphisms 

(,) ( Rq~..T)~n ~ Rq~,~.n.Tan . 

The latter comparison theorem does not say anything on p-torsion sheaves when 

char(k) = 0 and char(k) = p > 0. But the evidence that the isomorphism 

(.) should be true also in such a situation has been provided by the p-adic 

Riemann existence theorem, proved by W. Liitkebohmert in [Lu2]. It implies 

straightforwardly that H I ( y , Z / n Z ) - % H I ( y a n , Z / n Z )  for arbitrary n prime to 

char(k). 

The main purpose of this paper is to prove that  the isomorphism (*) really 

takes place without any restriction on the torsion orders of ~- in the case when 

k is of characteristic zero. The proof is given in w and follows the proof of 

the comparison theorem of M. Artin and A. Grothendieck ([SGA4], Exp. XVI, 

4.1). Using Hironaka's theorem on resolution of singularities, the weak base 

change theorem ([Ber2], 5.3.1) and the comparison theorem for cohomology with 

compact support, the situation is reduced to the case when 2d is smooth, ~ is an 

open immersion, and 3 r = Ay, where A = Z /nZ .  In this case, the isomorphism 

(*) for q = 0 follows from the p-adic Riemann extension theorem, proved by W. 

Liitkebohmert in [Lul], and the verification of (*) for q >_ 1 is reduced to the 

case when Z := X ' \y  is also smooth. If i denotes the closed immersion Z --* X', 

then (*) is equivalent to the fact that  the canonical homomorphism 

(7) (Rqi!Ax) ~'n ~ Rqian!Ax.n 

is an isomorphism. The latter is deduced from the cohomological purity theorem 

proved in w Using a result of W. Liitkebohmert from [Lu2], we prove that  the 

affine space is universally acyclic, and deduce from this that  if (Y, X) is a smooth 

S-pair of codimension c, then Rqi!Ax = 0 for q r 2c and R2Ci!Ax is locally 

isomorphic to Ay. (In particular, the both sheaves in (?) are locally isomorphic.) 

Furthermore, we construct an isomorphism R2Ci!Ax(c)--%Aw and establish its 

properties which guarantee that (?) is an isomorphism. For this we use the 

Verdier duality theorem, proved in w and the trace mapping R2d~!Ay(d) ~ A x  

constructed in [Ber2], w for any separated smooth morphism ~: Y --* X of pure 
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dimension d and any n prime to char(k). (In [Ber2], the trace mapping was used 

only for n prime to char(k).) 

Throughout the paper we fix a non-Archimedean field k, a positive integer n, 

and we set A = Z/nZ.  (As in [Berl]-[Ber3], the valuation on k is not assumed to 

be nontrivial.) 

1. V e r d i e r  D u a l i t y  

1.1 THEOREM: Let ~: Y --* X be a Hausdorff morphism of finite dimension be- 

tween k-analytic spaces. Then there is an exact functor 

R~!: D+(X, A)--* D+(Y, A) 

and, for any G" E D- (Y ,  A) and F" E D+(X, A), a functorial isomorphism 

R~.  ( ~om(  G , R~! F" ) )-% 7-lom( R~!G ", F" ). 

It is clear that  Theorem 1.1 will be proved if we construct the functor R~ ~ and 

prove the following 

1.2  COROLLARY: There is a functorial isomorphism 

Hom(G,  R~! F" )-%Hom( R~!G , F ). 

Proof Let d = dim(~). We say that a sheaf L E S(Y, A) is s t r o n g l y  ~!-acycl ic  

if, for any separated ~tale morphism g: V -~ Y, the sheaf Lv /y  = g!(Liy) is ~!- 

acyclic. 

1.3 LEMMA: If  a sheaf L E S(Y, A) is //at strongly ~!-acyclic, then for any 

G E S(Y, A) the sheafL @ G is ~!-acyclic. 

Proof Take a resolution of G 

. . .  ~ G I  ~ G o ~ G ~ O  

whose members are of the form (~i AvI/Y, where V~ ~ Y are separated 6tale 

morphisms. Tensoring it with L, we get an exact sequence 

�9 .. -~ L |  ~ L Q a o  ~ L |  0 
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whose members are of the form L @ (t~i Av~/y)  = (~ i  L v j y .  Since the functor 

~! commutes with direct sums, all the sheaves L @Gm are ~o!-acyclic. It follows 

that  for q _> 1 one has 

Rq~! (L  | G)&Rq+2d~!(Ker  d2d-1) = 0 

because Rq~o! = 0 for q > 2d, by [Ber2], 5.3.8. | 

For a flat strongly ~!-acyclic sheaf L E S(Y, A), we denote by ~o L the following 

functor 

S(Y, A) --, S(X, A): G ~ ~ ( L  | G). 

1.4 LEMMA: The functor ~,.L is exact and has a right adjoint functor 

qa~: S(X, A) --* S(Y, A). The  functor  qo~ takes injectives to injectives. 

Proof." Let 0 -* G I --~ G -~ G" --* 0 be an exact sequence of sheaves on Y. 

Since L is fiat, the sequence 0 ~ L | G I -~ L | G --* L | G" ~ 0 is also exact. 

By Lemma 1.3, R I ~ ! ( L  | G ~) -- O, and therefore the sequence 0 --* ~L(G~) --~ 

~ L ( G )  -* ~,L.(G") --* 0 is exact. Furthermore, we claim that  for any F E S(X, A) 

the contravariant functor 

S(Y, A) ~ A b :  G ~ Hom(~L(G), F)  

is representable. Indeed, for this it suffices to verify that this functor takes 

inductive limits to projective limits (see [SGA4], Exp. XVIII, 3.1.3). But this 

follows from the facts that  the functor ~o L is exact and that the tensor product 

functor and the functor ~o! take direct sums to direct sums. If ~OL(F ) denotes 

a sheaf which represents the functor considered, then the correspondence F 

~o~(F) is a functor right adjoint to ~o L. The last statement of the lemma follows 

from the fact that the functor ~o L is exact. | 

1.5 PROPOSITION: A n y  fiat s h e a f G  E S(Y, A) has a resolution 

0 --* G --* L ~ --* L 1 --* " "  - - *  L 2d --~ 0 

in which all L i are fiat strongly ~!-acyclic sheaves. 

Proof: 1. Recall the construction of the Godement resolution from [SGA4], Exp. 

XVII, w adopted to our situation. Suppose we are given a set I,  a surjective 

map a: I ~ Y and, for each i E I, an algebraically closed non-Archimedean 
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field Ki over 7-l(a(i)). These data define a morphism of analytic spaces over k, 

v: y --* Y, where y is the disjoint union of Ad(Ki) over all i E I. For a sheaf 

G E S(Y, A), let C'(G) denote the right resolution of G constructed as follows: 

(a) C~ = v,u*(G), and e = d- l :  G ~ C~ is the adjunction morphism; 

(b) if m >_ 0, then Cm+I(G) = C~ and d m is the composition 

din: Cm(G) --~ Coker d -~-1 --, C0(Coker d '~-1) . 

By loc. cir., 4.2.3, one has: 

(i) Cm(G) is a flabby sheaf; 

(ii) the functor G ~-* Cm(G) is exact; 

(iii) the fibre of the complex r at a point y E Y is a canonically split 

resolution of Gy. 

1.6 LEMMA: The sheaves Cm(G) are strongly ~!-acyclic. 

Proof'. It suffices to verify the statement for m = 0. We have to show that,  for 

any separated 6tale morphism g: V --~ Y ,  Rq(~g)!(C~ = 0, q >_ 1. Replac- 

ing the set I by another one, we may replace Y by V, and so we have to show 

that  Rq~!(C~ = 0, q _> 1. Since the statement is local with respect to the 

6tale topology of X and the sheaf Rq~!(C~ is associated with the presheaf 

(U ~ X )  H H ~ ( f ) ( Y  •  U,C~ where C~ is the ~-family of supports de- 

fined in [Ber2], 5.1.3, it suffices to show that in the case of paracompact X one 

has H~(Y,C~ = 0 for all q > 1, where ep = C~(Id). For this we use the 

spectral sequence E p'q = H~([Y[,RqTr.(C~ ~ H~+q(Y,C~ where 7r 

is the morphism of sites Y~t --~ IY]. The sheaf C~ is flabby, and therefore 

RqTr.(C~ = 0 for q _> 1, by [Ber2], 4.2.5. Furthermore, from the construction 

of C~ it follows that the sheaf 7r.(C~ is flasque in the sense of [God]. Since 

the family of supports ~ is paracompactifying, it follows that  the latter sheaf is 

�9 and therefore H~(iY[, Ir.(C~ = 0 for all p >_ 1. | 

2. Suppose now that G is flat. We set L m = Cm(G) for 0 _< m _ 2 d -  1, 

and L 2d = Ker(d2d). From l(iii) it follows that all the sheaves L ~  L 2d are 

flat. Let V ~ Y be a separated 6tale morphism. By Lemma 1.6, the sheaves 

L ~  L 2d-1 are strongly ~!-acyclic, and therefore 

q 2d _.~ qA-2d R ~ ( L v / r )  R ~ ( G v / y )  = 0 

for all q _> 1, i.e., L 2d is a strongly ~!-acyclic sheaf. | 
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We fix a fiat strongly ~!-acyclic resolution of the constant sheaf Ay 

0 --* Ar  --+ L ~ --* L 1 ~ . . .  ~ L 2d ---* O. 

For a complex G' e C-(Y,A),  let ~ L ( G )  denote the complex ~!(L' | G'). Fur- 

thermore, for a complex F" 6 C + ( X ,  A), let ~L (F')  denote the simple complex 

associated with the double complex K p,q = ~L-P (Fq) �9 It follows that there is a 

functorial isomorphism 

Horn' (G', ~o L. (F'))-%Hom" (~ L (G) ,  F') .  

We now define the functor R~!: D+(X,A) -~ D+(Y,A) as follows. Let F" -~ I" 

be an injective resolution of a complex F E C + ( X ,  A). We set 

R 'F = (,) .  

It is easy to see that R~!F" does not depend (up to a canonical isomorphism) on 

the choice of the resolution I and that, for G' E D-(Y,A) and F E D+(X,A),  

there is a functorial isomorphism Hom(G', R ~ ! F ) ~ H o m ( R + ! G  ", F ' ) .  Theorem 

1.1 is proved. I 

1.7. Remarks:  (i) From the construction of R~ ! it follows that if the cohomology 

sheaves of a complex F" E D + ( X ,  A) are trivial at dimensions < q, then the 

cohomology sheaves of the complex R~!F" E D+(Y, A) are trivial at dimensions 

< q - 2 d .  

(ii) If r Z ~ Y is a similar morphism, then the canonical isomorphism of func- 

tors R(~r --%, R~o! o Rr induces an isomorphism of functors R~b ! o R ~ ! - ~ R ( ~ r  !. 

(iii) Suppose that d = 0. Then R~ ! is actually the right derived functor of a 

left exact functor ~!: S(X, A) ~ S(Y, A) defined as follows 

F(V, ~ ' (F))  = Hom(~,(Av/y),  F).  

Moreover, ~! is right adjoint to ~!. If ~ is 4tale, then ~ = ~*. If ~ is a quasi- 

immersion ([Ber2], w such that ~(Y) is closed in X, then ~! is the functor 

of sections with supports in ~(Y) (defined in [Ber2], w and the sheaves 

Rqcp!(E) were denoted in [Ber2] by T/~.(X, F).  

The complex R ~ ! A x  is said to be the dua l iz ing  complex  of the morphism 

and is denoted by T y / x  (if X = Ad(k), it is denoted by T~.). By Remark 1.7(i), 

H q ( T y / x )  --- 0 for q < -2d.  
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Let ~: Y ~ X be a separated smooth morphism of pure dimension d, and 

assume that n is prime to char(k). In [Ber2], w we constructed a canonical 

homomorphism of sheaves (the trace mapping) 

Try: R2d~o!Ay(d) ---, Ax.  

Recall also that if the fibres of ~ are non-empty, then Tr~ is an epimorphism and 

if, in addition, the geometric fibres of ~ are connected and n is prime to char(k), 

then Tr~ is an isomorphism. By Theorem 1.1, the trace mapping induces a mor- 

phism of complexes t~: Av ---* Tv/x  ( -d ) [ -2d ]  or, equivalently, a homomorphism 

of sheaves c~ = H~ Ay ---* H-2d(T{, /x(-d)) .  The image of 1 under c~ is 

called the fundamental class of ~, and so t~ and c~ will be called the f u n d a m e n -  

t a l  class m a p p i n g s .  By Poincar4 Duality Theorem ([Ber2], 7.3.1), if n is prime 

to char(k), then t~ (and therefore c~) is an isomorphism. We claim that in the 

general case (when n is prime only to char(k)) the homomorphism c~ is injective. 

Indeed, to verify this, it suffices to assume that n is a prime integer. The set of 

points over which the homomorphism c~ is not injective is open, and so shrinking 

Y we may assume that the morphism t~ is zero. Furthermore, since a snmoth 

morphism is an open map ([Ber2], 3.7.4), we can shrink X and assume that ~ is 

surjective. In this case the vanishing of t~o contradicts to the surjectivity of the 

trace mapping Trio. The following proposition lists properties of the fundamental 

class mappings which follow straightforwardly from the properties of the trace 

mappings established in [Ber2], w 

1.8 PROPOSITION: The fundamental class mappings t~ have the following prop- 

erties and are uniquely determined by them: 

(a) t~ are compatible with base change, i.e., given a cartesian diagram 

Y ~ ,X 

'I,' I' 
Y' ~' ~ X' 

the following diagram is commutative 

f (Tv/x)( -d)[-2d]  

Av, 

, ] 
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(b) t~ are compatible with composition, i.e., given a separated smooth mor- 

phism r Z ~ Y of pure dimension e, the following diagram is commutative 

Tz/y(_e)[_2e ] Rr T . z / x ( _ d _  e ) [ - 2 d -  2e] 

Az 

(c) i f  ~ is dtale, then tv is the identity map A v ~ T v / x  = Ay; 

(d) if  qo: y -* X is a separated smooth morphism of pure dimension d between 

schemes of locally finite type over Spec(A), where ,4 is a k-affinoid algebra, 

then the following diagram is commutative 

(T~vlx(-d)[-2dl)an * Ty .o lX. . ( -d)[ -2d  ] 

Ay.n 

(Recall that, by Poincard Duality for schemes, t~ is an isomorphism.) 

2. Cohomolog i ca l  P u r i t y  T h e o r e m  

In this section the integer n is assumed to be prime to char(k). 

Let S be a k-analytic space. Recall ([Ber2], w that a smooth S-pair (1I, X)  

is a commutative diagram of morphisms of k-analytic spaces 

y i , X  

\ /  
S 

where f and g are smooth, and i is a closed immersion. The codimension of 

(Y, X) at a point y E Y is the codimension at y of the fibre 118 in Xs, where 

s = g(y). Given a smooth S-pair (Y, X),  we denote by j the open immersion 

U := X \ Y  ~ S and by h the induced morphism U ~ S. Recall also ([Ber2], 

w that a k-analytic space is said to be good if each point of it has an affinoid 

neighborhood. 
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2.1 THEOREM: Let (Y ,X)  be a smooth S-pair  of codimension c, and assume 

that  S is good. Then 

(i) for any abelian sheaf F on X which is locally isomorphic (in the dtale 

topology) to a sheaf of the form f 'G ,  where G is an dtale As-module, one 

has Rqi! F = 0 for q ~ 2c and i* F | R2Ci! A x-% R2Ci! F. 

(ii) there is a canonical isomorphism R2Ci!Ax(c)-U-~Av such that  i fg is of pure 

dimension e, then the following diagram is commutative 

R2~i!hx(c) H2r176 H-2e(TWs(_e)  ) 

Ay 

2.2 LEMMA (Universal acyclicity of the affine space): Let X be a k-analytic 

space, and let ~ be the canonical projection ~o: X x A d --* X.  Then for any ~tale 

Ax-module F one has F & ~ . ~ * F  and Rq~p.(~*F) = 0 for a11 q >_ 1. 

Proof: We may assume that  d = 1. The isomorphism F & ~ . ~ * F  follows from 

[Ber2], 7.3.2. Since Rq~.(qo*F) is associated with the presheaf (U ~ X)  H 

I-Iq(&b, ~*F), where A b = U x A ~ , it suffices to show that  if X is paracompact  

then Hq(X, F)-%Hq(A~, ~*F).  

Take a number r > 1 and denote by ~,~ the canonical projection Ym := X • 

E(0, r m) ---+ X,  where E(0, r m) is the closed disc in A 1 of radius r TM with center at 

zero. The paracompact  k-analytic space A 1 is a union of the increasing sequence 

of the closed k-analytic domains Ym. From [Ber2], 5.3.8 and 6.1.3, it follows that  

R q ~ m . ( ~ F )  = 0 for q >_ 2. I f n  is prime to char(k), then R I ~ m . ( ~ F )  = 0, and 

therefore Hq(X, F)-~Hq(Ym, ~*F)  and Hq(X, F)-%Hq(A1x, ~*F) for all q _> 1, 

by [Ber2], 6.3.12. 

Assume now that  char(k) = 0, p := char(k) > 0 and n = pd for some d _> 1. 

By Lii tkebohmert 's  Theorem ([Lu2], 2.1), there exists a constant 0 < r < 1 

depending only on p and d such that  for any algebraically closed non-Archimedean 

field K with char(K)  = 0 and char(/~) = p and for any R > 0 the following holds. 

Any finite 6tale covering of the closed disc E(0, R) over K of degree at most pd 

splits over E(0, cR). The latter implies that  for any A-module M the restriction 

homomorphism HI(E(O,R) ,M)  ~ HI(E(O, eR) ,M)  is zero. If we now choose 

the number r so that  er > 1, then [Ber2], 5.3.1, implies that  the canonical 

homomorphism 1 �9 R 1 " * F '  R qom+l,(~pm+lF) "-~ cp,,~,[~m ) is zero. Using the spectral  
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sequence E~ 'q = HP(X,  R q ~ m . ( ~ F ) )  ~ HP+q(Ym,~mF ) and the fact that  

* F R q ~ m . ( ~ * F )  = 0 for q _> 2, we get that the image of Hq(Ym+l,~m+l ) in 

Hq(Ym, ~ * F )  coincides with the image of H q ( x ,  F). By [Ser2], 6.3.12, one has 

Hq(X,  F)-~Hq(A1x, ~*F) for all q _> 1. The lemma is proved. II 

Proof  of Theorem 2.1: To construct the isomorphism (ii), it suffices to show that 

the canonical homomorphism R2Ci!Ai(c) -~ H - 2 ~ ( T y / s ( - e ) )  identifies the first 

sheaf with the image of Ay under the injective homomorphism c a. Furthermore, 

since the formation of Ri ! commutes with any ~tale base change, we can apply 

Proposition 3.5.9 from [Ber2] (where the assumption that S is good is used) and 

assume that  (Y, X) is the pair (A~ -~, AS) and F is of the form I*G. 

STEP 1: (i) is true and the sheaf R2~i!Ax(c) is isomorphic to Ay  (here S is not 

necessarily good). 

Consider first the case c = 1. Using Proposition 1.8(b), we may replace S by 

A~ -1 and assume that  Y is the zero section in the affine line X -- A~. After 

that  we may assume that  X = P~ and Y is the section at infinity. Consider the 

spectral sequence 

E~ ,q = RV f , (Rq j , (h*G))  ==, RP+qh,(h*G). 

First of all, we claim that f*G--%j,(h*G). Indeed, let F '  be the sheaf defined by 

the exact sequence 

0 ---* f*G ~ j , (h*G)  ---* F'  ---* O. 

By [Ber2], 5.3.1, R l f , ( f * G )  = 0 and, by [Ser2], 7.3.2, G-7-~f,(f*G)-%h,(h*G). 

It follows that  f , F  ~ = O, and therefore F ~ = 0. Thus, E~ '~ = RPf , ( f *G)  = 0 for 

p r 0, 2, and, by [Ser2], 5.3.9, G(-1)--~G | R2f ,  Ax--~E~ '~ = R2 f , ( f *G) .  

Furthermore, since the supports of the sheaves Rqj , (h*G) for q > 1 are con- 

tained in Y and g is an isomorphism, then E p'q = 0 for p _> 1 and q > 1 and 

E ~ = g, i*(Rqj , (h*G))  for q >_ 1. By Lemma 2.2, Rqh,(h*G) = 0 for q _> 1, and 
r~0,1 ~ r~2,0 therefore the spectral sequence implies that  E ~ = 0 for q _> 2 and ~2 ~ 2  �9 

It follows that  Rqj , (h*G) = 0 for q _> 2 and Rl j , (h*G)-%i , (g*G)( -1 ) .  Step 1 

for c = 1 now follows from [Ber2], 5.2.7. 

The case c > 1 is verified by induction. Let c = a + b, where a, b > 0. We 

set Z = A~ -b and denote by # (resp. v) the closed immersion Y --, Z (resp. 

Z --* X).  Consider the spectral sequence 

EP,q = RP#!(Rqv! f*G)  ~ RP+qi'(f*G). 
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By induction, Rqu!f*G = 0 for q # 2b and R~bu!f*G-~u*f*G(-b) .  Similarly, 

E~ '2b = 0 for p # 2b and 

g*G(-c)  = g*G(-b)  | Ay(-a)Z*R2a#!(R2bu!f*G) ~2~,2b 
~ 2  " 

Step 1 follows. 

S T E P  2 :  (ii) is true. 

Since S is good, we can shrink it and assume that S = A4(A) is k-affinoid. 

Then (Y, X)  is the analytification of the smooth S-pair (y ,  X) = ;A d-c A a S ~ S J '  

where S = Spec(.A). By Poincar6 Duality for schemes, the fundamental class 

mapping Ay --~ Ty / s ( - e ) [ -2e ] ,  e = d -  c, is an isomorphism. Using Proposition 

1.8(d), we get that  the image of R2Ci!Ax(c) in H - 2 ~ ( T y / x ( - e ) )  contains the 

image of Ay under the injective homomorphism Cg. Since, by Step 1, R2~i!Ax(c) 

is isomorphic to Ay, the required statement follows. | 

In the situation of Theorem 2.1, it implies the same corollaries as [Ber2], 7.4.6- 

7.4.8. In w the following corollary will be used. 

2.3 COROLLARY: Suppose that S is a scheme oflocMly finite type over Spec(A), 

where .,4 is a k-atl~noid algebra, (y ,  X) is a smooth S-pair, j is the open immersion 

H = X \ 3; ~ X, and 3 r is an abelian sheaf on X which is locally isomorphic 

to a sheaf of  the form f*~,  where G is an dtale As-module. Then for any q _> 0 

there is a canonical isomorphism 

~l:~q �9 an_% q 'an an ( : , ( P l u ) )  n 3. lu.o) 

Proof'. Using Corollary 5.2.7 from [Ber2] and its analog for schemes, it suffices 

to verify that (Rqi!J:)an-~Rqian!(jran). But the latter follows from Theorem 2.1, 

its analog for schemes and Proposition 1.8(d). 1 

3. The  Comparison Theorem 

3.1 THEOREM: Let ~: y --+ 2( be a morphism of finite type between schemes 

of locally finite type over k, and let 3 r be a constructible abelian sheaf on Y 

with torsion orders prime to char(k). Then for any q >_ 0 there is a canonical 

isomorphism 

It ~.d-) i t  ~ .  .r . 
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Proo~ If the torsion orders of ~ are prime to char(k), the theorem is proved in 

[Ber2], 7.5.3. We assume therefore that char(k) = 0. We may assume that  22 and 

y are of finite type, reduced and separated and that  9 c is an 6tale Ay-module for 

some n >_ 1, where A = Z / n Z .  The theorem is proved by induction on dim(y) .  It 

is evidently true when d im(y)  = 0. Assume that  it is true when d im(y)  _< d -  1, 

where d > 1, and prove it when d im(y)  = d. 

STEP 1: The theorem is true if  X is smooth, ~ is an open immersion, and ~ is 

constant. 

We may assume that y is everywhere dense in X and ~" = Ay. From GAGA 

([Berl], 3.4.4) it follows that yah is everywhere dense in X an. 

CASE q ~-- 0: By [SGA4], Exp. XVI, 3.2, one has Ag-%~.Ay .  The isomorphism 
~ . n  Axe~ --*~. Aye. follows from the fact that  the complement of a closed k-analytic 

subspace in a connected normal k-analytic space is connected. This fact follows 

from the Riemann Extension Theorem proved by Liitkebohmert ([Lul], see also 

[Berl], 3.3.15). 

CASE q _> 1: We define an integer l (y ,  X) as the length m of the sequence of 

open subschemes Y0 = Y C Yl C . . .  C Ym = X such that Yi+l \ Yi is the set of 

regular points of the reduced closed subscheme 2d \ Yi. By Corollary 2.3, Step 

1 is true i f l ( y , X )  < 1. Assume that it is true when l ( y , X )  < m - l ,  where 

m > 2, and prove it when l (y ,  X) = m. We set Z = Yl (in the above sequence) 

and denote by it (resp. v) the open immersion y --~ Z (resp. Z r X). Consider 

the morphism of spectral sequences 

,E~,q ~ (RVe, (Rq#,Ay) )  all , (RV+q~,Ay) all 

IIE~,q p an  q an D, - -  R v, (R it, Aye.) Rv+q~a, nAy~. 

_ . •  a l l  One has A z - ~ # , A y  and Az-- # ,  Aye.. Since l (Z,  X) = m - 1 then, by induc- 

tion, ' E ~ ' ~  p'~ for all p > 0. Furthermore, Z ~ := Z \ y is open everywhere 

dense in the reduced closed subscheme X ' := X \ Y. The sheaves R q # , A y  (resp. 

Rq#~,nAy~.) for q > 1 are concentrated on Z'  (resp. Z'all). Since dim(Z')  < d 

then, by induction, ~p,q.Z.,~p,q for all p >'0-and q > 1. Step 1 follows. 

STEP 2: The theorem is true if  ~ is an open immersion and 3 r is constant. 
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Let st: X' --+ X be a resolution of singularities of X, i.e., a proper surjective 

birational morphism with smooth X'. Then there is a commutative diagram with 

cartesian squares 
U' J .32~ : .X 

1A' ' J' . y ' ~' , X I 

where/4 is an open everywhere dense subset of Y and h is an isomorphism. By 

Step 1, the theorem is true for the pair (qg, Ay,). From the Comparison Theorem 

for cohomology with compact support ([Ber2], 7.1.4) it follows that  the theorem is 

true for (fqg, Ay,). Let i (resp. i') denote the closed immersion Z := 3; \ / 4  --+ 3: 

(resp. Z '  := y ". bF --* y ' ) .  Since dim(Z') < d then, by induction, the theorem is 

true for ( f ~ ' , i ' * A z , ) .  From the exact sequence 0 ---+ 3!Au," ~ Ay, ~ z"*Az, ~ 0 

it follows that  the theorem is true for (qof', j~Au,). Furthermore, by the Proper 

Base Change Theorems for schemes and analytic spaces ([Ber2], 5.3.1), one has 
q I "1 r ~ q  J . / a n :  - / a n A  \ _ 

R f . (3 !Au , )  = 0 and n ] .  (3! l~u '~n) = 0 for allq > 1. Since f ' . ( j~Au,)  = j !Au  
I a n  . l& I I  and st. (3! hw~o) = j~nhu~,, it follows that R q ~ o . ( j ! h u ) - % R q ( ~ f ' ) . ( j ~ h w )  

and q a n  ' a n  ~ q I a n  "1 & n  R ~o. (3! Au~n)--~R (qof). (3! Au,~-), and therefore the theorem is true 

for (~,j!Au). Finally, since dim(Z) < d then, by induction, the theorem is true 

for (qo, i*Az). From the exact sequence 0 ~ j!Au --+ Ay ~ i * A z  ---+ 0 it follows 

that the theorem is true for (~, Ay). 

STEP 3: The  theorem is true i f2 :  is constant. 

We may assume that X and 32 are affine. Then we can represent the morphism 

as a composition of an open immersion j: 32 ~-~ y with a proper morphism 

~: 32 -~ 32. By Step 2, the theorem is true for (j, Ay) and, by the Compar- 

ison Theorem for cohomology with compact support, the theorem is true for 

(~, R q j . A u ) .  It follows that the theorem is true for (~, Ay). 

STEP 4: The  theorem is true in the general case. 

We can embed any constructible sheaf ~" in a finite direct sum of sheaves of 

the form st, Ay,, where st: y ~ 3; is a finite morphism. By Step 4, the theorem 

is true for (qost, Ay,). It follows that the theorem is true for (qo, ~'). II 

3.2 COROLLARY: Let  X be a scheme of  locally finite type over k, and let 2: be a 

constructible abelian sheaf  on X with torsion orders prime to char(k). Then for 

any q > 0 there is a canonical isomorphism H q ( X ,  .~)-%Hq(X ~n, 5r~n). 
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3.3 COROLLARY: Let qo: y ~ X be a compactifiable morphism between schemes 

of  locally finite type over k, and let 5- E D b ( x ,  A) with n prime to char(k). 

Assume that either n is prime to char(k) or ~a is a closed immersion. Then there 

is a canonical isomorphism 

( R ~ ! 5 - . ) a n  _ ~  R ~ a n  ! 5 - a n ' .  

Proof" Suppose first that n is prime to char(k). Since the statement is local with 

respect to y ,  we may assume that ~ is the composition y -~ X'  ~-~ A', where i 

is a closed immersion and g; is smooth. By Poincar6 Duality for schemes and for 

analytic spaces ([Ber2], 7.3.1), the statement is true for r Thus, in both cases 

we may assume that ~ = i is a closed immersion. Let j be the open immersion 

X \ J) r A'. Then there is a morphism of exact triangles 

�9 "* ' a n  , i~n(Ri!5-.)an , juan" " (R3,3 5-)  , 

. i~.n(Ri~.n'5-an .) , 5 - a n "  , " a n "  . . . . .  ' R3. 3 5- * 

The third vertical arrow is an isomorphism, by Theorem 3.1. The statement 

follows. | 

3.4 COROLLARY: Let 2( be a scheme of  locally finite type over k. Then for all 

5-" E D [ ( X ,  A) and G C D+(X,A)  with n prime to char(k) there is a canonical 

isomorphism 

( ~ - ~ o m ( . ~  F" , ~ ' ) ) a n - ~ - ~ O m ( . ~ a n "  , C a n .  ) . 

In particular, the canonical functor D b ( x ,  A) ~ D b ( x  an, A) is fully faithful. 

Proof: It suffices to verify the statement when 5-' = 5- is a constructible sheaf 

and X is of finite type, separated and connected. If .~" is constant, the statement 

follows from Corollary 3.2. If 5- is locally constant, then there is a finite 6tale 

morphism ~: X'  ~ X such that 5" = 5-Ix, is constant. Since 5- is embedded 

in ~,5-r, the statement is easily reduced to the case of 7 on X' .  In the general 

case, we can find an open everywhere dense subset /4 c X such that 5-[u is 

locally constant. Let j (resp. i) be the open (resp. closed) immersion/, /  

X (resp. X \ H  ~ X). Consider the exact sequence 0 --* j!(5"[u ) ~ 5- 

i .i*5- ~ O. Since Hom(j,(5"lu ), G')-~Hom(5"[u, G" [u)' then the statement is true 

for the sheaf j!(:7:lu ). Furthermore, since Hom(i.i*5-, G')-~Hom(i*5-, Ri!6 ") and 
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dim(X \ / ~ )  < dim(X),  then, by induction and Corollary 3.3, the s tatement  is 

true for i,i*.7 z. It  follows that  it is true for 5 r.  | 

3.5. Remark: Corollary 3.3 is not true if n is a power of p = char(k) > 0, 

char(k) = 0 and ~ is not a closed immersion. Indeed, assume that  k is alge- 

braically closed. Then Ap~ (1)[2]-%Ti,~, where p1 is the algebraic projective line. 

But the dualizing complex T~;, is more complicated. For example, if D is an open 

disc in P~, then the group H2~(D, pp) is very big (see [Ber2], 6.2.10), and therefore 

T~,~ ID~T}) is not isomorphic to AD(1)[2]. It  would be interesting to understand 

the structure of the dualizing complexes in this situation. 
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