INTEGRATION OF ONE-FORMS ON P-ADIC ANALYTIC SPACES

Vladimir G. BERKOVICH

Department of Mathematics, The Weizmann Institute of Science

P.O.B. 26, 76100 Rehovot, ISRAEL

Contents

Introduction

Acknowledgements

§1.

§2.

§3.

Naive analytic functions and formulation of the main result
1.1. Preliminary remarks and notation

1.2. The sheaf of naive analytic functions

1.3. Dx-modules and D x-modules

1.4. Logarithms

1.5. Logarithmic Poincaré Lemma

1.6. Formulation of the main result

Etale neighborhoods of a point in a smooth analytic space

2.1. Etale neighborhoods of a point with s(z) = dim(X)

2.2. The local structure of a smooth analytic curve

2.3. Etale neighborhoods of a point with with s(z) < dim(X)

2.4. Basic curves

Properties of strictly poly-stable and marked formal schemes .
3.1. Strictly poly-stable formal schemes

3.2. Open neighborhoods of the generic point of an irreducible component
3.3. A property of strata

3.4. A tubular neighborhood of the diagonal of a stratum closure

3.5. The same for proper marked formal schemes

0 o0 N =

12
15
19

. 22
.24
.24
. 29
. 34
.37
. 40
. 40
. 44
. 49
. 50
. 53



§4.

§5.

§6.

§7.

§8.

Properties of the sheaves Q;d /dOx

4.1. Analytic curve connectedness of closed analytic spaces

4.2. The sheaves 0%, O% and O%

4.3. Structure of the sheaves QL /dOx for smooth analytic curves
4.4. Injectivity of the homomorphism dLog : O% ®z ¢x — QL /dOx
4.5. A subsheaf Uy C Q;d/d(’)x and a subspace Vx , C Q;‘i/d@xw
Isocrystals

5.1. Wide strictly affinoid germs and dagger algebras

5.2. D-modules on smooth strictly k-affinoid germs and isocrystals
5.3. A construction of isocrystals

5.4. The filtered isocrystals E'p and the shuffle algebras

5.5. Unipotent isocrystals F'(X, 3)

F-isocrystals

6.1. Frobenius liftings

6.2. A Frobenius structure on the isocrystals E*(X, 3)

6.3. A uniqueness property of certain F-isocrystals

6.4. Structure of a commutative filtered B-algebra on F(X, 3)

6.5. Filtered F-isocrystals EX (X, 3) and F*(X, 3)

Construction of the sheaves Sy

7.1. Induction hypotheses

7.2. Split one-forms .

7.3. Marked and weakly marked one-forms

7.4. Construction of a primitive of a weakly marked one-form

7.5. Construction of the Dx-modules S}}’"H
7.6. End of the proof

Properties of the sheaves Sy

8.1. Filtered D x y)-algebras £}(X,Y) for germs with good reduction .

8.2. Filtered Dy -algebras & A(X) for proper marked formal schemes
8.3. A filtered Do ,-subalgebra 53‘(’33 C Sj\(’x and the space Vx
8.4. More uniqueness properties

8.5. A filtered Dx-subalgebra sx C Sx and the sheaf Uy

ii

56
56
o8

. 60
. 65
. 67

72
72
76
79

. 83
. 86
. 90
.90
.91
. 92
.94
. 95
.99
.99

102
104
106
110
113
117
117
121
123
129
132



§9. Integration and parallel transport along a path
9.1. Integration of closed one-forms along a path
9.2. Nontrivial dependence on the homotopy class of a path
9.3. Locally unipotent and quasi-unipotent Dx-modules
9.4. Parallel transport along a path
9.5. Parallel transport along an étale path

References

Index of notations

Index of terminology

iii

136
136
139
142
145
150
155
158
160



Introduction

One of the basic facts of complex analysis is the exactness of the de Rham complex of sheaves
of analytic differential forms on a smooth complex analytic space. In its turn, its proof is based on
the fact that every point of such a space has an open neighborhood isomorphic to an open polydisc,
which reduces the verification of the exactness to the classical Poincaré lemma. The latter states
that the de Rham complex of spaces of analytic differential forms on an open polydisc is exact. Its
proof actually works over any non-Archimedean field k of characteristic zero as well, and so it implies
also that the de Rham complex of sheaves of analytic differential forms on a smooth k-analytic space
(as introduced in [Berl] and [Ber2]) is exact at every point that admits a fundamental system of
étale neighborhoods isomorphic to an open polydisc. One can show (Corollary 2.3.3) that a point z
of a smooth k-analytic space possesses the above property if and only if the non-Archimedean field
H(x), associated with the point x, possesses the property that its residue field ﬁ(\:;) is algebraic
over k and the group |H(z)*|/|k*| is torsion.

It is a distinctive feature of non-Archimedean analytic spaces that the subset X; of points
with the latter property does not coincide with the whole space X. Notice that X, contains the
set Xo = {z € X|[H(z) : k] < oo} (the underlying space of X in rigid analytic geometry) and,
in particular, the set of k-rational points X (k) = {# € X|H(x) = k}. Although X is locally
arcwise connected, the topology induced on Xj; is totally disconnected and, if the valuation on & is
nontrivial, X, is dense in X. Moreover, if X is smooth, Xj; is precisely the set of points at which
the de Rham complex is exact and, in fact, for every point © ¢ X there is a closed one-form,
defined in an open neighborhood of z, that has no primitive at any étale neighborhood of z.

We now recall that a locally analytic function is a map f : X (k) — k such that, for every point
x € X (k), there is an analytic function g defined on an open neighborhood U of x with f(y) = g(y)
for all y € U(k). It is clear that the local behavior of such a function does not determine its global
behavior. For example, if its differential is zero, the function is not necessarily constant. On the
other hand, for a long time number theorists have been using very natural locally analytic functions
possessing certain properties that make them look like analytic ones. An example of such a function
(for X = G, = A'\{0}) is a homomorphism k* — k from the multiplicative to the additive group
of k which extends the homomorphism a — log(a) on the subgroup k' = {a € k*||a — 1| < 1},

where log(7T') is the usual logarithm defined by the power series — > =, (1_1.T)i (convergent on k!).

Let us assume (till the end of the introduction) that k is a closed subfield of C,,, the completion

of the algebraic closure Qp of the field of p-adic numbers Q,. Then such a homomorphism is
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uniquely determined by its value at p, and the homomorphism, whose value at p is an element
A € k, is denoted by logA(T) and is called a branch of the logarithm. One of the properties we
had in mind states that, if X is an open annulus in A! with center at zero and the differential of
a locally analytic function on X (k) of the form "1, filog™(T)? with f; € O(X) is equal to zero
in an open subset of X (k), then the function is a constant and, in fact, fo € k and f; = 0 for all
1 <i < n. Notice also that every one-form on X with coeflicients of the above form has a primitive
which is a locally analytic function of the same form.

It was an amazing discovery of R. Coleman ([Coll], [CoSh]) more than twenty years ago
that there is a way to construct primitives of analytic one-forms and their iterates in the class of
locally analytic functions on certain smooth k-analytic curves, called by him basic wide opens (they
are closely related to basic curves considered here), such that the primitives are defined up to a
constant. Namely, given a branch of the logarithm log)‘(T), he constructed for every such curve X
an O(X)-algebra A(X) of locally analytic functions filtered by free O(X)-modules of finite rank
AY(X) c AY(X) ... with dA"(X) C A (X) ®o(x) Q' (X) and such that

(a) A°(X) = O(X):

(b) every function from A(X) with zero differential is a constant;

(c) A'(X) ®o(x) QH(X) C dA™H(X);

(d) A™1(X) is generated over O(X) by primitives of one-forms from A*(X) ®o(x) 2 (X);
(e) if X is an open annulus with center at zero, then log*(T) € A'(X);

(f) for a morphism X’ — X and a function f € A*(X), one has ¢*(f) € AY(X").

Moreover, if a function in A(X) is equal to zero on a nonempty open subset of X (k), it is equal
to zero everywhere. Thus, if w is a one-form in A(X) ®o(x) 2'(X), then for any pair of points
x,y € X (k) one can define an integral ff w € k. It follows also that, given a coherent Ox-module F
with a unipotent integrable connection, the kernel of the induced connection on the O(X)-module
F(X) ®@ox) A(X) is a vector space of dimension equal to the rank of F and, therefore, for any
pair of points z,y € X (k) one can define a parallel transport T, : FY 5 fyv.

Since then there were several attempts to extend Coleman’s work to higher dimensions. R.
Coleman himself ([Col2]) constructed an integral [w of a closed analytic one-form w on the
analytification X*" of a connected projective scheme X with good reduction. Yu. Zarhin ([Zar])
and P. Colmez ([Colm]) constructed similar integrals for arbitrary connected smooth X (see Remark
9.1.2(ii)). A. Besser ([Bes]) constructed iterated integrals on the generic fiber X, of a connected
smooth formal scheme X, which is an open subscheme of a formal scheme %) of finite type over

k° such that the Zariski closure of the closed fiber X, in ), is proper (see Remark 8.1.5(ii)). V.
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Vologodsky ([Vol]) constructed a parallel transport T, , on X** for arbitrary connected smooth X
(see Remark 9.4.4). All of these constructions gave additional evidence for a certain phenomenon of
local analytic nature which was already present in the work of Coleman and is described as follows.

Let us call a naive analytic function on a smooth k-analytic space X a map that associates to
every point x € X an element f(x) € H(z) such that there is an analytic function g defined at
an open neighborhood U of x with f(y) = g(y) for all y € Us;. This class of functions is better
than that of locally analytic ones since, for every closed subfield k¥ C k' C C, and every naive
analytic function f on X, one can define the pullback of f on X®k’. For example, the locally
analytic function log*(T) is the restriction to k* of a natural naive analytic function Log™(T')
on the multiplicative group Gy, and in fact for a basic curve X all locally analytic functions in
Coleman’s algebra A(X) are restrictions to X (k) of natural naive analytic functions on X. If now
n(X) denotes the space of naive analytic functions on X, the correspondence U — n(U) is a sheaf
of Ox-algebras denoted by nyx. Coleman’s work was actually evidence for the fact that, for a fixed
branch of the logarithm, every smooth k-analytic space X is provided with an Ox-subalgebra of
nx whose associated de Rham complex is exact and in which the kernel of the first differential
coincides with the sheaf of constant analytic functions cx = Ker(Ox <, aL).

The purpose of this work is to show that such an Ox-subalgebra Sx of nx exists and is unique
with respect to certain very natural properties. More precisely, Sx is a filtered Ox-algebra with
dS% C St ®o, QY for all i > 0, and the properties are similar to (a)-(f) from above. Although we
are not yet able to prove the exactness of the whole de Rham complex for Sx, we show that the de
Rham complex is exact at Q' and the kernel of the first differential coincides with ¢x. In particular,
under a certain natural assumption (which is automatically satisfied if k£ = C,) one can define an
integral fvw of a closed one-form w € (Sx ®o, N4 )(X) along a path v : [0,1] — X with ends
in X (k). Furthermore, the extended class of functions contains a full set of local solutions of all
unipotent differential equations and, in fact, a coherent Ox-module with an integrable connection
has a full set of local horizontal sections in the étale topology if and only if it is locally unipotent
in the étale topology (such a module is called here locally quasi-unipotent). As a consequence, we
construct parallel transport along a path and an étale path of local horizontal sections of locally
unipotent and locally quasi-unipotent modules, respectively. In comparison with the previous
constructions mentioned above, both integral and parallel transport depend nontrivially on the
homotopy class of a path and not only on its ends.

The filtered O(X)-algebra A(X), constructed by Coleman for a basic curve X, appears here

in the following way. One can show that for such X the group H!(X,cx) is zero and, therefore,
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every one-form w € (8% ®o, Q4 )(X) has a primitive in S*(X). Then A°(X) = O(X) and, for
i >0, A"(X) is generated over O(X) by the primitives of all one-forms w € A"(X) ®p(x) 2 (X)
in S**1(X). The algebra S(X) is in fact much bigger than A(X). For example, if X is an open
annulus, then A(X) = O(X)[log™(T)], but the O(X)-modules S¢(X)/S~1(X) are of infinite rank
for all i > 1. By the way, the latter is even true for the projective line P! (see Lemma 8.5.2).

In fact the sheaves Sx are constructed in a more general setting, and the reason for that is
as follows. Let X be the Tate elliptic curve which is the quotient of G, by the discrete subgroup
generated by an element ¢ € k* with |¢| # 1, and let w be the invariant one-form on X whose
preimage on Gy, is %. The curve X is homotopy equivalent to a circle, and the only reasonable
value for the integral of w along a loop v : [0,1] — X with end in X (k), whose class generates the
fundamental group of X, should be Log*(¢) (up to a sign). But for every ¢ € k* with |¢| # 1 there
exist X’s in k with Log™(q) # 0 as well as those with Log*(¢q) = 0.

A natural way to resolve the above problem is to consider the universal logarithm, i.e., the
one whose value at p is a variable. Such a universal logarithm was already used in the work of P.
Colmez and V. Vologodsky mentioned above, and it can be specialized to any of the branches of
the logarithm whose values at p are elements of k. But the properties of the sheaves Sy, whose
construction is based on the universal logarithm, do not seem to easily imply the same properties
of the similar sheaves whose construction is based on a classical branch of the logarithm. Thus, to
consider all possible branches of the logarithm simultaneously, we proceed as follows. Fix a filtered
k-algebra K, i.e., a commutative k-algebra provided with an exhausting filtration by k-vector spaces
K%c K!' c ... with K'- K/ C K'tJ. Furthermore, define a filtered Ox-algebra of naive analytic
functions ‘J‘(§ in the same way as ny but starting with the filtered algebra Of = Ox ®;, K instead
of Ox and, for an element A\ € K, define a logarithmic function Log™(T'), which is an element
of M1(G). In the similar way we define the Ox-algebras of naive analytic ¢-forms QZ

)

One has MY ©0, Q% = Q‘qﬁK,X and, in particular, M% is a filtered Dx-algebra (the latter notion
is defined in §1.3). For a Dx-submodule F of M%, let Qqﬁ y denote the image of the canonical
injective homomorphism F ®o, Q% — Q‘?YIK,X'

The main result (Theorem 1.6.1) states that, given K and A € K!, there is a unique way
to provide every smooth k-analytic space X with a filtered Dx-subalgebra Sy C ‘ﬂ§ so that the
following is true:

(a) S’ = Ox @k K

(b) Ker(Sy" <40l ) =cx @ K%

Shi X
d pW
(c) KGY(Q}QJ,X — Q‘%M’X) - dSX’Hl;



(d) S;\(’Hl is generated by the local sections f for which df is a local section of 2
(e) LogM(T) € SM(Gp);
(f) for a morphism ¢ : X’ — X and a function f € S»(X), one has o*(f) € SM(X).

1 .
SN X0

In Theorem 1.6.2 we list several properties of the sheaves S)A(. Among them is the uniqueness
property which tells that, if X is connected, then for any nonempty open subset & C X the restric-
tion map S*(X) — S*U) is injective. The sheaves Sy are functorial in the best possible sense
involving an embedding of the ground fields k¥ < k’, a morphism X’ — X and a homomorphism
of filtered algebras K — K’ over that embedding. If one is given only a homomorphism of filtered
k-algebras K — K’ : X+ X, there is a canonical isomorphism S} ®x K’ = S% . In particular, if
Sx denotes the sheaf constructed for the universal logarithm, then the canonical homomorphism
k[Log(p)] — K : Log(p) — X gives rise to an isomorphism Sx ®p[rog(p) K = Sy

Theorems 1.6.1 and 1.6.2 are proven in §7. The proof is based on preliminary results obtained
in §§1-6 and having an independent interest. Since the formulation of the main result actually
makes sense for an arbitrary non-Archimedean field of characteristic zero, the preparatory part of
the proof in §§1-5 is done over fields as general as possible, and the assumption that & is a closed
subfield of C, is only made beginning with §6. In §8, further properties of the sheaves Sy are
established and, in §9, they are used for a construction of the integral and parallel transport along
a path. A detailed summary of each section is given at its beginning.

There are many natural questions on the sheaves & g‘( one may ask. Here are some of them.

(1) Is the de Rham complex associated to Sy exact? We believe this is true.

(2) Does the extended class of functions contain local primitives of relative closed one-forms
with respect to an arbitrary smooth morphism ¢ : ¥ — X7 Again, we believe this is true. It is
in fact enough to consider morphisms of dimension one, and the positive answer to this question
would imply the positive answer to (1) and to the relative version of (1).

(3) Are the sheaves of rings S coherent for reasonable K (e.g., K = k[Log(p)] or K = k)? Like
(1) and (2), we believe this is true. Notice that, for a point x € X whose field ’I—?(;) is transcendent
over E, the stalk Sﬁ‘(@ is a non-Noetherian ring.

(4) What are the cohomology groups H9(X, 83\5") and H(X,S%)?

(5) Assume that k is finite over Q, and a p-adic group G acts continuously on a smooth k-
analytic space X (e.g., G = PGL4(k) and X is the projective space P4~! or the Drinfeld half-plane
Q4 C P471). What are the representations of G on the space of global sections S*(X)?

(6) Let X and Y be smooth k-analytic spaces, and assume there is a morphism of germs of

analytic spaces ¢ : (Y,Yy) — (X, Xg) (see [Ber2, §3.4]) which takes local sections of Sy to those
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of S¢. Is it true that ¢ is induced by a morphism of analytic spaces ¥ — X?

The answer to (6) would shed light on the following philosophical question. What does the
existence of the sheaves Sy mean? If the answer to (6) is negative, it would mean that smooth p-
adic analytic spaces can be considered as objects of a category with bigger sets of morphisms in the
same way as complex analytic spaces can be considered as real analytic or differentiable manifolds.
On the other hand, if the answer to (6) is positive, it could mean that complex analytic functions
have at least two p-adic analogs, namely, genuine analytic ones and functions from the broader
class provided by the sheaves S3-. This reminds us of the similar phenomenon with the topology of
a complex analytic space whose p-adic reincarnation is two-faced. It appears as the usual topology
of a p-adic analytic space as well as the stronger étale topology of the space. Besides, the existence
of the sheaves Sy is somehow related to the fact that smooth p-adic analytic spaces are not locally
simply connected in the étale topology. In any case, we hope what is done in this paper will be

useful for understanding the p-adic Hodge theory in terms of p-adic analytic geometry.
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§1. Naive analytic functions and formulation of the main result

After recalling some notions and notation, we give a precise definition of the sheaves of naive
analytic functions 95 . We then recall the definition of a Dx-module, introduce a related notion of
a D x-module, and establish a simple relation between the de Rham complexes of a D x-module and
of its pullback under a so called discoid morphism Y — X. In §1.4, we introduce the logarithmic
function Log*(T) € M!(G,,) and a filtered Dx-module L*(X) which is generated over O(X)
by the logarithms LogA( f) of invertible analytic functions on X. Furthermore, given a so called
semi-annular morphism Y — X, we establish a relation between the de Rham complexes of certain
Dx-modules and of the Dy-modules which are generated by the pullbacks of the latter and the
logarithms of invertible analytic functions on Y. It implies the exactness of the de Rham complex
of the spaces of differential forms with coefficients in the Dx-module L*(X) on a semi-annular
analytic space X. In §1.6, we formulate the main result on existence and uniqueness of the sheaves

Sy and list their basic properties.

1.1. Preliminary remarks and notation. In this paper we work in the framework of non-
Archimedean analytic spaces in the sense of [Berl] and [Ber2]. A detailed definition of these spaces
is given in [Ber2, §1], and an abbreviated one is given in [Ber6, §1]. We only recall that the affinoid
space associated with an affinoid algebra A4 is the set of all bounded multiplicative seminorms on
A. It is a compact space with respect to the evident topology, and it is denoted by M(A).

Let k& be a non-Archimedean field with a nontrivial valuation. All of the k-analytic spaces
considered in the paper are assumed to be Hausdorff. For example, any separated k-analytic space
is Hausdorff and, for the class of the spaces which are good in the sense of [Ber2, §1.2], the converse
is also true.

Although in this paper we are mostly interested in smooth k-analytic spaces (in the sense of
[Ber2, §3.5]), we have to consider more general strictly k-analytic spaces. Among them, of special
interest are strictly k-analytic spaces smooth in the sense of rigid geometry (for brevity we call
them rig-smooth). Namely, a strictly k-analytic space X is rig-smooth if for any connected strictly
affinoid domain V' the sheaf of differentials Qf, is locally free of rank dim(V). Such a space is
smooth at all points of its interior (see [Ber4, §5]). In particular, a k-analytic space X is smooth if
and only if it is rig-smooth and has no boundary (in the sense of [Ber2, §1.5]). An intermediate class
between smooth and rig-smooth spaces is that of k-analytic spaces locally embeddable in a smooth
space (see [Ber7, §9]). For example, it follows from R. Elkik’s results (see [Ber7, 9.7]) that any

rig-smooth k-affinoid space is locally embeddable in a smooth space. If X is locally embeddable in
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a smooth space, the sheaf of differential one-forms Q% is locally free in the usual topology of X. (If
X rig-smooth, the sheaf of differential one-forms is locally free in the more strong G-topology Xq,
the Grothendieck topology formed by strictly analytic subdomains of X, see [Ber2, §1.3].) Recall
that for any strictly k-analytic space X the set Xo = {z € X|[H(z) : k] < co} is dense in X ([Berl,
2.1.15]). For a point z € Xy, the field H(x) coincides with the residue field x(z) = Ox ,/m, of the

local ring Ox .

1.1.1. Lemma. Let X be a connected rig-smooth k-analytic space. Then every nonempty

Zariski open subset X' C X is dense and connected, and one has ¢(X) = ¢(X").

Recall that ¢(X) is the space of global sections of the sheaf of constant analytic functions c¢x

defined in [Ber9, §8]. If the characteristic of k is zero, then cx = Ker(Ox <, QL).

Proof. We may assume that the space X = M(A) is strictly k-affinoid, and we may replace
X' by a smaller subset of the form Xy = {z € X|f(z) # 0} with f a non-zero element of A. Such
a subset is evidently dense in X. We now notice that X is the analytification of the affine scheme
Xy = Spec(Ay) over X = Spec(.A). Since Xy is connected, from [Ber2, Corollary 2.6.6] it follows
that X is connected. To prove the last property, we can replace k by ¢(X), and so we may assume
that ¢(X) = k. By [Ber9, Lemma 8.1.4], the strictly &’-affinoid space X®k’ is connected for any
finite extension &’ of k and, therefore, the same is true for the space X ;®k’ = (X®k');. The latter
implies that ¢(Xy) = k. .

Recall that in [Berl, §9.1] we introduced the following invariants of a point x of a k-analytic
space X. The first one is the number s(x) = si(x) equal to the transcendence degree of 7-?(;)
over k, and the second one is the number ¢(z) = t;(z) equal to the dimension of the Q-vector
space \/|H(z)"|/y/Ik*]. One has s(x) + t(z) < dim,(X), and if 2’ is a point of X®k* over k
then s(z’) = s(x) and t(z’) = t(x). Moreover, the functions s(x) and t(z) are additive in the
sense that, given a morphism of k-analytic spaces ¢ : Y — X, one has s(y) = s(z) + s3(s)(y) and
t(y) = t(x) +tp(2)(y), where z = ¢(y). Let Xy, denote the set of points 2 € X with s(z) = t(z) = 0.
This set contains X, and, in particular, if X is strictly k-analytic, X is dense in X. By [Berl,
§9], the topology on X; induced from that on X is totally disconnected. If k' is a closed subfield
of the completion k* of an algebraic closure of k and X’ = X&', then the image of X !, under the
canonical map X’ — X is contained in Xy;. (Notice that if &’ is not finite over k the latter fact is
not true for the sets X and Xj.)

For an étale sheaf F on a k-analytic space X, we denote by F, the stalk at a point x € X of
the restriction of F' to the usual topology of X and, for a section f € F(X), we denote by f, its
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image in F,. Furthermore, a geometric point of X is a morphism (in the category of analytic spaces
over k) of the form T : pyz) — X, where py g is the spectrum of an algebraically closed non-
Archimedean field H(Z) over k. The stalk F5 of an étale sheaf F' at T is the stalk of its pullback with
respect to the morphism 7, i.e., the inductive limit of F(Y') taken over all pairs (¢, ) consisting of
an étale morphism ¢ : Y — X and a morphism « : pyz) — Y over T. Notice that, if Gz, is the
Galois group of the separable closure of H(x) in H(T) over H(x), there is a discrete action of Gz,
on Fz and, by [Ber2, Proposition 4.2.2], one has F, = F; #/* (Recall that in [Ber2] we denoted by
F, the pullback of F' under the canonical morphism ps,) — X, which can be also identified with
a discrete Gz/,-set.)

Given a finite extension &’ of k, the ground field extension functor from the category of strictly
k-analytic space to that of strictly k’-analytic ones X — X®k’ has a left adjoint functor X’ — X
which associates with a strictly A’-analytic space X’ the same space considered as a strictly k-
analytic one (see [Ber9, §7.1]). The essential image of the latter functor consists of the strictly
k-analytic spaces X for which there exists an embedding of k¥’ to the ring of analytic functions
O(X). The canonical morphism X’ — X in the category of analytic spaces over k (see [Ber2, §1.4])
gives rise to an isomorphism of locally ringed spaces, to bijection X}, = X, and X/, = X and to
isomorphisms of étale sites X}, — X4 and of étale topoi X}, — X,. For an étale sheaf F on X,

we denote by F’ the corresponding étale sheaf on X'.

1.2. The sheaf of naive analytic functions. Let X be a strictly k-analytic space. For
an étale sheaf F' on X, we define a presheaf F as follows. Given an étale morphism Y — X, we
set f(Y) = lim F(V), where the direct limit is taken over open neighborhoods V of Y; in Y. The

proof of the following lemma is trivial.

1.2.1. Lemma. Assume that an étale sheaf F' on X possesses the following property: for any
étale morphism Y — X and any open neighborhood V of Yy, in' Y, the canonical map F(Y) — F(V)
is injective. Then the following is true:

(i) the presheaf F is a sheaf:

(ii) the canonical morphism of sheaves F — Fis injective and gives rise to a bijection of stalks
S ﬁg for any geometric point T of X over a point x € Xg;

(iii) the sheaf F possesses the stronger property that, given an étale morphism Y — X and an
open neighborhood V of Yy, in Y, the canonical map F(Y) — F(V) is bijective;

(iv) one has F-F. .

1.2.2. Remarks. (i) The property of the sheaf F' implies that for any element f € F (X)
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there exists a unique maximal open subset X, C U C X such that f comes from F(U).

(ii) The assumption of Lemma 1.2.1 for an étale abelian sheaf F' on X is equivalent to the
property that, for any étale morphism Y — X and any element f € F(Y'), the intersection Supp(f)N
Yt is dense in the support Supp(f) of f. For the sheaves we are going to consider even the smaller

intersection Supp(f) N Yy is dense in Supp(f).

Let K be a filtered k-algebra K, i.e., a commutative k-algebra with unity provided with an
increasing sequence of k-vector subspaces K ¢ K' ¢ K? C ... such that K* K7 ¢ K7 and
K = U, K' Given a strictly k-analytic space X, we set Oﬁg’i = Ox ®, K'. Notice that if
the number of connected components of X is finite, then O¥(X) = O(X) ®; K*. The sheaf
O = Ox ®;, K is an example of a filtered Ox -algebra which is defined as a sheaf of O x-algebras A
provided with an increasing sequence of O x-modules A° C A! C A? C ... such that A" A7 C A"t
and A = th.AZ If X is reduced, we set C?i =cxy ®; K and C)Ig =cx Q K.

The sheaf of M*"-analytic functions ‘ﬁgl is the sheaf F associated to F = Oﬁ((’i (which
evidently satisfies the assumption of Lemma 1.2.1). The inductive limit M5 = h_r)n‘ﬁ?’ is a
sheaf of filtered Ox-algebras. Notice that for every function f € NS (X ) there exists a unique
maximal open subset X,; C U C X, called the analyticity set of f, such that f comes from OX (Uf).
Furthermore, assume we are given a non-Archimedean field k’, a strictly k’-analytic space X', a
filtered k’-algebra K’, and a morphism of analytic spaces X’ — X and a homomorphism of filtered
algebras K — K’ over an isometric embedding of fields k < k’. If the analyticity set of a function
f € ME(X) contains the image of X/, in X, then there is a well defined function ¢*(f) € ‘JIK,(X’).
For example, if k' C Ea, then the image of X/, is contained in Xg; and the latter property is true
for all local sections of 9.

If X is reduced, elements of ‘TKK’i(X ) can be interpreted as the maps f that take a point
x € X4 to an element f(x) € H(z) ®, K*® and such that every point from X,; admits an open
neighborhood X’ C X and an analytic function g € O%#(X’) with f(z) = g(x) for all x € X/,. In

particular, if K =k, ‘ﬁ)[g is the sheaf ny introduced in the introduction.

More generally, the sheaf of ‘)’(K’i—diﬁerentml q-form Qq‘)‘(K’i,X’ q > 0, is the sheaf F associated
to F = Q% @ K’ (which also satisfies the assumption of Lemma 1.2.1). We also set Q%QK,X =
hi{lQ%’tK'i,X' If X is locally embeddable in a smooth space, the sheaf QY is locally free over Ox

and, therefore, there is a canonical isomorphism of filtered Ox-modules N¥ @p, Q% = QI

ne x’
Assume now that X is reduced, and that ¢(X) contains a finite extension k' of k. Let X’

be the same X considered as a strictly k’-analytic space, and let K’ be the filtered k’-algebra
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K @ k. Then the sheaf (O%) on X’ that corresponds to O% coincides with O%,. Tt follows that
(MEY =Nk, and (CK) =X

1.3. Dx-modules and Dx-modules. Till the end of this section, the field k is assumed to
be of characteristic zero.

Let X be a smooth k-analytic space. A Dx-module on X is an étale Ox-module F provided
with an integrable connection V : F — F ®0, Q. For such a Dx-module F, the subsheaves
of horizontal sections FV = Ker(V) and of closed one forms (F ®0, Q)% = Ker(F ®0, 0}
F ®oy Q%{) are étale sheaves of modules over ¢x. If F = Ox, the former is cx and the latter is
denoted by QL.

A Dx-algebra is an étale commutative O x-algebra A which is also a Dx-module whose connec-
tion V satisfies the Leibniz rule V(f-g) = fV(g) +gV(f). If in addition A is a filtered Ox-algebra
such that all A’ are Dx-submodules of A, then A is said to be a filtered Dx-algebra. For ex-
ample, the sheaves of naive analytic functions ‘)’tg’ provided with the canonical differential are
Dx-modules, and MY is a filtered Dx-algebra. Given a non-Archimedean field &', a smooth k-
analytic space X’ and a morphism ¢ : X’ — X over an isometric embedding of fields k — £/, we
denote by ¢*(F) the Dx/-module ¢~ (F) ®p-1(0y) Ox’, where ¢ (F) denotes the pullback of F

as a sheaf of abelian groups.

1.3.1. Lemma. Let F be a Dx-module, and assume that the sheaf FV possesses the following
property: for any étale morphism Y — X, the support Supp(f) of any nonzero element f € FV (Y)
is not contained in a nowhere dense Zariski closed subset of Y. Then

(i) for any étale morphism Y — X with connected Y and the property that the Oy -module Q3
is free over a nonempty Zariski open subset of Y, the canonical map F¥ (V) Q¢yy O(Y) — F(Y)
is injective;

(i) the canonical morphism of Dx-modules FV ®¢, Ox — F is injective.

Notice that the assumption on Q3. in (i) is always satisfied if ¥ admits a flat quasifinite

morphism ([Ber2, §3.2]) to the analytification of a smooth scheme over k.

Proof. The statement (ii) trivially follows from (i). To verify (i), we may assume that X is
connected and the Ox-module QY is free over a nonempty Zariski open subset of X, and it suffices
to show that if fi,..., f, are elements of FV (X) linearly independent over ¢(X) and g1,...,9n
are elements of O(X) with fig1 + ...+ fngn = 0, then gy = ... = g, = 0. Assume that g,, # 0.
By Lemma 1.1.1 and the property on FV, we may replace X by the Zariski open subset of X
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over which g, is invertible and the Ox-module QY is free. We may therefore assume that g, = 1
and, in particular, this immediately implies the statement for n = 1. Assume that n > 2 and the
statement is true for n — 1. We have Z?:_II fi®dg; = 0. Let wy,...,wn € Q1(X) be a basis of QL
over Ox, and let dg; = Z;”:l hijw; with h;; € O(X). It follows that, for every 1 < j < m, one has
Z?:_ll fihi; = 0, and the induction hypothesis implies that h;; = 0 for all 4, 5. We get dg; = 0, i.e.,
gi € ¢(X) for all 1 < i < n, and the elements fi,..., f, are linearly dependent over ¢(X), which

contradicts the assumption. .

It is well known that any coherent Ox-module which admits a connection is locally free over
Ox (see [Bor, Ch. III]) and, in particular, an Ox-coherent Dx-module F is always a locally free
O x-module and the canonical morphism of D x-modules F¥ ®¢, Ox — F is injective. For example,
the structural sheaf Ox provided with the canonical differential is an Ox-coherent Dyx-module. A
finite direct sum of copies of the Dx-module Ox is called a trivial Dx-module. A Dx-module F
is said to be unipotent if there is a sequence of Dx-submodules F* =0 C F! C ... C F* = F such
that all of the quotients F* /F i—1 are isomorphic to the trivial Dx-module Ox. Such a Dx-module
F is automatically Ox-coherent.

The de Rham cohomology groups Hip(X,F) of a Dx-module F are the hypercohomology
groups of the complex F ®p, {2y with respect to the functor of global sections on X. If ¥ = Oy,
they are called the de Rham cohomology groups of X and denoted by Hjp(X). Notice that since
the characteristic of k is zero it does not matter if we calculate the groups in the étale or the usual
topology of X (see [Ber2, §4.2]). There are two spectral sequences that converge to the de Rham
cohomology groups. The term F5? in the first one is HP(HY(X,F @0, Qy)). It follows that, if F
is Ox-coherent and X is a union of an increasing sequence of affinoid subdomains such that each
of them is Weierstrass in the next one, then H9(X,F ®p, Q%) =0 for all p > 0 and ¢ > 1 and,
therefore, Hi; (X, F) coincide with the cohomology groups of the complex (F ®o, @y )(X). The
term E59 in the second spectral sequence is H? (X, (F @0y Q%)/V(F @0, Q% ")), and it gives

rise to an exact sequence
0 — HY (X, FY) — Hig(X, F) — H(X, (F ®ox Qx)/V(F)) — H (X, FV) .

Given a Dx-submodule F of mﬁ, we denote by qu}  the image of the canonical injective
homomorphism F ®o, Q% — Q‘qﬁk o If G is another Dx-submodule of ‘ﬁ§, we denote by F -G
and F + G the Ox-submodules of m§§ locally generated by products and sums of local sections of

F and G, respectively. They are also Dx-submodules of ‘ﬁ§ as well as their intersection F N G.
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Assume we are given a non-Archimedean field &/, a smooth k’-analytic space X', a filtered
k’-algebra K’, and a morphism of analytic spaces ¢ : X’ — X and a homomorphism of filtered
algebras K — K’ over an isometric embedding of fields k < k’. Assume also we are given Dx-
submodule F of MY such that the pullback ¢*(f) is well defined for all local sections f of F (for
example, this assumption is true if k¥’ is a subfield of 74:\&) In this case we denote by ¥ (F) the
image of the canonical homomorphism of Dx/-modules ¢*(F) — ‘3‘(?, i.e., the Ox/-submodule
of ‘ﬁ? generated by the local sections ¢*(f), where f is a local section of F. (We want to note
that even under the assumptions that &’ is finite over k and K’ = K ® k' we do not know if the
canonical homomorphism * (M%) — ‘ﬂ§: is injective.)

Let X be a rig-smooth k-analytic space. A Dx-module on X is an O(X)-submodule M C
M (X) such that dM C Q,(X), where Q%,(X), ¢ > 0, denotes the image of M Ro(x) 29(X) in
Q?ﬂK
then, for every Dy-submodule F of M, F(X) is a Dx-module. For Dx-modules M and N on
X, we denote by M - N and M + N the O(X)-submodule of 9 (X) generated by products and

(X). For example, O¥ (X) is a Dx-module and, if X is smooth and QY is a free Ox-module

sums of elements of M and N, respectively. They are also Dx-modules. Given a morphism of
rig-smooth k-analytic spaces ¢ : Y — X and a Dx-module M on X, we denote by ¢# (M) the
O(Y)-submodule of 9 (V) generated by the functions ¢*(f) for f € M. It is a Dy-module on Y.

An open subset Y of the affine line A% = X x A! over X is said to be discoid over X if every
point ¥ € Y has an open neighborhood in Y of the form U x D, where U/ is an open neighborhood
of the image of y in X and D is an open disc in A! with center at zero. A morphism ¢ : Y — X
is said to be discoid of dimension 1 if there is an isomorphism of Y with an open subset of Ak
which is discoid over X. A morphism ¢ : Y — X is said to be discoid of dimension n if it is a

composition of n discoid morphisms of dimension 1.

1.3.2. Proposition. Let ¢ : Y — X be a surjective discoid morphism of rig-smooth k-
analytic spaces. Then for any Dx-module M on X the canonical homomorphism of complexes
Q) (X) = Q4 (Y) is a homotopy equivalence.

Proof. We may assume that Y C A. We say that a sequence {w;};>0 of elements of Q7,(X),
n > 0, is p-bounded if there exist elements { fi }1<i<m C M and {w;j}i<i<m,j>0 C 2" (X) such that,
for any j > 0, one has w; = 1", fiwi;, and, for any affinoid domain U C X and any closed disc
E C A of radius t > 0 with center at zero for which U x E C Y and for any 1 < i < m, one has
||wijllut! — 0 as j — oo. Here || ||y is a Banach norm on the finite A-module of one-differentials

Y, where U = M(A). (Proposition 2.1.5 from [Berl] implies that the equivalence class of the
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Banach norm is uniquely defined.)

It follows easily from the definition of ¢ M that each element f € ¥ M (resp. w € Qs (V)
for n > 1) has a unique representation as a sum Z;io T7g; (resp. Z;’;O Tin; + Z;io T7¢; NdT),
where the sequences {g;};>0 C M (resp. {n;};50 C Q5,(X) and {&};50 C Q7 (X)) are ¢-
bounded. Moreover, such a sum always defines an element of p# M (resp. Qs (V).

Let I denote the homomorphism from the formulation, and let R denote the homomorphism

of complexes Q_,,,(Y) — Q,(X) that takes the above element f € ©* M (resp. w € QZ#M(Y)

for n > 1) to the element gy € M (resp. 1o € Q%,(X)). One clearly has Rol = 1. Let B be
the homomorphism 7,/ (Y) — QZ;}VI(Y), n > 1, that takes the above element w to the element
(—1)nt Z;io Tj+1j€ﬁ. (The sequence {jfﬁ}jzg is ¢-bounded, and so the latter sum is an element

of QZ;}V[(Y).) It is easy to verify that Bod+do B =1— I o R, and the lemma follows. -

1.3.3. Corollary. Any unipotent Dp-module on an open polydisc D with center at zero is
trivial.
Proof. Let F be a unipotent Dp-module of rank n. We claim that the following sequence is

exact

F(D) % (F @0, Oh)(D) ~= (F ®o, 05)(D) - ...

and FV (D) is a vector space over k of dimension n. Indeed, if n = 1, the claim follows from
Proposition 1.3.2 and is easily extended by induction for all n. It follows that FV is a free ¢p-

module of rank n and, therefore, there is an isomorphism of Dp-modules F¥ ®¢,, Op = F. "
In particular, the following sequence is exact (Classical Poincaré Lemma):

d

-4, ol(p) -2 d

0— k— O(D) L 0*(D) % ...

1.4. Logarithms. The first example of a closed one-form which has no a primitive in the

class of analytic functions is provided by the one-form dTT on the analytic multiplicative group

G, = AN{0}. In comparison with the classical situation, the space G, is simply-connected

and, in fact, H*(Gp,cq,) = 0. This means that, if an integration theory we are looking for

exists, the one-form % must have a primitive f in a bigger class of functions on the whole space

G,,. Let us normalize it by the condition f(1) = 0. Furthermore, let m (resp p;) denote the
multiplication morphism (resp. the projection to the i-th coordinate) Gy, X Gy, — Gpy. One has
m*(dTT) = pi( dTT) + pg(dTT) Again, if we want the primitive to behave functorially, it should satisfy

the relation m*(f) = pi(f) + p5(f) which in the usual form is written as f(a-b) = f(a) + f(b).
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A branch of the logarithm (over K) is an ML analytic function f on Gy, such that df = dTT
and m*(f) = pi(f) +p5(f). It is clear that the restriction of such a function f to D(1;1), the open
disc with center at one and of radius one, coincides with the usual logarithm log(7") defined by the

. 1-7)°
convergent power series — >~ ( - )

. Let us try to understand in simpler terms what a branch
of the logarithm is.

First of all, such a function f gives rise to a homomorphism of abelian k* — K' whose
restriction to the subgroup k* N D(1;1) coincides with log(7"). More generally, if k" is a finite
extension of k, the pullback of f to G, &k defines a similar homomorphism k" — K ®;, k’, and
these homomorphisms for different &”’s are compatible. Thus, f defines a Gal(k*/k)-equivariant
homomorphism of abelian groups Ay : k** — K ! ®p k* whose restriction to the open unit disc
with center at one coincides with log(7T). A homomorphism A : k** — K! @, k* with the latter

properties will be called a logarithmic character with values in K.

1.4.1. Lemma. (i) The correspondence f — Ay gives rise to a bijection between the set of

branches of the logarithm over K and the set of logarithmic characters with values in K ;

(ii) the analyticity set of any branch of the logarithm f is the complement of the set S(Gy,) =
{p(E(0;7))|r > 0} C Gy, where p(E(0;7)) is the maximal point of the closed disc E(0;r) of radius
r with center at zero.

Proof. (i) That the map considered is injective is trivial. Let A : k** — K! @ k* be a
logarithmic character. For a point x € (G, )o, let D be the open disc of radius |7'(z)| with center
at z, i.e., the open set {y € Gu||P(y)| < |T(z)|"}, where P(T) = T" + ayT"" ' + ... + a, is the
monic polynomial which generates the maximal ideal of k[T] that corresponds to . Furthermore,
let k¥’ be a finite Galois extension of k such that all points from ¢~!(x) are k’-rational, where ¢ is
the morphism G, @k’ — Gp,. Then p~1(D) = [[I*, D;, where each D; is of the form D(b; |T(b)])
for some point b € =1 (z). Let f; be the k’-analytic function A(b) 4 log(%) on D;. The properties
of A and log(T) imply that f; does not depend on the choice of the point b € ¢~(z) N D;. Tt
follows that the analytic function on ¢~1(D), defined by the family {f;}1<i<m, is invariant under
the action of the Galois group of k&’ over k and, therefore, it is the pullback of some analytic function
fp on D. Tt is easy to see that the 9! -analytic function on G, defined by the family {fp}, is
a branch of the logarithm and Ay = A.

(ii) By the construction, the complement of the analyticity set of f is contained in the set
S(Gm)- To show that they coincide, it suffices to prove that there is no a connected open subset

U C Gy, which is strictly bigger than D(1;1) and such that f}u € O(U), and to verify the latter we
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may assume that the field & is algebraically closed. Assume such a subset U exists. Recall ([Berl,
§4]) that the topological boundary of D(1;1) in Gy, is the point z = p(F(1;1)) and that the set U
is arc-wise connected. It follows that x € U. Let V be a connected affinoid neighborhood of x in
U. One has V = E(1;7)\ [ [, D(a;;r;), where r > 1,0 < r; <1 and ay,...,a, € k* are such that
la; —1| =1 and |a; — aj| =1 for all 1 < 4,5 < n. We see that the set V' contains all but finitely
many roots of unity of degree prime to the characteristic of the residue field 7%, i.e., the function f

has infinitely many zeroes on V', which is impossible. .

Given a logarithmic character X : k2" — K!'®;k?, the corresponding branch of the logarithm is
denoted by Log®. Given an embedding of non-Archimedean fields k < &’ such that the subfield of
the elements of &’ algebraic over k is dense in &/, the pullback of Log® under the induced morphism
Gn®rk’ — Gy, is a branch of the logarithm on Gu,®k" over K/ = K ®, k'. The corresponding
logarithmic character (k’*)* — K" @ K'* = K' @, k'* is the unique one that extends . (Notice
that for any element o € (k'*)* there exist n > 1 and 3,v € (K’*)* such that (3 is algebraic over k,
|y — 1| < 1and a™ = (7.)

Let now X be a rig-smooth k-analytic space. An invertible analytic function f € O(X)*
defines a morphism f : X — Gy, and we denote by Log”(f) the 9 '-analytic function f*Log*
on X. If f € O(X) is such that |f(z) — 1| < 1 for all z € X, then Log™(f) is analytic (it coincides
with log(f) = f*log). Given f,g € O(X)*, one has Log*(fg) = Log*(f) + Log”(g). One also
has dLog™(f) = %. In particular, for every n > 0 the O(X)-submodule of M* (X), generated by
elements of the form aLog*(fi) - ... Log*(fi) with 0 <i < mn, a € K" % and f; € O(X)* is a
Dx-module. Tt will be denoted by L»"(X). The Dx-module L*(X) = U"_,L " (X) is a filtered
O(X)-algebra. If X is smooth, the O x-submodule of ‘ﬂ?” associated to the presheaf U — L*"(U)
is a Dx-submodule denoted by E;‘(’”. One also has a Dx-submodule £3\( = h_n}ﬁg\(n of ‘ﬁﬁ(( which

is a filtered Ox-subalgebra.

1.4.2. Lemma. Let X be a connected open subset of G,, which contains a nonempty open
annulus with center at zero, and let f be a function from L*(X) of the form 37 f;Log™(T)? with
fi € OK(X). Iff‘u = 0 for a nonempty open subset U C X, then f; =0 for all 0 < i < n.

Proof. Let {e,}, be a basis of the k-vector space K, and set f; =, fi,ue,. Notice that the
latter representation is unique and that we have to show that f; , = 0 for all 4 and p. If n = 0, the
required fact follows from the uniqueness property of analytic functions on the affine line. Assume
n > 1 and that the fact is true for n — 1, and let [ be the number of ;’s with f, ,, # 0. The fact is

evidently true if [ = 0, and so assume that [ > 1 and that it is true for [ — 1, and let v be such that
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fnw # 0. If f, , is not a constant, we replace X by the open subset where it does not vanish and
then replace f by f/fn., and so we may assume that f, , is a nonzero constant. Notice that X is

still connected and contains a nonempty open annulus with center at zero. Consider the derivative

n—1 .
r=y (fL,MLOgA(T)" #3 (kS ) LogNT)") -

o =0

The induction hypothesis implies that f,’L_LV + 7 fa = 0, which is impossible since f,, is a

nonzero constant and X contains a nonempty open annulus with center at zero. "

1.4.3. Examples. (i) Let £ be a non-Archimedean field over Q, such that the residue
field k is algebraic over F, and the group |k*|/|Qy| is torsion. Then a logarithmic character
A (k)* — K! @4 k* is uniquely determined by its value at p which belongs to K' and, therefore,
in this case, it will be identified with that element of K'. Let krog denote the ring of polynomials
k[Log(p)] (in the variable Log(p)). It is a filtered k-algebra in which ki, is the subspace of
polynomials of degree at most i. We write ‘)@(, Nx, Ci and Cx instead of ‘ﬁ’;(“’g’i, ‘JII;(L"g, C;L"g’i and
C;C(Log, respectively, and denote by Log the corresponding 91 x-analytic function. Notice that the nk.
analytic function Log” is the image of Log under the homomorphism of the sheaves Na,, — ‘ﬁgm
which corresponds to the homomorphism of filtered k-algebras k., — K that takes Log(p) to A.
The main example of a field with the above property, considered in the paper, is a closed subfield
of C,, the completion of an algebraic closure Qp of Qp. (Recall that, by the Ax-Sen-Tate theorem
(see [Ax]), every closed subfield k of C, coincides with the closure of kN Q, in C,.) Furthermore,
if k possesses the above property and X is a k-analytic space, then the field H(z) of every point
x € X, possesses the same property.

(ii) Let k be the field of Laurent power series C((7')). Each element of k* has a unique
representation in the form a7"g witha € C*, n € Z and [g— 1] <1 (e, g =1+ o, a;T%). It
follows easily that any logarithmic character \ : (k*)* — K! ®j, k* is uniquely determined by the

element \(7) and the induced homomorphism C* — K!. A natural class of the latter consists of

homomorphisms of the form a — log |a|, where log is a branch of the real logarithm.

1.4.4. Remark. If an object depends on the algebra K, we indicate K in its notation (e.g.,
cK, ME). If it also depends on a logarithmic character A (or an element A € K as in Example
1.4.3(i)), we only indicate A having in mind the algebra K it is related to (e.g., L%, E;‘(”) If, in
Example 1.4.3(i), K = kpog with K* = kf . and A = Log(p), we omit the reference to K and X in
the notations. In principle, such a system of notations is ambiguous, but since we use A only as a

variable and do not use its place for a concrete value which is an integer, a notation like £ should
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be understood as the first member of the filtration on Lx (for K = kioz and A = Log(p)) and not

as the whole O¥-algebra associated to A = 1.

1.5. Logarithmic Poincaré Lemma. Let X be a k-analytic space. An open subset Y C
X X Gy, is said to be annular over X if it has connected fibers over X and every point y € Y has
an open neighborhood in Y of the form U x B, where If is an open neighborhood of the image of
y in X and B is an open annulus in G, with center at zero. A morphism ¢ : Y — X is said to
be annular of dimension 1 if there is an isomorphism of Y with an open subset of X x G, which
is annular over X. A morphism ¢ : Y — X is said to be semi-annular of dimension (m,n) if it
is a composition (in any order) of m annular and n discoid morphisms of dimension 1. If n = 0,
it is called annular of dimension m. If X = M(k), the k-analytic space Y itself is said to be
semi-annular, annular or discoid. If Y is of dimension (m,n), then every point of it has an open
neighborhood isomorphic to a direct product of an open poly-annulus of dimension m and an open
disc of dimension n.

In this subsection we consider the following situation. Let ¢ : Y — X be a semi-annular
morphism between rig-smooth k-analytic spaces, and assume we are given an increasing sequence
of Dx-modules P° ¢ P! ¢ P? c ... ¢ M*(X) with L (X) c P’ and P*-LM(X) C Piti
for all i,j > 0. We set M™ = >_7" ¥ (P)-LA"~{(Y). Our purpose is to relate the complexes
Qpn(X) and Q3. (Y). For this we denote by Iy~ and Ipn the canonical morphisms of complexes
Qo (V) = Qi (V) and Qpn (X) — Qpniq (X)), respectively, and by J,, the canonical morphism
Qpn(X) — Qyn (Y). We have a commutative diagram of morphisms of complexes

Dy (V) 25 Qi (V)
TJn 1 Tnsa
Qpu (X)) 5 D (X)

1.5.1. Proposition. Assume that ¢ is surjective. Then there is a compatible system of
morphisms Ry, : Qym(Y) — Qpn(X) such that the composition R, o J,, is identical on Qp, (X)
and the morphisms Iy and Jp, 41 o Ipn o R, are homotopy equivalent.

Proof. It suffices to consider the cases when Y is a discoid subset of X x Al or an annular
subset of Y x Gy,. In the first case, every invertible analytic function on Y is of the form f-g
with f € O(X)* and g € O(Y)* such that |g(y) — 1] < 1 for all y € Y. This implies that
LM(Y) = o7 (LM(X)) and M? = #(P?), and the required fact follows from Proposition 1.3.2
(with R constructed in its proof). Thus, assume Y is an annular subset of X x Gy,.

We say that a sequence {w; } —co<j<oo Of elements of 0%, (X) is p-bounded if there exist elements

{fiti<icm C P"™ and {wjj }1<i<m,—co<j<oo C Q9(X) such that, for any —oco < j < oo, one has
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wj = Y., fiwij, and, for any affinoid domain U C X and any closed annulus A C Gy, with
center at zero whose both radii are ¢ > 0 and for which U x A C Y, one has [|w;;|[ut?! — 0
as j — oo, where || ||y is as in the proof of Proposition 1.3.2. Notice that every analytic
function on Y has a unique representation in the form Z;’;7 o T7 f; where {fj}_cocjcoo IS a -
bounded sequence of elements of O(X). Notice also that every invertible analytic function on
Y is of the form T™fg with m € Z, f € O(X)* and g € O(Y)* such that |g(y) — 1 < 1
for all y € Y. It follows that every element f € M"™ (resp. w € Q%,.(Y) for ¢ > 1) can be
uniquely represented as a sum Y " (3320 TiLog™(T) gi; (vesp. S0, PRy TiLog™(T)'ni; +
PN D TiLog*(T)*;; A dT), where for each 0 < i < n the sequences {g;;} —so<j<oo C P"7!
(resp. {1} —cocjcoo € %, (X) and {&;;} —cocjcoo C %1, (X)) are p-bounded.

Let R,, be the morphism Q,,.(Y) — Qp.(X) that takes an element f € M™ (resp. w €
Q9,.(Y) for ¢ > 1), represented in the above form, to goo € P™ (resp. moo € Q5. (X)). Fur-
thermore, let Z; be the subcomplex of Q;,.(Y) such that Z2 (resp. Z4 for ¢ > 1) consists of
the sums Y7 Log™(T)’g; with g; € P"~% (resp. .1, Log*(T)'n; + 31— Log(T)?¢; A 4L with

m € QL. (X) and & € Q5.1 (X)),

1.5.2. Lemma. The canonical morphism Z; — . (Y) is a homotopy equivalence.

Proof. Let N denote the morphism considered, and let Res denote the morphism in the
opposite direction that takes an element f € M™ (resp. Q% .. (V) for ¢ > 1), represented in the above
form, to 31 Log™(T)?gio (resp. 31 Log™(T)mi0+> 1o Log™ (T)*&;,—1 A 4T'). One evidently has
Reso N = 1. To prove the lemma, we have to construct a k-linear map C : Q. (Y) — Q3 (Y) of
degree —1 with Cod+do(C =1— N o Res.

First of all, for integers ¢ > 0 and j # —1 we introduce as follows a polynomial in one variable

2!

1. i !
(G + 1)+

. "_1) . .
hy (T) = —— Tt — — picty D s gy
(1) j+1 (+1)2 (j+1)3 =)

One has b} ; + (j + 1)h;; = T" and, therefore, T7*h; ;(Log*(T)) is a primitive of T9Log™(T)". If
i > 1, one also has (j + 1)h; ; +ih;—1,; = T*. We now define for an element w € Q4,,.(Y), ¢ > 1,

represented in the above form, the element C'(w) as follows

Clw)= (=171 > T hi;(Log (T))Ey
i=0 j=—oc0
i#1
It is easy to check that the sum on the right hand side is a well defined element of Q‘]I\/;} (Y), and
that Cod +doC =1— N o Res. .
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Consider now the following diagram of morphisms of complexes

: Thr,, :
Zn - Zn+1
LR, 1m0

Ip,

Qpn (X) - }Jn+1(X)

where I}, denotes the canonical morphism Z,, — 2,11, R} denotes the restriction of R, to Z;,
and J,, denotes the canonical morphism Q. (X) — Z;,. The proposition follows from the following

lemma.

1.5.3. Lemma. The morphisms I}, and J], ;o Ip» o R; are homotopy equivalent.
Proof. To prove the lemma, we have to construct a k-linear map C': 2, — Z, . of degree —1
with Cod+doC = I}, —Jh, 1 0lpnoRl,. fw =37 Log(T)in; + 37 Log™(T)i&; N 4L € 24,

q > 1, we define

n
C - (-1 q—1 L A T i+1 51
)= (07 e
The required equality is easily verified. .

1.5.4. Corollary. Let X be a semi-annular k-analytic space. Then the morphism of complexes

Qix,vb (X) — Q'LA,,LH(X) is homotopy equivalent to zero and, in particular, there is an exact
sequence
0— K — IMX) -5 ol (X)L 02, (x) -5 .. .

The following consequences of Proposition 1.5.1 are formulated in the form convenient for
applications in §3 and §7, respectively.

Let X be a semi-annular k-analytic space. Given a subgroup G C O(X)* with O(X)* = G-k*
and Log*(a) € k* for all @ € G N k*, let L)(X) denote the filtered Ox-subalgebra of L*(X)
generated over O(X) by the logarithms of functions from G . One can easily see that Lj(X) is
a filtered Dx-algebra, and the canonical homomorphism of filtered Dx-algebras Ly(X) ®; K —

LA (X) is an isomorphism.

1.5.5. Corollary. In the above situation, the morphism of complexes Q' ., (X) — €0 5 11 (X)

A,n
LO

is homotopy equivalent to zero and, in particular, there is an exact sequence

0—k— L)}(X) Lol (x) L2, (x) L ... .

Let X be a smooth k-analytic space whose sheaf of one-differentials Q% is free over Ox,

and assume we are given an increasing sequence of Dx-submodules S° ¢ S' ¢ ... Cc S" C ‘ﬂ§
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with the properties that E;‘(’i Cc 8§ and Si~£;‘(’j CStforall0 <i<nand0<j <n—i
Notice that the assumption on Q% guarantees that S*(X) are Dy-modules. Furthermore, let

¢ Y — X be a surjective semi-annular morphism. Consider the following Dy -modules: M =

Yo @™ (SUX)) LA Y) and N = 31 o7 (S'(X))- LAY,

1.5.6. Corollary. There is a morphism of complexes R : ,(Y) — Q. (X) whose compo-
sition with the canonical morphism Qg.(X) — Q3,(Y) is identical on Qg.(X) and such that the
morphisms I and J o R from the following diagram are homotopy equivalent

Dy (V) — Qn(Y)
RN, /7J
Qs (X)

Proof. It is enough to apply Proposition 1.5.1 to the increasing sequence of D x-modules
PV =8X)C...c P* =8"(X) C P"" C ..., where P' = " §/(X)-LM/(X) for i > m,
and to notice that M™ = M and M"+! = N. .

1.6. Formulation of the main results

1.6.1. Theorem. Given a closed subfield k C C,, a filtered k-algebra K and an element
A € K, there is a unique way to provide every smooth k-analytic space X with a filtered Dx-
subalgebra Sy C MY so that the following is true:

(a) 83" = Ox";

(b) Ker(Sy' - Qka. ) = Cx;

(c) Ker(Q}sM,X < Q?SM,X) cdSy™t;

(d) Sg\(’iﬂ is generated by the local sections f for which df is a local section of Q}sk

() Log™(T) € 8*(Gum);

X7

(f) for any a morphism of smooth k-analytic spaces ¢ : X' — X, one has w#(Sj\(’i) C 83\(,’

In the following theorem £ is a closed subfield of C,,, K is a filtered k-algebra, A is an element

of K', and X is a smooth k-analytic space.

1.6.2. Theorem. (i) If X is connected, then for any nonempty open subset U C X the
canonical map S*(X) — SMU) : f — f‘u is injective;

(ii) if ¢(X') contains a finite extension k' of k and X' is X considered as a strictly k'-analytic
space, then (Sy)' = Sﬁ‘(/,, where )\ is the element A\® 1 of K' = K Q1 k';

(iii) given a closed subfield k' of C,, a smooth k'-analytic space X', a morphism ¢ : X' — X

over an isometric embedding k — k', a filtered k'-algebra K’, and a homomorphism of filtered
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algebras K — K’ over the embedding k — k' that takes X\ to an element N € K'', one has
oSV C SV

(iv) in the situation of (iii), if ¥’ = k and X' = X, then S} @k K' = 8% ;

(v) in the situation of (iii), if K' = K @ k' and X' = A® 1, then ¢*(Sy") = o#(Sy") and, if
in addition X' = XK', then o#(Sy") = SX/';

(vi) for any geometric point T of X, the stalk S;‘(% (resp. 83}5) is a free Ox z-module (resp.

O§75—module).

Theorems 1.6.1 and 1.6.2(i)-(iii) will be proved in §7. In §8, we shall prove the statements

(iv)-(vi) and establish more properties of the sheaves S&-.

1.6.3. Remarks. (i) The property (iv) of Theorem 1.6.2 implies that there is an isomorphism
of filtered Dx-algebras Sx Qo K = S§‘< with respect to the homomorphism kro; — K that takes
Log(p) to A\. In §8.3, we shall construct, for every geometric point Z over a point z € X, a
Gz /z-invariant filtered D-subalgebra 83\(’5 - S))‘(j which depends functorially on (k, X, =z, K, \)
and such that each 5))‘(% is a free Ox z-module of at most countable rank, the homomorphism
krog — K : Log(p) — X gives rise to an isomorphism Ex 7 = 53\(75 and, if f1,..., fi are elements of
O% . for which [fi(z)],...,|fi(z)| form a basis of the Q-vector space VIH(z)*|/+/]k*], then there
is an isomorphism of filtered D-algebras S?‘(’E[Tl, T @y K5 Sg‘gf 2T — Log)‘(fi).

(ii) The formulation of the main result makes sense for an arbitrary non-Archimedean field k
of characteristic zero if X is considered as a logarithmic character with values in K. We believe it

is true at least for the field C((7")) provided with a logarithmic character as in Example 1.4.3(ii).
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§2. Etale neighborhoods of a point in a smooth analytic space

In this section we describe a fundamental system of étale neighborhoods of a point z in a
smooth k-analytic space X. If s(z) = dim(X), we use a result of J. de Jong [deJ3] to show that
there is a morphism ¢ : X, — X from the generic fiber of a so called proper marked formal
scheme X over the ring of integers £’° of a finite extension k&’ of k such that ¢ is étale in an open
neighborhood of the generic point of X which is a unique preimage of z in X,. (This morphism
¢ is in fact étale everywhere if dim(X) = 1.) In §2.2, we recall a result from [Ber2] on the local
structure of smooth analytic curves, and apply it in §2.3 to the case s(z) < dim(X). Namely,
shrinking X one can find a morphism ¢ : X — Y to a smooth k-analytic space Y of dimension
dim(X) — 1 such that s(y) = s(z) for y = ¢(x) and, if t(y) = t(x) (resp. t(y) < t(x)), there is an
étale neighborhood Y/ — Y of y and an open neighborhood X’ of a preimage of z in X xy Y’ such
that X’ is isomorphic to a direct product of Y’ and an open disc (resp. an open annulus). (Such X’
is called a Y-split étale neighborhood of z over the étale morphism Y’ — Y.) In §2.4, we introduce
so called smooth basic curves and show that they are precisely the generic fibers of proper marked
formal schemes of dimension one. We also introduce affinoid basic curves and establish a property

of morphisms from them to the generic fibers of formal schemes.

2.1. Etale neighborhoods of a point with s(z) = dim(X). Recall that for any formal
scheme X locally finitely presented over k° one can define a reduction map 7 : X;, — X, such that
the preimage of a closed (resp. open) subset of X, is open (resp. closed) in X, (see [Ber3, §3]).
If X is pluri-nodal over k° (in the sense of [Ber7, §1]) then, by [Ber7, Corollary 1.7], the generic
point of an irreducible component Y of X, has a unique preimage = in X,, and %) = %(J}) In
particular, one has s(x) = dim,(X,) and ¢(x) = 0. The point x will be called the generic point of J
in X,). Notice that such a point cannot lie in a nowhere dense Zariski closed subset of X,,. Examples
of pluri-nodal formal schemes are nondegenerate strictly poly-stable formal schemes, which were
introduced in [Ber9, §4] and whose definition will be recalled in §3, and an example of the latter is
any base change of a strictly semi-stable formal scheme, i.e., %@kg k°, where kg is a closed subfield
of k on which the valuation is discrete and X is a strictly semi-stable formal scheme over k§. (An
example of a strictly semi-stable formal scheme over kg is the formal completion X of a strictly
semi-stable scheme X" over k§ along its closed fiber X;.)

Let ko be a non-Archimedean field with a nontrivial discrete valuation, and let k be an extension
of ko which is a closed subfield of the completion /158 of an algebraic closure k§ of ko. A ko-special

formal scheme over k° is a formal scheme X isomorphic to f@kéoko, where k{, is a subfield of k
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finite over ko and X’ is a special formal scheme over k{,° in the sense of [Ber5] (recall that special
formal schemes were introduced in [Ber5] only over fields with discrete valuation). Such a formal
scheme X has a closed fiber X, which is a scheme of locally finite type over E, and a generic fiber
%;7, which is a strictly k-analytic space, and there is a reduction map 7 : X,, — X,. Of course, one

has X, = X/ ®r k and X, = X] &), k.

A kg-special formal scheme X over k° is said to be marked if it is isomorphic to a formal scheme
of the form X7 /y/@)%oko, where k{, is a subfield of k finite over ko, X’ is a nondegenerate strictly
poly-stable separated scheme of finite type over k}°, }’ is an irreducible component of the closed
fiber X! such that the scheme Y =)’ ®7;6 k is also irreducible, and X' sy is the formal completion
of X" along ). The closed fiber X, of such X coincides with ) and the generic fiber X, is a strictly
analytic subdomain of the analytification X7 of the generic fiber &), of the nondegenerate strictly
poly-stable scheme X = X’ Qo k° over k°. The generic point of J in X, will be called the generic
point of X and denoted by o = ox. If in addition the scheme ) is proper, we say that X is proper
marked. If X is proper marked, its generic fiber X, is an open subset of X" and, therefore, it is a
connected smooth k-analytic space. Recall also that if X is proper over k° then /'/Y\n = A7". We say
that a kg-special formal scheme X over k° is strongly marked if the above scheme X’ is a strictly

semi-stable projective over k(. Of course, in this case X is proper marked.

If the field k{ and the schemes X’ and )’ are not important in our consideration of a marked
formal scheme X as above, we say, by abuse of language, that X is the formal completion X sy of
the scheme X along the irreducible component ). (Recall again that the object X 1y was defined

in [Ber5] only in the case when the valuation on k is discrete.)

Let X be a smooth k-analytic space, and x a point of X with s(z) = dim(X). A marked
(resp. strongly marked) neighborhood of x is a morphism of strictly k-analytic spaces ¢ : X, — X
which is étale outside Z*" N X, and such that p(ocy) = x, where X is a proper marked (resp.
strongly marked) formal scheme over k'°, k' is a finite extension of k, and Z is a nowhere dense
Zariski closed subset of A, (from the above definition). If dim(X) = 1, we require in addition
that the morphism is étale everywhere, i.e., one can take Z = (). Furthermore, given two marked
neighborhoods ¢’ : X, — X and ¢” : X;" — X of the point = with X' = /'?/’y, and X" = /’?/Hy” and
the corresponding fields k¥’ and k", we say that the latter refines the former, if there is a morphism
of formal schemes X" — X’ over an embedding of fields k¥’ < k" which takes the generic point of

X" to that of X' and is étale outside 22" N X", where Z is a nowhere dense Zariski closed subset

7’]7
of XT’]’.
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2.1.1. Proposition. Assume that the characteristic of kg is zero, and let X be a smooth
k-analytic space. Then

(i) every point x € X with s(z) = dim(X) admits a strongly marked neighborhood;

(ii) given two marked neighborhoods of the point x, there exists a third one which is strongly

marked and refines both of them.

2.1.2. Lemma. Let k be a non-Archimedean field of characteristic zero with a nontrivial
discrete valuation, X a smooth k-analytic space, and x a point of X with s(z) = dim(X). Given a
morphism of strictly k-analytic spaces X — %), , where 9) is a special formal scheme over k°, there
exists a finite extension k' of k, a strictly semi-stable projective scheme X over k'°, a geometrically
irreducible component ) of X,, a morphism of strictly k-analytic spaces ¢ : X, — X with X = X 1y
and a morphism of formal schemes X — %) such that the following is true:

(i) the following diagram is commutative

% 2 X

NS
Vs

(ii) ¢ is étale outside Z*" N X,,, where Z is a Zariski closed proper subset of X,, and, if
dim(X) = 1, ¢ is étale everywhere;

(i) plog) = .

Proof. Step 1. First of all, we may assume that X is an open subset in X*" where X =
Spec(B) is a smooth irreducible affine scheme over k. Since s(x) = n = dim(X), the image x of =
in X is the generic point of X'. Furthermore, we may assume that there are elements f1,..., f, € B
with | f;(x)| = 1 such that their image in 7-?(5) are algebraically independent over k. This means that
if f denotes the morphism from X to the n-dimensional affine space defined by fi,..., f, then the
image of the point  under the morphism f*" : X*" — A" is the maximal point of the closed unit
polydisc E with center at zero. Let fy,11,..., fm be elements of B such that | f;(z)| < 1, the elements
fis---, fm generate B over k, and the strictly affinoid domain Z = {z € Xa“||fi(z)| <L,1<i<m}
is contained in X. Since f?"(x) is the maximal point of E, it follows that the image of z under the
reduction map 7 : Z — Z is the generic point of an irreducible component of Z. (If Z = M(A),
then Z = Spec(A), where A = A°/.A°°.) Furthermore, we can find numbers a; € /]k*| bigger
than one such that the strictly affinoid domain W = {z € X™||f;(z)| < a;,1 < i < m} is also

contained in X. Notice that W is a neighborhood of the point x.

Step 2. Let a denote the induced morphism of strictly k-analytic spaces W — 2),. Since
the space 9, is Hausdorff (see [Ber5, §1]), one has a(W) C Uﬁzl@%, where 9)* are open affine
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subschemes of ), and the intersection of a(W') with each Qj; is compact. It follows that there is
a strictly affinoid subdomain Y; C @27 that contains a(W) N Qj% and, therefore, W; = a‘l(gj;) =
a~1(Y;) is a strictly affinoid subdomain of W. One has W = Ul_, W;.

Step 3. By Lemma 9.4 from [Ber7|, there is an open embedding of X' in ), where Y is an
integral scheme proper and flat over £°, open subschemes Z C W C ), and a closed subscheme
V C Y, which is a union of irreducible components of Vs, such that Z = 7=1(Z), W = 7#=t(W),
and 7(z) € V C W. Making a finite number of additional blow-ups as in the proof of [Ber7,
Lemma 9.4], we may also assume that there are open subschemes W; C W with W; = == (W)

and W = U W,.

Step 4. By de Jong’s Theorem 6.5 from [deJ3] (resp. the semi-stable reduction theorem for
curves if dim(X) = 1), there is a finite extension k' of k, a projective strictly semi-stable scheme
Y’ over k'°, and a proper, dominant and generically finite morphism ¢ : ) — Y (resp. with the
property y;, = Y, @i k'). Since k is of characteristic zero, the morphism ¢ is étale outside a closed
proper subset of )} (resp. étale everywhere). If it is necessary, we may replace the field &’ by a finite
unramifield extension and assume that all of the irreducible components of Y. are geometrically
irreducible. Let 2’ be a point from the preimage of z in Y;*". We claim that m(z') is the generic
point of an irreducible component P of V.. Indeed, let 3 = Spf(C) be an open affine subscheme of
Y with m(2') € 3, C ¢ Y(Z). By [Ber7, Proposition 1.4], one has C = C°, where C = C ®po k. It
follows that the morphism of strictly k-affinoid spaces 3, — Z gives rise to a morphism of schemes
of same dimension 3, = 577 — Z. Since m(z) is the generic point of an irreducible component of Z ,

the claim follows. Notice that P C ¢~ 1(V) C p=1(W).

Step 5. It remains to show that there is a well defined morphism of special formal schemes
)A/;P — ) compatible with the canonical morphism between their generic fibers. For this it suffices
to show that there is a well defined morphism )A);W/ — 9) with the same property, where W' =
© 1 (W) or, equivalently, that there is a system of compatible morphisms )A);W{ — jS. Let @i =
Spf(A), and let ¥ = Spf(B) be an open affine subscheme of )A%/V;. The generic fiber T, is the
strictly k-affinoid space M(B), where B = B®yo k’. The canonical morphism of strictly k-analytic
spaces €, — @7’7 is induced by a homomorphism A — B. The image of A is contained in B° and
again, by [Ber7, Proposition 1.4], one has B = B°. The homomorphisms A — B constructed in

this way give rise to the required morphism of formal schemes JAJ;W{ — 9" .

2.1.3. Lemma. Let ky C k C 7{:\3 be non-Archimedean fields, and assume that, if k is not

finite over kg, k is perfect. Then
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(i) given a ko-analytic space X, any étale morphism ¢ : Y — X@kok is, locally on Y, a base
change of an étale morphism Y' — X®y, kb for some finite extension k}y of ko in k;

(ii) given a ko-affinoid (resp. strictly ko-affinoid) space X, any rational affinoid (resp. strictly
affinoid) subdomain of X@kok is a base change of a rational affinoid (resp. strictly affinoid) sub-

domain of X®y, ki for some finite extension ki, of ko in k.

Proof. (i) Let y be a point of Y, 2 its image in X®y,k and, for a finite extension k} of kg
in k, let 73, be the image of x in X k. Since k is perfect, the Ax-Sen-Tate theorem ([Ax])
implies that the subfield k M k§ is dense in k. It follows that the subfield Uy, H(zy;) is dense in
H(z) and, therefore, one can find such k{ that the finite separable extension H(y)/H(z) is induced
by a finite separable extension of H(x%) of the same degree. The required fact now follows from

[Ber2, Proposition 3.4.1].

(ii) Let X = M(A), and let Y be a rational affinoid subdomain of X®p,k = M(A®p, k).
By the definition, Y = {z € X@kokﬂfz(xﬂ < ailg(z)| for all 1 < ¢ < n}, where fi,..., fn,g are
elements of A@kok without common zeroes on X ®k0k, and ay,...,a, are positive numbers. (If
X and Y are strictly affinoid, one may assume that a; = 1 for all 1 < i < n.) It follows that the
element g is invertible on Y and, therefore, |g(z)| > b for all x € Y and some b € |k§|. Thus, if
Z is the Laurent subdomain of X®&y,k defined by the inequality |g(x)| > b, Y is the Weierstrass

subdomain in Z defined by the inequalities

L) < ai, 1 <i < n. Since the subfield k N k§ is
dense in k, the subalgebra Uk A®k0 k{ is dense in A@kok and, therefore, there is a finite extension
kj of ko in k and an element g’ € ARy, k) with ||’ — g|| < b. Tt follows that Z = Z’@k(f)k, where
7' is the Laurent subdomain of X®,k{ defined by the inequality |¢’(z)| > b. Replacing ko by kb,
X by Z' and f; by %, we may assume that Y is the Weierstrass subdomain of X @kok‘ defined by
the inequalities |f;(z)| < a;, 1 < i < n. For the same reason, there is a finite extension k{, of ko
in k and elements f; € ARy kb with ||f/ — fi|| < a;. Tt follows that Y = Y/®k6k, where Y’ is the

Weierstrass subdomain of X ®y,kj defined by the inequalities | f/(z)| < a;, 1 <i < n. .

Proof of Proposition 2.1.1. (i) Shrinking X, we may assume that there is an étale morphism
from X to the affine space A} over k. Since A} = AZ()@kok, Lemma 2.1.3(i) implies that we can
shrink X and find a finite extension k{, of ko in k such that X = X’ @k()k for some smooth k-
analytic space X’. By Lemma 2.1.2 applied to the point 2/, the image of  in X’ and the morphism
X" — 9, with 9 = Spf(k{’), we can find a finite extension kg of kg in kf, a strictly semi-stable
projective scheme X over k(°, a geometrically irreducible component ) of Xs and a morphism

of strictly k-analytic spaces ¢’ : %;7 — X' with X' = X sy étale outside Z#" N .’f% and such that
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¢'(og') = 2'. Let k' be the composite of k and kg in k& and ¢ : X, — X the induced morphism
with X = %’@kgo k'°. Since ) is geometrically irreducible, the closed fiber X, is irreducible and,
therefore, p(oy) = , i.e., the morphism ¢ possesses the required properties.

(ii) Increasing the field &k, we may assume that we are given two marked neighborhoods ¢’ :
%; — X and ¢" : %Z — X of the point « with X’ and X" proper marked over k°. By Lemma 2.1.3,
we can increase the field kg and find an open neighborhood of the point x in X of the form Y@kok,
where Y is a smooth kg-analytic space, and two étale neighborhoods Y/ — Y and Y” — Y of the
image of x in Y whose base change to k are isomorphic to the restrictions of ¢’ and ¢” to some open
neighborhoods of the points oy and oy, respectively. In what follows we identify Y® kok, Y’ @kok
and Y"®y, k with open subsets of X, %;7 and .’{Z, respectively. Let Z’ and Z” be strictly affinoid
neighborhoods of the images 3’ and y” of the points o4+ and oy~ in Y and Y, respectively. We
can find a rational strictly affinoid covering {W}/}1<i<pm, of Z’@kok (resp. {W;’}lgjgl of Z”@kok)
with W/ C %:7 (resp. W' C %:7’3) for some open affine subschemes X cx (resp. x" ¢ x).
By Lemma 2.1.3(ii), we can increase the field ko so that W/ = Z!®y,k (resp. Wi = Z]’/@ko k) for
rational strictly affinoid subdomains Z; C Z’ (resp. Z] C Z"). We now can construct a formal
scheme 3" (resp. 3”) of finite type over k§ and its open covering {B’i}lgigm (resp. {3//j}1§j§l)
with 3;] = 7' and 3:; = Z! (resp. 3;; = 7" and 3:7” = Z]’/). It follows from the construction that
the canonical embedding Z'®y, k — %;7 (resp. Z"@p, k — %;7/) is induced by a morphism of formal
schemes 3/@)’@8 k° — X' (resp. 3//@)’@8 k° — X"). Finally, let z be a point of Z’ xy Z" over the points
y' and 3", and let Z be an open neighborhood of z in Z’ xy Z” which is also open in Y’ xy Y"”. By
Lemma 2.1.2, applied to the pair (Z,z) and the canonical morphism of strictly F-analytic spaces
Z — (3'x3"),, there exists a finite extension F” of F', a strongly marked formal scheme 9) over k{’,
a morphism of strictly k-analytic spaces 9, — Z, and a morphism of formal schemes ) — 3’ x3"
over k§ for which the properties (i)-(iii) are true. If &’ is the composite of k£ and k{, in ES and
X = Yok, it follows that the induced morphism X, — X is a strongly marked neighborhood

of the point x which refines the marked neighborhoods we started from. .

2.2. The local structure of a smooth analytic curve. In this subsection we recall a
result from [Ber2, §3.6], which will be used in the following two subsections. It describes the local
structure of a smooth k-analytic curve, where k is an arbitrary non-Archimedean field. I am very
grateful to Brian Conrad for pointing out that a part of the proof of [Ber2, Proposition 3.6.1] does
not work if the field & is non-perfect and that its formulation should be slightly changed if, in

addition, the valuation on k is trivial (see also Remark 2.2.2).
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Recall that the affine line A! is the set of all multiplicative seminorm on the ring of polynomials
Kk[T] that extend the valuation on k. Here is a description of points of A! from [Berl], 1.1.4] in the
case when the field & is algebraically closed.

First of all, every element a € k defines a multiplicative seminorm k[7T] — Ry : f — |f(a)].
The corresponding point of A! is said to be of type (1). Furthermore, every closed disc E =
E(a,p) = {z € A'||T(z)| < p} defines a multiplicative seminorm f — |f|p = max,, |a,|p", where
ZZOZO an (T —a)™ is the expansion of f with center at a. The corresponding point of A! is denoted
by p(E) and is said to be of type (2) if p € |k| and of type (3) if p ¢ |k|. Finally, let £ = {E()} be
a family of embedded discs in A, i.e., E( is a closed disc of radius p and E(®) > E®) if p>p.
Then £ defines a multiplicative seminorm f + |f|e = inf | f|g(». The corresponding point of Al is
denoted by p(€). Let o denote the intersection of all E®)_If o N k is nonempty, then o is a point
a € k and p(€) = a, or else o is a closed disc E and p(€) = p(E). If 0 Nk is empty, we obtain a
new point which is said to be of type (4). Each point of A! is of one of the above types. We list
some properties of points z € A':

(1) if z = a is of type (1), then H(x) = k and a basis of open neighborhoods of = is form by
the open discs D(a, p);

(2) if x = p(E(a,p)) is of type (2), then 7—2@) = k(T), [H(z)| = |k|, and a basis of open
neighborhoods of z is form by open sets of the form D(a,r)\ [, E(a;,r;) with r; < p < r,
la; —a| < p, and |a; — a;| = p for i # j;

(3) if x = p(E(a, p)) is of type (3), then 7—?(5) =k, |H(x)*| is generated by |k*| and p, and a
basis of open neighborhoods of z is formed by the open annuli B(a;r, R) with r < p < R;

(4) if x = p(&) is of type (4), where & = {E(a,,p)}, then %) = k and |H(z)| = |k| (ie.,
H(x) is an immediate extension of k), and a basis of open neighborhoods of x is formed by the
open discs D(a,, p).

If the field & is not necessarily algebraically closed, the type of a point € Al is, by definition,
the type of some (and therefore all) of its preimages in AlQk*. If z is of type (1) or (4), then %)
is algebraic over k and VIH(z)*] = \/]k*] and, in particular, s(z) = t(z) = 0. If z is of type (2),
then 7—?(;) is finitely generated of transcendence degree one over k and the group |[H(z)*|/|k*| is
finite and, in particular, s(x) = 1 and ¢(z) = 0. If = is of type (3), then 7-?(5) is finite over k and
the Q-vector space \/|H(x)"|/ V/]k*| is of dimension one and, in particular, s(z) = 0 and t(z) = 1.

Let now X be a smooth k-analytic curve. For each point x € X there is an étale morphism
from an open neighborhood of z to the affine line A'. The type of the image of x in A!, which
does not depend on the choice of the étale morphism, is said to be the type of x. Notice that each
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point = from Xo = {z € X|[H(z) : k] < oo} is of type (1) and its local ring Ox, is a discrete
valuation ring. In all other cases, Ox , is a field. Here is a corrected version of Proposition 3.6.1

from [Ber2] (see also Remark 2.2.2).

2.2.1. Proposition. Assume that the field k is perfect or its valuation is non-trivial (resp.
non-perfect and the valuation is trivial). Then for every point x € X there exists a finite separable
(resp. non necessarily separable) extension k' of k and an open subset X' C X®k' such that = has
a unique preimage x’' in X' and X' is isomorphic to the following k’-analytic curve (depending on
the type of x):

(1) or (4): an open disc with center at zero;

(3) an open annulus with center at zero;

(2) 3"\ 11—, Xi, n > 1, where X is a connected smooth projective curve over k'°, each X;
is an affinoid subdomain isomorphic to a closed disc with center at zero and all of them are in
pairwise different residue classes of Xp", and 2’ is the generic point of X, in X

Proof. The proof of Proposition 3.6.1 from [Ber2| consisted of the following three steps.
(A) By [Ber2, Lemma 3.6.2], one can shrink X so that there is an open embedding of X in the
analytification X’*" of a smooth affine curve X’ of finite type over k. (B) The claim that there is
an open embedding of X’ in a smooth projective curve X’ over k, which is of course wrong if the
field k is non-perfect. (C) A proof of the required fact under the assumption that there is an open
embedding of X in A?", where X is a smooth projective curve over k. (The proof of (C) is based
on the semi-stable reduction theorem for curves.)

Thus, to correct the proof, it suffices to establish the following fact. If the valuation on k is
nontrivial, then for every point x € X there exists a finite separable extension k' of k and an open
subset X' C X®FK' such that x has a nonempty preimage in X' and there is an open embedding of
X' in X2, where X is a smooth projective curve over k'. Of course, it suffices to consider the case
when k is non-perfect of characteristic p > 0.

Step 1. We can find an open embedding of X in X®", where X is only a regular projective
curve. Let ) be the smooth locus of X. Of course, it suffices to consider the case when ) does not
coincide with X'. In this case ) = Spec(A) is a smooth affine curve of finite type over k. We may
assume that X is relatively compact in Y*", and we may replace k by a finite separable extension so
that the cardinality of the complement X'\ ) does not change after bigger finite separable extensions
and that there exists a finite purely inseparable extension &’ of k such that the normalization X’

of the curve X ® k' is smooth over k' and all of its points over X'\) are k’-rational. Our further
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construction is of the type used in the proof of (C), and the purpose is to make a surgery of A*" in
a small neighborhood of a point x € X'\) (after a finite separable extension of k) so that its result
is a new regular projective curve whose non-smoothness locus has strictly smaller cardinality than
that of the set X\).

Step 2. Let )’ = Spec(A’) be the preimage of ) in X”, x’ the preimage of the point x, and X’
the preimage of X in X’*". Of course, A® k' = A’, x’ ¢ V', and X' is relatively compact in J'*".
Since the point x’ is k’-rational, it has an open neighborhood V isomorphic to the open unit disc
D(0;1) over k. We may assume that this disc does not intersect with X’, and fix an isomorphism
D(0;1) = V so that the images of zero is the point x’.

Step 3. By the Riemann-Roch theorem, there exists a rational function f on X’ with the only
nontrivial pole at the point x’ and, in particular, f € A’. Since %k’ is purely inseparable over k, we
can replace f by some power of p and assume that in fact f € A. Then f is a rational function on
X with the only nontrivial pole at x. We can shrink the disc V so that f has no zeros at it.

Step 4. Let a be a big enough positive number such that the preimage of the affinoid subdomain
U = {z e X™||f(x)| > a} of X™ in X'*" is contained in V, and so it is a closed disc E(0; R)y .
Take a bigger number b > a, and consider the affinoid subdomain W = {z € U||f(z)| < b} of X"
The preimage of W in X’*" is a closed annulus W’ = A(r, R);» with center at zero and r < R. If
W = M(A) and W’ = M(A’), one has AR = A’

Step 5. We claim that, after replacing k by a finite separable extension, one can slightly deform
the isomorphism W' = A(r, R)xs so that it can be induced by an isomorphism W = A(r, R). Indeed,
let ¢’ € A’ be the pullback of the coordinate function from A(r, R);s C A},. Since the separable
closure of k is dense in its algebraic closure, we can replace k£ by a finite separable extension so
that there exists an element g € A with (¢’ — g)(z')| < |¢'(2’)| for all points 2’ € W’. Then the
morphism g : W/ — A}, induces an isomorphism W’ = A(r, R)x and is induced by the morphism
g: W — A'. Since the latter gives rise to the isomorphism W’ = W&k’ = A(r, R) = A(r, R)®K,
it follows that W = A(r, R).

Step 6. Let W be the preimage of the open annulus B(r,R) = {z € A(r,R)|r < |T(z)| < R}
with respect to the latter isomorphism. One has W = {z € X*|a < |f ()| < b}. We now glue the
open set {z € X*"||f(z)| < b} and the open disc D(0; R) via the isomorphism W = B(r, R). The
k-analytic space obtained is a proper k-analytic curve and, therefore, it is the analytification Z2" of
a projective regular curve Z. By the construction, X is an open subset of Z?" and the cardinality
of the non-smoothness locus of Z is strictly less than that of X. Repeating this procedure with

other non-smooth points, we get the required fact. .
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The genus of a point = € X of type (2) is the genus of the smooth projective curve X, over k'
from Proposition 2.2.1. It is well defined, and is equal to the genus of the smooth projective curve
over k' whose field of rational functions is H/(\x/’) (with the point 2" also from Proposition 2.2.1).
Since the genus of any point of type (2) in the affine line is zero, it follows that subset of points of
type (2) and positive genus in any smooth k-analytic curve is discrete in it.

A smooth k-analytic curve isomorphic to an open disc D or an open annulus B with center at
zero, or to XA\ [[;, Xy, n > 1, as above (with k" = k), was called in [Ber2| elementary. Notice
that an open disc D = D(0;r) with 7 > 1 is of the third form since its complement in the projective
line P! is isomorphic to the closed disc E(0;r~1). In particular, if the valuation on k is nontrivial,
any open disc is of that form. An open annulus B = B(0;7, R) with r < 1 < R is also of that form

since its complement in P! is isomorphic to a disjoint union of E(0;r) and E(0; R™1).

2.2.2. Remark. The change in the formulation of [Ber2, Proposition 3.6.1] implies that the
formulations of Theorem 3.7.2 and Corollary 3.7.3 in [Ber2, §3.7] should be also changed. Recall
that [Ber2, Theorem 3.7.2] describes a smooth morphism of good k-analytic spaces ¢ : Y — X of
pure dimension one in an étale neighborhood of a point y € Y. It stated that there is an étale
morphism X’ — X and an open subset Y/ C Y/ =Y x x X’ such that the point y has a unique
preimage 3’ in Y and the induced morphism Y” — X' is an elementary fibration of pure dimension
one at the point 3. In the case, when the field H(¢(y)) is not perfect and its valuation is trivial,
the correct statement is that all of the above is true except the requirement on the étaleness of the
morphism X’ — X. Namely, it is only a composition of a radicial morphism X’ — X’ with an
étale morphism X" — X. Here a morphism of good k-analytic spaces f : X’ — X is said to be
radicial if it is finite and every point of X has an affinoid neighborhood V' = M(A) such that for
its preimage V' = M(A’) in X’ one has A" = A[T7, ... ,Tn]/(Tipli — fi) with f1,..., f, € A* and
i1,...,4n > 0. (Such a morphism is always finite flat, and it induces a homeomorphism between the
underlying topological spaces.) In the same case (of the non-perfect field H(p(y)) with the trivial
valuation) the correct statement of Corollary 3.7.3 should require that both morphism X’ — X
and Y’ — Y’ =Y xx X’ are compositions of a radicial morphism with an étale one. The above

changes do not affect the applications of Theorem 3.7.2 in [Ber2], and here is one more application.

2.2.3. Proposition. Given smooth k-analytic space of the same dimension n and points
2/ € X" and 2" € X" with s(x') = s(2’") = n, there exist étale morphisms ¢’ : X — X’ and
¢+ X — X" that take a point x € X to 2’ and x”, respectively.

Proof. We may assume that X” = A" and 2" is the maximal point of the closed unit
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polydisc with center at zero. If the valuation on k is trivial, then the image of the point 2’ under
any étale morphism from an open neighborhood of 2’ to A™ is the point x”. Assume therefore
that the valuation on k is nontrivial. If n = 1, then 2’ is type (2) and so, replacing k by a finite
separable extension, we may assume that X = A"\ [T%, X;, m > 1, where X is a connected
smooth projective curve over k°, z is the generic point of X, in A", and X;’s are as in Proposition
2.2.1(2). Then any étale morphism Z — A™ from a (nonempty) open affine subscheme of X’ gives
rise to an étale morphism from an open neighborhood of the point = to A™ that takes x to the
point z”. Assume now that n > 2 and the required fact is true for n — 1. We may then assume
that there is a smooth morphism ¢ : X’ — Y of dimension one with s(y) =n — 1, where y = p(2/),
such that Y admits an étale morphism to A"~! that takes y to the maximal point of the closed
unit polydisc with center at zero. By [Ber2, Theorem 3.7.2], the situation is reduced to the case
when ¢ is an elementary fibration. It follows easily from the definition of the latter and Proposition
2.2.1 that one can replace Y by an étale neighborhood of the point y and find an étale morphism
1 : X' — Y x Al over Y that takes 2’ to the maximal point of the closed unit disc in A%{(y)
with center at zero. Then the étale morphism X’ — A™ = A"~! x A! induced by the above étale

morphism Y — A"~ ! and 1 takes 2’ to the point z”. .

2.3. Etale neighborhoods of a point with with s(z) < dim(X). In this subsection, k
is an arbitrary non-Archimedean field with a nontrivial valuation. Let X is a smooth k-analytic

space of dimension n at a point z € X.

2.3.1. Proposition. Assume that s(x) < n. Then

(1) one can shrink X so that there exists a smooth morphism ¢ : X — Y to a smooth k-analytic
space Y of dimension n — 1 with s(y) = s(z) for y = ¢(x);

(ii) given a smooth morphism ¢ : X — Y as in (i), there exists an étale morphism Y’ — Y
and an open subset X’ C Y’ xy X such that the image of X' in X contains the point x and X'
is isomorphic over Y' to Y’ x D, if t(y) = t(z), and to Y’ x B, if t(y) < t(x), where D and B are
open disc and annulus with center at zero.

Proof. (i) We may assume that X is an open subset in X'®", where X = Spec(B) is a smooth
irreducible affine scheme over k. Let x be the image of x in X. If x is not the generic point of X
then, by Step 2 of Case (a) from the proof of [Ber7, Theorem 9.1], there exists an isomorphism of
an open neighborhood of z onto D(0;r) x Y that takes z to {0} x Y, where Y is a smooth k-analytic
space of dimension n — 1. Thus, we may assume that x is the generic point of X'. Let s = s(x).

The image of the field k(x) is dense in H(zx). It follows that we can find elements f1,..., fs €
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k(x) with | f;(z)| = 1 such that their images in %) are algebraically independent over k. It is then

clear that f1,..., fs are algebraically independent over k. We can extend this system of elements to
a system f1,..., fn—1 of algebraically independent elements of k(x) over k. Shrinking X, we may
assume that fi,..., f,—1 € B. Consider the morphism f from X to the (n — 1)-dimensional affine

space, defined by the elements fi,..., f,—1. Then y = f(x) is the generic point of the affine space
and, therefore, the morphism f is smooth at the point x. Shrinking &', we may assume that f is
smooth. It follows that the morphism of k-analytic spaces ¢ = f3* : X" — A"l is also smooth
and, by the construction, s(y) = s, where y = ¢(x).

(i) Since s(y) = s(x), it follows that sy, (x) = 0, i.e., the type of x in the fiber of ¢ at y is
not (2). By the local description of smooth analytic curves (Proposition 2.2.1), if z is of type (1) or
(4) (resp. (3)), there is an étale morphism g : Y — A"~! with ¢=!(y) = {¢'} and an open subset
X" C X Xan-1Y such that z has a unique preimage 2’ in X’ and X, is isomorphic to D(0; 7))
(resp. B(0;7, R)3(y)). By Proposition 3.7.8 (resp. 3.7.5) from [Ber2], one can shrink ¥ and X’ so

~

that X' = D(0;7') x Y with 0 <7’ < r (resp. X’ = B(0;7/,R') x Y with r <7’ < R' < R). .

In the situation of Proposition 2.3.1 we say that the morphism X’ — X is an Y -split neigh-
borhood of x. Furthermore, given two Y-split neighborhoods X’ — X and X" — X of the point =z,
we say that the latter refines the former if X’ — X and the corresponding morphism Y” — Y go
through compatible étale morphisms X” — X’ and Y — Y”.

2.3.2. Corollary. Given two Y -split neighborhoods X' — X and X" — X of x, there exists
an Y -split neighborhood of the same point that refines both of them.
Proof. It is enough to apply Proposition 2.3.1 to the induced morphism X' x x X" — Y’/ xy Y

and a preimage of the point z in X’ x x X”. .

2.3.3. Corollary. Let x be a point of a smooth k-analytic space X with n = dim,(X). Then

(i) s(x) is the minimal number s such that = has a fundamental system of étale neighborhoods
isomorphic to a direct product of a smooth k-analytic space of dimension s and a semi-annular
space (of dimension n — s);

(ii) t(x) is the minimal number t such that = has a fundamental system of étale neighborhoods
as in (i) with the semi-annular spaces of dimension (t,n — s(xz) — t).

Proof. Proposition 2.3.1 implies that = has a fundamental system of étale neighborhoods
isomorphic to a direct product of a smooth k-analytic space of dimension s(x) and a semi-annular
space of dimension (¢(z),n — s(z) — t(x)). Assume that there exists a fundamental system as in

(i) with s < s(z), and let f be an element of Ox , with |f(z)| = 1 whose image f(x) of f(x) in
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H(z) is transcendent over k. Increasing k, we can find elements ay,...,a,—s+1 € (k°)* such that
their images in k are pairwise distinct. Shrinking X, we may assume that f € O(X) and all of the
functions f —a; are invertible. By the assumption, we may replace X by an étale neighborhood of x
isomorphic to Y x Z, where Y is a smooth k-analytic space of dimension s and Z is a semi-annular
space of dimension n — s. The description of invertible analytic functions on such X implies that
there exists (i1,...,in_st1) € Z" 5TN\{0} with (f —a1)®...-(f — ap_st1)"*+' = gh, where
g € O(Y)* and h € O(X)* is such that |h(z') — 1| < 1 for all points ' € X. The image of this

equality in H(x) gives an equation of algebraic dependence of f(x) over H(y), where y is the image
of z in Y. It follows that %) is algebraic over 'ﬁ@), which is a contradiction. Assume now that
there exists a fundamental system as in (ii) with ¢t < m = t(z), and let fi,..., f;, be elements
of O% , whose images in the Q-vector space \/W / \/W form its basis. Shrinking X, we
may assume that fi,...,f, € O(X)* and X =Y x Z, where Y is a smooth k-analytic space of

dimension s(x) and Z is a semi-annular space of dimension (t,n — s(z) — t). From the description

of invertible analytic functions on such X it follows that there exists (i1,...,i,) € Z™\{0} with
. fim = gh, where g € O(Y)* and h € O(X)* is such that |h(z') — 1| < 1 for all points
z' € X. Since \/[H(y)*| = /|k*|, the latter contradicts the property of fi,..., fm at . .

2.3.4. Corollary. Let F be an étale Ox-submodule of ‘I&( and T a geometric point of X
such that the stalk Fz is a union of free Ox z-modules. Then for any morphism ¢ : Y — X from
a smooth k-analytic space Y and any geometric point ij of Y over T the canonical homomorphism
¢ (Flg =Fz ®0, - Oyg — ‘ﬁﬁg is injective.

Proof. If ¢ (F) denotes the image of the homomorphism *(F) — ‘J‘({f , then the required
fact is equivalent to the bijectivity of the map ¢*(F)y — ¢ (F)7 and, if the latter is true, then
o (F )y is a union of free Oy z-module. It follows that, if ¢ is a composition of two morphisms for
which the required fact is true, then it is also true for . Since we can shrink X and Y so that
 can be represented as a composition of a closed immersion of Y into X x D and the canonical
projection X x D — X, where D is an open polydisc, it suffices to consider the following two cases.
In both of them we verify that, given elements f1,..., f, € F(X) whose images in the stalk F, of
a point x € X are linearly independent over Ox ., their pullbacks in ¢# (F),, where y € ¢~1(x),
are linearly independent over Oy,. Assume the latter is not true. Shrinking X and Y, we may

assume that there exist analytic functions g1,...,g, € O(Y) with Y. | figi = 0.

Case 1: @ is a closed immersion. Since the statement is local with respect to the étale topology,

we may assume that X — Y x D, where D is the unit open polydisc with center at zero, and the
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immersion identifies Y with the zero section of the projection p: X =Y x D — Y. It follows that
St fip*(g:) = 0 and, therefore, all g;’s are zero.

Case 2: ¢ is smooth. We may assume that ¢ is of dimension one. To show that g1 = ... =
gn = 0, we may replace Y by an étale neighborhood of any point from the preimage ¢~ (x). We
can therefore shrink X and Y in the étale topology and assume that Y = X x D, where D is
the unit open disc with center at zero. If o is a section of ¢, then Y . | fi0*(¢9;) = 0 and, by the
assumption on linear independence, 0*(g;) = 0 for all 1 < ¢ < n. Thus, it suffices to show that,
given a nonzero analytic function g € O(X x D), there is a section o with ¢*(g) # 0.

The function g is of the form Y ;= h;T%, where h; € O(X). Every element o € k with |a] < 1
defines a section o, that takes z to (z,a) and, if 67(g) = 0, one has > ;o h;a’ = 0. Restricting
the latter equality to the fiber p~!(z’) at an arbitrary point 2’ € X, we get h;(z') = 0 for all i > 0.

It follows that all h;’s are zero which is a contradiction. »

2.4. Basic curves. If x is a closed point of the closed fiber of a scheme or formal scheme over
k° such that the field %(X) is separable over k, we denote by kx the finite unramified extension of
k with the residue field E(x) Assume that k is a closed subfield of ES that contains ko, where kg
is a fixed non-Archimedean field whose valuation is nontrivial and discrete.

A smooth basic curve is a connected smooth k-analytic space X isomorphic to X’ @k(f)k with
a finite extension kj of ko in k and X' = X3\ [;_; X;, n > 0, where X is a smooth projective
curve over kY, each X; is an affinoid subdomain of 7~ 1(x;) for a closed point x; € X, whose field
E(I)(Xi) is separable over Eé, and is isomorphic to a closed disc E(0;7;)®(k))x, with r € k5|, and

the closed points x1,...,X, € X; are pairwise distinct.

2.4.1. Proposition. The following properties of a smooth k-analytic curve X are equivalent:

(a) X is a smooth basic curve;

(b) X is isomorphic to the generic fiber X,, of a proper marked formal scheme X over k°.

Proof. To prove the statement we may assume that k = k.

(a)==(b) Assume X is isomorphic to X"\ [[;_; Xi, n > 0, as above. We claim that there
is an admissible blow-up ¢ : X' — X whose center is supported in {Xi,...,X,} and such that the
scheme X' is nondegenerate strictly poly-stable over k° and X = w=1(), where ) is the irreducible
component of X! for which the induced morphism Y — Xy is surjective. Indeed, it is enough to
construct such a blow-up separately for each point x = x;. Since the field %(X) is separable over E,
there is an étale morphism from an open neighborhood of x to the affine line over k° that takes x;

to the zero point. It induces an isomorphism of 77! (x) C A" with the open disc D(0; 1)®ky that

37



takes X; to a closed disc E(0,r) with r € |k*|. Let J be the coherent sheaf of ideals which coincides
with Oy outside the point x and is generated by the coordinate function 7" of the affine line and
an element a € k° with |a| = r. The blow-up ¢ : X’ — X with center at J induces an isomorphism
X\p~1(x) = X\{x}, and ¢~!(x) is an irreducible component of X! isomorphic to the projective
line over %(x) There is an étale morphism from an open neighborhood of x’, the zero point of the
projective line, to the affine scheme Spec(k°[T, u]/(Tu — a)). The claim now follows from the fact
that the preimage of ¢~!(x)\{x'} in X" under the reduction map is identified with the closed
disc E(0; |a|)®kx, and the preimage of the infinity point of p~!(x) is identified with the open disc
D(0; |a|)®ky. Since X = 7~1())) coincides with (i’\/’y)n, we get the required fact.

(b)=>(a) Let X be the formal completion X 7y of a nondegenerate strictly poly-stable curve
X over k° along an irreducible component Y of X proper over %, and let xq,...,x, be the closed
points of Y that lie also in some of the other irreducible components of X;. The assumption on X
implies that every point x; has an open neighborhood in X that admits an étale morphism to a
scheme Spec(k°[u,v]/(uv —a;)) with a; € k°\{0}.) The point x; goes under this étale morphism to
the zero point and, therefore, the field E(xz) is separable over k. This easily implies that the open
subset 71 (x;) of 3" is isomorphic to the open annulus B(|a,/, 1)®ky, over ky, with center at zero
(see Lemma 3.1.3 for a more general statement). Let X’ be the k-analytic space obtained by gluing
of X with the open discs D(0; 1)(§>k‘xi along the above annuli, respectively. The space X’ is a smooth
compact k-analytic curve and, therefore, it is the analytification of a smooth projective curve over
k. It is also easy to see that that curve has good reduction, i.e., X’ is isomorphic to Xf“, where X’
is a smooth projective curve over k°. It follows that X is isomorphic to X,;an\ P, E(0;]a;])®kx, ,

i.e., it is a basic curve. .

A k-affinoid basic curve is a connected strictly k-affinoid space X isomorphic to Y@)%k: with
ko a finite extension of ko in k and Y = X2"\[[[_, ¥;, n > 1, where X" is a smooth projective
curve over kj°, each Y; is an open subset of 771(x;) for a closed point x; € X;, whose field %6 (x;) is
separable over kj, and is isomorphic to an open disc D(0;7;)®(k})x, with r; € |k|, and the closed
points x1,...,x, € X, are pairwise distinct. For a k-affinoid basic curve X provided with such
an isomorphism, let X’ denote the open subset that corresponds to Y’ = A"\ [T, Y/, where Y/
denotes the bigger closed disc E(0,7;)®(k))x,. Then X’ is a smooth basic curve.

2.4.2. Proposition. In the above situation, given a kg-special formal scheme %) over k° and
a morphism of strictly k-analytic spaces ¢ : X — 9),, there exists a finite extension k' of k and

a finite open covering X'®@k’ = U™, X! such that each X! is the generic fiber .'{27 of a strongly
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marked formal scheme X* over k'° (and, in particular, X/ is a smooth basic k'-analytic curve) and
the induced morphism X! — 9),, comes from a morphism of formal schemes X" — 9 over k°.
Proof. First of all, we can increase the field ky and assume that X comes from a kg-affinoid
basic curve Y. By the proof of Proposition 2.4.1, there is a nondegenerate strictly poly-stable
curve ) projective over kj whose closed fiber ), is a union of irreducible components Z, Z1,..., 2,
such that each Z; is isomorphic to the projective line over F , ZinZ={x;}and Z,NZ; =0
for i # j, and one has Y’ = (JA)/Z)T7 and Y = ()A)/W)n, where W is an open subset of ), with
YV \W = {z1,...,2,} and each z; is a closed point of Z; different of x,;. Furthermore, as in the
proof of Proposition 2.1.1(ii), we can increase the field kq and find rational strictly affinoid covering
{Witi<i<i of Y such that ga(Wi(/X\)kOk) C 2}:7 for some open affine subschemes 9',...,2' c 9.
One can then construct an admissible blow-up ) : Y — Y and open subschemes W; C vt (W),
1 <5 <, with W = Ué»:le and W; = 7=1(W;). By the semi-stable reduction theorem for
curves, there exists a finite extension k{, of ky and a morphism )’ — y kg k> from a strictly
semi-stable projective curve )’ over ki’ that gives rise to an isomorphism )}, = Yy Qo k. I 27
denotes the preimage of Z in )., we get an isomorphism (j};z,)n =Y @, kb If k' is the composite
of k and k{ in i\;o, one shows as in the Step 4 from the proof of Proposition 2.1.1 that the induced
morphism (3/)\; z')n@)k{, k" — 9, comes from a morphism of formal schemes j)\; Z,@)%o k' — 9 over
k°. Since Z is an irreducible component of ), its preimage Z’ is a union of irreducible components
Z1,..., 2] of V.. It follows that the required fact holds for the strongly marked formal schemes

X' = y\;z{@F“’klo and the smooth basic curves X| = %27 .
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83. Properties of strictly poly-stable and marked formal schemes

In this section we study properties of a proper marked formal scheme X over k£° and its generic
fiber X;. For example, the reduction map 7 : X,, — X, is surjective and the preimage 77 1(x) of
a closed point x € X, with E(x) separable over k is a semi-annular space. In particular, if the
characteristic of k is zero and the field k is perfect, any closed one-form on X,,, whose restriction
to the residue class 771 (x) of every closed point x € X, is in Q}, (7~ *(x)), has a primitive in the
class of functions whose restrictions to every residue class 7 ~!(x) are in L*(7~1(x)). The following
property is of crucial importance for the construction in §7, which provides a way to connect all
of such primitives: the generic point of X (i.e., the unique preimage of the generic point of X in
X,) has a fundamental system of open neighborhoods in X, whose intersections with all of the
residue classes are nonempty and connected. Furthermore, we consider the stratification of the
closed fiber X, constructed in [Ber7], and show that for any morphism of marked formal schemes
X' — X the image of a stratum of X/, is contained in a stratum of X;. We also construct for every
stratum closure ) C X, an open neighborhood Dy of the image of 7=1())) under the diagonal map
X, — X, x X, and establish a geometric property of the canonical projection to the first coordinate

@y — 71'_1(3)).

3.1. Strictly poly-stable formal schemes. Recall (see [Ber7, §1]) that a scheme (resp.
formal scheme) over k° is said to be strictly poly-stable if it has a locally finite covering by open affine
subschemes that admit an étale morphism to an affine scheme of the form Spec(A4y) x ... x Spec(A4,)
(resp. Spf(Ap) x ... x Spf(A,)), where each A; is of the form k°[Ty,...,T,]/(To- ... - T, — a) (resp.
k{To,....,Tn}/(To - ...-T,, —a)) with a € k° and n > 0. If all of the elements a are non-zero,
the strictly poly-stable scheme (resp. formal scheme) is said to be nondegenerate (see [Ber9]). In
this case its generic fiber is smooth (resp. rig-smooth). Recall that all irreducible components of
the closed fiber of a strictly poly-stable scheme or formal scheme over k° are smooth over k. Ifa
scheme X is strictly poly-stable over k°, then so is its formal completion along the closed fiber X.If
the valuation on k is nontrivial and discrete, any strictly semi-stable scheme or formal scheme over
k° is nondegenerate strictly poly-stable. The advantage of strictly poly-stable schemes and formal
schemes is in the facts that they are defined over non-Archimedean fields with not necessarily
discrete valuation and that their class is preserved under direct products and the ground field
extension functor.

For an integral algebra A over a field L, let ¢(A/L) denote the subfield of the elements of A
which are algebraic and separable over L. When it is clear what the field L is considered, the field
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¢(A/L) is denoted by ¢(A). For example, by [Ber9, Corollary 8.1.3(ii)], the stalk cx , of the sheaf
of constant analytic functions cx on a geometrically reduced strictly k-analytic space X at a point

x € X coincides with ¢(H(z)) = ¢(H(z)/k).

3.1.1. Lemma. Let X be a formal scheme locally finitely presented over k°, ) a smooth
irreducible component of X,, and o the generic point of Y in X,,. Then

(1) the algebraic closure of k in H(o) is the finite unramified extension of k with the residue
field ¢(k()) and, in particular, it coincides with ¢(H(c));

(i}) e(x~1 (V) > (H(0)).

Proof. Let ) be a nonempty open subscheme of X such that PP, C Y and ), does not
intersect with the other irreducible components of X;. Then %) is smooth, ), is irreducible, and
o is its generic point in 9),. By [Ber7, Corollary 1.7(ii)], one has %) = E(JJ) and, therefore, the
finite unramified extension &’ of k with the residue field ¢(k()) is embedded in H (o). We claim
that each element of k' comes from a constant analytic function from 7~%()’). Indeed, consider
the induced étale morphism ¢ : ¥ = X®k'° — X. Since Y is smooth, there is an irreducible
component )’ of X/, such that ¢ induces an isomorphism )’ = ), i.e., by [Ber7, Lemma 4.4], it
induces an isomorphism 771()’) = 771()) and the claim follows. It remains to show that the
algebraic closure of k in H(o) coincides with &’. For this we can replace k by k', X by X’ and Y
by )’, and so we may assume that ) is geometrically irreducible. Furthermore, we may shrink X
and assume that X = Spf(A) is affine and X; is irreducible. Consider an arbitrary epimorphism
k°{Tr,...,T,,} — A. By [Ber7, Proposition 1.4], one has A° = A and | A|syp = |k|, where A = ARk,
and, therefore, [BGR, Corollary 6.4.3/6] implies that the spectral norm on A coincides with the
quotient norm with respect to the induced epimorphism k{7%,...,7,} — A. From [Berl, 5.2.2
and 5.2.5] it follows that for any non-Archimedean field K over k the norm on the Banach algebra

H(z)®K is multiplicative. Applying this to finite extensions of k, we get the required fact. n

From Lemma 3.1.1 it follows that for any connected open neighborhood U of the point ¢ in
77 1(Y), one has ¢(7~H(Y)) = c(U) = (H(o)).

Recall that a standard formal scheme over k° is a formal scheme of the form ¥(n,a) x &(m),
where either n = (no,...,n,) € ZP™ n;, > 1, a = (ag,...,a,) € (k°°)PT!, T(n,a) = Spf(Ay) x
... xSpf(Ay), A; = k°{Tio, ..., Tin, }/ (Tio-- . .- Tin, —ai), &(m) = Spf(k°{S1,..., Sm, S%, ce i}),
orp=mnp=0,a =1and T(0,1) = Spf(k°) (see [Ber7, §1]). Given a strictly poly-stable formal
scheme X over k°, every point x € X, has an open connected affine neighborhood X’ of x for which

there exists an étale morphism to a standard formal scheme ¢ : X' — T = T(n,a) x &(m) such
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that the point ¢4(x) is contained in the intersection of all irreducible components of Ts. The tuples
n and |a| are determined uniquely, up to a permutation of the set {0,...,p}, by the stratum of X
(see §3.3) that contains the point x (see [Ber7, §4]). The triple (n,|a|, m) will be called the type of

x (or of the stratum).

3.1.2. Lemma. Given a closed point x € X, of type (n,|a|,m) such that the field k(x) is
separable over %, there is an isomorphism 7~ 1(x) = (Y x D™)®ky, where D™ is an open unit
polydisc of dimension m with center at zero, Y is the closed analytic subset of the open unit polydisc
DIrl+r+1 defined by the equations Ty - ... Ty, = a; for 0 < i < p, and |n| =ng +ny + ... + np.

Proof. We may assume that X’ = X. There exists a Ex—rational point X' € X, ® Ex over
x. If t' is the unique preimage of t in T, ® kx then, by [Ber7, Lemma 4.4], the induced étale
morphisms X®k2 — TRES and X®kS — X give rise to isomorphisms 7-(x’) = 7~ '(t') and

77 1(x") 5 771(x), and the lemma easily follows. .

3.1.3. Corollary. In the situation of Lemma 3.1.2, assume that X is nondegenerate. Then

(i) 7=1(x) is a semi-annular ky-analytic space;

(i) for any f € O(n~1(x))*, the real valued function x — |f(x)| extends by continuity to the
closure of 7~ 1(x) in X,,.

Proof. Using the notation from the formulation and proof of Lemma 3.1.2, the projection
from 7~!(x) as described in Lemma 3.1.2 to the coordinates T}1,. .., T;n,, 0 < i < p, gives rise to
an isomorphism of 7~ (x) with (Z x D™)®ky, where Z is the open subset of G2l defined by the
inequalities |T;;(z)| < 1 and |(T51 - ... Tin, )(x)] > |a;] for 0 < i <pand 1< j <n, Itisa semi-
annular kx-analytic space. To prove (ii), we may assume that X = Spf(B) is affine. From [Ber7,
Theorem 5.2] it follows that the multiplicative monoid B N B*, where B = B Qo k, is generated by
the subgroup B* and the coordinate functions T;;, and from [Ber7, Proposition 1.4] it follows that
B* = (BN B*) - k*. These facts easily imply that f = g - h, where g € B* and h € O(n~}(x))* is
such that |h(z) — 1] < 1 for all x € 7~ 1(x), and (ii) follows. .

We are going to formulate consequences of Lemmas 3.1.1 and 3.1.2 in the situation we are
interested in. Namely, let kg be a non-Archimedean field with a nontrivial discrete valuation and
a perfect residue field EO, and k an extension of kg which is a closed subfield of ES, and let X be a
marked formal scheme over k° and o = oy.

3.1.4. Corollary. (i) ¢(X,) is the finite unramified extension of k with the residue field k(X,),
and it coincides with ¢(H(0o));

(ii) X is a marked formal scheme over k'° for any intermediate subfield k C k' C ¢(X,).
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Proof. Increasing the field kg, we may assume that X = Q) Z@A@kgko, where ) is a nondegenerate
strictly poly-stable formal scheme over kj and Z is an irreducible component of ) for which
zZ =Z2 ® k is an irreducible component of ), where 9 = @@914:3 k°. Since X, = 7~1(2’) and
X, = Z’, Lemma 3.1.1 implies (i). It follows also that [¢(k(Z")) : k] = [¢(ko(Z2)) : ko] and, therefore,
for any intermediate subfield k C k' C ¢(X,)) there is an intermediate subfield ko C k) C ¢(7~(2))
such that &’ is the composite of k and k{ and [k’ : k] = [k{, : ko]. The reasoning from the proof
of Lemma 3.1.1 shows that 9z can be considered as a marked formal scheme over k{,°, and (ii)

follows. .

Furthermore, assume that the characteristic of kg is zero. We fix a filtered k-algebra K and

a logarithmic character A : k* — K* (see §1.4). For a differential form w € Q% (X,), ¢ > 0,

K
and a closed point x € X, we denote by wyx the restriction of w to the openmsubset 7 H(x).
Furthermore, given an integer n > 0, we denote by Cg’n(%) (resp. RM™(X)) the set of all functions
f e ME(X,) such that f, € CE (71 (x)) = kx @) K" (resp. fx € LM (77 '(x))) for all closed
points x € X,. We also denote by QF,, ., (%) the set of all N _differential g-forms w € Q% . (X,)

such that wy € Q7 , (77*(x)) for all closed points x € X,. Notice that d(RM"(X)) C Q.. (X).

3.1.5. Corollary. In the above situation, the following is true:

(i) Kex(RM™(X) 5 Q. (X)) = C ™ (X);

(i) the morphism of complexes Q' .,

(X) = Qpang1 (X) is homotopy equivalent to zero.
Proof. We increase the field kg and use the notation from the proof of Corollary 3.1.3. Assume
a closed point x € ), is of type (n, |a|,m) in Q%. Then the projection from 7~ !(x) as described
in Lemma 3.1.2 to the coordinates Tj1, ..., T;n,, 0 <i < p, gives rise to an isomorphism of 71 (x)
with (Y x D™)®ky, where Y is the open subset of G2l defined by the inequalities |T;; ()] < 1and
|(Ti1 ... Tin;)(z)] > |a;| for 0 <i <pand1<j<mn,; Itisasemi-annular kx-analytic space, and

the required statements follow from Corollary 1.5.4. .

Finally, assume that Log*(a) € k for all @ € k* with |a| = 1. (For example, this assumption is
satisfied if the residue field k is algebraic over a finite field.) Given n > 0, we denote by Ré (X)

the subspace of functions f € R»"(X) such that f|7T € Lé’n(wfl(x)) for all closed points

1)
x € X, where L)) (7~ (x)) is the filtered O (7~ (x))-algebra of L* (7! (x)) generated by Log™(g) for

g € O(r71(x))* with |g(o)| = 1 (see Corollary 1.5.5). (Notice that the number |g(c)] is well defined

by Corollary 3.1.3(ii).) In the similar way we introduce that subspaces QZS’" (X) € Q% . (X) and
notice that d(RS’”(%)) C Qb . (X). We also denote by cg(X¥) the subspace of functions f € n(X,)

A,n
RO

such that f’rl(x) € ¢(n 1 (x)) = kx.
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3.1.6. Corollary. In the above situation, the following is true:

(i) Ker(Ry™ (%) % QL (X)) = cr(X);

A,n
RO

(ii) the morphism of complexes 0 _, . (X) — @

n xns1(X) is homotopy equivalent to zero. "
I%O7 RD)

3.2. Open neighborhoods of the generic point of an irreducible component. In this
subsection X is a strictly poly-stable formal scheme over k°. For an irreducible component X of
X5, let X denote the maximal subset of X which does not intersect any of the other irreducible

components of X;. Notice that X is open in X, and X is smooth at all points of X.

3.2.1. Lemma. Let X be an irreducible component of X, and o the generic point of X in
X,. Then every open neighborhood of ¢ in X,, contains a closed subset of the form 7~Y()), where
Y is a nonempty open subset of X.

Proof. Let ) = Spf(A4) be a nonempty open affine subscheme of X with ), C X. Then o is
the maximal point of the affinoid space 9, = M(A), where A = A®k, i.e., |f(x)| < [f(o)] for all
r €9, and f € Aand, in particular, |f(o)| = | f|sup (see [Berl, §2.4]). It follows that a fundamental
system of open neighborhoods of o in ), is formed by sets of the form U = {z € @anz(l')\ >
for 1 < i < n}, where fi,...,f, € A and 7, < |filsup. Since |Alsup = |k| and A° = A (see
[Ber7, Proposition 1.4]), we can multiply each f; by an element of k and assume that f; € A and
|filsup = 1. Then U contains 7=1()), where Y is the open subset of ), defined by nonvanishing of
the image of f1 ... fn ing:A/kooA. .

3.2.2. Theorem. Let )Y be a nonempty open subset of X, which is contained in only
one irreducible component X of X, ie., Y C X. Then there is a fundamental system of open
neighborhoodsU of 7 =()) in X, such that, for every closed point x € X, the intersection UNt~(x)
is nonempty and connected.

Proof. Step 1. Of course, we may assume that X is quasicompact. Here are more remarks of
this type.

(1) If the theorem is true for the pair (X,Y), then it is true for any pair (X',Y"), where X' is
an open subscheme of X and V' =Y N %; Indeed this follows from the facts that the topology on
.'{;7 is induced by that on X, and that the preimages of any point x € X} in .'{;7 and in X,, coincide.

(2) If V' and V" are open subschemes of Y such that Y =)' UY" and the theorem is true for
V', V" and Y' NY", then it is also true for Y. Indeed, let V be an open neighborhood of 7=1())
in X,. By the assumption, there exist open neighborhoods U’ of 7#=()’) and U” of 7= (Y") in V
and W of 775’ NY") in U’ NU" with the required properties. The union U = U’ UU" is an open

neighborhood of 771()) in V. For a closed point x € X, U N7~ !(x) is a union of the nonempty
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connected open subsets U’ N7~ 1(x) and U” N7~ 1(x), and the intersection of the latter contains
the nonempty subset W N 7~1(x), i.e., it is nonempty and connected.

(3) If X' and X" are open subschemes of X such that X = X' U X" and the theorem is true for
the pairs (X',Y') and (X",Y") with Y = YN X, and V" = Y N XY, then it is also true for the
pair (X,Y). Indeed, let V be an open neighborhood of 77*(Y) in X,,. By the assumption, there
exist open neighborhoods U’ of 7=(3’) in X;, NV and U” of #=(Y’) in X, NV with the required
properties. It suffices to show that the topological interior ¢ of the set U = U"UU" in X,, possesses
the required properties. First of all, U is evidently an open neighborhood of 7= 1()) in V. Let x
be a closed point of X, and set X’ = X N X, and X" = X N X.. Since m~!(x) is contained in
the interior of X,,, it follows that U N7~ !(x) = U Nn ! (x). If x € X", the latter intersection
coincides with U/ N7~ (x). If x € X’ N X", it coincides with the union of the sets U’ N 7~1(x) and
U" N 7~1(x), and so it remains to show that the intersection of both sets is nonempty. But this
follows from the remark (1) and the fact that 4’ NU" is an open neighborhood of 7=1()’ N Y") in
X, Nnx.

By the previous remarks, the situation is reduced to the case when X = Spf(A) is affine
and )Y is a principal open subset of X, i.e., Y = {x € %S‘f(x) # 0} for some f € A\k°A. It
follows that a fundamental system of open neighborhoods of 7=1()) in X, is formed by sets of
the form U, = {z € X,||f(z)| > r} with 0 < r < 1. Since Y does not intersect any of the other
irreducible components of X, the absolute values of all f;’s at the generic points of those irreducible

components in X, are strictly less than 1. Thus, it suffices to prove the following fact.

Let X = Spf(A) be an affine strictly poly-stable formal scheme over k°, X an irreducible
component of X,, o the generic point of X in X,, f an element of A, and o the maximum of
the absolute values of f at the generic points of the other irreducible components of X, in X,,.
(If X = X, one sets a = 0.) Assume that o < |[f(0)|. Then for every o < r < |f(o)| the set

U = {x € X,||f(x)| > 1} possesses the property of the theorem.

Step 2. Let x be a closed point of X. We notice that we may always replace the triple (X, X, x)
by a triple (X', X’,x’) with a morphism X — X of one of the following two forms and where x’
is a point over x and X’ is the irreducible component of X’ that contains the point x’: (a) X’
is an étale affine neighborhood of x, and (b) ¥’ is an open affine subset of X®yok’, where k'
is a finite extension of k. Indeed, this follows from the fact that in both cases the induced map
77 H(x') — 7 1(x) is open and surjective.

Thus, we may assume that the point x is k-rational and is contained in the intersection of all
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irreducible components of X, and that there is an étale morphism ¢ : X — T = T(n,a) x &(m)
withn = (ng,...,n,) and a = (ao, . .., a,), which induces a bijection between the sets of irreducible

components Irr(X) = Irr(Ty).

Step 3. Assume first that X is smooth at x, i.e., n = (0) and a = (1). (Notice that it is the only
possible case when the valuation on k is trivial.) In [Ber7, §5] we constructed a strong deformation
retraction ® : X, x [0,1] — X,, : (z,t) — x¢ of X,, to the skeleton S(X) which in our case consists
of the generic point o of X in X,. Since ®(7~*(x) x [0,1[) C 7~ !(x), it follows that the closure of
7~1(x) contains the point o and, therefore, the intersection U, N7 ~!(x) is nonempty. Furthermore,
since |f(x)| < |f(x¢)| for all z € X,, and t € [0,1], the set U, is preserved under the homotopy ®.
The set 7~ 1(x) is isomorphic to the m-dimensional open unit disc D with center at zero, and if the
absolute values of all of the coordinate functions on 7=1(x) = D at a point z € 7~!(x) are equal
or less than f then, for every 8 <t < 1, x; = 0, where 0; = ®(0,¢) is the maximal point of the
closed disc of radius (t,...,t). If £ denotes the homeomorphic embedding [0,1] — X,, : ¢t +— 0, it
follows that U, N¢([0,1]) coincides with either £(]3, 1[) for some 0 < § < 1, if | f(0)] < r, or £(]0, 1]),

if |£(0)] > r. Thus, we may assume that the formal scheme X is not smooth at x.

Step 4. By [Ber7, Corollary 7.4], there exists an étale morphism & — &(m) and an open
subscheme X' C X X G (m) & such that X/, contains a point x’ over the point x and the induced
morphism X' — &' is geometrically elementary. By Step 2, we may assume that the point x’
is E-rational, and we can replace the triple (X, X,x) by the triple (X', X’,x’), where &’ is the
irreducible component of X/, that contains x’, and so we may assume that there is an étale morphism
X — 3 =%(n,a) x & with a smooth formal scheme & such that the induced morphism ¢ : X — &
is geometrically elementary. Consider the strong deformation retraction ®g : X, x [0,1] — X, :
(z,t) — x; to the skeleton S(X/&), constructed in [Ber7, §7]. Recall that S(X/6) = UyegnS(%y),
where X, = X x g Spf(H(y)°). Recall also that there are canonical isomorphisms X, , = X, ,, and
Xy S ey @-, Hy

k(y)
therefore, it suffices to show that the set U, N S(X/&) N7~ 1(x) is nonempty and connected.

H(y), where y = m(y). The sets 7~ '(x) and U, are preserved under ®g and,

Since the morphism 1 is geometrically elementary, the canonical map S(X/8) — S(3/6)
identifies the former with its image in the latter. Notice that S(3/&) = X1

|al

7~ 1(z), where z is the image of x in 3, it follows that the latter identifies S(X/&) N 7w~1(x) with

x &. Since 771(x) =

Xo]ﬁa| x 77 1(y). Recall that 7=1(y) = D, where D is the m-dimensional open unit polydisc with
center at zero.

Furthermore, by [Ber7, Theorem 7.2], the homotopy &,, x [0,1] — &, considered in Step 3
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can be lifted to a homotopy S(X/6) x [0,1] — S(X/S) : (x,t) — x. Again, since |f(z)| < |f(z¢)],
the set U, is preserved under ®. Thus, if £: [0,1] — &, is the embedding constructed in Step 3 for
the point y, L = S(X/6) N~1(£[0,1])) = =2 x [0,1] and L = L N7 1(x) = B2 x [0,1], then

|a] |a]

it suffices to show that the intersection U, N L N =1 (¢([3,1[) is nonempty and connected for some
0<pg <.

Finally, the point o is a vertex of S(X) = LNy~1(¢(1)) = X

8 < 1 such that the set {o} x [3, 1] is contained in U, (and, in particular, the set U, N LNy~ 1(¢]3,1])

It follows that there exists 0 <

is nonempty). We can increase [ so that |f(o,t)| > r for all ¢t € [3,1], where (o,t) is identified

with the corresponding vertex of L N4~ 1(£(t)) = £ . Tt suffices to show that U, N L N1 (€(t))

|al

is connected for all ¢ € [3,1[. Since for any other vertex 7 of X7}, one has |f(7,¢)| < [f(7)| < a, it
suffices to consider the formal scheme X, instead of X, i.e., the situation is reduced to the case

when m = 0.

Step 5. The étale morphism X — 3 = T(n,a) identifies S(X) and S(X) N7~ (x) with X2

la|

n

la consists of the points u = (ui;j)o<i<po<j<n; € [0, 10 with

and ilr‘}ﬂ, respectively. Recall that X
U0+« .- - Win, = |a;| for all 0 < i < p, and ET;‘ consists of the points u € E\I:il with u;; < 1 for
all0 < i < pand 0 < j < n;. Since 7~ 1(x) = 7 1(z), where z is the image of x in 3, the
restriction of f to 7r_1(x) can be represented as a power series Z# c,T", where = (po, ..., ptp),
i = (Hios - -y lin,;) € Z’jj‘H, and ¢, = 0 for all p with oginni{ﬂij} > 1for some 0 < ¢ <p. If
ue ZD)T;‘, then |f(u)| = sup{|c,| - u*}. First of all, we are g_oir_lg to reduce the situation to the case
when a; # 0 for all 0 < i < p.

Assume that a; = 0 for 0 < i < g and a; # 0 for ¢+ 1 < i < p. We may assume that the
coordinates of the vertex o are such that o0 =0 and o;; =1forall0 <i<gand1<j <n;. We
claim that for any point u € E‘“a| with |f(u)| > r one has ujp = 0 and u;; # 0 for all0 < i < g
and 1 < j < n;. Indeed, assume this is not true, i.e., u;; = 0 for some 0 < i < gand 1 < j < n;.
Let 7 be an arbitrary vertex of E‘ﬁil with 7;; = 0 and 75 = 1 for all 0 <1 < n; with [ # j. Then
|f(7)] > |f(u)] > r, and the claim follows.

Furthermore, we set n’ = (ng,...,nq) and denote by 1 the projection ET‘H‘ — [0, 1}|nl| tu =
(uij)o<i<po<j<n; — (Uij)o<i<qi<j<n,- The fiber 9p~1(v) of each point v € [0,1]™] is canonically
identified with 7, where m = (Pg+1,--.,np) and b = (ag41,...,a,). We can find 0 < 5 < 1 such
that, for every v € [, 1]|nl|, the absolute value of f at the vertex of ¢y ~!(v) = Eﬁ;\ that corresponds

to o is bigger than r and of the other vertices is smaller than r. By the above claim, if u is a point

from Elr;| with |f(u)| > r, then ¥(u) €]0, 1[I, and if, for ¢ € [0,1], u{¥) denotes the point of il
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with the following coordinates: ug) = ugj for 0 < i < ¢, and ug) = u;; for ¢ +1 < ¢ < p, then
|f(u®)] > |f(u)] > r. One also has u® e ¢¥=1([3,1[™]) for every 0 < ¢t < 1 sufficiently close
to 0. Thus, to prove the theorem, it suffices to show that, for every v € [, 1[‘“/‘, the set of all
ueyl(v) S Xjp with [f(u)| > 7 which lie in Zollng‘ is connected. (The above reasoning is similar

to that from Step 4.)

We get the required reduction, and the theorem now follows from the following simple fact.

3.2.3. Lemma. Let V be a polytope and V its interior. Assume we are given a continuous
function f on V' which takes its maximum at only one vertex o of V and whose restriction to V s
the supremum of a family of linear functions. If « is the maximal value of f at all other vertices of
V, then for every a < r < f(o) the set U = {x € V‘f(:c) > r} is connected.

Proof. Let f}‘; be the supremum of linear functions {f;}ics, and set J = {i € I|f;(c) > r}.
Each of the sets U; = {z € V}fz(:z:) > r} for i € J is convex and contains the intersection of an
open neighborhood of ¢ in V with 1% and, therefore, the union U;c;U; is connected. We claim
that U coincides with the latter union. Indeed, assume x € U. Then there exists ¢ € I with
fi(z) > r. Since the function f; is linear, it takes its maximum at a vertex 7 of V. It follows that

f(r) > fi(t) > r > « and, therefore, 7 = o and i € J, i.e., z € U;. .
The following is a consequence of the proof of Theorem 3.2.2.

3.2.4. Corollary. In the situation of Theorem 3.2.2, let x be a closed point of X such that
the field k(x) is separable over k. Then

(i) e(m (%)) = ks

(ii) if U is an open neighborhood of o in X, such that the intersection U N7~ *(x) is connected,
then (7~ 1(x)) = (U N7~ 1(x)).

Proof. (i) follows from Lemma 3.1.2. To verify (ii), we may assume that the point x is k-
rational. By the proof of Theorem 3.2.2, the intersection /N7 ~!(x) contains a point = with H(z) =
H(y), where y is the maximal point of a closed polydisc. It follows that for any non-Archimedean
field K over k the norm on the Banach algebra H(J;)@K is multiplicative and, therefore, the

algebraic closure of k in H(x) coincides with k. This implies (ii). .

The following corollary lists consequences of the previous results in the situation we are inter-
ested in.

Let ko be a non-Archimedean field with a nontrivial discrete valuation and a perfect residue
field Eo, k a closed subfield of %8 that contains kg, and K a filtered k-algebra. Furthermore, let X

be a marked formal scheme over k°, X the maximal open subscheme of X which is a smooth formal
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scheme (locally finitely presented) over £°, and o = o4. For n > 0 and an open neighborhood U of
o, let Ch'"(%,U) denote the set of all functions f € M (i) such that f‘umrl(x) e CErUnT1(x))
for all closed points x € X,. For example, an(%, X,) = Cg’"(%), where the right hand side is
introduced at the end of §3.1. We also set Cp"(X,0) = li_n)lcg’"(.’{,u), where the limit is taken

over all open neighborhoods of ¢ in X,,.

3.2.6. Corollary. In the above situation, the following is true:

(i) any open neighborhood of the point o contains a subset of the form 7=())), where Y is a
nonempty open subset of }Ois;

(ii) given a nonempty open subset ) C .%s, a fundamental system of open neighborhoods U of
7~Y(Y) is formed by those U with the property that the intersection U N w~1(x) is nonempty and
connected for all closed points x € X;;

(iii) for any open neighborhood U of o with the property of (ii), one has Cp'"(X) = CR™(%,U)

and, in particular, Ch" (%) = CR™(%,0). .

3.3. A property of strata. Recall (see [Ber7, §2]) that the closed fiber X, of any pluri-
nodal formal scheme X over k° is provided with a stratification by locally closed irreducible normal
subsets so that the closure of any stratum (which is called a stratum closure) is a strata subset
(i.e., a union of strata). Furthermore, any étale morphism ¢ : X’ — X gives rise to an étale
morphism of every stratum of X, to a stratum of X, and, in particular, the image of a stratum is
contained in a stratum. In this subsection we show that, if both formal schemes are nondegenerate
strictly poly-stable or marked, the latter property holds without the assumption on étaleness of the
morphism.

Recall that, if X is strictly poly-stable, then the intersection of any set of irreducible components
of X is smooth over E, and the family of strata coincides with the family of irreducible components
of sets of the form (NxcaX)\(UygaY), where A is a finite set of irreducible components of X,. If
X is marked (and in this case we assume the field k satisfies the assumptions used in the definition
of such formal schemes), the above stratification gives rise to a stratification on the closed fiber X;.
For a stratum closure X in X, the corresponding stratum will be denoted by X. (This is consistent

with the similar notation in the previous subsection.)

3.3.1. Proposition. Let X be a nondegenerate strictly poly-stable formal scheme over k°,
and let ¢ : ¥ — X be a morphism of formal schemes over k°, where X' is either strictly poly-stable

or marked. Then the preimage of any stratum of X, is a strata subset of X’,.
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Proof. Step 1. Let T be a standard formal scheme T(n,a) x &(m). In this case there is

a bijection between the set [n] = [ng] X ... X [n,], where [n] = {0,...,n}, and the set Irr(%;)
of irreducible components of Ts that takes an element j = (jo,...,Jp) € [n] to the irreducible
component Zj of €, which is defined by the equations Tp;, = ... = T};, = 0, and each stratum

of T, is of the form (NjesZ;)\(Uje.sZ;), where J is a subset of [n] of the form Jy x ... x J, with
Ji C [n;]. We denote it by Z J and its closure by Z;. Furthermore, let M be the multiplicative
submonoid of A which is generated by all of the coordinate functions T;; and the subgroup A*,
where T = Spf(A). Notice that M D AN .A*, where A = A Qo k. If T is nondegenerate, then
M = An A*. Given elements f,g1,...,9m € M, let V(f;91,...,9m) denote the locally closed
subset {x € Ss|f(x) # 0 and g¢;(x) = 0 for all 1 <1i < m}. It is easy to see that V(f;g1,...,9m)
is a strata subset of T, and that each stratum of T is of the form V(f;g1,...,9m). (For example,
the above stratum Z 7 is of the required form in which f is the product of the coordinate functions

T;; with j & J; and the set {g1,...,gm} consists of the other coordinate functions.)

Step 2. Let ¢ : X" = Spf(A”) — T be an étale morphism, and assume that X is connected and
the induced map Irr(X7) — Irr(T,) is injective. Let also M” denote the multiplicative submonoid of
A" which is generated by M and the subgroup A”*. From Step 1 it follows that similar locally closed
sets V(f; 91, ..., gm) are strata subsets of X" for all f, g1,...,gm € M". Notice that M" > A"NA"",
where A” = A” @y k, and if T is nondegenerate then, by [Ber7, §5], M” = A” N A"". Furthermore,
if X' = Spf(4’) is the completion of X" along an irreducible component, then A’ N (’)(%;7)* is
contained in the multiplicative submonoid of A’ generated by M” and the subgroup A’*. This
implies that, given f,g1,...,9m € A’ N O(%;)*, the locally closed set V(f;g1,...,9m) is a strata
subset of X.

Step 3. The statement of the proposition is local with respect to the étale topologies of X and
X' and, therefore, it suffices to consider the case when ¥ = ¥ is standard as in Step 1 and X’ is as

in Step 2. In this case the required fact follows from Step 2. .

3.3.2. Corollary. Let ¢ : X' — X be a morphism between marked formal schemes over k°.

Then the image of any stratum of X/, is contained in a stratum of X. .

3.4. A tubular neighborhood of the diagonal of a stratum closure. For a formal
scheme X locally finitely presented over k°, let A denote the diagonal morphism X — X x X, and

let p; and ps denote the canonical projections X x X — X.
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3.4.1. Lemma. Given an étale morphism ¢ : ¥’ — X, the following diagram is cartesian

@
—

x x,
Tpl TP1
rlAE)) P rAR)

S

Proof. It is clear that the same diagram with 7= (I',(X))) instead of 71 (A(X})) is cartesian,
where Ty, is the graph morphism X' — X' x X : 2/ — (2/,¢(2')). But since the étale morphism
(1g,0): X' x X' — X' x X induces an isomorphism between closed subschemes A(X{) = ', (X)),
Lemma 4.4 from [Ber7] implies that 7= '(A(X))) = 7 '(T',(X})), and the required statement

S S

follows. »

We say that a formal scheme X is small if it is connected affine and admits an étale morphism
to a nondegenerate standard formal scheme ¥ = T(n, a) x &(m) such that the induced map between
the sets of irreducible components Irr(Xs) — Irr(%;) is injective. In this case the latter property
holds for any étale morphism to a standard formal scheme, and, if X = Spf(A), the multiplicative
monoid ANA*, where A = A®yo k, is generated by the coordinate functions T;; and the subgroup
A* (see [Ber7, §5]). Notice that any open connected affine subscheme of a small formal scheme is
also small, and that any nondegenerate strictly poly-stable formal scheme has an open covering by
small open subschemes.

Let X = Spf(A) be a small formal scheme, and let ) be a stratum closure in X;. We denote
by My the multiplicative monoid of the elements f € AN .A* with the property that the image of
fin A/k°°A is not zero at ), and we set

Dy = {z e a {(AW)|I(p1f - paf)(@)| < Ipi f(2)| for all f e My} .

3.4.2. Lemma. In the above situation, the following is true:
(i) ©y is open in X,, x X, and contains T HAD));
(i) for every stratum closure )’ in X, with )’ C ), one has Dy N7 1 (A(Y')) C Dyr;
(iii) given an étale morphism ¢ : X' — X with small X' and a stratum closure )’ in X!, with
CPOD)') C JOJ, the following diagram is cartesian
(V) — 7 H)
Tpl Tp1
@yl — @y
(iv) if Y is of type (n, |a|,m), then there are morphisms a : Dy — G2l and g:0y — A™
such that the image of (p1,a) : ®y — 7 1()) x G2l coincide with an open subset Y which is
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annular over 7~())), and the morphism (p1,c,3) : Dy — 7 () x G2l x Am™ gives rise to an
isomorphism Dy =Y x D™.

Proof. (i) Let ¥ = T(n,a) x &(m) be a nondegenerate standard formal scheme with n =
(ng,...,np) and a = (ao,...,ap) for which there is an étale morphism 1 : X — ¥ such that the
induced map Irr(X,) — Irr(T,) is injective, and let the image of ) be contained in Z;, where is
a subset of [n] of the form Jy x ... x J, with J; C [n;]. (We use here the notation from Step 1
of the proof of Proposition 3.3.1.) We may assume that J; = {0,...,n}} for all 0 < i < p, where
0<n,<n;,n,>1for0<i<pandn,=0frp+1<i<np. Thenthetypeofj)is
(n’,[a’|,m’), where n’ = (ng,...,n},), &' = (ag,...,ay) and m’ = |n[ +m — |n’[, and the monoid
My is generated by A* and the coordinate functions T;; for 0 <i < p and n] +1 < j < n,. Since
the inequalities in the definition of ®y hold for all elements of A*, it follows that ®y is defined by
a finite number of inequalities, and so it is open in X, x X,. Since elements of My do not vanish
at any point of Y, it follows that Dy > 7~ 1(A(D)), i.e., (i) is true.

(ii) follows from the fact that My, C My,.

(iii) follows from Lemma 3.4.1 and the fact that, if X = Spf(A’), the monoid My is generated
by A”* and the image of the monoid My in A’.

(iv) By (iii) we may assume that X = ¥. In the above situation, the type of Y is (n’,a’, m’), and
%, is the affinoid subdomain of the analytic torus GI2F™ defined by the inequalities |Ti(x)] <1,
|(Ti1- ... Tin,)(x)| > |a;] and [Si(z)] = 1 for 0 < ¢ < p, 1 < j < n;and 1 <[ < m. The
tubular neighborhood @y is the open subset of ¥, x T, defined by the inequalities |p;T};(y)| < 1
for v € {1,2}, 0 < i < ¢/ and 1 < j < nl, (91T — p3Tig)(®)| < IpiTis(v)] for 0 < i < p and
n,+1<j<n;, and |(p;Si — p3Si)(y)| <1 for 1 <1 <m. If a denotes the morphism Dy — G
defined by the functions {p5T;;}o<i<p1<j<n, then the image of (p1,a) : Dy — 77 1(Y) x G
coincides with the open subset Y defined by the inequalities |V;;(y)] < 1 for 0 < i < p’ and

1<j<nland
|ai
(T 41 - Tin, ) ()]

Vit Vi) ()] >

for 0 <i < p', where Vj; are the pullbacks of the coordinate functions on GL? and x is the image

of y in 771()). Notice that Y is annular of dimension |n’| over 771()). If now 8 denotes the

morphism Dy — A™ defined by the functions

*
1S
— Bo<icpmirr<j<n { o

piT5;
H P55

0515

—1hi<i<m}

then the morphism (p1, @, 3) : Dy — 7 1Y) x GLI:/‘ x A™ identifies ®y with the open set Y x D™
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where D™’ is the open unit poly-disc in A™ with center at zero. "

If X is an arbitrary nondegenerate strictly poly-stable formal scheme over £° and ) is a stratum
closure of X, one defines ©y as the union U;c1®y,, where {X;};cs is a covering of X by open small
subschemes and ); = Y N X, ;. By Lemma 3.4.2(iii), ®y does not depend on the choice of a
covering. From Proposition 3.3.1 and its proof it follows easily that, given a morphism ¢ : X' — X
of nondegenerate strictly poly-stable formal schemes k°, for any stratum closure )’ in X, one has

©(Dyr) C Dy, where ) is the stratum closure in X, with 90(:)0/’) c.

3.5. The same for proper marked formal schemes. Let ky be a non-Archimedean field
with a nontrivial discrete valuation, k an extension of k¢ which is a closed subfield of %8, and let X
be a proper marked formal scheme over k° which is the formal completion X /z of a nondegenerate
strictly poly-stable separated scheme X over k° along an irreducible component Z of X proper
over k (see §2.1). Notice that X, coincides with that irreducible component and X,, is an open
subset of the smooth k-analytic space Xj}". Given a stratum closure ) of X5 in X, the tubular
neighborhood 5y constructed in the previous subsection for the nondegenerate strictly poly-stable
formal scheme X is contained in 7~ *(A(Y)) C X, x X,. From the construction of ©y it follows
easily that it depends only on the formal scheme X. If ) = X, we denote it by Dy. From
Proposition 3.3.1 it follows that, given a morphism ¢ : X' — X of proper marked formal schemes
over k°, for any stratum closure )’ in X}, one has ¢(Dy) C Dy, where Y is the stratum closure in
X, with go(j)’) c .

We say that an open affine subscheme X’ C X is small if it is the the formal completion X /’y,
of a connected open affine subscheme X’ C X along )’ = YN X!, where X’ is assumed to admit an
étale morphism to a nondegenerate standard scheme 7 = 7 (n, a) X S(m) such that the induced map
Irr(X;) — Trr(7;) is injective. Notice that X7, is an open subset of the strictly affinoid subdomain
AA,’,/] of the open subset X,’Ian of X7". Notice also that since 7, is an open subset of an affine space
over k, the sheaf of differential one-forms Q- is free and, therefore, the sheaf of analytic differential
one-forms is free over an open neighborhood of %;7 in X,,. By Lemma 3.4.2(iv), the projection

p1: Dy — 7)) is a discoid morphism, if Y = X,, and a semi-annular morphism, in general.

3.5.1. Proposition. For every open neighborhood W of ®y in ®y, there exist open neigh-
borhoods =1 ()') CU C X, and Dy C V C W such that A(U) CV C p;*(U) and the projection
p1: YV — U is a discoid morphism, if Y = X, and a semi-annular morphism, in general.

Proof. We use the notations from the proof of Lemma 3.4.2. The analytic torus Glr:me,

considered there, is the analytification 7,"" of 7,, T is the formal completion T of T along its
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closed fiber T, and )’ is of the type (n’,|a’|,m’). We may assume that WV is an open neighborhood

of Dy in Xéan X Xéan. It what follows, we use the notation Iy instead 7=1()).

Let Z denote the stratum closure of 7, for which Z contains the image of JO)’ . For0<r <1,
let D" (resp. fl?) denote the closed analytic subdomain of ’]A; X ’]A; (resp. T,"* x T,"") defined
by the inequalities [p;T;;(y)| < r and |p}(Ti1-... Tin,)(y)| > @ for v € {1,2}, 0 < i < p
and 1 < j < ng, |(piTi; — p3Ti3)(y)| < rlpiTii(y)| for 0 <@ < p and nj +1 < j < n;, and
|(p1S; — P35S (w)| < rlpiSi(y)| for 1 < 1 < m. We also denote by D" (resp. 35;) the open
subset of ’ZA;7 X ’ZA} (resp. 7" x 7;73“) defined by the corresponding strict inequalities. One has

<
@Z - UT<1©§T.

Furthermore, we denote by Hér (resp. ﬁér) the closed analytic subdomain of ’]77 (resp. 7,")
defined by the inequalities |T;;(z)| < 7 and |(Ti1- ... Tin, )(x)| > @ for 0<i<p and 1<j<nl,
and we denote by IIS" (resp. ﬁ;’") the open subset of ’ZA;7 (resp. 7,*) defined by the corresponding
strict inequalities. Notice that if Z = 75 (i.e., Y = X;), the system of inequalities is empty and,
therefore, II5" = Hér = 'j\;] and ﬁg = ﬁér = 7. In the general case I1z = U, 1 115" = UT<1H§T,
and the union UT<1ﬁ§T is an open subset of 7.*". One also has A(IY) Cc D% C p, YY) (resp.
A(IIT) € ’Z)Z C p; Y(I1Y)), where v € {1,2} and ? € {<, <}.

The formulas for the morphisms « and [ from the proof of Lemma 3.4.2(iv) give rise to
morphisms « : ’}SET — Glfll/l and 3 : ’}53 :— A™ such that the image of (p1, ) : ’}Sér —
ﬁér x Gl coincides with the closed analytic subdomain Y =" defined by the inequalities |V;;(y)| <
for 0 <i<p' and 1< j<nland

~ < -
for 0 < i < p/, where z is the image of y in H;r, and the morphism (pi, @, 3) : @gr — H;T X

/ , ~ <

Ggf % A™ identifies ’D;T with Y=" x DS", where D=7 is the closed polydisc of radius r with
~ <

center at zero. The same morphism identifies ZT with Y<" x D<", where Y <" is the open subset

of ﬁ}’” X Glnrl1 " defined by the corresponding strict inequalities and D<" is the open polydisc of

radius r with center at zero.

Let H;,T and ﬁjg,,r (resp. II3/ and ﬁ§f) be the preimages of II5" and TIS" (resp. II5" and

I5") in X/, respectively, and let @;T (resp. D57) be the preimage of D3" (resp. D3") in Dy
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Consider the commutative diagram

ﬁ%f —  IZ
ez 1 Tp1
~ ~< ~<
5 5 Iy xrm®; — D5

From Lemma 3.4.2(iii) it follows that the morphism ~ identifies CD;T with an affinoid subdomain
= ~< an

of H;T X Tan D, C X! x T Recall that v is the restriction to ’D)S,T of the étale morphism
/2 l

X, x X

an

— X:n x 7.0 1f now 6§,T denotes the preimage of Xgaﬂ X Tan 5? in X;]an X Xgaﬂ under
the latter étale morphism, we get an étale morphism 5§T — Xé&m X Tan 35§T that identifies the
affinoid subdomain CD%T of the source with an affinoid subdomain of the target. By [Ber3, Lemma
3.4], it gives rise to an isomorphism V<" = W<" where V=" and W<" are open neighborhoods of
’D;T in ’)53§; and of its image in ﬁ;f X Tnan”}SéT. We can shrink both open sets so that V<" is contained

~< ~
in the open set W given in the proposition. Furthermore, since the projection p; : ZD}T — II

<r
z
is proper, we may assume that JWS" is the preimage of an open neighborhood H;T CUST C ﬁ)%,r
in X,’;m X Tan 5§T Notice that A(U=") C V=". We set U<" = U=" N ﬁ;f and denote by V<" the
preimage of <" in D3 (with respect to the projection p1). Since the set ﬁ§7 is open in X/:n, it
follows that /<" is an open neighborhood of II5 in Xr’ian, and one has A(U<") C V<" C p; L U<T).
By the construction, the morphism (py, o, 3) gives rise to an isomorphism V<" = Z<" x D<"
where Z<" denotes the preimage of Y <" in U<" X G The set U = Up<c1U<" is an open
neighborhood of Iy in X;m, and the set V = U,1 V<" is an open neighborhood of ©y, in W.
Since A(U<T) C V<" C pyHUST) for all < 1, it follows that AU) C V C p;*(U). That

the morphism p; : V — U is discoid, if J = X,, and semi-annular, in general, follows from the

construction. -

An open neighborhood V of ®y» in X, is said to be p; -discoid or p;-semi-annular if it possesses

the properties of Proposition 3.5.1.
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§4. Properties of the sheaves Q3 /dOx.

In this section we study the quotient sheaf Qﬁ{’d /dOx, which measures non-exactness of the
de Rham complex of a smooth k-analytic space X (at Q). The study is based on the following
property of analytic spaces: any two points from the subset X of a connected closed analytic space
X can be connected by smooth analytic curves. This property allows one to reduce certain problems
to the one-dimensional case. It is used in the proof of the main result in §7 and of the following
facts here. Let O be the subsheaf of 0% consisting of the functions f with |f(x) — 1| < 1, and

< the bigger subsheaf consisting of the functions f for which the real valued function z — |f(z)]
is locally constant. We show that O% is generated by O% and c%. The latter implies that, for
any local section f of the sheaf O%, the one-form % is exact. If O% denotes the quotient sheaf

% /O%, we prove that the induced homomorphism dLog : O% ®z ¢cx — Q;Cl /dOx is injective.
We define a subscheaf ¥x C Qﬁéd/dox and show that its intersection with the image Y x of
the homomorphism dLog is zero and that, in the case when dim(X) = 1 and k is algebraic over
a finite field, Qﬁ(’d /dOx = YTx @ Vx. Finally, for every point x € X we define a subspace
Vxz C Q;C; /dOx ., which has a direct complement in Q;Ci /dOx , with a basis formed by the
classes of one-forms %, ceey %, where fi1,..., fi € O% , are such that [fi(2)l,...,|fi:(z)| is a basis
of the abelian group |H(x)*|/|k*|.

4.1. Analytic curve connectedness of closed analytic spaces. In this subsection k is

an arbitrary non-Archimedean field with a nontrivial valuation.

4.1.1. Theorem. Let X be a connected closed k-analytic space. Given two points x,y €
Xo, there exist morphisms ¢; : Y — X, 1 < i < n, such that x € ¢;(Y'), y € p,(Y"™) and
0i(Y§) Nip1 (YgH) # 0 for all 1 <4 < n—1, where each Y? is an elementary k;-analytic curve for

a finite separable extension k; of k.

4.1.2. Remark. Theorem 6.1.1 from J. de Jong’s paper [deJ2| states that, under the assump-
tion of discrete valuation on k, the same is true for an arbitrary connected strictly k-analytic space
X but with strictly k-affinoid curves Y;. Besides the assumption on the valuation, Theorem 4.1.1
is different because the curves Y; in it are required to be closed (in the sense of [Berl, p. 49] and
[Ber2, p. 34]) and, as a consequence, X is required to be closed (otherwise the statement is not

true already in dimension one).

Proof. Consider first the case when X is smooth. It suffices to show that for every point of

X there exists a flat quasi-finite morphism X’ — X whose image contains the point and in which
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X' possesses the required property. (Recall that, by [Ber2, 3.2.3], flat quasi-finite morphisms are
open maps.) By the local description of smooth analytic curves (see §2.3), the statement is true if
dim(X) = 1. Assume that dim(X) > 2 and that the statement is true in the dimension dim(X)—1.
Shrinking X, we may assume that there is a smooth k-analytic space Y of dimension dim(X) — 1
and a smooth morphism ¢ : X — Y of pure dimension one. By [Ber2, Theorem 3.7.2], there exists
an étale morphism f : Y’ — Y and an open subset X’ C X Xy Y such that x has a unique preimage
2’ in X’ and the induced morphism ¢’ : X’ — Y” is an elementary fibration of pure dimension one
at the point z’. The only properties of such an elementary fibration we need are the following: (1)

the geometric fibers of ¢’ are connected, and (2) there is a commutative diagram

Y’ x B 2, X’

where B is an open annulus with center at zero, j is an open immersion, and p; is the canonical
projection. Let k' be a finite separable extension of k with B(k’) # (). After tensoring X', Y’ and
B with k', we may assume that the projection p; : Y’ x B — Y’ has a section. By the induction
hypothesis, the required statement is true for Y. It follows that it is also true for X'.

Consider now the general case. It suffices to show that there is a finite surjective morphism
X’ — X such that all connected components of X’ possess the required property. We can therefore
assume that X is normal and, in particular, that its regularity locus is a dense Zariski open subset.
By [Ber4, §5], we can replace k by a finite extension so that we may assume that X is normal and
its smoothness locus is a dense Zariski open subset. Let X’ be the non-smoothness locus of X. By
a result of W. Liitkebohmert [Liit1, 1.6] (see also [Berl, 3.3.15]), the complement of any Zariski
closed proper subset of X is connected. Thus, by the previous case, it suffices to show that for
each point = € X{) there is an open neighborhood U in X and a connected closed analytic subset
Y C U of smaller dimension, which contains x but is not contained in X’. Let f be an element
of the maximal ideal of the local ring Ox , which is not contained in the ideal of definition of X',
and let U be a sufficiently small open neighborhood of x in X such that the closed analytic subset
Y={yel ‘ f(y) = 0} is connected. Then U and Y satisfy the necessary condition. "

4.1.3. Corollary. Let X be a reduced strictly k-analytic space and f € ‘JIK(X).
(i) If there exists a surjective flat quasi-finite morphism ¢ : Y — X from a reduced strictly

k-analytic space Y such that o*(f) € CE(Y), then f € C¥(X);
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(ii) If X is closed and, for every morphism ¢ : Y — X from an elementary k'-analytic curve
Y with a finite separable extension k' of k, one has o*(f) € CK'(Y), then ¢*(f) € C*(X), where
K' =K ®k'.

Proof. (i) The assumption implies that ¢*(f) € Ker(CK(Y) = CX(Z)), where Z is the
reduction of Y xx Y. The kernel coincides with C¥(X) C OX(X) since the correspondence
X'+ O(X') is a sheaf in the flat quasi-finite topology of X (see [Ber2, 4.1.2]).

(ii) By (i), we may replace k by a finite extension and assume that X is connected and contains
a k-rational point x. If f(x) = a € K, Theorem 4.1.1 and the assumption imply that f(y) = a for
all points y € Xj. .

4.1.4. Corollary. Assume that k is a closed subfield of ES that contains kg, where kg is a
fixed non-Archimedean field whose valuation is nontrivial and discrete. Then the conclusions of
Theorem 4.1.1 and Corollary 4.1.3(ii) are true with smooth basic curves instead of elementary ones.

Proof. The statement follows from Propositions 2.1.1 and 2.4.1. .

4.2. The sheaves 0%, O% and O%. In this subsection k is again an arbitrary non-
Archimedean field with a nontrivial valuation. For a k-analytic space X, let O(X)¢ denote the
subgroup of all f € O(X)* for which the restriction of the real valued function x — |f(x)| to every
connected component of X is constant. The correspondence U — O(U)° is a subsheaf of the étale
abelian sheaf O% denoted by O%. Furthermore, we set O(X)' = {f € O(X)*||f(z) — 1| < 1 for
all z € X}. The correspondence U — O(U)! is a subsheaf of the étale abelian sheaf O% denoted
by O%.

4.2.1. Theorem. Let X be a geometrically reduced closed k-analytic space. Then the étale
abelian sheaf O% is generated by the subsheaves O% and c.

Proof. The assumption implies that the set of points x € Xy such that X is smooth at z and
the field H(z) is separable over k is dense ([Ber9, Lemma 8.1.2]). Replacing k by a finite separable
extension, we may assume that X contains a k-rational point x, and we may assume that X is
connected. Let f € O(X)¢. Multiplying f by an element of £*, we may assume that | f(z) — 1| < 1.
To prove the statement, it suffices to show that |f(y) — 1| < 1 for all points y € Xy, and for this
we may assume that the field k is algebraically closed and, by Theorem 4.1.1, we may assume that
X is an elementary k-analytic curve. If X is an open disc with center at zero, every invertible
function on X is of the form ag with a € k* and g € O(X)! and, therefore, f € O(X)!. If X is
an open annulus with center at zero, then any invertible function on X is of the form agT™ with

a€k* g€ OX)! and n € Z, and this easily implies that our function f is contained in O(X)!.
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Finally, let X = X,?n\ [1;-, Ei, n > 1, where X is a smooth projective curve over k°, each E; is an
open subset isomorphic to an open disc with center at zero and all of them are in pairwise different
residue classes of X". We can always approximate f by a rational function on X, and so we may
assume that f itself is a rational function on X. By the previous two cases, f € O(Y)!, where Y’
is the residue class that contains the point z. It follows that |f(c) — 1| < 1, where o is the generic
point of X; in A" and, in particular, the reduction of f on X is well defined. By the previous
two cases again, the restriction of f to each of the residue classes Z is of the form ag with a € k*
and g € O(Z)!. Tt follows that the reduction of f on X, is a regular function and, therefore, it is

constant. Since it is equal to one at the point that corresponds to Y, the required fact follows. =

Let O% denote the quotient sheaf O% /O%. It is an étale sheaf of torsion free abelian groups,
and its restriction to the usual topology of X is a subsheaf of the quotient of the sheaf of positive real
valued continuous functions on X by the subsheaf of constant functions. If the characteristic of k is

zero, Theorem 4.2.1 implies that, for any f € O(X)¢, the one-form % is a section of the sheaf dOx

and, therefore, the correspondence f — d—f gives rise to a homomorphism dLog : O% — Qﬁéd /dOx.

In §84.3 and 4.4 we’ll prove that the induced homomorphism dLog : O% ®z ¢x — Q;Cl/d(’)x is

injective if X is of dimension one and of an arbitrary dimension, respectively.

4.2.2. Corollary. Let X be a geometrically reduced closed k-analytic space X, T : pyz) — X
a geometric point over a point x € X, and Hz the algebraic separable closure of H(x) in H(ZT).

Then there is an exact sequence of Gz ,,-modules

0 — Hi/txz — Okz — VIH@)|/VIF]—0.

Notice that ¢y z coincides with the algebraic separable closure of k in H(Z) and that |H%| =

[H(2)*| and | z| = /[k*| (see [Ber9, Corollary 8.1.3(ii)]).
Proof. By Theorem 4.2.1, there is an exact sequence
0— C?EO}(,E — O%z — VI —0.

Setting Sz = {f € O§(§H f(z)| = 1}, the canonical homomorphism from the above to the exact

sequence
0 — Sz — Ok z — VIH@) — 0
gives rise to an exact sequence
0 — S5/(Xz0xz) — Okz — VIH(@)*|/VIk*| —0.
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Finally, an isomorphism of the first term with ﬁ%/cv}f is obtained from the exact sequence

O—>O§(7§_>Sf—>ﬁ%—70. .

4.3. Structure of the sheaves Q) /dOx for smooth analytic curves. Let k be a non-
Archimedean field of characteristic zero with a nontrivial valuation. For a smooth k-analytic space
X, we denote by T x the image of the homomorphism dLog : O% ®zc¢x — Qﬁ( /dOx . Furthermore,
for a smooth k-analytic curve X, we denote by ‘I/(X ) the subspace of all one-forms w € Q(X) with
the property that every point € X has an open neighborhood U such that w’u\{m} € dOU\{x}).
It is easy to see that the correspondence U +— W(U) is a sheaf in the étale topology of X. We
denote it by 7 x, and denote by ¥x the quotient sheaf U x/dOx.

4.3.1. Theorem. Let X be a smooth k-analytic curve. Then

(i) the homomorphism dLog : O% ®z cx — Q% /dOx is injective, i.e., O% ®z cx — Yx;

(ii)) Yx NUx = 0;

(iii) the support of every element of W(X) is contained in the set of points of type (2) and
positive genus;

(iv) the stalk Ux , of ¥ x at a point x € X of type (2) and genus g is a vector space over Cx ,
of dimension 2g;

(v) if the residue field k is algebraic over a finite field, then QL /dOx =Y x & Uy.

Recall that the first de Rham cohomology group HJg (X) of a geometrically connected smooth
projective curve of genus g over an abstract field k& of characteristic zero is canonically isomorphic
to the quotient of the space of differentials of second kind by the subspace of exact differentials.
(A differential of second kind on X is a rational one-form with the property that its residues at all
points of Xy are zero.) One also has HI;(X) = k and H3z(X) = k. The latter isomorphism is
constructed as follows.

First of all, the spectral sequence EV'? = H(X, Q%) = HE1?(X) gives rise to an isomorphism
H3p(X) = H'Y(Xx,Q4) (and an exact sequence 0 — HO(X, Q%) — Hiz(X) — H'(X,0x) — 0).
Consider the exact sequence 0 — Q% — Q,lc(X) — Q,lg(X)/Qﬁc — 0. Since the first cohomology
group of the middle term is zero, H'(X,QY) is canonically isomorphic to the cokernel of the
homomorphism from the space of global sections of the middle term to that of global sections
of the third term. An element of the latter can be represented as a family {wy}zex, With w, €

Q}ﬂ( x) /Q% ., taken over the set of closed points Xy such that w, = 0 for all but finitely many z.
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The correspondence {wy }rex, = D pex, Trk(z)/k(Resz(ws)) gives rise to an isomorphism between
the above cokernel and k.

Furthermore, let X’ be the complement of a subset ¥ = {z1,...,2,} C Xy, n > 1. The curve
X’ is affine and, therefore, the de Rham cohomology groups HJy (X’) coincide with the cohomology
groups H?(Q'(X’)) of the complex Q(X’) : 0 — O(X') — QYX’) — 0, ie, HR(X') = k,
H2:(X') = 0 and Hlg(X') = QY(X')/d(O(X’)). The latter is calculated as follows. Consider k
as a non-Archimedean field with respect to the trivial valuation, and let X*" be the corresponding
analytification of X', and H gR,Z(X an) the high direct images of the functor of global sections with
support in ¥ evaluated at the de Rham complex of X*". By GAGA [Berl, §3.5], there are canonical
isomorphisms Hip (X) = Hip (X™) and Hiz (X') = HIz (X'™"). If z is a closed point of X, an
open neighborhood of x in A'*" is isomorphic to an open neighborhood of zero in the k(z)-analytic
projective line P,lc(x). It follows that HéR’{x} (X2") =0 and Hng{w}(Xan) = k(x) and, therefore,

there is an exact sequence
0 — Hig(X) — Hgr(X') — Hig »(X) = @?legR,{wi}(X) — Hig(X) — 0.

For every 1 < i < n, the composition of the canonical isomorphism HgR’ {ri}(X ) = k(z;) with the
homomorphism H}g (X') — ngh {xi}(X ) takes a regular one-form on X’ to its residue at the point
x;, and with the homomorphism H§R7{wi}(?c') — H3p (X) corresponds to the trace map Try(y,)/k :
k(x;) — k. In particular, the dimension of HJg (X’) over k is equal to 29 — 1+ >0 [k(z;) : k.

Assume now that k is a non-Archimedean field of characteristic zero (whose valuation is not
assumed to be nontrivial). By GAGA (see [Berl, §§3.4-3.5]), there are canonical isomorphisms
HI.(X) = Hiz(X*™). Assume we are given pairwise disjoint open neighborhoods Dy, ..., D,, of
the points z1,...,x, in X", respectively, such that each D, is isomorphic to the open unit disc
over H(z;) with center at zero that corresponds to the point z;. We fix such isomorphisms and,
given 0 < ry,...,7r, < 1, denote by D(x;;7;) and E(xz;;r;) the preimages of the open and closed
discs of radius r; with center at zero. (Notice that D(z;;r;) and E(x;;7;) do not depend on the
choice of the isomorphisms.) Let X be the open set X**\ [[!"; E(z;;7;). Since X is a Stein space,
the de Rham cohomology groups HJg (X) coincide with the cohomology groups of the complex
2(X):0—- 0O(X) <, Q'(X) — 0 and, in particular, Hig (X) = QY(X)/dO(X).

4.3.2. Lemma. There are canonical isomorphisms

Hig(X') = HgR(X/an) = Hi (X), ¢>0.
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Proof. We already mentioned the validity of the first isomorphism in the case when the

valuation on k is trivial. In the general case, consider the morphism of long exact sequences

0 — HgR,E(X) —  Hig(X) —  Hgp@') -— HéR,E(X) -

0 — HgR,z(Xan) - HgR(Xan) - HSR(X/an) - Hle,z(Xan) -
It follows that the validity of the first isomorphism is equivalent to that of the isomorphism
Hi: «(X) 5 Hi; «(X™). (In particular, the latter isomorphisms hold over fields with trivial
valuation.) One has H{p (X*") = @?Zlﬂng{zi}(D(xi, ri)). Let x be one of the points z1, ..., z,.
Each of the groups in the direct sum is isomorphic to H gR7 OO(P%{( x)) Applying the second long
exact sequence for the projective and affine lines and the facts that H, gR(P%{(zi)) = H(x;) for
q=0,2, HjR(P%{(m)) =0, HgR(A%{(zi)) = H(z;), and HgR(A%{(m)) =0 for ¢ = 1,2, we get the
required isomorphisms.

The second isomorphisms are verified in the similar way. Namely, consider the long exact

sequence

0— HgR,s(Xlan) - HgR(X,an) - HgR<X) - H&R,S(X/an) R

where S = [[i_; (E(xs,7:)\{z:}). Tt suffices to show that Hip ¢(X"™") = 0 for all ¢ > 0. For this
it suffices to verify that Hip 4(A') = 0 for all ¢ > 0 with S = A"\D(0;r). But this follows from

the long exact sequence
0— HgR,s(Al) - HgR(Al) - HgR(D(ON’)) - HéR,S(Al) BERE

and the facts that HJz (A') = H{z(D(0;7)) = k and Hiz (A') = Hiz(D(0;7)) =0forg>1. =

4.3.3. Corollary. For any non-Archimedean field k' over k, there are canonical isomorphisms

~

Hip(X) @ k' = H{z(X'), ¢ > 0, where X' = X®k'. .

Lemma 4.3.2 implies that there is an exact sequence
0 — Hip(X) — Hap(X) — &L H(zi) — k — 0,

where the first homomorphism is the canonical one, the second homomorphism takes a one-form
w € QY(X) to the element o € H(w;) for which the restriction of w to the open annulus B; =
D\E(zs;7;) is a%t up to an exact one-form (where 7 is a coordinate function on D; with zero
at x;), and the third homomorphism is induced by the trace maps from H(x;) to k. It follows
that the first homomorphism identifies Hjp (X)) with the subspace of the classes of those one-forms

w € Q1(X) whose restriction to every annulus B; is an exact one-form.
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4.3.4. Lemma. In the above situation, assume that the valuation on k is nontrivial, X = Y,
where Y is a smooth projective curve over k°, and the open discs D1, ..., D,, are the residue classes
of closed points of J;. Then

(i) dO(X) = (dOx)(X) and QY(X)/dO(X) = HY(X, Q% /dOx);

(ii) the image of Hix(X) in Hlz(X) = Q' (X)/dO(X) coincides with ¥(X);

(iii) the homomorphism O(X)*/O(X)¢ ®z k — QY(X)/dO(X) : f — % is injective;

(iv) the intersection of the image of the homomorphism (iii) with V(X)) is zero.

Proof. Since HY(X,cx) = 0 for ¢ > 1, one has H(X,dO0Ox) = HY(X,0x) = 0, and (i)
follows. The remark before the formulation now immediately implies (ii).

To prove (iii) and (iv), we may increase the field k& and assume that all of the points x4, ..., z,
are k-rational. Notice that the restriction of a function f € O(X)* to each annulus B; is of
the form agT%, where a € k*, g € O(B;)! and I; € Z. If 3 is the open affine subscheme of
Y with 3, = Y,\{x1,...,%,}, where x; = m(z;), then the restriction of the real valued function

x — | f(x)| to 3, is constant. It follows that f € O(X)¢ if and only if the integral vector (I, ...,l,)

is zero. Let now fi,..., f,, be invertible analytic functions that generate a free abelian subgroup
of O(X)*/O(X)¢ of rank m, and let w = >/, )\i%, Ai € k, be such that the restriction of w to

each open annulus Bj, 1 < j <n, is an exact one-form. To prove (iii) and (iv), it suffices to show
that w is an exact one-form. The restriction of f; to B; is of the form agT"i as above. The above
remark implies that the integral vectors (l;1,...,0in), 1 < i < m, are linearly independent over Z.
It follows that they are linearly independent over Q and, therefore, over k. It remains to notice

that the restriction of w to B; is (37~ Ailij) %L up to an exact one-form. .

Proof of Theorem 4.3.1. The local description of smooth k-analytic curves (see §2.2)
and Lemma 4.3.4 straightforwardly imply the statements (i)-(iii). Lemma 4.3.4 implies also the
statement (iv) in the case when X is elementary. The general case of (iv) follows from the latter
and the simple fact that, given a finite Galois extension k' over k with the Galois group G and a
vector space V' of dimension n over k&’ provided with a k-linear action of G such that 7 (av) = 7a%v
for all 0 € G, a € k' and v € V, one has dimy (V%) = n.

To prove (v), it suffices to show that, in the situation of Lemma 4.3.4, if the points z1, ..., x,, are
k-rational and the numbers r1, ..., 7, are sufficiently close to one, then H}g (X) = Hig (X)®Y(X).
Notice that in this case the space HJg (X) is of dimension 2g+mn —1 over k. Let 3 = Spf(A) be the
open affine subscheme of the formal completion Y with 3 s = Ys\{x1,...,xn}, where x; = 7(z;).

The assumption on the field k£ implies that the class of each of the divisors (x1) — (x;), 2 < j <n,
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is of finite order. This means that there exist elements fi,..., f,_1 € A* such that the divisor of
the rational function on &, whose restriction to 3, is the image of f; in A= A/k°° A is a nonzero
multiple of (x1) — (x;). Since the image of O(X) in A®yo k is dense, we may assume that fi,..., f,

come from analytic functions on X. If now 7;’s are sufficiently close to one, those functions are

% df’n—l
fl [ f’ﬂfl

dimension n — 1, and the required fact follows. .

is of

invertible on X. Thus, the subspace of Hlg(X), generated by the classes of

4.3.5. Corollary. Let X = X?", where X is a geometrically connected smooth projective
curve over k of genus g, and let z1,...,x, be the points of X of type (2) and positive genuses
Gi,--.,Gn, and b the Betti number of X = X@;ﬁa Then

(i) dimy (H°(X, QY /dOx)) = 29 — b;

(if) dimy (W(X)) =237, 9i = 2(9 — b);

(iii) if k is algebraic over a finite field, then dimy (T (X)) = b.

Proof. The spectral sequence E59 = HP(X, Q% /dQ% ") = HE9(X) gives rise to an exact
sequence

0— H'(X, cx) — Hip(X) — (24 /dOx)(X) = 0 .

The dimension of the middle term is 2g. Since H'(X,cx) = H'(X, E})G, it follows that the
dimension of the first term is b and, therefore, (i) is true. Furthermore, Theorem 4.3.1 implies
the first equality in (ii) and the fact that (iii) follows from the second equality in (ii). To prove
the latter, we may replace k by a finite extension and assume that X = ),, where ) is a strictly
semi-stable projective curve over k° such that all of the double points of ) are k-rational and
split. (The latter is equivalent to the fact that, for such a point y € Y, the preimage 7~ !(y) in
V" = X is isomorphic to an open annulus with center at zero.) The skeleton S of the formal
completion Yofy along ) is a finite graph embedded into X whose vertices are the preimages
of the generic points of the irreducible components of ); and the edges are the skeletons of the
open annuli 77 !(y) for the double points y € V. Let 7 be the canonical retraction map X — S
and, for a vertex x of S, let S, denote the open subset of S which is a union of z and the open
edges emanating from z. Then 771(S,) is an elementary curve, and all of the sets 7-1(S,) form
an open covering of X. The description of the first de Rham cohomology group of an elementary

curve implies that there is an exact sequence
0— ¥(X)— HX,Q%/dOx) — Harm(S, k) — 0,

where Harm(S, k) is the space of harmonic cochains on S with values in k (i.e., maps from the set
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of oriented edges of S to k that satisfy the harmonicity condition at every vertex of S). The second

equality in (ii) follows. .

4.4. Injectivity of the homomorphism dLog: O% ®z cx — Qﬁéd/dOX.

4.4.1. Theorem. Let k be a non-Archimedean field of characteristic zero with a nontrivial
valuation. Then for any smooth k-analytic space X the homomorphism O% ®z cx — Q;Cl /dOx :

f— % is injective and, therefore, O% ®z c¢x — Yx.

Let X be an irreducible reduced scheme of finite type over an abstract field k (of arbitrary
characteristic). We say that rational functions fi,..., f, € k(X)* are multiplicatively independent
(modulo constants) at a point x € X if they are defined and not equal to zero at x and their images
in the quotient group k(x)*/L% are linearly independent over Z, where Ly is the algebraic closure

of k in k(x).

4.4.2. Lemma. Assume that dim(X) > 1. If rational functions fi,...,f, € k(X)* are
multiplicatively independent at the generic point of X, then they are multiplicatively independent
at the generic point of an irreducible algebraic curve in X .

Proof. To prove the statement, we may assume that k is algebraically closed, X is smooth
affine, f1,..., fn € O(X)*, and it suffices to show that the functions fi,..., f,, are independent
at the generic point of an irreducible closed subscheme of smaller dimension. Furthermore, we
can find an open immersion of X into a connected projective normal scheme X. Let Z = X\X.
By J. de Jong’s Theorem 4.1 from [deJ3], there exists a proper, dominant and generically finite
morphism ¢ : X’ — X such that X’ is an irreducible smooth projective scheme and ¢~!(Z) is
a strict normal crossings divisor. Let D.,...,D,, be the irreducible components of the latter.
The functions f1,..., f, are evidently independent at the generic point of X’ and, therefore, their
divisors (f1),...,(fn) in X’, supported in Dy, ..., D,,, are linearly independent over Z. Let X’ be
a closed subscheme of a projective space P, and let {x1,...,z;} be k-rational points of X’ such that
all irreducible components of the intersections D; N D; with ¢ # j contain at least one of them. By
Bertini Theorem (see Theorem 8.18 of Ch. II and Remark 7.9.1 of Ch. III in [Har]), there exists
a hyperplane H C P such that the intersection ) = H N X’ is an irreducible smooth suscheme of
dimension dim(X) — 1, each intersection H N D; is a smooth subscheme of dimension dim(X) — 2,
and H does not contain any of the points z;. It follows that the functions fi,..., f, are defined
and not equal to zero at the generic point y of ), and the image x of y in X lies in X. By the

construction, the canonical map from the divisor subgroup of X”, supported in D1, ..., D,, to the
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divisor group of ) is injective and, therefore, the images of the functions fi,..., f, in k(y)*/k* are

linearly independent over Z. It follows that fi,..., f, are independent at the point x. .

Let now X be a smooth k-analytic space, where k is a non-Archimedean field with a nontrivial
valuation. We say that analytic functions fi,..., f, € O(X) are multiplicatively independent at
a point v € X if |fi(x)| = ... = |fu(x)] = 1 and the images of fi(z),..., fo(z) in %)*/L; are

linearly independent over Z, where L, is the algebraic closure of k in H(x).

4.4.3. Lemma. If functions f1,...,f, € O(X) are multiplicatively independent at a point
x € X with s(x) = dim(X) > 1, then there is a smooth k'-analytic curve Y for a finite extension
k" of k and a morphism ¢ : Y — X such that the functions ©*(f1),...,¢*(fn) are multiplicatively
independent at a point y € Y.

Proof. Step 1. One may assume that /'?77 C X C Xp", where X is a connected affine smooth
scheme over k°, x € fn and 7(x) is the generic point of Xs. (Notice that, by [Ber7, 1.7], for such
a point x one has %(W(x)) = %)) To show this we use the reasoning from the proof of Lemma
2.1.2. Namely, as in Step 1 of that proof, we may assume that X is an open subset in }*", where )
is a smooth irreducible affine scheme over k, and that the point x is contained in a strictly affinoid
subdomain W of X such that the image of x under the reduction map W — W is the generic point
of an irreducible component of w. Furthermore, by [Ber7, Lemma 9.4], there is an open embedding
of YV in Z,, where Z is an integral scheme proper and flat over k°, and an open subscheme W C Z;
such that W = 7=1(W). Finally, by de Jong’s result (in the form of [Ber7, Lemma 9.2]), there
exists a finite extension k' of k, a poly-stable fibration Z' = (2] — ... — Z| — Z{ = Spec(k’°)),
where all morphisms f; are projective of dimension one, and a dominant morphism ¢ : Z] — Z
that induces a proper generically étale morphism Zl”77 — Z,. The latter morphism is evidently
étale at every point z’ from the preimage of x in Zl’m. By the argument from Step 4 of the proof of
Lemma 2.1.2, 7(z’) is the generic point of an irreducible component of Zj .. Let now X" be an open
connected smooth affine subscheme of Z] with 7(z') € Xs C ¢~ 1(W). Then )?n Co '(X)cam

and 7(x') is the generic point of Xj.

Step 2. By Lemma 4.4.2; applied to the irreducible smooth scheme X5 over k and the images
of fi(x),..., fn(x) in k(X,) = 7-?(;), the latter are multiplicatively independent at the generic
point y of a closed subscheme ) C X of dimension m — 1. Replacing k by a finite extension and
X = Spec(A) by an open affine neighborhood of y, we may assume that ) is smooth over k and
even defined by one equation g = 0 for some g € A= A/E°°A. Let g be an element of A whose
image in A is g, and let Z be the closed subscheme Spec(B) with B = A/(g). Then the formal
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completion Zof 2 along its closed fiber is a smooth formal scheme over k° and Z, = ZAS Sy
It follows that there exists a unique point z € 2,] with 7(z) = y, and one has k(y) = ﬁ@)
In particular, s(z) = dim(Z;") = m — 1 and the images of fi(2),..., fu(2) in O% , are linearly
independent over Z. Since the k-analytic space Z7" is smooth at the point z (and in fact at all

points from 277)» the lemma is reduced to the case of smaller dimension. n

Proof of Theorem 4.4.1. We have to show that if fq,..., f, are invertible analytic functions

on X whose images in the multiplicative group (’)}’(,m of a point x € X are linearly independent over

A df
RO

2.3.1, 1.3.2 and 1.5.1 easily reduce the situation to the case s(z) = dim(X). We may then assume

cl

. 1,
in QXJ

Z, then the images of /dOx , are linearly independent over cx ,. Propositions
that |f;(z)| =1 for all 1 <i < n and, by Corollary 4.2.2, the assumption means that fi,..., f, are

multiplicatively independent at x. Lemma 4.4.3 now reduces the situation to Theorem 4.3.1. "

4.5. A subsheaf Uy C Qﬁ(’d/d(’)x and a subspace Vx, C Q;fi/d@x,x. Let k be a
non-Archimedean field of characteristic zero with a non-trivial valuation. For a smooth k-analytic
space X, let \TI(X ) denote the space of all closed one-forms w whose pullback under any morphism
¢ : Y — X from an elementary k’-analytic curve over a finite extension k' of k is contained in
\II(Y) The correspondence U — \T!(U) is a sheaf Uy in the étale topology of X, and let ¥ x denote
the quotient sheaf U x/dOx. (Of course, both coincide with the corresponding sheaves defined in

the one-dimensional case.)

4.5.1. Theorem. (i) Tx N¥x =0;

(ii) the stalk W x 7 at a geometric point over a point x € X with s(x) > 0 is of infinite dimension
over ¢x z;

(iii) if ko C k C 758, where kg is a subfield whose valuation is discrete, then the stalk ¥x , at a
point x € X with s(x) = dim(X) is the space of the classes of closed one-forms w € QY , for which
there exists a marked neighborhood ¢ : X, — X of x such that w is defined over the image of ¢

and ¢*(w)x € dO(r~1(x)) for all closed points x € X.
Notice that the stalks Ux , at points z € X with s(z) = 0 are always zero.

4.5.2. Lemma. Let ¢ : Y — X be a smooth morphism, y a geometric point of Y over a
geometric point T of X, and y and x their images in Y and X, respectively. Then

(1) the canonical homomorphism Q;Ci /dOx » — Q;‘; /dOy,, is injective;

(ii) the preimages of Yy, and ¥y, in Q;’C;/dOX,I are Tx , and Vx ,, respectively;

(iii) if s(y) = s(x), then Ux 7 = Uy .
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Proof. The statements (i) and (ii) easily follow from the fact that locally in the étale topology

any smooth morphism has a section. (This fact is a consequence of [Ber2, Theorem 3.7.2].) To

prove (iii), we notice that Q;ﬁl /dOy 5 is a direct sum of Q}XC% /dOx z and the vector subspace over

87
¢y, whose basis is formed by the classes of one-forms %, ey %, where f1,..., f; are elements
of Oy, such that |f1(y)],...,|f:(y)| form a basis of \/|H(y)*|/\/|H(x)*|. The intersection of this
vector subspace with Wy 3 is evidently zero, and so (iii) follows from (ii). .

Proof of Theorem 4.5.1. (i) It suffices to verify that Txz N ¥x z = 0 for any geometric
point T over a point z € X. Lemma 4.5.2 reduces the situation to the case s(z) = dim(X), and

Lemma 4.4.3 then reduces the situation to the case dim(X) = 1, i.e., to Theorem 4.3.1(ii).

(ii) Assume that s(z) > 0 and Wy 7 is of finite dimension over c¢x z. Shrinking X in the étale
topology, we may assume that Wy z is generated by the classes of wy,...,w, € QM (X)/dO(X)
and that there is a function f € O(X) with |f(x)| = 1 for which the image of f(z) in HA(;) is
transcendent over k. The latter implies that the corresponding morphism f : X — Y = Al takes x
to the maximal point y of the closed unit disc, which is a point of type (2). It follows from Theorem
4.3.1(iii) that we can replace Y by an étale neighborhood of the point y so that there exist elements
M-y M1 € QYY) /dO(Y) whose images in Wy, are linearly independent over cy,,. Shrinking
X, we may assume that, for every 1 <i <n-+1, one has f*(n;) = 2?21 ajjwj + v with a5 € ¢(X)
and 7; € T(X). We now use the fact that locally in the étale topology the morphism f has a section
Y :Y — X. We get equalities 7; = Z?Zl a;j¥*(wj) + ¥*(7;) which contradict the assumption on
linear independence of the classes of n,...,7p4+1 in Uy,.

(iii) Assume first that the class of a closed one form w lies in ¥(X), and let ¢ : X,, — X be
a marked neighborhood of x. Then the restriction of ¢*(w) to the residue class 7~ !(x) of every
closed point x € X, is in (7 1(x)). Since 7~ 1(x) is a semi-annular space, it follows that ¢*(w)x
is an exact one-form. Conversely, assume that w is a closed one-form on the generic fiber X, of
a proper marked formal scheme X over k° such that ¢*(w)x € dO(r~1(x)) for all closed points
x € X;. We have to show that, for any morphism ¢ : ¥ — X, from an elementary k-analytic
curve Y, one has ¢*(w) € ¥(Y). Since the complement of the generic point (of the comprehensive
smooth projective curve with good reduction) in Y is a disjoint union of open discs and annuli
(defined over a finite extension of k), it suffices to verify the required fact in the case when Y an
open disc D(0;7) or annulus B(0; 7, R). In that case, U(Y) = Q(Y) and, therefore, we may assume
that k is algebraically closed. Furthermore, it suffices to verify the required fact for every smaller

open disc D(0;7’) with " < r or annulus B(0;r', R") with » < ' < R’ < R. We may therefore
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assume that Y is D(0;r) or B(0;7, R) as above, but r, R € |k*| and the morphism ¢ is induced
by a morphism ¢ : Z — X,,, where Z is the closed disc E(0;r) or annulus A(0;r, R). It suffices
to verify the following claim: S = {z € Z|p(2) & 7 1(x) for all closed point x € X} is a finite
set of points of type (2). Indeed, assume X is the formal completion of a nondegenerate strictly
poly-stable formal scheme 9), and let 9',...,2" be open affine subscheme of ) with X, C U?:lﬂji.
The each Z; = @‘1(@;) is a strictly affinoid subdomain of Z, and the set S is contained in the

union of the boundary points of all Z;’s. The latter union is finite and consists of points of type

(2). The claim follows. ]

For a point x of a smooth k-analytic space X, let Vx , denote the subspace of Q;C; /dOx
consisting of the classes of closed one-forms w € ka with the following property: there exists
a quasi-étale morphism ¢ : V' — X from a strictly k-affinoid space V such that x € ¢(V) and
©*(w)x € dO(7~1(x)) for all closed points x € V. (For the notion of a quasi-étale morphism see
[Ber3, §3] and, if V = M(A), then V = Spec(A) and 7 is the reduction map V — V.) It is clear
that Vx , is functorial with respect to (X, z). Given a geometric point T over z, let Vx z denote the
inductive limit of all Vy,, taken over the pairs (¢, o) consisting of an étale morphism ¢ : ¥ — X
and a morphism « : pyz) — Y over T whose image is a point y € Y over x. One evidently has

G=
Vxw = Vel

4.5.3. Theorem. (i) The subspace Vx , has a direct complement in Qﬁ;‘i/d@xw, which

d d
%,...,%, where

fi,oo fe € O%, are such that {|fi(z)],...,|fi(x)|} is a basis of VIH(z)*|/\/k*] over Q; in
particular, if t(x) = 0, then Vx , = Q;’fi/d(’)x,m;

is a vector space over ¢x , with a basis formed by the classes of one-forms

(ii) in the situation of Lemma 4.5.2, the preimage of Vy,, in Q;?;/dOX@ is Vx o and, if in
addition s(y) = s(z), then Vxz = Vyg;

(iii) Vx z N T x 5 is a vector space over ¢x z with the basis {%}iel’ where {f;}icr € Ox 7 are
such that their images in O%  form a basis of the abelian group ﬁ;/? x,z (from Corollary 4.2.2);

(iv) ¥x » C Vx o

Proof. Step 1. (i) is true if t(x) = 0. Indeed, if in the situation of Lemma 4.5.2 s(y) = s(x),
then Q;C; /dOx z = Q;%l /dOy 3. Therefore it suffices to consider the case s(z) = dim(X). Let w
be a closed one-form on X. By Step 1 from the proof of Lemma 4.4.3, we may replace X by an
étale neighborhood of the point x and assume that 3 = 2?,7 C X C X" with X a connected affine

smooth scheme over k°, x € 2?,7 and 7(z) the generic point of Xs. By [Ber7, Proposition 1.4], one

has 377 5 35, We claim that wy € dO(7~1(x)) for all closed points x € 3,. Indeed, let k" be a finite
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extension of k such that 3 with 3’ = 3®p0k’® contains a k'-rational point x” over x. Then 7~ !(x’)
is isomorphic to an open unit polydisc over k' with center at zero and, therefore, the pullback of
w to it is an exact one-form. Since the morphism 7~ !(x’) — 7~1(x) is a finite étale covering, the

claim follows.

Step 2. (ii) is true when, in the situation of Lemma 4.5.2, the morphism ¢ is of dimension one,
s(y) = s(x) and t(y) > t(z). Indeed, let w be a closed one-form on Y whose class in Q;’f;/d(’)y,y is
in Vy,, and let ¢ : V. — Y be the corresponding quasi-étale morphism with y € ¢(V). Replacing
V by a strictly affinoid subdomain whose image also contains the point y, we may assume that V' is
a strictly affinoid domain in a smooth k-analytic space étale over Y. Replacing Y by the latter, we
may assume that V is in fact a strictly affinoid subdomain of Y. Finally, we may replace Y by an
étale neighborhood of y and assume that Y = X x B, where B = B(0; R', R”) is an open annulus)
with center at zero, and y is a point in the fiber p=!(z) of type (3), i.e., the maximal point of the
closed disc radius R’ < r < R" with r ¢ \/|H(z)*|. (Notice that the fiber is the similar annulus
Byy(z) = BRH(z) over H(z).)

4.5.4. Lemma. In the above situation, V contains U x A, where U is a strictly affinoid
domain in X with x € U and A = A(0;7',7") is a closed annulus in B of radii r',r" € \/|k*| with
r<r<r’).

Proof. First of all, we may assume that X = M(A) and Y = M(B) are strictly k-affinoid
with Y = X x A(0; R, R") with R/,R”\/W and R’ < r < R”, and that V is a strictly affinoid
rational domain in Y. The latter means that there are (nonzero) elements g, g1, - . . , g € B without
common zeros in Y such that V = {y’ € Y‘ lg:(¥)| < |go(¥/)| for all 1 < i < n}. Each element g; € B
has the form Zj_ioo fi;T7 with f;; € A such that, for every point 2’ € X and every R < a < R”,
|fij(z)]a? — 0 as j — +oo. One has |g;(y)| = max{|f”( )|r7}. Since r ¢ \/|H(x)*], then for
every 0 < ¢ < n with g;(y) # 0 the maximum is achleved at only one value j; of j. The inclusion
y € V implies that go(y) # 0. Dividing all g;’s by T7°, we may assume that jo = 0. If g;(y) = 0 for
some 1 < i < n, we can shrink X and Y so that the inequality |g;(y’)| < |g0(v')| is satisfied for all
points ¢y’ € Y. Hence, we may assume that g;(y) # 0 for all 1 <+ < n. Furthermore, if j; # 0 for
some 1 <7 < n, then |g;(y)| is strictly less than |go(y)|. We can therefore shrink X and Y so that
lg:(¥)| < |go(y')| for all ' € Y, and so we may assume that j; = 0 for all 1 < i < n. Notice that
the functions foo, f10,- - -, frno have no common zeros in X. Thus, we get V = {y/ € Y‘(p ) e U},
where U is the strictly affinoid rational domain in X defined by the inequalities | fio(2')| < | foo(2')]

forall 1 <i<n. n
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We may assume that w = ¢*(n) +a%- with n € Q1/(X) and a € k and that V =U x 4 as in
Lemma 4.5.4, and our purpose is to show that a = 0 and the class of 7 in Q;i/d@xﬂg lies in Vx ;.
Replacing k by a finite extension, we may assume that /', r” € |k*|. The reduction A is a union of
two affine lines over k intersecting in the zero point 0 and 7~1(0) = B(0;+/,7"). Let y be a closed
point of V whose image in A is 0. If x is the image of y in U, then 7 1(y) = 7~1(x) x B(0; 7/, 7").
By the assumption, wy € dO(77!(y)), it follows that a = 0 and nx € dO(7~*(x)). Since such a

point y exists for every closed point x € U , the required fact follows.

Step 3. (i) is true. Indeed, this follows from the Steps 1 and 2 and the fact that, in the situation
of Step 2, Q;,%l /dOy 5 is a direct sum of Q;%/ dOx z and a one-dimension vector subspace over
¢y,y generated by the class of % for an element f € Oy, with [f(y)| & /|H(z)*].

Step 4. (ii), (iit) and (iv) are true. For (ii) it suffices to consider the case when ¢ is of
dimension one. In this case the claim follows from (i) and the fact mentioned in the previous Step

3. The statement (iii) follows from Step 1, Corollary 4.2.2 and Theorem 4.4.1, and (iv) is already

evident. »

4.5.5. Remark. By Theorem 4.3.1(v), if kis algebraic over a finite field, then for any smooth
k-analytic curve X one has Q;Cl /dOx = Tx @ Ux. It would be interesting to know if the same

equality holds in all dimensions.
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§5. Isocrystals

In this section we study various objects related to a wide germ of a strictly k-affinoid space,
i.e., a germ of an analytic space (X,Y) in which Y is a strictly affinoid domain in the interior of a
separated analytic space X, and consider a related notion of a wide germ of a formal scheme (X, %))
(which gives rise to a wide germ of a strictly k-affinoid germ (X,%),)). First of all, we show that
the correspondence (X,Y) — B = O(X,Y) gives rise to an anti-equivalence between the category
of such germs and that of dagger algebras. We define categories of sheaves on a germ and, if X is
smooth, relate D x y)-modules to isocrystals over B. In particular, we show that the correspondence
F — F(X,Y) gives rise to an equivalence between the category of O(x,y)-coherent D x y)-modules
and that of isocrystals finitely generated over B, which preserves de Rham cohomology groups. We
then construct an increasing sequence of isocrystals E% = B C EL C ... with the property that
the canonical homomorphisms Hls (E%) — Hg (ES) are zero. The construction in fact depends
on certain choices, but the object constructed is unique up to a non-canonical isomorphism. Under
the assumption that the isocrystal Ep = U, E% can be provided with the structure of a filtered
B-algebra that satisfies the Leibniz rule, we relate it to a classical object, the shuffle algebra, which
appeared in the work of K.-T. Chen on iterated integrals (see [Chen]). Finally, if the germ (X,Y)
is a lifting of a similar germ (X', Y”) defined over a closed subfield k' C k such that the valuation
on k' is discrete and k is isomorphic to a closed subfield % , we show that all of the isocrystals E%
are unipotent and EY, ®p B = E%, where B’ = O(X’,Y’). This is deduced from a result of O.
Gabber (Lemma 5.5.1) and a finiteness result of E. Grosse-Klénne [GK2]. (In its turn, the latter
is an extension of a result of P. Berthelot and Z. Mebkhout.)

5.1. Wide germs of analytic spaces and of formal schemes. Let k£ be an arbitrary
non-Archimedean field with a nontrivial valuation. Recall ([Ber2, §3.4]) that the category of germs
of a k-analytic space is the localization of the category of pairs (X, S) (consisting of a k-analytic
space X and a subset S C X) with respect to the system of morphisms ¢ : (Y,T) — (X, S) such
that ¢ induces an isomorphism of Y with an open neighborhood of S in X. This system admits a
calculus of right fractions, and so the set of morphisms Hom((Y,T), (X,.S)) is the inductive limit
of the sets of morphisms ¢ : V — X with ¢(7T") C S, where V runs through open neighborhoods of
T in Y. We say that a germs (X, S) is strictly k-affinoid if S is strictly affinoid domain in X. We
say that a germ (X, S) is wide if X is separated and S is contained in the interior Int(X) of X. In
this subsection we study the category of wide strictly k-affinoid germs.

For a germ (X, S) we denote by O(X, S) the algebra of functions analytic in a neighborhood
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of S'in X, ie., O(X,S) = lim O(U), where U runs through open neighborhoods of S in X. For
example, if S is a point z € X, then O(X, z) is the local ring Ox ,. If X = A" is the n-dimensional
affine space and S = E is the closed unit polydisc with center at zero, then O(A", F) is the algebra

of overconvergent power series
B{Ty, ..., T} = Upsik{p ' T0,...,p7 ' T0} .

Recall (see [MW], [GK1]) that a k-dagger algebra is a k-algebra A isomorphic to a quotient
of kK{Ty,...,T,}. For a k-dagger algebra A, the equivalence class of the norm on A induced from
the Gauss norm of k{T},...,T,}" does not depend on the representation of A as a quotient, and
all ideals of A are closed and finitely generated (see [GK1, §1]). In particular, A is Noetherian,
and there is a well defined completion 121\, which is a strictly k-affinoid algebra. Furthermore, the
canonical homomorphism A — A s injective, and gives rise to a bijection between the sets of
maximal ideals. Finally, any homomorphism of k-dagger algebras A — B is bounded with respect
to the norms on the algebras, and so it extends in a canonical way to a homomorphism of strictly

k-affinoid algebras A— B.

5.1.1. Lemma. The correspondence (X,Y) — O(X,Y) gives rise to an anti-equivalence
between the category of wide strictly k-affinoid germs and the category of k-dagger algebras.

Proof. First of all, we have to verify that, for a wide strictly k-affinoid germ (X,Y"), O(X,Y)
is a k-dagger algebra. By a result of M. Temkin ([Tem, Theorem 5.1]), there exists a bigger strictly
affinoid domain V' C X such that Y C Int(V) and Y is a Weierstrass domain in V. We may assume
that X = V = M(A). In this case it follows from [Berl, 2.5.2] that there exists an admissible
epimorphism k{r; 'Ty,..., 7 'T,,} — A: T; — f; such that r; € \/|k*| and I;lea;(‘fz(l')’ =1<r,.
Since Y is Weierstrass in X, there exist elements g1, ..., gn € A such that Y = {z € X||g;(z)| < 1
for all 1 < i < m}. Of course, we may assume that gleag>(<|gz(x)| > 1forall<i: < m and,
therefore, we may replace the system of elements {f1,..., fn} by {f1,---, fn,s91,---,9m}. Thus, we
may assume that ¥ = {z € X H fi(x)] <1 forall 1 <i < n} and there is an admissible epimor-
phism k{T%,...,T,,} — B : T; — f;, where Y = M(B). It follows that there is an epimorphism
ke {Ty,....,T,}T — O(X,Y), ie.,, O(X,Y) is a k-dagger algebra.

Furthermore, we have to verify that, for a similar germ (X’,Y”), the canonical map
Hom((X',Y’),(X,Y)) = Hom(O(X,Y),0(X',Y"))

is bijective. That it is injective is easy. Suppose we are given a homomorphism O(X,Y) —

O(X',Y"). Tt extends in a canonical way to a bounded homomorphism of strictly k-affinoid algebras
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B — B', where Y/ = M(B’) and B (as well as some other objects below) are from the previous
paragraph. Let f; be the image of f; in O(X’,Y”). One has max |fi(x)] < 1. We can shrink
X' and assume that X’ = M(A’) is k-affinoid and that each f/ comes from A" and is of spectral
radius at most 7;. Then there is a well defined bounded homomorphism of k-affinoid algebras
E{ri* T, . e Ty — A2 Ty — f/. We can shrink X’ and assume that this homomorphism
takes the finitely generated kernel of the epimorphism k{r; AT T, — A:T; — f; to zero.
This means that there is a bounded homomorphism A — A’ which induces a morphism of germs
(X)Y") — (X,Y). The latter evidently gives rise to the homomorphism O(X,Y) — O(X’",Y') we
started from.

Finally, let B be a k-dagger algebra, and consider a surjective homomorphism k{71, ..., T,} —
B. Tts kernel is generated by a finite number of elements that come from k{r{'Ty,...,r '} for
some 1; € \/W with r; > 1, and let A be the quotient of the latter by the ideal generated by
those elements. Then for X = M(A), the set Y = {z € X||f;(z)| < 1 for all 1 <i < n}, where f;

is the image of T; in A, is a Weierstrass domain in X which is contained in Int(X), and one has

O(X,Y) = B. .

We now introduce a related category of germs of a formal scheme over k°. Its objects are the
triples (X, %), «) consisting of a k-analytic space X, a formal scheme ) locally finitely presented over
k°, and an isomorphism « between the generic fiber 9, and a strictly analytic subdomain ¥ C X,
and morphisms (X', 9, a’) — (X,92), a) are the pairs consisting of a morphism of strictly k-analytic
spaces (X',Y') — (X,Y) (with Y" = ¢/(2);)) and a morphism of formal schemes 9’ — ), which
are compatible in the evident sense. For brevity, we identify 9), with its image in X and denote
the corresponding germ by (X,9)). There are evident functors of generic fiber (X,9) — (X,2),)
and of closed fiber (X,9) — 2),. We say that (X,9)) is a germ of a smooth formal scheme if ) is
smooth over k°. A germ (X,92)) is said to be wide if X and ) are separated and 9),, is contained in
the interior Int(X) of X. For example, if X is a separated formal scheme locally finitely presented
over k° and %) is a open subscheme smooth over £° and such that ), is contained in an irreducible
component of X; which is proper over E, then (X,,,9) is a wide germ of a smooth formal scheme.
(This germ is wide, by a result of M. Temkin [Tem, Theorem 4.1].)

A morphism (¢,%) : (X',9') — (X,9) is said to be étale if the morphisms ¢ : (X',9);) —

(X,9,) and 9 : 2) — 9) are étale in the sense of [Ber2, §3.4] and [Ber3, §2], respectively. Notice
that any germ (X’,9)) étale over a wide germ (X,9)) is also wide.

5.1.2. Lemma. Given a wide germ (X,9)), the correspondence (X',9") — 2., gives rise to
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an equivalence between the category of germs étale over (X,9)) and that of schemes étale over 9),.

Recall that, by [Ber3, Lemma 2.1], the latter category is equivalent to the category of formal

schemes étale over ).

Proof. The functor is clearly fully faithful. Therefore to show that it is essentially surjective, it
suffices to verify this property locally on ). This is done using the reasoning from the proof of [Ber3,
Proposition 2.3] as follows. By the local description of étale morphisms, we may assume that we are
given an étale morphism ¢ : )’ = Spf(Af{f}) — 9 = Spf(A), where A’ = A[T]/(P) = A{P}/(P),
P is a monic polynomial over A and f is an element of A’ such that the image of the derivative P’
in ﬁ’}v: (A[T]/(P)) 7is invertible. Since 9), lies in the interior of X, we can shrink X and assume
that X = M(B) is strictly k-affinoid and 9, is a Weierstrass domain in it. Then the image of B
in A=A ®go k is dense. We may therefore assume that the coefficients of the polynomial P are
contained in B and the element f is contained in B’ = B[T|/(P). Consider the finite flat morphism
¢: X' = M(B') — X. One has 9, = {2’ € @’1(2)n)}|f(x’)| = 1}. We claim that the morphism
@ is étale at all points of 9);. Indeed, if g denote the image of the derivative P in B', then ¢ is
étale at a point 2’ € X' if and only if g(2') # 0. Since [g(z)] = 1 for all points 2’ € 9);, the claim

follows. .

5.1.3. Corollary. Let k' be a closed subfield of k such that the residue field k is algebraic
over k'. Then any wide germ of a smooth formal scheme (X,9)) is, locally on %), induced by a wide
germ of a smooth formal scheme over k"° for some finite extension k" of k' in k.

Proof. By the definition of a smooth formal scheme over k°, one can shrink ) so that there
is an étale morphism from %) to the formal affine scheme over k°. the generic fiber of the latter
is the closed unit polydisc with center at zero in the affine space. Both are defined over k’° and,

therefore, the statement follows from Lemma 5.1.2. .

5.1.4. Remarks. (i) In [GK1], E. GroBe-Klénne introduced a category of dagger spaces which
are glued from affinoid dagger spaces, the maximal spectra of k-dagger algebras. The functor of
Lemma 5.1.1 gives rise to an equivalence between the category of wide germs of a strictly k-affinoid
space and the category of affinoid dagger spaces. One can show that this functor can be extended
to a fully faithful functor from the category of wide germs (X,Y), in which Y is a strictly analytic
subdomain of X, to the category of separated dagger spaces, and one can describe reasonable
subcategories of the above which are equivalent under that functor (cf. [Ber2, §1.6]). Similarly,

there is a fully faithful functor from the category of wide germs of formal schemes over k° to the
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category of weak formal schemes over k°, introduced by D. Meredith [Mer] in the case when the
valuation on k is discrete.

(iii) If the valuation on k is discrete, the results of M. Temkin mentioned above were proven
earlier by W. Liitkebohmert in [Liit2].

(iv) It is very likely the statement of Lemma 5.1.2 is true without the assumption that the

germ (X,9)) is wide.

5.2. D-modules on smooth strictly k-affinoid germs and isocrystals. The category
of sheaves of sets on a germ (X, S) is defined as the inductive limit of the categories of sheaves of
sets on open neighborhoods of S in X (see [SGA4, Exp. VIJ]). Namely, a sheaf of sets on (X, .5)
is a pair (U, F') consisting of an open neighborhood U of S in X and a sheaf of sets F on U. A
representative of a morphism (V,G) — (U, F') is a pair (W, a) consisting of an open neighborhood
W of S in U NV and a morphism of sheaves o : G }W — F ‘W. Two representatives (W, «) and
(W', ') of a morphism (V,G) — (U, F') are said to be equivalent if the restrictions of « and o’ to
some open neighborhood of S in W N W'’ coincide. A morphism (V,G) — (U, F) is an equivalence
class of its representatives. The pullback of a sheaf of sets on i/ to S gives rise to a functor from the
category of sheaves of sets on (X, S) to that on the topological space S (the underlying topological
space of (X, .5)).

In the similar way one defines categories of sheaves on (X, S) with additional algebraic struc-
tures. In particular, one has the abelian category of abelian sheaves on (X, .S). This category has

injectives, and the values of the high direct images of the left exact functor F' — F(X,S) = lim £ U)
u
are the groups HY((X,S),F) = lim H?(U, F'). Notice that if X is Hausdorff and S has a funda-
u
mental system of paracompact neighborhoods in X (e.g., S is compact), then the latter inductive

limit coincide with H4(S, F'), the cohomology group of the space S with coefficients in the pullback
of FonS.

For example, the structural sheaf O(x gy on (X, S) is the sheaf represented by the pair (X, Ox)
(it is isomorphic to the sheaf represented by any pair (U, Oy)). The category of O(x,g)-modules
(resp. coherent O(x,g)-modules) is the inductive limit of the categories of Oy-modules (resp. co-
herent Oy-modules) taken over open neighborhoods U of S in X. Notice that the correspondence
(U, F) — F(X,Y) gives rise to a functor from the category of O(x,g)-modules to that of O(X,S)-

modules.

5.2.1. Lemma. Let (X,Y) be a wide strictly k-affinoid germ (X,Y) with B = O(X,Y).
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Then

(i) the above functor induces an equivalence between the category of coherent (resp. and
locally free) Ox yy-modules and that of finitely generated (resp. and projective) B-modules;

(i) for any coherent O(x y)-module F and any q > 1, one has HI((X,Y), F) = 0;

(iii) if F is a locally free O(x y)-module of finite rank, then for any O(x y)-module G the
canonical map F(X,Y) ®@p G(X,Y) — (F ®o .y, 9)(X,Y) is a bijection.

Proof. (i) As in the proof of Lemma 5.1.1, we may assume that X = M(A) is strictly k-
affinoid, there is a surjective morphism k{r;*T1,...,r;'T,,} — A with r; > 1, and Y = {z €
XHfz(x)| < 1 for all 1 < i < n}, where f; is the image of T; in A. Moreover, we may assume
the coherent (resp. and locally free) O(x y)-module considered comes from a coherent (resp. and
locally free) Ox-module F. Then F(X) is a finitely generated (resp. and projective) .A-module.
In particular, there is a surjective .A-homomorphism A™ — F(X). Given an affinoid neighborhood
V of Y in X, the latter induces a surjective homomorphism Ay} — Fy(V), where Fy is the

corresponding coherent Oy-module. Since B = lim Ay and F(X,Y) = lim Fy(V), there is a
% v
surjective homomorphism B — F(X,Y). This implies that F(X,Y) is a finitely generated (resp.

and projective) B-module, i.e., the functor is well defined. That it is an equivalence of categories
is established in the same way.
(ii) The inductive limit defining the cohomology group considered coincides with the inductive

limit lim H1(V,Fy) taken over affinoid neighborhoods V of Y in X. Since H?(V,Fy) = 0, the
%
required fact follows.

(iii) The statement is trivial if 7 is a free O(x y)-module. In the general case, by (i), we may
assume that there is a coherent O(x y)-module H such that 7@ H is a free O x y)-module of finite

rank, and the required fact easily follows. .

For any germ of a formal scheme (X,%)) over k°, one can define as follows a nearby cycles
functor 0 from the category of sheaves on its generic fiber (X,9),) to the category of sheaves in
the Zariski topology of its closed fiber 9 (see [Ber8, §4]). Given a sheaf F' on (X,9), ), one sets
O(F')(3s) = F(X,3,) for any open subset 3, C 9),, where 3 is the open subscheme of 9 with
the underlying space 3, and F(X, 3,) is the set of global sections of the pullback of F' to (X, 3,).
For example, it follows from Lemma 3.1.1 that the restriction of the sheaf ¢y = G(C( X’Q'jn)) to any
connected component 3, of ), is the constant sheaf associated to the field ¢(3,)) which is the finite
unramified extension of k with the residue field k(3,). We denote by O(X,Qj) the sheaf H(O(X@n)).

It is a coherent sheaf of rings.
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5.2.2. Corollary. Let (X,2)) be a wide germ of a formal scheme over k°. Then
(1) the functor 0 gives rise to an equivalence between the category of coherent O( X9 )—modu]es
i
and that of coherent (’)( X@))-modules;
(ii) for any coherent O D)) y-module F, one has HY(,,0(F)) = H((X,D,),F),¢>0. =
Y

Furthermore, we say that a germ (X, S) is smooth if X is a separated k-analytic space smooth
in a neighborhood of the set S. Such a germ is automatically wide. For example, if (X,9)) is a
wide germ of a smooth formal scheme, then the germ (X,%),) is smooth.

Assume that the characteristic of k is zero, and let (X,Y) be a smooth germ. As above, we
define the category of D x y)-modules and those of Ox-coherent and of unipotent D(x y)-modules
on (X,Y) as the inductive limit of the corresponding categories taken over open neighborhoods of
Y in X. These three categories are abelian. The de Rham cohomology groups Hi ((X,Y),F) of a
D(x,y)-module F are the hypercohomology groups of the complex F ®o  y, Q( X,Y) with respect
to the functor of global sections on (X,Y). If F = Oy, they are denoted by Hig(X,Y).

Let (X,Y) be a smooth strictly k-affinoid germ and B = O(X,Y). An isocrystal (resp. a
finite isocrystal) over B is an B-module (resp. a finitely generated B-module) M provided with
an integrable connection V : M — M ®p Q. It is known that any finitely generated B-module
that can be provided with a connection is projective and, in particular, any finite isocrystal is a
projective B-module. A wunipotent isocrystal over B is a finite isocrystal M over B which is a
successive extension of the trivial isocrystal B. Notice that such M is always a free B-module. A
trivial isocrystal over B is a finite isocrystal isomorphic to the isocrystal B™, n > 0. The de Rham

cohomology groups Hix (M) of an isocrystal M over B are the cohomology groups of the complex

MopQy M3 Moy S Mo 3 S

5.2.3. Lemma. Let (X,Y) be a smooth strictly k-affinoid germ. Then

(i) the correspondence F +— F(X,Y) gives rise to a functor from the category of D x y)-
modules to that of isocrystals over B;

(i) the above functor induces an equivalence between the category of O(x y)-coherent (resp.
unipotent) D(x,y)-modules and that of finite (resp. unipotent) isocrystals over B;

(iii) for any Ox-coherent D(x yy-module F one has Hip ((X,Y),F) = Hip (F(X,Y)).

Proof. (i) Since the O(x y)-module Q%va) is locally free of finite rank, the statement follows
from Lemma 5.2.1(iii).

(ii) That the functor is fully faithful follows from Lemma 5.2.1. To prove that it is essentially

surjective, it suffices to show that, given a locally free O x-module of finite rank F, any connection
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V:F(X,)Y)— F(X,Y)®p Q% comes from a connection on f‘u for some open neighborhood U of
Y in X. But this is easily seen since the connection is determined by its values on a finite number
of elements of F(X,Y).

(iii) follows from Lemma 5.2.1(ii). .

Let (X,2) be a wide germ of a smooth formal scheme over £°. A D x m)-module is a sheaf

. . . . . 1
of O(X7@)—m0dules F provided with an integrable connection V : F — F ®@(X’ : Q(X,Q))’ where

)
Q?X ) = Q(Q‘(ZX 9 )). The de Rham cohomology groups Hiy(2),, F) of such a module are defined
in the same way as above. If F is the trivial D(ngj)—module O(X@) (and the valuation on k
is discrete), its de Rham cohomology groups coincide with the Monsky-Washnitzer cohomology

groups Hyw(,/k) of P, over k ([MW]).

5.2.4. Corollary. (i) The functor 0 gives rise to a functor from the category of D( Xy
2,
modules to that of D(Xm)—modules;
(ii) the functor 6 induces an equivalence between the category of O(X@ )-coherent (resp.
unipotent) D(an)—modules and that of O(Xm)—coherent (resp. unipotent) D(X@)—modu]es;
(iii) Hip(D,,0(F)) = HiR((X,D,),F) for every (’)(X’@n)—coherent D(an)—modu]e F and
every q > 0. n

5.2.5. Remarks. (i) Germs of analytic spaces are particular cases of pro-analytic spaces from
[Berd]. The above definition of the category of sheaves on a germ is a simple variant of a more
general definition in [Ber4, §2].

(ii) Our terminology is slightly different from the standard one in the sense that finite isocrystals
are usually called isocrystals (see also Remark 6.2.2).

(iii) In the theory of (finite) isocrystals an additional property of overconvergence plays an
important role. All of the finite isocrystals considered here are unipotent and known to be over-
convergent (see [LeCh]). We do not invoke this property explicitly, but consider a closely related
property in §7.1.

5.3. A construction of isocrystals. Let k be a field of characteristic zero, and B a
commutative k-algebra which is provided with a projective B-module of finite rank Q% and a k-
linear derivation d : B — QL with k = Ker(d) and such that locally in the Zariski topology of B
the B-module Q} is freely generated by exact differentials. The latter assumption implies that,
setting Q%L = AYQ};, one can define a de Rham complex Q5 : 0 — B <, QL <, 0% < .. whose

cohomology groups, denoted by Hjy(B), are vector spaces over k. Similarly, any B-module M
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with an integrable connection V : M — M ®p Q) defines a de Rham complex M ®@p 5 whose
cohomology groups, denoted by Hip (M), are vector spaces over k. Such a B-module M will be
called an isocrystal and, if it is finitely generated over B, it will be called a finite isocrystal. Trivial
and unipotent isocrystals are defined in the same way as in §1.3.

Given an isocrystal M over B and a k-vector subspace V C Hig (M), we construct as follows
an isocrystal My . As a B-module, My is the direct sum M @ (V ®j B). For an element v € V', we
denote by v the corresponding element v ® 1 of My,. Furthermore, we fix a k-linear section to the
subspace of closed one-forms s : V — (M ®p Q%)< and extend the connection V: M — M ®p Q4
to a connection V : My — My ®@p Q5 by V(v) = s(v) for all v € V. This provides My with the
structure of an isocrystal over B. Notice that different choices of the section s give rise to non-
canonically isomorphic isocrystal structures on My, . Indeed, a second section s’ : V — (M ®pQ4)¢!
defines a connection V' on My with V'(7) = s'(v) and, therefore, s'(v) — s(v) € V(M). Let p
be a k-linear map V' — M for which s'(v) — s(v) = V(pu(v)) for all v € V. Then the B-linear
map ¢ : My — My identical on M and defined by ¢(v) = p(v) + v for all v € V' gives rise to an
isomorphism of isocrystals (My, V') = (My, V).

5.3.1. Lemma. (i) There is a canonical isomorphism of isocrystals My /M =V ®;, B;

(ii) Hc(l)R(M) = HgR(MV);

(i) Ker(Hig (M) — Hig(My)) = V.

Proof. (i) trivially follows from the construction.

Let eq1,...,e, be elements of V linearly independent over k, and assume that for a closed
one-form w € M ®p N} one has w = V(m + .., fi€;) with m € M and f; € B. It follows that
S edfi =w—V(m)=>""_, fis(e;) € M @y N} and, therefore, df; = 0, i.e., f; € k. This implies

that the class of w is contained in V, i.e., (iii) is true, and, if w = 0, we get (ii). .

Notice that the exact sequence of isocrystals 0 — M — My — My /M — 0 gives rise to an
isomorphism H3g (My /M) =V C Hiz(M).

Let M C M’ be isocrystals over B such that HJz(M'/M) @, B = M’'/M, and let V =
Ker(Hiz (M) — HIz(M’)). Then any homomorphism of isocrystals ¢ : M — N with V C
Ker(Hlg (M) — HIz(N)) can be extended to a homomorphism of isocrystals ¢’ : M’ — N. Indeed,
as a B-module, M’ can be identified with the direct sum M & (U @, B), where U = H{x (M'/M).
The assumption implies that ¢(V(u® 1)) € V(N) for all u € U. If 3 is a k-linear map U — N
with p(V(u ® 1)) = V(B(u)) for all uw € U, then an extension ¢’ : M’ — N can be defined by
Y (u®l)=p(u) foruel.
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5.3.2. Lemma. Assume that B is Noetherian and any finite isocrystal over B is a projective
B-module. Given isocrystals M C M’ as above with H{g (M) = H3g(M’), any homomorphism of
isocrystals M’ — N injective on M is injective on M’.

Proof. We can replace M’ by the preimage of U’ ®j B for some finitely dimensional subspace
U' Cc U = HJiy(M), and so we may assume that dimy(U) < oo. Suppose P = Ker(M' — N) # 0.
It suffices to show that HJy(P) # 0 because this would contradict the assumption. For this we
consider the exact sequence of isocrystals 0 — P — M'/M = U®; B — @ — 0. By the assumption,
Q is a projective B-module. It follows that the canonical map Hiy(Q) @ B — @ is injective (see
the proof of Lemma 1.3.1). Since B is Noetherian, it follows that dimy(H3g(Q)) < dimg(U) which
implies that HJy (P) # 0. .

We now construct as follows an increasing sequence of unipotent isocrystals E% C EL C E% C
... B% = Band, fori >0, B4 = (BY)y for V = Hiz(E%). The inductive limit Ep = hglE% is
a filtered isocrystal over B. For an isocrystal M over B, we denote the isocrystals M ® g Eg and
M ®p EY by Mg and Mg, respectively.

Let M be a unipotent isocrystal of rank m over B, and fix a filtration M° =0c M' C ... C
M™ = M such that each quotient M?/M*~! is a trivial isocrystal. Consider the filtration on the

isocrystal Mg defined by the sub-isocrystals

J/\Z :Mgz +Mg,:+11 +...+Méi+n—1 .

5.3.3. Lemma. (i) (M; ®@p Q%)% € V(M,1);

(ii) MOV is a vector space over k of dimension m;

(i) MY = MY .

Proof. If n = 1, the claim follows from Lemma 5.3.1. Assume that n > 2 and the claim
is true for n — 1. We set N = M"~! and notice that there are exact sequences of isocrystals
0 — Nij1 — M; — (M/N)gi — 0and 0 — N;yq — (M;+ Mpgis1) — (M/N)gis1 — 0, where Ny
is considered for the induced filtration of N of length n — 1.

First of all, let w € (]\Ajz ®p Q%) By the validity of the claim for the trivial isocrystal
M/N, there is an element f € Mg+ such that w — V(f) € (Nip1 ®p Q25)?. By the induction
hypotheses, there exists an element g € N; o with w — V(f) = V(g), and so w = V(f + g) with
f+9g€ Mgt + Ni+2 = AA/f,;+1, i.e., (i) is true.

Furthermore, the first of the above exact sequences gives rise to an exact sequence of vector

spaces 0 — KQYH — ]\/ZZ-v — (M/N)Y, = (M/N)Y. To prove (ii) and (iii), it suffices to show
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that the second homomorphism is surjective. Let f be an element of M whose image in M/N is
contained in (M/N)V. Then V(f) € (N ®p Q%) and, by the induction hypothesis, there exists
an element g € Ny with V(g) = V(f). The element f — g lies in M and its image in (M/N)V
coincides with that of f. .

Assume that the ring B is Noetherian and any finite isocrystal over B is a projective B-module
(as in Lemma 5.3.2). Assume also that the isocrystal Ep can be provided with a structure of a
commutative filtered B-algebra which satisfies the Leibniz rule (i.e., V(fg) = V(f)g+ fV(g)). (In
§6, it will be shown that in the case of interest for us these assumptions are satisfied.) Then for
any isocrystal M over B there is a canonical homomorphism of isocrystals My ®x E — Mg, which

is injective if M is finite over B.

5.3.4. Corollary. Under the above assumptions, the following properties of a finite isocrystal
M of rank m over B are equivalent:

(a) M is unipotent;

(b) the vector space My is of dimension m and My ®y E = Mpg;

(c) there exists an embedding of isocrystals M — (E)! with | > 1.

Furthermore, if M is unipotent, its level is equal to the minimal n for which there exists an

embedding of isocrystals M — (E™~ ")l with [ > 1.

The level of a unipotent isocrystal M is the minimal n for which there exists a filtration

M°=0cC M! C...C M™= M such that each quotient M?/M*~! is a trivial isocrystal.

Proof. (c)==(a) Since M is finitely generated over B, its image is contained in (E"~1)! for
some n > 1. The proof of Lemma 5.3.2 implies that M is unipotent of level at most n.

The implication (a)==-(b) follows easily from Lemma 5.3.3 (and its proof), and the implication
(b)=(c) is trivial.

Assume that M is unipotent of level n, and let M = 0 Cc M' Cc ... C M™ = M be
a filtration such that each quotient M?/M®~! is a trivial isocrystal. By Lemma 5.3.3, for the
corresponding filtration of My one has My = ]\Ajov . We claim that there is a basis of My such
that the isomorphism of isocrystals Mg — (E)™, induced by it, takes every M; into (Epitn—1ym,
Indeed, if n = 1, the claim is trivial. Assume that n > 2 and the claim is true for n — 1. Then
we can find a basis hi,...,h; of Ny with the required property for N = M"~!. The proof of
Lemma 5.3.3 shows that, if fj41,..., fm are elements of M whose images in M /N form a basis

of (M/N)V, then there exist elements g;41,...,gm € N; such that the elements hi,...,h;, i1 =
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fiv1 — 9141, - - s Ay = fin — gm form a basis of MEY. Since ]\Z = Mg: + KQH, it follows that the

constructed basis possesses the required property. .

5.4. The filtered isocrystals EFp and the shuffle algebras. We continue to work here in
the general setting of the previous subsection.

Recall that the shuffle algebra Sh(V') of a vector space V over a field k is a commutative Z . -
graded algebra which, as a vector space, is the tensor algebra &2 (V®" of V with the following

multiplication

(V1 ®...0Up) (Vpr1 Q... QUptq) = Zvaq(l) ® ... ® Vo1(ptq) >

(e

where the sum is taken over all (p, ¢)-shuffles, i.e., those of the permutations o of {1,...,p+ ¢} for
which o(1) < ... <o(p) and o(p+1) < ... < o(p+q).

Assume we are in the situation of the beginning of §5.3. For a vector subspace V' C HJg(B),
we denote by Shp(V) the Z-graded B-algebra Sh(V) ®; B. (If V.= Hji(B), it will be denoted

by Shp.) Fixing a k-linear section s : V' — Q}B’Cl, the k-linear map

Sh(V) = Sh(V) @, Qi 11 ® ... Q v, — (11 ®@ ... @ vp_1) ® 5(vy)
extends to a k-linear connection on the B-module Shg (V)
V :Shp(V) — Shp(V) ®@p Q5 = Sh(V) @5, Qf .

Notice that this connection is not integrable (unless the rank of Q% is at most one). The connection
V preserves each B-submodule Shiz(V) = @©p_o(V®? @ B), and it gives rise to an integrable
connection on each quotient Gr"(Shp(V)) = Sh’(V)/Sh; ' (V), which does not depend on the
choice of the section s. One has Gr"™(Shp(V))Y = V" and Gr™(Shp(V)) is isomorphic to the free
B-module with an integrable connection Gr"(Shp(V))V @4 B.

5.4.1. Lemma. The connection V satisfies the Leibniz rule, i.e., V(ab) = aV(b) + bV (a), and
its kernel coincides with k.
Proof. To verify the Leibniz rule, it suffices to consider the case when a = v; ® ... ® v, and

b=1vp41®...®Vptq. One has

V(ab) = Z(UU—1(1) R...Q ?}J—l(p+q_1)) & S(UU—I(p+q)) ,

o
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where the sum is taken over all (p, g)-shuffles o of the set {1,...,p + ¢}. On the other hand, one

has

aV(b) = Z(’UT—l(l) X...Q 'l)T—l(p+q_1)) ® S(Up+q)

T

and

b-V(a) = Z(’L)T—l(l) @ @ VUr=1(p—1) QVUr-1(p41) ® ... & UT—I(p+q)) ® S(Up) ,

T

where the first sum is taken over (p, ¢ — 1)-shuffles 7 of the set {1,...,p+¢—1}, and the second one
is taken over (p — 1, g)-shuffles 7 of the set {1,...,p—1,p+1,...,p+¢}. It remains to notice that,
for every (p, q)-shuffle o of the set {1,...,p+q}, one has either 0! (p+q) = p+qor o~ (p+q) = p,
and so there is a one-to-one correspondence between the shuffles o of each of the latter types and
the shuffles 7 from each of the above sums, respectively. Assume now that there exists an element
a € ShE(V)\Sh% (V) with da = 0 and n > 1. If {vy,..., v} is a basis of the k-vector space

V, then a basis of the k-vector space Shp(V) is formed by the elements v, . ;, = vi, ® ... @ v;,,

and @ = > v, Gi,,..i, With g;,,; € B. The description of Sh(V)/Sh;~ (V) implies that
Gir,....in, € k for all (i1,...,4,). Furthermore, given (i1, ...,%,—1), the coefficient of da at v;, . ;.

is equal to dgi, . i, , + Z;nzl Gir,ovin_1.55(vj). It follows that g;, ., = 0 for all (i1,...,4,) which

is a contradiction. »

Let us call a Dg-algebra any B-algebra which is an isocrystal over B whose connection sat-
isfies the Leibniz rule. Lemma 5.4.1 implies that Gr' (Shp(V)) is a graded Dp-algebra isomor-
phic to Gr'(Shp(V))Y ®;, B, and there is a canonical isomorphism of graded k-algebras Sh(V) =
Gr'(Shp(V))V.

Assume now that the filtered isocrystal Eg, constructed in §5.3, is provided with a structure of
a commutative filtered Dp-algebra. Recall that each quotient Gr"(Ep) = E}/E% " is canonically
isomorphic to the trivial isocrystal H, éR(Eg_l)@) & B. In particular, there are canonical isomorphisms
of graded Dp-algebras Gr'(Ep)Y ®; B = Gr'(Ep) and of k-vector spaces Gr™(Ep)V = Hlg (B )
and Hlg(Gr™"(Ep)) = Hiz(ER") @, Hig(B). Since the canonical map Hlig (ER% ) — Hig(ER)
is zero, the latter isomorphism and the exact sequence 0 — ngl — E}% — Gr"(Ep) — 0 give rise

to an injective k-linear map Gr"(Eg)V — Hiz(B)®". In this way we get an injective k-linear map
¢ : Gr'(Ep)Y — Sh(Hir(B)) .
5.4.2. Proposition. The map v is a homomorphism of k-algebras.

Proof. Let a € E% and b € E% be such that V(a) € E% ' @p QL and V(b) € E% ' @p QL.
We have to show that 1 (a-b) = ¥ (a)-1p(b). If p =0 or ¢ = 0, the equality is trivial, and so assume
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that p, ¢ > 1 and that the equality is true for all of the pairs (p’, ¢’) with either p’ < p and ¢’ < q or
p’ <pand ¢’ < q. Notice that the element 1(a) is constructed as follows. First of all, consider the
image of V(a) in (E% ' /E% 2 @5 QL) = (BL 1 /EY )Y @, QL7 (with E5' = 0). If the image of
the latter in Hlg (B)®®=1 , Q3 under the map induced by ¢ : (E% ' /E% %)Y — HL. (B)®@-1
sy ", ugi) ®.. .®u](;ll ® (S(u](gi)) +df;), where f; € B, then ¢(a) = >, ugi) ®.. .®u§,i). Similarly,
if the image of V(b) in H}s(B)®W D @, Q5 is > i1 v%j) ®...8® vc(lj_)l ® (S(fuf(lj)) + dg;), where
gj € B, then ¢(a) = 337, vgj) ®...® v((]j). To find ¢ (a-b) we apply the same procedure to the
element V(a-b) = a-V(b) + b-V(a). By induction, one has

Wlab) = W)} S o @ 0vl ) eod + @wb) Y u e oul)ould .
j=1 =1

Thus, the required equality ¥ (a-b) = 1(a)-1(b) is a consequence of the formula which tells that the

element (u1 ® ... Q@ up)-(v1 ® ... ®vy) is equal to
(U1 ®...0U) (11 ®...®V—1)) QU+ (11 R ... Q) (U1 ® ... QUp—1)) D Uy .

This formula is verified in the same way as the Leibniz rule in the proof of Lemma 5.4.1. .

Recall (see [Rad, Theorem 3.1.1]) that the shuffle algebra Sh(V') of a vector space V over a field
of characteristic zero is isomorphic to the ring of polynomials over the field with a set of variables

consisting of homogeneous elements.

5.4.3. Corollary. (i) If B has no zero divisors, then so is the graded B-algebra Gr'(Ep), and
B is algebraically closed in it;

(ii) Gr'(Ep)* = B* and, in particular, (Ep)* = B*. .

Finally, assume that the B-module Q} is of rank one. Then the connection V on Shg is
integrable and, in particular, Shp is an isocrystal over B. One has H3 (Sh’y) = k and Hi; (Sh) =

0 for all n > 0 and ¢ > 2.

5.4.4. Lemma. If the B-module 9}3 is of rank one, then

(i) the canonical homomorphism Hlg (Shiy™) — HLg (Sh) is zero;

(ii) Hip(Shy) = Hlp(Gr"(Shp)) = Hig (B)>(+);

(iii) the map 1) of the Proposition 5.4.2 is an isomorphism and, in particular, there is a canonical
isomorphism of graded Dpg-algebras Gr' (Eg) — Gr'(Shp).

Proof. (i) The statement is trivially true for n = 0 (with Sh' = 0). Assume that n > 1
and that the statement is true for n — 1. Each element of Sh’y ' @5 QL = Sh™ ' (H1;(B)) @ Q%
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is a finite sum of elements of the form v1 @ ... ® v,—1 @ w with v; € H}z(B) and w € Q}. Let
w = s(v)+df for some v € Hjg(B) and f € B. One has v1®...Qv,_1Qs(v) = V(01 ®...Qv,_1Qv)
and 11 ® ... QU1 Qdf =V(f1®...QU,_1) =11 ®...QUp_2® (fs(vn—1)). It remains to notice
that the element v1 ® ... ® v,—2 ® (fs(v,—1)) is contained in Sh%f2 ®p Q% and, by induction, it
is contained in V(Sh’ ™).

(ii) The required isomorphism is obtained from the exact sequence 0 — Sh’y™' — Sh —
Gr"(Shg) — 0 using (i) and the fact that H3z(Shs ') = 0.

(iii) As in (i), the required isomorphism is obtained from the exact sequence 0 — Ep ™" —
E% — Gr"(Ep) — 0 and the facts that the canonical map Hls(ER ') — Hlz(ER) is zero and

H2(E"1) =0, "

5.4.5. Remark. In §6.4 it will be shown that, in the situation considered there, the iso-
morphism of Lemma 5.4.4(iii) is induced by a (non-canonical) isomorphism of filtered D pg-algebras

Ep = Shp.

5.5. Unipotent isocrystals F'(X, 3).

5.5.1. Lemma (O. Gabber). Let k be a non-Archimedean field with a nontrivial valuation.
Given an inductive system {F},},>1 of complexes of Banach spaces over k with dim; H?(lim F},) <

oo for some q € Z, for any Banach space W over k the canonical linear map
HY(lim F)) @, W — HI(lim(F,&,W))

is an isomorphism.

Proof. We set Z, = Ker(F¢ — FI') and B,, = Coim(F¢~! — F9) (i.e., the quotient of
Fi=1 by Ker(F2~! — F9)). These are Banach spaces over k, and there is a canonical injective
bounded linear operator B,, — Z,. Since the functor V — V&,W is exact in the sense that it
takes a short exact sequence of Banach spaces 0 — V' — V — V" — 0 with V' = Ker(V — V")

to a similar short exact sequence (see [Gru)), it suffices to show that the canonical linear map
(lim Coker(B,, — Z,)) ®x W — Coker(lim(B,&,W) — lim(Z,&,W))

is an isomorphism provided we know that the inductive limit on the left hand side is of finite
dimension over k.

Given n < m, let D,, ,, denote the fiber product B,, Xz, Z,, i.e., the closed subspace of

m

the direct product B,, x Z, that consists of the pairs (b, z) such that the images of b and z in Z,,
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coincide. Given n > 1, the Banach spaces D,, ,,, form an inductive system that maps to Z,,. Assume
n is big enough so that there is a finite dimensional subspace H C Z,, which maps bijectively onto
liLnCoker(Bn — Zy). Then the canonical injective map from the inductive limit of Banach space
l}r}(H X D, ) to the Banach space Z,, is surjective. We claim that there exists m > n such that
tzle injective map H x Dy, ., — Z,, is surjective. Indeed, if none of those maps are surjective then,
by the Banach theorem (see [Bou2, Ch. I, §3, n° 3]), their images are countable unions of nowhere
dense subsets, and so Z,, itself is a countable union of nowhere dense subsets which contradicts the
Baire theorem (see [Boul, Ch. 9, §5, n° 3]).

Thus, for sufficiently big m > n the map H x D,,,, — Z, is bijective. The same Banach

theorem, implies that it is an isomorphism and, in particular, there is an isomorphism
(H @, W) X (Dpm@xW) = Z,2,W .
This immediately gives the bijectivity of the considered linear map. .

Let k& be a non-Archimedean field of characteristic zero with a nontrivial discrete valuation,
X a smooth k-analytic space, and Y a compact strictly analytic subdomain of X. By a theorem
of E. Grosse-Klénne ([GK2, Theorem A]), the de Rham cohomology groups Hjp(X,Y) are of
finite dimension over k (see Remark 5.5.5(i)). Furthermore, for a non-Archimedean field k" over
k, we set X' = X®,K' and Y/ = Y®,K’. Notice that, if k' is finite over k, then one has

~

Hi(X,Y) @ k' — Hiz (X', Y’) for all ¢ > 0.

5.5.2. Corollary. The canonical map Hiz(X,Y) ®; k' — Hiz (X', Y"), ¢ > 0, is always an
isomorphism.

Proof. Let V; D V5 D ... be a decreasing sequence of compact strictly analytic domains in X
with Y =N, V,, and V,, 41 C Int(V},), and let F, : 0 — FY — F! — ... be the de Rham complex
of the strictly k-analytic space V,,. Then F? are Banach spaces over k, the complexes form an
inductive system F; — F;, — ... and, if F* : 0 — F° — F! — .. is the corresponding inductive
limit, one has Hi.(X,Y) = H(F"). Furthermore, for V; = V,, &k’ one has Y’ = N2,V and
V!

n

+1 C Int(V}) for all n > 1. The de Rham complex of V! is F;, @k’ and, if F’" is the corresponding
inductive limit, one has Hip (X', Y’) = HY(F"). Since k' is a Banach space over k, the required

fact follows from Lemma 5.5.1. "

Let now k be a non-Archimedean field of characteristic zero, which is an extension of a non-

Archimedean field k&’ with a nontrivial discrete valuation and a closed subfield of l;’\a
5.5.3. Corollary. Let X be a smooth k-analytic space. Then
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(i) for any compact strictly analytic subdomain Y C X, the de Rham cohomology groups
Hi(X,Y) are of finite dimension over k;
(ii) if X = X' ®y k and ¢ denotes the canonical morphism X — X', then the canonical

morphism of étale abelian sheaves on X'
P QR /dOx:) @pn k — QX /dOX

is an isomorphism, where k"' = kN k'®.

Proof. (i) By Lemma 2.1.3, we can find systems of open subsets X; C X and of strictly
affinoid subdomains Y; C X; such that Y = UY; and, for every ¢, X; and Y; come from a smooth
k;-analytic space X/ and a strictly affinoid subdomain Y, C X/, respectively, where k; is a finite
extension of k" in k. By Corollary 5.5.2, the de Rham cohomology groups Hiy (X;,Y;) are of finite
dimension over k and, therefore, the same is true for Hi; (X,Y).

(ii) The statement is an easy consequence of the same Lemma 2.1.3 and Corollary 5.5.2. "

Let Y be a strictly affinoid subdomain of X. Then B = O(X,Y) is a k-dagger algebra, and,
by Corollary 5.5.3(i), the de Rham cohomology groups Hix (B) are of finite dimension over k. The
construction of §5.3 can be applied to the algebra B, and so it provides a filtered isocrystal Ep
over B. Assume, in addition, that X = X' @ k and Y =Y’ Q@ k, where X" and Y' C X' are
smooth k'-analytic space and a strictly affinoid subdomain, respectively. Then B’ = O(X',Y’) is a

k’-dagger algebra, and the construction of §5.3 provides a filtered isocrystal Eg: over B’.

5.5.4. Corollary. In the above situation, the following is true:

(i) the isocrystals E% and EY%, are unipotent;

(i) there is compatible system of isomorphisms of isocrystals E%, ® g B = E';

(iii) the isomorphism from (ii) gives rise to an isomorphism of de Rham cohomology groups
Hin(Bly) @0 k= Hin(E}) for all g > 0.

Proof. The statements are true, by Corollary 5.5.2, for ¢ = 0 and are deduced, by induction,

from the exact sequence of isocrystals 0 — E% — Egl — Hiz (EY) ®¢py B — 0. n

5.5.5. Corollary. In the above situation, the following is true:

(i) every unipotent isocrystal M over B is isomorphic to M’ ® g: B for an unipotent isocrystal
M’ over B’;

(i) Hom(M{, M3) @ k = Hom(M] ®p B, My ®@p: B) for every pair of unipotent isocrystals
M and M} over B'. .
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The above construction will be applied in the following situations. Let (X, 3) be a wide germ
of a smooth affine formal scheme over k°. Then (X, 3,) is a smooth strictly k-affinoid germ. The
filtered isocrystal Ep, provided by the previous construction for B = O(X, 3,,), will be denoted
by E(X,3). Notice that the isocrystals E?(X,3) are unipotent. In §6 we consider germs (X, 3)
which are liftings of a similar germ (X’,3’) over &’° as in Lemma 5.5.4. By that lemma, there is
compatible system of isomorphisms of isocrystals E*(X’,3’) ® 5 B = E(X,3). At the end of §6
and in §7, we consider germs of the form (X,, 3), where X is a proper marked formal scheme over
k° and 3 is an open affine subscheme of the smooth locus X of X. Notice that such a germ is of the
previous type. Finally, after Theorem 1.6.1 is proved we consider again (in §8.1) arbitrary germs

of a smooth affine formal scheme over k°.

5.5.6. Remark. In the paper E. Grosse-Klonne as well as in those of P. Berthelot and Z.

Mebkhout only the case char(k) > 0 is considered since the case char(k) = 0 is much easier and is

believed to be known earlier.
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§6. F-isocrystals

Beginning with this section the ground field k is assumed to be a closed subfield of C,. We
apply constructions of the previous section to a wide germ of a smooth affine formal scheme (X, 3)
which is a lifting of a similar germ defined over a finite extension of Q,. First of all, we consider
the notions of a Frobenius lifting on the associated germ (X, 3,,) and of a Frobenius structure on
isocrystals over B = O(X, 3,,) (F-isocrystals). We provide the unipotent isocrystals E*(X, 3) = EY
with such a structure and, using a result of B. Chiarellotto [Chi], show that they possess the
following nice property: any morphism of F-isocrystals E‘(X,3) — M for which the induced
map H}g(FY(X,3)) — HJz(M) is zero can be extended in a unique way to a morphism of F-
isocrystals Et1(X,3) — M. This property implies, for example, that the unipotent F-isocrystals
E%(X,3) are unique up to a unique isomorphism, and is used to provide F(X,3) = UE‘(X,3)
with a unique structure of a filtered B-algebra which satisfies the Leibniz rule and commutes with
the Frobenius structure. One more application is as follows. Let R/\(.’{,Bn) denote the filtered
F-isocrystal for which RM(X,3,) consists of all naive analytic functions f defined in an open
neighborhood U of 3, such that f‘umrl(x) € LM(U N7~ 1(x)) for all closed points x € Xi.
Then, if dim(X,) = 1, the canonical map H}y(RM(X,3,)) — Hig(RMT1(X,3,)) is zero and,
therefore, the canonical map B — R’\’O(?E,Bn) extends in a unique way to a homomorphism of
filtered B-algebras and F-isocrystals E(X,3) — R*(X,3,). We show that, given a closed one-
form with coefficients in E*(X, 3) embedded in RM(X, 3,,), its primitive in E**(X, 3) embedded
in RMTL(X, 3,) is precisely the one given by R. Coleman’s construction. We also show that the

induced homomorphism EX (X, 3) = E(X, 3) ®; K — R*(X, 3,) is injective.

6.1. Frobenius liftings. Assume first that k is finite over Q,, and let (X, 3) be a wide
germ of a smooth affine formal scheme over k°. We set B = O(X, 3,) and AT = AN B, where
3 = Spf(A). Furthermore, let 5 be the Frobenius endomorphism of 3, which corresponds to the
endomorphism &* : A — A that takes o to a?, where A= A/k°° A and q is the number of elements
in k. It is well known (see, for example, [Col2]) that there is a lifting ¢* : AT — AT of 5* It
gives rise to a homomorphism ¢* : B — B, which induces the Frobenius automorphism of ¢(B)
over k. By Lemma 5.1.1(ii), ¢* is induced by a unique morphism of germs ¢ : (X, 3,) — (X, 3,)
which is called a Frobenius lifting on (X, 3,) of degree [E : F,]. The latter is defined by a morphism
¢ :U — X, where U is an open neighborhood of 3, in X. Notice that, given an open neighborhood
V of 3, in X and m > 1, we can always shrink U so that ¢*(U) C V for i < m.

A Frobenius lifting ¢ on (X, 3,)) induces a k-linear endomorphism ¢* on Hiy (X, 3,) = Hir(B)
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which is also semi-linear with respect to the Frobenius automorphism of ¢(B) over k. Recall that a
Weil number of weight n (with respect to ¢) is an algebraic number such that the absolute value of
all of its conjugates in C are equal to ¢%. By a result of B. Chiarellotto from [Chi], the eigenvalues

of ¢* on Hz (B) are Weil numbers of weights in the interval [i, 2i].

6.1.1. Lemma. Let X be a special formal scheme over k°, which is the formal completion of
a separated formal scheme of finite type over k° along an irreducible component of its closed fiber
which is proper over E, and let 3 is an open affine subscheme of the smooth locus X of 3. Given a
Frobenius lifting ¢ : (X,,3,) — (X,,3,) and an integer n > 1, there exists an open neighborhood
U of 3, in X,, at which all ¢*, 1 <1i < n, are defined and such that ¢*(U N7~ (x)) C 7~ *(x) for all
1 <% < n and all closed points x € X;.

Proof. Let 3 = Spf(A), k°{T4,..., Ty}’ — A : T; — f; an epimorphism, and V an open
neighborhood of 3, at which all ¢*, 1 < i < n, are defined. One has \(gb*ifj - f]q)(:c)| < 1 for all
1<i<n,1<j<mandxc 3, and we can find an open neighborhood ¢ of 3, in V such that
the above inequalities hold for all points z € U. It follows that |(¢* f — f4')(z)| < 1 for all f € A,
1 <i<nandx €U. In particular, given f € A and x € U, |f(x)| < 1 if and only if | f(¢'(x))] < 1
forall 1 <i < n,ie., m(¢*(z)) = m(x) for all 1 <i < nand x € U. The set U possesses the required

property. n

Assume now that k is an arbitrary closed subfield of C,, and let (X, 3) be a wide germ of a
smooth affine formal scheme over k° which is a lifting of a similar germ over a finite extension of
Qp in k. A Frobenius lifting on (X, 3,) is a morphism of germs ¢ : (X,3,) — (X, 3,) which is
induced by a Frobenius lifting ¢’ on a germ (X', 3) over a finite extension &’ of Q,, in k whose lift
to k is (X,3). The degree deg(¢) of ¢ is that of ¢'. If n = deg(¢), then |(¢* f — f2")(x)| < |flsup
for all f € B=0(X,3,) and x € 3, (where |f]|syp is the supremum norm of f on 3,).

The Frobenius lifting ¢ extends in a unique way to a Frobenius lifting on (X,9),) for every
nonempty open affine subscheme 9) C 3 of the form 9)'®y k°, where 2)’ is a nonempty open affine
subscheme of 3’. Notice that the intersection of all 9),, is the generic point o of 3. The Frobenius
lifting ¢ gives rise to a morphism of germs ¢ : (X,0) — (X,0), and the latter is defined by a
homomorphism of local rings ¢* : Ox » — Ox . A Frobenius lifting at the point o is a morphism
of germs ¢ : (X,0) — (X, o) which is induced by a Frobenius lifting on (X,9),) for a nonempty

open affine subscheme ) C 3.

6.2. A Frobenius structure on the isocrystals E‘(X,3). Let ¢ be a Frobenius lifting on

(X, 3,) which comes from a triple (k’, X', 3’) as at the end of the previous subsection. A Frobenius

91



structure on an isocrystal M over B = O(X, 3,)) is a ¢*-semi-linear homomorphism of B-modules
F: M — M which commutes with V. The homomorphism F' induces a k-linear endomorphism of
the de Rham cohomology groups H!y(M). An isocrystal provided with a Frobeinus structure is
called an F'-isocrystal (see Remark 6.2.2). An unipotent (resp. trivial) F-isocrystal over B is a finite
F-isocrystal which is unipotent (resp. trivial) as an isocrystal. Let E°(X,3) = B C E}(X,3) C

E?(X,3) C ... be the increasing sequence of unipotent isocrystals over B, constructed in §5.5.

6.2.1. Lemma. (i) The isocrystals E*(X,3) can be provided with a compatible system of
Frobenius structures;

(ii) the eigenvalues of F on Hip (E*(X,3)) are Weil numbers of weights in [i + 1,2(i + 1)].

Proof. (i) It suffices to show that, given an F-isocrystal M and a ¢(B)-vectors subspace
V C H}z(M) invariant under the action F, one can extend the Frobenius structure from M
to My. Indeed, let s : V — (M ®p Q5)! be a ¢(B)-linear section that defines My. Then
F(s(v)) — s(F(v)) € V(M) for all v € V, and an extension of F' can be defined by F(v® 1) =
F(v) ® 1+ p(v), where pu: V. — M is a ¢(B)-linear map with F(s(v)) — s(F(v)) = V(u(v)) for all
velV.

(ii) The statement is deduced, by induction, from the result of B. Chiarellotto, cited above,
and the fact that Hjp (E") C Hig(E'/E"™1) = Hig (E'™') @¢(p) Hig(B), where E' = E*(X,3). =

6.2.2. Remark. In the usual definition of a (finite) F-isocrystal one requires that the induced
map F': ¢*M = M ®p g4~ B — M is bijective. All finite F-isocrystals we consider satisfy that

condition.

6.3. A uniqueness property of certain F-isocrystals. Let M C M’ be F-isocrystals over
B such that the quotient F-isocrystal M’/M is trivial, and let V = Ker(H}z (M) — Hlz(M')).
Assume that the eigenvalues of F on H{g(M’'/M) are not roots of unity (and, in particular, the

same is true for the eigenvalues of F' on V).

6.3.1. Proposition. Let N be an F-isocrystal with Hip (N) = lim H3. (N)/W,, where {W,}
is a filtered family of F-invariant ¢(B)-vector subspaces such that the action of F' on each quotient
is of finite order. Then any homomorphism of F-isocrystals ¢ : M — N with V C Ker(H} (M) —
HR(N)) can be extended in a unique way to a homomorphism of F-isocrystals ¢’ : M' — N.

Proof. We set K = ¢(B) and denote by g the Frobenius automorphism of K over k. As a B-
module, M’ can be identified with the direct sum M & (U ® x B), where U = Hy (M’/M). One has
Vuel) e (MepQy)dand F(u®l) = F(u)®1+a(u) for all u € U, where a : U — M is a g-semi-
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linear map. By the assumption, there is a K-linear map 5 : U — N such that o(V(u®1)) = V(5(u))
for all u € U. It follows that
V(F(B(u) = F(p(V(u®1))) = V(e(F(u®1)))
= V(e(F(u) @1+ a(u))) = V(B(F(u) + ¢(a(u))) ,

and so the formula (F o f)(u) = (8o F)(u) + (p o a)(u) + A(u) defines a g-semi-linear map
A:U — HgR(N ). If an extension ¢’ : M’ — N exists, it must provide a g-semi-linear map
B : U — H{iz(N) with B(u) = ¢'(u® 1) — B(u) for all u € U, and the necessary and sufficient
condition for its existence is the validity of the equality ¢'(F(u® 1)) = F(¢'(u® 1)) for all u € U,
which is equivalent to the equality Bo F'— F o B = A. Thus, if we set W = H{y (V) and denote by
Hompg (U, W) and Homgy (U, W) the K-vector spaces of K-linear and of g-semi-linear maps U — W/,
respectively, the required statement follows from the following lemma. (The first case of the lemma

will be used later.)

6.3.2. Lemma. Let K be a finite extension of k, g an automorphism of K over k, W a
K-vector space provided with a g-semi-linear operator F' such that W = 1{£nW/ W, where {W,}
is a filtered family of F-invariant K-vector subspaces, and the action of F' on each quotient W/W,,
is of finite order. Then

(i) given a polynomial P(T') € k[T] with no roots-of-unity roots, the k-linear operator P(F) :
W — W is invertible;

(ii) given a finitely dimensional K-vector space U provided with a g-semi-linear operator G such
that its eigenvalues considered as a k-linear operator are not roots of unity, the k-linear operator
Hompg (U, W) — Homy (U, W) : B+ F o B — B oG is bijective.

Proof. In both cases, it suffices to prove the statements for each quotient W/W, instead of
W, and so we may assume that the action of F' on W is of finite order. Furthermore, the space
W is a union U;c;W; of a filtered family of finitely dimensional K-vector subspaces W; invariant
under the action of F'. Since U is of finite dimension over K, it suffices to prove the statements for
each of the subspaces W; instead of W. Thus, we may assume that dimg (W) < oo and, therefore,
it suffices to prove that the k-linear operators considered are injective. Let m be a positive integer
with F = 1y (and, in particular, g" = 1).

(i) By the assumption, there exist Q(T), R(T) € k[T] with Q(T)P(T) + R(T)(T"™ —1) = 1. If
we substitute F' instead of T', we get Q(F') o P(F) = 1y, and the required fact follows.

(ii) For every n > 1, one has F"B — BG™ = F""Y(FB — BG) + (F" !B — BG"1)G. Thus, if
FB — BG =0, it follows by induction that F"B — BG™ = 0 for all n > 1. Since F" = 1y, we get

B(ly — G™) = 0. By the assumption, the operator 1y — G™ is invertible and, therefore, B = 0. »
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We now return to the situation of §6.2, and let us fix a Frobenius lifting ¢ on (X, 3,).

6.3.3. Corollary. Given two Frobenius structure F' and F’ on E(X,3), there exists a unique

isomorphism of filtered F-isocrystals (E(X,3),F) = (E(X,3),F’). .

Furthermore, let ) be a nonempty open affine subscheme of 3 as at the end of §6.1. We
extend ¢ to a Frobenius lifting on (X,9),) and provide the isocrystals E*(X,9) with a Frobenius

structure with respect to that Frobenius lifting. Let j denote the canonical morphism of germs

(X,9,) = (X, 3y)-

6.3.4. Corollary. There is a unique system of j-homomorphisms of isocrystals E*(X,3) —

E(X,9) that commute with the Frobenius structures. .

6.4. Structure of a commutative filtered Dp-algebra on E(X, 3).

6.4.1. Proposition. The F-isocrystal F(X,3) can be provided with a unique structure of a

commutative filtered D g-algebra which is compatible with the action of F'.
To prove the proposition, we need the following lemma in which E"™ = E™(X, 3).

6.4.2. Lemma. Let N’ C N be F-isocrystals with N satisfying the assumptions of Proposi-
tion 6.3.1 and such that the map Hiy (N') — H3x(N) is zero. Then any pair of homomorphisms
of F-isocrystals E™ @p E"! — N’ and E™ ! @ E™ — N', which coincide on E™~ ! @ E"~1,
can be uniquely extended to a homomorphism of F-isocrystals E™ ®p E™ — N.

Proof. We set M’ = E™ ®@p E™ and denote by M the sub-F-isocrystal of M’ which is the
sum of E™ @p E"~ ! and E™~! ®p E™ in M’. The quotient F-isocrystal M’/M is isomorphic to
the tensor product E™/E™~! @ E"/E™"! and, therefore, it is trivial and, by Lemma 6.2.1(ii),
the eigenvalues of F' on H3g(M'/M) are not roots of unity. Since the induced homomorphism of
F-isocrystals M — N goes through a homomorphism M — N’, the assumption implies that the

map Hig (M) — Hig(N) is zero, and the required fact follows from Proposition 6.3.1. .

Proof of Proposition 6.4.1. We set E* = E*(X,3). Since the canonical maps Hg(E*) —
Hp (E™1) are zero, we can apply Lemma 6.4.2 and construct, by induction, a unique system of
compatible homomorphisms of F-isocrystals E™ @p E™ — E™™" : f ® g — fg. The uniqueness

implies that this operation is commutative. That it is associative is proved in the similar way by
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induction. Namely, to show that the following diagram is commutative

Em™ Rp En ®p El _ Eern ®p El

l l

Em™ ®p En+l SN Em+n+l

one assumes that the corresponding diagrams for the triples (m,n,l—1), (m,n—1,1) and (m—1,n,1)
are commutative, and applies Proposition 6.3.1 to M’ = E™ ®p E" ® g E' and the sub-F-isocrystal
M which is the sum of E™ @5 E" ®pg E'™!, E" @ E" ' ®p E' and E™ ! ®5 E" @5 E' in M'.
(Notice that the quotient M’/M is canonically isomorphic to the tensor product E™/E™ ! @p
E"/E"1 ®@p E'/E'"1)) Thus, E is provided with a unique structure of a commutative filtered
B-algebra on F = E(X,3) which satisfies the Leibniz rule and is compatible with the action of

Frobenius. .

6.4.3. Corollary. If dim(X) = 1, there is an isomorphism of filtered D-algebras E(X,3) =
Shp which is compatible with the isomorphism of Lemma 5.4.4(iii).

Proof. Let ¢ be a Frobenius lifting on (X, 3,). We claim that the isocrystals Sh’y admit a
system of compatible Frobenius structures, which is unique up to a unique automorphism. Indeed,
the claim is trivially true for n = 0, and so assume n > 1 and that Sh%_l is already provided
with a Frobenius structure. If {vi,...,v,,} is a basis of the k-vector space Hip(B), then to
construct F', it suffices to define the images of the elements v;, . i, = v, ® ... ® v;,. Since

Vi, i) = Uiy in, @ 8(v;,) € Shy, an element F(V(vi,.. 4,)) of Sh’s ' ®@p QL is defined

,,,,, i) = w.
The ¢*-semi-linear map F' extended to Sh’s commutes with V and, therefore, it is a required one.
The uniqueness of F' follows from Proposition 6.3.1 and the fact that the eigenvalues of F' on
H}p (Shly) = Hig (B)®(™+Y are Weil numbers of weights at least n + 1.

Thus, the identity map E°(X,3) = B — Sh% = B extends in a unique way to an injective
homomorphism of filtered F-isocrystals and B-algebras E(X, 3) 5 Shp. Assume that for some n >
1 the map E"1(X,3) — Sh%_1 is an isomorphism. Then it induces an isomorphism between their
first de Rham cohomology groups. Since Gr"(E(X,3)) = Hig(E" (X, 3)) ® B and Gr"(Shp) =
H}i (Shy 1) @4 B, it follows that E™(X,3) — Sh%. That it is compatible with the isomorphism of

Lemma 4.4.4(iii) is easy. .

6.5. Filtered F-isocrystals EX(X,3) and F*(X,3). Let K be a commutative filtered
k-algebra. We denote by E¥ (X, 3) the filtered F-isocrystal E(X,3) ®; K. It is a commutative
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filtered B-algebra with Gr'(E¥ (X, 3)) = Gr'(E(X,3)) ®; Gr'(K) and, given a homomorphism of
filtered k-algebras K — K', there is the evident isomorphism of filtered B-algebras and of isocrys-
tals EX(X,3) @k K’ 5 EX'(X,3). Notice that H{ (EX(X,3)) = ¢(B) @, K =C%¥(X, 3,) for
all i > 0. If the algebra K possesses the property dimy(K*) < oo for all i > 0, then each E%(X, 3)
is a unipotent F-isocrystal isomorphic to the direct sum @®%_o(E7(X,3) @ K*~7/K'7771) and,
for i > 1, and the quotient F¥-¢(X,3)/EX1(X, 3) is isomorphic to the trivial F-isocrystal

_o(BY(X,3)/E1(X,3)@ K7 /K" 7!) with K" = 0 and E~'(X,3) = 0. If K is arbitrary, it
is a union of filtered subalgebras with the above property (e.g., of finitely generated k-subalgebras),
and so each EX#(X, 3) is a union of unipotent sub-F-isocrystals.

Let now X be a proper marked formal scheme over k°, 3 an open affine subscheme of i, and
X\ an element of K'. Given an open neighborhood U of o = oy, let RM(%,U) denote the set of
all functions f € N5 (U) such that fr € LM (U N7~ (x)) for every closed point x € X,, and
let RM(X,3,) denote the inductive limit of RM(X,U) taken over all open neighborhoods of 3,
in X,. We also denote by R}*(X,3,) the similar inductive limit of L*¢(U/ N 7~!(x)). Lemma
6.1.1 implies that both RM (X, 3,) and Ry (X, 3,) are F-isocrystals over B. Notice that there is a
canonical projection RM (X, 3,) — Ry (X, 3,) and, if x € 3,, then R} (X,3,) = LM (r 7 (x)) =
O(r (%)) @ K*.

Assume in addition that dim(X,) = 1. In this case X,, is isomorphic to a smooth basic curve
X;n\ U™, X", m > 0, where X is a connected projective smooth curve over k°, X" are affinoid
subdomains lying in pairwise different residue classes of closed points x1,...,x,, € Xs = X, and, if
an isomorphism of each residue class 71 (x;) with an open disc of radius one with center at zero over
kx, is fixed, then each X" is isomorphic to a closed subdisc of radius r; € |k*|, r; < 1, with center at
zero. If X,\35 = {x1,...,X,}, n > max(m, 1), then a fundamental system of open neighborhoods of
3y in X, is formed by sets of the form &A™\ Up, X} with X}* C 7~!(x;) having the same meaning
and r; < t; < 1. Since each open subset 7~!(x;)\X}* is isomorphic to an open annulus over ky,,
it follows the homomorphisms Hip (RM(X,3,)) — Hig(RM"11(X,3,)) are zero. One also has
HOz (RM(X,3,)) = Cg’”(%, 3y)- Thus, the assumptions of Proposition 6.3.1 are satisfied and,
therefore, the canonical injective homomorphism E°(X,, 3) = O(%X,,3,) — RM(X, 3,) extends in
a unique way to a compatible system of injective homomorphisms of F-isocrystals E*(X,,3) —
RA’i(%,Sn), 1 > 0, which, by Lemma 6.4.2, takes products to products. The latter extends by
linearity to a homomorphism of filtered F-isocrystals Ef(X,,3) — R(X,3,), i > 0, which
also takes products to products. In the same way one constructs, for every closed point x € Xg,

a homomorphism of F-isocrystals EX(X,,3) — Ry%(X,3,) which coincides in fact with the
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composition of the latter homomorphism with the canonical projection RM (X, 3,) — Ry (X, 3,).

6.5.1. Lemma. In the above situation, the homomorphisms E*(X,,3) — Ry‘(X,3,)
are injective for all closed points x € X, and, in particular, the homomorphism EX(%,,3) —
RM{(X,3,) is injective.

Proof. The statement is evidently true for i = 0, and so assume that ¢ > 1 and that it is true
for i — 1. Let us write E* and EX? instead of E‘(X,,3) and EX(X,, 3), respectively, and let E
denote the B-submodule of E? generated by E%#~1 and E°®;, K*. It is a sub- F-isocrystal of B
Notice that the quotient EX+/E is isomorphic to the F-isocrystal Oy (B /BT @ K7 K971,
and one has HgR(E) = HY% (EX"). Thus, to prove the statement it suffices to verify the injectivity
of the induced homomorphism E — R (X, 3y)- By the induction hypothesis, the latter follows
from the trivial fact that, for an open annulus with center at zero Y, the intersection of O(Y) @y K*

and LM ~1(Y) in LM (Y) coincides with O(Y) ®@;, K 1. .

We denote by F*¥(X, 3) the image of Ef(X,,3) in RM (X, 3,)) and by f%”ia the union of the
images of FM4(%,3) in mg?o taken over all nonempty open affine subschemes 3 of x (see Corollary
6.3.4). We now describe a primitive of a one-form w € F¥(X,3) ®p O} in FMHL(X,3). Recall
that, by Lemma 6.2.1(ii), there exists a polynomial P(T") € k[T, whose roots are Weil numbers of

weights > 1, with P(¢*)w € d(FM(X, 3)).

6.5.2. Lemma. (i) There exists a function f € R**1(X,3,), unique up to an element of
C*(%,,3,), such that df = w and, for every polynomial P(T) € k[T with no roots-of-unity roots
and P(¢*)w € d(FM(X,3)), one has P(¢*)f € F(X,3);

(i) the function f is contained in FM+1 (X, 3).

Proof. (i) We know that a function f’ € RMT1(X,3,) with df’ = w exists. Let P(T) € k[T]
be a polynomial with no roots-of-unity roots such that P(¢*)w = dg for some g € F»*(X,3). The
function h = P(¢*)f' — g lies in RMT1(X, 3,) and, since dh = 0, it follows that h € C?Hl(f{, 3n)-
By Lemma 6.3.2(i), the map P(¢*) : C?Hl(f{, 3,) — Cﬁ’ﬂrl(%7 3,,) is a bijection. We can therefore
find an element o € Cg’iH(.%, 3,) with P(¢*) f'—g = P(¢*)a. The function f = f’—a is contained
in RMFH(X, 3,,) and satisfies the required properties. The bijectivity of the above map implies that
f is uniquely defined by the element g and the polynomial P.

We claim that the function f does not depend on the choice of g and P up to an element of
CM(Xy,3,). Indeed, let ¢’ be another element of FM (X, 3) with P(¢*)w = dg’, and let f’ be the
function from R**1(X,3,) with df’ = w and P(¢*)f’ = ¢’. Since d(g' — g) = 0, it follows that
g'—g € C%¥(%,,3,). Onthe other hand, f'—f € Ci'"" (%, 3,) and P(¢*)(f'—f) = ¢'—g. Since the
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actions of P(¢*) on Ch'" (X, 3,) and C%¥(X,, 3,)) are bijective, it follows that f'—f € C54(X,, 3,).
Furthermore, let Q(T) be the monic polynomial of minimal degree with Q(¢*)w € d(F (X, 3)).
It is clear that Q(T') divides P(T'), and so let P(T) = Q(T)Q'(T), and let Q(¢*)w = dg’ for some
g € FM(X,3). We have P(¢*)w = d(Q'(¢*)g’). If f is the function from RM*T1(X,3,) with
df’ = w and Q(¢*)f' = ¢’, then P(¢*)f' = Q'(¢*)¢’, and the independence on P follows from that
on g.

(ii) We know that a function f € FMT1(X, 3) with df’ = w exists and that f/ € RMT1(X, 3,).
If P(¢*)w = dg with P and g from (i), then P(¢*)f’ — g € F»*Y(X,3) and d(P(¢*)f' —g) = 0,
ie., P(¢*)(f — f) € CK1(%,3,). Since the action of P(¢*) on the latter space is bijective, the

required fact follows. .

6.5.3. Remark. The construction of Lemma 6.5.2 is due to R. Coleman. His methods will be
also used to generalize it to higher dimensions and to show, in particular, that the sub-isocrystals

FM(X,3) C RM(X,3,) do not depend on the choice of the Frobenius lifting ¢.
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§7. Construction of the sheaves Sy

The construction of the sheaves S))‘(’" is carried out by the double induction on m = dim(X)
and the number n. Assume that the sheaves S;‘(’i with all required properties exist for all pairs
(4, X) with 0 < i <mn, ori=n+1and dim(X) < m. In order to construct the sheaves S)A(’nJrl for X
of dimension m+ 1, we have to construct a primitive of a closed one-form w with coefficients in S;‘(’”
in an open neighborhood of every point of X. For this we make additional induction hypotheses
that describe the form of a function f € S»(X) in an étale neighborhood of a point z € X. If
s(zr) < dim(X) then, given a smooth morphism ¢ : X — Y to a smooth k-analytic space Y of
dimension dim(X)—1 such that s(y) = s(x) for y = ¢(y), there exists an Y-split étale neighborhood
¥ X' — X of x over an étale morphism Y’ — Y such that ¢*(f) is contained in the O(X'’)-module
generated by functions of the form gLog*(h)? with g € S»~7(Y") and h € O(X’)*, and a primitive
of w at such a point z is easily found among functions of a similar form. If s(z) = dim(X), there

exists a marked neighborhood ¢ : X, — X such that ¢*(f)| € LM(r~1(x)) for all closed

=1 (x)
points x € X, and, for some open affine subscheme 3 C %, the restriction ¢*(f) ‘ X3, is contained
in the image GM(X,,3) of an injective morphism of F-isocrystals EX(X,,3) — SM(X,,3,)
provided by the construction of §6. In fact, there is one more technical assumption as well as the
hypothesis that, if dim(X,) = 1, GM¥(X,),3) coincides with the image of E*¥(X,,3) under the
homomorphism constructed at the end of §6. The induction hypotheses reduce the problem of
constructing a primitive of w at x to that of constructing a primitive of a closed one-form which is
defined on X,, and possesses certain properties. The latter is done in a way which is a generalization
of R. Coleman’s construction; the miraculous fact is that the primitive does not depend on all of the
objects used in its construction (marked neighborhoods, Frobenius liftings and so on). The proof

is based on the geometrical properties of analytic spaces established in §2 and §3 and in [Ber7] and

[Ber9].

7.1. Induction hypotheses. We construct the Dx-submodules S))‘(’” of ‘ﬁg" by the double
induction on 7 > 0 and m = dim(X) > 0 (and then define the filtered Dx-subalgebra S of MY as
the inductive limit of all S;‘(") Notice that it is enough to consider only pure dimensional smooth
k-analytic spaces, and we assume that all the spaces considered are such ones.

First of all, if n = 0 then S;‘(’O = O§,07 and if m = 0 then S;‘(’" = (’)ﬁg’”. Given m,n > 0,
assume that the Dx-modules S;‘(’i, with the induction hypotheses we are going to specify, are

already constructed for all pairs (i, X) with 0 <i < n, or i =n+ 1 and dim(X) < m, and we will
construct the Dx-modules S;\(’"H with dim(X) = m 4 1. The induction hypotheses include the
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properties of Theorems 1.6.1 (with the same condition on (i, X’) in the property (f)); the following
property

(2) S)}‘(’i~5)>‘(’j - S))‘(’H'j for all (i,5,X) withi+j <mn,ori+j=n+1and dim(X) < m;

the hypothesis on the uniqueness of the sheaves S;‘(’i with the above properties; the properties (i)-
(iii) of Theorem 1.6.2, and additional hypotheses (IH1)-(IH3). Before formulating them we make a
preliminary observation.

Let Qéfl + denote the subsheaf of closed one-forms Ker(Q}SA,i’ < 4, Q% i X), where 0 < ¢ <n
or i =n+ 1 and dim(X) < m. Notice that if 0 <i <mn —1or ¢ =n and dim(X) < m then, by

the property (c), Q}Sfll < C dS)A(’iH. Let Pj\(’iﬂ denote the preimage of Q}Sfll ~ in Sg\(’iH. By the

property (d), S;‘(’Hl is generated over Ox by local sections of P;‘(’Hl. We have an exact sequence

K,i+1 A+l d 1,cl
0—Cxy — PY _)QSM,X_>O'

It follows that, if H'(X,cx) = 0, then every closed one-form w € Q}S’fll (X) has a primitive in

PA+1(X) which is defined uniquely up to an element of C¥-*+1(X). Similarly, if Y is a strictly
affinoid domain in X with H*(Y,cy) = 0, then every closed one-form w € Qéfl (X,Y) on the germ
(X,Y) has a primitive in PM (X, Y).

Suppose now we are given a wide germ of a smooth affine formal scheme (X, 3) such that,
if i = n, then dim(X) < m + 1, and let B = O(X,3,). Since 3 is smooth over k°, all of the
connected component of 3n®kk’ are contractible for any non-Archimedean field k' over k and,
therefore, H9(3,), Csn) =0 for all ¢ > 1 (see [Ber9, §8]). By the above remark, if 0 <i<n —1, or
i = n and dim(X) < m, every closed one-form w € Qéfl (X, 3,) has a primitive in P**1(X,3,) C
SMT1(X,3,). Thus, if the germ (X, 3) is a lifting of a similar germ over a finite extension of Q,, in
k, then by the construction of §6.3, given a Frobenius lifting ¢ on (X, 3,,), there is a unique system
of injective homomorphisms of F-isocrystals E*(X, 3) — S*(X, 3,) for 0 <i <n,ori=n+1 and
dim(X) < m. Lemma 6.4.2 implies that these homomorphisms take the product f-g € E**7 (X, 3)
of two elements f € E(X,3) and g € E’(X, 3) to the product of the corresponding functions in
SMTI(X,3,) fori+j <m,ori+j=n+1and dim(X) < m. The above homomorphisms give
rise to a homomorphism from the F-isocrystal EX-*(X, 3), introduced in §6.5, to S™ (X, 3,).

7.1.1. Lemma. The homomorphism of F-isocrystals E¥'(X,3) — SM(X, 3,) is injective.

Proof. The statement is proved in the same way as Lemma 6.5.1. Namely, it is evidently true
for i = 0. Assume it is true for i — 1 with 4 > 1, and let us write E* and E¥+¢ instead of E*(X, 3)
and E%(X,3), respectively. Let E denote the B-submodule of EX:i generated by EX*~1 and
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E° ®;, K'. Tt is a sub-F-isocrystal of E:%. Notice that the quotient EK’/E is isomorphic to the
F-isocrystal ®%_, (E7/E/~' @), K*~7/K'~~1), and one has HY: (E) & HO% (EX). Thus, to prove
the statement it suffices to verify the injectivity of the induced homomorphism E—S8 M(X, 3n)-
The latter follows from the injectivity of the homomorphism EX—1 — SM=1(X| 3,) and the trivial
fact that the intersection of the image of E°® K’ in t'*(X, 3,) with Nl (x, 3,,) coincides with
E°@ K1, .

Let GM(X, 3) denote the image of EX¥(X, 3) in S™(X, 3,). It does not depend on the choice
of the Frobenius lifting and depends functorially on (X, 3) since G(X, 3) is generated over B
by the primitives of all closed one-forms from G*~1(X, 3) @ g Q% which, by the property (b), are
defined uniquely up to an element of C¥+*(X, 3,)) = ¢(B)®; K*. Notice that GM(X, 3)-GM (X, 3) C
GMTI(X,3) fori+j<m,ori+j=n+1and dim(X) < m.

Till the end of this section we consider only germs of the form (X,,3), where X is a proper
marked formal scheme over k° and 3 is a nonempty open affine subscheme of X. (Recall that if i = n,
we assume that dim(X,) < m +1.) Let g%; denote the union of GM(X,, 3) in S%Z,a C ‘ﬂgn’a
taken over all nonempty open affine subschemes 3 of X (see Corollary 6.3.4).

Recall that in the case dim(X,)) =1 (and an arbitrary ¢ > 0) we considered a similar injective
homomorphism of F-isocrystals EX4(%,,3) — RM(X, 3,) C M (X, 3,), denoted by FN(X, 3)
its image and by .7-"%’; the corresponding union in ‘ﬁ;{:nla (see §6.5). Here is the first of the additional

induction hypotheses.
(IH1) If dim(X,) = 1, then GM(X,, 3) = FM(X, 3).

The property (IH1) implies that the sub-F-isocrystals FM(%,3) C ‘JIK’i(%n,Bn), which are
defined in §6.5 for all ¢ > 0, do not depend on the choice of the Frobenius lifting and are functorial
on (X, 3) at least for i <n.

The last two of the additional induction hypotheses describe the local form of a function f €
SM(X) in an étale neighborhood of a point € X in the cases s(x) < dim(X) and s(z) = dim(X),
respectively.

(IH2) (split case) If s(z) < dim(X) then, given a smooth morphism ¢ : X — Y to a smooth
k-analytic space Y of dimension dim(X) — 1 with s(y) = s(z) for y = ¢(x), there exists an Y-
split étale neighborhood ¢ : X’ — X of x over an étale morphism Y’ — Y such that ¢¥*(f) €
Yoo Pl (M (Y))-LM I (X).

(IH3) (marked case) If s(z) = dim(X), there is a marked neighborhood ¢ : X,, — X of  with

the following properties:
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(TH3.1) ¢*(f) € RM(X) (see the end of §3.1);

(IH3.2) ¢*(f) € G}

(IH3.3) for every stratum closure Y C X, there exists a small open affine subscheme g C %
(see §3.5) with @Sﬂj) # () and the following property: if ) = X, (resp. ) is arbitrary), there is a p;-
discoid (resp. pi-semi-annular) open neighborhood V of @y in ©y, where ' = YN, such that
for U = p1(V) one has p(¢*(£)) € pf (SMU)) (resp. pi(e" (1)) € kg pF(SMU))-LAI(V)),

where p; and p, are the canonical projections V — U and V — X, respectively.

In the property (IH3), if the proper marked formal scheme X is defined over &’°, then R (X)
and g%; are considered for the k’-algebra K ®j k' and the element A @ 1.

The properties (IH2) and (IH3.2) can be used to describe the stalk 53\(% of the sheaf Sy at
a geometric point T of X over a point € X. Namely, in the situation (IH2), if 7 is a geometric
point of Y over the point y € Y which is under the geometric point Z, let ¢ (Sf}%) denote the
Ox z-subalgebra of S;\(% generated by the functions ¢*(g) with g € S;}% In the situation (IH3),
if 7 is a geometric point of X, over the point o and the geometric point T, let g:)%; denote the

inductive limit of g%f , taken over commutative triangles
N

.'f;] — X,

NS
[
where the upper arrow is a marked neighborhood of the point ¢ that comes from a morphism of
formal schemes X’ — X, and the image of the left arrow is the generic point ¢’ of X’. The statements

(i) and (ii) of the following lemma are easy consequences of (IH2) and (IH3.2), respectively. Notice

also that, by Lemma 1.4.2, the sum in the second part of (i) is a direct one.

7.1.2. Lemma. (i) In the situation of (IH2), if t(y) = t(z) then S))‘(% = go#(S})}%), and
if t(y) < t(x) then S;‘(% = 23:0 (p#(Si}%)LogA(f)i_j, where f is a function from O% , with

[f(@)| & VIH(y)*|;

(ii) in the situation of (IH3), one has S;‘(’% = g:)%;.

7.2. Split one-forms. Let X be a smooth k-analytic space. If ¢ = n, we assume that
dim(X) < m + 1. We say that X is split if it is provided with an isomorphism with Y x D or
Y x B, where Y is a smooth k-analytic space of dimension dim(X) — 1 whose sheaf of analytic
one-forms O}, is free over Oy, and D and B are open disc and annulus, respectively. For a split
space X, let p; be the projection X — Y. We say that a closed one-form w € Q}SA(X) is split if it
is contained in Q},(X) with M = 22:0 P (SM(Y))- LM (X) and admits a primitive f,, in N =
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Z;EJ P (SM(Y)) - LM+17(X). Notice that if X is isomorphic to Y x D then M = p? (SMi(Y))
and N = p¥ (S (V).

7.2.1. Lemma. Let X be a smooth k-analytic space such that dim(X) < m + 1 ifi = n,
and let w € Q}Sfl (X). Then every point x € X with s(x) < dim(X) has an étale neighborhood
¢ : X' — X such that X" and ¢*(w) are split.

Proof. First of all, we can shrink X and assume that w = Zizl fow, with f, € SM(X) and
w, € QY(X). Furthermore, by Proposition 2.3.1(i), we can shrink X and find smooth morphism
¥ : X — Y to a smooth k-analytic space Y of dimension dim(X ) —1 with s(y) = s(x) for y = ¢(x).
By the property (IH2), we can find, for every 1 < v < [, an Y-split étale neighborhood ¢, :
X, — X of x over an étale morphism Y,, — Y such that ¢*(f,) € 22:0 T (SM(Y))-LM I (X,).
Corollary 2.3.2 implies that there exists an Y-split neighborhood ¢ : X’ — X over Y/ — YV
that refines all of the neighborhoods X, — X. It follows that ¢*(w) € Q},(X’), where M =
Zj‘:o pF(SM(Y)) - LMI(X'). Of course, we may shrink Y’ and assume that the sheaf Q1
is free over Oy-. Finally, from Propositions 1.3.2 and 1.5.1 it follows that ¢*(w) = dg + pi(n)
with g € N = Z;J;Bpfé(SA’j(Y/)) - LMH1I(X') and a closed one-form 1 € Q%,,(Y’). By the

induction hypotheses, we can shrink Y’ and assume that 7 = dh for some h € S»*1(Y”), and we

get p*(w) =df for f = g+ pi(h) € N, i.e., the one-form ¢*(w) is split. .

7.2.2. Lemma. Let X be a split smooth k-analytic space (with p; : X — Y) such that
dim(X) <m+1 if i =n, and let w be a split closed one-form from Q%, ,(X). Then

(i) the primitive f, € N = Z;E)pf(S’\J(Y)) - LMFI=3(X) is unique up to an element of
CRHL(X);

(i) ifi <n —1, or i =n and dim(X) < m, then f, € SM*1(X);

(iii) given a split smooth k-analytic space X' with dim(X') < m + 1 if i = n and a morphism
¢ : X' — X such that the one-form ¢*(w) is also split, one has fu(.) — ¢*(fu) € CFH(X").

Proof. (i) and (ii). If i < n—1or i = n and dim(X) < m (as in (ii)) then, by the
induction hypotheses, one has N ¢ S**1(X). This implies (i) (in the case considered) and (ii).
Assume therefore that ¢ = n and dim(X) = m + 1. If m = 0, X is an open disc or annulus and
N = LM*HL(X), and the statement is trivial. Assume that m > 1, i.e., dim(X) > 2, and that
there is another primitive f/ € N. By Corollary 4.1.3(ii), it suffices to show that for any morphism
v : Z — X from an elementary k’-analytic curve Z, where k' is a finite extension of k, one has
V*(fo— f) € CK'H1(Z), where K’ = K @y, k'. Since both ¢*(f,,) and ¢*(f/,) are functions from
SN H1(Z), the induction hypotheses imply (i).
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(iii) Let g = forw) — ¢*(fo). If i <n—1, then g € SMT(X’), and the statement follows
from the induction hypotheses. Assume therefore that ¢ = n. If m = 0, then each of X and X' is
either zero-dimensional, or an open disc or annulus, and in all of the cases one has g € LM+ (X"),
and the statement follows. If m > 1, then as above it suffices to show that for any morphism
v : Z — X from an elementary k’-analytic curve Z, where k' is a finite extension of k, one has
Y*(g) € CK""H(Z), where K/ = K ®; k’. But this again follows from the induction hypotheses
since ¢*(g) € SM"(Z). .

7.3. Marked and weakly marked one-forms. Let X be a proper marked formal scheme
over k°. If i = n, we assume that dim(X%,) < m + 1. We say that a closed one-form w € Qg . (%)
is marked if it satisfies the following properties:

(MF1) w € Qp,.,(X) (see the end of §3.1);

(MF2) there exists a Frobenius lifting ¢ at the point 0 = oy (see the end of §6.1) and a
polynomial P(T') € k[T] with no roots-of-unity roots such that P(¢*)w, € dS%’;U;

(MF3) for every stratum closure ) C X, there exists a small open affine subscheme 2 C X
(see §3.5) with P, N Y # () and the following property: if Y = X, (resp. ) is arbitrary), there is
a pp-discoid (resp. pi-semi-annular) open neighborhood V of ®ys in ®y with )/ = Y NYY, and

p3(w) € Q3,(V), where M = pi (SN (U)) (vesp. M = 3,_ p¥ (SN (U))-LM (V) and U = py (V).

7.3.1. Lemma. Let X be a smooth k-analytic space such that dim(X) < m + 1 ifi = n,
and let w € Q}sfl (X). Then every point x € X with s(x) = dim(X) has a marked neighborhood
¢ : X, — X such that the closed one-form ¢*(w) is marked and in fact p*(w), € ggé;@%M Q-}fmﬂ'

Proof. We can shrink X so that n = 22:1 fimj with f; € SM(X) and n; € Q(X). By
Propositions 2.1.1, Corollary 3.3.2 and the property (IH3), we can find a marked neighborhood
¢ : X, — X of x such that all ¢*(f;) possess the properties (IH3.1)-(IH3.3) on X,. We claim
that ¢*(w) is marked. Indeed, the properties (IH3.1) and (IH3.3) imply (MF1) and (MF3). The
property (IH3.2) implies that ¢*(w), € g%; ®O3€w Q.}{m . In its turn, the latter implies that for

any Frobenius lifting ¢ at o there exists a polynomial P(T') € k[T] whose roots are Weil numbers

with weights in [1,2(i + 1)] and such that P(¢*)¢p*(w), € dg%i C dS%i , 1.e., (MF2) is true. =
Neg 1,0

Given a smooth k-analytic space X such that if ¢ = n then dim(X) < m + 1, we introduce the

following D x-submodule of ‘ﬁ?”l:

i

SN MNi ANitl—j

Sy = g Sy - Ly .
j=0
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Notice that if i < n —1 or ¢ = n and dim(X) < m, then g’;‘(’ C S;\(’Hl. In any case, given a

morphism ¢ : X’ — X as in the property (e) with dim(X’) < m+1if i = n, then (p#(gg‘cl) C gg\(,,l

7.3.2. Lemma. Ker(gs\c’i N Q%SVA C x

Proof. If i < n—1or i =mn and dim(X) < m, the statement follows from the induction

) = L,
hypotheses since g))‘(z C S;‘(’Hl. Assume therefore that i = n and dim(X) =m + 1.

Case m =0, i.e., dim(X) = 1. Let f € S™(X) be such that df = 0. It suffices to show that
every point € X has an étale neighborhood ¢ : X’ — X such that p*(f) € C»"T1(X’). Replacing
X by an étale neighborhood of z, we may assume that f = Z;’L:o gjhj, where g; € S (X) and
hj € LA"H1=3(X). If x is not of the type (2), the property (IH2) implies that there is a finite
extension k' of k and an open subset X’ C X ® kK’ such that the induced morphism ¢ : X' — X
is an étale neighborhood of the point = and, if « of type (1) or (4) (resp. (3)), X’ is isomorphic
to an open disc (resp. open annulus) with center at zero over &’ and ¢*(g;) € L (X’) for all
0<j<n. Weget o*(f) € LM*+(X’), and the required fact follows. Assume now that the point
x is of type (2). By Propositions 2.2.1 and 2.4.1 and the properties (IH1) and (IH3), there exists a
marked neighborhood ¢ : X,, — X of x such that ¢*(g;) € g%ja C .7:;%”]0 for all 0 < j < n. We get
©o*(f) € f%’:frl, and Lemma 6.5.1 implies the required fact.

Casem > 1, i.e., dim(X) > 2. By Corollary 4.1.3(ii), it suffices to show that for any morphism
¢ : Y — X from an elementary k’-analytic curve Y one has o*(f) € CX "1(Y), where k' is a finite
extension of k and K’ = K @ k. Since o*(f) € S*(Y) C S*"T1(Y), the induction hypothesis

implies the required fact. .

In the situation of the beginning of this subsection, we say that a closed one-form w € Q}S v (Xy)
is weakly marked if it satisfies the properties (MF1), (MF3) and the following weaker form of the
property (MF2):

(1\71\]?/2) there exists a Frobenius lifting ¢ at o and a polynomial P(T') € k[T] with no roots-of-
unity roots such that P(¢*)w, € dg%:a

The usefulness of weakly marked one-forms will be seen in Proposition 7.4.3. Notice that if
the property (MF2) (resp. (]\/[F2)) holds for a Frobenius lifting ¢, then it holds for any Frobenius
lifting ¢’ with ¢/ = ¢! or ¢ = ¢’', where [ is a positive integer.

1,cl
SXii

property (MF2) (resp. (M\F/Q)) holds for a polynomial P and a Frobenius lifting ¢, then it holds

7.3.3. Proposition. Let w € Qgy,;(X,) be a marked (resp. weakly marked) one-form. If the

for the same polynomial P and any other Frobenius lifting ¢’ of the same degree as ¢.
Let w € Q}Sfll (X%,,) be a closed one-form that possesses the property (MF3) for the maximal
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stratum closure X;. Suppose we are given a closed subfield ¥’ C C,, a proper marked formal
scheme X' over k'° with dim(X;) < m+1if i = n, an embedding of fields k < k', and a morphism
of formal schemes ¢ : X' — X over the embedding k° < k’°. Suppose also we are given a filtered
k'-algebra K’ and a homomorphism of filtered algebras K — K’ over the embedding k — &’ that

takes \ to an element N € K.

7.3.4. Lemma. Assume that ¢ is dominant, i.e., ¢(c’) = o, where o and o’ are the generic
points of X and X', respectively. Then for every pair of Frobenius liftings ¢ and ¢' of the same

degree at o and o', respectively, and every j > 0 one has
* j * * * : )\,,i
§ (" (@)ar) = (6 (W))or € dSY
n’

Proof. Let 2) be a small open affine subscheme of X from the property (MF3) (for the maximal
stratum closure Xg). Furthermore, let 3 and 3’ be open affine subschemes of xn ) and }OI/ with
¢(3’) € 3 and such that ¢ and ¢’ are Frobenius liftings of the germs (X,,3,) and (X7, 3;,), and
let ¢ and U’ be open neighborhoods of 3, and 3;] at which the morphisms ¢’ and ¢’ I are defined,

respectively, and the sheaf Q) is free over Oy. Consider the morphism of analytic spaces
Y= (pod” ¢l op) U — Xy x Xy .

Since the morphisms between closed fibers 3’ — 3, induced by po¢’ I and @’ o coincide, it follows
that 9, (3;7) CD3CDy and, therefore, v; (3;7) is contained in an open neighborhood V of D3 in
Dx. By Proposition 3.5.1 and the property (MF3), we can shrink V and U and assume that V is a

p1-discoid open neighborhood of D3 in Dy, U = p1(V) and p5(w) € Q; (V). The one-form

b
1 (SrHu)
considered coincides with ¢ (p}(w)—p5(w)). Hence it suffices to show that pj(w)—p3(w) € dSM (V).
But the restriction of the latter one-form to the diagonal A(U) is zero, and therefore the required
fact follows from Proposition 1.3.2 applied to the surjective discoid morphism p; : V — U and the

Dy-module SN (U). .

Proof of Proposition 7.3.3. We apply Lemma 7.3.4 to the identity morphism X — X and the
Frobenius liftings ¢ and ¢/. If P(¢*)w, € dSa' (resp. dSa’ ), it follows that P(¢/*)w, € dSa’
X, X, X, .0

(resp. d;S‘V%ZIU) .

7.4. Construction of a primitive of a weakly marked one-form. Let X be a proper
marked formal scheme over k°. If i = n, we assume that dim(X,) < m + 1. Furthermore, let
w € 05, (%;) be a closed one-form that possesses the properties (MF1) and (MF2) (resp. (MF2)),
and fix a Frobenius lifting ¢ at o for which (MF2) (resp. (1\7[F2)) holds.
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7.4.1. Proposition. (i) There exists a function f, € RM*1(X), unique up to an element
of CX¥(X,) (resp. CKT1(X,)), such that df,, = w and, for every polynomial P(T) € k[T with
no roots-of-unity roots and P(¢*)w, € dS g  (resp. dS: 7:,0)’ one has P(¢*)(fu)s € S 4  (resp.
S¢' s

(ii) if w also satisfies (MF3), f., does not depend on the choice of the Frobenius lifting ¢.

Proof. By Corollary 3.1.5, a function f’ € RM*1(X) with df’ = w exists. Let P(T) € k[T]
be a polynomial with no roots-of-unity roots such that P(¢*)w, = dg for some g € S§z70 (resp.
g%;g) Then for the function h = P(¢*)f! — g one has dh = 0, and Lemma 7.3.2 implies that
heCh'(%,0). By Lemma 6.3.2(i), the map P(¢*) : Ch' " (%) — Ch'" T (%,0) = Ch " 1(%) is
a bijection. We can therefore find an element o € CK LX) with P(¢*)f. — g = P(¢*)a,. The
function f,, = f' —a is contained in R»**1(X) and satisfies the required properties. The bijectivity

of the above map implies that f,, is uniquely defined by the element g and the polynomial P.

We claim that, up to an element of CM(X,) (resp. CMVL(X,)), the function f, does not
depend on the choice of g and P and, if w satisfies (MF3), of the Frobenius lifting ¢.

Let ¢’ be another element of S-%z,a (resp. g-%j,rf) with P(¢*)w, = dg’. Then d(¢’—g) = 0. The
induction hypothesis (resp. Lemma 7.3.2) implies that ¢’ — g € CI%{’:J (resp. C?j;l). By Lemma
3.1.1, the element g’ — g is the restriction of a unique element from C%¢(X,) (resp. C*1(X,)).
If f'is the function from RM*1(X) with df’ = w and P(¢*)f. = ¢, then f' — f € C?Hl(%)
and P(¢*)(fl — fo) =9 —g € C;’;’U (resp. CL& ’H), where f = f,. Since the actions of P(¢*)

X,
on Ch'*(%x,) and Cg’ia (resp. CI%{’ i ') are bljectlve, it follows that f' — f € C&¥(X,) (resp.
CHrtL (X))

Furthermore, let Q(T') € k[T] be the monic polynomial of minimal degree with Q(¢*)w, €
d‘S‘:’j\,é:?(7 (resp. dem ). It is clear that Q(T) divides P(T), and so let P(T) = Q(T)Q'(T). Let
Q(¢*)wy = dg’ for some ¢' € S%’f]’o (resp. g%:o) We have P(¢*)w, = d(Q'(¢*)g"). If f'is
the function from RM*1(X,) with df’ = w and Q(¢*)f, = ¢/, then P(¢*)f. = Q'(¢*)g’, and the

required fact follows from the previous paragraph.

Finally, let ¢’ be another Frobenius lifting at o, and let f/ be the corresponding primitive.
Assume first that ¢/ = @' for some integer [ > 1. If P(T) = [[;(T — ;) with o; € k%, the
polynomial Q(T) = [[;(T — o ) has coefficients in k, and one has Q(T') = P(T)P'(T) for some
P'(T) € k[T). Tt follows that Q(¢'")(fu)s = ¢’ with ¢’ = P'(¢*)g € S%:J (resp. g:)%:o)’ and the
required fact follows from the independence of f/, on the choice of ¢’. It remains to consider the

case when ¢ and ¢’ are of the same degree. In this case Lemma 7.3.4 implies that P(¢'")w, = dg’
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for some ¢’ € S%’i (resp. g%l ), and again the required fact follows from the independence of
0 0

fL on the choice of the element ¢’. .

1,cl
Shi

(i) ifi <n—1ori=n and dim(X,) < m, then f, € SMT1(X,)

(ii) if w = dh for some h € ‘SN’A’Z'(L’E”), then f, — h € CE1(X,);

7.4.2. Lemma. Let w € Q.5 ;(X,) be a marked (resp. weakly marked) one-form. Then

(iii) given a dominant morphism ¢ : X' — X as in Lemma 7.3.4, one has f,- () — ¢*(fu) €
K'ji (! K'it1 (9 \).
CIA(,) (resp. €X'+ (X)),
(iv) if dim(X,) = 1, the construction of f,, is compatible with that of Lemma 6.5.2, i.e., if

Q) then (f.), € Fy'r.

A,
Wo S Q%J ®(’)x x

-0

Notice that in (iii) the one-form ¢*(w) is marked (resp. weakly marked), by Lemma 7.3.4.

Proof. (i) We know that a function f’ € SMT1(X,) with df’ = w exists. Let x be a
closed point of X,. Since wy, € O, . (771(x)) and LM (77 1(x)) € SM (7~ 1(x)), it follows that

LA
fre LMY (=Y (x)), ie., f/ € RMTL(X). One has P(¢*)f. —g € S%:’J;l and d(P(¢*)f. —g) = 0.
It follows that P(¢*)f. — g € CI%{:J: = CK#+1(x,). Since the map P(¢*) : Cg:il — Cg:tl is

a bijection, there exists an element o € CX+1(X,)) with P(¢*)f. — g = P(¢*)a,. The function
[’ — a is contained SM+1(X,) N RM+1(X), and Proposition 7.4.1 implies that f, = f' — .

(ii) One has d(P(¢*)hy —g) = 0 and P(¢*)hy — g € §§€0 Lemma 7.3.2 implies that
P(¢*)hoe — g € Cg;tl = CK+1(x,). Since the map P(¢*) : Cg;‘;l — Clx(:tl is a bijection, to
prove the required fact it suffices to show that h € RM*1(X). Let x be a closed point of Xj.
One has (f.)x — hx € SN (771(x)) and d((f.)x — hx) = 0 and, by Lemma 7.3.2 again, we get
(fo)x — hx € CEHL(771(x)), ie., h € RMTH(X).

(iii) and (iv) trivially follow from Proposition 7.4.1 and Lemma 6.5.2, respectively. .

We now want to extend the conclusion of Lemma 7.4.2(iii) to not necessarily dominant mor-
phisms X’ — X. In the following proposition &’ is a closed subfield of C,, X’ is a proper marked

formal scheme over k'° with dim(X;) < m +1if i = n, and K’ is a filtered k’-algebra.

7.4.3. Proposition. Given a marked one-form w € Q}Sfl (X,)), there exists an open neigh-
borhood U of o such that, for any triple (k', X', K') as above, any embedding of fields k — k', any
morphism of formal schemes ¢ : X' — X over the embedding k° — k'° with p(c’) € U, and any
homomorphism of filtered algebras K — K’ over the embedding k — k', the one-form ¢*(w) is

weakly marked and f,- ) — ¢*(fu) € CK,’”l(ff;?). If dim(X,) = 1, one can take U = X,,.
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For needs of the following subsection we denote by U, the maximal open neighborhood of &

that possesses the property of Proposition 7.4.3. (It will be shown in fact that U, is always X,,.)

Proof. First of all, it follows from Lemma 7.4.2(iii) that the construction of the primitives
is preserved under the base change with respect to an embedding of fields k& — k' and under the
change with respect to a homomorphism of filtered algebras K — K’, and so it suffices to consider
only morphisms over the same field £ and with the same filtered k-algebra K.

Let us fix a Frobenius lifting ¢ at the point o and a polynomial P(T') € k[T] without roots-of-
unity roots for which P(¢*)w, € dS%’j“U. Furthermore, let ¢ be an open neighborhood of ¢ such
that the morphisms ¢/, 0 < j < deg(P), are defined on U, P(¢*)w € dSM*(U), and the sheaf of
Oy-modules ), is free. We claim that the set U possesses the required property.

Indeed, let ¢ : X' — X be a morphism with ¢(¢’) € U. Let Y be the stratum of X, that
contains the point m(¢(0’)) and Y its closure in X,. Since X/ is proper, its image is closed in
X, and, therefore, one has (X;) C 7~ *()). Let 2 be a small open affine subscheme of X with
DN Y # (), and let V be a p;-semi-annular open neighborhood of ©y/ in Dy, where ' =Y NY,,
such that W = p1(V) C U and pj(w) € QL,(V), where M = Z;:o P (SN (W) LM=1 (V) (see the
property (IH3.3)).

Furthermore, let 3’ be a non-empty open affine subscheme of %’ with e(3) CcY, NV, ¢ a
Frobenius lifting on the germ (%;7, 3;7), and U’ an open neighborhood of 3;] such that the morphisms
#7,0<j < deg(P), are defined on U" and p(U’) C U. Given 0 < j < deg(P), consider the

morphism of analytic spaces
U= (9o, o) U — Xy x Xy .

Since ¢ o ¢/ and ¢7 o ¢ induce the same morphism 3, — (¥ NY,) x (¥ NY,), it follows that
¥;(3) C " HAYNY,)) C Dy. We can therefore shrink U’ and assume that ¢, (U’) C V for all
0 < j < deg(P). We have

¢ (0" (W) = 9" (@7 (@) = ¥} (i (W) — P3(w)) -
Thus, to prove our claim it suffices to show that pj(w) — p(w) € dN, where

N = S s SM ) )
=0

But the restriction of the latter one-form to the diagonal A(W) is zero, and so the required fact

follows from Corollary 1.5.6.
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Assume now that dim(X%,,) = 1. If ¢ is not dominant, the image of X' in X, is a closed point x,
and one has ¢(X]) C 7~ (x). Since (f,)x € LM (771 (x)), then ¢*(f,) € LMT(X]) C g’”(%;),
and the required fact follows from Lemma 7.4.2(ii) because ¢*(w) = d(¢*(fw)). .

7.5. Construction of the Dx-modules Sj\(’”H. We say that a smooth k-analytic space X

is atomic if it is split or marked, i.e., it is provided with an isomorphism with a space of the form
Y x D or Y x B, where Y is a smooth k’-analytic space of dimension dim(X) — 1 whose sheaf Q3
is free over Oy, and D and B are open disc and annulus with center at zero, or with the generic
fiber X,, of a proper marked formal scheme over &’ °, respectively, where &’ is a finite extension of
k (see the end of §1.1). Let X be an atomic k-analytic space of dimension at most m + 1. We say
that a closed one-form w € Q%, . (X) is atomic if it is split or marked in each of the corresponding
cases. Given such a form w, we denote by f, its primitive constructed in §7.2 and Proposition
7.4.1, respectively. The primitive f,, is defined uniquely up to an element of CX"+1(X). We also
denote by U, the open subset of X introduced after the formulation of Proposition 7.4.3 in the

case when X is marked and of dimension at least 2, and set U, = X in all other cases.

7.5.1. Lemma. Let ¢ : X' — X be a morphism between atomic k-analytic spaces of
dimension at most m + 1, and let w € Q%,.(X) be an atomic closed one-form on X such that its
pullback ¢*(w) is also atomic. Then (fy« () _(P*(fw))‘v € CEmL(V), where V = Uy (o) N~ (U).

Proof. If both spaces are split, the statement follows from Lemma 7.2.2(iii). In the general
case, by Corollary 4.1.4, it suffices to show that the function g = ¥*(f,« () — ¢*(fs)) is contained
in CK7+1(Z) for any morphism 1 : Z — V from a smooth basic k’-analytic curve Z, where k' is a
finite extension of k.

Assume that both spaces X and X’ are marked. Increasing the field k, we may assume that
X and X' are the generic fibers of proper marked formal schemes X and X’ over k°, respectively,
and Z = A3\ UL:l E(0;7,), where X is a smooth projective curve over k°, x1,...,%; are pairwise
distinct k-rational points of X, and 0 < r, < 1 with 7, € [k*[. Given numbers r, < r), <1 with
T, € V/[k*], let W denote the strictly affinoid domain AP\ ULZI D(0,7;,) and W' the open set
A\ ULZI E(0,7,). Tt suffices to show that g‘W, € CEnTL(W’). For this we may increase the
field k and assume that 7, € [k*| for all 1 < u <, i.e., that W is a k-affinoid basic curve. By
Proposition 2.4.2 applied to the induced morphism W — (X x 36’),,, we can increase the field k
and find a finite open covering W’ = U, W/ such that each W) is the generic fiber of a proper
marked formal scheme 9),, over k° and the induced morphisms W,, — X,, and W,, — %:7 come from

morphisms of formal schemes ), — X and ), — X', respectively. Since the latter two morphisms

110



satisfy the assumption of Proposition 7.4.3, it follows that the functions ¢*(fy«(w)) = f(pu)=(w) and
(©)*(fu) = fpu)(w) are contained in CK-"+1(Z), ie., g € CHTH(Z).

If one of the spaces is split and another one is marked, then the reasoning from the previous
paragraph reduces the situation to the case when the morphism from Z to the marked space is
induced by a morphism of the corresponding proper marked formal schemes and so, by Proposition
7.4.3, the pullback of the primitive on the marked space coincide with the primitive of the pullback
of the one-form on Z (up to an element of CX"*+1(Z)). The similar fact is true for the morphism

of Z to the split space, by the induction hypotheses. .

7.5.2. Lemma. Let X be a smooth k-analytic space of dimension at most m + 1 with
H'(X,cx) = 0. Then every closed one-form w € Q%, ,.(X) has a primitive f € NI (X)) which
is defined uniquely up to an element of CX:"*1(X) by the following property: given a morphism
¢V — X from an atomic k-analytic space of dimension at most m + 1 such that the one-form
¢* (w) is atomic, one has ©*(f) — fp(w) € CETH(V).

Proof. Step 1. Given a closed one-form w € Q}gx,n (X), we say that a morphism ¢ : V — X
is w-atomic if (1) V is an atomic k-analytic space; (2) the one-form ¢*(w) is atomic; (3) ¢ is
étale, if V is split, or a marked neighborhood of the image of the generic point of V', otherwise.
Furthermore, we say that a family of morphisms {V; X tier is an w-atomic covering of X if
all of the morphisms ¢; are w-atomic and X = U;crp;(V;), where V; denotes the étaleness locus
of the morphism Uyx () — X (Le., {V; £ X}ier is an étale covering of X). By the induction
hypotheses and Lemmas 7.2.1 and 7.3.1, an w-atomic covering of X always exists. Given a pair

1,7 € I, consider the cartesian diagram

T, Te;

Vi Sy,

We claim that w;‘(f%*_(w)) — V5 (forw)) € CMHH(Vy5). Indeed, if 7 is the one-form 97 (¢} (w)) =
Vi (¢; (w)), it suffices to verify that, for any n-atomic morphism a : W — V;;, the restrictions of
the functions fq-(;) — Oé*(w;;k(ﬁp;(w))) and fo«(y) — * (@Z};(ﬁp;(w))) to the open subset Uy, are
contained in C*" 1 (Uy(,)), but this follows from Lemma 7.5.1.

Thus, the one-form w defines a one-cocycle of the étale covering {V; L X }ier with coefficients
in the étale sheaf C?”H. Since H'(X,cx) = 0, this one-cocycle is a co-boundary and, therefore,

there is a primitive f € MS"™(X) of w, unique up to an element of CX"+1(X), such that
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(pr(f) — f%*(w))‘v € CEnt1 (V) for all i € I. From the construction it follows that, for any open
subset X’ C X with H'(X’ cx/) = 0, the restriction of f to X’ coincides, up to an element of
CHEmH(X"), with the primitive of the form w| + constructed on X'. Of course, if X is of dimension

at most m, the induction hypotheses imply that f € SM"+1(X).

Step 2. If, in the above situation, the space X and the one-form w are atomic, then f — f, €
CEnH+1(X). Indeed, it remains to verify the claim only in the case when X is marked of dimension
m-+1 2> 2. Let X be the generic form of a proper marked formal scheme X over k°. We know that
(f—fo) ’u € CEnt1(Y) for an open neighborhood U of the generic point of X. Corollary 3.2.6 then
implies that it suffices to verify that (f — f.)x € CE"F(71(x)) for every closed point x € X.
Since w is marked, one has wx € QF,, (771(x)) and (f,)x € L¥" T (77! (x)). Increasing the field
k, we may assume that the point x is k-rational. It follows from the description of Lemma 3.1.2
that the space 7~!(x) can be covered by open subsets I isomorphic to a product of open annuli

and discs. Of course, such a subset U is split and the restriction of the form w to it is split. The

claim now follows from the fact that it is known to be true for split spaces.

The statement of the lemma now easily follows from the construction of f, Step 2 and Lemma

7.5.1. .

7.5.3. Corollary. Given an atomic k-analytic space X of dimension at most m + 1 and an
atomic closed one-form w € Q}S s (X), the one-form w is atomic with respect to any other structure
of an atomic space on X, and its primitive f,, does not depend, up to an element of C*"*1(X), on

the choice of such a structure. »

7.5.4. Corollary. Let ¢ : X’ — X be a morphism between smooth k-analytic spaces of
dimension at most m + 1 with H*(X,cx) = H'(X',cx/) = 0. Given a closed one-form w €

Q}gxn(X), one has fg,*(w) - 90*(fw) € CK,nJrl(X/). ]

For a smooth k-analytic space X of dimension at most m+1 with H*(X,cx) = 0, let PA"1(X)
denote the k-vector subspace of 9" (X) generated by the primitives f,, for all closed one-forms

w e Q}gk (X). It follows that there is an exact sequence of vector spaces

0 —s CK’n+1(X) _ 73/\7n+1(X) i> Q‘ls’i,ln (X) —0

and, given a morphism ¢ : X’ — X as in Corollary 7.5.4, one has ¢*(f) € P +1(X") for all
functions f € PM"*1(X). Furthermore, given an open covering X = U;¢;U; by open subsets with

H'U;,cx) = 0, if a function f € " T1(X) is such that fly, € PMHU;) for all i € I, then
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f € P H1(X). Indeed, since the one-forms (df)‘ui € Q}Sfln (U;) are compatible on intersections,
there exists a one-form w € Q‘lsfln (X) with df = w and, therefore, (f — fw)‘ui € CEntL(Y,) for all
i € I, and Lemma 7.5.2 easily implies that f — f,, € CX"H1(X), ie., f € PP"H(X).

We now extend the definition of PA"*+1(X) to an arbitrary smooth k-analytic space of dimen-
sion m + 1 using the main result of [Ber9], which implies that a basis of topology of X is formed by
the open subsets U with H'(U, ¢;) = 0. Namely, we let P71 (X) denote the vector space of all
functions f € M (X) such that f‘u € PMHL(UY) for all open subsets U with H* (U, ¢yy) = 0. Tt
follows that, given a morphism ¢ : X’ — X of smooth k-analytic spaces of dimension at most m+1,
one has ¢*(f) € PMH(X) for all f € PA"T1(X). Lemma 7.5.2 implies that the correspondence
X' s PAMHL(X') is a sheaf in the étale topology of X, and so there is an exact sequence of sheaves

K7n+l )\7”“1‘1 d 1,Cl
0—Cx — PY — Qg x — 0.

Of course, if dim(X) < m, the sheaf P;‘g"“ coincides with that considered in §7.1.
Finally, we define S)A(’Wrl as the étale subsheaf of Ox-modules in ‘ﬁ?”“ generated by P;‘(’"H.

Since d(Py" ') € QL, . 4, it follows that d(Sy"1") € QL .p1 y, ie., SY" T is a Dy-submodule
of ML

7.6. End of the proof. It remains to verify that the Dx-modules ‘S’))‘(’”Jrl satisfy all of the
induction hypotheses and the properties (i)-(iii) of Theorem 1.6.2, and that they are unique. First
of all, the validity of the properties (a), (c), (d), (e) and (f) from Theorem 1.6.1 and of the property
(IH2) trivially follow from the construction.

The property (b). We have to prove that, if df = 0 for a function f € S *+1(X), then
f e cE¥ntLl(X). Corollary 4.1.3(ii) reduces the situation to the case when X is a smooth k-analytic
curve. Since the statement is local in the étale topology of X, we may assume that X is atomic and
f= 2221 figi, where f; € O(X) and all g; € P»"*+1(X) are such that the one-forms dg; € Q}sx,n (X)
are atomic. If they are in fact split and, in particular, X is isomorphic to D or B, it follows that
f € L»"*t1(X), and the required fact is trivial. Assume therefore, that X and all dg; are marked.
In this case we may even assume that dg; , € g%z ®O%n,o Qli”mg for all 1 < i <[, where X is a
proper marked formal scheme with X,, = X and o is its generic point. Lemma 7.4.2(iv) implies that
Gio € ‘7_—%,77?—1 for all 1 < i <[ and, therefore, f, € ]:%’:fl. The latter implies that f, € Cgf:l
Since fx € CHn T (7r71(x)) for all closed points x € X it follows that f € CH"T1(X,).

To verify the remaining properties and, in particular, the property (g) formulated in §7.1, we

make a preliminary observation similar to that from §7.1.
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Suppose we are given a proper marked formal scheme X over k° with dim(X,) < m + 1
and a nonempty open affine subscheme 3 C X°. Since H 1(3,7, €3 ) = 0, every closed one-form
n

w e Q}S’fyln (%,,3,) has a primitive in SM1(X,, 3,) and, therefore, given a Frobenius lifting ¢ on

(%X,,3,), the injective homomorphisms of F-isocrystals E*(X,,3) — SM(X,, 3,,) considered in §7.1

for 0 < 7 < n extends to a similar homomorphism for ¢ = n+1. The properties of the sheaves S;‘(’”H

already known imply that the induced homomorphism Ef"+1(X,, 3) — S F1(X,, 3,) is injective

and that its image G*»"*1(X, 3) does not depend on the choice of the Frobenius lifting. Let g%ﬁl
be the union of the latter in S%nil taken over all 3’s. Given 0 <4,j <n+1withi+j=n+1,
75

Lemma 6.4.2, applied to the multiplication homomorphisms from E‘(X,,3) ®p5 E771(X,,3) and
E7L(x,,3)®p B/ (X,,3) to E+i71(X,, 3), implies that GM (X, 3)-GM (X, 3) € GM" (X, 3) and,
therefore, Qg;ggif C Q.%ZH.

The property (g). Tt is enough to show that, given f € P*(X) and g € P*J(X), one has
f-g € PA"T1(X) in the case when dim(X) =m+1,1<4i,j <n and i+ j = n+ 1. Since this fact
is local in the étale topology, we may assume that the space X and the one-forms df € Q},; vio1 (X))
and dg € Q}Sm_l(X ) are atomic. If they are in fact split, then the required fact easily follows
from the induction hypotheses. Assume they are marked. Using the induction hypothesis (IH3)
and increasing the field k, we may assume in addition that X is the generic fiber X,, of a proper
marked formal scheme X over k°, f, € Q%’fa and g, € Q%JU, where o is the generic point of X.
It follows that f-g € RM*L(X) and (f-9), € Q:’%:le. On the other hand, the closed one-form
w = f-dg+ g-df € Q...(X;) possesses the property (MF1), and since w, € Q%Z ®@%Wc (21%”’0, it
also possesses the property (MF2), i.e., given a Frobenius lifting ¢ at o, there exists a polynomial
P(T) € k[T] with no roots-of-unity roots and P(¢*)w, € dg?%?;. Since d(f-g) = w, it follows
that d(P(¢*)(f-9)s) € dgj)%j;, and since the kernel of the differential on g%:fl coincides with
C:I{{nnjl = cKnr+l(x,), it follows that P(¢*)(f-9)s € Qg‘_cr; + Cg::l C gé\;'”:a Proposition 7.4.1(i)
now implies that the function f-g is precisely the primitive of w given by the proposition, i.e.,
fg € PPHL(X,).

The property (IH1). It suffices to verify that GM"+1(X,, 3) ¢ RM (X, 3,) and, for the latter,
it suffices to show that any element f € GMF1(X,,3) with df € GV"(X,,,3) ®p Q} is contained
in RM*1(X,3,). By the induction hypothesis, G*"(X,,3) C R (X,3,). Let U be an open
neighborhood of 3, in X, with f € S (1) and such that, for every closed point x € X, the
intersection ! (x) NU is either an open disc or annulus and the restriction of df to it is contained
in Q7 , .. (7~ 1(x) NU). The latter has a primitive in L*" (71 (x) NU) C S¥ (7~ (x) NU), and

the required fact follows.
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The property (IH3). It is enough to verify the properties (IH3.1)-(IH3.3) for a function f €

PA7H1(X) which is a primitive of a closed one-form w € Qg . (X). First of all, Lemma 7.3.1 reduces

the situation to the case when X is the generic fiber X,, of a proper marked formal scheme X over

k°, the one-form w is marked and w, € Q;‘ET; R0 Iy le . The construction of f from Proposition
K n,(}'

7

7.4.1 immediately implies that f € R»"*1(X), i.e., (IH3.1) is true. Since f, € S.%’nﬂ and w, = dg
n0

for some g € g%j?fl, it follows that f, — g € ann;rl = CEntl(X,) and, therefore, f, € ggffl,
i.e., (IH3.2) is true. Finally, given a stratum closure ) C X, the property (MF3) of w tells that
there exists a small open affine subscheme ) C X with PP N Y # () and the following property: if
Y = X (resp. ) is arbitrary), there is a p;-discoid (resp. pj-semi-annular) open neighborhood V
of Dy in Dy with ' = Y NY, such that pi(w) € Ok, (V), where M = p? (S}(U)) (resp. M =
Z?:o pfﬁ (SM(U))-LM=I(V)) and U = p1 (V). Shrinking U, we may assume that the Oy-module 2},
is free and, therefore, we can apply Proposition 1.3.2 (resp. Corollary 1.5.6). It follows that pj(w) =
dg for some g € N, where N = p¥ (8 +1(1f)) (resp. N = Z;Liol P (SN (U))-LA =3 (V)). The
restriction of g to the diagonal A(Y) lies in S+ (A (X)), and the restriction of p3(f) coincides
with that of pi(f) and, therefore, also lies in S»*+1(A(U)). By the property (a) already verified,
we may assume that both restrictions are equal. We then claim that p5(f) = g. Indeed, it suffices
to verify the equality at the fiber pl_l(a:) of every point x € Uy. The restriction of g to it lies in
LA™ (pr () and, by the property (f), the restriction of p3(f) lies in S»*+!(p; (). The claim
now follows from the property (b).

The properties (ii) and (iii) of Theorem 1.6.2 easily follow from the already established prop-
erties of Theorem 1.6.1 and the construction of the sheaves S))‘(’n+1, respectively.

The property (i). By Theorem 4.1.1, we may assume that either X is isomorphic to an open
disc or annulus and f € L»*1(X), or X = X,;, where X is a proper marked formal scheme over
k° with dim(X,) = 1, and f € RMTH(X) and f, € f:){"zﬂ. In the first case, the required fact

follows from Lemma 1.4.2. In the second case, the same lemma implies that if & N7~ (x) # 0,

then f ‘ﬂ = 0, and the required fact follows from Lemma 6.5.1.

—1(x)
Uniqueness of the Dx-modules

3\)}‘(’”“ - ‘ﬁ?”“ which together with the Dx-submodules S;‘(’i, 0 <4 < n, possesses the properties

A1
Sy" . Assume one can construct another Dy-submodule

of Theorem 1.6.1. It follows easily that these sheaves also satisfy the property (ii) of Theorem 1.6.2.
It suffices to verify that, given a closed one-form w € Q}S am (X)), its local primitives in gg\(’”H are
local sections of P;‘(’nﬂ. For this we may assume that X and w are atomic, and let f and ]?
be primitives of w in SM*1(X) and SA)"”H(X), respectively. If X and w are in fact split, the

required fact f — f € CEm+1(X) follows from the construction of the primitive of w in §7.2 and
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the property (e). Assume therefore that they are marked, and let X = X,, where X is a proper
marked scheme over k°. By (MF1), one has w € Q}%n(%) and, therefore, the property (e) and
the Logarithmic Poincaré Lemma imply that f € RMH1(X). Furthermore, by (MF2), there exists
a Frobenius lifting ¢ at ¢ and a polynomial P(T') € k[T] without roots-of-unity roots such that
P(¢*)w, = dg with g € S;%’:’U. It follows that d(P(gZ)*)ﬁ, — g) = 0. But from the property (f) it
follows that P((Z)*)ﬁ, —g€ §%:jl, and the property (b) implies that P((i)*)fa — g € CEnTL(X,),

ie., P(¢*)f, € S%n . Tt follows now from Proposition 7.4.1(i) that f — f € CKm+1(X).
7,0
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§8. Properties of the sheaves Sy

In this section we refine information on the sheaves Sy using the fact that they exist. First
of all, we show that any connected wide germ with good reduction (X,Y’) can be provided with
a unique filtered D x y)-subalgebra £*(X,Y) C S*(X,Y) with the properties (a)-(d) and (f) of
Coleman’s algebras mentioned in the introduction, and we relate it to the isocrystal E*(X,9))
considered in §5.5 and §7.1. We also show that any proper marked formal scheme X over k° can be
provided with a unique filtered O(X,)-subalgebra £*(X) C S*(X,,) which is a filtered Dy -algebra
that possesses similar properties and some sort of continuity (see Theorem 8.2.1(1)). Given a
function f € S*(X) on a smooth k-analytic space X, every point # € X with s(z) = dim(X) has a
marked neighborhood ¢ : X,, — X with ¢*(f) in the image of the canonical injective homomorphism
EMX) @k K — SMX,). The latter is used to provide each stalk of Sy at a geometric point Z over a
point z € X with a Gz/,-invariant filtered Do _-subalgebra £ §‘<E which is functorial with respect
to (k,X,7,K,\) and such that the homomorphism kr., — K : Log(p) — A gives rise to an
isomorphism Ex z — 8;‘(’5 and, if f1,..., f; are elements of O% , for which |fi(z)|,...,[fi(x)| for
a basis of the Q-vector space \/W / \/W , then there is a Gz/,-equivariant isomorphism of
filtered Do, _-algebras SQ,E[Tl, LT K S 83\(75 . Ty — Log™(fi). We prove that the subspace
Vxa C Q;C; /dOx ., introduced in §4.5, coincides with the space of the classes of closed one-forms
QY% ., that admit a primitive in £, = (83\(,5)6‘5/1. If dim(X) = 1 and x is a point of type (2),
we construct a Gz/,-equivariant isomorphism between Ex 7 and the shuffle algebra Sho, _. In
§8.4, we prove a uniqueness result which implies the following generalization of the property of the
logarithmic function mentioned at the beginning of the introduction. Assume that X is connected,
the Ox-module Q1 is free over a nonempty Zariski open subset and H*(X,cx) = 0. Assume also
we are given closed analytic one-forms {w; };e; which are linearly independent over & modulo exact
one-forms and, for a point z € X(k), let f; be a primitive of w; in Ox . Then the functions
{fi}ier are algebraically independent over the image of O(X) in Ox .. Finally, in §8.5, we consider
the filtered Dx-subalgebra sx = Sx Nnx and prove that sx N Lx = Ox and that the subsheaf
Uy C Qﬁ{’d /dOx, introduced in §4.5, coincides with the sheaf of the classes of closed one-forms

that admit local primitives which are sections of sx.

8.1. Filtered D x y)-algebras EMNX,Y) for germs with good reduction. We say that
a k-germ (X,Y) (or a k-analytic space Y) has good reduction if Y is isomorphic to the generic
fiber ), of a smooth formal scheme ) over £°. Notice that any wide germ with good reduction is

smooth. A D(x y)-module on a smooth k-germ (X,Y) is an O(X,Y’)-submodule M C nE(X,Y)
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such that dM C Q},(X,Y), where Q% (X,Y), ¢ > 0, denotes the image of M Rox,y) U(X,Y) in

qun,( (X,Y). A D(x y)-algebra is a D x y)-module which is also a subalgebra of ‘ﬁK(X, Y).

8.1.1. Theorem. Every connected wide k-germ with good reduction (X,Y’) can be provided
with a unique filtered O(X,Y )-subalgebra £*(X,Y) C S*(X,Y) such that the following is true:

(a) EMX,Y) is a filtered Dy y)-algebra;

(b) EN(X,Y) = O(X,Y);

(c) Ker(EMX,Y) % QL (X,Y)) = «(X,Y) (= ¢(Y));

(d) every closed one-form w € QL. ,(X,Y) has a primitive f, € EMT(X,Y);

(e) EMFLY(X,Y) is generated over O(X,Y) by the above primitives f,;

(f) there exists a point x € Yy, such that f, € Ox,, for all f € E}X,Y).

Furthermore, the D x y)-algebra & MX,Y) possesses the following properties:

(1) fr € Ox . for all points x € Yy, and all f € EMX,Y);

(2) the canonical homomorphism EMX,Y) ®; K — S*X,Y) is injective;

(3) EMX,Y) is functorial with respect to (k,(X,Y), K, \);

(4) the homomorphism ki.s — K that takes Log(p) to A gives rise to an isomorphism

S(X,Y) S EMX,Y).

8.1.2. Corollary. Assume that (X,Y) = (X,9),), where (X,9)) is a wide germ of a smooth
affine formal scheme over k°. Then

(1) if, in addition, (X,9)) is induced by a similar germ over a finite extension of Q, in k, then
EMX,Y) is the image of the injective homomorphism of F-isocrystals E(X,9) — S*(X,9),,) (from
§7.1) and, in particular, that image does not depend on the choice of the Frobenius lifting;

(ii) EX(X,Y) is isomorphic to the filtered isocrystal E(X,9)) (from §5.5) and, in particular,
E(X,9) can be provided with the structure of a filtered algebra which satisfies the Leibniz rule;

(iii) given a morphism (X',9)") — (X, ) of wide germs of smooth affine formal schemes over an
embedding k — k' such that the induced morphism ), — ), ®%7€7 is dominant and quasifinite, for
every i > 0 the induced homomorphism £'(X,Y) ®o(x,yy) O(X',Y') = EN(X",Y’) (with Y' = Q);)
is injective and its cokernel is a free O(X',Y')-module.

Proof of Theorem 8.1.1 and Corollary 8.1.2. First of all, we notice that if the O(X,Y’)-
subalgebra £2(X,Y) with the properties (a)-(f) exists, it is unique. Indeed, for this it is enough
to verify that, given a closed one-form w as in (d), one has f — f, € ¢(Y) for any primitive f
of w in SM*Y(X,Y) with the property (f). We know that f — f, € ¢(Y) ®, Kt and, by (f),

(f = fu)z € cx 2. Since the intersection of ¢(Y) ®x K™ and c¢x , in cx , @ KT coincides with
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¢(Y), the required fact follows.

Suppose first we are in the situation of Corollary 8.1.2(i). In this case we define £*(X,Y)
as the image of the injective homomorphism of F-isocrystals F(X,9)) — S(X, 9),,) from §7.1. It
obviously possesses the properties (a)-(e), and so, to verify the property (f), it suffices to verify
the property (1). Assume that, for some i > 0, f, € Ox, for all points = € (9,)s and all
f e &M(X,9), and let w be a closed one-form in M (X, ) ®p Qp, where B = O(X,9),). It
has a primitive f in EMT1(X,9), and it suffices to verify that fx € O(7r~1(x)) for all closed
points x € 2),. Recall that, by the construction, there is a monic polynomial P(T) € k[T] with
no roots-of-unity roots such that P(¢*)f = g € EM(X,2)), where ¢ is a fixed Frobenius lifting on
(X,9),). By the induction hypothesis, for every closed point x € 9, one has gx € O(r~!(x)) and
wx € QL (771 (x)). Since 77 1(x) is isomorphic to the open unit polydisc with center at zero over
kyx, there is a primitive hy of wy in O(771(x)). It follows that fx — hx = o € kyx ®; K'T1 and,
therefore, P(1)a = gx — P(¢*)hx € O(m~1(x)). The latter implies that o € ky and, therefore,
fu € O (x)).

Suppose now (X,Y) = (X,9),), where (X,9) is a wide germ of a smooth formal scheme over
k°, and assume that, for some i > 0, the D x y)-module EM(X,Y) is already constructed and,
besides the properties (a)-(f), it possesses the following property: for any open affine subscheme
3 C 9 with (X, 3) satisfying the assumption of Corollary 8.1.2(i), the restriction of any functions
from EM%(X,Y) is contained in EM(X, 3,). To construct EMT1(X,Y), it suffices to find, for any
closed one-form w as in (d), a primitive f € SM*+1(X,Y) of w with the property (1). We know that
the restriction of w to any (X, 3,) as above has a primitive in EMFL(X, 3,) which is unique up to
an element of ¢(3,) = ¢(Y’). All such primitives give rise to a one-cocycle on ), with coefficients
in ¢(Y). Since the latter is always a co-boundary, there is a primitive of w in SM*+1(X,Y") whose
restriction to every (X, 3,) as above is contained in EMT1(X] 3).

Thus, the D x y)-algebra £ AMX,Y) is constructed, and it is easy to see from the construction
that it possesses all of the properties of Theorem 8.1.1 and the properties (i)-(ii) of Corollary 8.1.2.
To prove the property (iii), we may assume that ¢(Y) = k and ¢(Y”’) = k’. The proof is easily done,
by induction on i, using the fact that the quotient of £771(X,Y) by £4(X,Y) is the trivial isocrystal
HIz (E4(X,Y)) ®; O(X,Y), the similar fact for (X', Y’) and the following claim: for every i > 0,
the canonical homomorphism His (E4(X,Y)) @, k' — HIz(EW(X',Y")) is injective.

By Lemma 5.5.4(iii), to prove the claim it suffices to consider the case k' = k. Furthermore,
since there are canonical embeddings Hlg (£/(X,Y)) — Hz(X, V)20 and Hi; (£4(X,Y)) —
Hp (X', Y")®0+D it suffices to prove the claim for 4 = 0. If X’ = X and 9’ is an open subscheme
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of 9), the injectivity of the homomorphism H}g (X,Y) — Higz (X', Y”) follows from [Bert, Corollary
5.7]. In the general case, we can shrink both schemes 9) and )’ so that the induced homomorphism

2! — 9, is finite and flat, and then the required injectivity follows from [Bert, Proposition 3.6]. =

Let now (X,9) be a wide germ of a smooth formal scheme over k°. We denote by g( x.2) the
sheaf on ), associated to the presheaf 3, — £(X,3,). This sheaf is a filtered D( ¥ @)—subalgebra

of G(S(X,Q,j))‘ Notice that (E(X,Q)))V ) Ez H(C(an))). For a ?(X@J)-module F, let Fg and
Fei denote the D(X’@)—modules ]:®O<X,QJ) 5(X,2)) and f®o()€,@) S(X’@), respectively.

8.1.3. Proposition. Let F be a unipotent D(X’@)—module F of rank m and of level n. Then

(i) the c@—modu]e F¥ is free of rank m and FY ®c@ g(x,gj) = Fe;

(i) FY = (Fr + Fprt+ ...+ FLay)Y, where FO =0 C F' C ... C F" = F is a filtration
such that each quotient F'/F'~1 is a trivial D(X,@)—modu]e;

(iii) there is an embedding of D(X’gj)—modules F — (g(n);éllj))l with [ > 1.

Proof. We may assume that 9) is connected. By Lemma 5.3.3, the properties (i) and (ii) are
true for the restrictions of Fy to any open affine subscheme 3 C ). This immediately implies (ii)
and the second half of (i). It follows also that the sheaf FY gives rise to a one-cocycle in the Zariski
topology of 9, with coefficients in the constant sheaf of groups GL;,(¢(2),,)). Since 9, is irreducible,
that cocycle is a coboundary, i.e., the sheaf F¥ is free of rank m over ‘) and (i) is true. Finally,
an embedding F — (g'(”x_in))l is constructed in the same way as the corresponding embedding in
the proof of Corollary 5.3.4. Namely, for ¢ > 0 we set 7':@ =Fg + ]:giﬂ + ...+ ]_-51”%1 (and so
(2) means that FY = ]T"OV), and we claim that there is a basis hy, ..., hp, of FY over ¢(9),) such
that the induced isomorphism Fg — (<€~'(X72)))m takes each F; into (gg;”aj)l)m Indeed, if n = 1,

the claim is trivial. Assume that n > 2 and the claim is true for n — 1. We set G = F*~! and

consider the canonical epimorphism of vector spaces FY — (F/G)¥ = (F/G)V. Its kernel is the

space Gy , and we can find a basis hq, ...,y of it with the required property (for G). Furthermore,
we take elements hyi1,...,hy, € Fy = FY whose images in (F/G)V form a basis of that space.
Then the elements hq, ..., h,, form a basis of F, gv , which possesses the required property, since the

restriction of the induced isomorphism Fg — (g( x @))m to every open affine subscheme possesses

that property (by the proof of Corollary 5.3.4). .

8.1.4. Lemma. Let F be a D(X @)—modu]e with the property that every point of ), has an
open neighborhood such that the restriction of F to it is unipotent. Then F is unipotent.
Proof. It suffices to show that F contains a nonzero trivial D( x @)—submodule.

Let 3 be an open subscheme of ) such that (X,3) is induced by a similar germ over a
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finite extension of Q, and the restriction of F to 3, is unipotent. Then for any open subscheme
3’ C 3 the canonical map FV (3,) — FV(3.) is an isomorphism. Indeed, it suffices to show that
Hle’W(BS,}") = 0, where W = 3,\3’, and, since the restriction of F to 3, is unipotent, it suffices
to consider the case F = O( x.2)" By Corollary 5.5.2, we may assume that k is a finite extension
of Q, and, in that case, the required fact is a consequence of [Bert, Corollary 5.7].

Let now {Bi}ie 1 be a covering of ) by sufficiently small open subschemes which satisfy the
assumptions of the previous paragraph. By the above claim, one has FV(3!) = FV (3. N 37) for
every pair i,7 € I. This easily implies that FV(9),) = FV(3.) for every i € I. In particular, F

contains a nonzero trivial D( X’@)—submodule. »

8.1.5. Remark. Assume that the valuation on k is discrete, and let X be a formal scheme of
finite type over k° and ) an open smooth subscheme of X such that the Zariski closure 9, of ), in
X, is proper over k. The triple T = (2),9),, X) is what A. Besser calls a rigid triple (sec [Bes, 2.8]).
In [Bes, §4], he defined a ring Aco1(T) of so called abstract Coleman functions and constructed an
embedding of Acoi(T) into the ring of naive analytic functions n(9), ). Notice that the generic fiber
2),, is a closed analytic domain in X;,, and it does not coincide with X;, if 9 is not proper (e.g.,
if 9 is affine). Thus, the naive analytic functions, constructed by A. Besser, are defined only on
the closed subset ), whereas the functions constructed here are defined on an open neighborhood
of 9, in X,. This is one of the main differences between the two constructions. On the other
hand, it is very likely that the image of Acol(T") in n(2),,) coincides with that of the restriction map
g(f{n, ) —=n(,): f— f‘ﬁjn (and so both rings are isomorphic) and, in particular, if X is proper
smooth over k° and 9 = X the image of Acoi(T) in n(X,)) coincides with £(%,, X).

8.2. Filtered D%n—algebras EMNX) for proper marked formal schemes.

8.2.1. Theorem. Every proper marked formal scheme X over k° can be provided with a
unique filtered O(X,,)-subalgebra E)(X) C S*(X,;) such that the following is true:

(a) EMX) is a filtered Dy, -algebra;

(b) E39(X) = O(X,);

(c) Kex(EX(X) > QL (X)) = e(X,);

(d) every closed one form w € Q}, ;(X) has a primitive f,, in E¥(X);

(e) EML(X) is generated over O(X,,) by the above primitives f.;

(f) there exists a point © € (in)st with f, € Ox . for all f € EMX).

Furthermore, the filtered Dy -algebra £ M(X) possesses the following properties:
n
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(1) EM(X) C R} (X) (see the end of §3.1);

(2) for every f € EX(X), one has f‘(:{m-a%n) € EA(%n,i?), and, if dim(X,) =1 or X = X, there
is an isomorphism £ (X) ®ox,) O(X,, X,) = EMX,, X);

(3) EM(X) is functorial with respect to (k, X, K, \);

(4) the homomorphism ky,.g — K : Log(p) — X gives rise to an isomorphism £(X) = EX(X);

(5) the canonical homomorphism of filtered O(X,,)-algebras EM(X) @y K — SMN(X,)) is injective;

(6) given a function f € SM(X) on a smooth k-analytic space X, every point x € X with
s(z) = dim(X) has a marked neighborhood ¢ : X, — X such that o*(f) € (EMX) @) K)*.

Proof. The uniqueness of the algebras £ (X) is verified in the same way as the correspondent
fact in the proof of Theorem 8.1.1, and their construction is done by induction as follows. Assume
that Dy -module £*4(X) with all of the properties is already constructed for some i > 0. To
construct EXF1(X), it suffices to show that every closed one-form w € Qf, ,(X) has a primitive
fu € S)"i+1(%n)ﬁR8’i+1(%). First of all, by [Ber9, Corollary 8.3.3], H'(%,,, cxn) = 0 and, therefore,
there exists a primitive f,, of w in SM*1(X,). Let 3 be an open affine subscheme of X By the
property (2), w‘(%nﬁn) € EM@p 0L, where B = O(X,, 35), and, therefore, there exists a primitive
[l of win EMTL(X,, 3). We get f“’{(xm?)n) —fl, € e(%,,3,) ®r K. Since ¢(X,, 3,) = ¢«(X,), we may
assume that f, ‘ (X,.3.) € 5)"”1(%77, 3), and we claim that such f,, possesses the necessary property,
i.e., fo € RS’HI(%). Indeed, by the property (1), one has w € Q}%Q(%)’ and Corollary 3.1.6
implies that there exists a primitive f of w in RS’HI(%). It follows that f, — f = a € cg(X) @ K,
and we have to show that in fact a € c¢g(X). Let ¢ be a Frobenius lifting on (X,,3,). By the
construction of f,,, there exists a monic polynomial P(T) € k[T| with no roots-of-unity roots such
that P(¢*)f, = g € EM(X,,3). It follows that g — P(¢*)f = P(¢*)a, and the latter is the
restriction of a unique element [ € ¢z(X) ®; K. Since P(¢*) induces a bijection on ¢p(X) ®y K, it
suffices to verify that § € cp(X).

Let U be an open neighborhood of 3, in X, such that all ¢/ for j < deg(P) are defined on
U. For a closed point x € X, we set Uy = 7 1(x) NU and denote by My be the subgroup of
all h € O(Ux)* for which the real valued function = — |h(x)| extends by continuity to the generic
point ¢ of X and such that |h(c)| = 1. Furthermore, we denote by L{(Uy) the filtered Dy, -
subalgebra of L*(Uy) generated over O(Uy) by Log™(h) for h € My, and we denote by Ré"i(%,U)
the subspace of all h € RM(X,U) with hy, € L) (Ux) for all closed points x € X,. For example,
P(¢*)f € Ry H(&,U).

By the property (5), we can find a dominant morphism ¢ : X’ — X from a proper marked formal

scheme X’ over k'° with is a finite extension %’ of k such that go(.’{;?) C U and p*(g) € EM(X )@ K.
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Since g € EM(X,,3), it follows that in fact p*(g) € EM(X'), and since ¢*(h) € RY'(x') for
all h € RY'(%,U), it follows that ¢*(8) = ¢*(g) — ©*(P(¢*)f) € Ry*(X'). This implies that
B € cr(X). That the Dy, -modules EMITL(X) possess all of the other properties easily follows from

the construction. »

8.2.2. Remark. If K = k and dim(¥X,)) = 1, i.e., X,, is a smooth basic curve, the filtered
algebra £*(X) is precisely the algebra A(X,) introduced by R. Coleman in [Coll] and [CoSh] and

mentioned in the introduction to this paper.

8.3. A filtered Do, , -subalgebra 53\(’36 - S)A(,z and the space Vx ;.

8.3.1. Theorem. There is a unique way to provide each stalk 83\{,5 at a geometric point T of
a smooth k-analytic space X over a point x € X with a Gg/,-invariant filtered Do «z-Subalgebra
5))‘(,5 so that the following is true (with 83\(@ = (5))‘(75)6'5/%):

(a) if s(x) = dim(X), then 5))‘(@ consists of the elements f € Sx , such that there exists a
marked neighborhood ¢ : X, — X of x with ¢*(f) € EMNX);

(b) 53\(@ is functorial with respect to (k, X, @, K, \);

(c) for any smooth morphism ¢ : Y — X and any geometric point § of Y over T and a
point y € Y with s(y) = s(x), there is a Gy,-equivariant isomorphism of filtered Do, _-algebras
5?(,5 Qox = Ovy = gé,y'

Furthermore, the filtered Do, _-algebra £ 3\(5 possesses the following properties:

(1) 53\(75 is a free Ox z-module of at most countable rank;

(2) if f1,..., fi are elements of O% , such that |fi(x),...,|fi(x)| form a basis of the Q-vector
space +/|H(x)*|/~/|k*|, then there is an isomorphism of filtered Do, ,-algebras

ExolT, ... T] @k K 5 8%, T; — Log™(fi)

(3) the homomorphism kyos — K : Log(p) — X gives rise to an isomorphism Ex , — 53\(’36;

(4) Ex 5 consists of the elements f € Sx , such that there exists a strictly affinoid domain V
in an open neighborhood of x, at which f is defined, with x € V and f’v en(V).

Proof. If the Do, _-algebras £ 3\(5 exist, the uniqueness is trivial. Their construction is done

in several steps.

Step 1. Assume first that s(z) = dim(X). We define €%, (and together with it 83\(5) by the
property from (a), and we claim that 6’))‘(75 is a free Ox z-module of at most countable rank. Indeed,

since k is a closed subfield of C,, H(z) contains a countable dense subfield. It follows that set
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of finite extensions of H(x) in H(T) is countable and, therefore, there is a marked neighborhood
¢ : X1, — X of the point  and a countable sequence of morphisms of proper marked formal
schemes ... ¥3 Xs i X1 such that each induced morphism X,, ,, — X is also a marked neighborhood
of x and 53‘(75 = li_n)lé’%%@. If 3, C X, are open affine subschemes with ¥, (3,41) C 3,, then

5))‘(75 =lim ENXp,, 3n,y), and the claim follows from Corollary 8.1.2(iii).

Step 2. Assume now that s(z) < dim(X). We take a smooth morphism ¢ : X’ — Y from
an open neighborhood X’ of x such that s(y) = s(z) = dim(Y'), where y = ¢(z), and a geometric
point y of Y over y and under 7, and define 5))‘(75 (and together with it 5?‘(@ = (53\(,5)(;5/9”) as the
image of the injective homomorphism 55)7@ Roy- Oxz — Sﬁ‘(,i. (The injectivity follows from Step
1 and Corollary 2.3.4.) Although we do not yet know that the above image does not depend on the
choice of ¢ and 7, and we do know that the property (2) holds. To prove the theorem, it suffices
to verify the property (4). Let E;\(’x denote the set of all elements of Sﬁ‘(,z with the property (4).

Step 3. The inclusion 5))‘(@ - g;\(,m is true. Indeed, to prove this, we may assume that
s(z) = dim(X). Let f € 8))‘(@. Shrinking X, we may assume that f € S*(X), and let us take a
marked neighborhood ¢ : X, — X of z with ¢*(f) € £}(X), and a nonempty open affine subscheme
3 C X such that @ is étale at all points of the strictly affinoid domain 3,. By the construction,

go*(f)’sn € n(3,) and, by Raynaud’s theorem (see [BoLii2, Corollary 5.11]), ©(3,,) is a finite union

7
of strictly affinoid subdomains of X. If V' is one of them that contains the point z, then f ‘V en(V),

. =A
e, f €&,

Step 4. If t(x) = 0, then E;\(@ C 5§7x. Indeed, since EQ’x[Log(p)] = S?‘Qm, every element
f e ?;\(’r is of the form """ , g;Log(p)" with g; € 5))‘{796. Shrinking X, we may assume that
90-91,- -+, gn € SN X). Assume that n > 1 and g,, # 0. Then every strictly affinoid domain V' with
x € V contains a point z € Vg with g, (z) # 0, and so, for such a point z, f(z) is a polynomial in

Log(p) over Oy . of positive degree. This contradicts the assumption on f.

Step 5. The previous two steps reduce the theorem to the verification of the following fact.
Given a smooth morphism ¢ : Y — X of dimension one, if the required statement is true for a
point x € X, then it is also true for any point y € ¢~ (x) with t(y) > t(x). Indeed, by Proposition
2.3.1(ii), we may assume that ¥ = X x B, where B = B(0; R’, R"”) is an open annulus of radii
R’ < R” with center at zero, and y is the point of the fiber =1 (x) which is the maximal point of
the closed disc of radius R < r < R” with r & \/|H(x)*].

One has £, [Log(T)][Log(p)] = Sk , and, in particular, every element f € fi\/’y is of the form
ZZ]':O gi;Log(T) Log(p)? with g;; € 53\(71,. Shrinking X, we may assume that g;; € S*(X) and,
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therefore, f € S*(Y). Let d be the maximal value of i + j with g;; # 0. We are going to show that,
if d > 0, then every strictly affinoid domain V' with y € V' contains a point ¥’ € Vy with f,, & Oy .
By Lemma 4.5.4, we may assume that V = U x A (as in the formulation of the lemma). Shrinking
U, we may assume that (g;;) ‘U e n(U) for all 7, 7 > 0. The maximal possible degree of Log(p) in f,
is d, and the coefficient is equal to a@ = Zf:o ga—ii(2")v(T(y'))?, where j is the maximal ¢ < d with
Ga—ii # 0, 2" = ¢(y'), v(T(y’)) is the rational number with Log(T"),, — v(T(y"))Log(p) € Oy, .
(Notice that v(T'(y")) is the value of the real logarithm with basis |p| at |T'(y")|.) Let 2’ be a point
in Up with gq—; ;(2") # 0. If j = 0 then, for every point y' € Vj over 2/, f,/ is a polynomial over
Oy, of degree d, and so assume that j > 0. Since V = U x A, we can find a point y’ € Vj over 2’

for which the denominator of the rational number v(T(y")) is divisible by a big power of p so that

o) > e (200 o

|9a—j,5(2")]
We get |a(y')| = |ga—j.;(@")|[o(T(y'))]? # 0, and the required fact follows. .

8.3.2. Corollary. The statements (iv)-(vi) of Theorem 1.6.2 are true.

Proof. The statement (vi) and (iv) follow from Theorem 8.3.1(1) and (2), respectively. In the
situation of the second part of (v), Lemma 5.5.4 implies that ¢* (83\(1) 5 p# (83\(2) = S;‘(/,’i, and
so to verify the first part we may assume that k' = k. In that case, the required fact follows from

Corollary 2.3.4. .

8.3.3. Corollary. Let X be a smooth k-analytic space. Then
(i) the following properties of a point x € X are equivalent:
(a) S% o = OX 4
(b) LX o = OX 4
(c) s(x) =t(x) =0, ie., 7-?(3/3) is algebraic over k and the group [H(z)*|/|k*| is torsion;
(ii) the following properties of a geometric point T of X over a point x € X are equivalent:
(a) Sk 7 = Lx 3
(b) 5))\(,5 = Oxa;
(c) s(z) =0, i.e., 7—2@) is algebraic over k. .
8.3.4. Corollary. If elements {f;}icr € O% are such that their images in O% . form a
basis of the abelian group 7715/5 x,z (from Corollary 4.2.2), then there is an isomorphism of filtered
Do, _-algebras
OX,E[Ti]iEI = 53\(,§ N ‘Cé(,i (T Logk(fi) . .
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8.3.5. Corollary. The class of a closed one-form w € Q&I lies in Vx , if and only if it admits
a primitive f, € Ex 5.

Proof. For a geometric point T over z, let V;{,E denote the space of the classes of those closed
one-forms w from Q%i that admit a primitive f, in Ex z. It suffices to verify that Vx z = VS(E.
If p : Y — X is a smooth morphism and y is a point over x with s(y) = s(zx) = dim(X),
then, by Theorem 4.5.3(ii), Vxz — Vx 7 for any geometric point i over y and  and, by Theorems
4.5.3(1) and 8.2.1(d), Vx z = Q;é?;/d@xj = Vi z- This gives the inclusion V C V' and, to prove the
converse inclusion, it suffices to verify the following claim. Given a smooth morphism ¢ : Y — X of
dimension one, if the required fact is true for a point x € X, it is also true for any pointy € p~1(z)
with t(y) > t(x). For this, we may assume that Y = X x B, where B = B(0; R', R"”) and y is the
point of the fiber ¢ ~!(z) which is the maximal point of a closed disc of radius R’ < r < R” with
r ¢ \/W . Given a closed one-form w € Q%,’y whose class is in V{,@, one has w =n+ a% +dg,
where 7 is a closed one-form in Q%,’g with class in Vy 3z, o € cyy and g € Oyy. We can shrink X
and Y (in the étale topology) so that g € O(Y') and the primitives f,, and f,, are defined on all Y
and f, = f, + aLog(T') + g. We are going to show that, if o # 0, every strictly affinoid domain V'
with y € V' contains a point ¥ € Vi, with (f,),s € Oy, . Indeed, shrinking V', we may assume that
(fn)‘v € n(V) and, by Lemma 4.5.4, we may assume that V' = U x A as in its formulation. For a
point ¥’ € Vi, (fu)y is a polynomial over Oy, in Log(p) of degree at most one, and the coefficient
at Log(p) is equal to av(T'(y")). We can of course find a point ¢y’ € Vi with v(T'(y')) # 0, and the

required fact follows. .

Recall that the construction of §5.4 applied to the cx z-algebra Ox z, the differential d :
Oxz — Qﬁ(g and the vector subspace Vxz C Q;%/d(’)xj, provides a filtered Do, _-algebra
Sho, . (Vxz) = Oxz ®c,- Sh(Vxz). If ¢ : X’ = Y is a smooth morphism from an open neigh-
borhood X’ of x to a smooth k-analytic space Y with s(y) = dim(Y) = s(z), where y = ¢(z),
and ¥ is a geometric point of Y under = and over y, then there is a Gz,,-equivariant isomorphism
Sho, - (Vxz) = Oxz ®c¢, -~ Sho,, _. Thus, the Gy/,-equivariant injective homomorphism of graded
Do, _-algebras Gr'(Eyy) — Gr'(Sh@Y,y)7 constructed in §5.4, gives rise to a Gz/,-equivariant in-

jective homomorphism of graded Do _-algebras
GI"(EX@) — Gr'(Shox,i(VX@)) .

Notice that the right hand side is isomorphic, as an Ox z-algebra, to She g (Vx z), and recall that,
by a result of R. Radford (see [Rad, Theorem 3.1.1]), the shuffle algebra of a vector space over
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a field of characteristic zero is isomorphic to the ring of polynomials over the field with a set of

variables consisting of homogeneous elements.

8.3.6. Corollary. (i) The graded Ox z-algebra Gr'(Ex z) has no zero divisors and Ox z Is
algebraically closed in it and, in particular, the same is true for the filtered Ox z-algebra Ex z;

(ii) Gr'(Exz)" = O% 7 and, in particular, €% - = O% . .

From Theorem 8.3.1 and Corollary 8.3.5 it follows that if the k-algebra K (resp. Gr'(K)) has no
zero divisors and k is algebraically closed in it, then the sheaf of Ox-algebras Sy (resp. Gr'(Sy))
has no zero divisors and Ox is algebraically closed in it. It follows also that the Ox-modules

A .
Sx/Sy" are torsion free.

8.3.7. Theorem. Let X be a smooth k-analytic curve, and T a geometric point of X over
a point z of type (2). Then there is a (non-canonical) Gz /,-equivariant isomorphism of filtered
Do _-algebras Exz 5 Shoxﬁ-

Proof. There is a countable sequence of étale morphism ... 23 X, 22 X; % X with a set of
compatible morphisms pyz) — X, over T, which form a fundamental system for calculating the
stalk Fi of an étale sheaf F' at T, i.e., Fy = liLnF(Xn), (see §1.1). We may assume that each X, is
an elementary and basic curve over a finite Galois extension k, over k, and is a Galois covering of
X whose Galois group G,, coincides with that of H(z,,) over H(z), where x,, is the generic point of
X, as well as the image of T in X,,. We may also assume that the above system is induced by an
equivariant system of morphisms ... 2%, 2 %1 5 X, where each X, is a proper marked formal
scheme over kY with X, , = X,, and the generic point z,. We set V,, = Q!(X,,)/dO(X,,) and
V= Qkf/d()x,g. Notice that US2  k, = cx 7 is the algebraic closure of k in H(Z), V = Uy, V,,
and Gz/, = 1£n G,,. We now choose the following objects:

(1) a compatible system of k,-linear G,,-equivariant sections s,, : V;, — Q!(X,,) of the canonical
epimorphisms Q!(X,,) — V,, (we denote by Q,, the image of s,,);

(2) a compatible system of k,-linear G,,-equivariant sections t,, : Q,, — P1(X,) N EH(X,,) of
the epimorphisms d : P*(X,,) — QY(X,,) (over Q,);

(3) a basis {v;};>1 of V over cx z such that, for every n > 1, the first I, vectors vi,..., v,
form a basis of V,, over k,,.

Notice that the systems of sections {s,},>1 and {t,},>1 define cx z-linear Gz,,-equivariant
sections s : V — Q%{z and t : Q = U2, — 77)1(’5. We are now going to construct a Gz/,-
equivariant embedding of Dy z-algebras Shox,; — Exz for which the operator V : Shoxj —

Sho, . ®c, - ﬁ(,g, that takes v;, ®...®v;, tov;, ®...®uv; _, s(v; ), corresponds to the differential
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on £xz. Since Sh(V) = U2 Sh(V},), for this it suffices to construct a compatible system of G,,-
equivariant embeddings of kj-algebras Shp(x,) = O(Xn) ®&, Sh(V,) — &£(X,) with the same
properties. We now recall results of D. Radford [Rad] on the structure of the shuffle algebra Sh(V').

First of all, let S denote the free semigroup generated by symbols x1,x2,.... Each element
T = ... x;, €5 defines an element v, = v;, ®...®v;  of Sh(V), and one sets |z| = m. There
is a subset P C S (whose elements are called primes) such that the elements v, for x € P form a
polynomial basis of Sh(V). Moreover, if P™ = {z € P||z| = m} and P™) = U, P™, the elements
v, for z € PI™ form a polynomial basis of the subalgebra of Sh(V) generated by the subspace
Sh™ (V) = @™,V ®". By the definition of primes, all elements z; are contained in P!, and if S,, is
the semigroup generated by x1, ..., x,, then the set of primes in S,, coincides with the intersections
PNS,.

Thus, to construct the required homomorphism « : Sh@x,; — Ex 3, it suffices to define the
images of the elements v, for z € P. First of all, for ¢ > 1 we set a(v;) = t(s(v;)) and, in
particular, da(v;) = s(v;). This defines a compatible system of k,-linear G,-equivariant maps
Sh'(V,,) — £'(%,) and, therefore, a ¢x z-linear G /,-equivariant map o : Sh(V) — 5)1(75. Assume
that m > 2 and that we have already constructed a compatible system of k,,-linear G,,-equivariant
maps Qu,_1 : Shmfl(Vn) — &m~1(X,), n > 1, which take products (when they are defined) to
products and for which the operators V : Sh"™ '(V},) — Sh™ %(V,,) @, Q'(X,) correspond to
the usual differentials. The correspondence v;, ® ... ® v;,, _,5(v;,,) — v, ® ... ® v;,, gives rise
to a ky-linear G,-equivariant isomorphism between the cokernel of the induced homomorphism
Sh’g(_Xln) — Shg(_xln) Ro(x,) Q'(X,) and the tensor product V,®™ (see Lemma 5.4.4). It also
defines a kj,-linear G,-equivariant section s : V& — Shg(_Xln) ®o(x,) (X,). As in (3) above,
we denote by 2" the image of the latter, and choose a compatible system of k,,-linear GG,,-invariant
sections 7' : QT — P™(X,,) N E™(X,) of the epimorphism d : P™(X,,) — Q%,.-1(X,,) (over Q7).
Finally, for a prime z = x;, - ... - x;, € P NS, we set a,(vy) =t (v;, @ ...Qv;,, ,s(v;,,)). In
this way we get a compatible system of k,-linear G,-equivariant maps «,, : Sh"(V,,) — £™(X,,)

which extend the maps a,,,—1 and give rise to the required isomorphism. .

8.3.8. Corollary. In the situation of Theorem 8.3.7, there is an isomorphism of filtered

Do, ,-algebras Shey/” @ K % S . .

Notice that the algebra on the left hand side in the above isomorphism is bigger than the
algebra Sho, , = Ox 2 ®cx , ®Sh(Qx,,/dOx ;). The following corollary is proved in the same way
as Theorem 4.5.1(ii). .
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8.3.9. Corollary. Let X be a smooth k-analytic space. For n > 1, let &'y denote the
subalgebra of Sx generated by S% and K, and set Gg( = Lx. Then for every geometric point T of
X over a point x with s(x) > 0 and every n > 0, S}%l is not contained in any finitely generated

&’ z-subalgebra of Sx . "

8.4. More uniqueness properties.

8.4.1. Theorem. Let X be a connected smooth k-analytic space such that the Ox-module
QL is free over a nonempty Zariski open subset of X. Let {f;}ic; be a system of functions
from PM(X) such that the classes of the analytic one-forms df; in Q%°(X)/dO(X) are linearly

independent over ¢(X ). Then the following homomorphism of filtered Dx-algebras is injective:

O(X)[Ti]ier @k K — SMNX) : Ty — f; .

8.4.2. Proposition. Let X be a smooth k-analytic space, and X' a dense Zariski open subset
of X. If a function f € SM(X) is such that f‘X, € SM(X'), then f € SM™(X).

Proof. The statement is local in the étale topology of X, and we prove it by induction on
m, the dimension of the proper Zariski closed subset Y = X\ X’. If m = 0, we may assume that
Y is a point z € Xy. In this case 53\(,93 = Ox . ®; K, and the statement immediately follows.
Assume that 1 < m < dim(X) — 1 and that the statement is true for smaller dimensions. We may
assume that Y is connected, and we provide it with the structure of a reduced k-analytic space.
The non-smoothness locus Z of Y is a Zariski closed subset of X of smaller dimension, and so if
the statement is true for the pair (X\Z, X'\Z2), it is also true for the pair (X, X’). This reduces
the situation to the case when Y is smooth. It suffices to show that, given a function f € S (X)
with n’ > n and f‘X, € SM(X'), every point € Y has an étale neighborhood ¢ : U — X
€ SM(U') for a

with connected U such that the preimage V = ¢~ 1(Y) is connected and ¢*(f)
Zariski open subset U’ C U which is strictly bigger than =1 (X’) = U\V.
First of all, replacing X by an étale neighborhood of the point , we may assume that X =
Y x D, where D is the open unit polydisc with center at zero of dimension ¢ = dim(X) — m. By
the property (IH2) from the proof of Theorem 1.7.1, we may then assume that f € p# (S)"”, (Y)),
ie., f= 2221 gifi with g; € O(X) and f; € S’\’"I(Y). Assume that for some p < [ the functions
gi,--.,9gp form a maximal subset of linearly independent functions over the fraction field of O(Y).
If p < I, we can replace Y by a Zariski open subset so that all of the functions g,+1, ..., g; are linear
combinations of g,...,g, over O(Y). This reduces the situation to the case when the functions

g1,---, g are linearly independent over the fraction field of O(Y).
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8.4.3. Lemma. Let g1,...,g; be analytic functions on X =Y x D linearly independent over
the fraction field of O(Y'). Then there exist nonzero k-rational points a1, ...,«; € D such that the
determinant of the matrix (g;(a;))1<i j<i Is not equal to zero.

Proof. If | = 1, the statement means that, given a nonzero analytic function g € O(X), there
exists a k-rational point @ € D with g(a) # 0, and the required fact is easily verified by induction
on ¢ = dim(D). Assume the statement is true for [ — 1 with [ > 2. Then there exist nonzero
k-rational points aq,...,a;—1 € D such that the determinant of the matrix (g;(c;))i<ij<i—1 is
not equal to zero. To find the required value of «;, consider the expansion of the determinant of
the original matrix in terms of the elements of the last column. It follows that this determinant is
a nonzero linear combination of the elements g;(cy) with coefficients in O(Y) and, therefore, the

required value of «; exists. .

Replacing Y by the Zariski open subset where the above determinant does not vanish, we
may assume that it is invertible on Y. Each point «; defines a section o; : ¥ — X\Y of the
canonical projection X\Y — Y. Since f‘X\Y € SM(X\Y), it follows that the function ai(f) =
22:1 gi(a;j) fi is contained in S»™(Y). The fact that the determinant of the matrix (g;(c;))1<i j<i
is invertible on Y implies that all of the functions f; are also contained in S*"(Y') and, therefore,

fesh(X). .

Proof of Theorem 8.4.1. We may assume that the system considered is finite, i.e., we are
given {fi,...,fm} C PYY(X). For v = (v1,...,vm) € Z™, we set |v| = v1 + ... + vy, and we
provide Z7? with an ordering possessing the property that if |v| < [¢/| then v < v/. For a polynomial
P= ZVEZT g, T" € OK[T1,...,T,,], we denote by v(P) the maximal v with g, # 0. Furthermore,
let {7;}jes be a basis of K over k and, for a function g =3, ; g;7; € OK(X), let £(g) denote the
number of j € J with g; # 0. We have to show that if a polynomial P as above is not zero then
P(f) # 0. We prove the latter fact by double induction on (x,!) with = v(P) and [ = ¢(g,). Of
course, the fact is true if = (0,...,0), and so assume that p # (0,...,0) and [ > 1, and that the
fact is true for all (p/,1") with either p/ < p, or p/ = pand I’ <.

If X’ is a nonempty Zariski closed subset of X then, by Lemma 1.1.1, X’ is connected and
¢(X) = ¢(X’). Proposition 8.4.2 also implies that the restrictions of the analytic one-forms
dfi,...,dfn to X' are linearly independent in QV(X’)/dO(X’). Thus, we can replace X by a
nonempty Zariski open subset at which g, j, is invertible and the Ox-module QY is free. After
that we can replace P by P/g, j,, and so we may assume that g, j, = 1.

Let ny,...,m, € QY(X) be a basis of Q% over Ox. Then df; = 2:1 fi(p)np and dg, =
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a1 g,(,p)np, where fi(p) € O(X) and 9P € OK(X) with E(gﬁp)) < lforall 1 <p <gq. The
coefficient of dP(f) at n, is equal to

PR N SR WY

veZm i=1 veZY

where fr=¢ = .. ..fril . fvm. Thus, if P(f) = 0, all of the above coefficients are equal to

zero. Since B(g,&p )) < [, the induction hypothesis implies that the coefficient of the above expression

at every fY is zero.
If |v| = |ul, the coefficient at f* is g,(,p) for all 1 < p < ¢ and, therefore, g, = o, € C(X).

Furthermore, for every 1 < ¢ < m with p; > 1 the coefficient at f#~¢ is equal to

gi(tp_)ei =+ Hiaufi(p) + Z(M + D) ap—c e fj(p) ’
j=1

J#

where p —e; +ej = (p1,..., i —1,..., 45 +1,..., fty,). The summation by p gives the equality

dgu—e; + picdfi + Z(Nj + 1)au*ei+ejdfj =0.
j=1
i
Decomposing this equality in the basis {v;};es and using the fact that a, j, # 0, we get a non-

trivial linear relation between the classes of dfy, ..., df,, in Q% (X)/dO(X) over ¢(X), which is a

contradiction. »

8.4.4. Corollary. In the situation of Theorem 8.4.1, let {f;}icr be a maximal system of
invertible analytic functions on X such that the classes of the one-forms % in QM(X)/dO(X)
are linearly independent over ¢(X). Then the following homomorphism of filtered Dx-algebras is
bijective:

O(X)[T)ier @k K — LNX) : T; = Log(f;) - .

8.4.5. Corollary. In the situation of Theorem 8.4.1, let {w;};cr C QV°(X) be such that
the classes of w;’s in Q°(X)/dO(X) are linearly independent over ¢(X), and assume that either
they are contained in the ¢(X)-vector subspace generated by the classes of the one-forms % for
[ €0O(X)*, or H(X,cx) = 0. Given a point x € X (k), let f; be a primitive of w; in Ox ,. Then

the analytic functions { f;},cr are algebraically independent over the image of O(X) in Ox ;.
Notice that the existence of a k-rational point implies that ¢(X) = k.

131



Proof. In both cases, for every i € I, there exists a primitive g; of w; in PM(X) with g; . = f;,

and the required fact follows from Theorems 8.4.1 and 1.6.2(i). .
The following is a consequence of Proposition 8.4.2.

8.4.6. Corollary. Let X be a smooth k-analytic space. Then

(i) for any étale morphism Y — X with connected Y and the property that the Oy-module
Qy, is free over a nonempty Zariski open subset of Y, the map P*"T1(Y)/SM(Y) @¢yy OY) —
SAMHL(Y) /SN (Y) is injective;

(ii) there is an isomorphism of Dx-modules Py /S¥" @¢, Ox = S¥"T1/Sy™ .

Proof. By Proposition 8.4.2, local sections of the sheaf S}}’"H/S;‘{’" satisfy the assump-
tion of Lemma 1.3.1, and so (i) follows from that lemma and the fact that the canonical maps
PATH(Y) [SA(Y) — (PR /SY™)(Y) and SMNH(Y)[SM0(Y) — (Y™ /SY™)(Y) are injec-
tive. That the homomorphism in (ii) is injective follows from the same lemma, and its surjectivity

follows from the property (d) of Theorem 1.6.1. .

8.4.7. Remark. It would be interesting to know if the statement of Proposition 8.4.2 is true
with the weaker assumption f € 9t (X) instead of f € S*(X). This is true for trivial reason in the
case when X\ X’ is of dimension zero. It would be also interesting to know if the correspondence
U +— S*(U) is a sheaf in the flat quasifinite topology of X (see [Ber2, §4.1]). Again, this is true for

trivial reason for X of dimension one.

8.5. A filtered Dx-subalgebra sx C Sx and the sheaf Ux. For i > 0, let ﬁix denote the
Dx-module which is the intersection of S}} and ny in Mx, and set sx = lim 53(. Notice that, since
the sheaves S;‘(’i are functorial with respect to (K, \), it follows that s% C S;‘(’i for every (K, \).

Notice also that, by Theorem 8.3.1(4), one has sx , C Ex , for all points z € X.

8.5.1. Theorem. (i) The class of a closed one-form w € Qﬁ(m is contained in ¥y , if and
only if it admits a primitive f, € sx 4;

(ii)) sx N Lx = Ox.

Proof. (i) Assume first that s(x) = dim(X). If the class of w is in ¥x , then, by Theorem
4.5.1(iii), there exists a marked neighborhood ¢ : X,, — X of z such that p*(w)x € dO(7*(x))
for all closed points x € X,. We can find a monic polynomial P(T') € k[T] with no roots-of-unity
roots such that P(¢*)(p*(w)) = dg for some Frobenius lifting ¢ around the generic point o of X
and a function g € O%n,a' Then there exists a primitive f of ¢*(w) in S*(X,)) with P(¢*)f = g.
on the other hand, by Theorem 8.2.1, there exists a primitive f’ of p*(w) in £1(X) and, therefore,
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f—f" = a+ pLog(p) with a, 8 € ¢(X). It follows that g — P(¢*)f' = P(¢*)a + P(¢*)SLog(p).
The left hand side is the restriction of an element of ¢(X) and, therefore, P(¢*)5 = 0. Since
P(¢*) induces a bijection on ¢(X), it follows that 3 = 0, i.e., fx € O(7~1(x)) for all closed points
x € X;. The latter means that f € s(X,) and, therefore, w has a primitive in sx .. Conversely,
assume w has a primitive f in sx ., and let ¢ : X,, — X be a marked neighborhood of the point
x whose image is contained in an open neighborhood of x over which f is defined. Then for
every closed point x € X, one has ¢*(f)x € s(771(x)) N L (771(x)) = O(r~!(x)) and, therefore,
©*(w)x € dO(r~1(x)). Theorem 4.5.1(iii) implies that the class of w lies in ¥y ;.

If the point x is arbitrary, we may shrink X and assume that there exists a smooth morphism
¢ : X — Y that takes z to a point y with s(z) = s(y) = dim(Y). By Lemma 4.5.2(iii), Ux z — Py 3
for any pair of compatible geometric points T and y over x and ¥, respectively, and the first case
implies that, if the class of w is in ¥x ., then it has a primitive in sx ,. On the other hand, assume
that w has a primitive in sx ,. Since the latter is contained in €x ,, then the class of w lies in
Vx,» and, by Theorem 4.5.2(ii), we can shrink X and Y in the étale topology so that the class of
w coincides with that of ¢*(n) for some n € Q;Ci with class in Vy,,,. It follows that ¢*(n) has a
primitive in sx ;. Since any smooth morphism has a local section in the étale topology, it follows
that n has a primitive in sy,,. By the previous case, the class of 7 lies in ¥y, and, therefore, that

of w lies in ¥y ,.

(ii) By Corollary 8.3.4, it suffices to prove that, given functions f1,..., f, € O% , with |f;(z)| =
1 such that their images in O% , are linearly independent, for any polynomial of positive degree
P e Ox;[Th,...,T,] the function P(Log(f1),...,Log(f,)) does not lie in sx ,. Shrinking X, we
may assume that it is connected, fi,..., f, € O(X)* and and all of the coefficients of the polynomial
P are defined over all X, and we are going to show that P(Log(f1),...,Log(fn)) € s(X).

Step 1. The required fact is true if s(x) = dim(X) = 1. Indeed, shrinking X in the étale
topology, we may assume that X = X;n\ [T~ , X;, where X is a smooth projective curve over k°
and each X; is an affinoid subdomain of 7=1(x;) isomorphic to a closed disc with center at zero,
and x1,...,X,, are pairwise distinct k-rational points of X;. As in the proof of Theorem 4.3.1, we
can shrink X (increasing each X; in 7= 1(x;)) so that there exist functions g1,...,gm_1 € O(X)*
such that the reduction of every g; is a well defined rational function on X whose divisor is a
nonzero integral multiple of (x;) — (X,,). It follows (see §4.3) that a nonzero integral power of ev-
ery function f; is contained in the subgroup generated by g1, ..., gm—1 and O(X)! and, therefore,

P(Log(f1),...,Log(fn)) = Q(Log(g1),-..,L0g(gm—1)) for some polynomial @ of positive degree
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over O(X). We may therefore assume that {f1,...,fn} = {91,.-.,9m-1}. Assume now that
P(Ty,...,T,) = Ele Py(Ty, ..., T,)T}, where d > 1 and P; # 0. By the construction, the restric-
tions of the functions Log(f2),...,Log(f.) to the open annulus B = 7~ !(x;)\X; are analytic and,
by Corollary 8.4.5, Py(Log(f2),...,Log(f.)) # 0. Thus, the restriction of P(Log(f1),...,Log(f»))
to B is a polynomial in Log(f1) of positive degree over O(B). It is clear that such a functions is

not contained in s(B).

Step 2. The required fact is true if s(x) = dim(X). Since all of the nonzero coefficients of P
are not equal to zero at x, we may shrink X and assume that they are even invertible. By Lemma
4.4.3, there exists a morphism ¢ : Y — X from smooth k-analytic curve Y such that, for some
point y € Y of type (2), the images of ©*(f1),...,¢*(fn) in Oy, are linearly independent. Since
©*(P) is a polynomial of positive degree over O(Y'), this reduces the situation to Step 1.

Step 3. The required fact is true in the general case. Indeed, shrinking X, we may assume
that there exists a smooth morphism ¢ : X — Y that takes the point z to a point y € Y with
s(z) = s(y) = dim(Y). Let 2’ be an arbitrary point of the fiber X, = ¢~ (y) with s(z’) = dim(X,).
Then s(2’) = dim(X). Let ¥ be a geometric point of Y over y. If T and T’ are geometric points
of X over 7 and the points z and z’, then the canonical homomorphisms from ﬁ%/@a to 77{%/5}5
and ﬁ% /E}j/ are bijective and injective, respectively. It follows that the validity of the required

fact for 2’ implies that for the point z. .

If X is a proper smooth k-analytic space with good reduction, then, by Theorem 8.1.1(1), the
O(X)-algebra £*(X) = £*(X, X) is contained in s(X). But the O(X)-algebra s(X) is much larger
than £(X).

8.5.2. Lemma. For every i > 1, the quotient space s'(P')/s~1(P!) is of infinite dimension

over k.
Notice that £(P!) = O(P!) = k.

Proof. Let X be an elliptic curve over k£ with good reduction all of whose points of order
two are k-rational, w a nonzero invariant one-form on X, and f a primitive of w in £}(AX?*") with
f(0) = 0. Then f has zero of first order at all points of finite order in X*"(k). If o denotes
the automorphism z — —z on X, then the quotient of X by {1,0} is the projective line. We
denote by ¢ the corresponding homomorphism X?* — P! and we may assume that ¢(0) = oo.
Since w = —w, then 7f = —f. Furthermore, if g is a rational function on X whose divisor is

(P1)+ (P2)+ (P3) —3(0), where P; are the points of order two, then “g = —g and, therefore, for the
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function h = 5 € s1(X?) one has “h = h, i.e., h € 51 (P!). Finally, let a be an element of k* with
|a| # 1 and, for n € Z, let 1), denote the automorphism P! — P! : z — o™z and set h,, = % (h).
We claim that, for everyi > 1, the images of the functions {h% }nez in s (P1)/s""1(PY) are linearly
independent over k. Indeed, since the function f is analytic everywhere except the generic point x
of X2, the function h is analytic everywhere except the point y = ¢(z) of type (2). It follows that
each function h,, is analytic everywhere except the point y, = 1, (y). By Corollary 8.3.6(i), the

image of h! in 5iP1,yn /5;3% is not zero. Since all of the points {y, }nez are pairwise distinct, the

claim follows. »
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89. Integration and parallel transport along a path

For a k-analytic space X, we set X = X ®k*. At the beginning of this section we construct, for
every smooth k-analytic space X with H1(X, Q) = Hi(X,Q), every closed one-form w € Q%, ., (X)
and every path ~ : [0,1] — X with ends in X (k), an integral fw w € K", This integral possesses
all of the natural properties and, in particular, it only depends on the homotopy class of . That
this dependence is nontrivial is shown in §9.2. Furthermore, for a Dx-module F, let Fgx denote
the Dx-module F ®0, Sy. We prove that a locally unipotent Dx-module F is trivial over an open
neighborhood of every point € Xy, and its Cf-module of horizontal sections .7-"82 is locally free in
the usual topology of X. It is not difficult to derive from this that for any path v : [0,1] — X with
ends z,y € X 4 there is an associated isomorphism of (k*®y K)-modules T'yf : fwv QK > .7-'yv Qi K
which possesses all of the properties of the classical parallel transport. It is more difficult to prove
that the parallel transport is uniquely determined by those properties. We also show that an Ox-
coherent Dx-module F is locally quasi-unipotent (i.e., locally unipotent in the étale topology) if
and only if the C¥-module .7-"5 is locally free in the étale topology of X, and we construct a similar
parallel transport T%E Y @ K5 fgv ®; K along an étale path 7 from Z to §. In particular,
every locally quasi-unipotent Dx-module F gives rise to a semi-linear representation of the étale
fundamental group 7$'(X,Z) of X in the free (k* ®) K)-module FY of rank equal to the rank
of F. (Semi-linearity here is considered with respect to the action of 7$*(X,Z) on k* through its

homomorphism to the Galois group of £* over k.)

9.1. Integration of closed one-forms along a path.

9.1.1. Theorem. Given a closed subfield k C C,, a filtered k-algebra K and an element
A € K1, there is a unique way to construct, for every smooth k-analytic space X with H,(X,Q) =
H(X,Q), every closed one-form w € QF, . (X) and every path ~y : [0,1] — X with ends in X (k),
an integral fv w € K™ such that the following is true:

(a) if w = df with f € SM*1(X), then fww = f(v(1)) = f(~(0));

(b) f7 w depends only on the homotopy class of ~;

(c) given a second path ' : [0,1] — X with ends in X (k) and 7'(0) = (1), one has
fﬁ{ w+ fw’ w.

Furthermore, the integral possesses the following properties:

fom W =
Yoy

(1) fv w depends linearly on w;
(2) fvw is functorial with respect to (k, X, v, K, \);
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(3) if v([0,1]) C Y and w‘(X v) € Qr(X,Y), where Y is an analytic domain with good

reduction, then fww € k.

Here H;(X,Q) is the singular homology group of X with coefficients in Q. The condi-
tion Hy(X,Q) = Hi(X,Q) is equivalent to the isomorphism of singular cohomology groups
HY(X,Q) = H'Y(X,Q) (which coincide with the étale cohomology groups with coefficients in
the constant sheaf Qx). The full formulation of (2) is as follows. Given a closed subfield ¥’ C C,,
a filtered k’-algebra K’, a smooth k’-analytic space X’ with H; (Y/, Q) = Hy(X',Q), a morphism
¢ : X' — X over an isometric embedding k < k', a homomorphism of filtered algebras K — K’
over the embedding k < k' that takes A to an element N € K'', and a path v : [0,1] — X’ with
ends in X'(k’), one has fv’ o*(w) = fcpow’ w.

Proof. Consider first the case when £ is algebraically closed, i.e., K = C,. In this case the
condition on X is evidently satisfied, cx is the constant sheaf kx associated to k and, therefore,

An+1 _ Ql,cl

C% = KY%. The pullback of the exact sequence of abelian groups 0 — K;L(Jrl — Py Sran x

0 with respect to v gives rise to an exact sequence on [0, 1]
n * A, d * ,cl
0—>K[0:"1}1 — (PXn+1) sy (Qlc’ | ) 0.
Since the unit interval [0,1] is contractible, there is a section g of the sheaf v*(Pyx" "), defined
uniquely up to an element of K™™' with dg = v*(w). and we set fvw = g(1) — ¢g(0). (Notice
that the stalks of v*(P3™*!) at 0 and 1 coincide with 733\(”7;?01) C Ox 40) ®k K™ and 73?(2?11) C
Ox (1) @k K"+ respectively, and therefore, g(0) and g(1) are elements of K"*1.) If w = df, one
can take g = v*(f), and we get fww = f(v(1)) — f(v(0)), i.e., (a) is true. Assume we are given a
path 4/ : [0,1] — X with the same ends as v and which is homotopy equivalent to . This implies
that there is a continuous map ® : [0,1]> — X with ®(¢,0) = ~(t), and ®(¢t,1) = ~/(t) for all
t € [0,1]. The same reasoning gives a section g of the sheaf @*(P;‘(’"H) with dg = ®*(w), and this
easily implies the equality fw’ w= f7 w, i.e., (b) is true. The validity of (¢) and (1) is trivial, that
of (2) easily follows from the property (f) of Theorem 1.6.1, and that of (3) follows from Theorem

8.1.1. To prove uniqueness of the integral, we take open subsets Uy, ...,U,, C X such that w has a

primitive f; at each U; and ’y([i;l, %]) C U; for all 1 < ¢ < m. Furthermore, given 1 <i <m —1,
let x; be a k-rational point of U; N U; 1 which is contained in the same connected component of
the intersection as the point v(-%), and set 2y = v(0) and z,, = v(1). By the property (a), the
integral of w along any path [0, 1] — U; with ends x;_; and z; is equal to f;(z;) — fi(x;—1) and, by
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the properties (b) and (c), we get the equality

/w = Z(fz(%) - fi<$i—1)> )

which implies the uniqueness.

In the general case we need the following fact.

9.1.2. Lemma. Let k be a non-Archimedean field whose residue field is at most countable, X
a k-analytic space, and o the canonical map X = X®k* — X. Then for every path vy : [0,1] — X
and every point ¥’ € X with a(z') = v(0) there exists a path 7' : [0,1] — X with a0y’ = 7 and
V(0) = .

Proof (cf. [Berl, Lemma 3.2.5]). We may assume that the space X is compact, and let us

consider the cartesian diagram

0,1 - X
To/ Ta
by . X

Notice that there is a homeomorphism X = @X ®Fk', where k' runs through finite extensions
of k in k*. Tt follows that the map o’ : ¥ — [0,1] is open, proper and surjective. Since the
connected component of a point in a compact space coincides with the intersection of its open-
closed neighborhoods, it follows that the map o : ¥’ — [0, 1] is surjective, where ¥’ is the connected
component of the point (0,z") in ¥. The assumption on the residue field of k& and [Berl, 3.2.9]
imply that the compact space ¥’ has a countable basis of open sets. From [En, 4.2.8] it follows
that ¥’ is metrizable. Since connected metrizable compact spaces are arcwise connected ([En,
6.3.11]), it follows that 3’ is arcwise connected. This implies that there exists a homeomorphic
embedding 1 : [0,1] — ¥’ with ¢(0) = (0,2’) and o/(¢(1)) = 1. The composition § = o’ 01} is a
homeomorphism of [0, 1] with itself that fixed its ends, and the path 4/ = 7o o371 :[0,1] — X

possesses the required properties. .

By Lemma 9.1.2, there exists a path 7/ : [0,1] — X with a oy’ = v. Since the points (0)
and (1) are in X(k), they have unique preimages 2’ and 3’ in X, respectively, and it follows
that 7/(0) = 2" and 7/(1) = y'. Weset [ w = [, & € K" @; Cp. First of all, the latter does
not depend on the choice of 7'. Indeed, if " is another lifting of ~y, then the class of v/~ ' o~” in

H1(]X], Q) is zero (since its image in H;(|X|, Q) is zero) and, therefore, [, @ = fvw. For the same

.
reason, given an element o of the Galois group of k* over k, the class of 1o 79" in H,(|X],Q)

is zero. This implies that fv we K" If 7:[0,1] — X is a path homotopy equivalent to -y, then
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the class of v~ o7 in Hy(|X|, Q) is zero and, therefore, the class of v/~ ' o7/ in Hy(|X|, Q) is zero,
ie., fTw = fw w. All of the other properties of the integral and its uniqueness easily follow from

the case of an algebraically closed field k. .

9.1.3. Remarks. (i) If the field k is not algebraically closed, the assumption H;(X,Q) =
H,(X, Q) is really necessary for the existence of the integral along a path in X. Indeed, let X be a
twisted Tate elliptic curve. Then X is contractible, but X is homotopy equivalent to a circle (and,
in particular, the assumption is not satisfied). Let w be a nonzero analytic one-form from Q! (X).
The existence of the integral fww along paths v in X would imply that w has a primitive on X.
But this is impossible since X is isomorphic to the quotient G, /q¢?% for some ¢ € (k*)* with |¢| < 1,
and the primitive of the pullback of w on Gy, is, up to some constants, the logarithm Log™(T),
which cannot come from a function on X if Log*(q) # 0.

(ii) The integral of a closed analytic one-form on a smooth algebraic variety X, constructed
by Yu. Zarhin ([Zar]) and P. Colmez ([Colm]), depends only on two points and not on a path
that connects them. The reason is that the integral is required to be functorial with respect to
morphisms in the category of algebraic varieties, and the latter category is too coarse to distinguish
a nontrivial homotopy type of the analytification A?* of X. If X is proper and has good reduction,
X" is contractible, and the integral of a closed analytic one-form along a path (from Theorem
9.1.1) depends only on its ends and coincides with the integral constructed by R. Coleman in [Col2]

as well as with those mentioned above.

9.2. Nontrivial dependence on the homotopy class of a path. In this subsection
K = kiog and A = Log(p). Let & be a geometrically connected separated smooth scheme over k
and X = X @ %*. The construction of the previous subsection gives rise to a k2-linear pairing
QLX) /dO(X) x Hy (yan,ga) — (Ea)iog C(w,y) e f7 w. This pairing is equivariant with respect
to the action of the Galois group G = Gal(k®/k). From [Ber9, Corollary 8.3.4] it follows that there

. . . . . . . ~ —San .
is a canonical isomorphism of finite dimensional k-vector spaces H'(X®", cyan) — HY (X, k*)C.

Thus, if we set Hy (X", cyan) = Hy (?an,ga)a, we get a k-linear pairing

QYN X)/dO(X) x Hi(X™, caomn) = ki oy ¢ (w,7) — /w .
Y

Our first purpose is to extend this pairing to the de Rham cohomology group HJg(X), which
contains Q51(X)/dO(X) and coincides with it if X is affine. Recall that, by R. Kiehl’s theorem

[Kie], there are canonical isomorphisms of de Rham cohomology groups Hfy (X) = Hl (X™).
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9.2.1. Lemma. Let X be an irreducible scheme over a non-Archimedean field k, and let
F" be a complex of sheaves of abelian groups on X*". Assume that the restriction of the sheaf
Ker(F° — F1') to the Zariski topology of X is constant. Then the correspondence Y — H'(Y** F")
is a sheaf on X.

Proof. Let U = {V;}icr be an open covering of ), and consider the spectral sequence
EDYY = HP(U™,'HY) = HP9(Y* F"), where H? denotes the presheaf J — H9()**, F"). The
assumption implies that B2 = 0 for all p > 1 and, therefore, H'(Y*, F*) = E®'. The required

fact follows. -

By Lemma 1.1.1, the assumption of Lemma 9.2.1 is satisfied for the complex 0 — ¢yan — 0.
It follows that the correspondence Y +— H(Y™ cyan) is a sheaf on X. For the same reason, the
assumption of Lemma 9.2.1 is satisfied for the complex .. and, therefore, the correspondence
Y — Hiz (V™) = Hiz(Y) is a sheaf on Y. Thus, the above k-linear pairings for open affine
subschemes of X give rise to a k-linear pairing

HIg(X) % Hy (X cyn) — Kby = (w,7) /w .
Yy

Recall that there is an exact sequence 0 — H (X, cyan) — Hig (X) — HO(X™, Qk-(i]/do‘)(an) —
H?(X ¢xan) (see §1.3).

9.2.2. Lemma. The induced pairing H' (X" cyan) X Hy (X cyan) — kiog takes values in
k and is nondegenerate.

Proof. We may assume that and k is algebraically closed and X is affine. Then Hjg(X) =
QLX) /dO(X). Let w be a closed one-form in Q'(X) whose image in H}z (X) = Hiz (X?") is in
H'(X? k). Then the restriction of w to an open neighborhood of every point of X" is an exact
one-form, and so [ w € k for all v € Hy(X*", k). Assume that [ w =0 for all y € Hy(X*" k).
Then any local primitive of w admits an analytic continuation to the whole space X*" and, therefore,
w is an exact one-form. Since the dimensions of both spaces over k are equal, the pairing considered

is nondegenerate. .

9.2.3. Theorem. Assume that X is proper and that it is either an abelian variety or can be
defined over a finite extension of Q,, and let v € Hy (X", cxan). If fww € k for all w € Qb1 (X)),
then v = 0.

Proof. We may assume that the field k is algebraically closed, and we make the following
simple remark concerning the above statement in a more general setting. Let ¢ : Y — X be a

morphism between separated smooth k-analytic spaces. (A) If the map Hy(Y, k) — Hi(X, k) is
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injective, then the validity of the statement for X implies that for Y. (B) If the map H, (Y, k) —
Hi(X,k) is bijective and the map QY¢(X) — QYY) /dO(Y) is surjective, then the validity of
the statement for Y implies that for X.

Step 1. The theorem is true if X is an abelian variety. Indeed, by Raynaud’s uniformization of
abelian varieties (in the form of [BoLiil]), we may replace X’ by an isogenous abelian variety so that
there is an exact sequence of proper smooth k-analytic groups 0 — Y — X*"* — Z — 0, where Z has
good reduction and Y is an analytic torus, i.e., Y = G7 /T", where I is a lattice of maximal rank in
(k*)™. By [Berl, §6.5], H1(Y,k) = Hy(X*" k), and so the remark (B) reduces the verification of the
statement to Y instead of X'. Let 1, ...,7, be abasis of I" over Z, and let v; = (g1, ..., qin) € (*)™.
For an element v € H;(Y,k) one has v = > | \;y; with A\; € k. If w; is the invariant one-form
on Y which corresponds to the one-form dTll on G}, then f7 w; = E?Zl AjLog(gi;j). It follows
that, if ¢;; = u;;p* with |u;;| =1 and «;; € Q, then the coefficient of fﬂ/ w; at Log(p) is equal to
Z;‘:l Ajaij. Thus, if fv w; € k for all 1 < ¢ < n, then Z;‘:l Ajai; = 0 for all 1 < ¢ < n. Since
I' is a lattice in (k*)", it follows that the system of row vectors {(c1,...,in)}1<i<n, is linearly
independent. Hence A; =0 for all 1 <i <n, ie.,v=0.

Step 2. The theorem is true if X can be defined over a finite extension of Q. By the remark
(A), it suffices to verify that, for the canonical morphism X — A from X to its Albanese variety A,
the induced map H; (X", k) — Hy(A*, k) is bijective. Notice that the required fact is equivalent
to the bijectivity of the map H'(|A*"|,Q;) — H!(|x?"|,Q,) for some prime number /, and that
there is a well known isomorphism of I-adic étale cohomology groups H'(A,Q;) = H' (X, Q).
We now use the assumption that X" is defined over a finite extension k' of Q, in k, ie., X =
Y ®y k and, therefore, A = B ®j k, where ) is a proper smooth scheme over k' and B is its
Albanese variety. We may assume that &’ is big enough so that H'(|Y**|, Q;) = H*(|X*"|,Q,) and
HY(|B™],Q;) = H'(|A*™],Q,) (see [Ber7, Theorem 10.1]), i.e., it suffices to check the bijectivity of
the map H'(|B*"|,Q;) — H(|]Y*"|, Q). By [Ber8, Corollary 1.2], there are canonical isomorphisms
HY |y, Q) = HY(X,Q))¢ and H'(|B*|,Q;) = H'(A,Q;)¢, where G is the Galois group of
k'* over k', and the required fact follows from the isomorphism H'(A, Q;) = H'(X, Q). .

9.2.4. Corollary. In the situation of Theorem 9.2.3, the following is true:

(i) the integration gives rise to a surjective homomorphism Hjg (X) — H'(X*", cxan) @y ki, o
(ii) the intersection of H' (X" cyan) and QYN (X)/dO(X) in Hig (X) is zero;

(iii) the canonical homomorphisms H'(X*, ¢yan) — HY'(X,0x) and QV(X)/dO(X) —

HO(xan QLS /dOxan) are injective.
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Proof. The statement (i) follows from Theorem 9.2.3, (ii) follows from its proof, and (iii)

follows from (ii). .

9.2.5. Remarks. The assumption on X in Theorem 9.2.1 is certainly superfluous since the

isomorphism Hy (X", Q) = H;(A*, Q) must always take place.

9.3. Locally unipotent and quasi-unipotent Dx-modules. A Dx-module F on a smooth
k-analytic space X is said to be unipotent (resp. quasi-unipotent) at a point x € X if x has an
open neighborhood U C X (resp. an étale neighborhood U — X) for which F ‘U is unipotent. A
Dx-module F is said to be locally unipotent (resp. locally quasi-unipotent) if it is unipotent (resp.
quasi-unipotent) at all points of X.

Furthermore, the level of a unipotent Dx-module F on X is the minimal n for which there is a
filtration of Dx-submodules F° =0 C F! C F? C ... C F" = F such that each quotient F*/F¢~!
is a trivial Dx-module. If a Dx-module F is unipotent (resp. quasi-unipotent) at a point z € X,
its level at x is the minimal number n, which is the level of the unipotent Dy-module F ‘U for some

U from the previous paragraph (see Remark 9.3.6(i)).

9.3.1. Lemma. Assume that a Dx-module F is unipotent at a point x € X. Then its level
at = Iis the same whether it is considered as unipotent or quasi-unipotent at x.

Proof. Lemma 5.2.1 reduces the lemma to the verification of the following fact. Given a
finite étale morphism of connected smooth strictly k-affinoid germs ¢ : (X', Y’) — (X,Y) and a
unipotent isocrystal M over B = O(X,Y), the level of M is equal to the level of the unipotent
isocrystal M/ = M ®p B’ over B = O(X',Y”). To show this, we may assume that ¢ is Galois with
Galois group G and k = ¢(B), and set k' = ¢(B’).

The canonical homomorphisms MY ®, B — M and M’ V@w B' — B are injective and
their images coincide with the maximal trivial sub-isocrystals of M and M’, respectively. Since
the B’-submodule M’ ®;, B’ is invariant under the action of G, it coincides with N @ B’ for
a B-submodule N C M (see [SGA1, Exp. VIII, §1]). Replacing M by N, we may assume that
M’ is a trivial isocrystal, and our purpose is to show that M is also trivial. We prove the latter
by induction on the rank n of M. Since M is unipotent, the required fact is evident for n = 1.
Assume that n > 2 and the statement is true for n — 1. Consider an exact sequence of isocrystals
0—B— M — P — 0. Since M’ is trivial, P’ = P ®pg B’ is also trivial and, by induction, P is
trivial and dimy(PY) = n — 1. The exact sequence 0 — k' — M’Y — P’V — 0 and the fact that
H'(G,k'") = 0 imply that there is an exact sequence 0 — k — MY — PV — 0. It follows that

dimy,(MY) = n, i.e., M is trivial. .
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9.3.2. Corollary (cf. Remark 9.5.4(i).) Any Dx-module F unipotent at a point x € X4 is
trivial over an open neighborhood of x.
Proof. Corollaries 2.3.3 and 1.3.3 imply that the level of F at x is zero if we consider F as a

Dx-module quasi-unipotent at x and, therefore, the claim follows from Lemma 9.3.1. .

9.3.3. Theorem. Let F be an Ox-coherent Dx-module, © € X and n > 1. Then the
following are equivalent:

(a) F is quasi-unipotent at x of level at most n;

(b) the point x has an étale neighborhood U — X such that, for some m > 1, there is an

embedding of Dy-modules f‘U — (S?\],n—l)m'

For a Dx-module F, let Fgx denote the Dx-module F ®¢, S;‘C. It is a Dgx-module, i.e., a
sheaf of D-modules over the Dx-algebra S)A(, and its sheaf of horizontal sections ng is a sheaf of
modules over C¥. Moreover, it is a filtered Dgx-module with respect to the filtration defined by
the Dx-submodules Fgx: = F Qo SM, i > 0. Assume that F is unipotent of rank m over Ox,
and fix a filtration 7* = 0 C F! € F2 C ... C F" = F such that each quotient F'/F~! is a
trivial Dx-module. Then there is a different structure of a filtered Dgxr-module on Fgx defined by
the D x-submodules

T —1 1
fi - fg/\z + fgx\,i+1 +... +f8)\,i+n71 .

9.3.4. Lemma. In the above situation, every point of X has an open neighborhood U such
that the following is true:

(i) (Fs ®ox %) (U) € V(Fira(U));

(ii) each ¢yy-module ‘%iV‘U is free;

(iii) the Cff -module FJ, |, is free with free generators hy, ..., hp, € ]T"OV(U);

v

iv) the elements h1, ..., h,, are free generators of the S}y-module Fgx | ;
U U

(v) the isomorphism of Dgx-modules ’7:SVX‘U Rex S = (8H)™, defined by the elements
hi,...,hn, takes each f@‘U into (Sf}’””_l)m.

Proof. Shrinking X, we may assume that X is connected, the Ox-module QY is free, every
surjection of Ox-modules F* — F¢/F'~! has a section, and H*(X,cx) = 0. We claim that all of
the statements are true for U = X. If n = 1, the claim follows from Theorem 1.6.1. Assume that
n > 2 and the claim is true for n — 1. We set G = F»~! and notice that .7?1 = Fsri + §i+17 where
the second summand is considered for the induced filtration of G of length n — 1.

First of all, given w € (.7::, ®Roy Q%) (X), the above assumptions imply that there exists an
clement f € Fgrnir1(X) with w — V(f) € (Gis1 ®ox Q%)°Y(X). By the induction hypotheses,
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there exists an element g € Gy o(X) with w — V(f) = V(g), and so w = V(f + g) with f + g €
Fonirt (X) 4 Giy2(X) C Fipr(X), and (i) follows.

Furthermore, consider the exact sequence of Dx-modules 0 — @+1 — F — (F/G)sri — 0.
It gives rise to an exact sequence 0 — ,C’Z-VH — FV - (F/G)er: = (F/G)Y @k K*. To prove
(ii) , it suffices to show that the second homomorphism is surjective and has a section. For this
we take elements fi,...,f; € F(X) whose images in F(X)/G(X) generate (F/G)V over ¢(X).
By the induction hypotheses, there exist elements ¢g1,...,q; € G (X) with V(g;) = V(f;) for all
1 <j<I. Wegetelements f1 —g1,...,fi—g1 € .7?0V(X) which are linearly independent over ¢(X)
modulo GY (X) and generate FY modulo GY. If V denotes the subspace of FY (X) generated by
fi— g1, fi — g over ¢(X), then the subspace V @) K* of FY(X) maps isomorphically onto
(F/G)V(X) @i K*, and the required fact follows.

If now Ay, . . ., hpm— are elements of GY (X) with the properties (iii)-(v) for G, then the elements

hi,o o shm—t,him—iv1 = f1 — g1, .- -, hmm = fi — g; possess the same properties for F. .

Proof of Theorem 9.3.3. The implication (a)==(b) follows from Lemma 9.3.4.
(b)==(a) It suffices to show that every point of X has an étale neighborhood such that the

restriction of F to it has an Ox-coherent Dx-submodule G such that its image in (S))‘(’”_l)m

m

is contained in (S;‘(’"fz) and the quotient F/G is a trivial Dx-module. Shrinking X, we may
assume that F is free over Ox. Consider the induced morphism of Dx-modules F — H =
(S¥" 1 /S¥" %)™, By Corollary 8.4.6(ii), there is an isomorphism of Dx-modules HY ®¢, Ox =
‘H. We can therefore shrink X in the étale topology so that the images of generators of F over Ox
are contained in 2321 h;O(X) for some h; € HY (X). Let Y be an affinoid neighborhood of a point
x € X, and let M be the submodule of H(X,Y') generated by the elements h; over B = O(X,Y).
Then M is a trivial isocrystal over B, and so the image of the finite isocrystal F(X,Y) in M is

also trivial. This easily implies the required fact. .

9.3.5. Corollary. Let F be a locally quasi-unipotent Dx-module. Then
(i) the étale CX -module FY, is locally free;

(ii) there is an isomorphism of Dgx-modules F gy Rex Sy = Fsr. .

9.3.6. Remark. (i) Let X be a Tate elliptic curve, and w a nonzero invariant one-form on X.
Then the Dx-module F = Oxe, defined by V(e) = we, is not unipotent, but is locally unipotent
of level one at all points of X.

(ii) Lemma 9.3.4 implies that, if a Dx-module F is unipotent at a point z € X of level at

most n, then x has an open neighborhood U for which there is an embedding of Dy-modules
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F — (Si‘/"fl)m with m > 1. It would be interesting to know if the converse implication is also

true.

9.4. Parallel transport along a path. Let k* be an algebraic closure of k, and X a smooth
k-analytic space. For an étale Ox-module F, we denote by F the pullback of F on X = X Dk
and, for a point x € X, we denote by F, the inductive limit of the stalks JF,, taken over finite
extensions k' of k in k?, where 2’ is the image of = in X®k'. Notice that F, = Fy Qpa k*. Recall
that, by Corollary 9.3.2, any locally unipotent Dx-module F is a trivial Dx-module in an open
neighborhood of every point from X,; and, in particular, the stalk FY at a point z € X is a
k®*-vector space whose dimension is equal to the rank of F at x. Let X (k*) be the inductive limit
of the sets (X®K')(k’) taken over finite extensions k" of k in k®. Notice that it is identified with
the projective limit of the sets (X®k')o and, in particular, with a dense subset of X. One has
X(k*) c X(k*) C X 4.

9.4.1. Theorem. Given a closed subfield k C C,, a filtered k-algebra K and an element
A € K1, there is a unique way to construct, for every smooth k-analytic space X, every locally
unipotent Dx-module F, every path v : [0,1] — X with ends x,y € X, an isomorphism of
k* @y K-modules (the parallel transport )

T =TI FY @n K = F) @ K

such that the following is true:

(a) T,y]: depends only on the homotopy type of ~;

(b) given a second path 7 : [0,1] — X with ends y,z € X 4, one has Tfo,y =T7 o T,yf;

(¢) TZ is functorial with respect to F;

(d) Tf commutes with tensor products;

(e) Tf is functorial with respect to X;

(f) if F is the unipotent Dx-module Oxe; ® Oxes on X = Gy, with V(e;) =0 and V(ez) =
4T, v(0) = 1 and (1) = a € k*, then T (e2 —log(T)e1) = (e2 — log(L)ey) — Log*(a)e.

Furthermore, the parallel transport possesses the following properties:

(1) sz: commutes with the Hom-functor;

(2) if F is unipotent of level n, then Tf(}“zv) C Fy @ K"

(3) if F is unipotent and v([0,1]) C Y, where Y an analytic subdomain of X with good
reduction, then T7 (FY) C Fy;

(4) Tfj is functorial with respect to (k, X,~v, K, \);
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(5) the system of parallel transports T is uniquely determined by the properties (a)-(f)
restricted to the paths with ends in X (k).

9.4.2. Remarks. (i) In the situation of (f), the stalk FY at a point a € k* is a two dimensional
vector space generated by the elements e; and ey — log(%)el. The restriction of ey — Log)‘(T)el
to an open neighborhood of the point a is an element of FY ®; K' (and in fact the K-module
FY @y K is generated by e; and that element), and the property (f) simply means that the parallel
transport T takes ey — Log™(T)e; to itself.

(ii) The complete formulation of (4) (and of its particular case (e)) is as follows. Given a similar
tuple (K, X'+, K’, '), compatible isometric embeddings k — k' and k* — k'*  a morphism
¢ : X' - X and a homomorphism of filtered algebras K — K’ : A — )\ over the embedding

k — K, the following diagram (in which F' = ¢@*F and z’,y’ are the ends of 4’) is commutative

F A
v e’ v
Fown @K == Fop O K
Tf/’A/

FIY ow K s FY op K’

Proof. Construction. The inverse image of the étale sheaf ¢x with respect to the morphism
X — X is the constant sheaf kaY From Lemma 9.3.4 it follows that the inverse image of the étale
sheaf F‘SVA is an étale sheaf of k-vector spaces whose restriction to the usual topology of X is locally
constant. It follows that the inverse image of the latter with respect to any path v is a constant
sheaf on [0,1]. Thus, if the ends x,y of v lie in X, we get an isomorphism of k* ®;, K-modules
Tf : FY @) K = F @ K. The validity of the properties (a)-(f),(1) and (4) is easily verified. To
verify (2), we again use Lemma 9.3.4. Fixing a filtration F° =0 Cc F! C ... C F* = F such that
each quotient F'/F~1 is a trivial Dx-module, it follows that the sheaf .7?0V of horizontal sections
of fo =F"®oy S)A(’O +... + Fl ooy 83\(’”_1 is an étale sheaf of ¢x-vector spaces whose restriction
to the usual topology of X is locally free, and its stalk at every point x € X contains the subspace
FY. The above reasoning implies the property (2). The property (3) is an easy consequence of
Proposition 8.1.3. The statement on the uniqueness in (5) follows from the fact that the restriction
of F to an open neighborhood U of every point € X, is a trivial Dy-module, the property (e)
applied to the canonical morphism & — M(k), and the property (b).

Uniqueness. Let Tf be a system of isomorphisms possessing the properties (a)-(f). We have
to show that it coincides with Tf .
First of all, by Theorem 4.1.1 and the property (e), it suffices to prove the uniqueness on the

class of smooth basic curves. Furthermore, the last reasoning from the construction part shows

146



that both parallel transports extend uniquely to all paths with ends in Y(Ea) Thus, applying
Corollary 5.5.5, we see that it suffices to prove that both parallel transports coincide on the class
of smooth basic curves under the assumptions that & is algebraically closed and the weaker form of
the property (e), in which morphisms considered are defined over a finite extension of Q,, is true.

Let X be a smooth basic curve. Since X is simply connected, F‘SVA (X) is a free K-module of
rank equal to the rank m of F over Ox, and FSVA is the constant sheaf associated to it. Furthermore,
the isomorphisms Tf and Tf depend only on the ends z = v(0) and y = v(1) of v, and so they
will be denoted by Ti , and Tf , respectively. It suffices to show that each isomorphism ’Tf y 18
induced by the canonical isomorphisms of .7-'; (X) with .7-';@ = FY @ K and ]:vayy = fyv Rk K.

If the Dx-module F is trivial, the required fact follows from the property (e) applied to the
canonical morphism X — M(k) and, in particular, it is true if X is an open disc. Assume now
that X is an open annulus in A! with center at zero. In this case the category of unipotent Dx-
modules is described as follows (see [Crew, Proposition 6.7]). Given a nilpotent linear operator
N on a finite dimensional k-vector space V, let Fy denote the Ox-module V ®, Ox provided
with the connection Vy = N ® 4C. Then the correspondence (V,N) — (Fy,Vy) gives rise to
an equivalence of the category of such pairs (V, N) with that of unipotent Dx-modules. Notice
that (Fv,, V) ®ox (Fva, VN,) = (Frigve, V), where N = Ny ® 1 +1® Ny. Let (V,N) be a
pair that corresponds to F. By the description of nilpotent matrices and the property (c), we may
assume that there is a basis vy,..., v, of V,,, =V such that N(e;) = e;—; for all 1 <i < m, where
vo = 0. If m = 2, the required fact follows from the property (f) (as explained in Remark 9.4.2(i)).
If m > 3, we use the surjective homomorphism V,,,_1 ® Vo — V,,, that takes the element v; ® v to
v;—1 and the element v; ® vy to iv;11, where 1 < ¢ < m — 1. This homomorphism gives rise to a
surjective homomorphism of unipotent Dx-modules Fy,, , ®o, Fv, — Fv,,, and the properties (c)
and (d) imply the required fact. We notice the following consequence of the above consideration.
For a unipotent Dx-module F, let Frx.» denote the Dx-module F(X) ®o(x) L*™(X). If F is of
level n, then there is an isomorphism of D x-modules FLVML_1 ®r O(X) = Fran-1. In particular,
Fhna(X)=F} .1 and (F Qo Q%)(X) C V(Fpan-1).

Thus, it remains to consider the case when X is an arbitrary smooth basic curve, i.e., it is
isomorphic to the generic fiber X, of a proper marked formal scheme X over k°. By the previous
two cases and the property (e), it suffices to verify the required fact for an étale neighborhood of
the generic point of X. By the property (c¢) and Theorem 9.3.3, we may assume that for an open
affine subscheme 3 C i, the isocrystal associated to f‘(X,Bn) is E™(X, 3) for some n > 0 and even
that £"(X,3) = F(X) ®ox) O(X, 3).
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The required fact is true for n = 0, and so assume that n > 1 and that the fact is true for
n — 1. Let G be the unipotent Dx-submodule of F with g‘(X,?)n) = E"1(X, 3), and let H denote
the trivial Dx-module F/G. Given an element e € H" (X), let f be its preimage in F(X). Then
V(f) = w € (G ®oy, Q%)(X). For a point z € X(k), the space F)Y is generated by Gy and
elements of the form f — g,, where f is as above and g, is a primitive of w = V(f) in G,. Given
a point o € X (k) and a primitive g,, of w in G,, ®x K, consider the function = — g, that takes
a point z € X (k) to the primitive g, of w in G, ®; K such that 'ffow(f — Gzy) = f — gz. For a
closed point x € X,, the preimage 7~ !(x) is either an open disc or annulus. It follows that there
exists an element gx € G(77 (X)) ®o(r-1(x)) L (771 (x)) such that, for every point z € 7~ *(x),
the image of gy in G, ®; K coincides with g,. Let R*(X) denote the space of systems of functions
ax € LM (m71(x)) taken over all closed points x € X,. (Notice that all R*(X), defined at the end
of §3.1, are contained in R*(X).) Then the above system of elements g, can be considered as an
element g of G(X) ®o(x) R*(X) which is a primitive of w.

We claim that g is defined by the element e € HY (X) uniquely up to an element of G, (X).
Indeed, if g}, is another primitive of w in G, ®, K that gives rise to a primitive g’ of w in
G(X) ®o(x) RMX), then Gy — 9o € QXJ ®k K. By the induction hypothesis, one has 'Tfom (9%, —

9wo) = TI .(gh, — 9z), and so the function x — TZ (gL, — 9a,) is an element of G3, (X).

xo,T To,T

Furthermore, if 1 is another point of X (k), then T‘“;)z(f — Guy) = Tfiw(f — gz, ). Finally, if f is
another preimage of e in F(X), then f' = f + h for some h € G(X), g, = gz, + h is a primitive of
V(f')=w+ V(h)in G,, ® K and, therefore, ’T‘fnx(f’ — ) = ’T‘f{)x(f — Gap)-

Let now h be a primitive of w in Gg» (X). Notice that h is also contained in G(X) ®o(x) R*(X)
as the element g, and gx — hx € K for every closed point x € X,. Thus, to prove the required
fact it suffices to show that g —h € GJ\(X), and to verify the latter, it suffices to show that
(9—h)s € Go R0, 83\<,a7 where o is the generic point of X. For this we consider a Frobenius lifting
¢ on (X,3,) and a compatible system of Frobenius structures on the isocrystals E*(X, 3), i > 0.
Replacing ¢ by its power, we may assume that there exists a closed point x¢ € 3, stable under ¢
and, therefore, there exists a k-rational point 2y € 77 1(xg) also stable under ¢. By Lemma 6.2.1, we
can find a monic polynomial P(T") € k[T] with no roots-of-unity roots such that P(¢*)w € V(G(U))
for some open neighborhood U of 3, in X,. We may assume that ¢/ is connected and all of the
morphisms ¢° with 0 < i < deg(P) are defined at it. The above uniqueness claim implies that
P(¢*)g € Gsx(U). The equality here is considered in the tensor product G(U) ®o(x) R (X,U),
where R*(X,U) is the space of all systems of functions a, € LU N7~ !(x)) taken over all closed

points x € X, (cf. §6.5). On the other hand, one also has P(¢*)h € Ggr(U). It follows that
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P(¢*)(g — h) € Gsx(U), and Lemma 6.3.2 implies the required fact. .

Assume that X is connected, and let v : [0,1] — X be a path with ends z,y € X such that
¢(X) S cx and ¢(X) = cx . Then the points x and y have unique preimages =’ and y’ in each
connected component X of X. By Lemma 9.1.2, the path ~ lifts to a path 4" : [0,1] — X' with
the ends 2’ and y'. Thus, if 7 (X,2’) = 71(X,2) and z,y € X, then the parallel transport
Tf, C Fe @ K5 Fy ®p K does not depend on the lifting 7/ of v and, by functoriality, it gives

rise to an isomorphism of K-modules Tf cFy @ K5 Fy Qi K.

9.4.3. Corollary. Given a closed subfield k C C,, a filtered k-algebra K and an element
A € K, there is a unique way to construct, for every connected smooth k-analytic space X with
m (X, 2) 5 7 (X, 2), every locally unipotent Dx-module F, every path ~y : [0,1] — X with ends

z,y € X such that ¢«(X) = cx,, and ¢(X) = cx.z, an isomorphism of K-modules
TS =TI FY @ K5 F) @p K

for which the properties (a)-(f) hold. Moreover, the properties (1)-(5) (appropriately modified) also
hold. .

Recall that the fundamental groupoid of a topological space X is a category II;(X) whose
objects are points of X and sets of morphisms IIx(x,y) are the sets of homotopy classes of paths
from x to y. For a smooth k-analytic space X, let II;(X)s; denote the full subcategory of II; (X)
whose objects are points from X, and let IT; (X)g; . denote the full subcategory of Iy (X)), whose
objects are the points x with ¢(X’) = ¢x ., where X" is the connected component of X that contains
x. Let also L-Mod denote the category of L-modules of a commutative algebra L. The properties
(a) and (b) of the parallel transport mean that the correspondences and z — F @ K and v — T
give rise to a functor T = TZ* : I1; (X ) &t — (k* @k K)-Mod (resp. I1(X)st,. — K-Mod), which
is uniquely defined by them and the properties (d)-(f). In particular, for every point z € X 4 (resp.
Xste), there is an associated representation of the fundamental group m (X, z) (resp. (X, x)) in
FY @ K. In order to extend the construction to the class of locally quasi-unipotent Dx-modules,
we recall a different interpretation of the fundamental groupoid, which is possible due to the fact
that smooth k-analytic spaces are locally simply connected.

Let Cov(X) denote the category of topological covering spaces over X, i.e., continuous maps
¢ : Y — X with the property that each point of X has an open neighborhood &/ C X for which
@~ 1(U) is a disjoint union of spaces such that each of them maps homeomorphically onto U. (Notice

that such Y always carries a canonical structure of a smooth k-analytic space.) Every point z € X
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defines a functor F, : Cov(X) — &ns to the category of sets that takes ¢ : Y — X to ¢~ !(z).
Then there is a canonical bijection between the set IIx (z,y) of homotopy classes of paths from z
to y and the set of isomorphisms of functors F,, = F, and, in particular, the fundamental group

m1 (X, x) is canonically isomorphic to the automorphism group of the functor F.

9.4.4. Remark. In [Vol], V. Vologodsky constructed a parallel transport Ti g+ Fz Bk kLog =
Fy @k krLog on a smooth geometrically connected scheme X over k with discrete valuation, where
F is an unipotent Dxy-module and z,y € X' (k). The relation between it and the parallel transport
on X*" from Corollary 9.4.3 is similar to that between integrals mentioned in Remark 9.1.3(ii). In
particular, they do coincide if X is proper and has good reduction. (Notice that X*" and X" are

simply connected for such X.)

9.5. Parallel transport along an étale path. Let Covét(X ) denote the category of étale
covering spaces over X, i.e., étale morphisms ¢ : Y — X with the property that each point of X
has an open neighborhood & C X for which ¢ ~!(i) is a disjoint union of spaces such that the
induced morphism from each of them to U is finite étale (such ¢ is called an étale covering map).
Every geometric point T : pyz) — X defines a functor Fz : Cov® (X) — Ens that takes ¢ : Y — X
to the set of all morphisms pyz) — Y over T (i.e., it takes ¢ : Y — X to the stalk at T of the sheaf
representable by Y'). Given two geometric points T and 7 of X, the homotopy class of an étale path
from T to 7 is an isomorphism of functors 7 : Fz = Fy. For brevity, we call it an étale path from T
to gy and denote 7 : T — 7. By de Jong’s results from [deJ1], if X is connected, an étale path from
T to 7 exists for every pair of geometric points T and 7.

The étale fundamental groupoid of X is the category II$*(X) whose objects are geometric points
7 of X and sets of morphisms IIS (7, %) are the sets of homotopy classes of étale paths 7 : T +— 7.
For example, the automorphism group of a geometric point Z in II$*(X) is the étale fundamental
group 7$¢(X,7Z) introduced in [deJ1]. Given an étale covering map ¥ — X and geometric points
T pyE — Y and § : pyg) — Y over T and 7, respectively, let Hy (Z',7') denote the set of all
étale paths T — 7 that take ' to ¥ under the induced maps F(Y) — F5(Y). The set IIS(7,7)
is provided with the weakest topology with respect to which all of the subsets Hy (Z',7’) are open.
In particular, the étale fundamental group 7$'(X,7) is provided with a topology. Notice that
the composition maps between the spaces of morphisms are continuous. Notice also that for every
morphism X’ — X in the category of analytic spaces there is an induced functor II§*(X"’) — TI*(X)
with continuous maps between the spaces of morphisms. In particular, the canonical morphism

X — pr = M(k) induces, for every pair of geometric points T and 7 of X, a continuous map
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%(z,y) — O (z,7) : 7 — o5. From [deJ1, 2.12] it follows that the latter map is always open
and, if X is geometrically connected, it is surjective.

If the valuation on k is nontrivial and the k-analytic space X is smooth, the canonical functor
I (X) — II;(X), which is evidently surjective on the families of objects, is also surjective and
continuous on the sets of morphisms (where the sets IIx (z,y) of morphisms in IT; (X) are provided
with the discrete topology). Indeed, this follows from the fact that such a space X is locally simply

connected. In particular, the map 7$*(X,Z) — 7, (X, z) is surjective.

9.5.1. Lemma. Let X be a geometrically reduced k-analytic space, and K a k-algebra. Then
any étale sheaf of CX-modules L, which is locally free of finite rank over C¥ | is representable by an
étale covering space over X.

Proof. Consider first the case K = k, i.e., C§ = ¢x, and L = c¢x. The sheaf cx is the
pullback with respect to the canonical morphism X — py, of the sheaf ¢p, (which coincides with
the structural sheaf of py). The latter is representable by the étale covering space Wi = [[ Vin
over pg, where the disjoint union is taken over all maximal ideals m C k[T whose residue field is
separable over k and Vi, = M(k[T]/m). From [Ber2, Corollary 4.1.4(ii)] it follows that the sheaf
cx is representable by the étale covering space Wx = X xp, W}, over X.

In the general case, we fix a basis {e;}icsr of the k-vector space K with eg = 1 for a fixed
element 0 € I. Let A be the set of pairs (J, f) consisting of a finite subset J C I and a map
[ 1 j— my;) from J to the set of maximal ideals of k[T| such that, if J # {0}, then my;y # (T')
for all j € J. For every (J, f) € A, we fix a total ordering on J (i.e., represent J as {j1,...,jn})

and set Wy sy = Vi X ... Xp, Vi

16y Xpk ,- Then Wk = H(J,f)eA W) is an étale covering
space over pi, and it represents the étale sheaf Cg@ = ¢p, Qk K. It follows that the étale covering
space WE = X x, W[ over X represents the étale sheaf C¥ = cx @, K. If the étale C¥-module
L is free of rank n, then it is representable by the fiber product over X of n copies of W, which
is an étale covering space over X. If L is arbitrary, there is an étale covering {U; — X}jcs of X

such that each L‘U_ is free over C{J{j , i.e., it is representable by an étale covering space over U;, and
J

the claim follows from [deJ1, Lemma 2.3]. .

In the situation of Lemma 9.5.1, for any geometric point = of X, there is a canonical isomor-
phism ¢p, = S x,z and so, for any étale path 7 : T +— ¥, the induced isomorphism cx z S Xy s
compatible with the isomorphism o= : ¢, 7 = ¢p,,j- Because of that the former isomorphism is
also denoted by o5. More generally, any étale path 7 : T — 7 gives rise to a bijection T% Lz 5 L,

which is compatible with all algebraic structures on L defined in a functorial way and, in particu-
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lar, T% is an isomorphism of K-modules which is o5-semi-linear in the sense that it is compatible
with the isomorphism o5 : ¢cx z S x,y- Furthermore, it commutes with tensor products and the
internal Hom-functor, and is functorial on L and commutes with any base change in the category
of analytic spaces. Notice also that if the field k is algebraically closed and L is locally free in the
usual topology of X, then T% coincides with the parallel transport Tg : Ly = Ly, where v is the
homotopy class of a usual path with ends x,y € X that lies under 7.

Let now k be a closed subfield of C,, K a filtered k-algebra, A an element K', X a smooth
k-analytic space, and F a locally quasi-unipotent Dx-module. We apply the above construction
to the sheaf of horizontal sections .7-"3VA. It follows that each étale path 7 : T + ¥ defines a o5-
semi-linear isomorphism of K-modules T; = T7f A FSVA z = }‘SV 7 Recall that, by Corollary
9.3.2, if F is locally unipotent then, for every geometric point T of X over a point z € X, there
is a canonical isomorphism F) ®c, , ¢xz — F . If now II§*(X),; denotes the full subcategory of
I$'(X) whose family of objects consists of the geometric points of X over points in Xg;, we get
a functor TZ = T%A . Hoit(X)st — K-Mod which takes a geometric point T to .7-"; ®p K and an

étale path 7 : T +— 7 to T%: . The following theorem lists properties of this functor.

9.5.2. Theorem. (a) The K-linear isomorphism T%: : ffv QK = .7:; @ K is oy-semi-linear;

(b) the map I (7, ) x (Y @k K) — .7-'; ®y K is continuous;

(c) TF is functorial with respect to F;

(d) T¥ commutes with tensor products and the internal Hom-functor;

(e) T7 is functorial with respect to (k, X,7, K, \);

(f) in the situation of Corollary 9.4.3, T% is the o5-semi-linear extension of the parallel trans-
portTZY::.?’:mv ®kKZ>]-“yV Qr K.

Proof. The only property, which is not so evident, is (f) in the case when the field k is not
necessarily algebraically closed (i.e., strictly smaller than C,). To verify it, we may assume that
¢(X) = k (and therefore, ¢x , = cx,, = k). Let 2’ and 3 be the preimages in X of the points z and
y, and let T’ : PH@@) — X and ¥ : PH(z) — X be geometric points of X over the geometric points
T and 7, respectively. By the assumption, there is a unique homotopy class of a path " from z’ to
y' in X over the path v and, by the construction of Theorem 9.4.1, one has Tfj(f) = Ti(f) for all
f € FY. Since the map H%t(f’,y’) — Il (', y') is surjective, we can find an étale path 5" : 7’ — 7/
over the path +" and, by the case of an algebraic closed field, one has Tg( f)= Ti( f) forall f € FY.
Thus, to verify the property (f), we can replace the étale path 7 : T — 7 by the étale path 7’71 oy

(where 7' is considered an an element of II15¢(Z,%)), and so we may assume that 7 is an element of
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the étale fundamental group 7¢' (X, Z) whose image in the topological fundamental group 7y (X, x)
is trivial, and we have to show that T%E (f) = f for all f € FY. Since the dimension of F over k
is finite, there is an open subgroup H C 7$*(X,Z) such that TZ (f) = f forall 7 € H and f € Fy .
We may shrink H and assume that it is contained in Ker(7$*(X,Z) — (X, )). Furthermore,
the canonical morphism ps ;) — X gives rise to a homomorphism of étale fundamental groups
T (Pr(2), T) — (X, Z). It is clear that clements from the image of the latter act trivially on
FY @ K. Since the canonical homomorphism from 7" (ps(,),Z) to the Galois group Gal(k*/k)
of the algebraic closure k* of k in H(Z) over k is surjective, we can multiply 7 by an element of
T (P(z), T) s0 that we may assume the image of ¥ in Gal(k®/k) is trivial. We now use the fact
that the image of 7$'(X,7’) in 7$*(X, 7) is dense in Ker(n$*(X,7) — Gal(k?/k)) (see [deJ1, Remark
2.15)). Tt follows that § = 7’7 for some 5’ € #{'(X,7’) and 7 € H and, therefore, T%: (f) = f for
all f € FY. .

9.5.3. Example. Let F = Oxe be the Dx-module on the affine line X = A! defined by
V(e) = —dTe. A horizontal section of F at zero is given by exp(T')e, where exp(T") is the usual
exponential function convergent on the open disc with center at zero and of radius |p[ﬁ The
logarithmic map ¢ : Y = D(1;1) — X = A! that takes z to log(z) is an étale covering map (see
§9.5), and since V(p*(e)) = —dfcp*(e) it follows that ¢*(F) is a trivial Dy-module. In particular,
F is a locally quasi-unipotent D x-module of level one. Assume now that the field k is algebraically
closed, i.e., k = C,. For any geometric point @ over a point a € X (k) = k, F¥ = F) is a
one-dimensional vector space over k generated by the function exp(7 — a). Given an étale path
7 : 0 — @, the isomorphism T% : Fy = F depends only on the image of 1 € ¢~1(0) in ¢~!(a)

under 7. If a = 7(1), then log(a) = a, and one has T%:(exp(T)) = aexp(T — a).

9.5.4. Remarks. (i) The statement of Corollary 9.3.2 is not true if F is only assumed to be
quasi-unipotent at a point z € X, . Indeed, assume that k is algebraically closed, and let x be a
point of the affine line A! of type (4) which corresponds to a family of embedded discs in k of radii
> \p]z’%l with empty intersection. Then for F from the previous Example 9.5.3 one has Fy = 0.

(ii) In a recent preprint [DeWe], C. Deninger and A. Werner constructed a parallel transport
along an étale path for a certain class of vector bundles on a smooth projective curve. It is of
different nature than the parallel transport from Theorem 9.5.2. For example, it is not related to
an integrable connection on such a vector bundle, and it is continuous with respect to the nontrivial
p-adic topology on the fibers of the bundle in comparison with the continuity of Theorem 9.5.2(c)

with respect to the discrete topology. Of course, it would be interesting to find a relation between
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the two parallel transports.
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Index of notations

cx, s(z), t(z), Xs : 1.1 (9).

an fxa E7 H(E% p'H(E)a FEv GE/:L‘ : 1.1 (97 10)

F' (F is an étale sheaf) : 1.2 (10).

O 0K, %' CK (K is a filtered k-algebra) : 1.2 (11).

Myt MK, U Y o 1 1.2 (11).

V, FY (F ®o, Q%)% Q7 9*(F), o7 H(F): 1.3 (12).

HY (X, F), Hi (X) : 1.3 (13).

Q% x, F-G, F+G,FNg, ©#(F) (F and G are Dx-submodules of 95): 1.3 (13, 14).
Q9,(X), M-N, M+ N, p#(M) (M and N are Dx-modules) : 1.3 (14).
S(Gm), p(E(0;7)) : 1.4 (16).

Log*, Log™(f), LM (X), LNX), LY, L : 1.4 (17).

krog, Log(p), My, Nx, C, Cx : 1.4 (18).

Sk, Sy, Sx : 1.6 (22, 23).

7 (reduction map) : 2.1 (24).

X, )/C'\/y, oy (generic point) : 2.1 (25).

kx : 2.4 (37).

¢(A/L), ¢(A) (Ais an L-algebra) : 3.1 (40, 41).

T(n,a), S(m) : 3.1 (41).

Wi, C ™ (%), RM(X), Q% (%), Ry™ (%), Q1 (%), cr(X) : 3.1 (43).

RX\:n
X : 3.2 (44).
Irr(Xg) @ 3.2 (46).
X, CR™M(E,U), CE™ME, 0) : 3.2 (48, 49).
My, ®y (Y is a stratum closure) : 3.4 (51).
O(X)e, 0%, O(X)L, Ok : 4.2 (58).
0%, dLog, Hz : 4.2 (59).
Tx, Ux, Ux (X is a curve) : 4.3 (60).
Uy, Uy : 4.5 (67).
nym, ij 1 4.5 (69)
(X,5), O(X,S) : 5.1 (72).
K{Ty,...,T,}' : 5.1 (73).

(X,9,a), (X,9) : 5.1 (74).
HI((X,S),F), Ox,s) : 5.2 (76).

0 (nearby cycles functor), Q) O x ) 52 (77).

Q(X@), HY (D, F) : 5.2 (79).

QqB HiR(B), Hir(M), (M ®p QL) My : 5.3 (79, 80).

E%Y, Eg, Myg:, Mg, M, : 5.3 (81).

Sh(V), Shp, Shfy, Gr"(Shp) : 5.4 (83).

E(X,3), EY(X,3) : 5.5 (89).

EX(X,3), EX(X,3), RV (X,U), RM(X,3,), RyH(X,3,) : 6.5 (95, 96).

FM(X,3), F' : 6.5 (97).

OG5 o PR 7.1 (100)
GM(X,3), G+ 7.1 (101).

P (SpL), g;é; £ 7.1 (102).
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Sy’ 7.3 (104).

U, (w is a marked one-form) : 7.4 (109).

EMX,Y) ((X,Y) is a wide germ with good reduction) : 8.1 (118).
5(X2)), Fe, Fei : 8.1 (120).

EMNX) (X is a proper marked formal scheme) : 8.2 (121).

Exw Ex ¢ 83 (123).

sh, sx 1 8.5 (132).

fﬁ{w : 9.1 (136).

Hi (X cpan) : 9.2 (139).

Far, Fsniy Fi + 9.3 (143).

X(k*), T2, T7 : 9.4 (145).

Hl(X)a HX(:L‘ay)v Hl(X)Sta Hl(X)St,ea T}—’/\’ T]-—v 7'['1(X,.’L‘) 094 (149)
Cov(X), Ens, Fy : 9.4 (149, 150).

Cov®"(X), Fr, 7 : T+ 7, I$(X), I(7,7), $4(X,7), Hy (7', 7) : 9.5 (150)
pr, 05 9.5 (150, 151).

T2, T, TI54(X ) o, T, T7 2 9.5 (152).
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Index of terminology

Dx-Algebra : 1.3 (12).
Dp-Algebra : 5.4 (84).
D x yy-Algebra : 8.3 (118).
Analytic curve :

affinoid basic : 2.4 (38),
elementary : 2. 2 ( 3),
smooth basic : 2.4 (37).

M Analytic functlon ;1.2 (11).
Analytic space
annular : 1.5 (19),
discoid : 1 3 (14),
rig-smooth : 1.1 (8),
semi-annular : 1.5 (19),
split : 7.2 (102).
Analyticity set : 1.2 (11).
Branch of the logarithm (over K): 1.4 (16).
Closed one-form :
marked : 7.3 (104),
split : 7.2 (102);
weakly marked : 7.3 (105).

N Differential form : 1.2 (11).
p1-Discoid neighborhood : 3.5 (55).

Etale path : 9.5 (150).

de Rham cohomology groups :
of a D-module : 1.3 (13), 5.2 (78).
of an isocrystal : 5.2 (78).

Filtered :
k-algebra : 1. 2 (11).
Ox-algebra : 1.2 (11).
Dx-algebra : 1.3 (12).

Formal scheme :
nondegenerate strictly poly-stable : 3.1 (40);
marked : 2.1 (25),
proper marked : 2.1 (25),
ko-special : 2.1 (24)
small : 3.4 (51), 3.5 (
strictly poly-stable : 40
strongly marked : 2. 1 25
Frobenius lifting : 6.1 (90, 91
Fundamental groupoid : 9.4 ( 49),
étale : 9.5 (150).
Generic point : 2.1 (25).
Geometric point : 1.1 (10)
Germ :
of an analytic space 5.1 (72),
of a formal scheme : 5.1 (74),
of a smooth formal scheme : 5.1 (74),
smooth : 5.2 (78).
strictly k-affinoid : 5.1 (72),
wide : 5.1 (72);
with good reduction : 8.1 (117).
Isocrystal : 5.2 (78),
finite : 5.2 (78), 5.3 (80),
trivial : 5.2 (78), 5.3 (80),
unipotent : 5.2 (78), 5.3 (80),
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of level : 5.3 (82).
F-isocrystal : 6.2 (92),
trivial : 6.2 (92),
unipotent : 6.2 (92).
Logarithmic character (with values in K) : 1.4 (16).
Dx-Module : 1.3 (12),
locally unipotent : 9.3 (142),
locally quasi-unipotent : 9.3 (142),
trivial : 1.3 (13),
quasi-unipotent at a point : 9.3 (142),
unipotent : 1.3 (13),
of level : 9.3 (138),
unipotent at a point : 9.3 (142).
D(x,y)-Module : 5.2 (78).
D x g,-Module : 5.2 (79).

Dx-Module : 1.3 (14).
Dx,y)-module : 8.1 (117).
Morphism of analytic spaces :
annular : 1.5 (19),
discoid : 1.3 (14),
semi-annular : 1.5 (19).
Nearby cycles functor : 5.2 (77).
Neighborhood of a point :
marked : 2.1 (25),
Y-split : 2.3 (35),
strongly marked : 2.1 (25).
p1-Semi-annular neighborhood : 3.5 (55).
Stratum : 3.3 (49).
Stratum closure : 3.3 (49).
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