Analytic geometry over F₁

Vladimir Berkovich

Weizmann Institute of Science

Padova, February 4, 2011

From p-adic differential equations to arithmetic algebraic geometry on the occasion of Francesco Baldassarri's 60th birthday

ヘロト ヘ戸ト ヘヨト ヘヨト

Where did I come across them?

I came across them in searching for appropriate framework for so called skeletons of non-Archimedean analytic spaces and formal schemes.

What do they represent?

They represent schemes and non-Archimedean and complex analytic spaces which are defined independently on the ground field or ring (e.g., torus embeddings).

What are they good for?

- •?
- They are not good for proving Riemann hypothesis.
- Stupid question!

・ 同 ト ・ ヨ ト ・ ヨ ト …

Plan

- F₁-algebras
- Banach F₁-algebras
- K-affinoid algebras
- K-affinoid spaces
- K-analytic spaces
- Non-Archimedean analytic spaces
- Complex analytic spaces

(雪) (ヨ) (ヨ)

ъ

Definition of **F**₁-algebras

Definition

- An \mathbf{F}_1 -algebra is a commutative multiplicative monoid A provided with elements $1 = 1_A$ and $0 = 0_A$ such that $1 \cdot f = f$ and $0 \cdot f = 0$ for all $f \in A$.
- A homomorphism of F₁-algebras φ : A → B is a map compatible with the operations on A and B and takes 0_A and 1_A to 0_B and 1_B, respectively.
- A is *integral* if fh = gh implies either f = g or h = 0.
- A is an F₁-field if every nonzero element of A is invertible (i.e., Ă = A*, where Ă = A\{0}).

If *S* is a sub-semigroup of *A*, one can define the *localization* $A \rightarrow S^{-1}A$ of *A* with respect to *S*. If *A* has no zero divisors, the localization of *A* with respect to \check{A} is the *fraction* \mathbf{F}_1 -*field* of *A*.

ヘロト ヘアト ヘビト ヘビト

Examples

- The field of one element $\mathbf{F}_1 = \{0, 1\}$.
- The trivial \mathbf{F}_1 -algebra $\{0\}$ (with 0 = 1).
- The multiplicative monoid A of any commutative ring A with unity is an F₁-algebra. For example, F₁ = F₂.
- \mathbf{R}_+ is an \mathbf{F}_1 -field, and \mathbf{Z}_+ is an integral \mathbf{F}_1 -algebra.
- Given an F₁-algebra A, the set A[T₁,..., T_n] consisting of 0 and aT₁^{μ₁}..., T_n^{μ_n} with a ∈ Å and μ₁,..., μ_n ∈ Z₊ and provided with the evident multiplication is an F₁-algebra.
- Any finite idempotent F₁-algebra A, provided with the partial ordering (e ≤ f if ef = f) is a lattice. Conversely, any lattice structure on a finite set A gives rise to an F₁-algebra structure on A: ef = sup(e, f), 0 = sup(e) and 1 = inf(e).

(ロ) (四) (モ) (モ) (モ) (モ)

Definition

An *ideal* of an \mathbf{F}_1 -algebra A is an equivalence relation which is compatible with the operation on A, i.e., a subset $E \subset A \times A$ which is an equivalence relation and an \mathbf{F}_1 -subalgebra.

Given an ideal $E \subset A \times A$, the set of equivalence classes A/E is an \mathbf{F}_1 -algebra.

Definition

A *Zariski ideal* is a subset $\mathbf{a} \subset A$ with the property that $fg \in \mathbf{a}$ whenever $f \in \mathbf{a}$ and $g \in A$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Examples of ideals

Examples

- The diagonal $\Delta(A) \subset A \times A$ is the minimal ideal of A.
- If a is a Zariski ideal, the set ∆(A) ∪ (a × a) is an ideal, and the corresponding quotient is denoted by A/a.
- The union of any family of Zariski ideals is a Zariski ideal. The maximal (nontrivial) Zariski ideal of *A* is $\mathbf{m} = A \setminus A^*$.
- The *nilradical of A* is $nil(A) = \{(f, g) | \text{ there is } n \ge 1 \text{ with } f^i = g^i \text{ for all } i \ge n\}$. *A* is *reduced* if $nil(A) = \Delta(A)$.
- If G is a subgroup of A*, the set of pairs of the form (f, fg) with f ∈ A and g ∈ G is an ideal, and the corresponding quotient is the set A/G of orbits under the action of G on A. If A is an F₁-field, each ideal of A is of this form.
- Given a homomorphism φ : A → B, its *kernel* is the ideal Ker(φ) = {(f,g) ∈ A × A | φ(f) = φ(g)}, and its Zariski kernel is the Zariski ideal Zker(φ) = {f ∈ A | φ(f) = 0}.

Definition

- An ideal Π of A is *prime* if it is nontrivial and possesses the property that, if (*fh*, *gh*) ∈ Π, then either (*f*, *g*) ∈ Π or (*h*, 0) ∈ Π, i.e., the quotient A/Π is a nontrivial integral F₁-algebra.
- A Zariski ideal p ⊂ A is *prime* if it is nontrivial and possesses the property that, if *fg* ∈ p, then either *f* ∈ p or *g* ∈ p, i.e., the quotient *A*/p is nontrivial and has no zero divisors.

The sets of prime ideals and of Zariski prime ideals of A are denoted by Fspec(A) and Zspec(A), the *spectrum* and the *Zariski spectrum*, respectively.

イロト イポト イヨト イヨト

Prime ideals and spectra

For $x \in \text{Fspec}(A)$ and $\mathfrak{p} \in \text{Zspec}(A)$, the fraction \mathbf{F}_1 -fields of A/Π_x and A/\mathfrak{p} are denoted by $\kappa(x)$ and $\kappa(\mathfrak{p})$, respectively, and the image of $f \in A$ in $\kappa(x)$ is denoted by f(x).

There is a surjective map

$$\operatorname{Fspec}(A) \to \operatorname{Zspec}(A) : x \mapsto \mathfrak{p}_x = \{f \in A | f(x) = 0\}$$

Fact

There is a canonical bijection between the preimage of $\mathfrak{p} \in \operatorname{Zspec}(A)$ and the set of subgroups of $\kappa(\mathfrak{p})^*$.

The prime ideal of *A* that corresponds to the unit subgroup of $\kappa(\mathfrak{p})^*$ is denoted by $\Pi_{\mathfrak{p}}$. One has $\operatorname{nil}(A) = \bigcap_{\mathfrak{p}} \Pi_{\mathfrak{p}}$ and

$$\Pi_{\mathfrak{p}} = \{ (f, g) | \text{either } f, g \in \mathfrak{p}, \text{ or } fh = gh \text{ for some } h \notin \mathfrak{p} \}$$

The spectrum Fspec(A) of an \mathbf{F}_1 -algebra A is provided with the topology whose base is formed by the sets $\bigcap_{i=1}^n D(f_i, g_i)$, where for $f, g \in A$ one sets $D(f, g) = \{x \in \text{Fspec}(A) | f(x) \neq g(x)\}$.

Fact

Fspec(A) is a quasicompact sober topological space.

Corollary

The map $x \mapsto \overline{\{x\}}$ gives rise to a bijection between $\operatorname{Fspec}(A)$ and the set of closed irreducible subsets of $\operatorname{Fspec}(A)$, and one has $\overline{\{x\}} = \operatorname{Fspec}(A/\Pi_x)$.

ヘロト 人間 とくほとくほとう

Topology on the spectrum

Let $\mathcal{X} = \operatorname{Fspec}(A)$. For a Zariski prime ideal $\mathfrak{p} \subset A$, we set: • $\mathcal{X}_{\mathfrak{p}} = \{x \in \mathcal{X} | f(x) = 0 \text{ for all } f \in \mathfrak{p}\};$ • $\check{\mathcal{X}}_{\mathfrak{p}} = \{x \in \mathcal{X}_{\mathfrak{p}} | f(x) \neq 0 \text{ for all } f \notin \mathfrak{p}\};$ • $\mathcal{X}^{(\mathfrak{p})} = \overline{\check{\mathcal{X}}_{\mathfrak{p}}}.$

Corollary

- One has $\mathcal{X}^{(\mathfrak{p})} = \overline{\{\Pi_{\mathfrak{p}}\}} = \operatorname{Fspec}(A/\Pi_{\mathfrak{p}});$
- the map p → X^(p) gives rise to a bijection between the set of minimal prime ideals of A and the set of irreducible components of X.

The natural topology on the Zariski spectrum Zspec(A) is not interesting, and it is better to consider Zspec(A) as a partially ordered set with $\mathfrak{p} \leq \mathfrak{q}$ if $\mathfrak{q} \subset \mathfrak{p}$. This partial ordering admits the infimum operation.

イロン 不良 とくほう 不良 とうしょう

Definition

A F_1 -algebra A is said to be *weakly decomposable* if the set of irreducible components of $\mathcal{X} = \operatorname{Fspec}(A)$ is finite.

Fact

Suppose A is weakly decomposable, and let $\mathcal{U} \in \pi_0(\mathcal{X})$. Then

- there is a unique maximal Zariski prime ideal $\mathfrak{p} = \mathfrak{p}^{(\mathcal{U})}$ with $\check{\mathcal{X}}_{\mathfrak{p}} \subset \mathcal{U}$; we set $\mathcal{U} \leq \mathcal{V}$ if $\mathfrak{p}^{(\mathcal{U})} \leq \mathfrak{p}^{(\mathcal{V})}$ (i.e., $\mathfrak{p}^{(\mathcal{U})} \supset \mathfrak{p}^{(\mathcal{V})}$);
- there is a unique maximal idempotent $e \in A$ with $e|_{\mathcal{U}} = 1$;
- there is an isomorphism of finite partially ordered sets $\check{I}_A \xrightarrow{\sim} \pi_0(\mathcal{X})$, where I_A is the idempotent \mathbf{F}_1 -subalgebra of A.

ヘロト 人間 とくほとくほとう

Definition

A Banach F_1 -algebra is an F_1 -algebra A provided with a Banach norm, i.e., a function $|| || : A \to \mathbf{R}_+$ possessing the following two properties: (1) ||f|| = 0 if and only if f = 0; (2) $||fg|| \le ||f|| \cdot ||g||$ for all $f, g \in A$.

Banach **F**₁-algebras form a category with respect to *bounded homomorphisms*, i.e., homomorphisms of **F**₁-algebras $\varphi : A \rightarrow B$ for which there exists a constant C > 0 with $||\varphi(f)|| \leq C||f||$ for all $f \in A$.

くロト (過) (目) (日)

Examples of Banach F₁-algebras

Examples

- A Banach F_1 -algebra K is a *real valuation* F_1 -*field* if it is an F_1 -field and its norm is multiplicative. In this case $|K| = \{|\lambda| | \lambda \in K\}$ is an F_1 -subfield of \mathbf{R}_+ , and $K/K^{**} \xrightarrow{\sim} |K|$, where $K^{**} = \{\lambda \in K^* | |\lambda| = 1\}$.
- The multiplicative monoid *A* of any commutative Banach ring *A* can be considered as a Banach **F**₁-algebra.
- For a Banach \mathbf{F}_1 -algebra A and numbers $r_1, \ldots, r_n > 0$, the \mathbf{F}_1 -algebra $A[T_1, \ldots, T_n]$ provided with the norm $||aT_1^{\mu_1} \ldots T_n^{\mu_n}|| = ||a||r_1^{\mu_1} \ldots r_n^{\mu_n}$ is a Banach \mathbf{F}_1 -algebra denoted by $A\{r_1^{-1}T_1, \ldots, r_n^{-1}T_n\}$.
- Given an ideal *E* of *A*, the function ||*f*|| = inf{||*f*|||*f* ∈ *f*} is a Banach norm on *A*/*E* if and only if *E* is *closed*. The *closure* of *E* is *E* = *E* ∪ (**a** × **a**), where **a** = {*f* ∈ *A*|||*f*|| = 0}.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

The spectrum of a Banach F_1 -algebra

Definition

The *spectrum* $\mathcal{M}(A)$ of a Banach \mathbf{F}_1 -algebra A is the set of all bounded homomorphisms of Banach \mathbf{F}_1 -algebras $||: A \to \mathbf{R}_+$.

For a point $x \in \mathcal{M}(A)$, the seminorm $| |_x : A \to \mathbf{R}_+$ gives rise to a multiplicative norm on the \mathbf{F}_1 -field $\mathcal{H}(x) = \kappa(\mathfrak{p}_x)$, where $\mathfrak{p}_x = \operatorname{Zker}(| |_x)$ and to a character $A \to \mathcal{H}(x) : f \mapsto f(x)$.

The spectrum $\mathcal{M}(A)$ is provided with the weakest topology with respect to which all real valued functions of the form $x \mapsto |f(x)| = |f|_x$ are continuous.

Fact

If A is nontrivial, $\mathcal{M}(A)$ is a nonempty compact space.

Corollary

 $f \in A$ is invertible $\iff f(x) \neq 0$ for all $x \in \mathcal{M}(A)$.

The spectral radius and Gelfand transform

The *spectral radius* of an element $f \in A$ is the number

$$\rho(f) = \lim_{n \to \infty} \sqrt[n]{||f^n||} = \inf_n \sqrt[n]{||f^n||}$$

The function $f \mapsto \rho(f)$ is a bounded seminorm on *A*.

Fact

For any
$$f \in \mathcal{A}$$
, one has $ho(f) = \max_{x \in \mathcal{M}(\mathcal{A})} |f(x)|$.

Corollary

If $X = \mathcal{M}(A)$, the Gelfand transform $^{\wedge} : A \to \mathcal{C}(X)$ is isometric with respect to the spectral norm.

One has $\operatorname{Ker}(^{\wedge}) = \{(f,g) | | f(x) | = |g(x)| \text{ for all } x \in X\}$. If $|A| = A/\operatorname{Ker}(^{\wedge})$ and $\widehat{A} = \operatorname{Im}(^{\wedge})$, then $\mathcal{M}(\widehat{A}) \xrightarrow{\sim} \mathcal{M}(|A|) \xrightarrow{\sim} \mathcal{M}(A)$. The canonical bounded homomorphism $|A| \to \widehat{A}$ is a bijection, but is not an isomorphism in general.

Let *K* be a real valuation \mathbf{F}_1 -field.

Definition

A *K*-affinoid algebra is a Banach *K*-algebra *A* for which there exists an admissible epimorphism $K\{r_1^{-1}T_1, \ldots, r_n^{-1}T_n\} \to A$.

Example

Every real valuation *K*-field *K'* with finitely generated group $\operatorname{Coker}(K^* \to K'^*)$ is a *K*-affinoid algebra. For example, $\mathcal{H}(x)$ of every point $x \in \mathcal{M}(A)$ is a *K*-affinoid algebra.

ヘロト ヘ戸ト ヘヨト ヘヨト

Let R be an \mathbf{F}_1 -subfield of \mathbf{R}_+ .

Definition

- An *R*-affinoid polytope in \mathbf{R}_{+}^{n} is a subset defined by a finite number of equalities f(t) = g(t) with $f, g \in R[T_1, ..., T_n]$ and inequalities $t_i \leq r_i$ with $r_i > 0$ for all $1 \leq i \leq n$.
- For an *R*-affinoid polytope V ⊂ Rⁿ₊, A_V denotes the Banach *R*-algebra of continuous functions V → R₊ which are restrictions of functions from R[T₁,...,T_n].
- An *R*-polytopal algebra is a Banach *R*-algebra isomorphic to the *R*-algebra A_V of some *R*-affinoid polytope V ⊂ Rⁿ₊.

Fact

Any R-polytopal algebra is R-affinoid.

イロト イポト イヨト イヨト

The spectrum of a K-affinoid algebra

Let *A* be a *K*-affinoid algebra, and fix an epimorphism as above. Then $\mathcal{M}(A)$ is identified with a compact subset $X \subset \mathbf{R}_{+}^{n}$.

Fact

- The kernel of the induced admissible epimorphism
 |K|{r₁⁻¹T₁,...,r_n⁻¹T_n} → A/K^{**} is finitely generated and, in particular, X is an |K|-affinoid polytope.
- The bijection $|A| \to \widehat{A}$ is an isomorphism of |K|-polytopal algebras.
- Zspec(A) is finite, and A is weakly decomposable.
- The map $X \to \operatorname{Zspec}(A) : x \mapsto \mathfrak{p}_x$ is surjective.

For a Zariski prime ideal $\mathfrak{p} \subset A$, we set:

•
$$X_{\mathfrak{p}} = \{x \in X | f(x) = 0 \text{ for all } f \in \mathfrak{p}\};$$

• $\check{X}_{\mathfrak{p}} = \{ x \in X_{\mathfrak{p}} | f(x) \neq 0 \text{ for all } f \notin \mathfrak{p} \};$

•
$$X^{(\mathfrak{p})} = \overline{\check{X}_{\mathfrak{p}}}.$$

▲御 → ▲ 注 → ▲ 注 →

Properties of the spectrum

Fact

- $X_{\mathfrak{p}} = \mathcal{M}(A/\mathfrak{p}).$
- The prime ideals $\Pi_{\mathfrak{p}}$ are closed.
- X^(p) = M(A^(p)), where A^(p) = A/Π_p; in particular, if A is integral, then X = X⁽⁰⁾.
- If A is polytopal without zero divisors and X = X⁽⁰⁾, then A is integral.
- For every $U \in \pi_0(X)$, there is a unique maximal Zariski prime ideal $\mathfrak{p} = \mathfrak{p}^{(U)}$ with $\check{X}_\mathfrak{p} \subset U$; we set $U \leq V$ if $\mathfrak{p}^{(U)} \leq \mathfrak{p}^{(V)}$ (i.e., $\mathfrak{p}^{(U)} \supset \mathfrak{p}^{(V)}$);
- There is a unique maximal idempotent $e \in A$ with $e|_{U} = 1$;
- There is an isomorphism of finite partially ordered sets $\check{I}_A \xrightarrow{\sim} \pi_0(X)$.

ヘロト 人間 ト ヘヨト ヘヨト

Properties of K-affinoid algebras

Let A be a K-affinoid algebra.

Fact For every non-nilpotent element f ∈ A, there exists C > 0 such that ||fⁿ|| ≤ Cρ(f)ⁿ for all n ≥ 1. If A is reduced, then there exists C > 0 such that ||f|| ≤ Cρ(f) for all f ∈ A. If nil(A) is prime, then Ker(A → Â) = {(f,g) | fⁿ = gⁿh for some n ≥ 1 and h ∈ A with |h(x)| = 1 for all x ∈ M(A)}.

Corollary

Let $\varphi : A \to B$ be a bounded homomorphism to a *K*-affinoid algebra B. Given $f_1, \ldots, f_n \in B$ and $r_1, \ldots, r_n > 0$ with $r_i \ge \rho(f_i)$, there exists a unique bounded homomorphism $A\{r_1^{-1}T_1, \ldots, r_n^{-1}T_n\} \to B$ extending φ and sending T_i to f_i .

・ロト ・ 理 ト ・ ヨ ト ・

ъ

K-affinoid spaces

The category K-Aff of K-affinoid spaces is, by definition, the category opposite to that of K-affinoid algebras.

Definition

A closed subset $V \subset X = \mathcal{M}(A)$ is an *affinoid domain* if there is a homomorphism of *K*-affinoid algebras $A \to A_V$ such that

- the image of $\mathcal{M}(A_V)$ in X lies in V;
- any homomorphism of *K*-affinoid algebras A → B such that the image of *M*(*B*) in *X* lies in *V* goes through a unique homomorphism of *K*-affinoid algebras A_V → B.

Fact

- The induced map M(A_V) → V is bijective and, for every point y ∈ M(A_V) with the image x ∈ X, there is an isometric isomorphism H(x) ~ H(y);
- the induced map $\operatorname{Zspec}(A_V) \to \operatorname{Zspec}(A)$ is injective.

Rational and Weierstrass domains

Fact

- Given $f_1, \ldots, f_n, g \in A$ and $p_1, \ldots, p_n, q > 0$, the subset $V = \{x \in X | |f_i(x)| \le p_i | g(x)|, |g(x)| \ge q\}$ is an affinoid domain with respect to the homomorphism $A \to A_V = A\{p_1^{-1}T_1, \ldots, p_m^{-1}T_m, qS\}/E$, where E is the closed ideal generated by the pairs (gT_i, f_i) and (gS, 1);
- the canonical homomorphism A_g → A_V is surjective, and its kernel coincides with the Zariski kernel.

An affinoid domain of the above form is called *rational*. If g = 1 and q = 1, it is called *Weierstrass*.

Fact

Every point of X has a fundamental system of neighborhoods consisting of rational domains.

イロト イポト イヨト イヨト

For Zariski prime ideals $\mathfrak{p} \leq \mathfrak{q}$ (i.e., $\mathfrak{p} \supset \mathfrak{q}$), the canonical bounded homomorphism $A^{(\mathfrak{p})} = A/\Pi_{\mathfrak{p}} \to A^{(\mathfrak{q})}$ induces a continuous map $\tau_{\mathfrak{q}\mathfrak{p}} : X^{(\mathfrak{q})} = \mathcal{M}(A^{(\mathfrak{q})}) \to X^{(\mathfrak{p})}$.

For a subset $U \subset X$, we set $U_{\mathfrak{p}} = U \cap X_{\mathfrak{p}}$, $\check{U}_{\mathfrak{p}} = U \cap \check{X}_{\mathfrak{p}}$, $U^{(\mathfrak{p})} = U \cap X^{(\mathfrak{p})}$, and $\mathcal{I}(U) = \{\mathfrak{p} \in \operatorname{Zspec}(A) | \check{U}_{\mathfrak{p}} \neq \emptyset\}$.

Fact

A subset $U \subset X$ is an affinoid domain if and only if

- for every p ∈ I(U), U^(p) is a connected rational domain in X^(p);
- if $\mathfrak{p} \leq \mathfrak{q}$ in $\mathcal{I}(U)$, then $\tau_{\mathfrak{q}\mathfrak{p}}(U^{(\mathfrak{q})}) \subset U^{(\mathfrak{p})}$;
- the set $\mathcal{I}(V)$ is preserved under the infimum operation.

ヘロン 人間 とくほ とくほ とう

Let U be an affinoid domain in X.

Fact

- If U is connected then it is rational, and it is Weierstrass if and only if U ∩ X_m ≠ Ø;
- if X is connected and $U \cap X_m \neq \emptyset$, then U is connected.
- there exists a decreasing sequence of affinoid domains *U*₁ ⊃ *U*₂ ⊃ · · · ⊃ *U* such that
 - U_{n+1} is a Weierstrass domain in U_n and lies in the topological interior of U_n in X;

•
$$\bigcap_{n=1}^{\infty} U_n = U;$$

• the canonical homomorphisms $A_{U_n} \rightarrow A_U$ are bijections.

ヘロト ヘ戸ト ヘヨト ヘヨト

For a finite affinoid covering $\mathcal{U} = \{U_i\}_{i \in I}$ of a *K*-affinoid space $X = \mathcal{M}(A)$, we set

$$A_{\mathcal{U}} = \operatorname{Ker}(\prod_{i \in I} A_{U_i} \xrightarrow{\rightarrow} \prod_{i,j \in I} A_{U_i \cap U_j})$$

and provide $A_{\mathcal{U}}$ with the supremum norm.

Fact

The canonical map $A \rightarrow A_{\mathcal{U}}$ is an admissible monomorphism.

Definition

X is said to be *acyclic* if the above map is a bijection for any U.

ヘロト 人間 とくほとく ほとう

1

Fact

Each point $x \in X$ has an affinoid neighborhood U such that every affinoid domain $x \in V \subset U$ is acyclic.

Corollary

- Given finite affinoid coverings U and V such that V is a refinement of U, the canonical map A_U → A_V is an admissible monomorphism;
- there exists U such that, for any refinement V, the above admissible monomorphism is a bijection.

The full subcategory of *K*-Aff consisting of acyclic *K*-affinoid spaces is denoted by *K*-Caff, and the category with the same family of objects and affinoid domain embeddings as morphisms is denoted by *K*-Caff^{ad}.

イロト イポト イヨト イヨト

K-analytic spaces

Definition

• A family τ of subsets of a topological space X is a *quasinet* if, for every $x \in X$, there exist $V_1, \ldots, V_n \in \tau$ such that $x \in V_1 \cap \cdots \cap V_n$ and $V_1 \cup \cdots \cup V_n$ is a neighborhood of x.

• A quasinet τ is a *net* if, for every pair $U, V \in \tau, \tau|_{U \cap V}$ is a quasinet on $U \cap V$.

We consider τ as a category and denote by \mathcal{T} the canonical function $\tau \to \mathcal{T}op$ to the category of topological spaces $\mathcal{T}op$. We also denote by \mathcal{T}^a the canonical functor K- $Caff^{ad} \to \mathcal{T}op$.

Definition

A *K*-analytic space is a triple (X, A, τ) , where *X* is a locally Hausdorff topological space, τ is a net of compact subsets of *X*, and *A* is an acyclic affinoid atlas on *X* with the net τ , i.e., a pair consisting of a functor $A : \tau \to K$ -Caff^{ad} and an isomorphism of functors $\mathcal{T}^a \circ A \xrightarrow{\sim} \mathcal{T}$.

The category $K - \widetilde{An}$

Definition

A strong morphism $\varphi : (X, A, \tau) \rightarrow (X', A', \tau)$ is a pair:

- a continuous map φ : X → X', such that for every U ∈ τ there exists U' ∈ τ' with φ(U) ⊂ U',
- a compatible system of morphisms of *K*-affinoid spaces φ_{U/U'} : U → U' with φ_{U/U'} = φ|_U (as maps) for all pairs U ∈ τ and U' ∈ τ' with φ(U) ⊂ U'.

Strong morphisms define a category $K - \widetilde{An}$.

Definition

A strong morphism $\varphi : (X, A, \tau) \rightarrow (X', A', \tau')$ is a *quasi-isomorphism* if

- φ is a homeomorphism of topological spaces $X \xrightarrow{\sim} X'$,
- for every pair U ∈ τ and U' ∈ τ' with φ(U) ⊂ U', φ_{U/U'} is an affinoid domain embedding.

Definition

The category of K-analytic spaces K-An is the category of fractions of K- \widetilde{An} with respect to the system of quasi-isomorphisms.

Morphisms in the category K-An can be described as follows First of all

Fact

- If W is an acyclic affinoid domain in some U ∈ τ, it is an acyclic affinoid domain in any V ∈ τ that contains W;
- the family *\(\pi\)* consisting of all W as above is a net on X, and there exists an acyclic affinoid atlas A on X with the net *\(\pi\)* which extends A.

ヘロト ヘアト ヘヨト ヘ

.≣⇒

The category *K*-*An*

If σ is a net on X, we write $\sigma \prec \tau$ if $\sigma \subset \overline{\tau}$. Then \overline{A} defines an acyclic *K*-affinoid atlas A_{σ} with the net σ , and there is a canonical quasi-isomorphism $(X, A_{\sigma}, \sigma) \rightarrow (X, A, \tau)$. The system of nets σ with $\sigma \prec \tau$ is filtered and, for any *K*-analytic space $(\mathcal{X}', \mathcal{A}', \tau')$, one has

$$\operatorname{Hom}((X, A, \tau), (X', A', \tau')) = \lim_{\sigma \prec \tau} \operatorname{Hom}_{\widetilde{\mathcal{A}n}}((X, A_{\sigma}, \sigma), (X', A', \tau')).$$

Example

Let $X = \mathcal{M}(A)$ be a *K*-affinoid space. Then the family τ_c of acyclic affinoid domains in *X* is a net, and there is an acyclic affinoid atlas A_c with the net τ_c . In this way we get a functor K- $\mathcal{A}ff \rightarrow K$ - $\mathcal{A}n : X \mapsto (X, A_c, \tau_c)$. For a *K*-affinoid space $Y = \mathcal{M}(B)$, Hom($(Y, B_c, \sigma_c), (X, A_c, \tau_c)$) = Hom(A, B_V), where V is a finite covering of *Y* by acyclic affinoid domains.

Let (X, A, τ) be a *K*-analytic space.

Definition

A subset $Y \subset X$ is an *analytic domain* if $\overline{\tau}|_Y$ is a quasinet.

In this case $\overline{\tau}|_{Y}$ is a net and the atlas \overline{A} defines a *K*-analytic space $(Y, \overline{A}, \overline{\tau}|_{Y})$. A *p*-affinoid domain is an analytic domain isomorphic to a *K*-affinoid space. A *K*-analytic space is said to be *good* if every point has an acyclic affinoid neighborhood.

Fact

The family $\hat{\tau}$ of acyclic affinoid domains is a net on X, and there is a unique (up to a canonical isomorphism) acyclic K-affinoid atlas \hat{A} on X with the net $\hat{\tau}$ that extends A (the maximal acyclic affinoid atlas on X).

ヘロト ヘヨト ヘヨト ヘ

Definition

The *G*-topology X_G is the Grothendieck topology on the family of analytic domains in *X* defined by the following pretopology: the set of coverings of an analytic domain $W \subset X$ is formed by families of analytic domains which are quasinets on *W*.

Any representable presheaf is a sheaf on $X_{\rm G}$.

Example

The presheaf representable by $\mathcal{M}(K\{r^{-1}T\})$ is a sheaf on X_G denoted by $\mathcal{O}_{X_G}^r$. The inductive limit $\varinjlim \mathcal{O}_X^r$ is a sheaf of K-algebras on X_G denoted by \mathcal{O}_{X_G} and called the *structural sheaf* on X_G . Its restriction to X is denoted by \mathcal{O}_X .

If *V* is acyclic affinoid, one has $\mathcal{O}(V) = A_V$. If *V* is compact, $\mathcal{O}(V)$ is a Banach *K*-algebra and, for any finite covering $\{V_i\}$ of *V*, the map $\mathcal{O}(V) \to \prod_i \mathcal{O}(V_i)$ is an admissible monomorphism. A morphism $\varphi : Y \to X$ is a *closed immersion* if there is a quasinet τ on X such that, for every $U \in \tau$, $\varphi^{-1}(U) \to U$ is a closed immersion of acyclic K-affinoid spaces.

If $\varphi : Y \to X$ is a closed immersion and X is good, then every point of X has an acyclic affinoid neighborhood U with the above property.

The category K-An admits fiber products, and a morphism $\varphi : Y \to X$ is called *separated* if the diagonal morphism $Y \to Y \times_X Y$ is a closed immersion.

If $\varphi : Y \to X$ is and X is Hausdorff, then so is Y. If X is Hausdorff and good, it is separated.

・ 通 と ・ ヨ と ・ ヨ と

Piecewise K-affinoid spaces

Definition

- A *K*-analytic space is *piecewise K-affinoid* if it admits a closed immersion of *X* in a *K*-affinoid space.
- An analytic domain is said to be *piecewise affinoid* if it is isomorphic to a piecewise *K*-affinoid space.

Piecewise K-affinoid spaces form a category K- $\mathcal{P}aff$.

Fact

- Piecewise K-affinoid spaces are good;
- the category of piecewise K-affinoid spaces is preserved under finite disjoint unions and fiber products;
- for every piecewise K-affinoid space X, there exists a finite family of closed immersions φ : Y_i → X with integral K-affinoid spaces Y_i such that X = ⋃_i φ_i(Y_i).

(< ∃) < ∃)</p>

The relative interior of a morphism

Let $\varphi : Y = \mathcal{M}(B) \rightarrow X = \mathcal{M}(A)$ be a morphism of *K*-affinoid spaces.

Definition

The *relative interior* of φ is the set Int(Y/X) consisting of the points $y \in Y$ with the following property: for every non-nilpotent element $g \in B$ with $|g(y)| = \rho(g)$, one has $g(y)^n = f(y)$ for some $n \ge 1$ and $f \in A$ with $|f(y)| = \rho(f)$.

For example, if $B = A\{r_1^{-1}T_1, ..., r_n^{-1}T_n\}$, then $Int(Y/X) = \{y \in Y | |T_i(y)| < r_i \text{ for all } 1 \le i \le n\}.$

ヘロン 人間 とくほ とくほ とう

The relative interior of a morphism

Let $\varphi : Y \to X$ be a morphism of *K*-analytic spaces.

Definition

- The *relative interior* of φ is the set Int(Y/X) consisting of the points y ∈ Y with the following property: there exist acyclic affinoid domains U₁,..., U_n with x = φ(y) ∈ U₁ ∩ ··· ∩ U_n such that U₁ ∪ ··· ∪ U_n is a neighborhood of x and, for every 1 ≤ i ≤ n, there exists an acyclic affinoid neighborhood V_i of y in φ⁻¹(U_i) with y ∈ Int(V_i/U_i).
- The *relative boundary* of φ is the set $\delta(Y/X) = Y \setminus \text{Int}(Y/X)$.

If X and Y are K-affinoid, this definition is consistent with the previous one.

ヘロン 人間 とくほど くほとう

Properties of the relative interior

Fact

- Int(Y/X) is an open subset of Y.
- If Y is an analytic domain in X, then Int(Y/X) is the topological interior of Y in X.
- if y ∈ Int(Y/X) then, for every acyclic affinoid domain φ(y) ∈ U ⊂ X, the point y has an acyclic affinoid neighborhood V in φ⁻¹(U) with y ∈ Int(V/U).
- given a second morphism $\psi : Z \to Y$, one has $\operatorname{Int}(Z/Y) \cap \psi^{-1}(\operatorname{Int}(Y/X)) \subset \operatorname{Int}(Z/X)$ and, if $\mathcal{H}(\psi(z)) \xrightarrow{\sim} \mathcal{H}(z)$ for all $z \in Z$, the inclusion is an equality;
- if φ : Y → X is separated and X is K-affinoid, then for every p-affinoid domain V ⊂ Y with V ⊂ Int(Y/X) there exists a bigger p-affinoid domain W ⊂ Y such that V ⊂ Int(W/X) and V is a Weierstrass domain in W.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition

A morphism of *K*-analytic spaces $\varphi : Y \to X$ is *proper* if it is compact (i.e., proper as a map of topological spaces) and has no boundary (i.e., $\delta(Y/X) = \emptyset$).

Fact

The class of proper morphisms is preserved under any base change and any composition.

ヘロト ヘアト ヘビト ヘビト

Fréchet K-algebras

Definition

- A *Fréchet K-algebra* is a *K*-algebra *A* provided with an increasing sequence of seminorms | |₁ ≤ | |₂ ≤ ... such that if |*f*|_{*i*} = 0 for all *i* ≥ 1, then *f* = 0.
- A homomorphism of Fréchet K-algebras φ : A → A' is bounded if for every i ≥ 1 there exist j ≥ 1 and C > 0 such that |φ(f)|_i ≤ C|f|_j for all f ∈ A.

There is a fully faithfull functor from the category of Banach K-algebras to that of Fréchet K-algebras.

The category of Fréchet *K*-algebras admits countable direct products. Indeed, given a sequence A_1, A_2, \ldots with seminorms $| |_1^{(i)} \leq | |_2^{(i)} \leq \ldots$, their direct product $A = \prod_{i=1}^{\infty} A_i$ is provided with the seminorms $|f|_n = \max_{i+j \leq n} \{|f_i|_j^{(i)}\}$ for $f = (f_1, f_2, \ldots) \in A$.

・ 回 ト ・ ヨ ト ・ ヨ ト

Definition

The *spectrum* $\mathcal{M}(A)$ of a Fréchet \mathbf{F}_1 -algebra A is the space of all bounded homomorphisms of Fréchet \mathbf{F}_1 -algebras $| | : A \to \mathbf{R}_+$ provided with the evident topology.

Fact

The K-algebra $\mathcal{O}(X)$ of every K-analytic space X countable at infinity can be provided with a unique structure of a Fréchet K-algebra so that, for every sequence of similar analytic domains U_1, U_2, \ldots that cover X, the canonical homomorphism $\mathcal{O}(X) \to \prod_{n=1}^{\infty} \mathcal{O}(U_n)$ is an admissible monomorphism.

For such X, there is a canonical continuous map $X \to \mathcal{M}(\mathcal{O}(X)).$

・ロン ・四 と ・ ヨ と ・ ヨ と …

Definition

A *K*-analytic space *X* is *Stein* if it is a union of an increasing sequence of acyclic affinoid domains $U_1 \subset U_2 \subset \ldots$ such that each U_i is a Weierstrass domain in U_{i+1} and $U_i \subset \text{Int}(U_i)$.

If X is Stein, then $X \xrightarrow{\sim} \mathcal{M}(\mathcal{O}(X))$.

Fact

- The contravariant functor X → O(X) from the category of Stein K-analytic spaces to that of Fréchet K-algebras is fully faithful.
- Every point of a K-analytic space without boundary has a fundamental system of open Stein neighborhoods.

A *Stein K-algebra* is a Fréchet *K*-algebra isomorphic to O(X) of a Stein *K*-analytic space *X*.

ヘロト ヘワト ヘビト ヘビト

Non-Archimedean analytic spaces

Let *k* be a non-Archimedean field, and suppose we are given an isometric homomorphism of \mathbf{F}_1 -fields $\phi : K \to k^{\cdot}$.

Definition

A ϕ -morphism from a k-analytic space Y to a K-analytic space X is a pair consisting of

- a continuous map φ : Y → X such that, for every point y ∈ Y, there exist affinoid domains V₁,..., V_n ⊂ Y such that y ∈ V₁ ∩ ··· ∩ V_n, V₁ ∪ ··· ∪ V_n is a neighborhoods of y, and all φ(V_i) lie in acyclic affinoid subdomains of X;
- a system of compatible bounded ϕ -homomorphisms $A_U \to \mathcal{B}_V$ for all pairs consisting of an affinoid domain $V = \mathcal{M}(\mathcal{B}_V) \subset Y$ and an acyclic affinoid domain $U = \mathcal{M}(A_U) \subset X$ with $\varphi(V) \subset U$ such that the induced map $V \to U$ coincides with $\varphi|_V$.

イロト イポト イヨト イヨト

Non-Archimedean analytic spaces

Let Φ_X be the functor from the category of *k*-analytic spaces to the category of sets that takes a *k*-analytic space *Y* to the set of ϕ -morphisms $\operatorname{Hom}_{\phi}(Y, X)$.

Fact

- The functor Φ_X is representable by a k-analytic space X^(φ) and a compact φ-morphism π = π_X : X^(φ) → X;
- π induces a morphism of sites π_G : X_G^(φ) → X_G and a homomorphism of sheaves O_{X_G} → π_G*O_{X^(φ)};
- the functor X → X^(φ) commutes with fiber products and takes open and closed immersions, and proper morphisms to morphisms of the same type;
- the functor X → X^(φ) gives rise to a functor K-Paff → k-Aff.

イロト イポト イヨト イヨト

Classes of analytic spaces

The following definitions makes sense also for the field of complex numbers $k = \mathbf{C}$. Let *B* be a *K*-algebra.

Definition

- *B* is ϕ -nontrivial if the stabilizer of any non-nilpotent element of *B* in K^* lies $\text{Ker}(K^* \to k^*)$.
- B is φ-special if it is φ-nontrivial and, for every Zariski prime ideal p ⊂ B, the group Ker(K* → κ(p)*) has no torsion.
- B is φ-superspecial if it is φ-special and, for every pair of Zariski prime ideals p ≤ q, 𝔅^(p) ∩ 𝔅^(q) is a Zariski closed subset of 𝔅^(p), where 𝔅 = Spec(B).
- A K-analytic space X is φ-nontrivial (resp. φ-special, resp. φ-superspecial) if the K-affinoid algebras of all of its affinoid domains possess the corresponding property.

For example, any irreducible ϕ -special X is ϕ -superspecial.

Properties of the map $\pi: X^{(\phi)} \to X$

Let X be a K-analytic space.

The full subcategory of *K*-An consisting of ϕ -special *K*-analytic spaces is denoted by *K*- $An^{(\phi)}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Sheaves of Banach K-algebras on k-analytic spaces

Definition

- A *sheaf of Banach K-algebras* on a *k*-analytic space *Y* is a sheaf of *K*-algebras *A* on *Y*_G with the following structure:
 - *A* restricted to the family of compact analytic domains is induced by a functor to the category of Banach *K*-algebras;
 - if {V_i}_{i∈1} is a finite covering of a compact analytic domain V by compact analytic domains, then A(V) → ∏_{i∈1} A(V_i) is an admissible monomorphism.
- a homomorphism of sheaves of Banach K-algebras
 A → A' is *bounded* if, for every compact analytic domain
 V, the homomorphism A(V) → A'(V) is bounded.

For example, \mathcal{O}_{Y_G} is a sheaf of Banach *K*-algebras.

Fact

For a K-analytic space X, $\pi_{G}^{*}\mathcal{O}_{X_{G}}$ is a sheaf of Banach K-algebras on $X^{(\phi)}$, and $\alpha_{X} : \pi_{G}^{*}\mathcal{O}_{X_{G}} \to \mathcal{O}_{\chi_{G}^{(\phi)}}$ is bounded.

k-analytic spaces with a prelogarithmic K-structure

Definition

- A k-analytic space with a prelogarithmic K-structure is a triple (Y, A, α) consisting of
 - a k-analytic space Y;
 - a sheaf of Banach *K*-algebras A on Y_G ;
 - a bounded $\phi\text{-homomorphism}$ of sheaves of Banach K-algebras $\mathcal{A}\to \mathcal{O}_{Y_G}.$
- A morphism $(Y, \mathcal{A}, \alpha) \rightarrow (Y', \mathcal{A}', \alpha')$ is a pair consisting of
 - a morphism of *k*-analytic spaces $\varphi : Y \rightarrow Y'$;
 - a bounded homomorphism of sheaves of Banach *K*-algebras $\mathcal{A}' \to \varphi_* \mathcal{A}$, which is compatible with the homomorphism $\mathcal{O}_{Y'_G} \to \varphi_* \mathcal{O}_{Y_G}$.
- k-An^(\phi) is the category of k-analytic spaces with a prelogarithmic K-structure.

ヘロト ヘワト ヘビト ヘビト

Fact

- The correspondence X → (X^(φ), π^{*}_GO_{X_G}, α_X) gives rise to a fully faithful functor K-An^(φ) → k-An^(φ).
- An object (Y, A, α) of k-An^(φ) lies in the essential image of the above functor if and only if
 - the family of k-affinoid domains V ⊂ Y such that A(V) is an acyclic K-affinoid algebra and V → M(A(V))^(φ) is a net;
 - for every pair of affinoid domains V ⊂ W from the above net, M(A(V)) → M(A(W)) is an affinoid domain embedding.

イロト イポト イヨト イヨト

Complex analytic spaces

Suppose we are given an isometric homomorphism of F_1 -fields $\mathcal{K}\to C^{\cdot}.$

Definition

A ϕ -morphism from a complex analytic space Y to a K-analytic space without boundary X is a pair consisting of

- a continuous map $\varphi : Y \to X$;
- a system of compatible bounded φ-homomorphisms *O*(*U*) → *O*(*V*)^{*} for all pairs consisting of an open Stein subspaces *U* ⊂ *X* and *V* ⊂ *Y* with φ(*V*) ⊂ *U* such that the induced map *V* → *U* coincides with φ|_V.

If *Y* is the complex analytic point, then the set of ϕ -morphisms $\operatorname{Hom}_{\phi}(Y, X)$ is identified with the set of pairs consisting of a point $x \in X$ and an isometric ϕ -homomorphism $\mathcal{H}(x) \to \mathbf{C}^{\cdot}$. The latter set is defined for an arbitrary *K*-analytic space *X*, and is denoted by $X_{\phi}(\mathbf{C})$.

Complex analytic spaces

For a *K*-analytic space without boundary *X*, let Φ_X be the functor from the category of complex analytic spaces to that of sets that takes a complex analytic space *Y* to Hom_{ϕ}(*Y*, *X*).

Fact

- The functor Φ_X is representable by a complex analytic space X^(φ) and a compact φ-morphism π = π_X : X^(φ) → X;
- there is a canonical bijection X_φ(C) → X^(φ) and, for any analytic domain X' ⊂ X, π⁻¹(X') = X'_φ(C);
- for any open Stein subspace U ⊂ X, π⁻¹(U) is an open Stein subspace of X^(φ);
- if X is separated then, for any p-affinoid domain $U \subset X$, $\pi^{-1}(U)$ is a Stein compact in $X^{(\phi)}$.
- the functor X → X^(φ) takes open and closed immersions and proper morphisms to morphisms of the same type.

くぼう くほう くほう

э

Fact

- if X is φ-nontrivial, π is an open surjective map, and its fibers are direct products of a real torus and a finite set;
- if X is ϕ -special, the fibers of π are real tori;
- if X is φ-special and irreducible, there is an action of a real torus S on X^(φ) such that X^(φ)/S → X.

The full subcategory of *K*-An consisting of ϕ -special *K*-analytic spaces without boundary is denoted by *K*- $Can^{(\phi)}$.

▲圖▶ ▲ 国▶ ▲ 国≯

Sheaves of Fréchet *K*-algebras on complex analytic spaces

Definition

- A sheaf of Fréchet K-algebras on a complex analytic space Y is a sheaf of K-algebras A on Y with the following structure:
 - A restricted to the family of open subspaces countable at infinity is induced by a functor to the category of Fréchet *K*-algebras;
 - if {V_i}_{i∈I} is a countable covering of a such an open subspace V by similar open subspaces, then
 A(V) → ∏_{i∈I} A(V_i) is an admissible monomorphism.
- a homomorphism of sheaves of Fréchet K-algebras *A* → *A*' is *bounded* if, for every *V* as above, the homomorphism *A*(*V*) → *A*'(*V*) is bounded.

For example, \mathcal{O}_Y is a sheaf of Banach *K*-algebras.

(画) (ヨ) (ヨ)

Complex analytic spaces with a prelogarithmic *K*-structure

Definition

- A complex analytic space with a *prelogarithmic K-structure* is a triple (Y, A, α) consisting of
 - a complex analytic space Y;
 - a sheaf of Fréchet K-algebras A on Y;
 - a bounded φ-homomorphism of sheaves of Fréchet K-algebras A → O_Y.
- A morphism $(Y, A, \alpha) \rightarrow (Y', A', \alpha')$ is a pair consisting of
 - a morphism of complex analytic spaces $\varphi : \mathbf{Y} \to \mathbf{Y}';$
 - a bounded homomorphism of sheaves of Fréchet *K*-algebras *A*' → φ_{*}*A*, which is compatible with the homomorphism *O*_{Y'} → φ_{*}*O*_Y.
- **C**- $An^{(\phi)}$ is the category of complex analytic spaces with a prelogarithmic *K*-structure.

ヘロア 人間 アメヨア 人口 ア

ъ

Fact

- The correspondence X → (X^(φ), π*O_X, α_X) gives rise to a fully faithful functor K-Can^(φ) → C-An^(φ).
- An object (Y, A, α) of C-An^(φ) lies in the essential image of the above functor if and only if
 - the family of open Stein subspaces V ⊂ Y such that A(V) is a Stein K-algebra and V → M(A(V))^(φ) is a basis of a topology;
 - for every pair of open Stein subspaces V ⊂ W from the above basis, M(A(V)) → M(A(W)) is an open immersion.

イロト イポト イヨト イヨト