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PREFACE

The following paragraph presents a very brief history of differen-

America. ‘ tial geometry and the notation used in these notes.

Published by VAN NOSTRAND REINHOLD COMPANY Differential geometry is probably as old as any mathematical dis-
450 West 33rd Street, New York, N.Y. 10001 cipline and certainly was well launched after Newton and Leibnitz
Published simultaneously in Canada by had laid the foundations of calculus. Many results concerning sur-

D. Van Nostrand Company (Canada), Ltd. - ~ ‘faces in 3-space were obtained by Gauss in the first half of the mine-
1098765482 teenth centruy, and in 1854 Riemann laid the foundations for a more

-abstract approach. At the end of that century, Levi-Civitae and
Ricci developed the concept of parallel translation in the classical
language of tensors. This approach received a tremendous impetus
‘from Einstein’s work on relativity. During the early years of this
_century, E. Cartan initiated research and methods that were indepen-
‘dent of a particular coordinate system (invariant methods). Chevalley’s
‘book “The Theory of Lie Groups” (1946) continued the clarification
of concepts and notation, and it has had a remarkable affect on the
Current situation. The complete global synthesis of Cartan’s approach
was achieved when Ehresmann formulated a connexion in terms of a
fiber bundle, These notes utilize an invariant local method formulated
by Koszul.

The first three chapters of this book provide a short course on clas-
sical differential geometry and could be used at the junior level with
a little outside reading in linear algebra and advanced calculus. The
first six chapters can be used for a one-semester course in differen-
pial geometry at the senior-graduate level. Such a course would cover

e ‘main topics of classical differential geometry (except for the
'fi,@;fsiterial in chapter 8) using modern language and techniques, and it
ﬁ,iould prepare a student for further study in the books of Helgason,
‘Lang, Sternberg, etc. (see list in following paragraph). The entire
i:)ook can be covered in a full year course. A selection of chapters
could make up a “topics” course or a course on Riemannian geometty.
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For example, a course on manifolds and connexions could consist of
chapters 1, 4, 5, 7, and sections 9.1, 9.3, and 9.4. The reader with
a little experience should move through the first three chapters fairly
quickly.

The problems are of several types: (a) those that provide explicit
computations to test the undetstanding of the theory, (b) those that
require the student to prove theorems similar to those in the text,

(c) those that lead the student through supplementary matetrial, some
of which may be an integral part of the exposition, and (d) those that
lead the student to books or papers in the literature. An introduction
to bundle theory and the theory of Lie groups is covered via problem
material. Our hope is to give the reader a solid understanding of the
basic concepts and to stimulate him to further reading and thinking
in differential geometry.

Besides the specific references found in the notes, we would like
to mention the following general references: Point set topology:
Kelley; Hocking and Young; Pervin. Linear algebra: Halmos; Jacob-
son. Advanced calculus: Buck; Kaplan; Nickerson, Steenrod, and
Spencer. Classical differential geometry: Eisenhart; Hilbert and
Cohn-Vossen; Struik. Contemporary differential geometry: Auslander
and MacKenzie; Crittenden and Bishop; Guggenheimer; Helgason;
Kobayashi and Nomizu; Lang; Normizu; Sternberg. History of differ-
ential geometry: Struik; Veblen and Whitehead.

We will use the following conventions: “iff” for “if and only if?;
“//” for “Q. E. D.”; Cartan® will refer to the third reference in the
bibliography under Cartan, and when there is only one reference for
an author, we omit the superscript 1; 22_1, 2,, and 2 will all be used
to indicate a sum is to be made, and in the latter two cases, we hope
the omitted information (range or index of summation) is clear from
the context.

At this time I would like to express my gratitude to former teachets
N. Schwid and V. J. Varineau for their early encouragement, to Miss
Margaret M. Genova and Miss Gillian D. Hodge for their help in typing
the. manuscript, and to L. M. Dickens for his contribution to the under-
standing of the illustrations, Finally, I am indebted to W. Ambrose
and H. Samelson for sharing their insights via courses, notes, and
conversations.

N. J. HICKS
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1. Manifolds

n this chapter we define the fundamental concepts which we deal

h throughout these notes. Specifically, the notions of manifold,
ction, and vector, and the concept of differentiability (smioothness),
st be carefully digested for a solid foundation.

gction 1.1 Manifolds

irst some notation. Let R be the set of real numbers. For an inte-
er n > 0, let R” be the product space of ordered n-tuples of real num-
rs. Thus R” = [(al,...,an): a, in R]. Fori=1,...,n, let u. be the
tural coordinate (slot) functions of R™ i.e., u: R" — R b;z V
(ay,.-a,) =a, An open set of R” will be a sIet which is open in the
standard metric topology induced by the standard metric functiox; d on
R"; thus if a = (al,...,an) and b = (b,,...,b ) are points in R", then
d(a, b) = (37 (a, - b)?1% !
The concept of differentiability is based ultimately on the definition
of a derivative in elementary calculus. Let r be an integer, r > 0.
_,:Recall from advanced calculus that a map f from an open set A CR"
_‘Linto R is called C” on A if it possesses continuous partial derivatives
~on A of all ordets <r. If { is merely continuous from 4 to R, then f is
‘C° on A. If fis C*on A for all r, then f is C*® on A. If fis réal analytic
on A (expandable in a power series in the coordinate functions about
each point of 4), then f is C®on A. Henceforth, unless otherwise
"k‘s.,pecified, we let r be «, w, or an integer > 0.
- A map f from an open set A CR" into R* (k an integer > 1) is C* on 4
if each of its slot functions f,. =u,ofis C"on A for i =—i,...,k; thus
“for pin R", f(p) = (fl(p),...,fk(p)) in Rk,

Fig, 1.1

Overlapping Coordinate Domains



2 Notes on Differential Geometry

We now define a manifold. Let M be a set. An n-coordinate pair
on M is a pair (¢, U) consisting of a subset U of ¥ and 1 to 1 map ¢
of U onto an open set in R®, One n-coordinate pair (¢, U) is C* related
to another n-coordinate pair (8, V) if the maps ¢ 8~ ! and 9 o (;S"I are
C" maps wherever they are defined (thus their domains of definition
must be open). A C”n-subatlas on M is a eollection of n-coordinate
pairs (qSh, U,), each of which is C* related to every other membor of
the collection, and the union of the sets U, is M. A maximal collection
of C* related n-coordinate pairs is called a C* n-atlas. If a C* n-atlas
contains a C’ n-subatlas, we say the subatl as induces or generates the
atlas. Finally, an n dimensional C* manifold or a C* n-manifold is a set
M together with a C" n-atlas. Whenr =0, M is customarily called a
locally Euclidean space or a topological manifold, and only when r £ 0
is M called a differentiable or smooth manifold. An atlas on a set ¥
is often called a differentiable structure or a manifold structure on M.
Notice that one set may possess more than one differentiable structure
(see example 4 below), however, a definition of “equivalent” differ-
entiable structures is necessary before the study of different atlases on
a set becomes meaningful (see Munkres?!). '

Each n-coordinate pair (& U) on a set M induces a set of n real
valued functions on U defined by x,=u,o¢ fori= l,..,n. The func-
tions X seee.x are called coordinate functions or a coordinate system
and U is called the domain of the coordinate system.

We list some examples:

/1. Let M be R” with a C* n-subatlas equal to the pair consisting of
¢ = the identity map and U = R™.

“2. Let M be any open set of R" and let a C'n-subatlas be (the identity
map, M).

“3. Let M = GL (n, R), the group of non-singular R-linear transforma-
tions of R” into itself. Then M can be mapped 1:1 onto an open
set in R7? and thus a manifold structure can be defined on M via
example 2. If (ai].) is a matrix representation of an element of ¥
with respect to the usual base of R", then map (ai]_) into the
n’-tuple

@1 @ypesay, a,,, Aygreer8ypy Agppeenrd@p )

v The image set of this map will be open since it is the inverse
image of an open set by the determinant map, which is continuous

(indeed it is C®as a map on R”z).

|

|
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4. Let M, be the 1-dimensional C' manifold of example 1, and let
M, = R with the C*' l-subatlas (x? R), where x is the identity

1 < .
mapping on.R. Then M, £ M, since x” is not C! at the origin.

V'5. Let f be a C* real valued function on R”*?, with r > 0 and

n > 0, and suppose the gradient of f does not vanish on an
f-constant set M = [p in R?*'; f(p) = 0]. Then at each point
in M, choose any partial derivative of f that doesn’t vanish,
say the i'" one, apply the implicit function theorem to obtain a
neighborhood of p (relative topology on M) which projects in a
1:1 way into the u, = 0 hyperplane of R"*1, and thus define a
subatlas which makes ¥ a C™ n-manifold.

This example covers many classical hypersurfaces in R?*!,
including spheres, planes, and cylinders.

v'6. The process in example 5 can easily be generalized to obtain
C* (n — k)-manifolds from “constant sets” of a C* map f R? — Rk
whose Jacobian matrix is of rank k on the constant set.

7. Let F be a univalent map from an open set in R into R™, with
0 <n <m, and let ¥ be the image of F. Then the n-cqordinate
pair (F~1, M) defines a C* n-subatlas on M.

For further definitions, let ¥ be a fixed C* n-manifold. An open
set in M is a subset A of ¥ such that #(4 NU) is open in R™ for
every n-coordinate pair (¢, U). The reader can verify that M becomes
a topological space with this definition of the open sets. If p in M,
then a neighborhood of p is any open set containing p. Notice M need
not be Hausdorff. The concept of Hausdorffness is irrelevant for much
of local differential geometry. It becomes relevant in passing from a
Riemannian metric to a distance function.

Section 1.2 Smooth Functions

In this section let A be the domain of a function f and assume A
is an open subset of the C* n-manifold M, If fis real valued, then f
is C*on A ifef o ™' is C* on ¢(4 N V) for every coordinate pair
(¢, U) on M. Note the independence of r and s. If N is a C* d-mani-
fold and f is N-valued, and f is C*® on 4 if f is continuous and for every
real valued function g, that is C® on an open domain in N, the composite
gofis C%on ANf"! (domain of g). Note the independence of r, k, and s.



4  Notes on Differential Geometry

Fig. 1.2 An Induced Map from R? into R

The local character of the smoothness of a function is captured in
the following definition. Suppose the domain of f is not necessarily
open and f is N-valued. If p is in the domain of f, then fis C at p
if there is a neighborhood U of p with f defined on U such that ilv is
C®on U. As a corollary, if fis C* at every point in its domain then
its domain is open.

Let us now specialize to C® manifolds and C*® functions. This is
done for convenience chiefly and it allows us to define a tangent vec-
tor in a very elegant way. Our concern in these notes is not with “the
least possible assumptions” but rather with those concepts that arise
naturally in a general situation. The restriction is not too drastic
because of the following result due to Whitney: A Cf atlas on a set
with r > 0 contains a C* atlas (see Munkres!). There is an example of
Kervaire which exhibits a C? atlas on a set which admits no C?! atlas,
For further work on the “equivalence” of differentiable structures see
Milnor! #*? 2, Munkres! #7¢ 2, and Smale!.

The following list of nine problems are recommended in order to
familiarize oneself with the notion of a C® map. In particular the pro-
blems are aimed at obtaining numbers 6 and 7 which are often useful.
The list (remember A4 is open in M, which is a C* n-manifold);

1. Themap 2 A >N is C®on 4 iff f is C* at each point p in A

2. Iff: AN, fisC®on A, and U is an open set contained in A,
then {[  is C* on U.

Chap. 1 Manifolds S

3. Let U, be a collection of open sets in M and let f,: U, >N
be C* on U, for each h. If f is a function whose domain is
the union of all U, and if f[U = f, for all A, then f is C* on
its domain. n

4. Iff2 A R¥is C*on A CR" and g: B > R is C* on the open
set B CR¥, then g o f is C® on A N f~Y(B).

5. If f: A>Nis C®on ACM and (¢, U) is a coordinate pair on
M, then f o ¢~ ' is C™ on (4 NU).

6. Let P be a C* s-manifold. If F; 45N is C®on 4 CM and
g: B~ P is C” on the open set B CN, then gofis C®on
A NfY(B).

7. Themap f: A N is C®on 4 CM iff for every coordinate pair
(¢, U) in a subatlas on N the functions x, of are C*on
AN, fori = I,...,d and X, =u,od.

8 Ifn>kand g: R*> Rkby é(al,...,an) =(ay,...,a,) then ¢ is
C®on R”, If h: R¥5 R" by h(al,...,ak) =(ay,..00a,, 0,...,0)
then h is C* on R*,

9. Let f and g be real valued functions that are C*° on the subsets
A and B of M, respectively. Show that f + g and fg are C* on
A N B, where (f + £)(p) = H(p) + &(p) and ({g)(p) = £(p)g(p).

For the record, we can and so do define a Lie group. A Lie group
G is a group G whose underlying set is also a C* manifold such that
the group operations are C*, i.e. the map ¢: GxG » G where ¢(g, &) =
gh™! is C™ (see problem 18 and 20).

One last bit of notation, let C*(4, N) denote the set of C® functions
mapping an open set 4 in a manifold M into a manifold N.

Section 1,3 Vectors and vector fields

The definition of a tangent vector generalizes the “directional
derivative” in R™. If X is an ordinary (advanced calculus) vector
at a point m in R and f is a C* function in a neighborhood of m,
then define X _f- X, - (V1) _, where V1 is the gradient vector field
of f. From the properties of the “dot” product and the operator V,
it follows that
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X (af + bg) = aX f+bX g
X, () = fm)X g + g(m)X_t,

where g is a C™ function in a neighborhood of m and a and b are real
numbers. Notice X is not normalized to be a unit vector. We general-
ize now to define a tangent vector on a manifold as an operator on C®
functions which obeys the above rules,

Let ¥ be a C* n-manifold. Let m be in M and let C(m) denote
the set of real valued functions that are C* on some neighbothood of
m. A tangent vector at m is a real valued function X on C>(m) having
the following properties:

(1) X(f+g) = Xf + Xg, X(bf) = B(XS)
@ X(fg) = XDg(m) + Km)(Xg),

where f and g are in C*(m), and b is in R. The set C™(m) is almost a
ring (there is a slight problem with domains), and thus a tangent vector
is often called a derivation on C*>(m),

The tangent space to M at m, denoted by M_, is the set of all tan-
gent vectors at m. It is a vector space over the real field where
(X + Y)f = Xf + Yf and (bX)f = b(XF) for X, YinM_, fin C>(m), and b
a real number,

Let Xyyee0pX, be a coordinate system about m (i.e., m is in the domain
of these coordinate functions), We define for each 1, a coordinate vec-
tor at m, denoted (3/ c?xi)m by

2, =287 ()
8xi 8ui

where x, = u, o ¢ and the differentiation on the right side is as usual on
R", The verification of properties (1) and (2) above we leave to the
reader. In a moment we show these coordinate vectors form a base for
the tangent space at m.

LEMMA. Let X peeeX be a coordinate system about m with
x,(m) = 0 for all i. Then for every function f in C*(m) there exists n

g
m
|
|
|

|
I

|
|
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functions f ,...,f_in C>(m) with f,,(m) = (8/o"xi)mi and f = f(m) + Zixifi
in a neighborhood of m. (Note the equality in question is an equality
between functions, and f(m) represents a constant function with value
f(m); the sum is taken for i = 1, 2,...,n, and in the future this relevant
range is to be understood.)

Proof. Let ¢ be the coordinate map belonging to the X, LetF=fog™!
and we know F is defined in a ball about the origin in R", i.e., in a set
B =[p in R™: distance from origin to p <z]. For (ajs...,a,) in B we have,

F(al,...,an) = F(al,...,an) - F(al,...,an_l, 0) +
Fla,,..,a__,, 0) - Fla,...,a, _,, 0, 0) +...+

F(a,, 0,...,0) = F(0,...,0) + F(0,...,0) =

= EiF(al,...,ai_l, ta,, 0,...,0)](1, + F(0,...0)
1

= F(0,...,0) + = f 585 (@y,0000a, -y, ta,, 0,...,0)adt
0 ou,

= F(0,...,0) + 2.aF (a,..,a ), where

1 gF
Fi(al'“"an) = fo a(al,...,ai_l, tai, 0,...,O)dt

is C% in B since (0F /0u ) is C™. Let f, - F, o ¢ and the lemma is
proved, //

THEOREM. Let M be a C*™ n-manifold and let Xiyeensx be aco-
ordinate system about m in M. Then if X in M, X=%2(Xx)d/ox))_,
and the coordinate vectors form a base for Mm which thus has dimension

1.

Proof. We first prove the stated representation. Take X in M, and
fin C®m), If xl_(m) # 0 for all 7, let ¥;=x,~x(m). Then apply the
lemma to f with respect to the coordinate system y ,...,y, and notice
(9£/3y Ym) = (0f/ 9x,)(m). Next we see if ¢ a constant map then



8 Notes on Ditferential Geometry
X(e) = cX(1) = c(1X(1) + 1X(1)) = 2¢cX(1)

which implies cX(1) = 0 and X(c) = 0. Thus Xf = X(Km) + .7 £,
= 2,[(Xy ), (m) + y (m)(X£)]
= 3 X(x, - x (m)f (m)
- 3, (Xx 0t/ 0%,)m)

which proves the required representation. If ¥ — E .a,(d/0x, ;) =0 then
0=Y X, =a, thus the coordinate vectors are mdependent and span
M_ V2
A vectot field X on a set 4 is a mapping that assigns to each point
p in A a vector Xp inM . Afield X is C* on 4 if A is open and for
each real valued function f that is C* on B, the function XH@ =
X fis C”on ANB. If X and ¥ are C*™ vector fields on A their bracket
1s a C* vector field [X, ¥] on 4 defined by [X, Y] f=X (¥f) - Y (Xf).
If f and g are C™ functions, it is trivial that [X YI(£ +g) = [X, Y]f +
[X, Ylg, and [X, Y(af) = alX, YIf for ain R. To check the product
property, consider

[X, ¥)(tg) = X(¥(tg)) - ¥(X(fg))
= X(fYg + gY ) — Y(Xg + gXf)
= (XYg + (XD(Yg) + (Xg)¥1) + gXYf
- fYXg - (Y)(Xg) - (Yg)(Xf) ~ gY Xf
= fIX, ¥)g + glX, Y1t

Thus [X, Y] is a vector field and the proof of its C* nature we leave
as a problem.

For later use, notice that X, ¥]= - [¥, X], [X, X] = 0, and the
bracket is linear in each slot with respect to addition, i.e.,
X, + X, ¥1=[x, ¥l+ [X,, Y]. However, [fX, g¥] = HXg)Y —
g(Y HX + fg[X, Y], and it is this property that prevents the bracket map-

?
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ping from being a tensor (problem 10). Problem 13 gives a geometric
interpretation of the bracket, and in section 9.1 there are applications
involving integrability conditions. For example, if X 00X, iS a co-
ordinate system then [9/dx,, a/ax].] = 0 for all 1 and j (since cross
partial derivatives of C* functions are equal), and actually this con-
dition on n independent vector fields is sufficient to imply the fields
are coordinate vector fields (section 9.1);

The bracket operation also sat1sf1es the following expression which
is called the Jacobi identity,

X, [y, ZIi+ [z, [x, YN + [y, [2, x)l =0
where X, ¥, and Z are C* fields with a common domain.

Section 1.4 The Jacobian of a map

Let ¥ and N be C*® manifolds of dimensions n and k respectively.
We defined above the concept of a C* map f from M into N. Such a
map induces a linear transformation from each tangent space M, into
the tangent space Nf( » This linear map is called the ]acobzan map
or the differential of f and we denote it by fs (often it is de noted df,
but we reserve the symbol d for the exterior derivative operator). Let
X be in M, and we define f+X as a vector at f(m) in N by taking a
function g wh1ch is C* in a neighborhood of f(m) and setting (f4X )8 =
X(g of). It is trivial to check that f«X is a vector at f(m) and the map
fx is linear,

By selecting a coordinate system x 11++0»X, about m and another
¥ 1see0,¥, about f(m), we can determine a matrix representation for fx
which is called the Jacobian matrix of fx with respect to the chosen
coordinate systems. Let X, =0d/0x, Y, - a/ay  thus X ..., X | at
m, form a base for M_ and we compute f* by computmg 1ts action on
this base. Namely, f*X 3 (I*X )y Y, by the representation theorem
above, hence the matnx in questmn is the matrix ((fxX . )y j) =
(G(y of)/dx)for 1<i<nand 1<j<k,

The lmpllClt function theorem and the inverse function theorem can
be applied and formulated in this language. The former we postpone,
since we do not really need it for some time (see problem 16) but the
latter is both useful and instructive. First a definition. A diffeomor-
phism is a map f: M > N that is 1:1 and onto with both f and f71C>,
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and if such an f exists, then M is diffeomorphic to N.

THEOREM. (Inverse function) Let M and N be C*™ n-manifolds
and let f: M - N be C*, If for m in M, the Jacobian fy at m is an
isomorphism of M_ onto N f(m) then there is a neighborhood U of m and
a neighborhood V of f(m) such that f is a diffeomorphism from U to V
(i.e., f is a local diffeomorphism about m).

We leave it to the reader to choose a coordinate system on both
sides and apply the theorem from advanced calculus to obtain the re-
sult. Notice the C* demand of f and f~? implies the theorem could be
stated as a necessary as well as a sufficient condition for the exist-
ence of a local inverse. If one only demands continuity of the inverse,
then the map x - x3 provides a homeomotphism of R onto R whose
Jacobian is singular at the origin.

Now consider the behavior of the Jacobian with respect to com-
posite maps. Let g be a C*™ map of N into the C* manifold L. Then
at each m in M, (g o )x = gx o fy, for if h is a C* function about
&(f(m)) and X in M_ then ((§ o N+X)h = X(h o g o f) = (£X)(h o g) =
(&x(fxX))h. In terms of coordinate systems, the above computation ex-

hibits the chain rule and a multiplicative behavior of Jacobian matrices.

When f is a diffeomorphism of M into N, and X and ¥ are C*™ fields on
M, then f«X and f4+¥ are C* fields on N with X, Y] = [feX, 4],

Section 1.5 Curves and integral curves

In these notes curves will be viewed as a special case of mappings,
thus we will deal with “parameterized curves” almost exclusively. A
curve in M is a C* map o from an open subset of R into M. Often we
speak of a curve o from [a, b] into M where [a, b] is a closed interval
of real numbers, and in this case it is assumed the domain of o is
actually an open set in R containing [a, &].

Let o be a curve in M with domain U. For each ¢ in U define the
tangent of o at t to be the vector T(¢), or Tg(t), at o(t) where T(f) =
0x(d/dt), and d/dt denotes the usual differentiation operator of real
valued C* functions on R, Thus if Xy, X, a coordinate system about
o(t), then T(¢) = Zi(d(xi o o)/dt)t(a/(?xi)o(t). By differentiating the co-
ordinate paramet er functions x ; o o(t) one determines the coefficients
of T(¢) with respect to the coordinate vectors associated with the co-
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Fig. 1.3 A Curve

ordinate system. Notice this T(¢) is the usual “velocity” vector
associated with a parameterized cutve in R3,

‘Having the idea of cutve and tangent vector we can give a geo-
metric description of the Jacobian fy associated with the map f: M - N.
For X in Mm choose any curve o on M with o(0) = m and T (0)=X.
Then f o o is a curve on N with f o a{0) = f(m) and indeed f4X =
T fw(O). Thus we “fill in the vector by a curve, map the curve to N,
and take the new tangent vector. ” This device is very usefu! if one
knows geometrically the behavior of certain curves; e.g., let ¥ =
[(x, y, 2) in R%: x%+ y?=1], let S be the unit sphere in R3, and let
f: M >Sby f(x, y, 2) = (x, y, 0). The particular f just defined is
called the “sphere map” or the “Gauss map” from M to S, since it
essentially uses a unit normal vector field to M in its definition. Its
Jacobian should be trivial to compute at each point from the above
remarks.

We carry the idea of “filling in a vector” to a classical setting.
Let X be a C™ vector field on the manifold M. A curve ¢ is an in-
tegral curve of X if whenever o(t) is in the domain of X then T o) =
ch(:)* Thus we say the curve o “fits” X, and suggest the physical
example of the velocity vector field (which gives X) of a steady fluid
flow and its streamlines (which give integral curves). The local ex-
istence of integral curves is guaranteed by the theory of ordinary
differential equations.
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Fig. 1.4 An Integral Curve of a Vector Field

THEOREM. Let X be a C* vector field on M and let m be a point
in the domain of X. Then for any real number b there exists a real
number r > 0 and a unique curve o: (b — t, b +r) > M such that o(b)=m
and o an integral curve of X.

Proof. Let XpporyX be a coordinate system about m whose domain
U is contained in the domain of X, Let X = zifi(a/ax,) define C* real
valued functions fi on U, Then the condition that a curve o be an in-
tegral curve of X becomes the condition

d(x; o o)
dt

:f.OU
H

on the domain of o, or writing (improperly) as usual x(t) = x, o o(t), we
have the system of first order ordinary differential equations

dx;
= f,-(xp--'.vxn);

dt

fori=1,...,n. Apply an existence and uniqueness theorem from differ.
ential equation theory to obtain r > 0 and functions x,(¢) that define o
on the specified range with the required properties. /

Actually the theorem from differential equations gives much more
than the above conclusion for it includes the C* dependence of solu-
tions as we vary the initial parameter b and the point m (see section

9.3). We return to this later when discussing the existence of geodesics

and the exponential map (sections 5.1 and 9.3). For global ramificg.
tions see Palais? or Lang.
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It is convenient to define a broken C™ curve ¢ on an interval
[a, b] to be a continuous map o from [a, b] into M which is C* on
each of a finite number of subintervals [a, 5] [b,. b,)...,lb,_,, Bl

Section 1,6 Submanifolds

A C* k-manifold M is a submanifold of a C*® n-manifold M if for
every point p in M there is a coordinate neighborhood U of ¥ with co-
ordinate functions El,...,fn such that the set U = [m in U: X 4 q(m) =
o= X ,(m) = 0] is a coordinate neighborhood of p in M with coordinate
functions x = §1|U,...,xk = ;k!U' These coordinate systems are
called special or adapted coordinate systems.

Notice it is not required that ¥ NU = U so “slices” of ¥ may ape
proach other “slices” of M in M (see problem 17), and hence the
topology on M may not be the relative topology. The definition of
submanifold implies M is a subset of ¥ and k <n. Lettingi: M>M
be the inclusion map, then i is C* since ;?’ o i are C* maps for all

- special coordinate functions. The inclusion map is also an imbedding

(see below) since the Jacobian ix is non-singular, i.e., i*(a/c?xj(p) =
a/a:?,.(p) for j = 1,...,k. In these notes we will identify a tangent vec-
tor X in Mp with its image in M_ unless there is a possibility of con-
fusion (just as we identify p and i(p)).

To make some mote standard definitions, let M and M be C* mani-
folds and let f be a C® map of M into . If fx is non-singular (thus
fx has no kernel) at each point p of M, then f is called an immersion
of M into M. If in addition, f is univalent, then f is called an imbed-
ding of M into M. A subset M’ of ¥ is called an immersed submanifold
if there exists a manifold M and an immersion f: M > M such that
(M) = M'. (Thus an immersion is a “local imbedding with self-inter-
sections.”) One can verify (problem 17) that if f: M > ¥ is an imbed-
ding and M' = f(M), then by defining a differentiable structure on M'
so f becomes a diffeomorphism, M' becomes a submanifold of M (see
Helgason, p. 23).

For examples of submanifolds see the examples 5, 6, and 7 at the
end of section 1.1,

It is convenient to define a base field on a set 4 contained in an
n-manifold to be a set of n vector fields that are independent at each
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point of A, When each field in a base field is C™, then the base field
is C™. Since a set of coordinate fields is a C® base field on the co-
ordinate domain, we know C™ base fields always exist locally. A
C* base field does not necessarily exist over a whole manifold (con-
sider the 2-sphere, S? ) indeed, the manifold is called parallel:zable
if it admits a global C* base field.

We now define a concept which we will often use. Let M be a sub
manifold of ¥ as described above. An M-vector field Z that is C® o
M (or C* on an open set 4 in M) is a map that assigns to each p in M
(or p in 4) a vector Z in M such that if Xv""Xn is any C* base
field on a nexghborhood U of p and Z = 27a,(m)(X D formin M N U
then the real valued functions a, are C°° onMNU for all i. Notice Z
is not necessarlly tangent to M. Since the restriction to M, of a C*
function on M, is a C™ function on M, it follows if Z is C™ on M then
Z|,, is an M-vector field that is C* on M.

Problems (For problems 1 thru 9 see pages 4 and 5)

10. Let W,,. ¥, be a C* base field on an open set U in a mani-
fold M and let X =22 £W, be a vector field on U. Show X

is C* on U iff the functmns f are ConUforalli. Y and Z

are C* fields on U show [¥, Z] is C*. Show: that a coordinate
field 8/8X is C* on its domain. If X‘p is a given vector at p
in M show there isa C* field X on a neighborhood of p with

X = X I XjreesX, IS @ coordinate system with domain U
and A= Ea (8/81: )and B = 35 (a/ax ) are C* fields on U

then find the representatlon of [A Bl in terms of the coordinate

vector fields. Show [fX, g¥] = AXg)Y — g(YH)X + fslx, ¥]
where X and ¥ are C™ fields on U and f and g are in C=(U, R),
Prove the Jacoby identity,

11. Let A, B and C be in C>(R3, R) with B £ 0 anywhere. Let
V=Ai+Bj+Ck X= ~Bi+ Aj, and Y = -Cj + Bk (advanced
calculus notation). For p in R3, let P, =[Z in R® .

Z+V =0]. Show P is a two-dlmensmnal space of %ectors at
each point by showmg Xp and ¥ _are a base for P, Show
[x, Y] lies in P iff V «(curl V)p = 0. If there 12 a function

fin C""(R3 R) with grad f £ 0 such that P is the tangent plane
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to the constant surface of f thru p show V (curl V)p =
(see section 9.1),

Instead of seeking surfaces that are orthogonal to V (as
above), one could seek surfaces whose tangent plane contains
V and then one has a “geometric quasi-linear partial differential
equation of the first order.” Integral curves of V are called
characteristics of the “equation.” One generates solution sur-
faces by taking a non-characteristic curve (an “initial value”
curve) and considering the surface formed by characteristics
thru the initial value curve. Show two solution surfaces must
intersect along a characteristic. Show there are an infinite
number of solution surfaces thru one characteristic. Can there
there be an initial value curve with no solution thru it?

Let f: R?2-> R? by f(a, b) = (a? - 2b, 4a3b?) and let g: R2 >

R3 by gly, v) = (u?v + v2, u - 2v3, ve¥). Compute a matrix

for fs at (1, 2) and g# at any (u, v). Find gx(49/9x — 8/8}1)(0.1).
Find integral curves for the vector field X = yi + yj + 2k on

R3. Find a coordinate system x,, x,, x, on R® such that

9/0x, = 2i + 3j - k at all points.

Let X and ¥ be C* fields about m in M. For small ¢t > 0

define the curve o(t) as follows: go ¢ parameter units on X
integral curve thru m to p ,» 80 t units on Y curve thru p, to
P,, go t units on ( — X) curve thru p, to p,, go t units on (- ¥)
curve thru p, to o(t). If y(t) = o(y/t) show T (0) = [X, Y]

(Hint: use the lemma in section 9.1 and part1a1 Taylor series.)

Let M and N be manifolds with M connected and let f and g be
C™ maps of M into N, Show f, = 0 iff f is a constant map. If
f(m) = g(m) at one m in M and f, = g, at all points show f = 4.

Let f be in C*(M, R) and define the differential of f, df, to be
the linear map of M, into R where (di)m(Xm) = X_f Show
f(X ) = [(df)_(X))(8/9¢t) where t is the identity coordinate
function on R. It is because of this case that in a general
case the Jacobian f, is often called the “differential of f”.

Prove the Inverse Function Theorem (p. 10). State and prove
a version of the Implicit Function Theorem of advanced calcu-
lus in terms of the Jacobian map.
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17. Prove the last sentence in the third paragraph of section 1.6.
Show that the image of a regular (04 # 0) univalent curve ¢
mapping an open interval into a manifold M is a one-dimensional
submanifold of M. Let X be a unit constant vector field on
R? with irrational slope. Let T be the set of equivalence
classes on R? where (a, ) ~ (c. d) iff a — c - g and (b~d)=m
for integers m and n. Show T is a two-dimensional manifold
(which is called the flat torus) in a natural way. Show X in -
duces a vector field on T such that the image of one integral
curve of X defines a one-dimensional submanifold of T that
is dense in T,

18. Let M, and M, be C* manifolds. Let s My x My s M, by
m,(my, m,) = m, for i = 1, 2. Define a C™ structure on M, x
M, so n, are C*. Show M, x Mz)(m1
phic to (Ml)m1 X (Mz)mz‘

19. Let M be a C* n-manifold. Let M) = [(m, X): X in M_1,
and let 7: T(M) > M by n(m, X) = m. If (¢, U) is a coordinate
pair on ¥ with x, - u, 0 let U=na"YU), X, =x, o, and for
(m, X)in U _let x,(m, X) = a, if X = 3a,(3/dx,). Let ¢: U~
R2n g9 U o= i‘ifnq_unH ogh = :'ci for i =1,...,n. Show the’
subatlas of pairs (¢, U) defines a C>® structure on T(M) which
is called the tangent bundle of M. If fis a C™ map of M into
N show f, induces a C*™ map of T(M) into T(N).

is naturally isomor-
m,)

20. Let G be a Lie group, If gin G let L, R,, and A denote the
maps of G into G defined by Lg(b) = gh, Rg(h) = hg, and
Ag(b) = ghg™'. Show L, R,, and A, are C™. A vector field
X on G is left invariant if (Lg),,Xg = Xgh for all ¢ and A. Show
a left invariant field is C* and is completely determined by
its value at the identity e. If X and ¥ are left invariant, show
[X, Y] is left invariant. The set of left invariant vector fields
on G forms an n dimensional vector space called the Lie alge-
bra of G which is denoted by g. Define a one-parameter sub-
group of G to be the image of a C*™ homormorphism of R into
G. Show there is a 1:1 correspondence between one-parameter
subgroups and integral curves of left invariant vector fields
thru e. Show the map (g, &) — gh~!is C* from Gx G into G
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iff the maps (g, A) — gh and g — g~ ! are C*,

Let G = GL(n, R) and for a matrix g in G let u, (g) = g;; (see
example 3). Call u,, the natural coordinate functions on G.
Write u,. - L gasa linear combination of the natural coordinate
functions. Let X_. be the unique left invariant field on G‘with
X, (e) = (3/3u,,)e) where e is the identity element. Compute
X, as afield on G in terms of the coordinate vector fields.
Compute [X, , X, 1. If A(f) is a C curve in G with A(0) - e
and A(f) orthogonal for all ¢t show dA/dt = (da,.j/dt) is a skew=

symmetric matrix for ¢ = 0.

Let M be a C™ n-manifold. Let B(M) = [(m; €1seees€,): min M
and e,...,e_ an ordered based of M, ]. Let m: B(M)— M by
am; €,uie,) = m. If (¢, U) a coordinate pair on M with x,

=u, . ¢, let (&, (—J)zbe a coordinate pair on B(M) with U = z~}(U)
and ¢: U — R7*a” by the coordinate functions X 1reensX

X 1s XygpeeesX,, Where X = x, + wand if b = (m; €1s130s€,,) then
e, = Z7.,x,,(bXd/dx,). Show the subatlas of pairs (¢, U)
defines a C* structure on B(M) which is called the bundle of
bases over M. For g in GL{(n, R) let R, B(M) — B(M) by

R (b) = bg = (m; 37, g, e, 28,6000 2,8, 0,) if b= (m; €1senee, ).
Show Rg is C*=. Let syt U — B(M) by sy(m) = (m; (a/axl)m
sees(9/0x ) ) for m in U, Show sy is C®and 7 - s is the
identity on U. The map s, is called the coordinate section

map over U. Let ¢: U x GL(n, R) — U by $(m, g) = R, .

.iU(m) = sy(m)g. Show ¢ is a diffeo onto its image. T}.le map

¢ is called a strip map. If (¢, U) and (i, V) are coordinate
pairs on M define s, ,: UNV — GL(a, R) by s, ,.(m) = ¢ if

s, (m)g = s, (m). Show Syyp is C° it is called a structural
function for B{M). Show (bg,)g, = b(g,£,) which justifies the
name right action for Rg. For fixed b in B(M) let {,: GL(n, R) -
B(M) by f,(g) = bg. Show f, is C*. Call the set F_ = 7~ !(m)
the (vertical) fiber over m in M. Show F m iS an n? — submani-
fold of B(M) and f, is a diffo of GL(n, R) onto F.n(b). If #(b) =
m(c), show f:l of, is a left translation on GL(n, R). A vector
X on B(M) such that 7,{X) = 0 is called a vertical vector. For

b in B(M), let E (b) = (ib),,)(ij(e) define a vector Ei].(b) (see
problem 21). Show E'.j is a global C* vertical vector field on

B(M). Compute [E”, E, 1
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2. Hypersurfaces of R»

In a very real sense, this chapter and the next are too special, i.e.,,
much of the theory belongs to an arbitrary submanifold of a “semi-
Riemannian” manifold. We specialize because we can obtain many
of the concepts and results of classical differential geometry quickly
and easily. In so doing, we hope to develop the “geometric” intui-
tion of the reader sufficiently to make later generalizations and defini-
tions seem natural. '

Section 2.1 The standard connexion on R™,

Recall in section 1.3 we shifted the classical notion of a vector
from a “ directed line segment” to an operator on functions, i.e., if
X=af+ b + ckis a familiar vector on R3 from advanced calculus,
then we rewrite X = a(9/dx) + B(3/3y) + (9/9z) so if f is a real
valued C* function on R3, then Xf is a derivative of f in the direction

X,

‘ o  of  of
Xf=X.Vif=2a% - _—
\v a&x+b‘6y+caz

Notice that X need not be a unit vector. When a, b, and ¢ are C™
functions on R3 themselves (possibly constant functions), then X is
a C* field and Xf is a C™ real valued function on R3,

KP) = X1 = o) % (o) + 1(p) Lo+ ep) & )

Since both of the representations of a vector field X given above are
awkward to write, let us simply write X = (g, b, c), thus giving X by
giving the coefficient functions (or constants) a, b, and c of the global
base field d/dx, d/dy, 3/9z on R3. .

We now define the derivative of a vector field ¥ in a direction X.
Let X be a vector at p in R and let ¥ - (¥ 1seees¥,) be a C* field about
p, thus each Y; is a C* real valued function on the domain of ¥ which
includes p. The covariant derivative of ¥ in the direction X is the
vector l—)x Y= (Xpyl,...,Xpyn) as a vectorat p, If X and ¥ are C™°
fields with the same domain 4, then DXY is a C* field with domain A, ,
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For example take R3, let X = (g, b, c), let ¥ = (xy2 + 4z, y2 — x,
x + z3). and then

D,y =[X- (2 2xy, 4), X . (-1, 2y, 0), X. (1, 0, 3z2)]
=(ay? + 2xyb + 4¢c, — a + 2yb, a + 3z%c),

where a, b, and c may be functions or constants.

The properties of D which we now list are one of the main analytic
tools of these notes. Let X and W be vectors at p in R™?, let ¥ anc?
Z be C™ fields about p, and let f be a C* real valued function about
p. Then

() Dy(¥+2)=D,¥+D,z

@ D, ¥)=D,¥+D,Y

3 D, ,,x¥ = fp)D Y

@ D) = (XNY, + {p)D V.

These follow directly from the definition of D. It is important to
notice D xY can be computed once one knows ¥ along a curve o that

fits X, i.e., if o(0) = p and T (0) = T(0) = X . For let Yc(t)s.(yl(t),
07, (8)) and then D ¥ =(ZL(0),..., 272 (0)) since by the chain rule,

dt
D= 5 D) M 0)-x, . Wy, and T(O) - X . Thus if ¥
=1 auj dt

dt
is an R™ — vector field that is C* on the curve ¢ with tangent 7, then
DY is a well-defined RP-vector field that is C* on o.

Using the operator D, we can define parallel vector fields along a
curve and geodesics, Let o be a C*® curve (in R") with tangent T and
let ¥ be an R"-vector field that is C* on o. The field ¥ is parallel
along o if ETY = 0 along 0. The curve o is a geodesic if D, T=0,
i.e. if its tangent T is parallel along o.

It is trivial to see these are the usual concepts of parallel fields and
geodesics in R?; for let o(t) = (al(t),...,an(t)) and Yc(l)= 1 (Oeen,y (D).
Then ETY = (dy, /dt,e..,dy_/dt) = 0 iff each y () is a constant func-
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tion of ¢, so ¥ is a “constant” vector field of R™ evaluated on ag. The
curve o is a geodesic iff D,.T- (d2a1/dtz,...,d2a /dt?) = 0, and this
. . n ’
implies a(t) = C;t +d,; are linear functions of t so ¢ is a linear parame-
terization of a straight line.

Notice that the parameterization of a curve is important in the defi-
nition of a geodesic.

The generalization of the definition of covariant differentiation or
a connexion on any C* manifold ¥ is clear, i.e. we merely demand
the existencs of an operator D which satisfies the above four properties
(listed for D) and assigns to C* vector fields X and ¥ with the do-
main A,. a C™ field D,¥ on A. Notice there can be more than one
connexion on a manifold. In the case of “semi-Riemannian” manifolds
however there exists one connexion which fits the “semi-Riemannian”
structure nicely, and in the case of R7, Dis this nice connexion In
fact, we now explain how D is “nice.”

Henceforth, denote the usual dot product or inner product of vectors
Y and Z tangent to R» by <¥, Z>. Thus if ¥ - (¥ 1seeery ) and Z

R yeeey n =

Zl,‘...,zn), then <y, Z>. 0 172+ Y and Z are C™ fields with do-
main A, then <¥, Z> is a C™ function with domain A, One checks
easily that.

®  DyZ-D,¥-1[¥, Z)on 4, and
©® X, <v,z>_<p_y, Z> 4 <y, BXz>p

for any vector X at p in A.

Wf—:- now generalize and fix some terminology. A Riemannian mani-
[?Id is a C* manifold M on which one has singled out a C* real valued,
bilinear, Symmetric, and positive definite function <, > o ordered
Paits of tangent vectors at each point. Thus if X, Yand Z are in M
then X, Y is a real number and <, > satisfies the following propertie};,:‘

(@) (symmetric) X, Y> = <x, x>,

(b) (bilinear) <X + Y, 2> - X, Z>, <Y, Z>
<aX, Y> = a<X, Y> for a in R,

(c) (positive definite)<X, X> > 0 for all X £0
(d) (€™ if X and ¥ are C™ fields with domain 4 then
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<X, Y> - <Xp, Y > is a C* function on 4.

When (c) is replaced by
(c') (non-singular) <X, ¥> = 0 for all X implies ¥ = 0,

then M is a semi-Riemannian (or pseudo-Riemannian) manifold. In
either case, the functional <, > is called the inner product, the metric
tensor, the Riemannian metric, or the infinitesimal metric of M. Notice
the word “metric” in the preceding sentence is not referring to a metric
function (distance function) in the topologicalsense. In Chapter 6, the
connexion of the concepts is clarified. It is also customary to require
a semi-Riemannian manifold to be Hausdorff; however, as far as the
local differential geometry is concerned, this is irrelevant so the
restriction is not enforced at this time.

If D is a C™ connexion in a semi-Riemannian manifold M, then D
is a Riemannian connexion if it satisfies the above properties (5)
and (6). In Chapter 6, the existence of Riemannian manifolds is dis-
cussed and the fundamental theorem asserting the existence and
uniqueness of a Riemannian connexion is proved. In section 2.3 one
sees that many hypersurfaces in R™(n > 3) provide examples of
Riemannian manifolds with a Riemannian connexion.

Section 2.2 The sphere map and the Weingarten map.

An (n — 1)-submanifold of an n-manifold is called a hypersurface.
Throughout this section let M be a hypersurface of R?, let D be the
natural connexion on R7, and assume N is a unit normal vector field
that is C* on M. Thus <1Vp, Np> =1 and <1Vp, X> =0forall pin
M and X in M. Such an N always exists locally.

For any p in M and any vector X in Mp, define the linear map

L: Mp — Mp by
7y L(X)=D,N.

The vector L(X) lies in Mp, since 0 = X<N, N> = 2<L(X), N> by
property (6) for D, The map L is linear by properties (2) and (3).
The map L is called the Weingarten map, and in the case of R™ it
has a geometric interpretation as the Jacobian of the sphere map
(Gauss map) which we now explain.
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‘l‘ ! Let N = (al,...,an), so the a, are real valued C* functions on ¥

] and X(a)?2 = 1. Then the map n: M — 8771 defined by 7(p) = (al(p),

‘f ...,an('p)) in R%, is a C*™ map of M into the unit (n ~1)-sphere S7~1
and 7 is called the sphere map (ot Gauss map). ¥ X in M and olt)

is a curve fitting X (so o(0) = pand T_(0) = X), then no ol()t) =(a, 0

f cr(t),...,azn o o(¢)) and

d( Q O) (o]
B0 = T = (R0, daa20) )

= Xay,..,Xa ) = D N = L(X).

The map L is C*® on M in the sense that if X is C* on the subset

A of M then L(X) = (Xal,...,Xan) is also C* on 4 since each a is
C™on M, '

L(X)

' N

Fig, 2.1 The Weingarten Map (derivative of normal)

Our next objective is to show L is self-adjoint or symmetric; i.e.,
if X, ¥ are in Mp then <L(X), ¥> = <y, L{Y)>,

To do this, let Z be a C® field defined on a special coordinate
neighborhood U of p and let I be the associated coordinate neighbor-
hood of p in R™ with coordinate functions ¥ Then Z = 3n~1
gi(8/8xi), where 8, are C™ real valued functions on U. We want tlol.1
extend Z to a C* field Z on [7, i.e., we want Z so that Z -7 for p
in U. Let us assume the coordinate map ¢ maps U onto g ball, B,
about the origin in R", i.e., p)=0= u, -¢—>(p) for all i. Then if

» (tl,...,tn) is in B, let 7: (¢

preenX .

peeest ) — (tv""tn--v 0). This map #
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(which is C*) induces a C®mapo: U—Uby o=~ .n. (?5-._Let-_
ting Z = E';“(g,. a 0)(8/(9}?,.), the field Z is a C* extension of Z to U.
Actually the above process allows us to extend an R"-field Z

" that is C® on U to a C*™ field Z on U.

Having the existence of such extensions we prove a proposition.

PROPOSITION. Let U and U be special neighborhoods of p as
above and let Z and Z be C™ fields on U and U, respectively. Then

+ Z is an extension of Z (i.e., Zp = i*(Zp) for p in U)iff (Zf)\v = Z(f],)

for all fin C*(U, R). If X and ¥ are C* extensions to U of C*™ fields
X and ¥ on U, then [X, Y] is a C*™ extension of [X, ¥]. g

Proof, If Zp = 14(Z ) for p in U, where i: M — R" is the inclusion,
then for f in C¥WU, R), (ZfXp) = Z f = (ix(Z,))f = Z (o 1) = Z({] ,)(p).
Conversely, if the two extreme terms are equal, then the second
equality follows.

For the rest of the proposition, consider for pinU

X, P11 =X, (¢~ ¥ (XD) = X _(FD)],) - ¥ (XD,
= X, (V(f] ) - ¥, (X(f],) = X, Y1ty

thus [X, ¥]is an extension of ix, Yl.//
THEOREM. The Weingarten map is self-adjoint.

Proof. Take X and ¥ in Mp, imbed X and ¥ in C* fields on a
special neighborhood U of p, and extend X and ¥ to C* fields X and

Y on U as above. Then

<LX, ¥> ~ <X, LY> = <D N, ¥> - <X, BYN>

ol

- ~ <X, D..
X’>p P EFYp

&
=

f
<l

o < Y> - <, D? Y>,, - Yp <N, X> + <N, D;,-X>p

~-<D;X-D_Y, N>,

= <[Y, X], N>p = <[Y, X]p’ Np> = 0,
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since ip <N, V> = X <N, ¥>-0- Y <N, X>.//

The fundamental forms on M can now be defined in terms of L and
the inner product. If X and ¥ are in M _, then I(X, ¥) = <X, V>,

X, ¥) = <L(Xx), Y>, (X, ¥) = <LXX), >, 1viX, )= <L3X), V>,
etc., and these forms are called the first, second, third, etc. funda-
mental forms on M, Notice M is a Riemannian manifold with metric
tensor defined by the first fundamental form. Since the inner product
is symmetric and L is self-adjoint, the fundamental forms are all
Symmetric bilinear functions on Mp x Mp for all p in M. These forms
are C* in the sense that if X and ¥ are C* fields with domain 4,
then <L ¥(X), v - <L“(Xp), ¥ ,> is a C* real valued function on A,
The first three forms have a direct interpretation geometrically since
L represents the Jacobian of the sphere map .

The algebraic invariants of the linear map L at each point now de-
fine the imbedded geometric invariants of the submanifold M at each
point. Thus the determinant of L at p is the total curvature (Gauss
curvature) K(p) of i at D, the trace of L at p is the mean curvature
H(p), etc. The eigenvalues of L are the principal curvatures and the

of curvature, If [, is a multiple of the identity map on Mp, then p is
an umbilic point of M, If L = 0 at p we call p a flat point of M, Non-
zero vectors X and Y in Mp are conjugate if <LX, ¥> = 0. A vector
X(not zero) is asymptotic if it is self-conjugate, i.e., if <LX, X>=0,
A curve in M is a line of curvature if its tangent is a principal vector
at each of its points.

The following facts come immediately from these definitions. An
asymptotic direction X is a direction of curvature iff LX =0 iff X is
conjugate to all vectors, Conjugate directions always exist since if
LX # 0 then there exists a ¥ which is orthogonal to LX. If the second

fundamental form <LX, Y> is positive or negative definite no asymptotic

directions exist. If X and Y are two directions of curvature belong-
ing to unequal eigenvalues, then X is orthogonal to ¥. The proof of
this is standard algebra, i.e.,

0=<Lx, > <x, LY>=<k1X, > <, k,Y> = (k, ~ k<X, V>,
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so k, £k, implies <X, ¥> =0, If X and ¥ are non-zero independent

vectors with LX = kX and LY = — kY, then the vectors X + ¥ and

X — Y are orthogonal asymptotic directions spanning the same sub-

space as X and Y. Finally one notices that L must satisfy its char-
acteristic polynomial, which will also give a relation between the
fundamental forms, i.e., if n = 3, then L? - HL + K(identity) = 0 and
Hnr-HII + KI =0, ~

When X is a principal vector, the Weingarten map says D,N = kX,
where k is a principal curvature, and this equality is classically
called the formula of Rodrigues. .

Another classical concept is the Dupin indicatrix at each p in M
which is the subset of Mp consisting of all vectors X such that
<L(X), X> =+ 1. -

Let n = 3 and let X and ¥ be unit orthogonal principal vectors in

M, with LX = kX and LY = hY. If Z = aX + bY, then <LZ, Z> = ka® +
blfz’. Thus. the indicatrix is the curve (or curves) in Mp such that-
ka® + hb% = + 1, Consider the three cases:

(1) I K(p)> 0, then A and k have the same sign (for K= hk =
7 det L) so suppose they are positive. The indicatrix is then
an ellipse determined by ka2 + hb2 = 1, and p is an elliptic
point.

(2) If K(p) <0, then h and k have opposite signs, the indicatrix
is two hyperbolas, and p is a hyperbolic point,

(3) IfK(p)=0,say k=0, h>0, then b = + 1/VE gives two
straight lines parallel to the X vector, and p is a parbolic
point. (When k = h =0, p is an umbilic and a tlat point.)

There is a geometric interpretation of the indicatrix as an approxi-
mation to the intersection of the surface with a plane which is parallel
and close to the tangent plane; for details see Struik (p. 84).

Section 2,3 The Gauss equation.

As in the last section, let M be a hypersurface of R?, let D be the
natural connexion on R?”, let ¥ be a unit normal field t_hat is C* on
M, and let L(X) = EXN for X tangent to M. Let U and U be special
coordinate neighborhoods of a point p in M and R™ respectively, and
let Z be a C*™ extension to U of a C*™ field Z on U as usual.
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If Y is a C™ field about p in M, and X in M_, define Dy Y by
(8)  D,Y =D,¥-<LX, Y>N.
This is the Gauss equation. First notice DY is in Mp for
Dy¥, N>=<D,Y, N>+ <D N, ¥>= X<¥, N> = 0.

since <¥, ¥> = 0 in a neighborhood of p. Next notice if X, Y are C®
on U, then D <Y =Dz Y| and <LX, ¥>N are both C*on U, so D,y
is C® on U; because of thlS we say D is C*,

Thus D becomes a candidate to define a covariant differentiation
or a connexion on the submanifold ¥ which is defined very simply
from the natural connexion on R” by decomposing D %Y into its uniquy
tangent and normal components relative to the tangent space of M,
One must now check if the properties (1), (2), (3), and (4) are satisfin
for D, and indeed they are, since they are satisfied for D and the sec-
ond fundamental form is bilinear. The properties (5) and (6) are also
valid for D, so D is the natural Riemannian connection associated
with the induced metric (first fundamental form) on M (see Chapter 6).

The proof of the first four properties is left to the reader, but we nows

show (5) and (6). Let Y and Z be fields on a neighborhood U about
p, let ¥ and Z be extensions to U, and let X be in Mp. Then

{D,Z2-D,Y),=(DyZ-D,¥), ={D;Z - D5¥)

-,z -1y, z],

and
X<Y, 2>=XXY,2Z2>=<D,Y, 2>+ <V, D.z>

= <DyY, Z >+ <Y, D, Z>.

Thus the natural metric tensor and connexion on R™ induce a
Riemannian metric and Riemannian connexion on the hypersurface
M.
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Decomposition of D xY

Fig. 2.2

Since the Gauss equation induces a connexion D on M, one can
define parallel vector fields along a curve and geodesics exactly as
in section 2.1, If o is a C* curve in M with tangent T and Y. is a
C* field along o, then ¥ is parallel along o if D, Y =0 along 6. The
curve o is a geodesic if D ,.T = 0 along o.

Application of the Gauss equation to the tangent field along a curve

gives two results immediately.

THEOREM. Let M be a hypersurface in R*. A curve in M is a
geodesic in R iff it is an asymptotic geodesic in M., _A curve in M,
which is not a geodesic in R%, is a geodesic in M iff DTT is normal
to M along the curve (whose tangent is T),

Proof, Let g be a cutve in M with tangent T. The Gauss equation
implies D ¢ T =D,T -<LT, T>N. Thus D T =0iff D,.,T = 0 and
<LT, T>= 0 And D, T=0iff D T is normal to M.//

Corollary, If M, and M, are two hypersurfaces of R” and £ is a
geodesic on both hypersurfaces that is not a geodesic in R", on any
parameter interval, then M, and M, are tangent along g (i.e., their
tangent spaces coincide along g).

Proof, Let T be the tangent to g. Since D T # 0 on any parameter
interval, the normals to M, and M, determine the same subspace on a
dense set of the parameter domain. Hence M , and M, are tangent

along g.//
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Section 2.4. The Gauss curvature and Codazzi-Mainardi equations.

Let M, N, L, D and D be as in the previous two sections. Our
current goal is the “theorema egregium” of Gauss. This will show the
“curvature” is independent of the imbedding, and motivate the defini-
tion of Riemannien curvature and curvature of general connection.

Let X, ¥, and Z be C*™ fields on an open set A in M. Notice that

Dy(D,2)-Dy(Dy2) - D, ,1Z

= (XYzl,...,Xan) - (XYZI,.-.,YXZH) - ([x, Ylz,...,[x, Ylz )=0

where Z - (zl,...,zn) and z, are C* real valued functions on A. This
fact will later verify that the “curvature of R” is zero.” By applying
the Gauss equation and decomposing the above expression into tan-

gent and normal parts, one obtains the Gauss curvature (9) and Codazzi-

Mainardi (10) equations, respectively.
Thus,

0=Dy(DyZ ~ <LY, Z>N) - D (D, Z — <LX, Z>N) - Dlx,v1Z
=DxDyZ — <LX, D, Z>N — X(<LY, Z>N ~ <LY, Z>L(X)
~DyDyZ + <LY, Dy Z>N + Y(SLX, Z>WV + <LX, Z>L(¥Y)
=Dy 12 + <LUX, YD), Z > N,
Equating tangent and normal parts to zero gives
®) D xDyZ -D,DyZ - Dpy \Z = <LY, Z>L(X) - <LX, Z>L(¥)
and
DyLY) - D LX) - L(X, ¥]), Z> =0
for all Z, so

(10) D, L(Y)-D,L() - L(X, Y]y - 0.
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Define R(X, ¥)Z - b,p,z-D,D,.Z - Dx, y}Z. and notice (9)
implies R(X, ¥)Z does not depend on the field nature of X, Y, and Z.
Thus R(X, Y)Z is a vector at p in A which depends only on Xp, Yp
and Zp since these vectors are all that is needed to compute the left
side of (9). Thus R(X e Yp) define a linear transformation on Mp
called the curvature of X p and Y . The justification of this defini-
tion is the following theorem, Gauss’ “theorema egregium.”

THEOREM. Letn =3 and let X and ¥ be an orthonormal base of
Mp- Then the total curvature K(p) = det L =<R(X, Y)Y, X>

Proof. Using the Gauss curvature equation (9),
<RX, Y)Y, X> = <L¥, Y><LX, X> — <LX, Y><LY, X> = det L = K(p).//

The above theorem is significant because the term <R(X, Y)Y, X>
depends only on the metric <, > and the connexion D, and it is com-
pletely independent of the normal N or the map L . Thus the total
curvature K(p) = <R(X, Y)Y, X> is an “intrinsic” invariant that is in-
dependent of the “imbedding” (i.e., of ¥ and L). The theorem is
generalized in Chapter 6.

Section 2.5, Examples.
See Figure 2.3 for sketches of (1), (2), and 3.

1. Let M be an (n —1) dimensional hyperplane in R”, i.e., let
N={(a 17++-»2, ) determine a constant unit normal field on M.
Then L(X) =D, N - (Xal,...,Xan) = 0 for alt X at all points of
M, i.e., L =0on all of ¥. Thus M consists entirely of flat
(umbilic) points, the total curvature K and mean curvature H
(and all others) are identically zero. All the fundamental forms,
except the first, are completely singular. Every victor is
asymptotic and a direction of curvature, and all principal curva-
tures are zero.

2. Let M be S, the unit sphere about the origin in R?, and let ¥
be the outer normal on §, i.e., if p= (al,...,an) then N(p) = ia,,
«esa,). Thus the sphere map 7 is the identity map, 7, is also
the identity map, and hence L(X) = X for all X Thus K = 1,
H=(m—-1)onS. All the fundamental forms are equal to the



Notes on Differential Geometry

first fundamental form, all points are umbilic, and all principal
curvatures are unity. Every vector is a direction of curvature
and there are no asymptotic directions.

Let M be the cylinder C = [(,...,¢,) in R Z7~(¢)? - 1] with
N = the “outer” normal. For X = e, =0, 0,...,0, 1) we have
LX =0, and for X orthogonal to e, and tangent to C we have
LX =X, Hence K =0, H = (n ~ 2), all principal curvatures are
unity except one which is zero, etc.

—————

Fig, 2.3

Pieces of Examples (1), (2), (3)

4. Next let M be an open piece of a surface of revolution about the

z = e, axis in R® (vaguely: M is obtained by revolving a C®
plane curve about an axis in the plane). Let P be a plane con-
taining the z axis and take m in M N P (and let us consider a
point m not on the z axis at first).

Since the normal N lies in P, the vector BXIV = L(X) lies in
P and is tangent to M so L(X) = kX and X is a direction of curva-
ture, where X is the unit tangent to a meridian curve. From the
remarks preceding the examples there is a direction of curva-
ture orthogonal to X, so the unit vector ¥ tangent to the parallel]
curves is a direction of curvature. The vector field D <X is
zero or orthogonal to X and must lie in the plane P, hence
EXX =4 I?IN, so DyX = 0, and we see the meridians are geo-
desics. If the parallel curve through m is a geodesic, then
D ¢Y is normal to M and not zero, since these curves are not
geodesics in R3. But BYY is orthogonal to e;, the z direction,
hence a parallel curve is a geodesic on M iff the normal N along
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the parallel curve is horizontal (i.e., orthogonal to the z-axis).
If m is a point on the z-axis, then every direction X is tangent
to a meridian and hence is a direction of curvature, so m is

umbilic and K(m) > 0.

Let us apply the analysis of example 4 to a torus, i.e., let ¥
be obtained by rotating a circle C in the x, z-plane about the
z-axis where we assume the circle does not intersect the z-

axis, Then the meridians generated by C are geodesic, as is

The Torus

Fig. 2.4

the minimum length parallel 4 and maximum length parallel B.
Along B, M has positive curvature, along A the curvature is
negative, and the curvature is zero on the extreme top and bottom
curves E and F where N is constant. Indeed, if r, is the radius
of A and r, the radius of B, then a = (1/2)(r, — r,) is the radius
of C and
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These expressions can be derived as follows. Let X be the

unit tangent field to a circle of radius r about the origin in R2
(see Figure 2.4) so £¢t) = (r cos (t/1), r sin (¢/1)) parameterizes
the circle to fit X, Then evaluating a unit outer normal N on

Kt) gives N o Kt) = (cos (¢/ t), sin (t/r)). Hence, (d/ dt) N o £(8)) =
(1/1)X, or if the circle lies on a surface then we see D N =
L(X) = (1/1)X. Now apply this to the circles on the torus.

6. We discuss ruled surfaces and developable sutfaces briefly.
A ruled surface is a two-dimensional submanifold ¥ of R? such
that through each point p in M there passes a segment of a
straight line (the generator through p) which lies in M. When
the normal field is a parallel field in R3 along the generators,
(thus the tangent plane is constant along generators), then the
ruled surface is a developable surface. Notice we only consider
the C* case, although the above definitions can be generalized.

Let M be a ruled surface, and let X be a C® unit vector tangent to
the generator at each point of M. The generators are geodesics in
R3,s0oD xX =0, and hence, from the Gauss equation, D, X = 0 and
<LX, X> = 0 (so generators are asymptotic lines). Let ¥ be a unit
vector field orthogonal to X in the neighborhood of a point p, then
K = <LX, X><LY, ¥> - <LX, ¥>2 = _ <LX, Y>2 < 0 in this neighbor-
hood. Thus a ruled surface has non-positive curvature. For a defel-
opable surface, 0 = D xVN =LX so K=0. A theorem due to Massey
(see Chapter 3) states a closed connected surface is developable iff
K=0.

We study the neighborhood of a point p in a ruled surface M. Let
£(t) be the C* curve through p which is parameterized by arc-length
and is orthogonal to the generators at each point. Let T be the tan-
gent to f (say T = ¥ along f), and let f(0) = p. Then the map (¢, s) —
f(#) + sX(t) gives a coordinate system from a neighborhood of (0, 0)
in R? to a neighborhood of p in M.

Fig. 2.5 Ruled Surface

Chap. 2 Hypersurfaces of R

33

Let N be a local unit normal for this coordinate neighborhood. The
unit fields X, T, N give an orthonormal frame along f, and we next
obtain the Frenet formulas for this frame. On f we have

1=<X, X>=<T, T>= <N, N>so 0= T<X,X>=2<D_X, X>

implies D X normal to X, Similarly, BTN normal to N and D . T
normal to T. Thus we define functions a(f), &), c(f) by

D,T-aX+bN

D, X=-aT +cN
DN =~ bT — cX,

whete a = <D T, X> = T<T, X> ~ <T, D . X> = —<T, D X>, etc. Hold-
ing s constant, we get a curve f_(f) = £t) + sX(¢) on M with tangent

A= T+sl_)TX:(1 — as)T + scN

(note this T(¢f) and N(f) are vectors at f(f) which are rigidly translated
in R3 to f (1) to give A(£)). The tangent space along. a generator is
spanned by A and X (and A is orthogonal to X), hence this tangent
space is constant along a generator iff c= 0. The function o/{c? + a2)
is called the distribution parameter and it is independent of the parti-
cular orthogonal trajectory f (which we show later). Thus (a) M is
developable, (b) K =0, (c) c =0, (d) LX = 0, (note <LX, T> = <LT, X> =
—~c), and (e) D X is tangent to M, are all equivalent for ¥ closed and
connected (assuming Massey’s theorem).

Assuming M is closed (and ruled with c £ 0), on each generator
there exists a distinguished point called the central point, and these
points determine the curve of striction on the surface. Fixing two
generators, say for t, <t¢,, we compute the length J(s) of an orthog-
onal trajectory between these two generators by

ty
JGs) = T (<4, 4>yt
1 .



34 Notes on Differential Geometry

t
2
=f (1= 2as +a%s? + c2s2)%ds
t
1

Let us find the value of s which minimizes J(s), and we get J'(s) = 0
if

~2a+2a’+cDs =0

ors=a/(a?+c?)at t, as t, — t,. Hence the curve of stricture is
the curve

f+(a/(a?+c?)X

as a function of ¢, This is precisely the point on each generator
where the tangent plane is normal to ETX(t) since BTX is orthogonal
to X we know, and 0 = DX, A>=~a+a’s +cls again gives

s = a/(a’? + ¢?). As a problem we leave the formula for the curvature,

K(t, ) =—c2/(1 = 2as + a2s? 4+ c?*s?)2,

and hence the central point on each generator is also characterized
as the point where K is a maximum (K| a minimum). At the central
point, K = — (a? + ¢?)2/c?, which shows the distribution parameter
o/(a® + c2) depends only on the generator,

If s =0 gives the central point on a particular generator, i.e., we
take our orthogonal curve f from this central point, then BTX is
normal to f at s = 0 and a= 0. Thus the distribution parameter
p=1/cand K(t, s) =~ c2/(1 + c252)2 = _ P%/(p? + s2)2. Along this
generator A = T + scN where T and N are vectors at the central point,
hence the normal N(s) al ong the generator is given by

N(s) = (= scT + N)/(1 + s2c2)%
= sT + pN)/(p? + s2)%.

Thus if ¢ is the angle between the normal N(s) and the normal N at

the central point, we have tan ¢ = s/p, i.e., the tangent of ¢ is directly
proportional to the distance from the central point. This is Chasles
theorem (1839). This also shows the tangent plane turns evenly
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through 180° along a generator (turning through 90° on either side of
the central point). For references, see Struik (p. 189) and Willmore
(p. 107). -

We point out we could have viewed the ruled surface di;chsed
above as being generated by the curve f(f) and the field X(¢) along
the curve. To generate surfaces in this way X need not be orthogonal
to 7. Indeed, in case ETT £ 0, then we generate a surface via
(¢, s) — £(¢t) + sT(t), for small s > 0 (or small s < 0); which we call
the tangential developable of the curve f, which is the edge gf regres-
sion of these two sutfaces. It is a surface, since A = T + sD,.T is
independent of X = T (for s £ 0), anil the tangent space along a gen-
erator will be determined by T and DT for all s; hence the surface
is developable. It is, of course, not a closed surface in general
(see. Struik, p. 66).

~—curve of stricture
d

Fig. 2.6 Hyperboloid of Revolution

Section 2.6  Some applications,

Let M be a hypersurface of R™ with unit normal N = (al,...,an)
where each a; is a C* function on M and 2%2 = 1. For any r in R,
let M_=[p+ tN,: pin M). Thus if p = (p,,e..,p,) is in M, .then f(p) =
p+iN, = (p, + ra;(p)eessp, +ra (p))is in M_. The map f1s called
the natural map of M into M,, and if f is univalent, then M, is a par-
allel hypersurface of M with unit normal N, i.e., N[(p) = Np for all p
in M. Let L be the Weingarten map on N.
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THEOREM. Let f: M —»M_ as just described. Then for X in
f.(X) =X + rL(X), L (f,X) = L(X),and f preserves principal di-
rections of curvature, umbilics, and the third fundamental form. Also

<E X, £,Y> =X, ¥) + 2r X, V) + 2 II(X, V),

where 1, 11, 11l are the first, second, and third fundamental forms on

M. If k is a principal curvature of M at m in direction X, thenk/(1 + tk)

is the corresponding principal curvature of M at f(m) in direction
f.X.

Proof. To compute £, X, take a curve oft) = (b (t),...,b (1)) with

= (64(0),...,5! (0)), and compute the tangent to foo at £ = 0. Let
N(o(t)) =(a (t),...,an(t) then fo o(t) = (...,bi(t) +raft),...), and its
tangent at ¢ = 0 is indeed X + rL(X). Also N(o(t)) = N(f o o{t)) from
the definition of f and M.. Thus L(X) = D xN = (a}(0),. -»al (0)) =
D N=L [, X). This shows

I (£,X, £,¥) = <L f,X, L £,¥> = <LX, LY> = III(X, Y).

Now let X be a unit vector at m in M with LX = kX, so L (£.X) =

LX =kX and X = (1 + rk)X. ¥ 1+ rk = 0, then f X = 0 and L (f,X) =

kX =0,s0k=0and 1 =0, thus 1 +rk £ 0 if M_is a hypersurface.
Hence L (f,X) = (k/(1 + rk))f, X, which shows f preserves directions
of curvature and umbilics. Finally, one can verify the expression
for <f, X, f,¥> by direct computation using f X =X + rLX.//

Corollary. In the hypothesis of the above theorem let n = 3, and
let the total curvature and mean curvature of i (and M ,) be denoted
by K (and K Jand H (and H - Then

K, =K/(1+H +r*K) and H =(H+2K)/(1+H + r’K).

THEOREM. Let M be a connected hypersurface in R™ consisting
entirely of umbilics. Then M is either an open subset of a hyperplane
or a sphere. If M is closed, then M is a hyperplane or a sphere.

Proof. Take p in M and X,inM_,, X #0. Imbed X, inaC”
field X about p uand let ¥ be any other C°° field about p w1th X and
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Y independent. Let L = fI be the Weingarten map where f is a C*
real valued function on M and, [ is the identity of each tangent space.
By the Codazzi-Mainardi equation (10),

0=D,(f¥) - D, (tX) - fiX, Y1= (X 0¥, - (¥ 0K,

since D, ¥ — D X = [X, Y]. The independence of X and Y implies
X f=10. Since M is connected, f must be a constant functlon on M
(pmblem 14).

Suppose L = kI, k is constant on M. f k = 0, then L = 0 on M, so
leconstantonM(D N=0forall Xin M )andeustbeanopen
subset of a hyperplane.

I k £ 0, then we may assume k > 0 by changing the sign of N if
necessary. Letr=—1/kandletf: M - R by f(p)=p + rN As in
the preceding theorem, for all X in M £,(X)=X + fL(X) = X -
(VKX = 0. Thus f, = 0, and since M is connected, f is a constant
map. Letc=p- (l/k)IV for any p in M. Then all points of M are
1/k units from c. Thus M is an open subset of a sphere about ¢ of
radius 1/k%. /4

Problems

23. Let fbe in C™(R?%, R). Let M be the graph of f; thus M —
I, y, x, y)): (x, y)in R?}. Let W = [(£ MEER )2 + 1]%
and let N = W"’(—-[ -1, 1). Show X = (1 0, f )andY_
0,1, f ) span M_ at ali m and N is a unit normal that is C™
on M. Let E - <X X>, F =<X, ¥Y>, and G = <Y, ¥>. Show

LX) =Wt _G—f, FIX +(f,_E — f_F)Y]
L) = WU G—f F)X + (f, E~f_F)Y]
K=t —£2)/W*

H= (1/W)U_ G+, E -2 F).

Compute b, , = <LX, X>, b,, = <LX, ¥>, b,, = <LY, ¥>,
Cy1=<LX, LX>, c,, = <LX, L¥>, and c,, = <LY, L¥>.
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Show K = (det b, )/(EG - F*) = [(det ¢, )/(EG ~ F?)]%: = (2F -
E -G, )/2W4 Show L2 — HL + KI = 0 where [ is the 1dent1ty
map. (Compare with section 3.4.)

24, Compute the invariants for the right helicoid (a ruled surface)
which is the image of the map ¢ R? — R3defined by &(u, v) =
(u cos v, u sin v, av) for a > 0,

25. Show a curve on a surface is a line of curvature iff the sut-
face normals along the curve form a developable surface (Monge.)

3. Surfaces in R3

Throughout this chapter, ¥ will denote a surface in R3; i.e., M
is a two-dimensional C* submainfold of R3, Let N be a C™ unit
normal field on M (such an N always exists locally). Let D and D be
the natural connexions on R?% and M, respectively. Let L(X)=D <N
be the Weingarten map for X tangent to M. Let U be the set of umbi-
lics on M and let V = M — U. Let K and H denote the Gauss curvature
(total curvature) and mean curvature functions on M, respectively.
Let h and & be the principal curvature functions on M where h(p) > k(p)
for all p in M. Thus K(p) = det L = h(p)k(p) and H(p) =trace L,
h(p) + k(p) for p in M.

Section 3.1. . Smoothness and the neighborhood of a non-umbilic point.

The first theorm establishes the smoothness of the invariants of
M and the local existence of C* orthonormal principal vectors on V.

THEOREM 1. The set of umbilics U is closed in M, so its com-
plement V is open in M. The functions K and H are C* on M. The
functions h = (H + VH? — 4K)/2 and k = (H - VH? - 4K)/2 are C° on \
M and C* on V. For any p in V there is a neighborhood A of p with
A CV and an orthonormal C*™ base field of principal vectors c?n A,

/

Proof. For any m in M, let B be the domain of a local cobrdinate
system. By applying the Gram-Schmidt process to the coordinate
vector fields on B, we obtain an orthonormal C* base field Z, W on
B. Since L is C*, the vectors L(Z) = aZ + bW and L(W) = bZ + cW ‘
are C* on B, and hence the functions a, b, and c are C* on B. Thus
K =ac—b*and H = a+ c are C* on B, and hence, on M. ‘
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The eigenvalues h and k must satisfy the algebraic equation A? -
HA + K = 0 associated with the characteristic equation of L. Hence
we get explicit global expressions for A and k by the quadratic formula,
and they are clearly continuous, since they are the compos ite of con-
tinuous functions. The set U is precisely the set where A = k or
H? - 4K = 0, so by continuity, U is closed and V is open. Since H? —
4K > 0 on V, the functions h and k are C®on V.

Forpin V, let B, Z, and W be as in the first paragraph, with
B CV. We distinguish two cases: (1) if b(p) £ 0 and (2) if b(p) = 0
In case (1), choose the neighborhood A4 C B such that b £ 0 on'4 and
let ' = bZ + (h — a)W and X' = (a— h)Z + bW, Then X', Y' are C*®
orthogonal non-vanishing fields on A with LY" = AY' and LX' = kX".
Let X and Y be unit fields in directions X' and ¥', respectively. In
case (2), suppose a(p) > c(p), choose A CB so a> c on 4, and let
Y'=(h~c)Z + bW and X' = bZ + (c — bW, etc.//

In the next theorem we derive basic expressions for studying the
neighborhood of a non-umbilic point.

THEOREM 2. Let m be a non-umbilic point on M and let X and
Y be an orthonormal C* base field of principal vectors on the neigh-
borhood A of m with A CV and LX = kX, LY = hY on A. Defining
the C* functions a and b on A by

a= (Yk)/(h-k) and b=—(XR)/(h- k),
then D ¥ = aX, DX = bY, Dy X = —z¥, D ¥ = -bX,

[X, ¥] = aX — bY, and

K - kb <X — Y2K)(B — k) - (XBY2Xh — Xk) + (VK)(¥h — 2¥k)
(b - k)2

on A,

Proof. Since <X, X>=1,<¥, ¥>=1,and <X, ¥>=0o0n 4, 0 =
X<y, V= 2<DXY, Y>so D, Y = aX for some C* function a, which
we compute below. Similarly, D, ¥ = bY for some b, Also 0 =
X<X, X>=2<D X, X>and 0 = X<X, ¥> = DX, ¥Y>+ <X, D, ¥Y>, so
D,X = - a¥, and similarly, D,Y = -bX. Then [X, ¥Y]=D,Y - D, X =
aX - bY,
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To compute the expressions for a and b in terms of X, Y, hand k,
we apply the Codazzi- Mainardi equation. Thus D xLY =D, LX =
(XR)Y + haX — (YKk)X — kbY = L(IX, ¥) = akX — bbY Equatmg co-
efficients of X and ¥ leads to the expressions for a and b.

To compute K, first notice R(X, Y)Y = D x~bX)~D ylaX) -
D(ax py)Y = —(Xp)X - (¥ a)X — a?X — b2X, By the Gauss curvature
equations, K = <R(X, Y)Y, X> = (Xb) — (Ya) — a? — b2, and the final
expression for K follows by inserting the formulas for a and b and
computing. //

Corollary. If m is a non-umbilic critical point of both principal
curvatures, then K(m) = (X?h — Y 2k)/(& — k). If ¥ has no umbilics
and K and H are constant (or the principal curvatures are constant),
then K = 0,

Section 3.2.  Surfaces of constant curvature.

Let M be a closed connected surface in R3 with constant Gauss
curvature K. Then M is a sphere, a developable surface, or doesn’t
exist, accordingas K >0, K - 0, o1 K <0, respectively. The cases
when K > 0 (due to Liebmann) and K < 0 (due to Hilbert) were solved
around 1900. It is amazing that the case K = 0 (due to Massey) was
not completely solved until 1962,

Consider the case K > 0. The result of Llebman# follows from a
lemma due to Hilbert.

LEMMA. If K is a positive constant on M, then h cannot have a
relative maximum (and k cannot have a relative minimum) at any non-
umbilic point. |

Proof. Suppose m in V and m is a relative maximum for h and a
relative minimum for k (since K = hk = constant). With the notation of 1
Theorem 2, X?h < 0 and Y2k > 0 at m. Thus by the above corollary, |
K(m) < 0, which is a contradiction.//

A theorem of Bonnet, proved in Chapter 10, shows the “compact” )
assumption in the following theorem can be replaced by “closed.”

THEOREM 3. A compact connected surface in R3 of constant
positive Gauss curvature is a sphere.
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Proof. At all points, the principal curvature h >+/K, since h2 >
hk = K. Since M is compact, A must have an absolute maximum m in
M, and m must be umbilic by Hilbert’s lemma. Thus h(m) = k(m) = V&,
and hence h < K on M. Thus h = /K, all points are umbilic, and ¥
must be a sphere.//

The preceding theorem can be paraphrased by saying “a sphere
cannot be bent.” For a precise interpretation of this phrase, see
Chapter 8, where a generalization, the rigidity theorem for convex
bodies, is proved.

A proof of Hilbert’s theorem stating that a closed connected sur-
face with constant K < 0 cannot exist in R3 is in Willmore. Here
again, the compact case is easily disposed of by the first corollary
of the following theorem; indeed, no compact M exists with variable
K <0on M.

THEOREM 4. On a compact surface in R3 there is a point m with
K(Gm) > 0.

Proof. Let r(p) = |p| give the distance from a point pin R3 to the
origin. Then r oi is a continuous function on the compact surface M
so it takes on a maximum at a point m in M. By a rotation (orthogonal
transformation) of R3, we may assume m lies on the z-axis (or u 3-axis).
Let N be a C*™ unit normal to M on a neighborhood of m with N_=
(0, 0, 1). Let X be any unit principal vector at m with LX) = D <N = kX.

Let o(t) = (K1), g(¢), h(t)) be a C™ curve on M with unit tangent vec-
tor X at t = 0; thus X = (£(0), £'(0), h*(0)). Since m is an absolute
maximum of u; o 1=zoion M, h"(0) <0. Letting X be the tangent to
o, we have at m, D, X = (f*(0), g"(0), h*(0)). Decomposing this vec-
tor into tangent and normal components, we get, by the Gauss equation,
—<LX, X>N = (0, 0, —k) = (0, 0, k"(0)), so k = -A"(0) > 0.

Since all principal curvatures are greater than zero at m, K(m) > 0.//

Notice the theorem is true for any compact hypersurface in R™ with
a trivial modification of the proof,

Corollary. There is no compact hypersurface in R® with non-posi-
tive Gauss curvature at all points.

Corollary. There is no compact minimal (H = 0) surface in R 3.

Proof. If H=0, thenk=—-hand K =-h2<0.//
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Before considering the case K = 0, recall that a generator on a
surface ¥ is a straight line in R? that lies on M with the normal to
M constant along the line. A developable surface is a ruled surface
with the normal constant along the ruling lines in the surface. If a
developable surface is closed, then it has a generator through each
point.

THEOREM 5. Let M be a closed connected surface i’ R® with
K = 0on M. Then either M is a plane, or through each point of {
passes a.unique generator and all generators are parallel in R3.
Moreover, the mean curvature is constant along generators, and hence
the boundary of the umbilic set is a union of these generators:,

Proot. Supposing M is not a plane; then the set V is non-empty.
Let A be a connected neighborhood in V as described in theorems
1 and 2. Since H does not vanish on V and 4 is connected, we may
assume H = h > 0 while ¥ = 0 on A. Theorem 1 gives an orthonormal
pair of C* fields X and ¥ on A, with LX = O and LY = HY on A. Since
Yk = 0 on A4, referring to theorem 2 we have a =0on 4, so Dy¥Y =0
and D, X = 0 on A, By the Gauss equation, EXX =D, X —<LX, X>N =0
on A. Thus the integral curves of X in 4 are straight line segments
in R3. Since M is closed, the continuation of ty'ése line segments
must lie in M. Hence for p in V there is a unique line Gp through p
with G,, CM. We next show G, cv.

On the neighborhood A of p, by theorem 2,

K=-0-XH _20XH)* __ pgxxl),
H H? H

Hence, if s is the arc length on Gp in the direction X with s = 0 at

p, then (1/H) = cs + d and H = 1/(cs + d) for points in G, ~A. 1If

there was an umbilic point at s' on Gp then H(s') = 0. At s® =

inf [s*: s is umbilic], H(s") = 1/(cs" + d) £ 0, since H is continuous.
Hence there are no umbilics on Gp, Gp CV, and to avoid an impossible
singularity in H at s = —c/d, it follows H is constant on G .

After extending X and ¥ along G_ by letting X be the unit tangent
to Gp, an overlapping neighborhood argument will show X and ¥ re-
rﬂain principal vectors; hence L(X) = 0 and L(¥) = HY on Gp. Then
DyN = L(X) = 0 implies N is constant on Gp, so Gp is a generator.
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In the neighborhood 4, since H is constant in the X direction, by
theorem 2, DYX =0, and so EYX =D X — <LX, Y>N = 0. Thus X is
parallel in R 3 along an integral curve of ¥, which implies all gen-
erators through points in A are parallel. This implies all generators
in one connected component of V must be parallel by another over-
lapping neighborhood argument. Hence the boundary of one connected
component of V consists of two (or just one) lines parallel to the
generators in that component. Consider now a connected component
U, of the umbilic set. If U, has a non-empty interior in M, then this
interior is an open surface of umbilics with K = 0, and hence it is an
open subset of a plane in R3. This open plane subset is bounded by
two generator lines in the boundary of V, and these generator lines
cannot intersect (by the uniqueness of the generators through points
in V and its boundary), and hence they are parallel. Thus parallel

generators are defined through all points of M./

Corollary. A closed connected surface is a developable surface
iff its Gauss curvature is identically zero.

Problem 26 provides additional theorems leading to surfaces with
constant K and H, and it is hoped that by now their proofs would pro-
vide little difficulty. Another “classic” type of argument is provided
by the following theorem and some of the theorems in the next section.

THEOREM 6. Let M be a closed connected surface whose sphere
map (Gauss map) is strictly conformal. Then M is a sphere or a mini-
mal surface with negative curvature, If M is compact, it must be a

sphere.

Proof. Let n: M — S be the sphere map. Sincd 7 is strictly con-
formal, there is a C™ positive real valued scale function F on ¥ with
X, Ny Y> = <LX, LY> = Flm)<X, Y> forall X, ¥ in M, for all m
in M. Hence <L*(X) - F(m)X, ¥>=0forall ¥ so L%X) = FX for all
X. One always has L? — HL + KI = 0, where I is the identity map;
hence HL = (K + F)I. If H(m) #£ 0, then m is an umbilic and K(m) =
H*m)/4> 0. If m is umbilic and H(m) = 0, then K(m) = —F(m) < 0,
but at an umbilic K(m) = k%(m) > 0 always. Thus the umbilic set U
is exactly the set of m where H(m) £ 0, and hence U is open and closed.
Since M is connected, either M = U and M is a sphere (F > 0 rules out
aplane)or M=V, H=0, and K = -F < 0.
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The last assertion of the theorem follows from a corollary to
theorem 4.// !

Section 3.3,  Parallel surfaces (normal maps).

Let us state a standard hypothesis for some theorems (and problems)
on “parallel surfaces®: M is a closed connected surface in R? with
C* unit normal N, r is a non-zero real number, and f is the map f:
M — R?3 defined by f(p) = p + ¥ | (see section 2.6). i

THEOREM 7. With the standard hypothesis, if f is strictly con-
formal, then M is a sphere, plane, or has constant mean curvature
H =-2/r with no umbilics.

Proof, From section 2.6, if X in M_, then f (X) = X + rL(X).
Since f is strictly conformal, there is a C™ real valued function F
on M with

Ly X, £,¥> = F(m)<X, ¥>= <X + 2rLX + r2L2X, ¥> -

for all X, ¥ in M_ forall min M. Hence, r2L?+2tL + (1 — F)[ =0 ,'

and, as always, L? — HL + KI = 0, so
H+2/0L =K — (1 - F)/¢2]1.

i H(m) + 2/t £ 0, then m is an umbilic, and, indeed, U = [m in M:

H(m) £ — 2/r]. For if m umbilic and H(m) = -2/r = 2k, then k = -1/x,
K=1/t% K~ (1 - F)/r?=F/t2 =0, and so F(m) = 0, which is im- .
possible. Thus M = U or M = V, and the only possibilities give the
conclusion of the theorem.//

THEOREM 8. With the standard hypothests, if f preserves the
second fundamental form, then M is a plane,

Proof. From section 2.6, for all X and ¥ in M,
<LX, Y>= L [ X, £, ¥> = <LX, Y + (ILY>;

thus <LX, rLY> = <X, rL2¥> — 0 for all X and ¥, and hence L2 0.
Thus the principal curvatures are zero, L = 0, and M is a plane.//
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Similar results are given as problems. The following theorem is
due to Bonnet, and the examples in the next section show the hypothe-

sis is not vacuous.

THEOREM 9. Let M be a surface of constant positive Gauss
curvature K with no umbilics. Let r, = 1/\K and r, ~ —IA/K define
parallel sets M , and M, respectively. Then M, and M , are immer-
sions of M which have constant mean curvature \/K and —VK, respec-
tively, If M' is a surface with constant mean curvature H (non zero)
and non-zero Gauss curvature, letting r = ~1/H yields a parallel set
that is an immersion of M' with constant positive Gauss curvature H2.

Proof. The proof is a corollary to the formulas for H_and K in
section 2.6. The special assumptions avoid trivial cases (sphere
or cylinder) and singularities.

For the first part, f, is non-singular, since for principal vectors
fX=(1+rk)X and T+ rk = 1 X k/\JK £.0, since there are no umbilics.
Then H, = (H + 2yK)/2 + H/VK) = VK, and similarly, H, = VK.

For the second part, f* is non-singular, since 1 +rk=1—k/H =0
would imply k = H, so the other principal curvature is zero and K = 0
contrary to the hypothesis. Then K_=K/(1 -1+ K/H?) = H%//

Section 3.4.  Examples (surfaces of revolution).

Some general methods for computations with “parameterized” sur-
faces are introduced in this section. Let A be an open set in R2 and
let ¢: A — R3 be defined by the three real valued slot functions f,

& and A, so ¢lu, v) = (H(y, v), gy, v), k(y, v)) for (u, v) in A. Write
T = (fu; 8, h,), where f = 3f/du, T, =(,, g,.» b, ), etc. Notice
T, = ¢4(9/0u) is the tangent to the u-parameter curves on HA). Let
us assume (Tu x Tv) # 0, where “x” is the cross-product of advanced
calculus; thus ¢ is an immersion of A into R3. Let N = (T, xT)/W
with W = [T T, |#0on A

To compute the Weingarten map L associated with N, notice
L(T )= ET (N)=N,. Thus,

u

<L(Tu), T>=w, Tu>

= W"x<Tuu xT )+ (T, x r,)-WN, T>
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=-<T , N>

uu?
Similarly, <L(T)), Tj-> = —<T”, N> with obvious values of i and j.
In case T and T are orthogonal,
7
<T, . N> T <T

L(Tu) o <TUU’T w Tuv’ N> .
u’ uk> < v? Tv>

and similarly for T ; hence,

— <Tuu’ N> - <Tvv-’ 'N>
<Tu’ Tu> <TV’ Tv>
and
K = Tyu, ©<T,,, N> -<T,,, N>?

<T, T><T, T,

A little more computation is necessary to determine the matrix for L
in terms of T and T  when they are not orthogonal.

Specializing further, let f be a pesitive (at least C?) function, and
for u> 0 let

#ly, v) = (u cos v, u sin v, Ku))

define a “surface of revolution.” Applying the above analysis, one
sees directly that T and T are principal vectors and K = £'f"/u[1 +
(£)2]2 where '(u) = df/du. To find surfaces of constant curvature
one must solve the differential equation f'f* = uK[1 + (£*)2]2, a task
that is left to reader via several problems. For more details and
pictures, see Struik.

- Section 3.5, Lines of curvature.

In this section we place some results involving lines of curvature,
i.e., curves whose tangent vectors are principal directions of curva-
ture.
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Definition. A triply orthogonal system of surfaces in a neigh-
borhood U of R3 is a family of surfaces such that through each point
of U there passes exactly three members of the family whose normals

are mutually perpendicular.

THEOREM 10 (Dupin). Intersecting surfaces from a triply
orthogonal system intersect along a line of curvature.

Proof. Let §,, S, and S, be mutually orthogonal fa_lnilies of sur-
faces with unit normals N, respectively. Let L X =D4N,, as usual.
The field N, is a tangent to the intersection of S, and S,, so one .
must show N, is a principal direction on S, and S, or L,(N;) = a,N,
for 1 = 1, 2. This is equivalent to showing L (¥,) is orthogonal to
N, and N, fori =1, 2. To be specific, consider L;(¥,). Since
L,(N,) is tangent to S|, <L N,, N,>=0. While <L N, N,>=
Dy Ny, Np>=—<N,, Dy Ny>=—<N,, L,N;>=-<L,N,, N>, since
L, i self-adjoint. Thus gy symmetry, as one cyclicly permutes the
indices,

<L Ny Ny>=—<L,N,, N> =+<L,N,, N;>=—<L,N,, N>

Hence <L N, N,>=0.//

Examples of triply orthogonal systems are given by the coordinate
surfaces in rectangular coordinates, cylindrical coordinates, and
spherical coordinates. Another example is provided by a system of
confocal quadrics, i.e., the surfaces 23(x,)?/(a, - A) = 1, with a, <
a, < ay fixed, are othogonal for unequal values of A (see Struik, p. 100).
The classic work in this area is by Darboux.

THEOREM 14 (Liouville). A conformal diffeomorphism of R3
onto R3 maps spheres into spheres.

Proof. Let S be a sphere. For p in S, take an orthogonal family
of curves on § and use the normal direction to S to generate an orthog-
nal family of surfacés. Adding in the “parallel” surfaces to S, one
obtains a triply orthogonal system about p. Let f be the map in ques-
tion, so f maps a neighborhood of p into a triply orthogonal system of
surfaces about f(p) on F(S). By Dupin’s theorem, the images of our
original family of curves on S must be lines of curvature on #S). But
we may choose an orthogonal family of curves on S to pass through
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any orthonormal pair of vectors X and ¥ at p. Hence all vectors tan-
gent to £(S) at f(p) are principal, and f(p) is an umbilic of £S). Thus
K(S) is completely umbilic, and since it is compact and connected it
must be a sphere.//

The differentiability hypothesis in the above theorem is much too
strong. The theorem can be used to show a conformal map of R* onto

R? is a combination of similarities and isometries (also due to Liou-
ville). For more details see Guggenheimer, p. 225,

We next discuss the behavior of the normal lines (in R3) to a sur-
face M along a line of curvature C. Let k be the principal curvature
of M along C with respect to unit normal field N, and let X be a onit
tangentto C, If k=0on C, then D xN =LX = kX = 0 implies N is a
constant field (in R3) along C, and C is a plane curve (see section
6.3); thus the normal lines form a “cylinder,” a developable surface.
If k is a constant (£ 0) along C, let C{¥) be the parameterization of C
by arc length in the direction X, so X(f) = C'(¢) = (d/df)C. Then kX —
kC' =D, N =N, so (N — kC)* = 0 and N(f) — kC(¢) = constant vector.
By translating the base (origin) of the vector C(), we have N(f) =
kC(#); thus all the normal lines along the curve pass through a single
point (and thus form a “cone®). If k£ 0 and k' £ 0 along C, then let
B(t) = C(6) + f(ON(1), so B* = X + fkX + f'N, and choosing 1 + fk =0
or f(t) = ~1/k(t), we obtain a curve B whose tangent developable gives
the normal lines along C.

When both principal curvatures k and A are non-zero and non-con-
stant in a neighborhood of p, then the points p ~ (1/%)N and p —
(1/B)N are called the centers of principal curvature of p on Y. The
loci of the centers of principal curvature are called center surfaces
(see Struik, p. 95).

Problems. All surfaces are in R3.

26. If M is a closed connected surface with K = 0 and H constant,
show ¥ is a plane or a right circular cylinder. ¥f M has no
umbilics and K and H are constant, show ¥ is a right circular
cylinder. If I=1I or if I = Jil, show M is a sphere of radius
one, and conversely. If II = Ili, show M is a sphere of radius
one, a plane, or a right circular cylinder of radius one.
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27. For |u| <1/band b > 0, let Ku) = [ bt/(1 — b2t2)%dt and let
0

¢: {4, v) — (u cos v, u sin v, f(u)). Show that the surface of
revolution determined by ¢ for 0 < v < 1/b is an open subset of
of a sphere with curvature b2.

-1 log bu

28. For 0<u<1/band b> 0, let flu) = [° V1 — e2btde,
[V]

Show that the surface of revolution induced by f has constant
curvature —b? and draw its graph (tractrix).

29. Find a surface of constant positive curvature that is not an
open subset of a sphere.

30. Show a surface is minimal (H = 0) iff there are orthogonal
asymptotic vectors at each point.

31. Let f(u) = cosh ~'u for u > 1, and show the surface of revolu-
tion induced by f (catenoid) is a minimal surface (H=0).

4. Tensors and Forms

The material in the first three chapters was based on a minimum
amount of structure, i.e., manifolds, functions, and vector fields; more-
over, there was a strong bias on hypersurfaces in Euclidean space.

By this time the reader should be at home with these concepts, and
before discussing general connexions on manifolds, it is convenient
to define tensors and forms. They are there, and they are useful. At
times in the past, one notices a strong compulsion to seek out and
label tensors ad nauseum, and objects that were not tensors were
eyed with suspicion. In a sense, this chapter is the “7th” section of
Chapter 1; it is just more structure that a C* manifold has automati-
cally, and Chapter 7 continues the theme. It is hoped by breaking the
definitions up they become more digestible.

Let ¥ be a C* n-manifold throughout this chapter, and let m be a
point in M. Since the tangent space Mm at m is an n-dimensional vec~
tor space, the theory of linear algebra can be applied to define tensors
and forms. A p-covariant tensor at m (for p > 0) or a p-co tensor at m
is a real valued p-linear (i.e., linear in each slot) function on M, x
me...me (p copies). Thus a is a 2-co tensor at m if
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adX +Y, Z)=0alX, Z)+aly, Z)
aX, Y +2Z)=alX, Y)+aX, Z)
aeX, ¥) = a(X, r¥) = ra(X, ¥)

forall X, Y and Z in M_ andrin R. In a similar way, one defines a
V-valued p-co tensor at m, where V is any vector space over R; in-
deed, V could be Mm itself.
Let M* be the dual space of M_. Thus M¥* is the set of real
valued l-cotensors at m, or the set of linear functionals from M, in-
to R, and M* is endowed with its natural vector space structure
(i.e., one adds functions by adding their values and multiplies by a
constant in an obvious way). Similarly, the set of p-co tensors at m,
denoted by T"-F’(Mm ), is a vector space over R, A p-contravariant or
p-contra tensor at m (for p > 0) is a real valued p-linear function on
(M*)P, the cross product of p copies of M*, and the natural vector
space formed by p-contra tensors at m is denoted by TP'O(Mm), Define
TOo.0M »).=R. (The sets of p-co tensor and p-contra tensors on any
vector space W are denoted by T°-P(W) and T7:%W), respectively.)
Again, V-valued p-contra tensors are defined analogously. Finally,
a p-co and g-contra tensor at m is a (p + g)-linear real valued func-
tion on (Mm)P X (M:';)q, and the vector space of these tensors is de-
noted by T%P(M_). If p and q are greater than zero, elemenis of
TP:7 are called mixed tensors. Notice that a vector at m is a l-con-
Ira tensor at m. Similarly, there is a special name for a 1-co tensor ]
at m, for it is called a l-form at m. {
A tensor.is symmetric iff its value remains the same for all possible
permutations of its arguments (thus only T?-® or T %P tensors can be
symmetric). A tensor is skew-symmetric or alternating iff its value

after any permutation of its arguments is the product of its value be-
fore the permutation and the sign of the permutation. For example,
let a be a 3-co tensor at m and let 7 be a permutation of the set [1,
2, 3. Then a is symmetric iff a™X |, X,, X,) = alX;, Xy Xp) =
alX 1 X4, X;) for all permutations 7 and all vectors X ;in M_. When
a™ is defined by the first equality in the above line, a is alternating
iff a™= (~1)"a, where (~1)™is the sign of the permutation 7. Then a
p-form at m (for p > 0) is an alternating p-co tensor at m, and the set
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of p-forms at m is denoted by F"(Mm ). A O-form at m is a real number;
thus F %W) = R for any vector space W over R, A p-form is said to be
of degree p.

Tensor fields and C*™ tensor fields are now defined in a way that
is analogous to the definition of a vector field, once a vector was
defined. For example, a p-co tensor field on a set U is a mapping

" that assigns to each m in U a p-co tensor at m. A p-co tensor field

aon a set U is C> iff U is open and for all sets of C™ vector fields
Xl""’Xp on U, the function [a(Xl,...,Xp)](m) = am(Xl(m),...,Xp(m))
is a C™ function on U, A C *p-form field on an open set U is called
a differential p~form on U.

The tensor product of covariant tensors is defined as follows: if
ain T°2(W) and B in T° W), then a @ B is the element in T 0.2t (W)
defined by

(@ PBXX,,..X )= alXe, X )BX e X 4 0)

pta ptaq

for all X, in W. Notice that (a; +a,) ®B=(a, @P)+ (a, ® B),
a®B,+B,)=(a®B,)+(a® B,), and (ra) @ B = a @ (rB) = t(a B B)
for r in R. However, a ® B # 3 ® a in general, but (a ® B) @ y =

a® (B ® y). Thus the tensor product is bilinear and associative but
not symmetric. The tensor product of contravariant tensors or mixed
tensors is defined analogously, but the details are omitted since these
products are rarely used in this study.

If a and 3 are forms of degree p and q, respectively, then the
exterior, wedge, or Grassman product a ~ f3 is defined to be the (p + g)-
form a~ 8 = (1/p! ¢)2(-1)Ma ® B)™, where the sum is taken over all
permutations 7 of the set [1, 2,...,p + g). In problem 35 there is an ex-
pression for a ~f that avoids division. Notice that ¢ ~8 = (-1)?98 2q,
a~(B, + By)=a~B,+a ~B,, where B, are forms of the same degree,
and (@~B) ~y = a~(B ~y) which is proved by using problem 35.

To continue the definitions in terms of the abstract vector space
W over R, the tensor algebra T(W) over W and the Grassman algebra
(exterior algebra) F(W) over W are defined as the weak direct sums
W) = 217:112 o P*4W) and F(W) = 2p> 0FF’(W). By a weak direct sum,
ZIMi, of modules over an index set /, one means the set of formal
finite linear combinations of elements m; + my+..+m, where each m,
in M'.; or more precisely, EIMi ={fin HIMI.: f(i) = 0 for almost all (all
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but a finite number) of elements i in I}, and then one writes f = m, +
myt...+m, if f(i) = m, for i = 1,...k and {(j) = O for j £ 1,...,%, (see
Chevalley? and Jacobson for more details). The tensor multiplica-
tion and the exterior product can be extended distributively to T(W)
and F(W), respectively, thus making them algebras over R.

If U is an open set in the manifold ¥, let T?*%U) be the set of
C*p-contra and g-co tensor fields on U, and let T(U) and F(U) be
defined anal ogously. On the other hand, let .5‘ be the ring of c™
real valued functions on U and let i be the J ,—module of C* vector
fields on U. Then the above deflmtlons can be extended to define
the ¥ -modules TP 9X Jand F (X ,) for p, ¢ >0, where T2 %X e

o(fx o) = u. The next theorem and its corollary are designed to
1llummate the relation between T(U) and T(fxu). To accomplish
this, let us define an open set V in M to be framed if there exists a
C™ base field on V, i.e., a set of n C*™ vector fields € 5eense, on V
that are independent at each point of V.

THEOREM (characterization of C* tensors). If U is a framed
open set in M, then TP%U) is isomorphic Tp-q(%u) in a natural way.

Proof, Let e peses€, be a C™ base field on U, and let Wl peees W,
be the dual C* l-forms on U (see problem 32), It is sufficient to
illustrate the proof for T %P where p > 0, since the other cases are
analogous. Consider a in T°"’(iv), and let

a= zlfijﬁna(eil’ eiz,...,e,.p)[wi1 L) 8,..®wip],

be an element in To'l’(iv) defined by

la(X ..., X ) )(m)

=3, <n[a(e,.1,---,e,. )](m)[W,.l(Xl(m)W,-z(X2(m))...w!. (X (m)].

i< p p
where X, are C* fields on U. Then a = a as elements of T0-7(X o)

for if X, are in EXU, then the function

alX preeerX )- a(E" - X)e, , 3w, (X,)e, yosarZ; W, (Xp)e,. )
1 1 2 72 2 P p

p
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f 2 1Si]_snwi1(X1)Wl.2(X2)...W,.p()(p)a(eil,...,e,.p),

since a: is multilinear over ? and each WI(X ) is a function in ‘}v
But q is an element of To"’(U), and notice [a(X g X Ymn) de-
pends only on the vectors X (m),...,X (m) and not on tixe fields X ,,
vee ,X Thus the map a — ¢ defines an isomorphism of T ¢-P(( o)
onto TO'P(U) 1/
One can “roughly” paraphrase the above theorem by saying that an
ffu-multilinear function on vector fields on U is actually a smooth
piecing together of R-multilinear functions on M, for each m in U.

Corollary. Let U be open in M. Let a be a map that assigns to
each framed open set V CU an element a, in T‘M’(f'xv) with EV =
ay in T9P(V NW) for all open framed V and W contained in U. Then
there is a unique tensor a in T?:%U) such that a|,, - @, for each
framed open V C U, Moreover, if m in U and Xl,...,Xp are in M while

Z5eees2, are in ¥, then

q

&) am(Xl,...,Xp, zl,...,zq) = [av(}v"")—{p» ;l,...,;q](m),

for any C* fields X and C™ forms z on any framed neighborhood V

,ofmthhX(m)_X and z (m)~z

Proof. Use (*) to define a_ at any min U. If W is any other
framed open neighborhood of m, then a_ - @y),, = (@), and one
need only know the values of fields and forms at m in order to evaluate
both of the tensors on the right.//

If the reader will become familiar with tensors and computations
involving their linearity via some of the problems, then the above
theorem and corollary should become more natural.

To close this chapter we study the maps on tensors induced.by a
C®map f: M — M', where M is a C*n-manifold and M' is a C>n'-
manifold. Because the Jacobian f, maps vectors on M into vectoss on
M', it induces a map f* of covariant tensors (and forms) on M' into
covariant tensors (and forms) on M. If g is in T2 °U') = ?Uu for
open U® on M’, then f*(g) = g o f is a C™ real valued function in ?U
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where U = f~}(U"). If a is a p-co tensor at f(m) in M', then (f*q)_ is
the p-co tensor at m defined on Xl,...,Xp in M, by

(f*a)m(Xl,...,Xp) = Gy )(f*Xl,...,i*Xp).

If a is C* on the open set U' in M', then f*q is C*™ on the open set
f~YU") in M. In the next paragraph we prove this for a 1-form a and
leave the other cases to the problems.

Let a be a C* 1-form on U', let X be any C* vector field on U,
and we show (f*a) (X) is a C™ function on U. Take m in U, let Xy,
+ss;X, be a coordinate system about m with domain V CU, and let y,,
«ss;¥ 1 be a coordinate system about f(m) with domain V' CU'. Define
C°° functlons a,on V and b; on V' by X = 27a,(d/dx,) and a =
2" b (dy,), where dy (8/9y ) = =0or 1, according as r £ s or
r=s, respecuvely (see problem 32). Then on V,

(F#a)(X) = Sa (b, o f) M

fori=1,...,n and j = 1,...,n*, and since the right side is a C* func-
tion on V, {(f*a)(X) is C* on V, and hence f*q is C™ on U.
Finally, one checks that

fHa, + a,) = fla; + f*a,, F¥y, 8 y,) = (f¥y,) @ (f*y,),

and f*(3, ~B,) = (F*8,) ~(f*8,), where a; are tensors of the same
degree, y, are any covariant tensors, and 8, are alternating covariant
tensors. Thus f*: F(M') — F(M) is a degree preserving exterior-al-
gebra map of the C™ forms on M' into the C* forms on M.

There are certain natural tensors on every manifold called universal
tensors. These are mixed tensors that let the arguments “work on each
other.” For example, let ] be the 1, l-tensor I(w, X) = w(X) for X in
M, and w in M%. Another is the 2, 2-tensor E(w,, wy Xy X,) =
w (X )w,(X,), etc.

The 1, 1-tensors, T!+}(W), over a vector space W have a natural
interpretation, for there is a natural isomorphism of T!+}(W) with the
group, Hom, (W, W), of linear transformation of W into itself. If B
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is in T1+}(W), then let B be the linear map B(Z. J=20,Bw, Z)zZ.
where Z Zn is a base of W with dual base Wl,...,JW of IJV* (;eel
problem 36) ’

Problems, In these problems, W is an n-dim real vector space
and M is a C* n-namifold.

32. Let e,...,e_be a base of W. Fori=1,...,n, let w. (e ) =
3], where &, —Oifi,l_jandS = 1. Show w,...,w_ isa
base of W*, and for 8 in W*, 6 = Z“ 8w ..

33. Let e,,.. .ye, be a base of W, and let W 1sese; W, be the dual
base of W(w {e)=38,). If ain T**W), show a = 2. j=1ale,
e )W ® W, thus a is determmed by its values on a b331s If
fl ol another base, let ale,, e, )_ a, alf, i )= and
f =237 ¢, bhowb 2"“_10 .C_.a_ .

i= 1;1 ri sji%rs

34. Show T1-%W) is isomorphic to W. Show TP+ %W) has dimension
(p + @)n. Show FP(W) has dimension (“) = (n!)/p!(n — p)!.

35. Let q in FP(W) and B in FY(W). If XI,. X p4q it W, show
AP Ko g) = ST X Ky Xy ),
+1

ptq
where the sum is over all shuffle permutat1ons 7 for p and g,

1e.,1f1§1<]§porp+1_<_1<]5p+q,thenn‘<n..

36. Show T!+1(W) is isomorphic to Hom = (W, W), the set of all R-
linear maps of ¥ into W, via the above map B — B and
show this map is independent of the base Z,. Show the uni-
versal tensor [ in T'!+(W) corresponds to the identity map on
Ww.

37. If e},...,e, is a C* base field on U in M, and W iseee, W, is the
set of dual 1-forms on U, show each w,is C* on U.

38. Let fbe in C*(M, R). For pin M and X in M , let (df) X = Xf.
Show (df)p is a 1-form at p. If Xpyee X, is a coordmate system
with domain U, show dXy,...,dx  is the dual base to 8/8;(1,...,
9/(91{ and df = 37, 1(0f/9x, )dx; on U. Show df is C* on M.
Show d(f + g) = df + dg and d(ig) = {dg + gdf for g in C*(M, R).
If Y 15e00,¥,, is also a coordinate system on U and w = Z’I’aidxz. =




56

Notes on Differential Geometry

E’l'bidyi, show b, = 37 a.(dx,/ ayj). fa- Eaiidxi dx,
Eb'.].dy,. dy;, find expressions for a;, in terms of b g

in C*(M, M*), show g* o d - d o g* on FAM).

39, I W yyseesW_ is a base of M;“, show there is a coordinate

system x,...,x_ about p with (dx'.)p =w, for all 1.

40. Let M* be the set of all ordered pairs (m, w) for m in M and

w in M;. Let m: M* - M by wlm, w) = m. Let Xysese5X, be

a coordinate system on M with domain U, and define functions
Qyse003Q, PyseessP, on 7 U) by 9;=x;0omand w = 3p (m,
W)dxl.; With these coordinate functions, M* becomes a C™
2n-manifold called the cotangent bundle of M. The fundamental
1-form W on M is defined by Wi,y = 7w, Show W = 2p,dq,

on 7~ '(U). Show dW is a non-degenerate 2-form; ie., dW(X, V)=
0 for all ¥ implies X = 0. The forms W and dW are fundamental
in classical mechanics (see G. W. Mackey).

41. If X is tangent to B(M) at b = {m: €}5eees€, ). let W (X) be real
numbers such that X = 3% (X)e,. Show w, are C* 1-forms on

B(M) (see problem 22).

5. Connexions

This chapter is a study of a general connexion on a C>® manifold,
the concepts belonging to the connexion, and the different ways of
defining the connexion. These connexions are historically called
affine or linear connexions on a manifold. The generalization to
connexions in principal fiber bundles is sketched in section 5.5, but
these generalizations will not be focused upon in these notes,

Section 5.1.  Invariant viewpoint,

The approach to connexions that follows is due to Koszul and is
found in Nomizu? and the first chapter of Helgason. The definition
was motivated in section 2.1.

Let M be a C*> n-manifold. A connexion, infinitesimal connexion,
or covariant differentiation on M is an operator D that assigns to each
pair of C* fields X and ¥, with domain 4, a C* field D xY, with do-
main A; and if Z is a C* field on 4 while f is a C* real valued func-
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tion on A, then D satisfies the following four properties:

(1) Dy¥+2Z)=D,¥+D,Z
@ Dy, 2)=D,Z+D,Z
@) D xY =fD,F¥

@ D (¥)= (XY + D, Y.

These properties imply the vector (D xY),,, at a point m in M, depends
only on X_ and the values of ¥ on some curve that fits X . For, let
€4..-»€, be a C™ base field about m, let X = E’l’a‘_(m)(e,,)m and ¥ =
E‘l’biej on the domain of the base field (intersected with domain of ).
Then

(DXY)m = [DX(EbI.eJ.)]m
= 2,-[(me].)(e].)m + bj.(t;n)Ziai(m)(De'e].)m 1.

Thus a (m), b,.(m), and mei determine D, Y completely if the fields

D, e; are known (see section 5.2).
i

The existence of many manifolds with connexions has been il-
lustrated by the natural induced connexions on hypersurfaces of R”,
Let o be a curve in M with tangent field T. A C™ vector field Y
on o is parallel along o iff D,Y =0on o. The curve o is a geodesic

iff D..T = Oon 0. Thus a curve is a geodesic iff its tangent field is
a parallel field along the curve. The following two theorems give the
existence of parallel fields and geodesics. The domain of an index
of summation is always 1,...,n unless otherwise specified,

THEOREM. Let o be a curve on [a, b] with tangent T. For each
vector Y in Mo(a> there is a unique C* field Y(t) on o such that Y(a) =
Y and the field Y (¢t) is parallel along 0. The mapping Pﬂ't: Mc(a)"’
Mcr(z) by Pa’t(Y) = Y(¢) is a linear isomorphism which is called parallel
translation along o from o(a) to oft)
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Proof. Let X,,.
U, and let XI,...,Xn be the associated coordinate fields, We define

C* functions I onUby Dy X, = Eil"j?kXi. Let o 'map the domain
[a, b, ]into U. If ¥(¢) is a field on ¢ with domain |[a, b,], then define
functions @,(¢) on this domain by Y() = Za'.(t)Xi(o(t)). Let g,(¢t) =
x, 0 o(t) on [a, b,], so T(¢) =‘2g; (t)Xj(o{t)), where g)(t) = (dgi/dt).
If ¥(¢) is parallel along o, then .

0=D,y - 2 [alX, + aizjg'.l_’;"ij].

]

Thus Y(¢) parallel along o iff

da,
dr

 dg,

a, —4

' -0
i g L =

(5)
for k= 1,...,n and for ¢ in [a, b,]. The condition Y{a) = ¥ defines n
and the theory of ordinary differential equations

initial values a(a),
satisfying the above

then gives a unique set of C™® functions a 1),

equations on the whole domain [a, b,], since the equations are linear}
| discussion, we write TorD for the torsion of the connexion D. If

This defines the parallel field Y.

For ¢t in [a, 5.}, the map Pa,t is linear because of the linearity of
the equations (5).

If ¢ is any number in [a,
pact set o([a, ¢])
parallel translating through each neighborhood via solutions of the

systems (5).//

b], we obtain P_ . by covering the com-

THEOREM. Let m be in M, X in M. Then for any real number
b there exists a real number r > 0 and a unique curve g, defined on
(b — r, by r] such that o(b) = m, T ,(b) = X, and ¢ a geodesic.

Proof. Using the notation of the above proof, we must find C*

functions 8,(t) that satisfy the second-order differential system,

©

-»X, be a coordinate system about o(a) with domajn: with initial conditions

- above theorem.

g
. One checks easily that Tor(X, )=
' Tor(X, Z) + Tor(¥, Z),
i and Z in iA.
! only on X _ and Y _, and not on the fields X and Y, by the theorem

g TorD

 “torsion” to describe the above tensor.
by a finite number of coordinate neighborhoods and

' by imbedding X, ¥, and Z in C®

59

Connexions

Chap. 5

g,.(b) = x,(m) and X = Eg;(b)X,.. The theory of
ordinary differential equations provides us with the r > 0 ang the

functions £ (¢).//

The existence and uniqueness theory of ordinary differential eq-

- uations will actually give us much more than the conclusion of the

In particular, if we let (¢ m, X, b) be the curve
provided by the theorem, then the mapping o is actually C* with
respect to all its parameters t, m, X and b.

The torsion tensor of a connexion D is a vector valued tensor
Tor that assigns to each pair of C* vectors X and Y, with domain

A, a C* vector field Tor(X, ¥), with domain A, by

Tor(X, Y):DXY -D X - [X, 7]

= Tor(Y, X), Tor(X + Y, Z) -
and Tor(fX,¥)=f Tor (X, ¥), where f in F )
Thus the value of Tor (X, ¥)at a point m depends

at the end of Chapter 4. If more than one connexion enters the

= 0, then we say D is symmetric, or torsion free,
As far as we know, there is no nice motivation for the word
In particular, it has nothing

to do with the “torsion of a space curve”,

The following definition of curvature has been motivated in sec-
tion 2.4,

The curvature tensor of a connexion D is a linear transformation
valued tensor R that assigns to each pair of vectors X and Yatm
a linear transformation R(X, Y) of Mm into itself. We define RX, v)Z
tields about m and setting

® RX, 1Z-0D,D, z- DyDyZ - Di ,12),.

Again we check linearity over the ring of C* functions as co-
efficients on the right to determine the tensor character of R, Here,
R(X, ¥)Z =~ R(Y, X)Z, and if { is C*, then
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RUX, ¥)Z =D D Z ~ (YD, Z ~ DDy Z + (YD Z ~ D[ ,]Z

- fR(X, Y)Z.

Also

R(X, Y){Z) = D4[(YHZ + fD  Z] - D_[(XD)Z + 0,21 - (X, YIHZ
= Dry,y)Z = (XYDZ + (YODZ + (XOD Z + 1D D ,Z — (VXD)Z

~(XOD,Z - (YND,Z — D D, Z_

- (X, ¥INZ — D[, 12 - [R(X, Y)z.

The linearity of R(X, ¥)Z with respect to addition (in each of its
variables) is trivial to check.

The tensor nature of the torsion and curvature will again be veri-
fied in section 5.3 with exhibition of the classical coordinate repre-
sentations of these tensors.,

The concept of a “connexion-preserving” map follows naturally.
Let M and M' be C> manifolds with connexions D and D', respectively
AC¥map f: M — M'is connexion preserving if t(D,Y)= D', (f Y)
for all vectors X and fields Y. Note the right side is well- defmed
since f,¥ is a well-defined field on some curve that fits f,X. AC™
map f: M — M' is geodesic preserving if f . g is a geodesic in M' for
each geodesic g in M. Trivially, a connexion-preserving map is

geodesic preserving.

THEOREM. Let f be a diffeomorphism of M onto M*, and let D'
be a connexion on M'. Then there is a unique connexion D on M
for which f is connexion preserving.

Proof. Take X in M_ and let ¥ be a field about m. Since f is a
diffeo, f,¥ is a field about f(m). Define D ¥ = 1D} 4fx¥). The
ver1f1cat10n that D is a connexion is left as an exerc1se

If every geodesic g(¢) can be extended so it is a geodesic for all
t in R, then the connexion D is complete.
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Section 5.2.  Cartan viewpoint.

For local problems conceming a connexion, one can transform the
properties of D tp certain properties of differential forms. By using
fiber bundles associated with a manifold, one can also study global
problems via differential forms. We develop the 1ocal viewpoint here.

Let D be a connexion on an n-manifold M, and fix D and M through-
out this section. Let U be a fixed open set (perhaps a coordinate
domain) in M, and let €y5...5€, be a fixed base field of independent
C> vectors on U, Let W s.-.,w,_ be the C* l-forms on U which are ;
the dual base to e ,...,e_ at each point of U. Define n? connexion
1-forms w;; on U which are associated with D and the base field by

@  Dye, -5n

i=1

wif,(X)e,..

The w, ;; are linear by property (2) of the connexion D, and w,. are
C*, since if X a C* field on U, then D,e is a C* field, so w (X) =
W, (DXe )} is a C*™ function.

The torsion and curvature tensors may also be expressed via
differential forms associated with the base field. Define 2-forms T

and Ri on U by
(10) TX, V)= I TAX, Ve,
(11) R(X, Y)ej = E;’_IRI_J.(X, Ye,

where the properties of an alternating tensor are checked for T and
R, via the properties of T and R.

'I‘he forms w, w.» T and R;, are related by the Cartan structural
equations Whlch are equxvalent to the definition of the torsion and
curvature tensors. We merely express everything in terms of the base
field. Let X and ¥ be C* fields on U. Then,

T(X, Y)e,=D,¥ — D X - [X, Y]

= DX(ZWj(Y)ef) - DY(ZWj(X)ej) - ij([X, Y])ej
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= E(ij(Y) - Yw, (X) - W,-[X. Y])e].
+ Z(Wj(Y)Wij(X) - W,-(X)W,-,-(Y))ei-

Equating components,

T(X,7)- (EW” ’*W].)(X, Y)=Xw(Y)-Yw,(X)-w]lX, Y]

Since the expression on the left is a 2-form, so is the expression on
the right (taken as a whole), and indeed, it is the exterior derivative
dw, of w_evaluated on X and ¥. With this motivation we define the
exterior derivative operator d on 1-forms and functions (O-forms) as
follows.

For a C* function f with domain A4, let df(X) = Xf; thus df is a
C* 1-form on A. Let w be any C* 1-form with domain 4. Then dw
is a C* 2-form with domain A, defined on C* fields X, ¥ on A by

(12) dw(X, ¥) = Xw(¥) - Yw(X) - w(X, V1.

We leave it to the reader to check that the right side is linear in
each slot over the ring of C* functions on 4, and hence that
dw(X_, Y_)is defined for m in A independent of the fields X and Y.

If fis a C* function on 4, then d%f = d(df) = 0. To see this, let
X and Y be C*™ fields on A; then,

d*(X, Y) = Xdf(Y) - Ydf(X) - dflX, Y]
= XYf-YXf-[X, YIf=0.

Also note that if X,,...,X, & coordinate system on 4, then dx,...,dx
is the dual base to 9/Jx ,...,d/0x_, since dx,(9/9x,) = Ox,;/0x; = 8,
(the Kronecker delta).

Now we can write the first Cartan structural equation,

(13) dw, =30 w AW].+T,..

ij

By a computation involving the definition of R(X, ¥), which is com-
pletely analogous to the above computation, one obtains the second °
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Cartan structural equation,
(14) dw, = =20 W swy, + R

These equations provide an alternate proof of the tensor character
of T and R, since they show that T , and Ri]. are 2-forms.

Section 5.3.  Coordinate viewpoint.

Let U be a coordinate neighborhood, and let Xl""’Xn be the co-
ordinate base field associated with the system Xy..pX, on U. Then
w, = dx, and the associated forms LT T, and Rl.,. define functions

i i :
ij, T, and R/, n» respectively by

Iﬂjik =w, (X,) so W= Ekl";kdxk,

T”.k = T,-(Xp X,) SO T, = Z,-kT,-,-kde @dxk,

R;kh =R, (X, X,) S0

R,-]- = Zth;kthk ® dXh'
From the structural equations, we have
T = (@™, + 30 dx, ~dx )X, X,)=Ti -Ti,

since d?x, = 0, and

Rln=(dw, + ST dx) ~(T%,dx )X, X,)

= kaij()(h) - Xw (X)) + E(F;'kr';h -TLT?)

ik

- in _ 9

8xk 8xh

+ B(CETT, —TLTT),

th™ jk

which are the classical coordinate components of these tensors.



64  Notes on Differential Geometry r

Section 5.4. Difference tensor of two connexions.

The reference for *his section is Ambrose, Singer and Palais, Let
M be a C* manifold, and let D and D be connexions on M. For fields
X and Y we define the difference tensor B(X, Y)= EXY ~D,Y. The
linearity of B in the first slot is trivial from properties of the connex-
ions (namely, (2) and (3)). To check the second slot, let f be C™
on the domain of X and ¥; then B(X, f¥) = (Xf)¥ + fﬁXY — XNy ~
DY = {B(X, Y).

Let B(X, ¥) =S, ¥) + A(X, Y) be the standard decomposition of
a bilinear tensor into symmetric and skew-symmetric pieces; i.e.,

S(X, ¥) = (1/2)[B(X, Y) + B(Y, X)]
and

Actually, we can express 4 in terms of the torsion tensors T and T
of D and D, respectively, for 24(X, ¥) =

EXY_DXY~_D-YX+DYX:T(X’ Y)+[X, Y]"‘T(X; Y)""[X, Y]:T(X) Y)_'T(‘YI Y)‘

THEOREM. The following statements are equivalent:
L () The connections D and D have the same geodesics.
(b) B(X, X) = 0 for all vectors X.
(c) S=0.
(d) B=A.

Proof. (a) implies (b): Take X at m in M and let & be the geodesic
with initial vector X. Extend X along g by letting X be the tangent to
g; then B(X, X) = EXX ~DyX =0~ 0, since g is a geodesic for both
connections.

(b) implies (a): Let g be a geodesic for D with tangent field X; then
EXX =B(X, X) + D X = 0 on g; hence g ie a geodesic for D.

(b) equivalent to (c): Since S is symmetric, it is determined by its
diagonal values S(X, X), and B(X, X) = 0 iff S(X, X) = O.

(c) equivalent to (d): For B =S + A.//
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THEOREM. The connexions D and D are equal iff they have
the same geodesics and the same torsion tensors.

Proof. That the first part implies the second is trivial. Conversely,
if the geodesics are the same, then S = 0, and if the torsion tensors
are equal, then A = 0; hence B=0and D = D.//

THEOREM. Given a connexion: D on M, there is a unique con-
nexion D having the same geodesics as D and zero torsion.

Proof. Let D,Y = l_)XY - (I/Z)T(X, Y). It is trivial to check that
D satisfies the required properties to define a connexion. Here
B = (1/2)T = A, since a torsion tensor is skew-symmetric; thus S = 0,
so D and D have the same geodesics. Moreover, T = T — 24 = 0, so
D has zero torsion. The uniqueness follows from the preceding

theorem.//

Thus if we partition connexions into equivalence classes by plac-
ing two connexions with the same geodesics in the same class, then
in each class there exists a unique torsion-free (zero torsion) con-
nexion. Moteover, given any connexion D and any skew-symmetric
vector-valued 2-covariant tensor 7‘, there exists a connexion with
torsion tensor T and the same geodesics as D. From the above proof
we have T(X, Y) = 2(5XY - D,Y), which provides a geometric inter-
pretation of the torsion tensor of a connexion as measuring the dif-
ference between covariant differentiation in the given connexion and
covariant differentiation in the torsion-free connexion with the same
geodesics.,

Section 5.5. Bundle viewpoint.

In this section we define a connexion on the bundle of bases over
a manifold and sketch a proof of the equivalence of such a definition
with our previous viewpoints. This is the fourth (and last) viewpoint
we consider. The bundle viewpoint provides a natural “jumping off”
for generalizations to connexions in all kinds of bundles, and much
of the research in differential geometry at this time uses these con-
cepts. For more details the reader is referred to the book by Crittender
and Bishop or the book by Kobayashi and Nomizu.

Throughout this section let ¥ be a C*™ n-manifold, let B = B{M) be
the bundljgf bases over M (see problem 22), and let 7: B — M be the



66  Notes on Differential Geometry

natural projection map. If D is a connexion on M, then by integrat-
ing ordinary differential equations ((5) above), we can parallel trans-
late the tangent space along curves in M. If b = (m; €y..r€,) is in
B and o is a curve in M with o(0) = m, then by parallel translation we
define a C* curve (¢t) = (oft); e,(t)...,e, (1) in B, where ¢ (¢) is the
parallel translate of e, = e,(0) along o to oft). Since 7 o5 = 0, we
say G is a “lift of 0”, or @ “lies over 0,” and since 7 reads off a par-
allel base, we say G is a “horizontal” curve in B. Thus a connexion
D on M yields unique “horizontal lifts” of C* curves in M. The
bundle definition of a connexion gives an independent method for de-
fining “horizontal lifts” (of curves in M) with the correct properties.

Recall at each point b in B we defined the subspace of vertical
vectors V, = [X in B,: m(X)=0]. A connexion on B is a mapping
H that assigns to each b in B subspace H, of B, such that:

o)) H, = 0 and 77*|Hb is an isomorphism of H, onto MTr(b)
(hence Hb is n~dimensional).

@) R)H,)=H,, forall § in GL(n, R).

(3) H is C*; i.e., for each b in B there is a neighborhood U and
a set of n independent C* vector fields E, ., E,_ on U that
give a base for H,, for every b' in U.

If X is in H,, we say X is a horizontal vector. Property (1) implies

for each X in B, there is a unique decomposition X = X, + X, with

X, inH, and X in V,, and property (3) implies if X is C* then X,

and X, are C* fields. If X is a C* field with domain U in M, then

there 1s a unique C™ horizontal field X on U = 7~ YU) with n*(X ) =
'IT(b) for all b in U.

Having the existence of “horizontal lifts” for vector fields, one can
“horizontally” lift curves in a natural way. Thus if o is a curve in ¥
with tangent T (non-vanishing), extend T to a C* field in a neighbor-
hood U of a univalent part of g, lift T to a horizontal field T on U,
and take integral curves of T to find horizontal lifts of 0. The pat-
allel translatlon so defined will be independent of the base (the start-
ing pomt for ©) by property (2); i.e., if  is horizontal (has a horizontal
tangent), then R‘g o ¥ is also horizontal,
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There is a dual viewpoint involving differential forms. To moti-

. vate it, let H be a connexion as described above and notice at each

b= (m; e,...,e.) in B we can define a unique horizontal field E (b)

with 7.(E (b)) = e, by (1). The fields E,,...,E_ are global independent

’ horizontal C* fields on B. Together with the natural vertical fields

E,;.-E, ., we get a global base field on B. Let W_l,...,'u‘/f,

% 1se.0s%,,, be the dual 1-forms to this base (where W ,...,# _ are the
natural 1-forms of problem 41). Thenif X in B, X = Elf"j_lﬁii(X)
(Eij)b. If one knows X ,, then, of course, X = X-X,. Th )
ing X, (or giving H) is equivalent to giving “vertical prOJect1on$
at each point in B. Thus a set of connection 1-forms W . (for i, j =
1,...,n) on B is a set of 1-forms such that

Thus giv-

a"H w, |V form a dual base to E . ;at all 4 in B,

(2 (R )X = _Ig:f"rs(X)g for all X in B,

39 W, are C* for all 1 and j.

That the definition of a connexion on B in terms of H or in terms of

; is equivalent is left as a problem.

Notlce that the W, can be used to define a Lie algebra (of GL(n, R))
valued 1-form w by W(X) E ij(X)X where the X ; are the
canonical left invariant f1e1ds on GL(n, R) (see problem 21).

Finally, we connect with the Cartan viewpoint. Let e,,...,e, be
a base field on the open set U in Y. Define a C* map {: U — B by
f(m) = (m; (e,),_,...,(e,),,) form in U. Since wof is the identity of U,
we call f a section over U. Let W, be the connexion forms defined
in section 5.2, and let W, be the global forms defined above. Then
W= w cof, onU. '

Thus the Cartan structural equations (13) and (14) (and the torsion
and curvature 2-forms) can be carried up to global equations on B.

Problems./ Let M and M' be C*® manifolds.

42, Let x, = x and x, = y be the usual coordinates on R2 Define
a connexion D on R? by letting I'{, = 0 except for I'}, = =T, =
Set up and solve the differential equations for the geodes1cs
thru any point in R2 Find the particular geodesic g with £(0) =
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43.

44,

45.

46.

47.
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(2, 1) and Tg(O) = (3/0x) + (8/dy). Is D complete? Do the
geodesics emanating from the origin pass thru all points of
the plane? If o and y are geodesics with y(0) = o{(0), and
TY(O) = bt ;(0) for b in R, show y(t) = o(bt) for all possible t.
Investigate the connexion D' with all ka =0except'}, = 1.

Let D be a connexion on M. Let off) be an integral curve of
the C* field X, let e,(t),+..,e (1) be a parallel base along o,
and let Y(¢) = 2y (t)e,(t) be a C* field along o. Show DX -
2(dy /dt)e (t) along 0. Show (D ¥}0) = lim (L/OUP, (Y (o(t)) -
Y(O)] as t — 0.

Let f be a connexion preserving C* map of M into M'. Show
f(Tor (X, ¥)) = Tor' (f X, £,¥) and £ (R(X, ¥)Z) = R'(f X,
1Y )f,.2Z).

A manifold M is parallelizable if there is a connexion D on

M in which parallel translation is independent of curves, and
such a D is called a flat connexion. Show M is parallelizable
iff there is a global C* base field on M. If D is a flat con-
nexion, show its curvature tensor is zero (see problem 85).

Let G be a Lie group. Define the left invariant connexion D
on G by asserting all vector fields in the Lie algebra § are
parallel fields. Show D is flat, G is parallelizable, and if X
and Y are in §, then Tor(X, Y) = ~[X, Y] Show that each
geodesic g on G is the left translate of a one-parameter sub-
group o; i.e., g(t) = Lg(o)(o(t)) for all t. Show D is complete.

Let D be a connexion on M. Form in M, let Hm denote the
set of linear maps of M, into itself, obtained by parallel
translation of M, around broken C*™ curves starting and end-
ing at m. Show H_ is a group. If M is connected, show H_

is isomorphic to H_, for m' in M. The group H_ is called the
holonomy group at m, and if M is connected, then the holonomy
group of M is the group H = H_ forany min M. Restricting
the closed curves to be null-homotopic, one obtains the re-
stricted holonomy group HY. If D is flat, show H =0.1If

M is the unit sphere in R3 and D is the Riemannian connexion,
show that H = S0(2, R), where S0(2, R) is the special orthog-
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onal group, or rotation group, consisting of orthogonal maps
with determinant one.

48. (Continuing problem 13.) Let X = 9/dx, and ¥ = d/dx, for a
coordinate system X5y X, o0 M about m, and show

lim (1/00P,,, ~ 1(8/0x)] = R(Y, X)(9/9x,) = T,RE, (8/9x,),
t—>

where [ is the identity map and P, ,is parallel translation
along y from y(0) to y(f). Because of this, one often says
R(X, Y) is “infinitesional parallel translation around an infi-
nitesimal parallelogram spanned by X and ¥.” ’

6. Riemannian Manifolds and Submanifolds

The definition of a Riemannian (and a semi-Riemannian) manifold
was given in section 2.1. A manifold on which one has singled out
a specific symmetric and posjtive definite (or non-singular) 2-covari-
ant tensor field, called the metric tensor, is a Riemannian (or semi-
Riemannian) manifold. In this chapter we generalize the theory of
Chapters 2 and 3 in a natural way. Much of the theory applies to
semi-Riemannian manifolds and submanifolds, but, in general, we
phrase things only in Riemannian terms.

Section 6.1. Length and distance.

The metric tensor allows us to define lengths, angles, and distances.
Let M be a Riemannian manifold with metric tensor <,>, Let X and
Y be in M_. Define the length of X by |X| = V<X, X>. Define the
angle 0 between X and Y (both non-zero) by letting <X, ¥> = |X| |¥]| cos €
where 0 < 0 < =, and notice the Schwartz inequality <X, ¥>| <
|X||¥| makes this possible.
The length of a curve is now defined by integrating the length of
its tangent vector field. Let ¢ be a C* curve on [a, b] with tangent
field T (or Tc if necessary). The length of o from a to be, denoted
by |o|®, is defined by

M) lo|? = [ VT, T(0>ar.
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The length of
a broken C* curve is defined as the (finite) sum of the lengths of its
C* pieces.

The integral exists, since the integrand is continuous.
The number |o|? is independent of the parameterization
let g be a C! map of [c, d]
into [&, 5] with end points mapping to end points (assume g(c) = a
and g(d) = b); then

of its image set in the following sense:

b ) d
[ <To(0), To(e) >%dt = [T<T(g(0)), T,(8(t))> gt

d
={ Too 0, Tcog(t)>‘/2dt

§'()T ;(g(t)) by the chain rule,
where q = o{a) and p = o(b).
Class1cally, the metric tensor is almost always expressed by the

since Tcog(t) = Thus we can write

lol5 = lolz,

notation “ds? = gijdxidxl..” This means one is giving the inner pro-
duct on a coordinate domain U with coordinate functions xl ,x in
terms of the coordinate bases; i.e., if X, =9/0x,, then & , X >

isa C®functionon U. If ¥ = 3y X, and Z = Zz X then <Y, Z> =
21 P 1Y:Zkg1k Thys, giving the matnx of functions §;; on U deter-
mines the inner product on U. The “ds” only makes sense when one
is discussing a curve o which maps into U, for then let s(f) = o]l
and

d(x; ° o) d(x; o )
dt  dt '

ds)2 - <T, T> = 35
(dt) g,

If M is connected, a pseudo-metric is defined on M by

) d(p, m) = inf [|o|: o a broken C* curve from p to m).
Trivially, d(p, m) > 0, d(p, p) = 0, and d(p, m) = d(m, p). The triangle
inequality is left as a problem.

THEOREM. The pseudo-metric topology on M equals the mani-
fold topology.

Proof. (After Seifert and Threlfall, p. 44). Let m be any point in

M, and let Xs..sX, be a coordinate system about m with domain U.

x,(p) =
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- For p in U let d(p) = d(m, p) defined above, and let ¢'(p) = [Exi(p)z]]/z
. where we assume x,(m)= 0. Choose a>0so0 4 =[p: d'(p)<alis
contained in U. On the compact set B = [(p, X ) pinAand 1=

Zdx (X )2], the norm function,, |Xp| (=, & (p)dx (X, )dx, )] % is
a contmuous function which takes on a max1mum R and a minimum
r>0.

Let ¢ be any broken C™ curve in A with o(0) = m, o(b) = p and
(o(t), T (1)) always in B. Then |o| = f |T,(¢)|dt > rb > rd'(p).
broken curve o from m to p that leaves’ A, one has |o| > ra > rd'(p).
Hence, (1) d(p) > rd'(p)d But if. o curve with x, o o{t) = tp,/d"(p), where
p,, then |of = { "|T (#)|dt < Rd'(p). Hence, (2) d(p) < Rd'(p).

The inequalities (1) and (2) prove the theorem.//

For a

Corollary. A connected Riemannian manifold M is Hausdorff iff
the pseudo-metric d is a metric.

In Chapter 10 we show that geodesics are the curves that locally
minimize arc length, i.e., the length of a small piece of a geodesic in
M is precisely the distance between the end points of the piece.

Henceforth we assume all manifolds we mention are Hausdorff, A
Riemannian manifold is complete if it is complete as a metric space,

i.e., every Cauchy sequence must converge.

Section 6.2. Riemannian connexion and curvature.

A Riemannian connexion D on a Riemannian manifold M is a con-
nexion D such that

3) D,Y -D_X =X, Y], and

(4)  Z<X, ¥>=<D,X, ¥Y>+<X, D, V>,

for all fields X, ¥, and Z with a common domain. The fundamental

theorem of (semi-) Riemannian manifolds is the following:

THEOREM. There exists a unique Riemannian connection on a
(semi-) Riemannian manifold.

Proof. We show a Riemannian connexion D exists and is unique
on every coordinate domain U. The uniqueness implies D must agree
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on overlapping domains; hence D exists and is unique on all of M.

Let X ,,...,X_ be the coordinate fields on U, let £ = <X, X;>ony,
and let (§71),, be the j'* entry of the inverse matrix of g = (g, )
(which is non-singular). If (3) and (4) hold, then

G XX, Xp>+ XX, Xp>-X X, X>= 2<DX1X]., X>

since [X,, X _]= 0 for all k, s. By section 5.2, giving D on U is
equivalent to giving functions I'}, with Dy (X;) = 37, T} X, and
demanding properties (1) through (4) of secfion 5.1 are valid. Thus
(5) implies 2%, "8, = X6, + X,4,, — X §,,; hence

08,; +agn' _agij )
8x1 8x]. axr

6) Tk =1/28 (1,

This is the classical expression for the Christoffel function I":‘j in
terms of the metric tensor. Use (6) to define D on U. A direct check
of (3) and (4) shows D is Riemannian, and the explicit representation
(6) shows D is unique.//

The above theorem is special case of a more general theorem
(problem 70). For the rest of this section let ¥ be a (semi) Riemannian
manifold and let D be the Riemannian connexion on M. The
Riemann-Christoffel curvature tensor (of type 0, 4) is the 4-covariant
tensor K(X, ¥, Z, W) = <X, R(Z, W)Y>for X, ¥, Z, and Win M .

THEOREM. The following relations are true:
(a) RX,Y)Z +R(Z, X)Y +R(Y, 2)X=0
(b) KX, Y, Z W)=-K(Y, X, Z, W)
) KX, Y, Z, W) =KX, Y, W 2)
d) KX,Y, 2 W=K(Z, W, X, Y)

The relation (a) is called the first Biachi identity and it holds for
any symmetric connexion. These relations are equivalent to the
“symmetries” of the indices of the classical R,,jkh functions.

Proof. For (a), use the Jacobi identity, property (3) above, and
compute. For (c), use R(Z, W) = —-R(W, Z). For (b), use property (4)

N
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to shift D from one slot to the other. For (d), notice (a) implies (a*):
KX, Y, Z W)+K(X, W, Y, Z) + K(X, Z, W, ¥) = 0. By writing (a')
three more times, cyclicly permuting the arguments of the first term
one step from one line to the next, adding all four equations, and
cancelling via (b) and (c), one obtains (d).//

For X and ¥ in M _, let

) AX, ¥) = <X, X><¥, ¥>~ <X, V>2
If AX, ¥) £ 0, let
(8) KX, Y)=K(X, Y, X, V)/A(X, Y),

and by direct computations, using the above properties of K, one can
show

KX, V)= K(¥, X) = K(tX, s¥) = K(X + ¥, )

E?r 5, S, anc_i t not zero. Thus if A(X, ¥) #£ 0 and ad — bc £ 0, then
K(X, ¥Y) = K(aX + bY, cX + dY), and we define K(P), the Riemannian
curvature of the 2-dimensional subspace P of M_ spanned by X and
¥, by K(P) = <X, R(X, Y)Y >/A(X, Y). In section 2.4, we showed
KM ) = K(m) is the Gauss curvature of a surface ¥ in R3 In the
Riemannian case, [A(X, ¥)]% is the area of the parallelogram spanned
by X and Y.

Let f: M — M' be a C*™ map between Riemannian manifolds. If
there is a C* real valued positive function F on M such that for all
min M and all X, ¥ in M., <tX, £.Y> = F(m)<X, Y>, then f is a
conformal (or strictly conformal) map and F is called the scale func-
tion. If F exists but F > 0 only, then f is weakly conformal, If F =1,
then f is an isometry. If f is an isometry and a diffeomorphism, then
fis isometric and M is isometric to M'. If F is constant, then f is
homothetic.

At this point, we explicitly call the reader’s attention to problem
52, which is considered an integral part of the theory of Riemannian
manifolds.
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Section 6.3. Curves in Riemannian manifolds.

This section parallels the standard treatment of curves in advanced
calculus. Let M be a Riemannian manifold with Riemannian connex-
ion D. Let o be a C™ curve in M with tangent field V = o,(d/dt),
which can legitemately be called the “velocity vector” of o since
“length” is defined. Assuming V does not vanish on the domain of
o, define the unit tangent vector T(t) = V(¢)/|V(t)|, and define the
speed function s' = (ds/dt) = |V(¢t)|, so V(¢) = s'(£)T(¢) for ¢ in the do-
main of 0. Define the geodesic curvature vector field of o to be the
field D T, and its length k| is the geodesic curvature of o. Notice
that D .T and k, at a particular point on the curve, do not depend on
the parameterization of the “point set of the curve” but only on the
orientation (choice of “direction”) and the existence of a C* parame-
terization with non-vanishing tangent at the point.

The curve o is a geodesic (D, V = 0) iff V has constant length and
(@) DT =0or (b) k,; = 0. This follows since D,V =s'D(s'T) =
s's"T + (s")?D .T and s' > 0 while D . T is orthogonal to T, (<T, T>=
1500 =T<T, T3=2<D T, T>).

When k (¢) > 0, define the (first) normal to o at o{t) to be the unit
vector N ,(t) such that DT =k N, att. lfN, is defined on an interval,
then, 0 =T<N, T>=<D, N, T>+ <N, D, T>=<D, N, T>+ k,, so
DN, # 0 on the interval. The vector DN, + k,T is orthogonal to
both T and N,; hence, let its length be k,, the second curvature or
torsion. If k() > 0, define the second normal to o at o(t) to be the
unit vector N ,(t) such that DN, + k,T = k,N,. If k, >0 on an inter-
val, then the above process can be continued to define k,, and where
k, > 0, one gets N, etc. The vectors T, N, N,,... are called Frenet
vectors, and the equations that express the DTIV , in terms of the
Frenet vectors are called the Frenet formulae.

When M is a 2-manifold and k, > 0, then the Frenet formulae be-
come D . T = k,N and D N, = -k, T. In this case it is possible to
locally choose N | along o independently of D.T (on univalent pieces
of 0), and letting D,.T = k N, would define k,, which could take on
negative values (see problem 72).

75

- Chap. 6 Riemannian Manifolds and Submanifolds

| Section 6.4.  Submanifolds.

The theory in sections 2,3 and 2.4 is now generalized. Through-
out this section let the k-manifold M be a (non~singular) submanifold
' of the (semi-) Riemannian manifold M. In the semi-Riemannian case,
" the submanifold M is non-singular if the metric tensor is non-singular
- when restricted to M for all m in ¥ (thus M is a semi-Riemannian
manifold under the induced metric tensor). The induced metric ten-

sor on M is called the first fundamental form on M. Let D be the

' Riemannian connexion on M.

THEOREM. For C* fields X and Y with domain A on M (and
tangent to M), define D Y and V(X, ¥) on A by decomposing DY
into its unique tangential and normal components, respectively; thus,
(9 DY =D,Y+ V(X Y.

Then D is the Riemannian connexion on M and V is a symmetrié

vector-valued 2-covariant C™ tensor called the second fundamental
tensor. The decomposition equation (9) is called the Gauss equation.

Proof. We will establish the C* nature of the decomposition.

The rest of the proof will only be outlined, for it is a simple exercise,
Use the properties of D (since it is a connexion) to establish the
properties of D (making it a connexion) and the tensor character of

V (its multilinearity). Zero torsion for D implies zero torsion for D,
and V is symmetric (use the proposition in section 2.2, which gen-
eralizes trivially). Since D satisfies condition (4) (section 6.2), D
does too. Hence D is Riemannian, and by the uniqueness theorem,

D is the Riemannian connexion on M.

To show D and V are C*= on 4, choose p in 4. Let U and U be
special coordinate domains about p in M and M, respectively, with
UcA4, andletZ,,...,Z, and Z, = Z,|y,..., 2, = Z, ], be the coordi-
nate vector fields on U and U, respectively. Apply the Gram-Schmidt
process to 21,...,En on U to obtain C* (the Gram-Schmidt process is
algebraic) orthonormal fields W ,...,W_ on U such that W oWely
give :iC"" orthonormal base of M for m in U, while W, _ /|y, W |y
give M-vector fields that are C* on U and form a base of the ortho-

gonal complement to M_, formin U. Let X = 3% x W and ¥ =
Ej.‘_ AP define C™ functions x, and y, on U for i = 1,...,k, and let

igs




76  Notes on Differential Geometry

D W =28 Bf W define C™ functions B". on U. Then

=1 {
x r 1

D <Y = E(XY )W + 2y B

r

where 1 and j = 1,...,k and r = 1,...,n; thus

D,y =35 [(Xy)+ zk]_lijlBﬂ]W

and

VX, Y)= X [2. X B,

"'k+1 JUiT i

are C®on U.//

By decomposing the curvature R into tangent and normal parts, we
obtain the Gauss curvature equation (10), and the Codazzi-Mainardi
equation (11), respectively. Let X, ¥, and Z be C* fields tangent to
M with a common domain. Writing the decomposition of a vector W
as W=tan W + nor W,

(10)  tan R(X, ¥)Z = R(X, Y)Z + tan D, v, Z) - D v, z)],

and

A1) nor RWX, Y)Z = V(X, D Z) - V(¥, D, 2) - V([X, Y],2)
+nor [DyV(¥, Z)-D V(X 2)].

Since V is a tensor, i.e., V(Xm, Y ) is well-defined and indepén-
dent of the fields X and ¥ used to compute it in the Gauss equation,
we define X and Y to be conjugate vectors at m if V(X, ¥) = 0, A
vector X in M _ is an asymptotic vector if V(X, X) = 0, and in any case,
define the asymptottc (or normal) curvature of X, ky, by ky =
VX, X)|. If V = 0, then m is a flat point on M.

If o is a curve in M with C* unit tangent T, then V(T, T) is the
normal curvature vector field of o and k. = |V(T, T)| is the normal
curvature of o.
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THEOREM (Meusnier). AIl curves on M with the same unit tan-
gent T at a point have the same normal curvature at that point. If
o a curve on M with C* unit tangent T, then (k )=k D%+ (k)2
relates the geodesic curvatures k and k, of ¢ in M and M with its
normal curvature k., Moreover, k_z. =k 1 COs ¢ determines the angle
¢ between the normal 1V of o in M and the normal curvature vector
V(T, TYif ¢ is deﬁned

Proof. The first sentence follows since V is a tensor. The sec-
ond sentence follows from the Gauss equation D T =D, T+V(T, T
since the vectors on the right are orthogonal. For the thlrd sentence,
1fk1 =0, then k, =ky =0 and ¢ not defined. If k >OandkT_0
then V(T, T) =0, N is tangent to M, and ¢ = 7/2 (1f anything).

k £ 0, let N be the unit normal in direction of V(7T, T) and

ky=<V(T, T), N> =<D,T, N> =k, cos ¢.//

The theorem and corollary at the end of section 2.3 can now be
generalized by replacing R" by M.

Section 6.5. Hypersurfaces.

In this section, let M be a hypersurface in the Riemannian mani-
fold i and let N be a C* unit normal on M. Define the Weingarten
map L(X) = EXIV for X in M_ (as in section 2.2). The Gauss equa-
tion for M now becomes

(12)  D,¥ =D,V - <LX, Y>N

since <V(X, Y), N> = <D ¥, N> = X<N, ¥>~ <¥, L(X)> and <N, ¥> = 0.
Thus V(X, V) = —<LX, Y>N.

The fundamental forms and the imbedded geometric invariants of
M in M are defined in terms of L exactly as in section 2.2. Notice in
this case V is symmetric is equivalent to L being self adjoint.

The Gauss curvature equation (10) and Codazzi-Mainardi equation
(11) now become

(13) tan R(X, ¥)Z = R(X, Y)Z ~ [<LY, Z>L(X) - <LX, Z>L(Y)],

'!
e

o o«
e

a‘lz‘

o,
=
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and

(14)  nor R, Y)Z = —<D,LY - D, LX - LIX, Y], Z>N

respectively.
The torsion tensor is generalized by defining for any C*™ linear
transformation valued tensor Wp; M,—M,ona C® manifold M, the

torsion of W, Tor,, by
(15) Tor (X, ¥) = D, ,W(¥) - D W(X) - WX, Y]

The Codazzi-Mainardi equation (14) on a hypersurface becomes
nor R(X, ¥)Z = —<Tor (X, ¥), Z>N. Thus Tor, = 0 on M iff

(16) R(X, ¥)Z = R(X, Y)Z - [<LY, Z>LX — <LX, Z>LY].

The following theorem generalizes the “theorema egregium” of
Gauss, and actually, it may be generalized to the case where M is a
k-submanifold of M (see Hicks?!).

THEOREM. Let M be a hypersurface in the Riemannian M, let
P be a 2-dimensional subspace of M_, and let K(P) and K(P) be the
Riemannian curvature of P in M and M respectively. Let N be a unit
C* normal on a heighborhood of m, and let 1.{X) = BXIV for X in MM.
If X and Y form an orthonormal base of P, then

(17) K@) =K({P) - (KLY, Y><LX, X> - <LX, ¥Y>2).

Proof. Combine the definition of Riemannian cutvature with the
Gauss curvature equation (13).//

When M is a 3-manifold, the above theorem shows the determinant
of L is independent of the imbedding (i.e., independent of L) but de-
pends only on the Riemannian structure of M and M.

A related result is a form of the Lemma of Synge.

THEOREM. Lef k > 1, and let M be a k=submanifold of the
Riemannian n-manifold M. Let § be a geodesic of M that lies in M,
let T be the unit tangent to g, let X be a unift field tangent to M which
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is parallel in M along g and orthogonal to T, and let P be the subspace
spanned by X and T. Then K(P) > K(P) along g, and K(P) = K(P) iff
X is parallel alonig g in M.

Proof. We prove the theorem for k = n — 1, leaving the other cases
to problem 55. Let N be a C* unit normal on a neighborhood of a
point on ¢ and let L(Z) = D—ZN. Here ET_T -0 so DTT =~ 0 and
<LT, T>=0. By the previous theorem, K(P) =~ K(P) + <LX, T>%>
K(P). If equality holds, then <LX, T>=0soD_ X =D_X = 0, and
conversely.//

There is a basic “rigidity” theorem for hypersurfaces of R™ which
is our next goal. This theorem is a uniqueness theorem, and there
is a corresponding existence theorem that is proved in Chapter 9.
When n = 3, the theorem was first proved by 0. Bonnet (1867).

Intuitively, this theorem states if two hypersurfaces in R" are
isometric and their normals are “bending the same”, then by a “rigid

" motion” one can superimpose the two manifolds.

THEOREM. Let M and M' be connected hypersurfaces in R™ for
n> 3. Let N and N' be C* unit normal fields on M and M', respec-
tively. Let F be a diffeomorphism of M onto M' that preserves the
first and second fundamental forms. Then there is an isometry G of
R with F = G| .

Proof. During this proof let us use “primes” to denote concepts
belonging M' which. correspond to familiar concepts for M; i.e., let
L(X) = DN for X in M and L'(¥) = D ,N' for ¥ in M's. The hy-
pothesis states if X and Z are in Mp, then

<F X, F 2> =<X, Z>and <L'( F X), F,Z> = <LX, Z>.
Combining these statements,

LMF  X), FoZ>=<LX, Z>=<F,LX, F. 2>
for all Z which implies L' o F, = F, o L. Thus the hypothesis could

be rephrased as a demand that F be an isometry of M onto M' whose
Jacobian commutes with the Weingarten maps. Since an isometry is
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connexion preserving, F.D,Z)- D', L F4Z for vectors X and fields
Z tangent to M. i

If pin M, we extend the Jacobian of F to be a linear map of (R™)
onto (R")p. where p' = F{p). Let W be in (R")p, then W = W, +aN 7
where W, is tangent to M, so define i

Fy0W) = F (W) + aN,.

If X is in M‘D and W is a C* field of R"vectors on M, then

FuDyW) =Dy (F,W),

where D is a natural covariant differentiation on R". This follows
since

D W =DyW,+D,(aN)
=D,W, - <LX, WoN + (Xa)N + aLX,
and

Fe@yW)=D' . F.W, - <F.LX, FWoN' + FoX(ao FTON' + (a0 FTUL'F X

=P 2P +Dp (aoF W) =D, F..

Now let €ys--+s€, be the usual orthonormal fields on R™ and define
C* functions b__on M by F*(es)p = Ef_Jbrs(p)(er) 1. The functions.
brs are C* since F, M, and Y* are Ce, and the n bi/ n matrix b_ (p) is
orthogonal since F is an isometry. Then for any tangent vectorrsX to

M at any point p in ¥, we know l_)Xes = 0, since e, are parallel fields
on R", Thus,

0= F*(Exes) ZBF*X(F*GS)

=3, [(Xb, e, + bmﬁ,,.*xer] =3, (X5, e,
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so Xb,_ =0 forall r and s. Since X and p were arbitrary and M is
connected, the functions b__ are constant on M and thus the Jacobian
of F is a constant orthogonal transformation relative to the natural
base e,,...,e_ of R,

Next define a map G of R" onto itself which is a translation fol-
lowed by an orthogonal map by letting G(p) = p' = F(p) for one p in
M and requiring (G*)p = (F*)p. This completely determines G and
the Jacobian of G is constant and hence equal to the Jacobian of F
at all points. Since M is connected, F = G1M,//

Section 6.6,  Cartan viewpoint and coordinate viewpoint.

In this section let M be a hypersurface of a Riemannian n-manifold
M. Let pbein M, let U be a special coordinate neighborhood of pin
M with U the corresponding neighborhood of p in M, U CU. Apply the
Gram-Schmidt process to the coordinate vector fields on U to obtain
an orthonormal base field € sees€, ON U with e,(m),...,e__ (m) a base
of M_ for m in U and e, (m) normal to M, (thus_ e, provides a local
normal for the neighborhood U). Let f: U —» U be the inclusion map.
Applying the results of section 5.2, let W ,...,W_ be the dual 1-
forms associated with €--s€, and let W, for 1 <4, j <n be £he con-
nexion 1l-forms associated with the Riemanrdian connexion D on U, so

(18) DXej = z;lilwij(x)ei’
for j = 1,...,n.

tw = . . -
Let w . w,.|y and w, =W, for 1<i, j<n, ie., Wij_fwij’

w, = [*®% . Then, if X is tangent to i at m in U, by the Gauss equa-
tion,
(19 DXej = 2?:11 W, (X)e,

20) VX, e],) = vT/'m.(X)en

forj=1,...,n — 1. [Thus Lo for i, j < n are the connexion forms for
the induced Riemannian connection D on M. Moreover,
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@D L(X)=Dye, = 37w, (X)e,

since L(X) in M_, sow, -0OonU. Also w,. =0on U, since e, is
normal to M. Equation (18) is the Gauss equation and equation (21)
is the Weingarten equation.

Let I, I, III be the first, second, and third fundamental forms,
tespectively. Then for X and ¥ in ¥_, m in U,

HX, Y) = 207w (X)w (V)
H(X, V) =<LX, V> = 2;"’1win(X)wi(Y)
(X, Y)=<LX, LY> = 2w, (Xw, (7).

Notice 0 = X < e, e,>=<Dye, e, >+ <ey Dyep>= Wj,.(X) +w,(X)
for all X tangent to J, i.e. W,; =-w,. for connexion forms belonging
to an orthonormal base (and thls again shows w__ = 0), Thus we can
write II and III in terms of w . if we wish,

Certain relations are implied by the Cartan structural equations.
The equation dw_ = —Z]’.’_ W

The equation aw == —ZJ?, I_Wn. ~W

AW}. =0 (on M) implies II is symmetric.
=0 (on M) implies III is

symmetric, Fori, j <n, d'v?zij = —2:“17/,.5 w_; + R,, when restricted
to vectors on M _, gives f*dw,, = dw,, = =-3"7lw  ~w_ 4R, -
s=1 is sj ij
n
57w, ~w,, + R, Thus

\

22) R.--w, ~w +R.

which is the Gauss curvature equation from this point of view. For
i<n,

(23) f*dwin = dwin = _E:_—IIW is Awsn + Ein

is the Codazzi-Mainardi equation.

For the coordinate viewpoint, let X,,...4X, be the special coordinate
system on U such that XyyeesX glve coordinates onU. LetX, =
a/ax, for i = 1,.,
apply the above analysis to the base field % QY

oo —1 and let X = e, the unit normal (on U). Now
» X (and this time
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£ -w,, necessarily, since the base X ,...,X_ is not necessarily
orthonormal).

Section 6.7.  Canonical spaces of constant curvature.

We exhibit the three classical examples of n-dimensional (n > 2)
simply connected complete spaces with constant Riemannian curva-
ture K =0, K >0, and K <0; i.e., the Riemannian curvature K(P) of
all plane sections is a constant.

For K = 0, let M = R” with the usual Riemannian metric. This is

- usually called Euclidean space or flat space.

ForK >0, let M = [a in R"* L, PAARE 2 l/K] i.e., M is the n-

dim sphere of radius 1/v/K about the orlgm in R"*1, It is a Riemannian
manifold via the induced metric from R""!. This is called spherical
space or Riemann space. Letting N be the unit outer normal on M,

then L(X) = VKX for all vectors tangent to M and all points are umbilic.
By equation (17) ahove, K(P) = <LX, X><LY¥, ¥Y> = K where X and ¥
are unit orthogonal vectors spanning P. Since M is compact, it is com-
plete. An alternate proof that M has constant curvature is provided

by the group of orthogonal tranformations on R"*!, which provides
isometries that will map any point m, and plane section P at m, into
any other point m' and plane section P'. Since an isometry preserves
the curvature, this would show M has constant Riemannian curvature
but would not evaluate this constant.

For K <0, let M = [a in R™: E'l'af <-4/K]). Let X,..-sX, be the
usual coordinate functions on R7, i.e., x (a) =a,, let X = a/axr_ for
I =1,...,n, and define a metric on ¥ by the funct1ons g, = <X, X].> =
3, /A2 where A = 1+ (K/4)27x2. Then M with this metrlc is called
hyperbolzc space, or Poincare space. Thus M is obtained by a con-
formal change of the usual metric tensor on an open ball in R™, and
M is simply connected, since it is contractible.

One proves M has constant negative Riemannian curvature K by a
direct computation which we outline. Let K be the Riemannian
curvature of the plane section spanned by X X at any point in M.

Let R(X, X )X p Rk(X X )X = 2, Rk X defme functions Rk
Then K, = A2 jip
terms of F’k, and I i x in terms of g

and compute via the class1cal formulae for Rk
These formulae show l ‘ 0
unless two indices are equal and F’ T" F' = —Kx,/2A whlle
F", Kxj/2A Then RJ’” (K/A)— 2(2“ 2)/4A2 and K - K.
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Also by direct computation one shows R;kr =0Ounless k=1, r =,

or k = j, r =1. Then letting e, = AX, gives an orthonormal base e,
...ye,_ at each point of M. Let P be any plane section at m in ¥ and
let f,, {, be an orthonormal base of P which we extend to an ortho-
normal base of M_. Then the base e, is related to the base ij. via an
orthogonal matrix, and one uses this fact to show K(fl, f2) = K. Thus
M has constant negative curvature.

To show M is complete, let K = —-B?2, and one shows the curve £:
t — [2 sinh gt/(B cosh gt), 0,...,0] is a geodesic defined for all ¢

and parameterized by arc length. Such a geodesic is obtained on
every ray emanating from the origin 0 by symmetry. Thus

I_?M(O, t) = I—S‘Rn(O, 2 sinh gt/B cosh gt)

which is a compact set, so M is complete. (Here Em (p, r) = [min M:
d,(m, p) <r, where d, is the distance function in ML) Note that the
mapping £, when genétalized to all rays in R?, exhibits explicity the
exponential map of M, onto M (see section 9.3).

For K >0, let M = R7, and let g, = 611/‘42 define a Riemannian
metric on M as above. The above computations show M has constant
Riemannian curvature K and M is trivially simply connected. /But ¥
is not complete since l_?M(O, 2n/4/K) = R™ is not compact. Thus we
have an example of a conformal change of metric which changes a
complete Riemannian manifold into a non-complete Riemannian mani-
fold.

Section 6.8,  Existence.

The objective of this section is to show a paracompact connected
Hausdorff C* manifold admits a Riemannian metric. This is accom~
plished by constructing a “partition of the unit function.” The func-
tion e~¢!/*") is the principal.tool which is used to show there are
“many” C* functions on a C* manifold. “

LEMMA 1. If b and c are real numbers with 0 < b < c. then there
exists a C* function f: R — R with f(t) = 0 for t < b, 0 < f(t) < 1 for
all t, and f(t) = 1 for t 2 c.
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Proof. Consxder the C™ function g which is identically zero for
x <0 and e =175 for x > 0. We outline a sequence of operations
which leads to the desired functions, and we illustrate (and number)
the graphs of these intermediate functions in Fig. 6.1. Translate
g so its graph moves (c — b)/2 units to the left (this is no. (1)).
Reflect the graph of (1) about the y-axis to obtain (2). Multiply (1)
and (2) to obtain (3). Integrate (3) to obtain (4). Multiply (4) by a
scale factor to obtain (5). Translate the graph of (5) to the right to
obtain the desired function f.//

LEMMA 2. If b and ¢ are real numbets with 0 < b < ¢, then there
exists a C™ function F: R" — R with F(p) = 0 for |p| <5, 0<F(p)<1
for all p, and F(p) =1 for |p| > c.

Proof. Let F(p) = f(|p|) where f is obtained from lemma 1. //

LEMMA 3. If M is a Hausdorff C* manifold and m in M, then
there is a coordinate neighborhood U of m and a C™ function f:. M — R
such that {(p) > 0 for p in U and f(p) = 0 for p not in U.

Proof. Let V be any coordinate neighborhood of m with coordinate
map ¢: V —» R such that gb(m) is the origin 0. Choose real numbets
b and ¢ with 0 < b < c such that B(0, c) © (V). Apply lemma 2 to
obtain F and let G =1 — F. Then let U = ¢~ (B(0, ¢)) and let
f=Go ¢ on U while f(p) = 0 for p not in U.//

LEMMA 4, If M is a paracompact Hausdorff C™ manifold then
there exists a locally finite covering [U_], where U are open co-
ordinate neighborhoods, and a collection of non-negative real valued
C™ functions g ] such that g (p) = 0 for p not in U and 3 g, = 1.
The collection [ga] is called a partition of unity for the covering

W,

Proof. Combining lemma 3 and the definition of paracompactness,
one obtains the desired covering (U] with C> functions f_: ¥ — R
such that f, > 0on Uy and f = 0on M — U,. The function F = 3 f_
is a well-defined non-vanishing C* function on M since the covering
U] is locally finite. Finally let Su=1/F./

THEOREM.. If M is a connected Hausdorff C*™ manifold then each
of the following three properties implies the other two:
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(a) M is paracompact,
(b) M admits a Riemannian metric,
(¢) M is second-countable (completely separable).

- Proof. We show (a) implies (b) and give references for the other
« implications whose proofs are purely topological.

:“ Assuming (a), apply lemma 4 to obtain a locally finite cover [Ua]
. with the partition of unity [g,]. On each coordinate neighborhood

U, define a local Riemannian metric tensor <, > by demanding the

_ coordinate map be an isometry. Then the tensor g_<, >, is a global -
C™ tensor on M that vanishes outside U . At any point m in M, for X
and ¥ in M_, let <X, ¥Y> =% g (m)<X, ¥>,. This defines a C™
Riemannian metric tensor on M which shows (a) implies (b).

Assuming (b), then from section 2.6 we know } is a metric space
and hence must be paracompact (see Kelley, p. 160). Thus (b) implies
(a). That (c) implies (a) follows from Hocking and Young, p. 79. To
show (b) implies (c), we refer the reader to Chapter 6 in Kelley. The
metric can be used to define a uniform structure on M which must ad-
mit a countable base (see Kelley, p. 186).// For thevrems conceming
the imbedding of manifolds in other manifolds see Sternberg, Auslander
and Mackenzie, or Smale?.

Problems. All manifolds will be Riemannian unless otherwise
stated.

49, If M is semi-Riemannian and D satisfies (4), then D is metric
preserving. Show that D is metric preserving iff for parallel
fields ¥ and Z along a curve ¢ for function <¥, Z> is constant

on o.

50. Let R and R' be two linear map valued skew-symmetric 2-
covariant tensors whose corresponding K and K’ satisfy prop-
erties (a) thru (d) on p. 124, Show K = K' iff R = R'.

51. If {is a C* strictly conformal map, show {, has no kernel and
preserves angles. If fis a complex analytic map, show
L X, Y > = [P(p)*<X , X >, where f: C — C.

52, Let f: M — M' be a strictly conformal map with scale func-
tion F. Show f is (Riemannian) connexion preserving iff F is
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53.

54,

55.

56.

57.

58.

59.

60.

61.
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constant and (M) is flat. If f is an isometry, show f preserves
the curvature tensor and the Riemannian curvature.

With the standard hypothesis of section 3.3, show if f is con-
nexion preserving, then ¥ is a sphere, a plane, or a right cir-
cular cylinder (see Hicks?2).

Let M be a hypersurface in R?, let N be a C* unit normal,

let ¢ be in C™(M, R), and let fﬁ M — R" by ft(p) =p+ tg(p)[Vp_
Show that (f,),X = X + t(Xg)N + t8L(X) for X tangent to M. If
f, is an isometry for ¢ > 0, show that M is flat.

Generalize the first two theorems in section 6.5 to the case

of a k-submanifold that is framed in an n-manifold for 1 < k < n
(see Hicks ). In the second theorem, if k = 2 and n = 3, show
K(P) = K(P) iff g is a line of curvature on M.

If v and v are orthonormal coordinates with domain 4 on a 2-
manifold (thus d/du and J/dv are orthonormal), show the co-
ordinate curves are geodesics and K = 0 on A.

(K. Leisenring) Show that f(u, v) = (cos u cos v, cos u sin v,
sin ¥ cos v, sin u sin v) is an isometric imbedding of the flat
torus T into the unit sphere S% in R4 Show the total (imbedded)
curvature of f(T) in S3 is a constant negative one.

Let M be connected with symmetric connexion D and let L, :

Mp — M_be a C™ linear map valued function on M. If Tor, =0
and all points are L-umbilic, show L is a constant multiple of

the identity map.

Show that every isometry of R™ can be factored uniquely into
an orthogonal map followed by a translation. If f: R? — Rn
is orthogonal, show f, = f in a natural way.

If €,y.+--;€, is an orthonormal base field with dual base W,
-«.,W_ and M has constant Riemannian curvature X show the
associated curvature forms R” =Kw, ~ W,

If M has constant Riemannian curvature K and one defines a
metric on M x M by <(X ; ¥ ), Xy ¥>=<X,, X,>+<¥,,
Y >, does M x M have constant curvature?
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62. 1f x,,...,x_ are coordinates on a hypersurface U in R™*1L let

x, = 0d/dx, g;=<X, X> b, =<LX, X >, and LX, - Eiaini.

Show that a,. = 3 (¢77), b, (Weingarten equation), Rin=

ir7rj
Er(g'l)“(bhjbrk - b,.b,,) (Gauss-curvature equation), and

ob,. b,

= b
axs 8xr 2

Tk — b, ')

kr™ is ks ir

(Codazzi-Maniardi equation).

63. If ¥ is a Hausdorff C* manifold, 4 is a compact subset ofr‘
M, B is open in M, and A C B, show there is an f in C*M, R)

with f(4) = 0, f(M — B) = 1, and 0 < f(i) < 1.

7. Operators on Forms and Integration

This chapter develops more structure on a manifold. To conserve
space, the treatment is fairly blunt and many computational details
are omitted. In the first four sections M is a C> n-manifold and A
is an open set in M.

Section 7,1,  Exterior derivative.

For p > 0 we define the exterior differentiation map d: FP(4) —
Fr*1(A) where FP(A) is the set of C* p-forms on 4. If f in F9%A)

and X is a C™ field on A, then df(X) = Xf. Forp>1, letting w be a

(p ~ 1) form on A and Xl,...,Xp be C* fields on A4, then

-~

X sy X)) = SO W B X))

i

¢y

A

TG0 X, XL X e K, X,

J

..,Xp),
where X indicates that the field X is omitted as an argument,

Notice that the definition is consistent with the partial definition
in section 5.2. One proves that dw is in F”(4) by using the char-
acterization theorem in Chapter 4. We outline the argument, That
dw is linear with respect to addition is trivial. That dw is alternat=
ing can be shown by switching two arguments and examining the
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terms that don’t immediately change signs (this must be done care-
fully). That dw is linear over the ring F °(4) then need only be
checked in one slot.

Proposition, The operator d has the following properties:
(1) dw +v)=dw + dv, where w and v are in F2(4).

(@ dw ~v) = ((dw) ~v) + (-1)P(W ~ dv), for w in FP(A) and v any
form on A, (Any operator with this property is called an anti-
derivation.)

3B) d*=dod=0.

Proof. Property (1) follows trivially from the definitions of d and
addition of functionals. For the other two properties we first obtain
a local representation of d. Let X ., X be a coordinate system on
an open set U, and let X = 8/8)(1,. Then on U, a (p — 1)-form w may
by represented by w = Ea dx. ~vee ~dX,

1

over all indices such that 1 < 1 < n and 1, <Ii, < <1 /l/and a,
= X, ) dw Sda, ~ R, ~an - wﬂ‘uch
-1
is proved by applymg both sides to (X X, ) for k, <1<
Since [X X 1=0, aw(X, ,...,X k)= i_l(— )’“Xk a, ~
1 P i 1
while [Zda . ndx, S ~dx, (X, ryeees Xy ) =da, ’ (X, )~
i -1 . o geerky Ky

p
da, ° (X )+ ~dw(x peer X )

kk2

.’ where the sum is

To prove property (2), first let f anil £ be functions in F °(4) and
note d(fg) = (df)g + f(dg) follows from the derivation property of vec-
tors. Next observe that because of (1) and the local representation
above, one need only verify (2) for forms of the type w = fdx  ~... ~
dxp and v = gdy | ~... ~dy , where x, and y, are functions chosen
from the members of a coordinate system. Then w ~v = fgdx  ~... ~
dx  ~dy ~..~dy,and dw ~v)=d(fg) ~dx, ... ~dy = (gdf + fdg) ~
dx ~..~ndy =dw ~v + (~1)PW . dv.

For property (3) we first show d3f = 0 for a C* function f in F %(A).
Locally, df = 2“ (01 0%, )dx so d*f = I Ti- 1(82f/c9x Ox,)dx, ~ dx,

l<][(521‘/3X ax )~ (82f/8X 8x Jdx, ~ dx; = 0. For any w we may

represent dw locally as a sum of products of df’s for functions f;
hence by (2) each term in d?w has a factor d2f = 0, so d?w = 0.//

Letting F(M) = 32_ F*(M) be the direct sum of the modules of
forms of homogeneous type, endowed with its exterior multiplication
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structure and exterior derivative operator d, one obtains a graded
differential algebra which is called the Cartan differential algebra
of M. Iff: M - N is C>, thendo f* = f* od on F(V), and it is
sufficient to check this only on 0-forms and I-forms.

There are other ways to define d, indeed one natural way is to
define d via a local representation, get the desired properties, and
then show it is independent of the local representation (see Chevalley?,
p. 146). Then the invariant formula we took as definition must be
verified. Our treatment in this and the following sections is similar
to that of Palais .

Section 7.2.  Contraction.

Let X be a C* vector field on the open set A. An operator C
called contraction by X, which maps F?(4) into FP—1(A) is defined
as follows: (a) if f in F °(4), let C,f=0, and (b) if w in FP(A) for
p>0, let (CXW)(XI,...,XP_ )= wlX, X X))

Proposition. The operator C has the following properties:
1 (€)%=
(@ Cylw+v)=Cyw+Cyv,
3 Cxzuy

@ C

=Cx+Cy,

(B) Cyw ~2)=(Cyw) ~z + (-1)P(Ww ~ C,2),
for fin F%A4), X and Y in T1.%A4), w and v in FP(4), and z in F %(A).

Proof. Properties (1) through (4) are trivial. Property (5) follows
by induction on p, and it is sufficient to prove it when w is a product
of p 1-forms by the local representation of forms. //

The operator C, can be defined on covariant tensors and mixed
tensors in an obvious way (with only (2), (3), and (4) valid in general),
and one can let C x be zero on pure contravariant tensors. Properties
(3) and (4) indicate C is a tensor map (an anti-derivation valued 1=
form of degree — 1 on F(A4)),
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There is another form of “contraction” induced by the natural iden.
tification of tensors of type 1, 1 and linear maps. Let W be an n-dim
vector space over R. Forr>0,s>0,1<7i<r 1<j<sdefine tris};
Trs(Wy — Tr—1ss— W) by taking @ in T s(W), WoeeoW,_; in W% angd
XX, _, in W and letting

@ ()W, w,_ |, XX, ) =

re=1

n
2R 8w W, 2, WoerW, 0 XpenX, 0 Z, X,

where Z ,...,Z  is a base of W and Zy,...,2, the dual base of W*, One

checks easily that tri+/0 is well-defined independently of the particu-
lar base used. If @ in T!-1(W), let ¢r1-19 = tr@, The above operator
induces an operator tri-i: T75(4) — T*—1+s=1(4) for an open set 4 in

M.

Section 7.3. Lie derivative.

Let X be a C* vector field on the open set A. An operator L,,
called the Lie derivative via X, which maps T °(A4) into itself, is
defined as follows: (a) if f in F%4), L _f = Xf; (b) if ¥ in T1-%(4),
L,y =[X, Y] (c)if win T0:1(4), (LXW)(Y) = Xw(Y) - w([X, Y]); and
(@) if 0in T75(A), w ,...,w_in T°'(4), and Y,.,Y_in T"%4),
then L ;0 is defined by solving for it in the equation

3) L 6w,.,w, ¥,.,¥ )= (L x )W {50e0s ¥ )

L.Y ).

X" s

+ O(LvaWz""rYs) teat O Wy, ¥,

We call L, a complete derivation because of the property (d), and
note all terms in (3) are well-defined by (a), (b), and (c) except the
L, 0 term (indeed, (c) is “defined” by (d)). One shows L,0is a ten-
sor by checking the linearity over F %A).

Proposition. The operator L x has the following properties:
1)
2

L 4 preserves forms,

Lyw+2z)=L,w+ L,z

WX E

93

Operators on Forms and Integration

Chap. 7

1 4 3) LX(W®V)=(LXW)®V+W®LXV,

@) LX(aAﬁ)=.(LXa)Aﬁ+aALX,6’,
_where w and z are tensors of the same type, v is any tensor, and «
+and 3 are forms.

Proof. An exercise (for (4) use L,[(a ® Bl = [LX(a ® B)I™).

There is a more geometric definition of the Lie derivative L x on
covariant tensors which we now discuss. Suppose the vector field
X is defined and C* on all of M. For each m in M let {_(t) be the
integral curve of X (section 1.5) through m with f_(0) = m. we know
fm defined for ¢ in a neighborhood of zero, but suppose each f, is
defined for all ¢t and R. Then for each ¢ in R we could define a map
F.: M —Mby F(m)={_(t), with the properties F,oF =F, _and
F: MxR — M by F(m, t) = F {m) would be C* (from the fact that X
was C* and the C* dependence of solutions of ordinary differential
equations upon initial conditions). Each F: would be a diffeo, since
(F:)-l =F_, and F ; is the identity map. A map F with the above
- properties is called a l-parameter group of differentiable transforma-
L tions of M, and X is called its infinitesimal generator. '
In general fm is not defined for all ¢, but one does obtain a local
l-parameter group of local transformations in a neighborhood of each
-~ min M; i.e., for each m in M there is a neighborhood U/ of m, a real
: number b > 0, and a map F: U x{(~b, b) — M such that (1) F is C*,
(2) for tin (=b, b), F,: U — F (U) is a diffeo, (3)for ¢, s, and t + s
in(=b, b), F,oF_=F,, ,and (4) for fixed p in U, fp(t) =F (p) is an
integral curve of X. For more details see Palais! 279 2 and Nomizu!

" (p. 5).

LEMMA 1- Let Y be a C* field in a neighborhood of m in M. We
choose U and b in the preceding paragraph to be sufficiently small
. so the image of F is contained in the domain of Y. Then

[X, Y]m = llﬂé [(F-t)*YF (m,t) - Ym]/t'

Proof. See Nomizu?! (p. 8).
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Assuming lemma 1, which gives us another geometric interpreta-
tion of the bracket, it is trivial to show the following lemma. .

LEMMA 2. Let w be a C*™ p-form at m. Then

L,w), = Eirg [(Féw) —w_1/t
where
(F_:tkw)m(yl’ Y )‘ F(m t)((F )*Yl’ F )*Y )

The following is a useful relation between d, Ly, and C,.

Proposition. If X is a C™ field on A, then L
when applied to C™ forms on A.

—docX+CXod

Proof. We verify this equality on function (O-forms) and kforms.
This is sufficient to prove the proposition, since locally a form is a

.. sum of products of functions and l-forms, and the aperators which we

equate above are both derivations; hence their value on any form is
determined by the values on functions and 1-forms.

For f in F%4), dC x() + Cpdf) = 0 + df(X) = X1 = L,f. Forw in
FYA), dC,w + C dw)(Y) = YW(X) +dw(X, ¥) = YW(X) + Xw(¥) -
Yw(X) - W([X Y]~ (L ywXY).//

Section 7.4.  General covariant derivative.

Let D be a connexion on M, and let X be a C*™ field on the open
set A. An operator D x» called the covariant derivative via X, which
maps T7%(A) into itself, is defined by using the recipe for defining
L .. The definition of D, proceeds exactly as the definition for L,
except for (b), and if ¥ in T!+%A), D xY is given by the connexion
D (see section 5.1),

When D 4 is substituted for L, in the first proposition of the pre-
vious section, one obtains valid properties for D,

An operator A, called the general covariant derxvatzve operator,
which maps T*°(4) into T*=*!(A) is induced by D. If @ is in T* 5(A4),
Wise.ey W, are in T01(4), and Y, ¥ _, arein T1:%A), then

95

Operators on Forms and Integration

i Chap. 7

(AG)(WI,...,W,, YooY 1) = (DY 9)(W1,...,Wr, Y,,.

s+1

0 ¥ )

That {A6) is a tensor is left as a problem. If 8 and ¢ are tensors of

8 the same type, then A(6+ &)= AB+ A, but A is not a tensor
see problem 64).

. Ifl<i<pand1<j<gq, then

(5) Ao triv) = trisi o A

on TP-A).

 An operator div, called the divergence, which maps T*5(4) into

Tr=1+5(4), for r > 0 and s > 0, is defined by div = r“*1 o A. We

write div 6 = tr( AG), where we assume the trace is taken on the last

covariant slot and the last contravariant slot. A tensor 6 is conserva-

tive if div 0= 0.
The Riemann-Christoffel curvature tensor of type 1, 3 is the tensor
K in T1-3(A) defined by

forwin T%'(A4)and X, ¥, and Z in T1-%A4). The second Bianchi
identity is the equation

D (AR, X, 7, 2, W)+ (AR, K, W, ¥, Z) + (AKX, X, 2,

W, ¥,)=0

- which is valid if D is symmetric, and it is proved by noting the ex-
. ‘pression

@®  D,R(y, 2)x) - Rz, ¥, WDX - R(Y, Z)(D X),

when written on three lines, permuting W, ¥, Z cyclically from line

to line, and then adding the three lines, yields zero.
- The Ricci tensor is the 2-covariant tensor

¢ @ Ric(X, ¥) = (tr'"2KXX, Y) = —(tr 1-3K)(X, ¥)
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(and this is the negative of the “classical” Ricci tensor), Notice
(trV'K)X, Y) = trR(X, ¥), The Ricci curvature of a vector X is the
number Ric(X, X) (and this agrees with the “classical” Ricci curva-
ture). If D is symmetric, the first Bianchi identity implies

(10) Ric (X, ¥) = Ric (Y, X) + trR(X, Y).

If D is Riemannian, then R(X, Y) is skew-symmetric by (c) in sec-
tion 6.2, so Ric is symmetric. Hence there exists a self-adjoint
linear map R*, called the Ricci map, defined on each M, with
Ric (X, ¥) = <R*(X), Y>; indeed

(1)  R*X) =37 R(X, Z,)Z,

for an orthonormal base Z,..,Z_ . By (11), R* is C™. The scalar
curvature S(m) at each m in M is defined by S(m) = tr(R*)m,

A (semi-) Riemannian metric induces many operations called “rais-
ing” and “lowering” of indices which we now explain. The non-singu-
lar metric tensor induces a non-singular linear map G of M, onto M*
for each m, i.e., if X in M_, then G(X)(¥) = <X, Y>. We let G, denote
the inverse map of M* onto M_. If w in M*, then <G,w, X> = w(X).
If1<i<r 1<j<s+1,andfisin T*° define G+if in Tr—1es*1 by
12)

G IONw i, X

-1

-
K

JUARER LY

= G(Wl,....wi_ » G(X].), Wy, W X . G S

r—1°

Similarly, define GLJ: T%* — Tr+lys—1 for 1<i<r+land1<j<s
by taking the form in the i'" covariant slot (of the new tensor); apply-

ing G, and inserting it into the j!# contravariant slot (of the old tensor). | }' '

Thus G!'!' =G on T'9, and the 1,1-tensor R associated with R¥ is
given by R = G, 1+! Ric (whete R(w, X) = w(R*X)). If f is in C¥(M, R),
the gradient field of f is the field grad f = G, (df) and the Laplacian
of f is the function del f = div(grad f); (sometimes the notation del f =
Af is used).

The operators G**/ and Gi/ commute with A when possible, i.e.,

13) AoG¥i=Ghio Aon T"sif j<s+1and
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414) AoGhi=GibioA on TS ifi<r+1,
As an example of the use of these operations we prove that

15) AS-=2divR,

which is used in general relativity, Let Z,...,Z_ be an orthonormal
., and W 5., W the dual base. The second Bianchi identity

5, (MKW, 2, 2,2, X)+ AKw, 2, X, Z,2)+Kw, Z, Z,, X, Z))} -

| The first term of the sum gives ( AS)(X), while the other two each give
- ~(div R)(X). For

(AS)X) = ( Atr1+1G, 11t 12K )(X)
= (tr 1 1G 1 L2 AKYX)
~3,MK(w, Z, Z, Z, X),

- (div R)(X) = (r1+2AG 1 1er 1 2K)(X)

_‘Ei ],AK(WJ., z, X ZJ., Z,.), and
(AK)(WJ., Zi’ Z," X} Zf) = (AGlle)(Z]’ Zl" Zi’ X: Zj)
= (AGVI'IK)(Z,') X: Zi, Z,-l Zj)

-~(AG''KXZ, Z,X,2,2)-AG"'KNZ, 2, Z, X, Z)

——(div E)(X)l

" by (¢) and (a") in section 6.2.
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Section 7.5. Integration of forms and Stokes’ theotrem.

One integrates p-forms ovet p-chains, or singular p-chains, which
we now define. Let IP = [ain RP: 0< a, < 1] denote the unit p-square
for p >0, and I°= [0 in R]. A C™ p-cube o on M is an M-valued C>
function defined on an open neighborhood of the unit p-square [P in
RP, A real C* p-chain c is a finite formal linear combination of C>
p-cubes with real coefficients, thus ¢ = r 101 + [y 0y+eeatr, 0, where
r, in R and o, are C* p-cubes. The set C oM, R) of all real C* p-
chains is an abehan group (actually an R-module) where one defines
addition by adding the coefficients of corresponding p-cubes.

There are fancier ways of defining C (M R). Let Q be the set
of C* p~cubes on M. Then C (M, R) is 1somorphlc to set of all func-
tions mapping Q into R Wthh are zero except on a finite number of
elements, and the addition and scalar multiplication structure on this
function space is obvious. Similarly, one could define C (M Z), the
set of integral C* p-chains or C*™ p-chains over the mtegers Then
C (M R)=R ,C oM. Z). More generally one could define C* p-
chams over any rmg A with an identity element, and then by using
the tensor product obtain the A-module of C* p-chains on M over any
A-module. There are corresponding groups obtained from C* p-chains
for any integer r > 0. These groups are fundamental objects of the
cubical singular homology theory for M and are studied in algebraic
topology, (see Eilenberg and Steenrod). Because of our differential
geometry bias, we restrict ourselves to real C*® p-chains, and let
Cp =C_ (M, R).

The support of a p-cube ¢ is the set lo| = o(l?), the image of [P
under 0. The support of a p-chain c is the set lc| =0, ;10,1 for o, in
¢, where we say g, in c if the coefficient of o, is non-zero, i.e,,
adopting the functlonal viewpoint c(o, DE0 1ff o, in c,

To define the boundary map 9: C,— Co_1s defme maps @, and

a) from IP=1 into I? for i = 1,...,p by

16) @it st )=yt 6 byt )

i p—1

where e = 1or 0. If ¢ in Qp defme do = 3P(~ 1)’“(Gfoa1 —0ogq %,
and call the (n — 1)-cubes ¢ o a, Land g o a° faces of a. We extend Jd
to all of C by demanding it be lmear, i.e., dlc, +c,)=dc, + dec,
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and d(rc) = rdc forr in R. A straightforward computation shows 92 =
For p > 0, let o be a C* p-cube, let w be a p-form, and let u,

u_ be the natural coordinate function on R?. Since o*w is a p-form

on a neighborhood of /?, we may define a C* function f on [ by

o'w = fdu, ~du,~... Adup. Then

a7 fgw = j;po"w = prf

where the integral on the right is the standard Riemann integral of f
over I? developed in advanced calculus. If c = }:"r,gl is a p-cham,
then [w = 3%  w; thus for fixed w, the integral over w is an R~

g,

1
homomorphism of Cp into R. Since o*is linear, it is trivial that
Jw, + w,) = Swy+ fcwz for p-forms w, and a p-chain c.
c ¢

For p = 0, let f be a function on M and o, the O-cube with ¢, (0) = m, -

then [ f=f(m) = o* f(0), and we extend the integral of f over any
m
real O-chain to be linear (as extended above).

Let CP = HomR(CP, R), which is the R-module of all R-linear ho-
momorphisms of C_ into R. The set C? is called the module of real
C* p-cochains of M. The adjoint & of the boundary operator J is
called the coboundary operator and is defined by 8 f(c) = f(dc) for a
p-cochain f and a (p + 1)-chain c. Thus 8;: C?P — CP*! and §2 =10

We define the Stokes’ map S: FP(M) —» CP which maps p-forms on
M into C* p-cochains on ¥ by [S(w)l(c) = [ w, for c in Cp. The fol-

c

lowing theorem shows the Stokes’ map commutes with the differential
coboundary operator, i.e., Sod = 5§08,

STOKES’ THEOREM. Let w be a C™ p-form and ¢ be a C™{p +
1)-cube, then

(18)  [dw- fa w.

Proof. Define C* functions a,
”~

du2»~.../~dul.A...Adu Then

+1 _ p+1 ~
»8,,q on [P by o'w = P 1a du,

pt1’
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; N
d(o*w) = SPFI(seH ! ggc du)) ~du, ... ~du ~.

j

o ~du

ptl

i+1 04,
= [Zf_+11(~1) +1 %_’ ]duln...»\dup”.

i 8ar'
Hence [ dw = j;pﬂo*dw = J e sdow = pr“[EF;“(—I) ! 2]

i
11 g
=E‘1’H(—1)”1[£ { g % du,du,...du

1

p+l]

= 2‘1’+ Y1) lflp(ai o ozi1 ~a. o aio).
where we use Fubini’s theorem and integrate first with respect to fth
coordinate to obtain the last equality.

For the other side we must compute {  w = [ (qf)*o o w) for
ooa’, FCA
1

e=0or 1. Notice (af)’*ﬂui = d((af)"?zj) =d(u, 0a}) = du]., 0, or du_

according as j <1, j =i, orj > i, respectively. Thus (a} Vio'w =
(@, o af)du .., ~du_ and

1

[w=3S2enmy o

w]
UO(II_ O'OUP

I

+1 i+1
= 21?-1 (-1)’+ pr(ai ) ai1 - ai oaio),

which proves the desired equality. //
We remark that Stokes’ theorem is simply a generalized “fundamen-
tal theorem of calculus.” Let f: M — M' be a C® map, let w be a p-

form on M* and o a p-cube in M, then it is trivial to show [ w -
fo0

[ f*w, which is essentially the classical substitution rule that deals
o2

with the behavior of integrals with respect to mappings.

The Stokes’ map induces a map at the cohomology level that yields
an algebra-isomorphism of the differential cohomology groups of a
manifold with the real singular cohomology groups.
the de Rham theorem (see A. Weil, and problem 71).

This fact is called
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Section 7.6.  Integration in a Riemannian manifold,

Let M be a Riemannian manifold, let ¢ be a C* curve in M, and
let f be a real valued C* function on the image of o, i.e., letf oo
be C*, Consider a “piece” of o, which we assume to be parameter-
ized by arc length on the interval [a, ], and define

A9 [ £ [Fods)ds,
O”[a,b] &a

- where of[a, b] denotes the restriction of ¢ to the interval [a, #]. Call
the integral just defined the integral of f over o restricted to [a, b),
and when the interval is understood, we write simply [f, If fis a

g

C* real valued function f defined on a broken C* curve o, we define
J fto be the sum of the integrals of f over the finite number of C*
[o

sub-curves determining 0. Notice that by assuming ¢ parametrized
by arc length we are integrating over oriented or directed curves.

We wish to integrate real valued C™ functions over other subsets
of M, and in some cases over M itself. This could be accomplished
by using the Riemannian metric to define a measure on M, but for
Our purposes we need not be so general. First we define orientable
manifolds and then utilize the theory developed above for integrat-
ing forms over chains.

An n-dimensional manifold M is orientable if there is a non-vanish-
ing C* n-form w on M. When M is orientable and we have selected
W, we say M is oriented (by w) and w is an orientation of M. IfMis
oriented by w, then an ordered base €peense, of M, is positively
oriented if W, =bw, ~.. ~w_ where b > 0 and w, are the 1-forms dual
to e,. We say M is non-orientable when M is not orientable, If ¥ is
oriented and €€ a positively oriented base of M, then one
verifies easily that a base fl,...,fn of M_ is positively oriented if
and only if det (b”) > 0 where f, = Zibilei.

For example, R™ is orientable, and we orient it by choosing
W= dula...f«dun where u, are the natural coordinate functions, It is
a topological result that any complete (or closed) hypersurface in R”
is orientable,

Let # and M' be oriented n-manifolds. A non-singular C* map f
of M into M' is orientation preserving if f4x maps a positively oriented
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base onto a positively oriented base.

Let M be an oriented Riemannian n-manifold. For m in M let
€,,...5€, be a positively oriented orthonormal base of M with dual
base w,...,w . Define the n-form v by v, =w ~..~w . The form
v is a well-defined (independent of the particular base) C* n-form on
M called the volume element.

A major problem now confronts us: the problem of “triangulating”
or “cubulating” a manifold. This is a theory for breaking the mani-
fold into “nice pieces” over which one can integrate functions. For
this purpose we define fundamental n-chains. Let Int(A) denote the
interior of a set A.

Let M be an oriented C™ n-manifold. A fundamental n-chain in. M
is a chain ¢ = 0+...+0, such that: (1) each o, is an n-cube that is
an orientation preserving diffeo onto its image; and (2) Int (\oil) n
Int (|o;|) is empty for i £ j. Figure 7.1 gives a schematic diagram of
a fundamental 2-chain (with the images of the faces of the canonical
2-cube numbered).

Fig. 7.1. A Fundamental 2«Chain

If M is an oriented Riemannian n-manifold, c is an n-chain, and f
is a C* real valued function whose domain contains |c|, then défine

Q0) [f=[fv

where v is the volume element on M. Let a subset 4 of M be funda-
mental if there exists fundamental n-chain ¢ with |c| = A. Notice a
fundamental set is compact.
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Proposition. If ¢ and r are two fundamental n-chains with [c| =
m ~ A, and f is a C* function whose domain contains 4, then
[ fv = [fv. Thus define [ f= [ fv.
c T A c

Proof. (King Lee), Letc=o0,+..+0,and 7=y +..+y , and
throughout this proof let 1 <i<rand 1<j<s. KA, =|o|N ly;ls
let B, = (0)""4,)and C; = (y,)"'(A4,). Then y; ! o g, is a diffeo
of B,; onto C,; and

fa, (@ = fy @)y, V]V = [y G700 )y = fo )T

Hence, [ fv = Eifoifv =3, fp oV =3, [ (y)iv=[fv./]
ij 1J

If M is a compact oriented n-manifold, then M is a fundamental set

(this is hard; see Cairns). Thus if M is a compact oriented Rieman-
tan manifold and f is a C* real valued function on M, then [ fis well-
defined. To handle the non-compact case, define the support of a
function f to be the set S, that is the closure of the set [p in M:
f(p) £ 0). Since any compact set of M is contained in a fundamental
set (a non-trivial remark), if M is oriented and Riemannian, f is C%
with compact support, and S, C fundamental set 4, then Suf = Juf is
well-defined (independent of A).

The area, volume, or measure (depending on the appropriate di-
mension) of a fundamental set 4 is the number [,f, where f = 1 on M.
For a deeper study of integration theory on manifolds see the book
of Whitney?. '

Problems. Let M be a C™ n-manifold and let U be an open
subset of M.

64. If X and ¥ are in T*+°M), f and g in C*(M, R), and w in T0.1(0),
show L, w = w(X)df + f(L gw), L,z ¥ = f(L.x¥) - d(¥)X,
L, 8 = fL x4, and Alfw) = fAw + w ® df, Thus L and A are
not tensors.

65. If X is a C*> vector fieldon U, min U, Z ,...,Z_ a base of
' M_ with dual base w,...,w_, show (div X)_ = 20w, (D, X).

Show that the divergence of a C* field on R3 agrees with the
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66.

67.

68.
69,

70.

71.

72.
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advanced calculus definition.

Let A be in T'+'(U), let Z ,...,Z, be a C* base field on U,
and let w,...,w, be the dual base on U. Show Dij =
_EkW](DXZk)Wk and zf[A(Dpr Zj) 3 A(W!., DXZ].)] = 0.

Let M be Riemannian, let X,,...,X__,, T be an orthonormal
base, and let P, be the plane section spanned by X, and T.

Show Ric (T,T) = 277 'K(P).

Prove formulas (5), (7), (13), and (14).
If D has zero torsion, show dw(X, ¥) = (D ,w)(¥) — (D ,w)(X).

If M is Riemannian and G(X, Y) = <X, ¥Y>, show that a con-
nexion D is metric preserving iff AG = 0. Given arbitrary 4

in T°3(M) and B in T12(M) with AX, ¥, Z) = A(Y, X, Z) and
B(w, X, Y)=-B(w, ¥, X) for all w, X, ¥, Z, show there exists
a unique connexion D on M with AG = 4 and B(w, X, ¥) =
w(Tor (X, Y)).

(Poincare lemma) Show every closed p-form on R” is exact
for p > 0 as follows: forbin R letg,: R"— Rntl by

Bt ,ent ) =(t1,.. 00t , b), letf: R2*! 5 R by [(tu-“rtnn) =
(¢ 41ty topitpseenst oqt,), let T =98/0u , , and for p > 0,
define the linear map K: FP(R") — FP—1(R™) by K(w) =
[3(€,)* 0 Cp o f*(w)db, and show dK + Kd equals the identity
map on FP(R"?),

Let M be an oriented Riemannian 2-manifold. If o is an oriented
C™ curve in M with unit tangent 7, let T, N be an orthonormal
oriented base along o and define the signed geodesic curva~
ture of o to be the C* function b with DT T-bNono. IfZ,
W is an oriented orthonormal parallel base field along o and

T = (cos 6)Z + (sin O)W, show b = df/ds = TG on o. If x, y is
an oriented orthogonal coordinate system on U in M, let E =
<X, X>and G = <Y, ¥Y>. If b, and b, denote the geodesic
curvature along the x-coordinate and y-coordinate curves, re-
spectively, show b, = —(1/2E\/GYJE/dy), b, = (1/2G\/E)
(9G/0x) and K = (EG)~%[d(b ,\E)/dy — d(b,1/G)/3x]. Show the

y-curve are geodesics (with y as parameter) iff G is constant.
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73. If M is Riemannian, (¢, U) is a coordinate pair, x, = u, o &,
£, =X, X].> where X, = 9/9x, g = det (g”), f is in C=(, R),

and A is a fundamental set with A CU, show [,f = fq)(A >(t o

¢ VE o ¢7 du du,...du .

74. Let M be a surface in R® with sphere map 7. Form in M let
A(r) be the area of B(m, r), the ball about m of radius r and let
An(r) be the area of 7(B(m, r)). Show K(m) = lim {An(r)/A(r)]
as r— 0.

8. Gauss-Bonnet Theory and Rigidity

In this chapter, M will denote a connected oriented Riemannian
n-manifold.

Section 8.1. Gauss-Bonnet formula.

In this section, let n = 2, let 4 be a fundamental set in M, and
let ¢ be a fundamental 2-chain with |c] = A. The oriented curve y = dc
is called the bounding curve of A. A vertex of c is a point in ¥ that
is the image of a vertex in I% under a 2-cube in c. A face of c is the
support of a 2-cube in c. An edge of c is the face of a kcube in do
for some 2-cube o in ¢. A boundary edge of c is an edge that is in y.
A corner point of y is a vertex of ¢ belonging to exactly two boundary
edges. At a corner point p of y, let T (p) (the “tangent in”) and
T ,(p) (the “tangent out”) be the unit tangents at p of the 1l-cubes in
y, defined by the orientation, going “into” and “out from” p, respec-

tively. The exterior corner angle a(p) is the angle such that cos a(p) =

<T(p), T ,(p)> and 0<a<m or ~7<a<0 according as T, T is a positively

or negatively oriented base. If T =T, thena=0, and if T, =-T,

then a = —r (see Fig. 8.1).
Y2 T

0 ae>p

Fig, 8.1 Corner Angles
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In the proof of the Gauss-Bonnet formula that follows, the differen-.
tial geometry involved is simple. The crux of the theorem is the Hopf
Umlaufsatz (see discussion after proof). As usual, a simple closed
curve is a homeomorphic image of the circle S* in R2,

THEOREM (Gauss-Bonnet formula). Let A be contained in a co-
ordinate domain U of M, let the bounding curve y of A be a simple
closed curve, and let a,,...,a, be the exterior corner angles of y. Then

@ fh=2r-3 0~ [,K

where k is the signed geodesic curvature function on y and K is the
Riemannian (Gaussian) curvature function on A.

Proof. Lete, e, beaC*™ positively oriented base field on U.
Let y,,...,y, be the C* pieces of y with each ¥, paramet erized by arc
length on the interval [s,., Sj+1]’ Yi(8541) = Vyurlsjuy) forj = 1,...,r =1,
while y (s_, ) = y.(s;), and a; the exterior corner angle at y(sj). Let
T be the unit tangent to y. By making a constant rotation of e, e,,
if necessaty, we may assume T(s +) = e,. Define {(s) on [s, s,]
so {is C%, {(s?) =0, and T ="(cos Qe + (sin {e,. This {is well-
defined, since we have given its initial value and it is C, since
locally it is given by {(s) = cos™'<T(s), e,(s)> for a proper branch
of the inverse cosine. Thus we obtain {(s;). Let é(s;') ={(s7) +a,
and extend { to [s,, s,]1 so {is C* and T = (cos Qe + (sin {le,, as
before. Continuing this process, we extend {to s, s ,,] with {'in
C at all interior points except s, where it has a jump precisely equal
to a, for i = 2,...,r. Since y is a simple closed curve, we use the
Hopf Umlaufsatz to obtain {(s7;,) + a, ={{s]) + 2n. We include a
schematic diagram (Fig. 8.2):

Fig., 8.2 Fundamental Set
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On each C* piece of y we have the positively oriented orthonormal
base field, T, N, and the signed geodesic cirvature k is defined by
D, T =kN. Interms of {, T = (cos {le, + (sin {)e,, while N =
(-sin Qe + (cos e,

Let w,, w, be the dual 1-forms to the base €, €, and let w,, =
—w,, be the corresponding connexion 1-form on U (note Wi =w,,=0
for the Riemannian connexion D). Thus v = w, ~w, is the volume

element on U. Moreover, by the Cartan structural equations, dw

12

R12, and K = <R(e1, e,le,, e,>= <21.2_1R1.2(el, e,le, e >=R (e, €,)

thus R12 =Kw, ~w,.
Since k = <D T, N> and D,.T = (T{)NV + (cos Ow,,(Te, +

(sin {w, (T)e,, then

(2) k= (TO - le(T)l

which is a Cartan formula for the geodesic curvature. Then

Si+1
fyk = 2;- lfsf] gg ds — fg.wy, = zir'l[é(sj.+1)"€(s;)]”fcdw'12

= 2”_2;-16‘1 ~ J.K,

where we use Stokes’ theorem for the second equality.//

The Gauss-Bonnet formula almost proves the Hopf Umlaufsatz
(see Hopf!), which states if y is a simple closed smooth (C1) curve
in R?, then fyk =¥ 27, depending on the orientation of y. We need
the topological result that y disconnects the plane into two com-
ponents and the map y may be extended to a homeomorphism of the
interior of the disc B(0, 1), which then maps onto a set 4, which is
fundamental and has y as bounding curve. Then letting €, =1, €, =]
(advanced calculus natation), we have wi,=0,K=0, and all a, =0,
so fYk = 27 if y positively oriented. The reader may also be interested
in the papers of H. Whitney!, J. S. Griffin, and C. J. Titus.

The Gauss-Bonnet formula was first proved by Bonnet in 1848.
Somewhat earlier Gauss had proved the following result on geodesic
triangles.
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THEOREM (Gauss). Let A be a fundamental set of M bounded
by three (non-closed) geodesics, i.e., A is a geodesic triangle, and
let B,, B,, and B, be the interior angles at the corners. Then [.K=
B, + B, + B3 —m and this number is called the excess of the triangle.

Proof. The Gauss-Bonnet formula is applicable. Since k =0 and
a,=m—fB;, we have 0 = 2 — 237 - ﬁj) — [JK./

Corollary. Let B be the sum of the interior angles of a geodesic
triangle A on M. Then B is >m, =m, or <7, according as K > 0, = 0, or
< 0on A. If K is constant and not zero on 4, then the area of A equals
the excess of A divided by K.

We obtain some simple applications of the Gauss-Bonnet formula
by applying it to the cases when ¥ is diffeo to the sphere or the torus.
In the former case [, K = 4n, and in the latter case fyK = 0. These
are special cases of the Gauss-Bonnet theorem which we prove later
in this section. We sketch the proofs of these facts.

When M is diffeo to S2, we let y be the image of the equator
(under the diffec), A the image of the “northern” hemisphere, and
A, the image of the “southern” hemisphere (see Fig. 8.3). Supposing
y to be the bounding curve of A, we have

f}/(=2ﬂ_fA1K and f_yk:—fyk:277—fA2K.

Hence fMKé fA 1K + fAzK = 4.

When M is diffeo to the torus, let A, be the image of the “top
half” and 4, the image of the “bottom half” of the torus so 4 and
A, are bounded and separated by the image y of the “inside” and
“outside” curve on the torus (see Fig. 8.3). Again letting y be the
bounding curve of A |, connecting and closing y via a cut curve B
(see Fig. 8.3), and taking a limit, we obtain f‘/k =27 -2~ {, 1K
and\ —fyk = _fAzK so [,K =0.

Our next task is to free the Gauss-Bonnet formula from the special
neighborhood U. The proof follows the notes of Samelson. Define

the Euler characteristic, (XC(A), of A with respect to ¢ by iC(A) =
V — E + F, where V is the number of vertices of ¢, E the number of
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Fig. 8.3 Sphere and Torus

edges, and F the number of faces.

THEOREM. Let A be a fundamental set on M, let the bounding
curve y of A be a finite disjoint union of simple closed curves, and
let a,,...,a, be the exterior corner angles of y. Then

® Jk = 2aX (4) = Z1. 10, — [4K.

This expression proves SIC(A) is independent of c,-so define X(4) =
fxc(A) to be the Euler characteristic of A and drop the subscript ¢
in the above formula.

Proof. Let c = o,+..+0p and note from the definition of a funda-
mental 2-chain we may apply the Gauss-Bonnet formula to each set
lo;| (for o, defines a coordinate neighborhood of |o,|). Let )
denote the four exterior angles for o, Then

fyk = zf-lfac]k = 2;7-1(2" - 2?—1“‘;) - zjb; 1fch

or
Jje=2nF - 21,30 ol - [,K.

Thus the problem is one of bookkeeping with the term Eaf.

Let ] be the interior angle corresponding to each al, thus B] =
7 - af, and let B = 7 — a_ be the interior angles at the comers of y.
In the following we sum overi=1,...,4andj = 1,...,F. The sum
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Eiiﬁf =20V —r) + 218, = 20(V - 1) + (7 ~ a,)
=27V —ar - E‘ias,

since r is the number of verticies of ¢ on y (as well as the number of
angles and edges on y) so (V — r) is the number of vertices interior
to 4, each of which contributes 27 to the total sum.

We now show rF = (2E — r), which is the number of terms in the
sum EijB{. This is done by assigning to each B; an edge, namely, its
“starting” edge, which is well-defined by the orientation. More pre-
cisely, if T and T are the unit vectors at the vertex of 87 which are
tangent to the edge curves of B;’, then T and T' are independent, since
c is a fundamental chain, so (‘7,-)* is non-singular on its domain
(which is slightly larger than [%). Thus T is the “starting” &dge of
Biif and only if T, T' is a positively oriented bases (see Fig. 8.4).

Fig, 8,4 Starting Edges

Then each edge on the boundary y'belongs to exactly one Bi, while

each edge not on the boundary belongs to exactly two Bf Thus rF =

r + 2(E — 1), since r is the number of edges on the boundary.
Finally,

S, =5, (m=pN=n2E ~1r)=2aV 4 ar + Sfa_ = 2a(E - V) +

r
Sta,.
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Hence,

jyk =2m(F ~E + V)= 2%a_~ [LK.//

GAUSS-BONNET THEOREM. Let M be a compact connected
oriented Riemannian 2-manifold with Riemannian (Gaussian) curvature

fanction K. Then [ K = 2mX(M).

Proof. We apply the preceding theorem to a fundamental chain on
M which will have no boundary and no exterior angles.//

The above theorem is an important example of a theorem relating
differential geometry and topology. The Euler characteristic is a
topological invariant which does not depend on either the differenti-
able structure or the Riemannian structure on M. The theorem may
be used to prove many “negative” statements: for example, there
does not exist a Riemannian metric on the torus with K > 0 every-
where (nor does there exist one with K < 0 everywhere) since X(M) = 0
(which we computed above for the induced Riemannian metric). The
theorem has been generalized for dimensions greater than two and pro-
vides one of the first successes of the global theory of fiber bundles.

Section 8.2 Index theorem.

This section is also based on the notes of Samelson. Letn =2
and let W be a C* vector field on M. If Wm = 0, then m is a singularity
of W. Assuming W has only isolated singularities, we define the index
of W at m, J(W, m), as follows.

Let U be a coordinate domain, with coordinate radius b > (), about
m with W £ 0 on U - [m]. Assume the coordinate map is orientation
preserving, and let o, be the oriented coordinate circle of radius r
about m with 0 <r <'b and o, defined on [0, 1]. Let X be a unit vector
field on U. Since W does not vanish on ¢, by using the proper in-
verse cosine function one obtains a C* function 6 on [0, 1] with
W(s), X(s)> = |W(s)| cos O(s) on [0, 1]. Let

(4) 277]x(wy m, 1‘,) = 0(1) - 6(0)-

For 0 <r <b, J,(W, m, r) is a continuous integer-valued function,
and hence yields a constant J (W, m). If m is not a singular point,
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then for small r > 0, 6 is close to the constant cos'1(<Wm, Xm>/
W_ )(mod 27); hence 6(1) = 6(0) and J (W, m) = 0. If Y is another
unit vector field on U, then

]x(wy m) = Jy(W’ m) + ]X(Yr m) = ]Y(W’ m)’

since ¥ has no singularities. Thus J,(W, m) is independent of X.
An analogous argument shows J(W, m) can be computed by using any
simple closed C™ curve ¢ about 1 with ¢ in U, and thus JW, m) is
an integer depending only on W and m (see Fig. 8-5).

1\ /‘\ jl(— 74\\('

J=-1 =

Fig. 8,5 Examples of j(W, m)

If W has only a finite number of singularities, define the index of

W, J(¥), by JW) = 3, J(W, m).

‘I.NDEX THEORE{’I. If M is a compact connected oriented Rie-
mannian 2-manifold and W is a C*> vector field on M with a finite num-

ber of singularities, then the index of W equals the Euler characteristic
of M.

Proof. Take an oriented fundamental chain ¢ = 0, +...+0, with at
most one singularity m, of W in the interior of each |o,|. Let y, be the
bounding curve of o, and define functions 6,, £, and £, on the domain
of y,s0 6=, + £, 0, is an angle between W and e, {, is an angle
between the tangent T, of y, and e,, and .f,. is an angle between W and
T,.. The functions 0, ¢,, and &, will be piece-wise C= and 6, is con-
tinuous. By integrating over the pieces of y, we obtain
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@, ., . d
2n] (W, m )= fY ds fyi ds fy ds

’

dé,
= k 1 .
fyi * fciK * fyi ds

Adding over the 2-cubes in c gives
G 2a00) - [k

since the integrals over the bounding cutves cancel one another.
By the Gauss-Bonnet theorem, J(W) = X(M).//

Omitting the last line of the proof, we note 2nJ(W) = fMK implies
J(W) is independent of W as long as W has only a finite number of
singularities. Then for any oriented fundamental chain ¢ we can de-
fine a particular W which has a singularity for each face, edge, and
vertex with index 1, —1, and 1, respectively. We indicate in Fig.
8.6 how W is defined on each 2-cube. Actually W would be precisely
defined by defining a field on a neighborhood of I? and carrying this
to each |o,| via the map o,

© ® ©

N
=

3 Q) —-— ®

7z
AN

Fig. 8,6 The Canonical Vector Field on a 2-cube

Thus W is defined by “going out from each vertex and in to the center
of each face.” From Fig. 8.6 we see J(W)g V- E +F =X (M) Thus
we again prove X (M) is independent of c, and 27X(¥) = 277](W) =

JuK reproves the Gauss-Bonnet theorem.
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Corollary. If M is a manifold as described in the theorem and
there exists a non-vanishing C* vector field on M, then Xy =0
Thus any surface that is diffeomorphic to the 2-sphere has no non-
vanishing C* vector fields.

Actually, a differentiable manifold (any dimension) admits a non-
zero continuous vector field if and only if its Euler characteristic is
zero (see Steenrod, p. 203, and Alexandroff and Hopf, p. 549).

Section 8.3. Gausse-Bonnet form.

In the proof of the Gauss-Bonnet formula we found that R, is a
! ocal representation of the global form Kv on an oriented Riemannian
2-manifold M. One might ask if there are other global forms obtain-
able in this way, or if there is an analogous form on an n-manifold.
We answer these questions now.

Let e,...,e_ and f,...,f be two set of positively oriented ortho-
normal C* base fields on an open set U in M, and let [j Si.1by e,
define\C*> functions b ; on U. Notice that determinant (b ) = 1 and
(b'i)_/_ (b ;) since (b ;) is orthogonal. We let R,; and R denote
the local cutvature forms associated with e s and f's, respectlvely,
thus R(X, Y)e]. = ZR'.I.(X, Y)ei. Then formin U, X and YinM_, we
have

6) Rij(X’ Y) = <R, Ye;, ep> = <R(X, YNZ b, £), 2 b, f>

f]f" sYis" s

=2 b, b, <RIX, V), f>= 2 bR(XY)b

r,s jrlis

Thus R - Er sb,sRserr relates the local curvature forms of the two
bases on U.

If n is even, we define an n-form Q on U by
M 0= DRty ARz mta Y+~ Ream 1

where we sum over all permutations # in P_, the group of permutations
on the set [1, 2,...,n]. The representation of Q in terms of the forms
R, . is,

7

Q=3r _12(—1)“1911(1)rerlrzbv(z)rzbw(s)r?’Rr e BriCade

3
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= (det b, )ZD"R 0 3102y ~ Res yuga Y+~ Rt 1 o ¥

Since (det b'.j.) = 1, Q is independent of the particular base field used
to define it; thus Q defines a global n-form on M which is called the
Gauss-Bonnet form. Note if n = 2, then locally Q = R,,-R, =

R,, = 2Kv.

THEOREM (Generalized Gauss-Bonnet). If M is an even dimen-
sional (n = 2k) compact connected oriented Riemannian manifold,

then [,,Q = 2nmk& ) X(M).

For a proof see Chern!. Other pertinent references are Hopf?!,

Allendoerfer!, Allendoerfer and Weil, Fenchel!, Chern?3, and
Allendoerfer 2.

Let M be as in the theorem and assume further that M is a hyper-
surface in R®*! with unit normal field N. Using the notation from
in+1 n+1j int1 ~ Winsy and LX) =
2 w1 Xe, = n{X) where 7 is the sphere map induced by the
normal N (section 2.2). Thus n*w, = w, ,; and

section 4, R,.j —_—— ~W =w

Q= E(—-l)"wﬂ(l)m1 ~

Watn—1)a+1 ~Wr(ndn+1

=0l W AW h e Wy = 0N,
where v is the volume element of the unit sphere S” oriented by its
outer normal, and we assume N is parallel to the outer normal at
7(m). Integrating, [ Q= (n‘)qu*(V ). 1fn=2, then f,Q=2[ Kv =
4rX (M) = 2 mvg), thus [ Vo) =(V,) fX(M)/Q where V, is the
“volume” of the unit 2-sphere. This is the Hopf Index theorem for

. - dimension 2.

In the general case (" imbedded in R"*1 as above). we let X
be any unit vector field of R#*! that is C*® on M, and we define the
index of X on M, §(X), by

®  IX) = (V) s

Wwhere V_ is the “volume” of the unit n-sphere in R*"?, and 7 is

the C™ map of M into S™ induced by the vector field X.
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HOPF INDEX THEOREM. If M* is an even dimensional compact
connected submanifold-of R**1, then twice the index of the normal

field N on M is the Euler characteristic of M, or 20(N) = X(M).

Proof. Assuming the Gauss-Bonnet theorem and letting n = 2k,
29) = 2fMQ/(Vnn!) = 2“+17T"k!fx(M)/(Vnn!) = X(M), since V. =
2n% lpkkt /n! (see problem 75.).//

Section 8,4. Characteristic forms.

A general reference for this section is Chern® with related treat-
ments in Adler and H. Cartan. The “wedge” product symbol between
forms will be omitted in this section.

For k > 1, define local forms

Q.=3*_ R, R, . R,  ..R, ,

ij=1 i1,2 i,i i
where the R, belong to a local positively oriented orthonormal base
field e,...,e,. As above (equation (7)), one shows @, is independent
of this particular base field and thus Q, is a global 2k«form on M.
Moreover dQ, =0, i.e., each Q, is a closed 2k-form. To prove this,
use

dR,. = 20 (R w, . — R, w.)

- ir rj
which follows from the second structural equation (section 5.2). Then,

0, = E[(dR'&"z)R"z"st"k’x * Ri1f2(dR‘2i3)R'3i4 fxfy + L
Consider one of the sums (all indices are summed from 1 to n), 4 =
2R, w,, R, .. . If k is even, the products in 4 are formed

17 T2 Tals o
from an odd number of forms that are skew-symmetric in their indices;
hence switching all the indices changes the sign, and adding, one gets

A=-~AsoA=0. If kis odd, the argument just used shows Q, = 0.

iki1

Proposition. For even k, the forms Q, define global closed 2k-forms
on M. Foroddk, Q, =0.
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Let W, denote the subalgebra of the Cartan differential algebra
F(or F(M)) which is generated over the real field by the forms Q, for
k=2, 4,...[n/2], and call W, the algebra of characteristic forms for
the connexion D. Elements in W, are called characteristic forms,
and they are closed forms since the generators are all closed. By
going to the differentialcohomology we can free ourselves of the
connexion D which we now do.

Let F? denote the module of C* p-forms on M. Let Z? denote the
closed forms in F?, thus ZP = [g in FP: da = 0]; and let B? denote
the exact forms in FP, so BP = [q in FP: there is 8 in FP—1 with
dB = al. Since d? =0, BP CZP; hence let HP = Z»/B? and call K7
the p-dimensional differential cohomology group of M. If a in ZP,
denote its image in H? by @; hence @ is the coset q + BP which is
called a (differential) cohomology class on M. Let H* = ES_OH"
(direct sum) and notice the multiplication in F carries over to H*.

Thus WD defines a set of classes called (differential) character-
istic cohomology classes, and this set we show is independent of
D (the Riemannian structure) and depends only on the manifold M.

It is customary to speak of VT’D as the image of the Wiel homomorphism.
This we explain.

Let g€ (a, R) be the set of n by n matrices over the real field R.
Our notation is the customary one for this set when it is thought of
as the Lie algebra of the general linear group GL(n, R), IfA= (aii)
in gl{n, R) we let u, (4) = @;;- Then a polynomial function P on
gl(n, R) is a polynomial in the functions Uy Uyg,...,u, ; for example,
P(A) = determinant (A) is a polynomial function. An invariant poly-
nomial P on gl (n, R) is a polynomial function P such that P(BAB—1) =
P(A) for all non-singular orthogonal matrices B. Referring to the way
we define the characteristic forms Q,, we see that every invariant
polynomial P can be used to define a global differential form QonM
by using the curvature forms from a Riemannian connexion D on M
and letting Q = P(R] 1 Ru,...,Rnn). Let us use ZﬁD for this map, so
Q = (DD(P). Letting § denote the set of invariant polynomials on
&0(n, R), we then claim to have a homomorphism mD: § — F(M) with
mn @ = W,M)=W,. This is the Weil homomorphism.

THEOREM. The Weil homomorphism is well-defined from the set
of invariant polynomials on gl(n, R) onto the set of characteristic
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differential forms on M; moreover, the Weil homomotphism is indepen-

dent of the connexion at the cohomology level, 1.e., WD =W, for
1 2

two Riemannian connexions D1 and D .

Proof. Let f,(\) denote the characteristic polynomial of a matrix
A and define polynomials E (A) to be the coefficients in f,(A), thus
f,(A) = det (M - A4) = An+ E l(A))\"'"l+ -+E (4). From linear
algebra we know E (A) are mvanant polynomials on g{(n, R); moreover,
they generate the ring of invariant polynomials. In terms of the
characteristic roots of 4, E (4) is the rtt elementary symmetric func-
tion of these roots, i.e., E (4) = a +...+a_, E,(A) = 2i<].aia,., etc, By
Newton’s theorem on symmetric functions, the functions E (4) are
expressible as polynomials in the functions P (4), where P(4)=
(a,)" + (a,)" +...+(a )". But P (A)is the trace of A%, and we can
write this trace in terms of the elements of A by

P(A)=3a. a,  ..a,

170 Tolz Teiy
summing over all 1 =1,...,n. Hence ﬁ‘l (El) is generated by the forms
Q. @D is well-defmed and (g)

To show WD is independent of the Rxemanman connexion, we take
two such connexions D, and D, let Qk W, (P ) fori =0, 1, and
show Q1 — Q0 — dG, where G in F2¥~1(8). iThus 6; = 61‘:, which
implies WD1 = WDO

Let <X, Y>, and <X, Y>, be the Riemannian metrics associated
with D, and D, respectively, and for 0 <t < 1define <X, ¥>, =
t<X, Y>, + (1~ £)<X, Y>,. Then <X, ¥>, is a Riemannian metric for

pach ¢, and its Riemannian connexion D is given by D, = tD, + (1-0D,

This can be shown easily by verifying that D has zero torsion and
preserves the metric <X, ¥>,. For any base field e,,...,e on an open
set U of M let w! Y and R‘] be the connexion and curvature forms
associated with D . Then (D )xe, = E,Wf](X)e =2, W1 (X)e, +

1- t)EiW?’.(X)ei, sow, = twilj - (1 - t)WiO,. From the second Cartan
structural equation we obtain

1 (1]
Rt =R} + (1-0OR] +t(t - 1)X,0,,0,,
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where 0 =wl —w?. The l-forms 0,; are the local forms belonging

ij ij
to the dlfferexlce tensor B(X, ¥) = (D), ¥ — (D), ¥, i.e., B(X, e,) =
2'6”(X)e Since B is a tensor, if f,...,f_is another base field on

U with f =3b, ;e; and B(X, f, )= Eﬁ,,(X)f then 9,.].()() Zt b0,
For each even k and each f, choose €45...5€, to be an orthonormal
base field relative to the metric <X, Y>:' and define a (2k — 1) form
onUby G, =260, R! R!
2

i , -R{ , summing over all i;=1,..,n
213 T34 Tt

Since the 0, transform exactly like the R, when changing to another
orthonormal base the forms G| are global forms on M by the argumerit
that was used to show Q, are global forms. Note 6, are not skew-
symmetric.

In an obvious way, define for each ¢, a 2k-form (d/dt)Q}, i.e.,

l

g_Qt :g_,(zkt Rt Rt -~ d pt t t
dt % dt frig igyi3™™" ik’l) = k( c?t_R"l"z)Riz"st"k'l
i = Rilj - R,.O]. + {2t - 1)2,{0”(0” Then Ql =

where d_R!
dt ‘=
d (ot
{ E(Qk)dt, and we show kdG; = (d/dt)Qf; hence Q} - Q? = dG,
1

where G, = k{ Gldt.

To compute dG!, use the second Cartan structural equation to
obtain d0'.j = R,lj - R?I. - 309,96, ;+ 0, wl 4 w; 0 ] Also,

ij kj

th R? —w! R )= t 0
(R}, ky WikR ) z[tle ki teikRk1+R:k ki~ 1kRItc]]
since wr.’j = tﬂij + W?j. Hence
=R} _R? ) - o _ t ¢
i1, iy 6‘1"6’”2 0i1kwki2 W"l"‘e"‘iz)R"z"st"kh
~[s ¢ ¢ t 0 0
(26, RO~ 10, Riy + R e, ~ W R OR] LR
2 q k'l

1360, | Ri,Ri | GR{ 6, -6, R +R wh —wl R

i i i i ji
1ip fgi3 k—1ig dgrTiiy 1 i ity PR
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=2[R}1,_2 -R}  +(@t-136, 6, R! ..Rf -

1
11y 1 2° faij i1k dt

Section 8.5.  Rigidity problems.

Two submanifolds of R” are congruent ot symmetric if there is an
isometry of R™ mapping one onto the other that is orientation presery-
ing or reversing, respectively. Let us say a submanifold M of R™ is
rigid if any submanifold /' that is isometric to M is actually congruent
or symmetric to . Natural questions arise which are called rigidity
problems, For example, which submanifolds are rigid, or when are
two isometric submanifolds congruent or symmetric?

Our principal reference for this section is Chern!. The standard

procedure in the following theorems is to somehow set up the hypothesis

of the fundamental rigidity theorem proved in section 6.5. Given an
isometry f between submanifolds, the first fundamental form is pre-
served by hypothesis, and our task is to show the second fundamental
form is preserved, or that f, commutes with the fundamental liniear
transformations L.

THEOREM. Ifn > 3 and M is an oriented hypersurface in Rn*?
with positive Riemannian curvature, then M is rigid.

Proof. Let f: M — M' be an isometry and let L' = L o fy. Since
f is an isometry, the Gauss curvature equations give R(X, Y)Y =
R'(X, Y)Y or <LY, Y>L(X) - <LY, X>L(Y) = <L'Y, Y>L'(X) - <L'Y,
X>L'Y), where X, Y in M .. Choose an orthonormal base Xl,...,Xn
of vectors at m, and let LX,=k,X, Weshow L' is invariant on each
subspace P ; spanned by X and X fori£j. Letb =<L'X, X >,
and the Gauss curvature equatlons 1mply

kiiji = b, L'X, — b, L'X,

k,.k].Xj =-b, L'X, + b,,L'X,.
Then K(P, PD=kk;=b,b. — b} ;> 0 implies L'X, and L' X, lie in P, .
Since n » 3 there is a third mdex r with L'X, in P hence L'X, hes
in P ~ P, and thus X, is an eigenvector of L'. For all 1, let

—hX Then k k. _hh > 0 for all i £ j; hence k? =h2, so
h =t k, The pOSltlve curvature condition also 1mp11es h =k, for

all i, or hi =—k, for all . Thus L = *L' and we apply the fundamen-
tal rigidity theorem.//
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If in the above theorem we assume M is complete (or closed), then
we need not assume it is oriented. For n = 2, the Cohn-Vossen theo-
rem provides a similar result with the additional requirement that M
be compact. We now examine some global functions and forms on an
oriented surface M in R3 before proving the Cohn-Vossen theorem.

Let N be the unit normal on M, let p in M, and let e,, e, be a posi-
tively oriented orthonormal base field in the neighborhood U about p.
Identifying p with the vector from the origin to p, define local func-
tions y,, y, on U, and a global function y, on M, by p = y,(ple, +
v fp)e, + y3(p)N. Define global 1-forms ¢ and 8 on U by a(X) =
<p, €,><X, e,>~<p, e,>X, e;>and B(X) = a(LX). One checks that
a is independent of the particular positively oriented base e, e,
used to define it, so a and B are global 1-forms on M. We now compute
da and d. Letw, w,. be the local forms belonging to the base e,
Then L(X)=D xW)y=w (X)e, + w,3(X)ey, w, g =
<Le, e >. Thus a =y,w, —y,w, and B8 =

€, 80 W, =W .
bh.W1 +b,,w,, and bii =
YiWys = ¥Wise _
Smcey = <p, e,> we have dy (X) = X<p, e >= <DXp, e> + <p, D ey =
X, ep>+<p, Tiw, (X)e>=w,(X)+ 32 y w_(X). Thus, using the Cartan

r‘l r ri
structural equat1ons,
da = (w +Y W1 +YsWa W, — 5wy wy) — (W +Y Wi H YaWa W, +
+7, W ,wyy = 2w w, —y Hw w, = (2 -y, H),

where v is the volume element. Similarly, df8 = (H ~ 2y ,K)v.
If M is compact, then JyH - 2y ,K) = JudB = f3,8 =0, and
2 = y3H) = [, da = Joya = 0, by Stokes’ theorem. The equality
JulH/2) = f,,¥,K is called Minkowski’s formula, and the other integral
implies the area of M is Juy3(H/2). For other formulae of this type
see Bormesen-Fenchel. ‘
The above paragraph provides two examples of “Chern’s formula
for theorems in differential geometry,” i.e., take a global l-form w
such'that dw = Fv where F is an “interesting” function, then state
fMF = 0. Another example is that fMK = 0 is a necessary condition
that w,, be a global 1-form.
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THEOREM. (Cohn-Vossen). A compact surface of positive
Gaussian curvature is rigid.

Proof. Let f: M — M"' be an isometry of such surfaces, and assume
the origin to be inside M so'y, >0, Let L' =L+ of,, then L and L'
are positive definite on M since K =K' >0, Let A=det (L — L"),

We show L = + L' by showing A = 0 and apply the following lemma:
if A and B are two positive definite quadratic forms on R? with det 4 =
det B, then det (4 — B) <0, and det (4 — B) = 0 implies A = + B.

Let B'=a b L' and, as above, we compute df3' = [H' — y ,(2K — A)ly,

Hence [H' = [V,(2k — A} = fH — [y,A, all integrals taken over M. Thy

fH' - [H > 0sincey, <0, so (H'> [H. By symmetry we can reverse the

inequality so fH' = fH and [y, A = 0, which implies A = 0.//

THEOREM. If f is an isometry between two oriented surfaces
that preserves the mean curvature and the third fundamental form, and
the mean curvature is never identically zero on any neighborhood,
then the surfaces are congruent.

Proof. Letf: M —M'andletL' =L . of,. Equality of the third
fundamental forms implies <L 2X, ¥> = <(L")2X, ¥> for all X, ¥ in M_
so L% = (L")2. Using the characteristic equation for L and L' we
have HL = L2 + KI = (L")?2 + K'l =H'L' = HL'. Thus if H(m) £ 0,
then L = L' at m, and since H never vanishes identically on any
neighborhood, we have L = L' on M by continuity.//

There is a theorem, similar to the preceding result, which states
if f is a diffeo between two compact convex hypersurfaces that pre-
serves the mean curvature and the thitd fundamental form, then the
hypersurfaces are congruent or symmetric. For the proof of this result
we refer the reader to Chem !, p. 29. Problem 77 shows one can relax
the compactness assumption in the Cohn-Vossen theorem by assuming
the third fundamental form is preserved.

The above theorems were included chiefly for their accessibility.
Much better theorems have been proved (see Pogorelov) with weaker
differentiability assumptions.

Problems.

75. Prove that the volume V _ of the unit sphere in Rn*1is equal
to 20%1 kY /n) for even n = 2k.
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76. If M is a compact surface in R® with constant mean curvature
and y, > 0 on M, show M is a sphere (see section 8.5).

77. If f is an isometry between two oriented surfaces in R3 of
positive Gaussian curvature which preserves the third funda-
mental form, show the surfaces ate congruent or symmetric.

78. Use an integral argument to show there exists no compact
minimal surface in R3.

9. Existence Theory

Section 9.1.  Involutive distributions and the Frobenius theorem.

We prove the standard theorem on the existence of “integral mani-
folds” of a distribution following Chevally (p. 88). The theorem also
appears in Auslander and Mackenzie (p. 147) with the terminology
altered slightly. ’

In this section let M be a C*™ n-manifold. A k-dimensional distri-
bution on a set A in M is a function P that assigns to each point p in
A a k-dimensional subspace Pp of the tangent space Mp. We say P
is C*on 4 if A is open, and for each p in A there are k independent
C* vector fields X ,...,X, which span P_ for all m in some neigh-
borhood of p. A vector field X with domain B lies in P or is in P if
B CA, and Xp is in P for all p in B. A C* distribution P is integr-
able (involutive or closed) when it is closed under the bracket opera-
tion, i.e., if X and ¥ are any C*™ fields with common domain that lie
in°P, then [X, Y] lies in P, A submanifold V of M is an integral sub-
manifold ot integral manifold of P if V is contained in the domain of
P, and Vp = Pp for all p in V; thus the subspace of the tangent space
Mp which belongs to Vp is exactly the subspace P

The theorem proved below implies a C* distribution has integral
manifolds if and only if it is involutive. A slightly stronger state-
ment is made involving the existence of a special coordinate system.
First some terminology: if X,0.0X_ is a coordinate system on M
with domain U, then define a slice of U to be any subset of U on which
r of the functions X;y.esy X, are constant, where 1 {r <n. Obviously,
each slice of U is a submanifold of U (or M).
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THEOREM. Let P be a k-dimensional involutive C* distribution
on M. For any m in M there exists a coordinate system x ,...,x_ with
domain U including m such that the coordinate fields 8/(9xj for
J=1,...,k span P at each point of U. Thus the slices of U of which
X, 4 X, are constant are integral manifolds of P,

The theorem is proved by induction on k. The case k = 1 is
covered by the following lemma, and note in this case any distribution
is automatically involutive.

LEMMA. If X be a C™ vector field on M, p in M, and Xp £ 0, then

there exists a coordinate system Y15+-¥,, on a neighborhood U of p
with X = d/dy , on U.

Proof (of lemma). Let X; = u, o ¢ be a coordinate system on the
neighborhood V of p with x(p} = 0 and 9/0x,(p) = X, LetX-=
2%a,(0/dx,) where a, are C* real valued functions on V and a (p) £0,
and restrict V if necessary so a, £0on V. Setting up the system of
differential equations for the integral curves o of X on V, we have

d(x; ° o) df;
Idt l=a,% or W:ai(fl(t),.,.,in(t))

where f (¢) = x; o olt). Applying an existence theorem from the theory
of differential equations (Coddington and Levinson, Chapter 1) we
obtain an r > 0 and n functions Ft, a, a@y+++5a,) which are C* on
the neighborhood W of the origin in R7*! where |t] <r and la,| <r
such that for i = 1,...,n:

(1 F,,(O, a4, az)-”:an) =a,

(@) F,(),...,F (®) in ¢(V) for b in W,

() Letting F(t, a,,...,a ) = ¢71[F (, 0, @iy @ )yeen,F (6 0, @pyennd,

define a map F of B(0, r) in R™ into V; then for fixed 8)peeny@
the curves

n

U= F o 8

are integral curves of X, i.e., F*(c?/(?ul) = X.
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For points (0, a,,...,a_) in B(0, r) we notice that F(0, ay,unpa,) =

770 @y, hence F(3/0u,), .. = 8/dx,p) for i = 2,..m.
Since F ,(9/du ), = Xp (s for all b in B(0, r) we have F, = (¢~ 1), at
the origin in R?. Hence F, is non-singular at the origin and by the
Inverse Function Theorem F is a diffeo between a neighborhood of
the origin and a neighborhood U of p with U c V. Finally, let
y;=u,oF tonU.//

Intuitively, in the above proof we have changed the Xyyeees X, CO=
ordinates about p by leaving the slice where x; = 0 fixed, and re- -
placing the “x,-coordinate curves” by integral curves of X emanating
from this slice.

Proof (of theorem). Take the point m and take C* fields Xl,...,,Xk
that span P on a neighborhood U, on m. Apply the previous lemma
to get a coordinate system Y 1se:0s¥,, about m with domain Uv,cu,
such that 9/dy | = X, on U,, and assume y, (m) = 0.

If ¥ = 1, then the coordinate systemy ,...,y_ satisfies the con-
clusion of the theorem. If k¥ > 1, we assume the theorem is true for
distributions of dimension less than k, and we define the (k — 1)
dimensional distribution P on U, by I_Jp =[X in P Xpy1 =0] for p
inU,. This is a (k — 1)-dimensional C® distribution for it is spanned
by the (k — 1) independent C™ fields Y,._z X, - (X‘.yl)X1 fori =2,...,k
It is involutive since if ¥ and Z are in P, then [¥, Z] is in P and
¥, Zly, =¥(Zy,) - Z(¥y,) = 0on U,, so [¥, Z] is in P.

_ Let V be the slice of U, defined by y, = 0. Then for p in %

Ep C (Vo)p, so we apply the induction hypothesis to the distribution
P on the manifold V, to obtain a coordinate system ZgseensZ,, on the
neighborhood U ; about m in V, such that 8/622,...,8/8zk span P on
U;. We define the map 7 U, -V, by alp) = ¢~ X0, Y 2(0)e.0sy, (),
where ¢ is the coordinate map so Yi=u,0¢. LetU, =7 U,) and
define functions XpoewX,onU, byx, =y, x,=2,0 TyeeyX =2, 0T,
Then the functions X1s Xgee0, %, define a coordinate system in a
neighborhood U of m with U cU,; indeed, 9/0x,(m) = 9/0dy ,(m), while
a/axz,...,a/axn span (V) at m,

We show 9/0%y,...,0/9x, span P on U by showing they span the
same subspace as X, Y,...Y,. Let Y =X,, then we show Yx =0
fori=1,..,kandj=k+1,..n Since Y, =X, =9/0x,, we immediately
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see le]. =0 forj £ 1. Since P is involutive, there are C® functiong
8;r, On U such that fori <k and r <k we have [V, ¥ ] = Ek_lg“sY .
Thus for 7 = 2,...,k and j > &, YI(YX)—[Y Y]X_Zk 1glxs(l’x),
This implies the functions ¥ X; satisfy a linear homogeneous system
of ordinary differential equatlons along any x ;-curve. Buton V 0,

X, =z, for]>1andYx =Yz,=0onV, for]>kbecauseofthe
cho1ce of the coordmates ZyensZ,. Hence, by the uniqueness of soly-
tions to systems of the above type, ¥ X;=0fori<kandj>k//

We use the theorem on involutive d1str1but10ns to prove the classica]
Frobenius theorem on (total) partial differential equations (see Levi-
Civitae). This theorem can be stated roughly as follows: there exist
unique solution functions f,.(xl,...,xk), with prescribed values at a
point, to the system of partial differential equations

of;
aT;— = A”.(X l""’Xk' [1’-'“[(1)
i

if and only if forall j <k, r<k andi < d,
04;;

04 ; 04;,

Ed ij A - Ed- It A
axr o=t O 8xj ! af *
L . .. 0 o2f
(which is merely what the chain rule demands if I = ).
Y gxro'?x. 5X.8X

THEOREM (Frobenius). For 1<i<dand1<j<k, let A 1(xq,
we0s Xy Uy, uy) be C™ real valued functions on an open set Q in Rn
where n = k + d, and we have labelled the coordinate functions of R™
in order to conveniently express partial derivatives. Let (a; b) =
(a peedyy by, b)) be in Q. Then there exists a unique set of C™
real valued functions f,...,f, defined on a neighborhood V of a and
satisfying the following three conditions:

@) f(a) = b, or f(a) = b, where f is the mapping of V into R defined
by f(P) = (fl(P):u-,[d(P)),

(2) if pin V, then (p: f(p))in Q, and
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@ it pinV, then 1 (o) = 4,(p; K(p),
i

iff at every point of Q,

Ay ga O0Ay dA; <4 OA,,
i i A — 2 - ;e
aX + zs- aus aX] s=1 aus 8y

r

@

Proof. Lete,, ..;e, be the usual global orthonormal vector fields
on R". We use the functions A,, to define C* vector fields Y,..,Y,
onQbyY —e +29 A e, . These vector fields are independent

at each pomt of 0 and hence they span a k-dimensional C* distribution

P on Q. We form brackets,
fYr, Yq] =[e, + 2:.1Asrek+s, e, + E Atqekﬂ]

0A

+ Zg"114sx' autq)ek+t 1( A
s

oA,
3 qut ey o

_zdl(

and thus by condition (4), [V, Y 1=0

Hence the distribution P is involutive and by the theorem above
there exists an integral manifold U of T through (a; b) with U C Q.
Let ¢: U — R¥ by $la'; b') = a', then ¢ (¥ ) = e, and ¢ is non-
singular on the tangent space of U at (a; b). Thus there is a neigh-
borhood V of a and a map F which is a diffeo of V onto F({V)cU such
that F o ¢ and ¢ o F give the identity map on F(V) and V, respectively,
Define f ,...,f  on V by F(p) = (p; £, (p)....,f,(p)). Then the functions
fl,,,,,!d are C™ functions satisfying (1) and (2), and (3) follows since
Fe(e)=Y forr<k.

The implication of the theorem in the other direction is trivial.//

Actually the Frobenius theorem in turn can be used to prove the
theorem on involutive distributions, A k-dimensional distribution P
about m can be carried to an open set Q in R™ via a coordinate map.
Furthermore one may choose the coordinate map so the induced dis-
tribution on Q is spanned by vectors Y ,,...,Y, of the type defined
above, and this defines functions A The involutive condition will
then imply [Y Y ] =0, since [V, Y ] must be a linear combination
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of ¥,,...,Y, at each point. This implies the integrability condition
(4) of the Frobenius theorem is satisfied which we then apply to get
local integral manifolds. One actually has to state the Frobenius
theorem to include the C™ dependence of the solution functions on
the initial conditions (which follows from the Chevalley theorem) in
order to obtain the full equivalence.

A first application of the Frobenius theorem provides a useful
theorem concerning the existence of coordinate systems.

THEOREM. Let M be an n-dimensional C™ manifold and let
X ..., X be a set of independent C* vector fields on a neighborhood
U of min M. Then there exists a set of coordinate functions X jpeoor X,
defined on a neighborhood V of m with V C U and Xi = 6/8xi on V for
all i iff [X , Xj] =0 for all i and j.

Section 9.2.  The fundamental existence theorem for hypersurfaces.

Let U be an open set in R on which is defined real valued C*
functions g,.j and bij for 1 <1, j <n such that the matrices (gl.].) and
(b”.) are symmetric and (gi].) is positive definite. Roughly speaking,
we prescribe conditions which imply the existence of a coordinate
system on a hypersurface of R7*1 such that the matrices (,;) and
(b“.) are the coordinate representations of the first and second funda-
mental forms, respectively. We demand that (gij) and (bl.].) satisfy the
Gauss curvature and Codazzi-Mainardi equations, and explain this
demand. On U, define functions I‘jf'k in terms of the g, by the classical
formula (sce section 6.2), and define functions w,(e,) = F;k,

W+ lj(ek) = "bjk’ an+l(ek) = E:'ﬂ(g_l)jrbrk’ and w, ., .,(e)=0,
for all 1, j, k < n. Then if there was a coordinate system with coordi-
nate fields e ,...e_ whose image set was U, the Gauss curvature
equations and Codazzi-Mainardi equations imply (see section 6.6)

L dw, (e, e) = ~SRIW e ~ Wile, e,)
and
(2) den+l(er’ es):i;;_lek ~waale, e,
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respectively. Thus we say (g,.j) and (bi],) satisfy the Gauss curvature
and Codazzi-Mainardi equations if (1) and (2) hold for the functions
defined on U where the left sides are computed by dwij(e!J e.)=
\8//(9ut)wij(es) - (3/(9us)w'”(er), etc.

THEOREM. Let (g,,j.) and (bij) be defined on U as described
above and suppose they satisfy the Gauss curvature and Codazzi-
Mainardi equations. Then for any point p in U, there is a neighbor-
hood V CU and a C™ mapping F: V — R"*! gych that F(V) is an n-dimen-~
sional submanifold of R"*', F~1is a coordinate map on F(V), and}(g”)
and (bi.) are the coordinate representation matrices of the first and sec-
ond forms on F(V), respectively,

Proof, Let u,,...;u_ be the natural coordinate functions on U. We
seek (n + 1)R"* l-valued functions €,.e€, ., defined on U that satisfy
the Gauss equations and Weingarten equations, i.e.,

3)

de, -
=30ty (e)e, = (D_ (e,
(9”,' 1" rile e, = ( e],("r))

where j = 1,...,nand 7 = 1,...,n + 1. Each of the equations in (3) has
n + 1 components, and the differentiation operator 8/8111, is applied to
each component. In order to apply the Frobenius’ theorem we compute

azei/c'?uk&zj, using (3) to obtain

Jle, aw_.(e.) de
R rit"ji’ o le) =1
& o) 5

k i k

=3 awri(ej)
r (911

k

€, + zswri(ej>Wsr'(ek)es)

where we sum r and s from 1 ton + 1. The integrability conditions
are the equations

+ Eswsi(ej)wrs(ek = al"g_(fg) + zswsi(ekywrs(e]’)’
u,
i

@ M)
ou

k

which follows from (1) and (2).
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At the origin in R"*! we choose initial vectors e ,...,e_,,, so
e, e>= g,.].(p) fori, j<n, <e, e ,,>= gmﬂ(p) =0,e ,,=
d/0u_,,, and e,...,e_,, positively oriented. Applying the Frobenius
theorem we obtain a neighborhood V| of p and/(n + 1DR~2* levalued C*
functions e ,...,e_, , that satisfy (3).

To check that <e,, e> =4, and <e, e_,,>= 0 at all points on V|
for i, j < n, we must again apply the Frobenius theorem. Let G,.j =

<e, e>on V, fori, j <n+ 1. Then by (3) and the product rule we
have

G,
(5) f;# = zfjll[wri(ek)Grj + er(ek)Gir]

Uy

on V.. But from the definition of w,(e,) =T'%, in terms of 8;; we find
the functions §,; also satisfy (5) where we define ¢, ., =6,,,,- By
using (1) and (2) we verify the system (5) satisfies the necessary
integrability conditions for the Frobenius theorem and since G”(p) =
g,.].(p) we have G, = g,; on a neighborhood V', on p.

Detine functions AU onV,fori=1,...,n+1landj=1,..nby e, =

(Aij,...,An+l].), and consider the system of equations
of;
©® Si-4,
j
04, OA. . de Je . ; )
Here Y _ "Ik gince . = K (for ¥, =T'! ). Thus, letting
ik kj
du, 8uj ou, 8uj

f,(p) = 0fori=1,..,n+ 1, we apply the Frobenius theorem again to

get C* functions f,,...,f ., on a neighbothood ¥, of p with V, C V..
Finally, we define F: V, —, R™*! by F(m) = (,(m),...,f_, (m)) for

min V,, Then F is C* and F*(a/auj(m)) = ej(m) for j = 1,...,n. Thus

F is a diffeo of a neighborhood V of p onto its image F(V) in R**! and

V cV,. The map F~!is a coordinate system on F(V) with coordinate

(e,e,, e> =

vectors e ,...,e_, so £;;=<ep e>and Le, e>= <E W, i1

EW (€8, = 2, (€7, b, 8, = b, as desired.//
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Section 9.3.  The exponential map.

Let D be a connexion on M". From section 5.1 we know for each
vector X, tangent to M at m, there is unique geodesic £ 4 (t) of the
connexion D, which is defined on a neighborhood of zero in R with
£x(0) = m and tangent X at ¢ = 0. Furthermore, for appropriate s in
R, 8 ,4(t) = g x(st) by the nature of the differential equations defining
the geodesics. This implies that 8.x(1) is defined if g, (a) is de-
fined, thus £,(1) is a well-defined point of M for ¥ near zero in M.

Definition. For ¥ in M, we define exp, ¥ = g_(1) when the
latter is defined. The map exp  is called the exponential map.

The name “exponential map” is used because in a special case
for the general linear group GL(n, R) it becomes the classical map,
Aoset=] +A+(A2/21) ..., from the set of all n by n real matrices
into the set of non-singular matrices (problem 81).

Our current objective is to obtain some important properties of the
exponential map and to state these precisely we must use the tan-
gent bundle T(M) of M.

Proposition 1. Let N be the subset of T(M) such that if (m, Y) in
N then exp_ (Y) is defined and define the map exp: N — M by
exp(m, Y) = ex’Pm(Y). Then N is an open set and exp is C®on N. In
particular let ¥ = [(m, 0) in T(M): m in M], then there is an open set
N in T(M) such that it ch CN.

Proof, We do not completely prove the above proposition. Apply-
ing the local theory of differential equations we prove the last state-
ment of the theorem and we prove exp: N — M is C*. Then we

sketch the proof that exp is C™ on N and refer the reader to Lang,

Using the above notation, if g(t) is a geodesic in the neighborhood
U, then

d(x, o g) n dx; o 8) d(x; 0 g)
—d:Z— +2,~,,~-1Ff§~Tg ax°8) g
t dt

for ¢ such that g(¢) in U. For each point (m, 0) in T(¥) take a coordi-
nate neighborhood U, of min M and apply the existence and uniqueness

theorem to the above differential equation to obtain a real number
b > 0, a neighborhood V,of (m, 0)in T(M) with V_ C7 U _), a C™
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map £: (-b, bY x V_ — M, such that for fixed (p, ¥) in V. the curve
£,(tY = g(t; p, Y) is the unique geodesic defined on (-5, b) which
passes through p with tangent ¥ at ¢t = 0. Moreover, for (p, ¥) in v
and a > 0, we have &,y defined on (~b/a, b/a), since 8,y =
gylat) = glat; p, Y).Choose a >0so a<band let W_ = [(p, X) in V.
(p, X/a)in V] Then for (p, X)in W_, exp(p, X) = 4(1; p, X) =
gla; p, X/a) is defined and exp is C®on W_,

Let N = U_W_, and the last sentence of the theorem is proved.

For each (p, Y) in T(M), choose a > 0 so (p, a¥) in ﬁ, and thus
£ (t) is defined in some neighborhood of t = 0. As usual, for any
curve £ let Tg be its tangent vector and define the natural lifting of
acurve g in M to a curve & in T(M) by g(¢t) = (g(¢t), Tg(t)). Now define
a global vector field Z on T(M) by Z(p, ¥) = Tg_ (0)., Then Z is a
C™ field on T(M) by the above analysis, and if Jis an integral curve
of Z, then 7 o ¢ is a geodesic in M. The field Z is called the geodesic
flow field associated with the connexion. The fact that exp is C™
on all of N now follows from Theorem 5 on p. 66 in Lang.//

Corollary 1. For fixed p in M, the map exp  is a diffeo of a neigh-
borhood of 0 in M | onto a neighborhood of p. Furthermore, if 7,:
Mp — (Mp)0 is the natural map of the tangent space at p onto its tan-
gent space at 0, then (expp)* o7, is the identity map on M,.

Proof. The map 7, is defined by choosing any base €y5..5€, of
M, and letting z,,...,7z,, be its dual base. Then Z,,...,2_ are a global
coordinate system on the vector space viewed as a C* manifold, Let
nole;) = (6/(321.)0 for all 7. This map 7 is independent of the particu-

lar base e s furthermore, by evaluating the global fields d/dz,

1

at any point Y in M m+ We obtain a natural isomorphism 7, : M, — (M )y'

In these notes, for any X in M, we let X be the natural constant vec-
for freld on M associated w1th X where XY = 7y (X).

Take X in M , then 7 (X) = X ;. To compute (exp )*X we note
Xo is the tangent vector at £ = 0 to the ray y(t) = tX in M. The curve
exp, o w(e) = exp, tX is by definition the geodesic through p with tan-
gent Xatt=0. Thus (expp)* = X. Thus (expp)* is non-singular
and onto at the origin in Mp. The corollary now follows by applying the
Inverse Function theorem. //
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Corollary 2. Let G; N —wm x M by G(p, ¥) = (p, exp Y). Then
G is C* and G, is non-singular and onto at all points (p, 0) in T(M).

Proof. Let n: M xM—Mby 7(m;, m)) =m, fori=1, 2. Each_
7, is C™. Since 7, o G =7, and 7, o G = exp, the map G is C* on N.
The tangent space N p,0) 1S naturally isomorphic to Mp x (M )0,
while the tangent space to M xMat Glp, 0) = (p, p) is naturally iso-
morphic to Mp X Mp. In terms of these natural isomorphic spaces,
G, is the identity on the first factor and (e)(pp)>,< on the second factor.
Hence, by Corollary 1, G, is non-singular at (p, 0).//

We apply Corollary 1 to obtain normal coordinate systems. For
any m in M let e ,...,e_ be a base of M, let z,,...,z _ be its dual
base, and let U and U be nelghborhoods of O in M and m in M, re-
spectively, such that exp_ is a diffeo of U onto U whose inverse we
denote by exp~!. Then define C™ functions XjyeeeyX, 0n U by x, =
z,0exp” ! for all i. These functions X1,+.e,%, define a normal co-
ordinate system (of the connexion D) on U. The curves o in U such
that x, o o(t) = a,t for constants ay,...,a,, are geodesics emanating
from m(at t = 0), and if r;k are the connexion functions on U for this
coordinate system, then F;k(m) = 0, provided the connexion has zero
torsion.

One verifies this last statement by letting X,. - a/ax,. and then
DXj(XJ,) = EZ_IT;‘I.XI( by definition of F,k, Since the curve ¢ with
x,00(t) = ¢, X, o olt) = ¢, and x, ool(t) = 0 for k £1 or j, is a geodesic,
(X ,4x, X+ X)) =
D X+D X+D X+D X Thus atm, D, X—-Oforalll,

its tangent X + X. satisfies the condition 0 = D

Smce each coordmate curve emanatmg from m is a geodesic, and 1f

D has zero torsion, then 0 = 2(DX_Xj) = QEkF]"I(m)X SO l"k (m) =

for all 1, j, and k.

We apply Corollary 2 to obtain Fermi coordinates along a curve.
Let o be a C™ curve in M that is univalent on the open interval
I CR. Let €..-,€, be C* fields on ¢ that are independent at each
oft) and e _(t) = T (¢) for all ¢ in I. Let Zy,...,7, be the dual base to
€1s...,€, for each t. By Corollary 2, there is a neighborhood V of
Hc T(M) such that G is a diffeo of V onto a neighborhood N, of the
diagonal in ¥ x M. Let U =[(m, ¥)in V: m = oft) and z (Y) = 0 for
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some ¢ in I]. Then F = G|U is a 1 to 1 C* map of the submanifold
U into ¥ x M. Moreover F is non-singular at each point of U, so F
is an imbedding of U into M x M. The map H = 7, o F then gives a
1 to 1 C* map of U onto an open neighborhood W of the image set
o(l). Define Fermi coordinate Y 1sees¥,, On p in W by letting H™ '(p) =
{o(t), Y) in W and yp)=2z,¥)fori=1,....n — 1and v.(p) =t

More special types of Fermi coordinates can be defined by taking
€yy...;€, to be a parallel base along a geodesic o, and in the Rieman-
nian case, one can take an orthonormal parallel base along a geodesic,

Section 9.4. Convex neighborhoods.

This section is devoted to proving the following theorem, due to
J. H. C. Whitehead.

THEOREM. Let M be a C*™ manifold and D be a C*® connexion
on M. Then for any point m in M there is a neighbothood U of m which
is convex; i.e., for any two points in U there is a unique geodesic of
D which joins the two points and lies in U.

Proof. We may assume D has zero torsion, since by section 5.4
there is a unique torsion-free connexion with the same geodesics. The
theorem is local, and we work completely in one coordinate neighbor-
hood of m. From the previous section we choose a normal coordinate
system x,...,x_ about m with domain 4, thus x,(m) = 0 and I_" ((m) =
for all 4, j, and k Let d(p, q) be a local metric on A defined by
dp, q) = [3,(x,(p) = x,(0)) )% (p) = d(p, m), and let B(p, ) = [g in
A: d(p, q) <c] for p in A. Also for p in A and X in M , let |X| =
[2,dx,(X)?]%.

By Corollary 2 in section 3, for each p in 4 there is a real number
r,> 0 so that G is a diffeo on the set (q, X) where g in B(p, r ) and
d(q, exp, X) <r,. Take c>0so B = B(m, c) CA. For each p in B
we obtam an mteger r, > 0. The farnlly of neighborhoods B(p, r ) for
pin Bisa covering of the compact set B, hence we may select a
finite subcovering of neighborhoods b_elongmg to piyeep,. Let
S = min[rl, ,rk]. Then for any p in B, exp, maps a neighborhood
Up of the origin in Mp diffeo onto B(p, s). This follows since p in
B(pj, r;) for some j and hence G is a diffeo on the set (g, X) for q in
B(p,, r;) and d(q, exp, X) <r,. We fix ¢ = p, and exp, is a diffeo of

e
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a neighborhood V of 0 in M, onto B(p, r;) and s < ;.
the following:

We have proved

LEMMA 1. For any ¢ > 0 with B(m, c) C A, there exists an s > 0
such that for p in B(m, c) the map exp is a diffeo from a neighbor-
hood U of 0 in M onto B(p, s) C A.

We now prove two lemmas that complete the proof of the theorem.

LEMMA 2. There exists a real number a, 0 < a < 1 and E(m, a)C
A, such that 1f 0 <b<aandgis ageodesic with tangent T and
fog(0)= 1‘ = 0, then f o g has a strict relative mlmmum at |
£(0). Tbus 1f g 1s tangent to the “sphere about m of radius b” at g(0),
then g lies outside of B(m, b) near g(0).

Proof. We may assume |T g0yl =1 LetT = 2a X; where X,
8/8X and a; o g = (d/dt)(x og) and we assume 1 1s extended to a
Cc> fxeld in a nelghborhood of g(0). Since f = [2 Xz] s we have Tf =
E a, (X f) = (l/f)EJa]xJ and T*f =3 a
a )] At t=0, or at &(0), Tf = 0; hence Tzf = (l/b)[E al+ X,
But at (0), £, a2=|T|?=1and 3 28 (X a;) + Er sf‘rsara = 0 since
gis a geodesm Thus T = (l/b)[l -2, X F:satas] Choose
a> 0 and a <1 so for points p with f(p) < a, |I“ (p)] < 1/2n> for all i,
J» and k, which is possible since F'k continuous and T" «(m) = 0. Then
at £(0),

£, xI7 a al < (1/2n3)(2j.r,

Jetes 1 rs s,l)S 1/2’
hence T2f(g(0)) > 0, which implies f o & has a strict relative minimum

at 0.//

LEMMA 3. Let a be given by Lemma 2 and apply Lemma:l with
¢ =a/2 to obtain s > 0 with s <(2/3)a. Then B(m, s/2) is convex.

Proof. Choose any p and q in B(m, s/2). By lemma 1 there is a
geodesic g defined on some interval [0, u] with 8Q0) = p, g(u) = ¢, and
8(t) in B(p, s) for all t in [0, ul. We show f o g(t)<s/2forall tin
[0, ul. Let v be a number in [0, u] where f o g attains its maximum
value. Then f o g(v) < a since f o g(v) = d(m, &) < d(m, p) +
d(p, 8(v)) <(s/2) + s <a. Suppose f 0 g(v)>s/2. Then (f o g)(v) =
and f o g(v) < a which implies by Lemma 2 that f o g has a strict re-

LL=x /fs)(z a;x;) + (1/1‘)(2 (X a)x; +
j(xka,)].
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lative minimum at v which gives a contradiction. Thus B(m, s/2) is

convex.//

Section 9.5.  Special coordinate systems.

Let M be a Riemannian n-manifold, let ¢ be a coordinate map on
M with domain U and x, = u, o ¢, and let X, = 8/0x,. The coordinate
system x ,...,x, is orthogonal if <X,, X > =0 for1 £ j. If the map ¢
is a conformal map of U into R™ (with respect to the canonical Rie-
mannian metric on R7) then the coordinate system is isothermal or
conformal (and hence also orthogonal). When M" is a hypersurface in
some M "*}, the coordinate system is principal if each X is a princi-
pal vector, and it is asymptotic if each X, is an asymptotic vector.

In this section we study the existence of such special coordinate
systems when n = 2. Orthogonal systems and conformal systems
exist about any point, and the latter may be used to define a Riemann
surface structure on M. Principal coordinates exist of necessity about
any non-umbilical point on a surface, while they may or may not exist
about an umbilic. We show asymptotic coordinates exist in some
special cases, e.g., about a point of a surface which has a neighbor-
hood on which the curvature is a negative constant, and about a non-
umbilical point on a negative constant, and about a non-umbilical
point on a minimal surface (problem 88).

THEOREM (Gauss 1827). Let y be an arbitrary univalent curve
in M? parameterized by arc length on (a, b), let X be the (unit) tan-
gent to y, and let Y be a unit C* field along y such that <X, ¥>= 0.
Then the Fermi coordinate system induced by Y on a neighborhood of
y is an orthogonal coordinate system about y which is called a set
of “geodesic parallel coordinates.” This proves the existence of
orthogonal coordinates about any point on a two-dimensional Rieman-

nian manifold.

Proof. Let ¢ be the Fermi coordinate map from the neighborhood
U of y onto the set V in R2.
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Fig, 9.1 Fermi Cordinates

Then for (¢, s)in V, ¢™'(t, s) = exp_( \¥. We iet X and ¥ be the
coordinate fields on U which extend X and Y along y. Since the y-
curves are geodesics parameterized by arc length, D,Y =0and

<¥, ¥Y> =1, where D is the Riemannian connexion. We compute
Y<X, ¥>= DX, ¥>+ <X, D,Y>=<D, X, Y>=1/2X<¥, Y>=0,
since- the torsion is zero, so D X — D, ¥ = [¥, X]= 0. Thus <X, ¥>
is constant along the y-curves and since <X, ¥> = 0 on y we have
<X, Y>=0o0nU.//

One way to paraphrase the above situation is to say “if segments
of equal length (lying in U) are laid off along geodesics that are
orthogonal to a univalent curve y, then their endpoints determine an
orthogonal trajectory to the family of geodesics.”

THEOREM. If m is a non-umbilical point on a surface M in R3,
then there exists a set of principal coordinates in a neighborhood U
of m.

Proof, Since m is non-umbilic, there is a neighborhood V of m
which contains no umbilics. Assume V is oriented via a unit field
N, and let L(X) = D 4N as usual, where D is the Riemannian connexion
on R3. Let X and ¥ be C* orthonormal principal vector fields on V.
with L(X) = kX, L(Y) = AY, and k <h, which corresponds to the nota-
tion of Chapter 3. We seek non-vanishing C* functions f and g de-
fined on a neighbothood of m such that the fields Z = £X and W = g¥
satisfy the condition [Z, W] = 0. Finding f and g, we can apply the
theorem of section 1; to obtain the desired principal coordinates.
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We compute [fX, g¥] = f(Xg)Y ~ g(¥NHX + fg(aX - bY), where

a=(Yk)/(h - k) and b = —(Xh)/(h - k) by theorem 3.2. Hence [Z, W] =0

if (Xg) - bg = 0 and (¥f) — af = 0. Thus we may prescribe g = 1 on
the integral curve of ¥ through m, and then on each integral curve
¥(t) of X we have the differential equation

%N (o o) 0 ) = 0

dt
From the existence theory of ordinary differential equations we get g
defined and C* on a neighborhood of m with £ > 0. Similarly, we
obtain f.//

One can write the differential equations Xg = bg and Yf = af as
first-order linear partial differential equations ie terms of a coordinate
system u, v about m. This follows, since X = b (8/0u) + b (a/av)
and ¥ = a,(d/0du) + a ,(9/av) defines C* functions a; and b, and then
one must solve,

dg 08 of of
b _+b =b 181_1 —_af

THEOREM. If m is contained in the neighborhood U on a surface
with constant K = —-a® < 0 on U, then there exists a set of asymptotic
coordinatés about m.

Proof.. Let X and ¥ be orthonormal principal fields on U with
LX =kX and LY =hY, k <0 <h. Leth=(a2+ k2% Z = b(aX — kY),
and W = b(—aX - k¥). Then <LZ, Z> = <LW, W> = 0, and Z and W are
clearly independent. Using theorem 3.2, one computes [Z, W] = 0
Hence, the desired coordinates exists.//

Isothermal coordinates and Riemann surfaces.

Let M be a

Section 9.6,

The principal reference for this section is Samelson.
Riemannian 2-manifold.

Let x, y be an arbitrary coordinate system on a neighborhood U of
M. We seek functions f and g so the map p — (£(p), &(p)) will define a
conformal coordinate system about m in U. If f and £ exist, let E =
<0/0f, 8/9f>, F = <3/0f, 9/98>, and G = <9/ dg, d/dg>. Then grad f

i
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= (1/W2)G3/3f - FO/dg) whete W = (EG ~ F )2, If { and ¢ are
orthogonal coordinates, then F = 0. If they are also conformal co-
ordinates, then E = G and |grad f|? = (1/E) = |grad g|% Thus co-
ordinates f and g are conformal iff <grad f, grad g> = 0 and lgrad f|% =
|grad g|2.

In terms of the x, y coordinate system, <grad f, grad g> =
&,(Gf —Ff )—g (Ff - Ef ) where g = 34/0x, etc., and E, F,
and G now belong to x and y, i.e., E = <9/dx, d/dx>, etc. Thus
<grad f, grad g> = 0 if there is a function pon U with

) g, =p(Ff_ — Ef)) and g, =p(Gf -~ Ft)).
Then |grad g|2 = p?W2|grad |2, so let p = 1/W. The equations (1)
become a generalization of the Cauchy-Riemann equations. For a

particular f, one can solve the system (1) for g iff g, =&, 0ot

(Gt = Fl, g Ef, - Ff
I FEF? ¥ JrGore

Equation (2) is the classical Beltrami equation, a generalized form
of the Laplace equation. Indeed, the left side of (2) is WAf. Classi-
cally, <grad f, grad > is called the first Beltrami operator on f and
g and the Laplacian A is called the second-Beltrami operator.

The theory of elliptic partial differential equations gives the
existence of non-trivial solutions of (2) about a point in U which

@

proves the following theorem.

THEOREM. There exists a system of isothormal (conformal)
coordinates about any point of Riemannian 2-manifold.

On manifolds M as desctibed in this theorem, if we restrict our-
selves to conformal coordinate systems then, when the domains of
these coordinate systems intersect, they induce a conformal map
from one open set of R? onto another. Since R? is the underlying set
for the space of complex numbers, these conformal maps must be
8iven by analytic functions from one open set of C onto another.
Thus at each point m of M we have diffeos of a neighborhood of m
onto an open set in C which are related by analytic functions on the

Intersection of their domains. When M is covered by neighborhoods
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such that the analytic functions induced by overlapping neighborhoods
are orientation preserving, then M is called a Riemann surface and the
study of these objects leads (o arich theory (see Ahlfors and Sario).

86.

Problems,
. 87.
79. Let T be a C™ vector field on the Riemannian manifold ¥ and

define A4 . M,—M, by A.(X)= D,T, where D is the Rie-
mannian connexion. Show that divT = trace AT. Show 4, is
self-adjoint iff d o G(T) = 0 (T is closed). Let (T*) = [X in
Mm: <X, Tm> = 0]. If T is closed, show T+ is an‘i:tegrable
(n ~ 1)-dim distribution on the subset of ¥ where T £ 0.

80. (Frobenius) Let Wisee, W, be a set of independent C* 1-forms 88
on a C* n-manifold ¥ with ¥ <n. Define an (n — k)~dim dis- '
tribution P on M by P_=[Xin M,: wiX)=0fori=1,..,k)
Show that P is integrable iff dw, =X, <o<xlirsWe ~ W for
all i. (For generalizations of this res'ﬁlrt,srqe Kuranish; or
Johnson.)

81, If G=GL(n, R), I is the identity in G, 4 in G,and o: t »etd= 89
I+tA + (tA)?/2!4...+(tA)"/nl+..., show olt) is a 1-parameter )
subgroup of G with tangent 4 at ¢ = 0. Thus show e !4 — exp tA
for all ¢ (see problem 46). d

82. Show the map (m, X) — |X] is C™ on the set N = [(m, X) in
TM): X £0].

83. If M is a Riemannian manifold and 4 is a compact set in M, [
show there exists a real number r > 0 such that the ball B(m, r) v 90
is convex for all m in A. ‘

84. If G is a Lie group, ¢ in G, X in the Lie algebra, and g =-exp X,
show that 2 = ¢ where h = exp(X/2). if h in SL(2, R)=[g in
GL(2, R): det g = 1], show the trace (a?) >-2. Use this to
prove the exp map is not always onto even when the connexion
is complete.

85. Let D be a connexion on M. Show the curvature R = 0 iff the
horizontal distribution H on B(M) is integrable (section 5.5).
Show that R = 0 implies parallel translation is independent of 9l
the path (problem 45),
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Show there exists at least one umbilic on any compact convex
C> surface in R3. (It was conjectured by Caratheodory, and
proven by Bol and Hamburger independently, that a compact
convex surface has at least two umbilics.)

If M is a surface in R3, U a coordinate domain on M with co-
ordinate fields X and ¥, show the area of U is equal to
fU(<X, Xo<¥, Y> - <X, y>2)"%, Let f be in C®(U, R) and de-
fine a normal deformation belonging to f by ¢ (p) = p + tf(p)IVp
for p in U and N a C* unit normal on U. Let J(¢) be the area
of ¢,(U). Show J'(0) = O for all f iff U is a minimal surface ~
#H=0)

Show that about any non-umbilic point on a minimal surface
there exists an isothermal coordinate system x, y whose co-
ordinate curves are lines of curvature. Show the functions
z=A{x +y)/2 and w = (x — y}/2 define an isothermal coordinate
system whose coordinate curves are asymptotic curves which
bisect the x, y coordinate curves.

Using the notation of section 3.4, let u, v be conformal coordi-
nates on domain B with E=G =<T , T >. Show r..+T, =
—HGN. If fis C™ on B, show Af = (l/G)(fuu +f, ). Letl:

M — R3 be the inclusion map of a surface M into R3, and let

Xi=U;i°lon M fori=1,2, 3. Defining AI = (Ax,, Ax,, Ax,),
show Al = —-HN on B. Thus if M is minimal, then the functions

x, are harmonic on M.

Let f,, f,, and f; be three analytic functions defined on an open
set B in the complex numbers C. Let Z: B — C3 by Z(w) =
(f,(w), f,(w), f,(w)) and define X and ¥ mapping B into R by
X=ReZandY =ImZso Z=X+1iY. If2Z' eZ' =0 and
X,*X_ >0on B, show the maps X and ¥ each define an im-
mersion of B into R3 whose image locally is a minimal surface.
Conversely, if M a minimal surface in R3 and m in-M, show
there is an open set B in C and analytic functions f , f,, and

f, defined on B such that X(B) is a neighborhood of m in M. .

A Weingarten surface M in R® is a surface whose principal
curvatures are functionally dependent. Let W: M — R?% by
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W(m) = (k(m), h(m)), where k < h, and call the image of W the
W-diagram. Show there exists no compact Weingarten surface
of positive Gauss curvature whose W-diagram has negative
slope (see section 3.1). Show a compact surface with K> 0
and H constant is a sphere. Hopf® has shown a compact sur-
face with (a) constant mean curvature and (b) Euler charac-
teristic zero, is a sphere. It is an open question whether the

assumption (b) can be dropped.

92. Let X and Y be the coordinate fields for a set of orthogonal
coordinates on a surface. Show there exist conformal co-
ordinate with the same coordinate curves (as images) iff

YX{log (E/G)] = 0.

10. Topics in Riemannian Geometry

Section 10.1.  Jacobi fields and conjugate points.

In order to study the minimizing properties of geodesics, we study
one and two parameter families of curves and the vector fields which
they induce. Our main tools are developed in the following three
propositions.

Let Q and M be C* manifolds, and let f be a C* map of Q into M.
A T(M)-valued vector field on Q associated with f, or a T(M)f field
on Q, is a C* function A from Q into T(M), the tangent bundle to M,
such that A(p) lies in Mf(p) for all p in Q. The field A is a tangent
T(M), field on Q if A = f,A"' for some C* field A’ on Q.

For the remainder of this section, let Q, M, and f be as just de-
cribed, and let D denote a connexion on M.

If A and Z are T(M)[ fields on Q and 4 = {,A' is tangent, then we
can define D , Z to be a T(M), field on Q. This is possible, since
for a particular p in Q the field Z gives a well-defined C* field along

a curve through f(p) with tangent Ap. More explicitly, let y ...,y

be a coordinate system on M about f(p) and let Y, = 0/0yi. Let U be

an open set about p such that f(U) is contained in the domain of the l
y;» Then Z = E’;ZiYi defines real valued C™ functions z,on U and

¢)) D,Z=27(A'z)Y, + 2,(D,V,)
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on U. Letting equation (1) define D ,Z on U, we leave it to the
reader to show this definition is independent of the coordinate system.
Notice that D ,Z is not necessarily a tangent T(M), field even when
both A and Z are tangent.

If A and B are tangent T'(M), fields on Q, then we define the tangent
T(M), field [4, B] by [4, Bl(p) = f((4", B']p) where A = f A", B =
f,B' and p in Q.

Proposition 1. Let A,B, X,*Z be T(M), fields on Q, let A and B
be tangent, and let g be a real-valued C* function on Q. Then the
following equations are valid:

@ DX -&DX)
3) D,(gX)=(A"%)X + gD, X)
@) Dy = DX + DX
(5) D,(X+2Z)=D,X+D,Z.

Proof. All four equations follow in a straightforward way from the
definition (1) and the standard properties for D.//

Observe now for T(M), fields X and Z we can define the T(M),
field Tor (X, Z) by [Tor (X, Z)}(p) = Tor (Xp, Z ) since Tor is a
tensor; mofeover, the linear transformation-valued tensor [R(X, Z)](p) =

R(Xp, Zp) is defined by p in Q.

Proposition 2, With the hypothesis of proposition 1, the following
equations are valid:

(6) Tor (4, B)=D,B ~D,A - [A, B]
(7) R4, B)X =D D X — DpD X — D[, p}X-

Proof. Using the notation developed above for equation (1), let
A-3%Y. and B = E’I’ijj. Then on U, Tor (4, B) = Ei'jaibj Tor (¥,
Y)=%, a bj(DYin - DyjY,.), but [4, B] = Ej(A'b’.)YI. - Z,(B'a))Y,

i,j i
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and D ,B — D A = E(A'b)Y + 2, baD Y.—Ei(B'ai)Y,.—

2, ja,b D,Y,; hence, equatxon (6) follows

A 51m11ar computation gives (7).//

Proposition 3. If M is a Riemannian manifold and D is the Rieman-
nian connexion, then with the hypothesis of proposition 1, the fol-
lowing equations are valid:

& A'X, Z>=<D X, Z>+ <X, B, 2>

) Tor(X, Z2)=0

Proof, Since Tor = 0 in this case, equation (9) is trivial.

To verify (8), let Y ,,..., ¥, be an orthonormal base field with no
loss of generality. Lettmg X - 3% .Y and Z = 37z ;¥ we have
A'<X, Z> = A'(E“X z,) = "[(A'X )z +x,(4'z)), whlle <D, X, Z>+
<X,D,Z>=3, (A X, )z + 21 JXIZI<D Y, Y]> + Elxj(A'zi) + zi,]xizj<Yi,
D Y]> But <D Yi, Y].> +<¥, D Y].> = A<Y, Yj> = 0; hence (8)
follows. //

We specialize and let Q be an open set in R2. For convenience,
let ¢ and w be the first and second coordinate functions, respectively,
on R?; then T = {,(9/0t) and W = £,(9/0w) are tangent T(M), fields on
Q. Moreover, assume the f-varying curves obtained from f by holding
w constant are geodesics with respect to a connexion D on ¥; thus
DT =0on Q. When f and Q satisfy the conditions of the above
three sentences, we call f a one-parameter family of geodesics. When
we only assume Q is an open subset of R?, we call f a one-parameter
family of curves.

THEOREM 1. If f is a one~parameter family of geodesics on Q
and D is torsion free, then D-ZTW = R(T, W)T on Q.

Proof. Since [T, W} = 0 and Tor = 0, we have DW= D,T. Hence
DZW =D (D W) = D (D, T) = D (D .T) + R(T, WT — R(T, W)T by
{6) and (7) and the fact D,.T-=0/

Let T be the tangent field along a geodesic for a torsion-free con-
nexion D on M, Then a C* field Z along the goedesic is a Jacobi
field if D2Z = R(T, Z)T. Notice the set of Jacobi fields along a
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geodesic is a vector space over the real field from the linearity of the

“— defining condition.

THEOREM 2. A Jacobi field Z along a geodesic is uniquely

determined by its value and the value of D .Z at one point on the

- geodesic.

Proof. Let e,...,e_ = T be a parallel base along the geodesic so
o ,(t)e where t is the parameter on the geodesic and z,

are C™ real-valued functions. Then D, Z = X ze, and D? *Z = 2,7;'81..
Letting R(e, e, )e = Ra R, e we have R(T, 2)T - R(en, Ezief)en :
2R Hence Z is a Jacobi field iff z! = 27 for

k j nynk kT ]-1 i n]nk
all k. The conclusion of the theorem now follows from the uniqueness

theorem for solutions of second-order differential equations.//

Corollary. The vector space of Jacobi fields along a geodesic has
finite dimension equal to 2n. The subspace of Jacobi fields along a
geodesic that vanish at a fixed point has dimension n. i

The two theorems above indicate two ways of obtaining Jacobi
fields, e.g., use Theorem 2 and existence theory from differential
equations or use Theorem 1 by finding a one-parameter family of geo-
desics. We now illustrate the latter procedure.

We first fix some notation. For any vector A in the tangent space
M_ we let A' be the naturally associated “constant” vector field on
M_. We use the notation of section 9.3, for a point XinM_, Ay =

nx(A); or if e,,...,e, a base of M_ and w,,...,w, its dual base with

A =3%ae, then A' = Z7a(d/ow,).

THEOREM 3. Let X and A be any vectors in M_. Let Q = [(t, w)
in R?: exp_ is defined on t(X + wA)), which is an open set in R%
Let f: Q — M by f(t, w) = exp_ (X + wA). Then { is a one-parameter
family of geodesics and (exp_ ), (tA') is a Jacobi field along each geo-
desic,

Proof. That f is a one-parameter family of geodesic follows from
the definition of the exponential map, i.e., exp_ maps rays in ¥ into
geodesics emanating from m. Then W = (expm)*(tA') is a Jacobi field
by Theorem 1 (see Fig. 10.1).
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Fig, 10.1  Jacobi Field

A point X in M_ is a conjugate point if exp_ is singular at X,
The point (m, X) in T(M) is called a conjugate point if X is a con-
jugate point in M_. A point m in M is conjugate to a point p in M
along a geodesic g if there is a conjugate point X in M, such that
exp, X = p and £ is a reparameterization of the geodesic g,(t) =
exp, tX.

Notice there is alevays a neighborhood of zero in M, that is free
of conjugate points since (exp, ), is non-singular at zero (section
9.3, Cor. 1). For a trivial (and too special) example of conjugate
points, let M be the unit sphere about the origin in R3. Then the
south pole is conjugate to the north pole al ong any geodesic (great
circle); moreover, the north pole is conjugate to itself along any geo-
desic. To see this let p be the north pole, then exp is completely

singular on circles about zero in Mp which have radius k7 for integral
k.

THEOREM 4. A point X in M_ is a conjugate point iff there is
a non-trivial Jacobi field along 8 x that vanishes at m and exp, X.
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Proof. 1If exp_ is singular at X let A' # 0 be a vector such that
(exp,)4A' = 0. Then, letting A' denote the associated constant vece
tor field on M_, the field (exp,)4tA" is a non-trivial Jacobi field
along g, that vanishes at m(t = 0) and exp | Xt =1).

Conversely, let Z be a non-trivial Jacobi field along g, with
Z@0)=2Z(1)=0. Let A=D, Z in M_ and let A' be the associated
constant field on M_. Let Z' = (exp, )4(t4'). Then D,z'=
D 4lt(exp, )4 A'] = (exp, ) A" + tD yl(exp, )4A'l,and at t =0, D, Z' = A
since at zero (exp, ),Ay = A. Thus by uniqueness (Theorem 2)

" Z=2", and hence Z'(1) = (expm)#A'X = 0. Since Z is non-trivial A' £ 0

and thus exp_ is singular at X.//

Corollary. A point m is conjugate to a point p along a geodesic
g iff p is conjugate to m along &.

THEOREM 5. Let g be a geodesic whose parameter domain in-
cludes [b, c) and suppose g(b) is not conjugate to g(c) along g. Tken
there is a unique Jacobi field Z along g with prescribed values at

£(b) and g(c).

Proof. Suppose Z(b) and Z(c) are given. By hypothesis, the map
eXP, 4, is non-singular at the point X in ¥, where €XP,(p)X = g(c),

i.e., g(t) = eng(b)( E_—__% )X; hence there is a unique vector A' such
c ——

that (exp, ,,}4A4" = Z(c). Let Z, = (exp,,)«{tA") along exp (b)tX
(which is along g). Similatly, we get a unique vector B' tangent to
Mg(c) such that (expg(c))*B‘ = 2Z(b). LetZ, = (expg(c))*(tB') along
€XP,(ostY where exp, .3y — g(b). Then Z =Z, + Z, is a Jacobi field
along g with the required values at g(b) and g(c). Furthermore Z is
unique, for if W where another such field, then Z — W would be a Jacobi
field that vanishes at g(b) and g(c) and hence must be trivial, so

Z=W./sy

Section 10.2. First and second variation formulae.

Throughout this section let M be a C>* Riemannian n-manifold

-which is Hausdorff, and let D be the Riemannian connexion. For an

alternate approach to the material of this section see Ambrose. 3

THEOREM.6. Let f be a one-parameter family of geodesics in M
which are parameterized by arc length. Then <W T is constant along
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each geodesic.

Proof. The function <T, T> = 1 on the domain of f; hence, 0 =
W'<T, T> = 2<D wl> T> by proposition 3. Thus T<W, T> = <D o T>y
<W, D,.T>=<D T T>=0, since DT = 0./

Corollary (“petpendicular lemma”). Let X be a unit vector in M.
Let A be in M_ with <4, X> = 0 and let 4" be the associated con-
stant vector fleld onM_. Then (exp, ),A' is. perpendicular to the
geodesic £, at all points where 8 x defined.

Proof. We may assume 4 is a unit vector and then define f(t, w) =
exp, t{(cos w)X + (sin w)A] for ¢ in the domain of &y and w in an
interval about zero. Then f is a one-parameter family of geodesics
which are parameterized by arc length. Applying the above theorem,
we have <W, T> constant along each geodesic. In this case, W=
(exp_ )yl - (sin w)X + (cos w)A] and w = 0 along g ; hence, <(exp )4,
T> = t<(exp %4, T> is constant along &x. This vamshes att =0,
so <(exp_)4, T> = 0 along Ex.//

Let f be a one-parameter family of curves with domain Q and assume
Q contains the set (¢, 0) for 0 <t < b. Let f w () = £(t, w) for (t,w) in
Q, and let L(w) be the length of the curve f, on [0, B], i.e., L(w) =

f \/<T T>dt. We define the first and second variations of L in the

direction f to be the numbers L'(0) and L"(0), respectively, where
L' =dL/dw. Actually, we should call L' (0) the “first derivative of
L in the direction of the variation f evaluated at f on |0, b},” and a
similar statement should be made for the “second vanatmn ” Hence-
forth we refer to i as the base curve.

THEOREM 7. In terms of the notation just developed.

L'0) = <W, T> (6, 0)

b
~ [ <W,D_T t
0) { T >w'0d

»

when f is parameterized by arc length. Thus if f, is a geodesic, then
(®, 0)

L'Oy=<W, T .
O =H 1> 16 0
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Proof. We compute,

L'(w) = [(8/owW<T, Todt = [°<T, T>~(/2<D T, Tsdt,
[} 0

When w = 0, <7, T>=1 and

<D, T, T>=<D W, T>:£<W, T>- <W, DT>

which we integrate to obtain the above formula.//

Notice that theorem 7 shows L'(0) only depends on the vector
field W along the base curve f, and we may use the general formula
of theorem 7 to define the first variation of L in the direction of the
field W where W is any C* field on the base curve. For each such
C field W on a base curve o we can define a one-parameter family f
such that W = f_(d/dw) by letting f(t, w) = ech(t)(ch(t))'

A curve ¢ between points p and q in M is called an extremal to the
fixed end-point problem if L'(0) = O for every one-parameter family
of curves f such that f, = g on [0, b} and £(0, w) = p, while f(b, w) = q
for w near 0,

THEOREM 8. A curve o between points p and q in M is an
extremal iff it is a geodesic.

Proof. If o is a geodesic and the end-points are fixed so W = 0 at
p and g, then L'(0) = 0 by theorem 7. .
Conversely, if L'(0) = 0 and W = 0 at p and g, then [ <W, D, T>dt =0
0

for all W belonging to admissable (fixed end-point) one-parameter vari=
ations f of ¢. If at some point m on ¢ between p and ¢ we suppose

(D ,T),, #£0, then let W = kD .T where h is a C* “bump” function such
that A(m) = 1, h > 0, and A = 0 outside a neighborhood of m on which
DT doesn’t vanish. By the remarks after theorem 7, there is a one-
parameter family f belonging to W. In this case <W, D rI>=h<D T,
DT> > 0is a non-negative functlon which is non-zero on a nelghbor-
hood of t' where o(t') = m, hence f <W D .T>dt > 0, which is a con-

tradiction. Thus D..T = 0, and ¢ is a geodesic.//
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THEOREM 9., Fora pomt m1in M, let r > 0 be chosen so exp_
maps the set B = [X in M_: |X| <r] diffeomorphically onto its image
B. Then B is the metric baII B(m, )= [pin M: d(m, p) <rl. Further-
more, if X in B and p =exp_X then d(m, p) = |X|, and the geodesic
£ x(t) = exp_tX defined on [0, 1], realizes the absolute minimum
possible curve-length from m to p.

Proof, If T is the tangent to 8x, then <T, T> is constant on g,
so |g4|s = |X|. We must show any other broken C* curve ¢ from m
to p has a length which is greater than or equal to |X|, and the
theorem will follow.
First suppose o is defined on [0, 5] and o{t) is in B for all ¢ in
[0, b]. Furthermore, suppose o never returns to m after ¢ = 0, or we
could obviously obtain a shorter curve from m to p. Let exp = exp,,
and let exp~" be the inverse map of exp|}. Let f(t) = |exp=1a(t)|
for t in [0, b], which defines a broken C™ function f. Let o(t) =
exp~lo(t), y(t) = f(t)X/|X|, and y(t) = exp P(¢). Thus y is a repara-
meterization of g, which has the same “radial velocity” as o. De-
compose the tangent to & into a radial component A and a vector ¥V
which is orthogonal to 4, thus T = A + V on [0, 5], (actually, A(f) =
£(¢){t)/f(t) for ¢ >0). Using the perpendicular lemma proved above,
we know exp,A is perpendicular to exp,V, so IT,| = |expeA + exp, V| >
lexpyA| = |TY" Hence, |o|§ > |y|5. Since y is a reparameterization
of g, we have |y|5 > |g4!s = |X|, where the inequality is strict if f
is not an increasing function. Thus, |a[b
If o(t) not in B for all ¢, then |o| >r > |X| by the above paragraph.
Hence, |X| = d(m, p) for X in B and the geodesic g, realizes this
minimum.//

THEOREM 10. Let f be a one-parameter family of curves such
that the base curve is a geodesic g parameterized by arc length on the
interval [0, b]. Then L"(0) =

(b) 0) b
Dy W, T> | oot [ [<RMW, T, T> + <D, W, D_W> — (T<W, T>)2ldt.

’

If <W, T> is constant along f, then
(b, 0)

L"©) = DyW, T> | '

b .
+f [<R(W, TYW, T> + <D W, D Wsldt.

=~ D W>—<D W Tr>2
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If W-a Jacobi field and <W, T> is constant along g, then

(b, 0)
L") = W<T, W> | .
(0, 0)

Proof, First compute ((9/c3w)\/<T T>=<T, T>" <D wI» T>. Then
(9%/wW<T, T> = —<T, T>~%4 <D T, T>* + <T. Ts=%(<p oD T, T>+
<D, T, D,T>), Evaluating on w = 0 we use <T, T>=1, D T 0,
and D W =D,T, to obtain (82/0w2W<T, T> = <D wD s T> + <D W,
=<RW, T)W + D _D_W, T>+<DTW,DTW>— :

(T<W, T>)2 =T<D_W, T> + <R(W, T)W, T> + <D W, D W>~ (T<W, T>)?
which gives the first formula for L"(0) by integrating.

If <W, T>is constant along g, then T<W, T> = 0 which gives the
second formula.
If W is Jacobi, then

<R(W, TW, T> = <R(T, W)T, W> = <D2W, W> = T<D W, W> — <D W,

D_w>.
H L™(0) = [<D W, T> + <D, T, W> ]( 0 -~ W<W, T |(b’ 0 /
ence = >+ ©, 0) , I> ©, 0y

Notice that the first term is the only term in the above formulae
that depends on something more than the vector field W along g.

If W vanishes at the end-points of g, then the second
variation of L. depends only on the field W along g. For any vector

Corollary.

field W along g, let £, (¢, w) = exp, ,ywW be the natural one-parameter
family associated with W, and then D W = 0, since the w-varying
curves are geodesics. Letting L7,(0) denote the second variation of
L in the direction f, then

L) = ["[<ROF, TW, T>+ <D _W, D_W> — (T<W, T>2)dt.
0

We next prove two lemmas which are used to prove that geodesics
are not minimizing-distance curves past a first conjugate point, and
later, to prove conjugate points are isolated along a geodesic in the
Riemannian case.
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LEMMA 1 (Lagrange identity). If X and Y are Jacobi fields along
a geodesic g with tangent field T, then <D X, ¥Y>—~ <X, D_Y> is con-
stant along g.

Proof. We compute T(<D X, ¥> - <X, D ,.¥>) = <D2X, V> -
<X, Dg,Y> = <R(T, X)T, ¥> - <R(T, Y)T, X> = 0 by the symmetry of
the Riemann-Christoffel curvature tensor.//

LEMMA 2. Let W be a continuous piecewise C* field along the
geodesic g which is parameterized on [0, b], and let W(Q) = 0. If there
is no point g(t) that is conjugate to g(0) for ¢t in [0, b], then

b b
{ [<R(W, TW, T>+ <D _W, D W>ldt > [ [<R(Z, T)Z, T>+ <D 2, D, Z>)

unless W = Z, where Z is the unique Jacobi field along g such that
Z(0) = 0 and Z(b) = W(B).

Proof. The field Z is well-defined by theorem 5. Let ZenZ,
be a base of Mg(b), and extend these vectors by theorem 5 to be
Jacobi fields along g that vanish at g(0). Since there is no point g(¢)
conjugate to g(0), the fields Z .»Z  are a base of M for all t in
(0, b]. Using theorem 3, write each Z = tA, where 4, 6 w4, are C%
fields that are independent on [0, b]. Settmg W=z lg A we define
continuous piece wise C* functions g, on {o, »l. Smce gI(O) =0 we
may write g, =tf, and thus define continuous piece wise C™ functions
f, on [0, b] such that W = 3fZ,. Then Z = 2f(H)Z..

Let D, W = A + B where A E(Tf )Z, and B Ef D,Z,. Then
<D,.W, D W> <4, 4> + 2<4, B>+<B B>, and

<R(T, W)T, W> = 3£ <R(T, Z)T, W>= Sf<D3Z, W>
= 3£,[1<D . Z, W> - <D_Z, D W>]
= T<B, W> - X(Tf)<D,Z,, W> - <B, A> - <B, B>.

Hence, <R(T, W)T, W> + <D W, D, W>=T<B, W> + <4, A> + <4, B> -
3(Tf)<D ,Z » W>. But
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<A, B> = S(Tf)<DZ, W> = STIM<ZDrZ>~<D,Z, Z>)=0

by the Lagrange 1dent1ty, since Z «(0) = 0 for all k. Thus f [<R(W TV,
T> + <D W, D W>ldt = <B,, W >+ f <A, A>dt since W is ° continuous

and W, = 0. Furthermore, <B,, W, > =&f (b)D .2 )b, W, > =<(D,2),,
Z,>= f [<R(Z Tz, T>+<D +Z, D Z>]dt. Smcef <A A>dt > 0,

the inequality in the conclusion follows unless A = 0, which implies
f, are constant so W = Z.//

THEOREM 11. The arc length on a geodesic g does not equal

' the distance in M beyond the first conjugate point; i.e., if g(b) is the
first point of g that is conjugate to g(0), and g is parameterized by
arc length, then the distance d(g(0), g(a)) < a for a > bh.

Proof. Let Z be a non-trivial Jacobi field along g which vanishes
at 0 and b. Then <Z, T> = 0 by theorem 6 and L} (0) = 0 by theorém
10 where L' is computed from the natrual one-parameter family of
curves associated with Z. By theorem 9 we obtain r > 0, so that the
neighborhood B(g(b), r) is the diffeomorphic image of the r-ball about
zero in M _ ... Choose numbers a and c such that 0<c<bhb<aand
g(t) is in B(g(b), r) for all t in [c, al. Thus the interval [c, a] has no
pair of points that are conjugate to each other on g. Let Y be the
unique Jacobi field along g with ¥(c) = Z(c) and ¥(a) = 0. Let X be
the field on [0, a] suchthat X(¢) = Z(¢) for ¢ in [0, c] and X(¢) = ¥(¢)
for t in [c, a). Let W be the field on [0, a] such that W(t) = Z(¢) for ¢
in [0, b] and W(t) = O for ¢t in [b, al (see Fig. 10.2).

Then L%|8=LY%|5 + LY|2 = 0 while LY|§ =L} |0 + L%|2. By

- Lemma 2, we have L},|2> L} |2, which implies L%|§ < L“W|0 =0
- Hence there are broken C* curves in the natural one-parameter family
i associated with X whose length from g(0) to g(a) is less that a.//

g(C) g(b) g(a)

g(0)

Fig., 10.2 Fields Along a Geodesic
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Actually, the arc length on a geodesic may cease to measure dis-
tance in M long before a conjugate point is reached (think of a right
circular cylinder). The conjugate point is where the geodesic ceases
to be a minimum-length curve among nearby curves,

THEOREM 12. The conjugate points of a fixed point on a geode-
sic occur at isolated values of the parameter.

Proof. Let g(b) be any point conjugate to g(0) along the geodesic
g€ (notice it is possible that g(b) = g(0)). Let Al,...,At be a base for
the kernel of (expg(o)),,< at bT ; in Mg(O)’ where T, is the tangent to
£ at £(t), and we assume <T, T> = 1. Choose A 0A_sod,..,
A, are independent and let Z (¢) = (exp ccoy«xtA;. Then the fields
Z,,...,Z, are Jacobi fields along £ that vanish at 0 and are indepen=
dent for all values of ¢t except 0 and conjugate values. We show
there exists an ¢ > 0 such that Z,,...,Z  are independent for
0< |t — b| <e This is done by showing bD,z,.,D,Z2,2Z,_.,..,2Z
are independent at b and then Z,/(t = b),...,Z /(t — b), Z, e
are independent for 0 < |t -~ b| <.

n

kel

Since A, 4,...,4, are independent at bT ;, we know ZpenZ,
are independent at b. Fori <r, (D rZ;), # 0, since (Z,), = 0 and Z,
is non-trivial. If 37_ ¢ (D rZ.)y =0, let W=2{c,Z,, ThenWis a
Jacobi field with W, = 0 and (D W), = 0; heace W = 0. For small
a>0, we know Z ,...,Z are independent, and 25c,(Z)), = 0 implies
¢, =0 for all i. Thus D,Z,,...,DZ_ are independent at b. We now
show fori <rand j>r, D ,.Z, is orthogonal to Z]. at b, By the
Lagrange identity <D 2y Z].> -<Z, DTZ,-‘> is constant along g,
Since Z, and Z]. vanish at 0, and Z, vanishes at b, we have <D.,Z,
er> =0 at b, Thus D .2 ,...,D ,Z , Z,, 1p+-»Z, are independent at
b and hence in some neighborhood of 5. Since Z()/(t = b) -

1)) rZ,), as t — b, the conclusion follows.//

Section 10.3.  Geometric interpretation of Riemannian curvature.

In this section, let ¥ be a Riemannian manifold, g be a geodesic
in M with unit tangent T, A, be a unit vector in Mg(o) which is ortho-
gonal to T, A' be the constant vector field on M (0 generated by
A, exp = eXP, oy A = expy A', and where A, £ 0 let K = <R(T, A)A, T
/ <A, A> as a function of ¢t al ong §. We study the relationship be-
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tween the Riemannian curvature K(¢) of the plane section spanned by
At and T, and the length of the vector A,. The field tA is used in
the computation since it is a Jacobi field.

LEMMA. IftA, £ 0, then

(1) T|tA| = <D 1A, tA>/|tA| = |A| + t<D 4, A>/|A|,
@ T2|tA| = -|tA|K(t) + H(t) where H(t) > 0, and

[€)) ]At| =1~ K(0)(t2/6) + G(t)t3 for t in a neighborhood of zero
where G is C*,

Proof. We compute T|tA| = T\/<tA, tA> = <D tA, tA>/|tA| =
<Ay tD A, tA>/|tA| = |A| + t<D A, A>/|A|. Thus

T*tA| = [<D3tA, tA> + <D 1tA, D tA> — <D 1tA, tA>?/<tA, tA>]/|tA|
= [<R(T, tA)T, tA>|tA|? + |D tA|2[tA|? — <D A, tA>%)/|tA]3

= ~|tAIK(®) + H(®)

where H(t) = [|D tA|%|tA|? - <D _tA, tA>2])/|tA|3. The Schwartz
inequality implies H(¢) > 0. A straightforward computation shows as
t — 0, H(t) —» 0, and H'(t) — 0, since (D +A), = 0 (use normal coord.).
Hence as t — 0, we have [tA| — 0, T|tA| — |4 | = 1, T2|¢t4| — 0,
and T3|tA| — -K(0).

Since A, does not vanish near ¢ = 0, the function |4,| is C* at 0,
and hence F{t) = ItAt[ admits a representation

F(t) = F(0) + F'(0)t + F"(0)t%/2 + F™0)t3/6 + G¢)t*

for ¢ in a neighborthood of 0 where G is a C* function on this neigh-
borhood. Substituting the values for the derivatives of F and cancel-
ling a factor ¢ then gives (3).//

The following theorem derives its form essentially from some class

notes of Ambrose.
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THEOREM 13. 1 K() < 0 for t in [0, b}, then |4 | > [4,| = 1
for t in [0, b]. Thus if K < 0 for all plane sections at all points of
M, then M has no conjugate points. If K(0) <0, then 4,121 for ¢
near zero, and if K(0) > 0, then |A .| <1 for t near zero.

Proof, Let F(¢t) = |tAt| ~t|Ay| = |tA,| - t. Then F(0) = 0, F1(0) = 0,
and F"(t) = T?|tA | > 0 if K(t) < 0. Applying the Mean Value Theorem
twice, F(t) = F'(£ )t = F"F)t > 0 where 0 SE<T<t<h Hence
|4,] > 1 for t in [0, ).

The second sentence of the theorem follows from the first, and
the last two sentences follow from (3) in the lemma.//

We obtain a geometric interpretation of Riemannian curvature from
the following considerations (see Fig. 10.3). The vector A' at the
point AT ; in M, oy is tangent to the circle ¢ of radius b about the
origin which lies in the plane of Aq and T . Hence A = exp,A' is the
tangent at exp(bT ) to the curve expooin M. If b is sufficiently
small, then exp o ¢ passes through points that are exactly b units
distant from g(0)., If IAb] > |A'| then the curve €xp o g is “stretching”
the curve o near bT , and the geodesics emanating from g(0) that are
determined by o are “spreading out.”
applies to the case |4,] < |4t

A corresponding statement

a
Al
A4
o T, sr, 8O
g(b)
In M : :
g(0) In M:
Fig, 10.3 Comparing Geodesics

iy
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Section 10.4. The Morse Index Theorem.

Our approach to this section is based on the notes of Bott.
For further material see Milnor,® Ambrose,? and Morse. Let M be a
C* manifold and let f be a real valued C* function defined on a neigh-
borhood of a point m in M. The point m is a critical point of f if
(fy),, is the zero linear transformation on M. If m is a critical point
of f, we define a symmetric bilinear function H: M,xM_—Rby
HX_, Y, )=X_(¥f), where ¥ is any C* vector field about m whose
value at m is Y . It is a simple exercise to show HX_ ,Y )is
independent of the field ¥ and is symmetric and bilinear (see problem
95). The function H is called the Hessian of f at m. The index of
H is defined to be the dimension of a maximal subspace V of M, on
which H is negative definite (and V is maximal if it is not properly
contained in a subspace V' on which H is negative definite). The
null space of H is the subspace V = [X in Mm: HX, ¥V)=0forall ¥
in Mm]. The nullity of H is the dimension of its null space. We de-
note the index of H and the nullity of H by I(f_) and N(f,), respec-
tively, and call them the index of f at m and the nullity of f at m,
respectively. The positivity P(f ) is the integer such that P(f )+
I(fm) + N(fm) is the dimension of M_. The index of H intuitively gives
the number of dimensions of directions in M, in which f is decreasing.

Next we need the definition of the conjugate degree of points along
a geodesic. Let ¢ be a geodesic in a manifold with connexion. The
conjugate degree of the point g(t) (with respect to g(0)) is the dimen-
sion of the kemel of (expg(o))* at tT, where T is the unit tangent
to g at g(0) and g is parameterized by arc length. Thus the conjugate
degree of the point g(¢) is the maximum number of linearly independent
Jacobi fields along g that vanish at 0 and ¢.

The Morse Index Theorem relates the concepts just defined. Roughly,
it says, for a particular geodesic segment in a Riemannian manifold
M, the distance function can be used to define a C* function L on a
manifold C, and then the index of L at a particular critical point is
equal to the sum of the degrees of conjugate points along the geodesic
segment.

For the rest of the section let M be a C* Riemannian Hausdorff n-
manifold. If m in M, then a local geodesic submanifold of M at m is
a submanifold C defined as follows, Let B be an open ball about the
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origin (zero) in M . which exp_ maps diffeomorphically into M, and
let V be any subspace of M_. Then the submanifold C = lexp_ X: X
in B ~ V] is a local geodesic submanifold of M. Note C contains
geodesic segments of geodesics emanating from m whose tangent
vectors lie in V (see Fig. 10.4).

LEMMA. Let A be a convex neighborhood of M, let p, and p, be
in A, let g be the unique geodesic from p, to p,which lies in A and
is parameterized by arc length, let T be the tangent field to g, let
C, and C, be disjoint local geodesic hypersurfaces of A through p,
and p,, respectively, that are orthogonal to T, and finally, let C =
C, x C, (see Fig. 10.4). If (m,, m,) is a point of C, let d(m,, m,)
be the distance from m, to m,; thus d is real-valued C™ function from
C into R (problem 96). Let W = W, W,)andU = (U, U,) be vectors
tangent to C at (p,, p,), where W,and U, are in M, fori=1,2, and
let U al so denote the unique Jacobi field along g determined by U,
and U ,.

Thenp = (p,, p,) is a critical point of d on C and

: Py
Hp(U, W) = Up(Wd) =[<w, D U> - 1., W)]pl

where 1l . at p, is the second fundamental form of C, with respect to
the normal in the direction of T.

Fig. 10.4 Cross Manifolds

Proof. A two-parameter family of geodesics is a C* function f map-

ping an open set Q in R3 into M such that the curves fo o )=
0*%o
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(¢, u,, w), obtained from f by fixing the coordinates in the last two
slots, are geodesics. Let f be such a map and suppose Q contains
the set (¢, 0, 0) for 0 < ¢ < b. Call the geodesic £ = i(o,o) the base
geodesic and assume g is parameterized by arc length. Let T =
£,(0/0t), U = £,(3/0u), and W = £,(d/dw); then T, U, and W are Jacobi
fields along the geodesics of f, while D_.W = D,T, D,U=D,T, and
D, W =D,U by section 10.1. We assume further that <T, U> and

<T, W> are constant on £; hence <D U, .’I;> =0and <D, W, T>=0o0n
g. For (u, w) near (0, 0), let L(u, w) :g V<T, T>dt. Notice <T, T>
is a function on Q which depends onlgz7 on u and‘ w since the t-curves
are geodesicsb. Then L = dL/dw = { <T, T>~ /2<DWT, T>dt, and .
(Lw)(O,O) = { <D W, T>dt = 0 since <T, T> =1 on g Differentiating
again,

(L) = 8L/ dudw) = {b[—<T, T>""4<D T, T><D T, T>

+<T, T>"%(<D,D,T, T>+ <D,T, D, T>)dt.

Evaluating on g, we have

b
(qu)(0,0) =£ [<DUDTW: T> + <D W, D, U>ldt

- [*KRW, TW + DD W, T> + T<W, D _U> - <W, D2U>ldt.
0

But, since U is Jacobi,

<R(U, TW, T> - <W, D2U> = <R(U, TW, T> -~ <W, R(T, U)T> = 0,

hence,

b
(LWu)(O,O) =£ [<DTDUW; T>+ T<W, D, U>ldt

- {b[T<DUW, T> y T<W, D U>ldt
(5, 0, 0)

~ <D, W, T>+ <W, D.U> ;
oWy >+ W DoU> 1 4 o)
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(t) =

We apply the above analysis to prove the lemma. Let f(u ")
f(t, u, w) be the unique geodesic in 4 from exp (U, + wW ) =
1

y{a, w) to exppz(uU2 +wW,) = y,(u, w) which is parameterized on
[0, b]. Then f is a two-parameter family of geodesics satisfying the
above requirements. Furthermore d(y, (u, w), v,( w)) = L(u, w),
hence H (U, W) = <DUiWi, T>+<W, D, Up>|; _{. But letting D*

be the induced Riemannian connexion on C,, by the Gauss equation
we get

Dy W, =Dy W, ~1{U, W)T;

P
hence H_(U, W) = [<W, D, U> ~ I (U, W)]pf.//

THEOREM 14 (Morse Index Theorem). Let § be a geodesic in
M which is parameterized by arc length on the interval [0, b]. Let
r > 0 be chosen such that the balls B((t), 2r) are convex neighbor-
hoods of g(t) for 0 < t<b. Letm= (ml,...,mk) be a sequence of
points on § such that m, = g(ti), 0<t,<t,,,<b, and

1)  0<dm, m,,) <r

for i = 0,...,k where m | = g(0) and m,,, = &(b). Let C, be a local
geodesic submanifold which is orthogonal to § at m, and contained
in B(mi, r)for 1 <i<k, andlet C=Cx..xC,. LetL: C—R by
L) =2k dp, p,,,) where B = (p,,...,p,) in C, p, = g(0) and
Prsq = £(b) (see Fig. 10.5).

Then L is C® on C, i is a critical point of L, the nullity of L at
i equals the conjugate degree of g(b) (with respect to g(0)) and

L) = 205:5 , deg 8(6).
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Fig. 10,5 Cross Manifolds

Before proving the theorem we make some remarks. The fact that
N(L7) is the conjugate degree of g(b) is often called the Nullity
Theorem. The Index Theorem shows I(L-) and N(L3) are independent
of the position of the points m, and the number of points k, as long
as condition (1) is satisfied.

Proof. Let L;; C — R be defined by L) = dlp, p,y,) fori=
0,...,k. Then L is C*° since L = zf_oLi and each L, is C®. By the
lemma, the point f is a critical point of each L, and hence is a
critical point of L.

To compute the nullity of L at m let U and W be tangent to C at
@ where U = (U ;...;U,) and W = (W,;...;W,) with U, and W, in M’"i
foralli. LetU,=WyandU,,, = W,., be'the zero vectors at £(0)
and g(b), respectively. By the lemma,

U_(WLY=35U-(WL)
= ‘2;‘_1[<W,.+ 1? DTUi-+ 1” - "T(U1+ 1’ Wi+\) - <Wi’ DTU7> * ”T(Ui' Wi)]

= Xk

inl

W, DU - DU

where U7 is the Jacobi field on [¢,_,, t,] agreeing with U at the end-
points, and U} = U, ;. If U is in the null space of H, at m, then

U_(WL) = 0 for all W; hence D U; = DTU;r for all 1, which implies U is a
Jacobi field along g that vanishes at 0 and b. This proves the nullity
theorem.
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We now work on the index of L at /. Let us refer to a point (@, b)
in M¥ x R which satisfies the conditions stated in the third sentence
of the theorem as an admissable partition. Let N = k(n — 1), and for
each admissable partition (y, t) let C be the product of k local geo~
desic submanifolds crossing g at the pomts of y, let L o) C —R
be the function corresponding to L in the theorem, and let F map
R:"—nlqto the tangent space to C_ at y by F_(a,,...,ay) = (£27'a,e,(y,);
23 a,_14;6;03),...), where e 1eeer€n is T is an orthonormal parallel
base field along g. Then let H'(y 'y I(y £y P(y ¢y and "y .0 denote
the Hessian, index, positivity, and nullity respectively, of H )

(y.t)
Fy. Thus H ., is a symmetric bilinear form on RY which is con-
tinuous in y and ¢,

For each admissable partition (7 o» t,) there is a neighborhood
(in M* x R) such that

2) I 21 and P

(y.t) = sty (y.t)2P(YO,¢0)
for (y, t) in this neighborhood. This follows since I, , is the
dimension of a subspace V of RY such that H

(W’ W) < 0 for all

non-zero W in V, and by continuity the mequahty must hold on a
neighborhood of (v, ¢). A similar argument handles the positivity
case,

Fix y such that (y, b,) and (y, b,) are admissable partitions with
b, < b,. We show
3G 1 and P

(Y'bl)

(y.b1)51<y,b2) 2P(Y-b2)‘

For x in the cross manifold Cy, let A(x) = L., )(x) and B(x) =
)
L(y R )(x) +d(g(h,), £(b,)). Then A(x) < B(x) by the triangle inequality
» 1

and A(y) = B(y). On a curve y(w) with tangent W that is tangent to
Cy at y = (0), we have

ACyw) = AGY+H W, W)W ?/2) + oo
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while

Boylw)=B(y)+ H bl)(W’ WY(w?2/2) + ...

is negative

Thus H(y.bz)(W, W< H(y.bl)(W, W) for all W, and if H

definite on a subspace V then so is H

(Yabl)

which implies [ <

(anz)’ (Ytbl)—

I(y.bz)’ and similarly, P(y.b1 )2 P(y‘bp).

If 4(¢) is not a conjugate point of g(0), then H(Y'” is non-singular
on a neighborhood of (y, t), since the conjugate points are isolated,”
and hence,

S Ly, and P,
are constant on a neighborhood of (y, t).
We now use the properties (2), (3), and (4) to compute I(Ly). ’
Let a ,...,a_ be the points on [0, b) that are conjugate to 0. If
0 <t<a, we know P(y,t) =N, I(y,t): 0, and Neo= 0 by theorem 9

and property (4). Att=a, N =deg gla,), I = 0 by (2) since

(v,8 ) (Y!a )

I(y o= 0 for ¢t <a,, and hence P
andtneara , P >P

e )_N deg g(a;). If a, <t<a,,
- (y.a , by (2) and P w0 SPa , by (3)., hence
P(y‘t) =N - deg gla, ), N ot = =0, and l(y't) = deg 4(a;). The situation
then remains unchanged for a, <t < a, by (4). Fort=a,, we repeat

the above reasoning to compute N, =deg g(a,), I = deg g(a,),
Vel 2 ) 2 (Y'ez ) 1
and P =N - 20<t<a deg £(t). Continuing the argument, we ob-
—ix&)

(v.a,)
tain I(Ly) =1 5= 20§t<bdeg g).//

Section 10.5. Completeness.

The theorem that follows gives useful criteria for a Riemannian
manifold to be coniplete. The analytic case was first studied by
Hopf-Rinow. The approach we give essentially follows de Rham?.

THEOREM 15. If M is a connected Hausdorff Riemannian mani-
fold, then (a), (b), (cj, and (d), stated below, are equivalent state~
ments, and anyone of them implies (e).
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(a) The exponential map is everywhere defined on T (M),

(b) The manifold is complete with respect to its Riemannian
metric,

(c) Bounded closed sets in M are compact,

(d) The closed balls B(m, r) are compact for one m in M and
all r > 0,

(e) Any two points in M can be Jjoined by a geodesic segment
whose length equals the distance between the two points,

Proof. The implications (d) > (c) = (b) = (a) are all simple.
We show (a) implifs (d) and (e). Let m be a fixed point of M, let
B = B(m, r) S = B(m, r), and let E - in S_: there is a geodesic
segment y from m to p with |y| = d(m, p)]. We show E_is compact
and E_= S, for all r, which proves (d) and (e).

LEMMA 1. The set E_is compact for all r.

Proof. Fixr and let [m, ] be a sequence of points in E. By (a)
there exist points X, in M . such that exp X, = m, for all k. This
follows since a geodesic can always be written as a composite map
which is the exponential of a ray in a tangent space. Then !Xk| <r
E)r all k, hence [Xk] is a sequence of points in the compact set
B(0, r) in the Euclidean space M. Thus we obtain a subsequence
(which we reindex if necessary) [X ] that converges to X in M_ with
|X| <r. The corresponding subsequence [m, ] converges to exp,_ X,
which lies in E_since exp  is C™.

LEMMA 2. If E - S, for a fixed r, and d(m, p) >, , then there

is a point m such that d(m, ) = r and d(m, p) = r + d(m, p).

Proof. For each integer k > 0, let ¥, be a broken C* curve from
m to p with |y, | <d(m, p) + (1/k). Let m, be the last point on each
Yy that lies in S, so d(m, m,)=r. Since S, is compact, the sequence
[mk] has a limit point m and d(m, @) = r. But d(mk, p) < ]Vklﬁk _
Vel = yeln < Vil = £ <dlmp) + (1/k) - r. Hence d(@m, p) <
d(m, p) -z, and the triangle inequality proves the opposite inequality.

LEMMA 3. Forr> 0, E -5,

Chap. 10 Topics in Riemannian Geometry 165

Proof. The proof uses a continuous induction argument on r. By
definition, E ¢S, forallr. Forf-=0, E,= See HE = S,, then
trivial E v = Sy for all r' <r. Conversely, if E, =S, forall ' <r,
then E_=S_. This follows by taking any point p in S, and then choos-
ing [p,] — p such that each p, in some S for r' <r. Hence each
p,in E:CE, and E_ is compact, which implies the limit p is in E.

Finally, if E_= S , then there is an ¢ > 0 such that E =S,
Since S_is compact, we obtain a number 2¢ > 0 such that for all p in
S, the map exp, is a diffeo from [X in M,: |X| < 2¢] onto B(p, 2e).
Take p in S_,,. By lemma 2, there is a point f with d(m, &) = r and
d(m, p) = dm, p) ~d(m, M) <r+ e~r<e Hence there is a geodesic
segment y, from m to m with ‘V1| =1, and a geodesic segment y,
from m to p with |y, | = d(@ p) Joining y, and y, gives a broken
C* curve y from m to p with |y| = d(m, p). Parameterizing y by arc
length, there can be no breaks in ¥, S0 y is geodesic, Thus p in
Er+& S

We can now prove a classical theorem which illustrates how
assumptions about the Riemannian curvature can affect the topology
of a manifold.

THEOREM 16 (Bonnet). If M is a complete connected Rieman-
nian manifold with Riemannian curvature > K > 0, then M is compact
and its diameter is < 7 / \/K.

Proof. We show on every geodesic g there is a conjugate point
of g(0) on [0, # / VKI. If m a fixed point of M, then by completeness
every point p of M can be joined to m by a geodesic segment whose
length is d(p, m). By Theorem 11, this geodesic has no conjugate
point of m before p, hence d(m, p) < = / VK.

Let g be a geodesic with unit tangent T, g(0) = m, and let e be a
unit parallel field along ¢ which is orthogonal to T. Let W,=
(sin vKt)e,. Then W is orthogonal to T, W vanishes at 0 and 7/VK,

D W = (VK cos yKt)e,, and

Ly©O)= ] Tr/\IIE[<R(W, TW, T> + <D W, D _W>ldt
0
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VR

= f [-K () sin? Kt + K cos 2 \Kt]dt
0

< Kfﬂ/\/zl[cos 2 YKt - sin? \Ktldt = 0

0

where K(t) = <R(e, T)T, e>. If the interval [0, 7/VK] was free of
conjugate points, then by lemma 2 of section 10.2, L" w(0) > LY (0) =
where Z = 0 is the unique Jacobi field along g, which comc1des w1th
W at 0 and #/\/K. This contradiction proves the theorem.//

The following theorem, due to K. Nomizu and H. Ozeki, settles
the question of the existence of complete Riemannian metrics on a
paracompact (or Riemannian) manifold. A Riemannian metric is
bounded if the manifold is bounded with respect to the induced metric
function.

THEOREM 17. Let M be a connected Hausdorff C* manifold,
If G is any Riemannian metric on M, then there exist Riemannian
metrics G| and G,, both conformal to G, with G, complete and G,
bounded,

Proof, Since there is more than one Riemannian metric involved,
write G (X, Y) rather than <X, Y>. for the metric tensor applied to a
pair of vectors, d, for the metric, and B (m, r) for the corresponding
r-ball nelghborhoods

Using the metric G, for each p in M, let r(p) = sup [r: B(p, r) is
compact]. If r(p) = = for some p, then G is complete by theorem 15,
Suppose r{p) < = for all p, and we construct G,.

Notice |t(p) - r(m)| < d(p, m) for all p and m, for if #(p) > r(m) +
d(p, m), one could increase r(m); hence t(p) < r(m) + d(p, m) for all
p and m, and the inequality follows. This proves r is continuous.

Since M is paracompact, it is easy to show there is a real valued
C* function f on M with f(p) > 1/z(p) for all p. Let G X Y) =
fA(m)G(X, Y) for X, Y inM_, which defines a C* Rlemanman metric
G, on M.

That G is complete will follow by showing B(p, 1/3) is contained
in B(p t(p)/2), and hence B 1@, 1/6) is compact. This implies every
Cauchy sequence in the G| metric must converge. To show this, take
p in M and take m such that d(p, m) > r(p) /2. Let y be a broken C*™
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curve from p to m, which is parameterized by G-arc length, i.e., if T

is the tangent to y, then G(T, T) =1 and y defined on [0, L] where

L is the Cl;‘-length ‘of y, so L£2 r(p)/2. Letting L, be the G ,-length of

v“why=[ VG (T, T)dt = [ (f oy)dt = f(p)L > L/t(5), where P is on
0 0

y between p and m. But |r(5) - r(p)| < d(p, p) < L; hence @) < r(p) + L
and L' > L/(z(p) + L) > L/3L = 1/3. Hence d,(p, m)>1/3, so
Bl(p, 1/3)c B(p, f(P)/Z)

For the second part of the theorem we ‘may assume G = G is
complete. Fix a point m in M and let f be a real valued C® function
on M such that f(p) > d(m, p) for all p. Let G,=e ~2fG, and we show
G2 is bounded. Take p in M and let y be a geodesic from m to p with
tangent T such that G(T, T) = 1, y defined on [0, L], and L = d(m, p).
Then f o y(t) > d(m, y(t)) = ¢ for all ¢. Letting L , be the G,-length of

¥s Ly = [T, Dt = [“etdt < [“e~tdt < [Te=tdt - 1, Hence
(1} 0 0 0 .
d,(m, p) <1 for all m and p.//

Corollary . Every Riemannian metric on a manifold is complete
iff the manifold is compact.

For further work on completeness see the papers of J. A, Wolf! and 2
and P. A. Griffiths.

Section 10.6. Manifolds with constant Riemannian curvature,

THEOREM 18. Let M and M' be connected Riemannian manifolds
with M complete. Let f be an isometry of M into M'. Then f is onto,
f is a covering map, and M' is complete.

Proof, To show f is onto we show f(M) is open (which is trivial
since f is a local diffeo) and closed. Take m' in f(iD), let B' be a
convex neighborhood of m', let p' = f(p) be in B', and let &' be the
unique geodesic in B' from p' to m' with £'(0) =p' and &' (1) =m'. Letg
be the unique geodesic in M with g(0) = p and £, T (0) = 1(0)

Since f an isometry, f o g is a geodesic in M', and by un1queness, '
fog=g'. Since M is complete, (1) = m is defined; hence f(m) = m'
and f is onto. We have also shown M' is complete.

It is trivial that f evenly covers, since f preserves locally convex
neighborhoods; thus for m' we choose a convex neighborhood B', and
f~1(B") is a union of disjoint convex nieghborhoods, each of which
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f maps diffeomorphically onto B'.//

THEOREM 19. Let M be a connected and simple connected, com-
plete Riemannian manifold with constant Riemannian curvature K.
Then M is isometric to Euclidian space, spherical space, or hyperbo-
lic space, when K -~ 0, K > 0, orK <0, respectively,

Proof, Let g be a geodesic in M parameterized by arc length with
£0)=m. Letebea parallel unit field along g, which is orthogonal
to 7, the unit tangent to 8. Let Z(t) = a(t)e(t) be a' C™ field along
8. Then D ,.Z - a'e and D;.Z = a"e. Thus Z is a Jacobi field if
D;Z = R(T, Z)T or

D1Z, Z> - <R(T, Z)T, Z> = - K<Z, Z>, i.e,, a"a = -Ka?

or a" + Ka =0, This differential equation has solutions uniquely
determined by a(0) and a'(0). If a(0) = 0, then Z(¢) = (expm JtA!
where A’ is the constant field on M_ with A' = a'(0)e. This equality
follows from the fact that the right side is a Jacobi field and a Jacobi
field is determined by Z and D ,.Z at one point. Hence <Z, Z> —
t2<(-:‘Xp,I< A'(D), exp A'(t)> = a2(2).

When K = 0, then a" = 0 and a = ¢t where ¢ — a’(0). Thus <exp,
AND), exp A'(t)> = c2 = <A'(t), A'(t)>, and exp_, is an isometry from
M = onto M. Apply the previous theorem to obtain €xp,, is a cover-
ing map. Since ¥ is simply connected, exp_ is a diffeo, hence M is
isometric to M., and M = 18 trivially isometric to Euclidean space.

When K < 0, let M' be hyperbolic space for K < 0 (section 6.7),
We know exp : M} — M’ is a diffeo so let E — (exp,)~!. Choose an
orthonormal base €)seense! of M, and an orthonormal base €1peere,
of M_, whete m an arbitrary point of M. Let F: My — M by F(e!)=
€. Letf: M' -Mbyf= exp, oF oE, Then f,Z'(t) = Z(¢) along
corresponding geodesics in M' and M, and <f, 2", f.Z'> = a¥(t) =
<Z', Z*>. Thus f, is an isometry. Now apply previous theorem to
obtain f a diffeo.

When K > 0, then Z = (sin yKt)e is a Jacobi field along any geo-
desic emanating from m (2 fixed point in M). Thus every ray in M_
has a conjugate point at 7/\/K units from the origin and (exp_ )y has
an (n — 1) dimensional kernel at these points., Let C=[XinM -
|X| = w/yK] Then exp_ | is completely singular and hence isma
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constant map since C is connected. From the nature of the Jacobi
equations in the first paragraph there are no conjugate points in
B-[XinM_: |X| <n/\KL Now let M' be spherical space of curva-
ture K, let p be any point in M'. We know exp_ is a diffeo on the set
B’ (corresponding to B) in M;. Define E and F as in the above para-
graph (E defined on B(p, 7/yK), the open ball), and let f = exp_ o

F o E on B(p, 7/v/K) while f(~p) = exp, (C). As in the above paragraph,
f is an isometry on B(p, 7/\K). Note what should be fy at —p is well-
defined via the tangents to incoming geodesics. Thus we may define
amap g: B(-p, w/VK) - M with g(~p) = f(—p) and 84 at -p determined
by f,. Then f = g on their common domain and g is C* and metric
preserving at —p. Hence f is an isometry of ' onto M, and by the
previous theorem f is a diffeo.//

Corollaty. Let M and M' be the Riemannian manifolds, let 5 =
[el,...,en] be an orthonormal base at m in M, and similarly, let 4' be
such a base at m' in M'. Let F: M, —M_» by F(e,) = e!. The map
F induces a correspondence between geodesics emanating from m
and m', respectively, and also a correspondence between plane sec-
tions P and P' along these geodesics, via parallel translation of
corresponding plane sections at m and m'. Thus for a geodesic £ in
M with g(0) = m, let g’ be the geodesic in M* with g'('0) = m' and
Tg»(O) = F(Tg(O)); and for a plane section P in M_ let P(t) be the
parallel translate of P along g to 4(t), let P' = F(P) and P'(¢) is the
parallel translate of P' along g'. Suppose K'(P'(t)) = K(P(t)) for all
geodesics and all plane sections (emanating from m and m'). Then
there are neighborhoods B and B' of m and m', respectively, and a
map f: B — B' which is an isometry (and a diffeo). Thus M and M'
are locally isometric at m and m'.

Proof. Choose an r > 0 such that exp_ is a diffeo from B(0, r) in
M_ onto B = B(m, r) in M and exp_» is also a diffeo from B'(0, r) in
M)+ onto B' = B'(m', r)in M'. Letf= exp, oF o(exp_i)"'on B',
so f is a diffeo. By the method of proof in the preceding theorem, f
is an isometry,//

If in the above corollary we add the hypothesis that M and M* be

complete, connected, and simply-connected, then it is an open ques-
tion whether ¥ is isometric to M'. When the Riemannian curvature
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is preserved for corresponding plane sections on once-broken geode-
sics, then Ambrose ! has proven M is isometric to M'.

Section 10.7. Manifolds without conjugate points.

Most of the results of the next two sections are based on a paper
by A. Preissmann and some informal notes by W. B. Houston, Jr.

Throughout this section let M be a complete connected Hausdorff
Riemannian n-manifold. If m is a point of M and there exists no point
of M that is conjugate to m, then m is called a pole.

THEOREM 20. If m is a pole in M, thenexp_: M_ —M1s a
covering map. Thus the simply connected covering of M is diffeo to
R?, and if M is simply connected, then M is diffeo to R%,

Proof. Letting E = exp_, we know E is onto since M is complete,
and E is a local diffeo since m has no conjugate points, The metric
tensor G of M induces a Euclidean metric on M_ whose distance func-
tion we denote by d. On the other hand, by requiring E to be an iso-
metry, we define a metric tensor G| on M_ whose distance function
we denote by d,. The rays in M, emanating from the origin, are G-
geodesics since E is connexion preserving. We now show these rays
are minimizing G -geodesics from the origin.

;I‘ake any X in Mm, and let y be a C* curve from 0 to X with y(t)
in B(0, |X|) for all ¢ (B is the Euclidean ball). Assume y parameterized
so |y(t)| = t, thus y defined on [0, |X|]. Let T be the tangent to y,
then T, = R, + V, where R is the unit (outward) radial vector field on
M_ (and Ry =T), and V, is orthogonal to R, at each point. Comput-
ing the G,-length of T, |T|, = |[E4(R + V)| > |E4(R)| = 1 by the perpen-
dicular lemma. Hence, |y|, fAXl\TI dt > |X|, which implies d,(0, X) =
|X1, since the ray from 0 to X has G -length equal to |X|. Thus
B (0, B) = B(0, b) for all b > 0, and since the latter is compact so is
the former. By the completeness theorem (15), ¥ o iS complete with
respect to the G -metric. By theorem 18, the map E: M — M is a
covering map.//

Corollary. If M has.non-positive Riemannian curvatute,. then all
points are poles and R™ is simply connected covering space of M.

We now define the universal covering manifold M, based at a point
m in M, in a standard way. Let M be the set of equivalence classes
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of C%homotopic CO%curves f defined on a finite interval such that

£(0) = m (see Hocking-Young, p. 188). Let [f] denote the equivalence
class of a curve f, and let = M — M denote the covering map where

#([f]) is the endpoint of . Define a C* structure on M by demanding

7 to be a C*® map, and if M is Riemannian, define a Riemannian metric

on M such that 7 is an isometry. We use repeatedly the fact that a
CO%%curve f in M has a unique lifting f in M such that 7 o f = f once

one has prescribed f (0). Let f ~ h denote the fact that { is homotopic

to A under a fixed end-point homotopy, and let /i by the constant path at m.

THEOREM 21. Let f be a finite curve in M and let b = inf [|A]:
h is a broken C®curve and h ~ f]. Then there exists a geodesic §
such that ¢ ~ f and |g| = b. Thus in every homotopy class of curves
(with fixed end-points) there is a geodesic whose length is the abso-
lute minimum for the lengths of all broken C* curves in the homotopy

class.

Proof. Let M be the universal covering manifold based at m :‘f(O).
Since M is complete, M is complete, and hence there exists a geodesic
g from [m] to [f] which gives the distance in M between these two
points. Then ¢ = 7 o g is a geodesic in M since 7 is an isometry,
and g ~ f since M is simply connected. If A is a broken C™ curve with
h ~ f, then lift A to a curve h starting at [] and obtain a broken C*
curve h from [@] to [f]. Since Z gives the distance, |k | > 1z} = 18]
thus |g| = b.//

THEOREM 22. Let m be a pole in M and let §, and g, be geo-
desics emanating from m that intersect later. If § ~ g, then g, =
&, (when both parameterized by arc length).

Proof. Let M be the universal covering manifold based at m with
7 an isometry. Let exp: M — M by &xp (X) = [expm tX: 0<t <1l
Then 7 o exp = exp_ and exp is C*, since locally éxp = 7"t oexp,.
Moreover, €xp is an isometry, for m is a pole. Since M is simply
connected, exp is a diffeo by theorem 18. If gi(t) = exp tX, where
g,()=6,(1), and g, ~ g,, then [g,]=[g,]. Since exp is a diffeo,
this implies X, = X,, which implies g, = g,.//

We remark that one can always define the C™ map exp: M - M
(base point m) with 7 o exp = exp,,. The map exp will be onto if ¥
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is complete, but it will not in general be locally one-to-one.

Corollary 1, If m is a pole in M and M is simply connected, then
for any point p in M there is a unique geodesics through m and p.

Corollary 2, If M is simply connected and has only non-positive
Riemannian curvature, then there is a unique geodesic through any

two points of M.

Section 10.8. Manifolds with non-positive curvature,

We add to the standard hypothesis of the last section the assump-
tion that K(P) < 0 for all plane sections P of M.

LEMMA 1. Let f be a finite curve in M parameterized by arc
length, and let m be a point of M. Let f be any lifting of f to the
covering space M_ (see theorem 20). Then |f| > lf—_|, the Euclidean
length of f in M _. If K <O, then |f| > |f | unless { is a segment of
a ray emanating from zero in Mm,

Proof. By theorem 13, if T is a vector tangent to M_, then
](expm)*Tl > |T|. If K <0, then |(expm)*T| > |T| unless T is a radial
vector tangent to a ray through zero.//

THEOREM 23. Let p,, p,, and p, be distinct points of M which
are joined by geodesics § , g,, and g, where g, joins p, and p,, etc.,
(see Fig. 10.6). Assume the three points are not on one geodesic
and the broken loop formed by the three curves is homotopic to zero.
Let 0, be the unique angle at p\,. made by the intersecting geodesics
with 0 <0, <z Then

18,1% 2 ‘gzlz + 18,12 - 1€,) |65| cos 0,, and 6, + 0, + 0, <m

If K <0on M, these inequalities are strict.

Proof. Letm=p, and let §, and g ; be the rays through zero in
M, such thatexp og, =g, fori=2,3. Let X, and X3 be the end-
points of g, and g ,, respectively. Since the loop formed by &,, &,
and g, is homotopic to zero, we can lift g, to a curve g | joining
X, and X;. By the preceding lemma, |,]| > |8 ,| > d(X,, X,), where
d is the Euclidean distance in M _. By the law of cosines in ¥ _,

X, X )= 8,|% + 18,12 - I8, |g,] cos 6, which proves the first

inequality.
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For the second inequality, we construct a triangle in R? whose
sides have lengths a, = |g,| and label the angles at the appropriate
corners by ¢, Then («511)2 = (c’:zz)2 + («’:13)2 —a,a, cos ¢,; hence
cos 91 > cos ¢, and 0y < ;. Similarly, 6, < &, for all i, and
0,4+ 60, +0;<b, + b, + ;=

If K <0, then {g,| > |§,]| and the strict inequalities then follow.//

Corollary 1. The sum of the interior angles (0 < 6, < ) of a geo-
desic quadralateral which is homotopic to zero is < 27. If K < 0, then

the sum is <2n.

Fig. 10.6 Geodesic Triangle

Corollary 2. Let m be in M, and let g be a geodesic that does not
pass through m. Then there cannot be two distinct geodesics g, and
g, from m to g which intersect g orthogonally such that the geodesic
triangle formed is homotopic to zero.

Proof. The sumof the interior angles of the geodesic triangle
would be greater than #.// :

Corollary 3. Let M be simple connected, m in M, and ¢ a geodesic
that does not pass through m. Then there is a unique geodesic f
from m to g which is orthogonal to g and |f] < d(m, g(¢)) for all .

Proof. Let f, be the unique geodesic from m to g(¢), let L(¢) =
|f,| = d(m, g(t)), and let g, be g restricted to the interval [0, t] or
[t, 0], as the case may be. Let 0 be the angle between f, and g, for
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t> 0. We show that L{t) — o as f —+ = or — «. For t > 0,

LA = [£,12> |£,]2 + |8,|2 - |f,] |g,] cos 6 =
= |fo]? + 18,/(18,] = |f,] cos 6).

As t — o5, |g,| = o, and hence L(t) — . Similarly, L{t) — s as
t — —oo,

By theorem 7, a point ¢' is a critical point of L if and only if fa
is orthogonal to g. By corollary 2 there can be at most one critical
point of L, and that must be an absolute minimum by the first para-

graph.//

For further results see Preissman and Helgason.

Problems

93. Using the notation of section 3.4, show that T is a Jacobi
field on a surface of revolution. If G = <T,T >andSis
arc length along the meridians, show d*\/G/ds? = -K+/G.

94. If M is a complete Riemannian 2-manifold, show the locus of
first (those nearest the origin on each ray) conjugate points
in M_ is a C* curve (see S. B. Myers).

95. Show the Hessian is well-defined, symmetric, and bilinear.

96. If d is the function defined in the lemma in section 10.4, show

dis C®on C,

97. If M = R3 ¢ is the x-axis from (g, 0, 0) to (b, 0, 0) with a < b,

and C, and C, are the planes x = a and x = b, respectively,
check the lemma in section 10.4.

98. A submanifold V of a manifold M is totally geodesic with re-
spect to a connexion D if any geodesic that is tangent to V
at a point lies wholly in V. If V and W are compact totally

’ geodesic submanifolds, of dimension r and s, respectively,
lying in a Riemannian n-manifold M of positive Riemannian

curvature and r + s >n, show V NW is non-empty (see Frankel).

99. Find a condition relating curvature and parallel translation
that will insure the existence of complete totally geodesic
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submanifolds in a Riemannian manifold (see Hermann or
Helgason).

100. If M is an oriented n-manifold and «q is a C*(n - 1)-form on
M with compact support, show fMda = 0 (see Nijenhuis and
Richardson).
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subatlas, 2

submanifold, 13, 75

support, 98, 103

surface of revolution, 45
symmetric surfaces, 120
symmetric tensor, 50

tangent bundle, 16

Index

tangent bundle, 16
tangent (of a curve), 10
tangent space, 6
tensor algebra, 51°
tensors, 49

torsion (of a curve), 74
torsion tensot, 59, 78
torus (flat), 16

total curvature, 24
tractrix, 49

two parameter family of curves, 158
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