
LECTURES ON ANALYTIC

DIFFERENTIAL EQUATIONS

Yulij Ilyashenko

Sergei Yakovenko

Cornell University, Ithaca, U.S.A.,

Moscow State University,

Steklov Institute of Mathematics, Moscow

Independent University of Moscow, Russia

E-mail address: yulijs@mccme.ru

Weizmann Institute of Science, Rehovot, Israel

E-mail address: sergei.yakovenko@weizmann.ac.il
WWW page: http://www.wisdom.weizmann.ac.il/~yakov

Graduate Studies in Mathematics
2008; 625 pp; hardcover

Volume: 86
ISBN-10: 0-8218-3667-6

ISBN-13: 978-0-8218-3667-5
List Price: US$ 79
Member Price: US$ 63
Order Code: GSM/86

http://wisdom.weizmann.ac.il/~yakov/thebook1.pdf
http://wisdom.weizmann.ac.il/~yakov/thebook1.pdf


2000 Mathematics Subject Classification. Primary 34A26, 34C10;
Secondary 14Q20, 32S65, 13E05

About the book: from the Publisher

The book combines the features of a graduate-level textbook with those
of a research monograph and survey of the recent results on analysis and
geometry of differential equations in the real and complex domain. As a
graduate textbook, it includes self-contained, sometimes considerably sim-
plified demonstrations of several fundamental results, which previously ap-
peared only in journal publications (desingularization of planar analytic vec-
tor fields, existence of analytic separatrices, positive and negative results on
the Riemann-Hilbert problem, Ecalle-Voronin and Martinet-Ramis moduli,
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Preface

The branch of mathematics which deals with ordinary differential equations
can be roughly divided into two large parts, qualitative theory of differen-
tial equations and the dynamical systems theory. The former mostly deals
with systems of differential equations on the plane, the latter concerns mul-
tidimensional systems (diffeomorphisms on two-dimensional manifolds and
flows in dimension greater than two and up to infinity). The former can
be considered as a relatively orderly world, while the latter is the realm of
chaos.

A key problem, in some sense a paradigm influencing the development
of dynamical systems theory from its origins, is the problem of turbulence:
how a deterministic nature of a dynamical system can be compatible with
its apparently chaotic behavior. This problem was studied by the precursors
and founding fathers of the dynamical systems theory: L. Landau, H. Hopf,
A. Kolmogorov, V. Arnold, S. Smale, D. Ruelle and F. Takens. Currently
this is one of the principal challenges on the crossroad between mathemat-
ics, physics and computer science. Dynamical systems theory heavily uses
methods and tools from topology, differential geometry, probability, func-
tional analysis and other branches of mathematics.

The qualitative theory of differential equations is mostly associated with
autonomous systems on the plane and closely related to analytic theory of
ordinary differential equations. The principal theme is investigation of local
and global topological properties of phase portraits on the plane. One of the
main problems of the whole area is Hilbert’s sixteenth problem, the question
on the number and position of limit cycles of a polynomial vector field on the
plane. In a very broad sense this can be assessed as the question: to which

ix
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extent properties of polynomials defining a differential equation are inherited
by its absolutely transcendental (and sometimes very weird) solutions.

Another major part of analytic theory of differential equations is the
linear theory. Here the key problem is Hilbert’s twenty-first problem, also
known as the Riemann–Hilbert problem, which has a long dramatic history
and was solved “only yesterday”. Discussion of this problem constitutes an
important part of this book.

The qualitative theory of differential equations was essentially created in
the works by H. Poincaré who discovered that differential equations belong
not only to the realm of analysis, but also to geometry. Deriving geomet-
ric properties of solutions directly from the equations defining them, was
his principal idea. These ideas were further developed in each of the two
branches separately, but their present appearance looks very different.

Differential equations brought into existence such areas of mathematics
as topology and Lie groups theory. In turn, the analytic theory of differential
equations is not a closed area, but rather provides a source of applications
and motivation for other disciplines. In this book we stress using complex
analysis, algebraic geometry and topology of vector bundles, with some other
interesting links briefly outlined at the appropriate places.

On the frontier between differential equations and the singularity theory,
lies the notion of a normal form, one of the central concepts of this book. The
first chapter contains the basics of formal and analytic normal form theory.
The tools developed in this chapter are systematically used throughout the
book. The study of phase portraits of composite singular points requires
elaboration of the blowing-up technique, another classical tool known for
over a century. The famous Bendixson desingularization theorem is proved
in our textbook by transparent methods.

A new approach to local problems of analysis, based on the notion of
algebraic and analytic solvability, was suggested by V. Arnold and R. Thom
around forty years ago. In Chapter II we treat from this point of view
the local theory of singular points of planar vector fields. It is proved that
the stability problem and the problem of topological classification of planar
vector fields are algebraically solvable in all cases except for the center/focus
dichotomy. This dichotomy is algebraically unsolvable, as is proved in the
same chapter. Besides these topics, the chapter contains local analysis of
singular points of holomorphic foliations: the proof of the C. Camacho–
P. Sad theorem on existence of analytic separatrices through singular points,
integrability via the local holonomy group as discovered by J.-F. Mattei and
R. Moussu, and demonstration of the Bautin theorem on small limit cycles
of quadratic vector fields.
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The third chapter deals with the linear theory. Somewhat paradoxically,
application of normal forms of nonlinear systems to investigation of linear
systems considerably simplifies exposition of many classical results. The
chapter contains a succinct derivation of some positive and negative results
on solvability of the Riemann–Hilbert problem.

Chapter IV deals with a new direction in the theory of normal forms,
the functional moduli of analytic classification of resonant singularities. The
main working tool used in this study is an almost complex structure and
quasiconformal maps. The latter already played a revolutionizing role in the
nearby theory of holomorphic dynamics. The main basic facts from these
theories are briefly summarized in this chapter. The chapter ends with
the proof of the “easy version” of the finiteness theorem for limit cycles of
analytic vector fields, with an additional assumption that all singular points
are hyperbolic saddles. The proof illustrates the power of using local normal
forms in the solution of problems of a global nature.

Chapter V is concerned with the global theory of polynomial differen-
tial equations on the real and complex plane, bridging between algebraic,
“almost algebraic” and essentially transcendental questions.

The chapter begins with the solution of the Poincaré problem on the
maximal degree which can have an algebraic solution of a polynomial dif-
ferential equation (a relatively recent spectacular result due to D. Cerveau,
A. Lins Neto and M. Carnicer). The second section focuses on the interac-
tion between the theory of Riemann surfaces and global theory of differential
equations. We describe the topology of stratification of the complex pro-
jective plane by level curves of a generic bivariate polynomial, including
derivation of the Picard–Lefschetz formulas for the Gauss–Manin connex-
ion. This is the main working tool for deriving certain inequalities for the
number of zeros of complete Abelian integrals, a question very closely re-
lated to Hilbert’s sixteenth problem. Finally, we discuss generic properties
of complex foliations that are very often drastically different from their real
counterparts. For instance, finiteness of limit cycles on the real plane is
in sharp contrast with a typically infinite number of the complex limit cy-
cles, and the structural stability of real phase portraits counters rigidity of
a generic complex foliation.

Some basic facts from complex analysis in several variables frequently
used in the book, are recalled in the Appendix.

Almost all sections are ended by the problem lists. Together with easy
problems, sometimes called exercises, the lists contain difficult ones, lying
on the frontier of the current research.

The book was not intended to serve as a comprehensive treatise on the
whole analytic theory of ordinary differential equations. The selection of
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topics was based on the personal taste of the authors and restricted by
the size of the book. We do not even mention such classical areas as the
theory of Riccati and Painlevé equations, the Malmquist theorem, integral
representations and transformations. We omit completely the differential
Galois theory, resurgent functions introduced by Ecalle and the fewnomial
theory invented by A. Khovansky. Nevertheless, the subjects covered in the
book constitute in our opinion a connected whole revolving around few key
problems that play an organizing role in the development of the entire area.

Exposition of each topic begins with basic definitions and reaches the
present-day level of research on many occasions. Traditionally, the proofs of
many results of analytic theory of differential equations are very technically
involved. Whenever available, we tried to preface formulas by motivations
and avoid as much as possible all cumbersome and nonrevealing computa-
tions.

The book is primarily aimed at graduate students and professionals look-
ing for a quick and gentle initiation into this subject. Yet experts in the area
will find here several results whose complete exposition was never published
before in books. On the other hand, undergraduate students should be able
to read at least some parts of the book and get introduced into the beautiful
area that occupies a central position in modern mathematics.

* * *

The idea to write this book, especially the chapter on linear systems,
was to a large extent inspired by the recent dramatic achievements by our
dear friend and colleague Andrei Bolibruch, who solved one of the most
challenging problems of analytic theory of ordinary differential equations,
the Riemann-Hilbert problem. Andrei read several first drafts of this chapter
and his comments and remarks were extremely helpful.

On November 11, 2003, at the age 53, after a long and difficult struggle,
Andrei Andreevich Bolibruch succumbed to the grave disease. This book
is a posthumous tribute to his mathematical talents, artistic vision and
impeccable taste with which he always chose problems and solved them.

* * *

When the work on this book (which took a much longer time than ini-
tially expected) was essentially over, another similar treatise appeared. In
2006 Henryk Żo la̧dek published the fundamental monograph [Żo l06] titled
very tellingly “The Monodromy Group”. The scope of both books is surpris-
ingly similar, though the symmetric difference is also very large. Yet most
of the subjects which simultaneously occur in the two books are treated in
rather different ways. This gives a reader a rare opportunity to choose the
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exposition that is closer to his/her heart: the mathematics can be the same
but our ways of speaking about it differ.

* * *

Acknowledgements. Many people helped us in different ways to im-
prove the manuscript. Our colleagues F. Cano, D. Cerveau, C. Christopher,
A. Glutsyuk, L. Gavrilov, J. Llibre, C. Li, F. Loray, V. Kostov, V. Katsnel-
son, Y. Yomdin explained us delicate points of mathematical constructions
and gave useful advices concerning the exposition.

We are grateful to all those who read preliminary versions of separate sec-
tions and spotted endless errors and typos, among them T. Golenishcheva-
Kutuzova, Yu. Kudryashov, A. Klimenko, D. Ryzhov and M. Prokhorova.
Needless to say, the responsibility for all remaining errors is entirely ours.

The AMS editorial staff was extremely patient and helpful in bringing
the manuscript to its final form, including computer graphics. Our profound
gratitude goes to Luann Cole, Lori Nero and especially to Sergei Gelfand
for wise application of moderate physical pressure to ensure the delivery of
the book.

Last but not least, we are immensely grateful to Dmitry Novikov who
assisted us on all stages of the preparation of the manuscript. Without long
discussions with him the book would certainly look very different.

During the preparation of the book Yulij Ilyashenko was supported by
the grants NSF no. 0100404 and no. 0400495. Sergei Yakovenko is incumbent
of The Gershon Kekst Professorial Chair. His research was supported by the
Israeli Science Foundation grant no. 18-00/1 and the Minerva Foundation.





Bibliography

[AB60] L. Ahlfors and L. Bers, Riemann’s mapping theorem for variable metrics, Ann.
of Math. (2) 72 (1960), 385–404. MR0115006 (22 #5813)

[AB94] D. V. Anosov and A. A. Bolibruch, The Riemann-Hilbert problem, Vieweg
Publ., Braunschweig, 1994. MR 95d:32024
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[Mou98] , Sur l’existence d’intégrales premières holomorphes, Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), no. 4, 709–717. MR1648570 (99i:32040)

[MR83] J. Martinet and J.-P. Ramis, Classification analytique des équations
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