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Preface

The branch of mathematics which deals with ordinary differential equations
can be roughly divided into two large parts, qualitative theory of differen-
tial equations and the dynamical systems theory. The former mostly deals
with systems of differential equations on the plane, the latter concerns mul-
tidimensional systems (diffeomorphisms on two-dimensional manifolds and
flows in dimension greater than two and up to infinity). The former can
be considered as a relatively orderly world, while the latter is the realm of
chaos.

A key problem, in some sense a paradigm influencing the development
of dynamical systems theory from its origins, is the problem of turbulence:
how a deterministic nature of a dynamical system can be compatible with
its apparently chaotic behavior. This problem was studied by the precursors
and founding fathers of the dynamical systems theory: L. Landau, H. Hopf,
A. Kolmogorov, V. Arnold, S. Smale, D. Ruelle and F. Takens. Currently
this is one of the principal challenges on the crossroad between mathemat-
ics, physics and computer science. Dynamical systems theory heavily uses
methods and tools from topology, differential geometry, probability, func-
tional analysis and other branches of mathematics.

The qualitative theory of differential equations is mostly associated with
autonomous systems on the plane and closely related to analytic theory of
ordinary differential equations. The principal theme is investigation of local
and global topological properties of phase portraits on the plane. One of the
main problems of the whole area is Hilbert’s sixteenth problem, the question
on the number and position of limit cycles of a polynomial vector field on the
plane. In a very broad sense this can be assessed as the question: to which
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viii Preface

extent properties of polynomials defining a differential equation are inherited
by its absolutely transcendental (and sometimes very weird) solutions.

Another major part of analytic theory of differential equations is the
linear theory. Here the key problem is Hilbert’s twenty-first problem, also
known as the Riemann–Hilbert problem, which has a long dramatic history
and was solved “only yesterday”. Discussion of this problem constitutes an
important part of this book.

The qualitative theory of differential equations was essentially created in
the works by H. Poincaré who discovered that differential equations belong
not only to the realm of analysis, but also to geometry. Deriving geomet-
ric properties of solutions directly from the equations defining them, was
his principal idea. These ideas were further developed in each of the two
branches separately, but their present appearance looks very different.

Differential equations brought into existence such areas of mathematics
as topology and Lie groups theory. In turn, the analytic theory of differential
equations is not a closed area, but rather provides a source of applications
and motivation for other disciplines. In this book we stress using complex
analysis, algebraic geometry and topology of vector bundles, with some other
interesting links briefly outlined at the appropriate places.

On the frontier between differential equations and the singularity theory,
lies the notion of a normal form, one of the central concepts of this book. The
first chapter contains the basics of formal and analytic normal form theory.
The tools developed in this chapter are systematically used throughout the
book. The study of phase portraits of composite singular points requires
elaboration of the blowing-up technique, another classical tool known for
over a century. The famous Bendixson desingularization theorem is proved
in our textbook by transparent methods.

A new approach to local problems of analysis, based on the notion of
algebraic and analytic solvability, was suggested by V. Arnold and R. Thom
around forty years ago. In Chapter II we treat from this point of view
the local theory of singular points of planar vector fields. It is proved that
the stability problem and the problem of topological classification of planar
vector fields are algebraically solvable in all cases except for the center/focus
dichotomy. This dichotomy is algebraically unsolvable, as is proved in the
same chapter. Besides these topics, the chapter contains local analysis of
singular points of holomorphic foliations: the proof of the C. Camacho–
P. Sad theorem on existence of analytic separatrices through singular points,
integrability via the local holonomy group as discovered by J.-F. Mattei and
R. Moussu, and demonstration of the Bautin theorem on small limit cycles
of quadratic vector fields.
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The third chapter deals with the linear theory. Somewhat paradoxically,
application of normal forms of nonlinear systems to investigation of linear
systems considerably simplifies exposition of many classical results. The
chapter contains a succinct derivation of some positive and negative results
on solvability of the Riemann–Hilbert problem.

Chapter IV deals with a new direction in the theory of normal forms,
the functional moduli of analytic classification of resonant singularities. The
main working tool used in this study is an almost complex structure and
quasiconformal maps. The latter already played a revolutionizing role in the
nearby theory of holomorphic dynamics. The main basic facts from these
theories are briefly summarized in this chapter. The chapter ends with
the proof of the “easy version” of the finiteness theorem for limit cycles of
analytic vector fields, with an additional assumption that all singular points
are hyperbolic saddles. The proof illustrates the power of using local normal
forms in the solution of problems of a global nature.

Chapter V is concerned with the global theory of polynomial differen-
tial equations on the real and complex plane, bridging between algebraic,
“almost algebraic” and essentially transcendental questions.

The chapter begins with the solution of the Poincaré problem on the
maximal degree which can have an algebraic solution of a polynomial dif-
ferential equation (a relatively recent spectacular result due to D. Cerveau,
A. Lins Neto and M. Carnicer). The second section focuses on the interac-
tion between the theory of Riemann surfaces and global theory of differential
equations. We describe the topology of stratification of the complex pro-
jective plane by level curves of a generic bivariate polynomial, including
derivation of the Picard–Lefschetz formulas for the Gauss–Manin connex-
ion. This is the main working tool for deriving certain inequalities for the
number of zeros of complete Abelian integrals, a question very closely re-
lated to Hilbert’s sixteenth problem. Finally, we discuss generic properties
of complex foliations that are very often drastically different from their real
counterparts. For instance, finiteness of limit cycles on the real plane is
in sharp contrast with a typically infinite number of the complex limit cy-
cles, and the structural stability of real phase portraits counters rigidity of
a generic complex foliation.

Some basic facts from complex analysis in several variables frequently
used in the book, are recalled in the Appendix.

Almost all sections are ended by the problem lists. Together with easy
problems, sometimes called exercises, the lists contain difficult ones, lying
on the frontier of the current research.

The book was not intended to serve as a comprehensive treatise on the
whole analytic theory of ordinary differential equations. The selection of
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x Preface

topics was based on the personal taste of the authors and restricted by
the size of the book. We do not even mention such classical areas as the
theory of Riccati and Painlevé equations, the Malmquist theorem, integral
representations and transformations. We omit completely the differential
Galois theory, resurgent functions introduced by Ecalle and the fewnomial
theory invented by A. Khovansky. Nevertheless, the subjects covered in the
book constitute in our opinion a connected whole revolving around few key
problems that play an organizing role in the development of the entire area.

Exposition of each topic begins with basic definitions and reaches the
present-day level of research on many occasions. Traditionally, the proofs of
many results of analytic theory of differential equations are very technically
involved. Whenever available, we tried to preface formulas by motivations
and avoid as much as possible all cumbersome and nonrevealing computa-
tions.

The book is primarily aimed at graduate students and professionals look-
ing for a quick and gentle initiation into this subject. Yet experts in the area
will find here several results whose complete exposition was never published
before in books. On the other hand, undergraduate students should be able
to read at least some parts of the book and get introduced into the beautiful
area that occupies a central position in modern mathematics.

* * *

The idea to write this book, especially the chapter on linear systems,
was to a large extent inspired by the recent dramatic achievements by our
dear friend and colleague Andrei Bolibruch, who solved one of the most
challenging problems of analytic theory of ordinary differential equations,
the Riemann-Hilbert problem. Andrei read several first drafts of this chapter
and his comments and remarks were extremely helpful.

On November 11, 2003, at the age 53, after a long and difficult struggle,
Andrei Andreevich Bolibruch succumbed to the grave disease. This book
is a posthumous tribute to his mathematical talents, artistic vision and
impeccable taste with which he always chose problems and solved them.

* * *

When the work on this book (which took a much longer time than ini-
tially expected) was essentially over, another similar treatise appeared. In
2006 Henryk ŻoÃla̧dek published the fundamental monograph [ŻoÃl06] titled
very tellingly “The Monodromy Group”. The scope of both books is surpris-
ingly similar, though the symmetric difference is also very large. Yet most
of the subjects which simultaneously occur in the two books are treated in
rather different ways. This gives a reader a rare opportunity to choose the
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exposition that is closer to his/her heart: the mathematics can be the same
but our ways of speaking about it differ.

* * *
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Chapter I

Normal forms and
desingularization

1. Analytic differential equations in the complex domain

For an open domain U ⊆ Cn we denote by O(U) the complex linear space
of functions holomorphic in U (see Appendix). The space of vector-valued
holomorphic functions is denoted by

Om(U) = O(U)× · · · × O(U)︸ ︷︷ ︸
m times

= O(U)⊗C Cm.

1A. Differential equations, solutions, initial value problems. Let
U ⊆ C×Cn be an open domain and F = (F1, . . . , Fn) : U → Cn a holomor-
phic vector function. An analytic ordinary differential equation defined by
F on U is the vector equation (or the system of n scalar equations)

dx

dt
= F (t, x), (t, x) ∈ U ⊆ C× Cn, F ∈ On(U). (1.1)

The solution of this equation is a parameterized holomorphic curve, the
holomorphic map ϕ = (ϕ1, . . . , ϕn) : V → Cn, defined in an open subset
V ⊆ C, whose graph {(t, ϕ(t)) : t ∈ V } belongs to U and whose complex
“velocity vector” dϕ

dt =
(dϕ1

dt , . . . , dϕn

dt

) ∈ Cn at each point t coincides with
the vector F (t, ϕ(t)) ∈ Cn.

The graph of ϕ in U is called the integral curve. From the real point
of view it is a 2-dimensional smooth surface in R2n+2. Note that from the
beginning we consider only holomorphic solutions which may be, however,
defined on domains of different size.

1
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2 I. Normal forms and desingularization

The equation is autonomous, if F is independent of t. In this case the
image ϕ(V ) ⊆ Cn is called the phase curve. Any differential equation (1.1)
can be “made” autonomous by adding a fictitious variable z ∈ C governed
by the equation dz

dt = 1.
If (t0, x0) = (t0, x0,1, . . . , x0,n) ∈ U is a specified point, then the ini-

tial value problem, sometimes also called the Cauchy problem, is to find an
integral curve of the differential equation (1.1) passing through the point
(t0, x0), i.e., a solution satisfying the condition

ϕ : V → Cn, ϕ(t0) = x0 ∈ Cn. (1.2)

In what follows we will often denote by a dot the derivative with respect
to the complex variable t, ẋ(t) = dx

dt (t).
The first fundamental result is the local existence and uniqueness theo-

rem.

Theorem 1.1. For any holomorphic differential equation (1.1) and every
point (t0, x0) ∈ U there exists a sufficiently small polydisk Dε = {|t − t0| <
ε, |xj − x0,j | < ε, j = 1, . . . , n} ⊆ U , such that the solution of the initial
value problem (1.2) exists and is unique in this polydisk.

This solution depends holomorphically on the initial value x0 ∈ Cn and
on any additional parameters, provided that the vector function F depends
holomorphically on these parameters.

From the real point of view, Theorem 1.1 asserts existence of 2n functions
of two independent real variables whose graph is a surface in Cn+1 ∼= R2n+2,
with the tangent plane spanned by two real vectors ReF, Im F . To derive
this theorem from the standard results on existence, uniqueness and differ-
entiability of solutions of smooth ordinary differential equations in the real
domain, one should use rather deep results on integrability of distributions;
see Remark 2.10 below. Rather unexpectedly, the direct proof is simpler
than in the real case in the part concerning dependence on initial condi-
tions. This proof is given in the next subsection. The main idea of this
proof, as well as many other proofs below, is the contracting map principle.

1B. Contracting map principle. Consider the linear space A(Dρ) of
functions holomorphic in the polydisk Dρ and continuous on its closure,

A(Dρ) = {f : Dρ → C holomorphic in Dρ and continuous on Dρ}. (1.3)

This space is naturally equipped with the supremum-norm,

‖f‖ρ = max
z∈Dρ

|f(z)|, z = (z1, . . . , zn) ∈ Cn, (1.4)
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1. Basic facts on analytic ODE in the complex domain 3

and thus naturally a subspace of the complete normed (i.e., Banach) space
C(Dρ) of continuous complex-valued functions. Though holomorphic func-
tions may have very complicated boundary behavior and thus A(U) $ O(U),
they are continuous and therefore for any smaller domain U ′ relatively com-
pact in U (i.e., when U ′ b U), there is an obvious inclusion A(U ′) ⊃ O(U).

Theorem 1.2. The space A(Dρ) and its vector counterparts Am(Dρ) =⊕
m times A(Dρ) are complete (Banach) spaces.

Proof. Any fundamental sequence in A(Dρ) is by definition fundamental in
the Banach space C(Dρ) and has a uniform limit in the latter space. By the
Weierstrass compactness principle [Sha92], this limit is again holomorphic
in Dρ, i.e., belongs to A(Dρ). ¤

A map F of a metric space M into itself is called contracting, if
for some positive real number λ < 1 and all u, v ∈ M the inequality
dist(F (u), F (v)) 6 λ dist(u, v) holds. A point w ∈ M is fixed (by F ), if
F (w) = w.

Theorem 1.3 (Contracting map principle). Any contracting map F : M →
M of a complete metric space M has a unique fixed point in M.

This fixed point is the limit of any sequence of iterations uk+1 = F (uk),
k = 0, 1, 2, . . . beginning with an arbitrary initial point u0 ∈ M .

Proof. For any initial point u0 ∈ M , the sequence uk, k = 1, 2, . . . is
fundamental, since dist(uk, uk+1) 6 λk dist(u0, u1) and by the triangle in-
equality dist(uk, ul) 6 dist(u0, u1)λk/(1−λ) for any k < l. By completeness
assumption, the sequence uk converges to a limit w ∈ M . Since F is con-
tinuous, passing to the limit in the identity uk+1 = F (uk) yields w = F (w).
If w1, w2 are two fixed points, then dist(w1, w2) 6 λdist(F (w1), F (w2)) =
λdist(w1, w2) which is possible only if dist(w1, w2) = 0, i.e., when w1 =
w2. ¤

1C. Picard operators and their contractivity. The exposition below
is based on [Arn78, §31] with minor modifications.

Consider the equation (1.1) defined in a domain U . Denote by Dε = {|z−
x0| < ε, |t − t0| < ε} ⊂ Cn+1 a polydisk centered at the point (t0, x0) ∈ U
and small enough to belong to U .

Definition 1.4. The Picard operator P associated with the differential
equation (1.1) and the initial value (t0, z0) ∈ U , is the operator f 7→ Pf
defined by the integral formula

(Pf)(s, z) = z +
∫ s

t0

F (t, f(t, z)) dt (1.5)
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4 I. Normal forms and desingularization
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Figure I.1. Domain of definition of Picard iterations (in the intersec-
tion with the hyperplane z = const)

for all vector functions f(t, z) the expression in the right hand side makes
sense.

We will now construct a complete metric space invariant by P, on which
this operator is contracting. Denote by L0 and L1 the bounds for the mag-
nitude of F and its Lipschitz constant in U : for any (t, x), (t, x′) ∈ U ,

|F (t, z)| 6 L0, |F (t, z)− F (t, z′)| 6 L1 |z − z′|. (1.6)

Denote by M the subspace of the space An(Dε) which consists of the func-
tions satisfying the additional inequality

|f(t, z)− z| 6 L0 |t− t0|. (1.7)

This space is complete in the metric induced by the norm ‖ · ‖ε inherited
from the ambient space An(Dε) (Exercise 1.3).

Lemma 1.5. If the polydisk Dε is sufficiently small, the Picard operator P
given by the integral (1.5), is well defined and contracting on M.

More precisely, for sufficiently small ε its contraction factor λ does not
exceed εL1, where L1 is the Lipschitz constant for F in U .

Proof. Explicit majorizing of the integral shows that

|Pf(s, z)− z| 6 L0

∫ s

t0

|dt| 6 L0 |s− t0| 6 L0ε,

so if ε is chosen sufficiently small, the operator P is well defined on M and
maps this space into itself. For any two vector functions f, f ′ defined on
such a small polydisk Dε, we have by virtue of the same estimate

‖Pf −Pf ′‖ = sup
|s−t0|<ε

∫ s

t0

L1 |f(t, z)− f ′(t, z)| |dt| 6 εL1 ‖f − f ′‖.
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1. Basic facts on analytic ODE in the complex domain 5

If εL1 < 1, the operator P is contracting. ¤

Proof of Theorem 1.1. Assume ε is so small that the εL1 < 1 so that by
Lemma 1.5, the Picard operator P is contracting. By Theorem 1.2 the fixed
point of this operator (which exists by Theorem 1.3 and Lemma 1.5) is a
holomorphic vector function f : Dε → Cn that satisfies the integral equation

f(s, z) = z +
∫ s

t0

F (t, f(t, z)) dt, |s− t0| < ε, |z − x0| < ε. (1.8)

For each fixed z, the function ϕz(t) = f(t, z) clearly satisfies both the ini-
tial condition (1.2) with x0 = z and the differential equation (1.1). By
construction, it depends holomorphically on the initial condition z.

To prove holomorphic dependence on additional parameters, one can
treat them as fictitious dependent variables. Assume that the vector function
F = F (t, x, y) depends holomorphically on additional parameters y ∈ Cm,
and consider the initial value problem (recall that the dot means the deriv-
ative d

dt) {
ẋ = F (t, x, y),

ẏ = 0,

x(t0) = x0,

y(t0) = y0.
(1.9)

The solution of this initial value problem is a function f(t, x, y, x0, y0) holo-
morphically depending on all variables. ¤

Remark 1.6. For a differential equation with the right hand side F (t, x) the
shifted solution x′(t) = x(t − y), y ∈ C1, satisfies the shifted equation ẋ′ =
F (t−y, x′) which analytically depends on the parameter y. By Theorem 1.1,
this shows that solutions of the initial value problem depend holomorphically
also on the t-component of the initial point (t0, x0) ∈ U .

1D. Principal example: exponential formula for linear systems.
The proof of the existence theorem is constructive: the solution of a differ-
ential equation is obtained as the uniform limit of its Picard approximations,
iterations of the Picard operator.

In the simplest case of a differential equation with constant (i.e., inde-
pendent of t, x, y) right hand side F = const ∈ Cn the Picard approxima-
tions stabilize immediately: if f0(t, v) = v, then f1(t, v) = f2(t, v) = · · · =
v + (t− t0)F .

A linear system with constant coefficients is the system of equations

ẋ = Ax, x ∈ Cn, A ∈ Mat(n,C) (1.10)

where A = ‖aij‖ is a constant (independent of t and x) (n × n)-matrix
with complex entries. Reasoning by induction, one can see that the Picard
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6 I. Normal forms and desingularization

approximations for the solution of (1.10) which start with the constant initial
term f0(t, v) = v, have the form

fk(t, v) =
(
E + tA + t2

2!A
2 + · · ·+ tk

k!A
k
)

v. (1.11)

Indeed,

Pfk(t, v) = v +
∫ t

0
A · (E + sA + · · ·+ sk

k! A
k
)
v ds

= Ev +
(
tA + · · ·+ tk+1

(k+1)!A
k+1

)
v = fk+1(t, v).

These formulas motivate the following fundamental object.

Definition 1.7 (matrix exponential). For an arbitrary constant matrix A ∈
Mat(n,C) its exponential expA is the sum of the infinite (matrix) series

expA = E + A +
1
2!

A2 + · · ·+ 1
k!

Ak + · · · . (1.12)

Since |Ak| 6 |A|k and since the factorial series
∑

k>0 rk/k! converges
absolutely for all values r ∈ R, the matrix series (1.12) converges absolutely
on the complex linear space Mat(n,C) ∼= Cn2

for any finite n.
Note that for any two commuting matrices A,B their exponents satisfy

the group identity

exp(A + B) = expA · expB = expB · expA. (1.13)

This can be proved by substituting A,B instead of two scalars a, b into the
formal identity obtained by expansion of the law eaeb = ea+b.

The explicit formula (1.11) for Picard approximations for the linear sys-
tem (1.10) immediately proves the following theorem.

Theorem 1.8. The solution of the linear system ẋ = Ax, A ∈ Mat(n,C),
with the initial value x(0) = v is given by the matrix exponential,

x(t) = (exp tA) v, t ∈ C, v ∈ Cn. ¤ (1.14)

Remark 1.9. Computation of the matrix exponential can be reduced to
computation of a matrix polynomial of degree 6 n− 1 and exponentials of
eigenvalues of A. Indeed, assume that A has a Jordan normal form A =
Λ + N , where Λ = diag{λ1, . . . , λn} is the diagonal part and N the upper-
triangular (nilpotent) part commuting with Λ. Then expΛ is a diagonal
matrix with the exponentials of the eigenvalues of Λ on the diagonal, Nn = 0
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1. Basic facts on analytic ODE in the complex domain 7

by nilpotency, and therefore

exp[t(Λ + N)] = exp tΛ · exp tN

=




exp tλ1

. . .
exp tλn


 ·

(
E + tN +

t2

2!
N2 + · · ·+ tn−1

(n− 1)!
Nn−1

)
.

(1.15)

This provides a practical way of solving linear systems with constant coef-
ficients: components of any solution in any basis are linear combinations of
quasipolynomials tk exp tλj , 0 6 k 6 n− 1 with complex coefficients.

Remark 1.10 (Liouville–Ostrogradskii formula). By direct inspection of
the formula (1.15) we conclude that

∀A ∈ Mat(n,C) det expA = exp trA. (1.16)

Indeed, det expA = det expΛ · det exp N =
∏n

i=1 expλi · 1 = exp trΛ =
exp trA, since the matrix polynomial expN is upper triangular with units
on the diagonal.

1E. Flow box theorem. Let f(t, x0) be the holomorphic vector function
solving the initial value problem (1.2) for the differential equation (1.1).

Definition 1.11. The flow map for a differential equation (1.1) is the vector
function of n + 2 complex variables (t0, t1, v) defined when (t0, x) ∈ U and
|t0 − t1| is sufficiently small, by the formula

(t0, t1, v) 7→ Φt1
t0

(v) = f(t1, v), (1.17)

where f(t, v) is the fixed point of the Picard operator P as in (1.8) associated
with the initial point t0.

In other words, Φt1
t0

(v) is the value ϕ(t) which takes the solution of the
initial value problem with the initial condition ϕ(t0) = v, at the point t1
sufficiently close to t0.

Example 1.12. For a linear system (1.10) with constant coefficients, the
flow map is linear:

Φt1
t0

(v) = [exp(t1 − t0)A] v.

This map is defined for all values of t0, t1, v.

By Theorem 1.1, Φ is a holomorphic map. Since the solution of the initial
value problem is unique, it obviously must satisfy the functional equation

Φt2
t1

(Φt1
t0

(x)) = Φt2
t0

(x) (1.18)
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8 I. Normal forms and desingularization

for all t1, t2 sufficiently close to t0 and all x sufficiently close to x0. Since for
any x the vector function t 7→ ϕx(t) = Φt

t0(x) is a solution of (1.1), we have

∂

∂t

∣∣∣∣
t=t0, x=x0

Φt
t0(x) = − ∂

∂t0

∣∣∣∣
t=t0, x=x0

Φt
t0(x) = F (t0, x0).

From the integral equation (1.8) it follows that

Φt
t0(x0) = x0 + (t− t0)F (t0, x0) + o(|t− t0|), (1.19)

and therefore the Jacobian matrix of Φ with respect to the x-variable is
(

∂Φt
t0(x)
∂x

)

t=t0, x=x0

= E. (1.20)

Differential equations can be transformed to each other by various trans-
formations. The most important is the (bi)holomorphic equivalence, or holo-
morphic conjugacy.

Definition 1.13. Two differential equations, (1.1) and another such equat-
ion

ẋ′ = F ′(t′, x′), (t′, x′) ∈ U ′, (1.21)
are conjugated by the biholomorphism H : U → U ′ (the conjugacy), if H
sends any integral trajectory of (1.1) into an integral trajectory of (1.21).

Two systems are holomorphically equivalent in their respective domains,
if there exists a biholomorphic conjugacy between them.

Clearly, biholomorphically conjugate systems are indistinguishable in
everything that concerns properties invariant by biholomorphisms. Finding
a simple system biholomorphically equivalent to a given one, is therefore of
paramount importance.

Theorem 1.14 (Flow box theorem). Any holomorphic differential equation
(1.1) in a sufficiently small neighborhood of any point is biholomorphically
conjugated by a suitable biholomorphic conjugacy H : (t, x) 7→ (t, h(t, x))
preserving the independent variable t, to the trivial equation

ẋ′ = 0. (1.22)

Proof of the theorem. Consider the map H ′ : Cn+1 → Cn+1 which is de-
fined near the point (t0, x0) using the flow map (1.17) for the equation (1.1),

H ′ : (t, x′) 7→ (t, Φt
t0(x

′)), (t, x′) ∈ (Cn+1, (t0, x0)).

By construction, it takes the lines x′ = const parallel to the t-axis, into
integral trajectories of the equation (1.1), while preserving the value of t.

The Jacobian matrix ∂H ′(t, x′)/∂(t, x′) of the map H ′ at the point
(t0, x0) has by (1.20) the form

(
1
∗ E

)
and is therefore invertible.
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1. Basic facts on analytic ODE in the complex domain 9

Thus H ′ restricted on a sufficiently small neighborhood of the point
(t0, x0), is a biholomorphic conjugacy between the trivial system (1.21),
whose solutions are exactly the lines x′ = const, and the given system (1.1).
The inverse map also preserves t and conjugates (1.1) with (1.21). ¤

1F. Vector fields and their equivalence. The above constructions af-
ter small modification become more transparent in the autonomous case,
when the vector function x 7→ F (x) which is now independent of t, can
be considered as a holomorphic vector field on its domain U ⊆ Cn. The
space of vector fields holomorphic in a domain U ⊆ Cn will be denoted by
D(U), while the notation D(Cn, x0) is reserved for the space of germs of
holomorphic vector fields at a specific point x0 ∈ Cn, usually the origin,
x0 = 0.

In the autonomous case, translation of the independent variable pre-
serves solutions of the equation

ẋ = F (x), F : U → Cn, (1.23)

so the flow map Φt1
t0

actually depends only on the difference t = t1 − t0
and hence will be denoted simply by Φt(·) = Φt

0(·). The functional identity
(1.18) takes the form

Φt(Φs(x)) = Φt+s(x), t, s ∈ (C, 0), x ∈ (Cn, x0), (1.24)

which means that the maps {Φt} form a one-parametric pseudogroup of
biholomorphisms. (“Pseudo” means that the composition in (1.24) is not
always defined. The pseudogroup is a true group, Φt◦Φs = Φt+s, if the maps
Φt are globally defined for all t ∈ C. For more details on pseudogroups see
§6D).

For autonomous equations it is natural to consider biholomorphisms that
are time-independent.

Definition 1.15. Two holomorphic vector fields, F ∈ D(U) and F ′ ∈ D(U ′)
defined in two domains U,U ′ ⊆ Cn, are biholomorphically equivalent if there
exists a biholomorphic map H : U → U ′ conjugating their respective flows,

H ◦ Φt = Φ′t ◦H (1.25)

whenever both sides are defined. The biholomorphism H is said to be a
conjugacy between F and F ′.

A conjugacy H maps phase curves of the first field into phase curves of
the second field; in a similar way the suspension

id×H : (C, 0)× U → (C, 0)× U ′, (t, x) 7→ (t,H(x)),

maps integral curves of the two fields into each other. Differentiating the
identity (1.25) in t at t = 0, we conclude that the differential dH(x) of a
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10 I. Normal forms and desingularization

holomorphic conjugacy sends the vector v = F (x) of the first field, attached
to a point x ∈ U , to the vector v′ = F ′(x′) of the second field at the
appropriate point x′ = H(x). In the coordinates this property takes the
form of the identity

H∗(x) · F (x) = F ′(H(x)), H∗(x) =
(

∂H
∂x

)
=

(
∂hi
∂xj

)
, (1.26)

in which the Jacobian matrix H∗(x) =
(

∂H
∂x

)
is involved. The formula (1.26)

is sometimes used as the alternative definition of the holomorphic equiva-
lence. The third (algebraic, in some sense most natural) way to introduce
this equivalence is explained in the next section.

1G. Vector fields as derivations. It is sometimes convenient to define
vector fields in a way independent of the coordinates. Each vector field
F = (F1, . . . , Fn) in a domain U ⊂ Cn defines a derivation F ∈ DerO(U) of
the C-algebra O(U) of functions holomorphic in U , by the formula

Ff(x) =
n∑

j=1

Fj(x)
∂f

∂xj
. (1.27)

We often identify the holomorphic vector field F with the components Fi

with the corresponding differential operator F =
∑

Fj
∂

∂xj
.

Derivations can be defined in purely algebraic terms as C-linear maps of
the algebra O(U) satisfying the Leibnitz identity,

F(fg) = f(Fg) + (Ff)g.

Indeed, any C-linear operator with this property in any coordinate
system (x1, . . . , xn) defines n functions Fj = Fxj and (obviously) sends
all constants to zero. Any analytic function f can be written f(x) =
f(a) +

∑n
1 hj(x) (xj − aj) with hj(a) = ∂f

∂xj
(a). Applying the Leibnitz rule,

we conclude that (Ff)(a) =
∑

j Fjhj(a)+0·Fhj =
∑

j Fj
∂f
∂xj

(a), as claimed.

A similar algebraic description can be given for holomorphic maps. With
any holomorphic map H : U → U ′ between two domains U,U ′ ⊆ Cn one can
associate the pullback operator H : O(U ′) → O(U), acting on f ′ ∈ O(U ′)
by composition, (Hf ′)(x) = f ′(H(x)). This operator is a homomorphism
of commutative C-algebras, a C-linear map respecting multiplication (i.e.,
H(f ′g′) = Hf ′ · Hg′ for any f ′, g′ ∈ O(U ′)). Conversely, any continuous
homomorphism H between the two algebras is induced by a holomorphic
map H = (h1, . . . , hn) with hi = Hxi, where xi ∈ O(U ′) are the coordinate
functions (restricted on U ′). The map H is a biholomorphism if and only if
H is an isomorphism of C-algebras.

In this language the action of biholomorphisms on vector fields can be
described as a simple conjugacy of operators: two derivations F and F′ of
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1. Basic facts on analytic ODE in the complex domain 11

the algebras O(U) and O(U ′) respectively, are said to be conjugated by the
biholomorphism H : U → U ′, if

F ◦H = H ◦ F′ (1.28)

as two C-linear operators from O(U ′) to O(U).
Another advantage of this invariant description is the possibility of

defining the commutator of two vector fields naturally, as the commuta-
tor of the respective differential operators. One can immediately verify that
[F,F′] = FF′ − F′F satisfies the Leibnitz identity as soon as F,F′ do, and
hence corresponds to a vector field. In coordinates the commutator takes
the form

[F, F ′] =
(

∂F ′

∂x

)
F −

(
∂F

∂x

)
F ′. (1.29)

Example 1.16. For any two F = Ax, F′ = A′x linear vector fields, their
commutator [F,F′] is again a linear vector field with the linearization matrix
A′A−AA′. It coincides (modulo the sign) with the usual matrix commutator
[A,A′].

1H. Rectification of vector fields. A straightforward counterpart of the
Flow box Theorem 1.14 for holomorphic vector fields holds only if the field
is nonvanishing.

Definition 1.17. A point x is a singular point (singularity) of a holomor-
phic vector field F , if F (x0) = 0. Otherwise the point is nonsingular.

Theorem 1.18 (Rectification theorem). A holomorphic vector field F is
holomorphically equivalent to the constant vector field F ′(x′) = (1, 0, . . . , 0)
in a sufficiently small neighborhood of any nonsingular point.

Proof. The flow Φ′ of the constant vector field F ′ can be immediately com-
puted: (Φ′)t(x′) = x′ + t · (1, 0, . . . , 0). Consider any affine hyperplane
Π ⊂ U passing through x0 and transversal to F (x0) and the hyperplane
Π′ = {x′1 = 0}. Let t = x′1 : Cn → C be the function equal to the first
coordinate in Cn, so that (Φ′)−t(x′) ∈ Π′. Let h′ : Π′ → Π be any biholo-
morphism (e.g., linear invertible map). Then the map

H ′ = Φt ◦ h ◦ (Φ′)−t, t = t(x′),

is a holomorphic map that sends any (parameterized) trajectory of F ′, pass-
ing through a point x′ ∈ Π′, to the parameterized trajectory of F passing
through x = h(x′). Being composition of holomorphic maps, H ′ is also holo-
morphic, and coincides with h′ when restricted on Π′. It remains to notice
that the differential dH ′(x0) maps the vector (1, 0, . . . , 0) transversal to Π′,
to the vector F (x0) transversal to Π. This observation proves that H ′ is
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12 I. Normal forms and desingularization

invertible in some sufficiently small neighborhood U of x0, and the inverse
map H conjugates F in U with F ′ in H(U). ¤

1I. One-parametric groups of holomorphisms. The Rectification the-
orem from §1 can be formulated in the language of germs as follows: Two
germs of holomorphic vector fields at nonsingular points are always holomor-
phically equivalent to each other. In particular, any germ of a holomorphic
vector field at a nonsingular point is holomorphically equivalent to the germ
of a nonzero constant vector field.

Because of this “triviality” of local description of nonsingular vector
fields, we will mostly be interested in germs of vector fields at the singular
points. The first result is existence of germs of the flow maps Φt at the
singular point, for all values of t ∈ C.

Denote by Diff(Cn, 0) the group of germs of holomorphic self-maps
H : (Cn, 0) → (Cn, 0) equipped with the operation of composition (which
is always defined).

Proposition 1.19. If F ∈ D(Cn, 0) is the germ of a holomorphic vector
field which is singular (i.e., F (0) = 0), then the germs of the flow maps
Φt(·) are defined for all t ∈ C and form a one-parametric subgroup of the
group Diff(Cn, 0) of germs of biholomorphic self-maps: Φt ◦ Φs = Φt+s for
any t, s ∈ C.

Proof. The existence of the flow maps Φt for all sufficiently small t ∈ (C, 0),
the possibility of their composition, and validity of the group identity for
such small t all follow from Theorem 1.1 and the fact that Φt(x0) = x0.

For an arbitrary large value of t ∈ C we may define Φt as the composition
of germs of the flow maps Φti , i = 1, . . . , N , taken in any order, where the
complex numbers ti are sufficiently small to satisfy conditions of Theorem 1.1
but added together give t. From the local group identity it follows that the
definition does not depend on the particular choice of ti and preserves the
group property. ¤

Remark 1.20. Every germ of a self-map H ∈ Diff(Cn, 0) uniquely defines
an automorphism H ∈ AutO(Cn, 0) of the commutative algebra of holomor-
phic germs acting by substitution, Hf = f ◦H.

Proposition 1.19 translates into the algebraic language as follows: for any
derivation F ∈ DerO(Cn, 0) of the algebra of holomorphic germs there exist
a one-parametric subgroup {Ht : t ∈ C} ⊂ AutO(Cn, 0) of automorphisms
of this algebra, such that d

dt

∣∣
t=0

Ht = F.

For the reasons to be explained below in §3C, the subgroup of auto-
morphisms Ht is often referred to as the exponent, Ht = exp(tF), of the
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2. Holomorphic foliations and their singularities 13

derivation F. Respectively, the flow (germs of self-maps) will be sometimes
denoted by the exponent, Φt = exp(tF ), of the corresponding vector field
F .

Exercises and Problems for §1.

Exercise 1.1. Let a ∈ U be a nonsingular point of a holomorphic vector field
F ∈ D(U). A trajectory of the vector field is the projection of the graph of the
solution into the domain of the field along the time axis.

Prove that the trajectory passing through a is either the line x = a, or can be
represented as the graph of a function y = ϕa(x) having an algebraic ramification
point of some finite order ν. Express ν in terms of orders of the components of the
field F at a.

Exercise 1.2. Let P : (Cn, 0) → (Cn−1, 0) be a holomorphic epimorphism (i.e.,
map of rank n − 1) constant along trajectories of an analytic vector field F ∈
D(Cn, 0). Construct explicitly the rectifying chart for F .

Exercise 1.3. Prove that the space M of functions satisfying the inequality (1.7),
is indeed complete.

Exercise 1.4. Two linear vector fields in Cn are holomorphically equivalent in
some domains containing the origin. Prove that these fields are linear equivalent,
i.e., that there exists a linear map H ∈ GL(n,C) conjugating them.

Exercise 1.5. Prove that if two germs of vector fields at a singular point are
analytically equivalent, then the eigenvalues of these fields at the singular point
coincide.

Exercise 1.6. Prove that the vector field F (z) = z2 ∂
∂z is holomorphic on the

Riemann sphere P1 = C ∪ {∞}. Compute the flow of this field.

Problem 1.7. Give a complete analytic classification of the holomorphic flows on
the Riemann sphere P1 (i.e., construct a list, finite or infinite, of flows such that
every holomorphic flow in analytically equivalent to one of the flows from the list,
while any two different flows in the list are not holomorphically equivalent.

Exercise 1.8. Prove that the constant holomorphic vector fields ∂
∂z on the two

tori T1 = C/(Z+ iZ) and T2 = C/(Z+ 2iZ), are not holomorphically equivalent.

2. Holomorphic foliations and their singularities

By the Existence/Uniqueness Theorem 1.1, any open connected domain U ⊆
Cn with a holomorphic vector field F defined on it, can be represented as
the disjoint union of connected phase curves passing through all points of
U . The Rectification Theorem 1.18 provides a local model for the geometric
object called foliated space of simply foliation. A systematic treatment of
foliations can be found, for instance, in [Tam92, CC03].
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14 I. Normal forms and desingularization

2A. Principal definitions. Speaking informally, a foliation is a partition
of the phase space into a continuum of connected sets called leaves, which
locally look as the family of parallel affine subspaces.

Definition 2.1. The standard holomorphic foliation of dimension n (re-
spectively, of codimension m) of a polydisk B = {(x, y) ∈ Cn × Cm : |x| <
1, |y| < 1} is the representation of B as the disjoint union of n-disks, called
(standard) plaques,

B =
⊔

|y|<1

Ly, Ly = {|x| < 1} × {y} ⊆ B. (2.1)

Definition 2.2. A holomorphic foliation F of a domain U ⊂ Cn+m (or,
more generally, a complex analytic manifold U of dimension n + m) is the
partition U =

⊔
α Lα of the latter into the disjoint union connected sub-

sets Lα, called leaves, which locally is biholomorphically equivalent to the
standard holomorphic foliation by plaques.

The latter phrase means that each point a ∈ U admits an open neigh-
borhood B′ 3 a and a biholomorphism H : B′ → B of B′ onto the standard
polydisk B, which sends the local leaves, the connected components of the
intersections Lα ∩B′, to the plaques of the standard foliation,

∀α ∃Y = Y (α) : H(Lα ∩B′) =
⊔

y∈Y (α)

Ly. (2.2)

Sometimes the local leaves will also be referred to as the plaques of the
foliation near a point a: the plaques constitute biholomorphic images of
n-disks, parameterized by a small m-disk. Note that different plaques may
belong to the same leaf of the global foliation.

Remark 2.3. The definition of foliation admits several flavors. In the weak-
est settings the standard foliations are families of parallel balls slicing the
real cylinder in Rn+m (the formulas remain the same as in (2.1)), while the
local equivalencies H are simply homeomorphisms or smooth maps of low or
high differentiability (up to C∞ or even real analytic). In particular, we will
call the topological foliation a partition of the space U into disjoint subsets
Lα which is locally homeomorphic to the standard foliation (in the sense
(2.2) with H being a homeomorphism).

Moreover, one can require different regularity of H along the leaves and
in the transversal direction. We will not deal with such exotic cases until
§28.

Remark 2.4 (important). The space of plaques of a foliation is naturally
parameterized by points of a polydisk. Yet the index set Y (α) in (2.2) can be
rather complicated (e.g., dense), since the global behavior of leaves outside
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2. Holomorphic foliations and their singularities 15

the ball B′ can be rather complicated. Yet in all of our applications all sets
Y (α) will be at most countable.

The global space of leaves may have a very complicated structure even
topologically (non-Hausdorff), therefore for indexing the leaves we use “ab-
stract” sets without any additional structure.

Definition 2.5. Two holomorphic foliations F and F′ defined on the re-
spective holomorphic manifolds U,U ′, are called holomorphically equivalent
or topologically equivalent, if there exists a biholomorphism H : U → U ′ (re-
spectively, a homeomorphism) which maps (necessarily biholomorphically
or homeomorphically, depending on the context) the leaves of F to those of
F′: H(Lα) = L′α′ for some indices α, α′.

Note that this definition is global.
Everywhere below U stands for a holomorphic manifold or an open do-

main in Cn. The following result is an obvious reformulation of the Rectifi-
cation theorem in the language of foliations.

Proposition 2.6. For any holomorphic vector field F ∈ D(U) without
singularities in U , the partition of U into maximal integral curves of F
forms a holomorphic foliation FF of (complex ) dimension 1 and codimen-
sion n− 1. ¤

We say that the foliation FF is generated by the vector field F . Speaking
about foliations rather than about vector fields means that the parametriza-
tion of solutions by the (complex) time is to be ignored.

Proposition 2.7. Two holomorphically equivalent vector fields F ∈ D(U)
and F ′ ∈ D(U ′) generate two holomorphically equivalent one-dimensional
foliations.

Conversely, if the foliations F, F′ generated by two nonsingular vector
fields, are holomorphically equivalent by a biholomorphism H : U → U ′, then
there exists a nonvanishing holomorphic function ρ ∈ O(U) such that

ρ(x) ·H∗(x) · F (x) = F ′(H(x)), ρ(x) 6= 0 in U ; (2.3)

cf. with (1.26) and Definition 1.15.

Proof. The first assertion is obvious immediately. To prove the second, it
is sufficient to show that two vector fields generating the same holomorphic
one-dimensional foliation, differ by a nonvanishing holomorphic scalar factor
ρ. This is obvious for the standard foliation: the first component must be
nonzero while all other components are identically zero. ¤
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16 I. Normal forms and desingularization

2B. Foliations and integrable distributions. For a given holomorphic
foliation F of dimension n and codimension m, the tangent spaces to leaves
at different points are n-dimensional complex spaces in an obvious sense
analytically depending on the point.

Such a geometric object is called distribution. To define formally sub-
spaces analytically depending on parameters, one can choose between the
language of holomorphic vector fields and that of holomorphic differential
forms.

Definition 2.8. A (holomorphic nonsingular) n-dimensional distribution in
a domain U ⊆ Cn+m is either

• a tuple of n holomorphic vector fields F1, . . . , Fn ∈ D(U), linearly
independent at every point of U , or

• tuple of m holomorphic 1-forms ω1, . . . , ωm ∈ Λ1(U), linearly in-
dependent at every point of U so that ω1 ∧ · · · ∧ ωm ∈ Λk(U) is
nonvanishing.

Two tuples of the same type {Fj} and F ′
j} (resp., {ωi} and {ω′i} define

the same distribution, if F ′
j =

∑
k cjk(x)Fk, resp., ω′i =

∑
k c′ik(x)ωk) for

some holomorphic functions cjk(x), c′ik(x). The forms and the fields defining
the same distribution must be dual to each other, ωi · Fj = 0 for all i, j.

A one-dimensional distribution is usually called a line field .
Clearly, any holomorphic foliation defines the corresponding tangent dis-

tribution of the same dimension. The converse in general is not true unless
n = 1.

A holomorphic n-dimensional distribution is called integrable in U , if it
is tangent to leaves of a nonsingular holomorphic foliation in U .

Theorem 2.9 (Frobenius integrability criteria). A distribution defined by a
tuple of holomorphic vector fields is integrable, if and only if the commutator
of any two vector fields belongs to the same distribution, i.e., if

[Fi, Fj ] =
n∑

k=1

cijk Fk, cijk ∈ O(U). (2.4)

A distribution defined by a tuple of holomorphic 1-forms is integrable, if
and only if the ideal spanned by these forms in the exterior algebra Λ•(U)
over O(U), is closed by the exterior derivative, i.e., if

dωi =
m∑

k=1

c′ik ωk ∧ ηk, ηk ∈ Λ1(U), cik ∈ O(U). (2.5)

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



2. Holomorphic foliations and their singularities 17

We will not prove this theorem. Its proof can be derived from the local
existence theorem for holomorphic vector fields in the same way as it is done,
mutatis mutandis, in the C∞-smooth case in [War83].

Remark 2.10. The Frobenius integrability condition trivially holds for n =
1. On the other hand, from the real point of view the holomorphic vector
field F corresponds to a 2-dimensional distribution generated by two vector
fields F1 = F and F2 = iF , i =

√−1, in R2n ∼= Cn. The Frobenius
integrability condition for this distribution reduces, as one can easily verify,
to the Cauchy–Riemann identities between the real and imaginary parts of
the components of the holomorphic vector field F .

Remark 2.11. In the (complex) 2-dimensional case where U ⊆ C2 that
will be our principal object of studies later, the only nontrivial possibility
is a one-dimensional distribution that is automatically integrable. It can
be defined either by one vector field F ∈ D(U) or by one Pfaffian form
ω ∈ Λ1(U). For many reasons the Pfaffian presentation is more convenient.

2C. Holonomy. The notion of holonomy intends to be a replacement of
the flow of the vector fields in the case where the natural parametrization
of the solutions is absent or ignored.

Definition 2.12. A (parameterized) cross-section to a leaf L of a foliation F

of codimension m on U at a point a ∈ U is a holomorphic map τ : (Cm, 0) →
(U, a) transversal to L. Very often we identify the cross-section with the
image of the map τ .

If F is a standard foliation and τ, τ ′ any two cross-sections (at different,
in general) points a, a′ of the leaf, say L0 = {y = 0}, then any other leaf Lα

sufficiently close to L0 intersects each cross-section exactly once. This defines
in a unique way the holomorphic correspondence map ∆τ,τ ′ : (τ, a) → (τ ′, a′):
points with the same y-components are mapped into each other. In the
charts on τ, τ ′ defined by the parameterizations, the correspondence map
becomes the germ of a holomorphic map from Diff(Cm, 0).

The correspondence maps obviously satisfy the identity

∆τ,τ ′′ = ∆τ ′,τ ′′ ◦∆τ,τ ′ (2.6)

for any three cross-sections τ, τ ′, τ ′′ to the same leaf of the standard foliation.
Taking a biholomorphic image of this construction, we arrive at the

following conclusion. For any two cross-sections τ, τ ′ to two sufficiently
close points on the same leaf, there exists a uniquely defined correspondence
map ∆τ,τ ′ between the cross-sections that satisfies the identity (2.6) for any
third cross-section which is also sufficiently close.
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τ j τ j+1

τ j+2

τ k

Cross sections

local leaves 
of F

Figure I.2. Construction of the holonomy map for a foliation over a
given path γ connecting two points on the leaf. The cross-sections τj

are chosen close enough

Globalization of this construction associates the correspondence map
not with just a pair of cross-sections to the same leaf, but rather with a
path connecting the base points of these cross-sections. Let L be a leaf of
a holomorphic foliation F, τ, τ ′ two cross-sections cutting L at the points
a, a′ ∈ L, and γ : [0, 1] → L an (oriented) path connecting a = γ(0) with
a′ = γ(1).

Since the segment [0, 1] and its image are compact, one can cover them
by finitely many open sets Uj in such a way that in each set the foliation is
locally trivial (biholomorphically equivalent to the standard foliation). One
can insert between the cross-sections τ, τ ′ sufficiently many intermediate
cross-sections τj , j = 1, . . . , k, τ0 = τ , τk = τ ′, at some intermediate points
of the curve γ such that every two consecutive cross-sections τj , τj+1 belong
to the same domain Uj (for this purpose one has to choose τj ⊂ Uj−1∩Uj . Let
∆τj ,τj+1 be the corresponding local correspondence maps as defined earlier.
The composition

∆γ = ∆τk−1,τk
◦ · · · ◦∆τ0,τ1 : (τ, a) → (τ ′, a′) (2.7)

is a holomorphic map (more precisely, a germ) from Diff(Cm, 0), also called
the correspondence map along the path γ.

The identity (2.6) means that the correspondence map ∆γ in fact does
not depend on the choice of the intermediate cross-sections τj . Moreover,
∆γ depends on the homotopy class of the path γ (with fixed endpoints)
rather than on the path itself. Indeed, for another sufficiently close path
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2. Holomorphic foliations and their singularities 19

γ′ connecting the same endpoints, we can choose cross-sections τ ′1, . . . , τ
′
k−1

sufficiently close to the respective cross-sections τj for all j = 1, . . . , k−1 (the
two extreme cross-sections coincide). Then one can use the identities (2.6)
to show that the composition ∆γ′ = ∆τ ′k−1,τ ′k

◦ · · · ◦∆′
τ ′0,τ1

: (τ, a) → (τ ′, a′)
coincides with ∆γ , since τ ′0 = τ0 and τ ′k = τk.

Remark 2.13. The construction of holonomy maps corresponds to what
in the classical parlance was called “continuation of solutions of differential
equations over a path”: a specific solution (corresponding to the leaf) was
explicitly or implicitly singled out together with a certain path on it, and all
nearby solutions were “continued over the path” on the selected solution.

Choosing another pair of cross-sections at the same endpoints (or an-
other parametrization of the same cross-sections) results in composition of
∆γ with two biholomorphisms from left and right, so using suitable charts,
one can always bring any particular correspondence map ∆γ to be the iden-
tity map. The situation changes completely if there is more than one homo-
topically distinct path connecting the same endpoints, or, what is the same,
when one considers closed paths.

Let a ∈ L be a point on the leaf L of a holomorphic foliation,
τ : (Cm, 0) → (U, a) a cross-section at a, and γ ∈ π1(L, a) a closed loop
considered modulo the homotopic equivalence.

Definition 2.14. The holonomy self-map ∆γ : (τ, a) → (τ, a) is the holo-
morphic holonomy correspondence map associated with a closed path γ ∈
π1(L, a).

The holonomy group of the foliation F along the leaf L ∈ F is the image
of the fundamental group π1(L, a) in the group of germs of holomorphic
self-maps Diff(τ, a).

The holonomy group is defined as a subgroup in Diff(Cm, 0) modulo a
simultaneous conjugacy of all holonomy maps, independently of the choice
of the cross-section τ or even the base point a ∈ L. It is an obvious invariant
of a foliation which carries almost all information on behavior of leaves of
the foliation, adjacent to L.

Proposition 2.15. Assume that two holomorphic foliations F, F′ are topo-
logically or holomorphically conjugate by a homeomorphism (resp., biholo-
morphism) H. If L ∈ L is a leaf mapped by H into a leaf L′ ∈ F′, then for
any choice of the points a ∈ L, a′ ∈ L′ and the corresponding cross-sections
τ, τ ′ the corresponding holonomy groups G ⊂ Diff(τ, a) and G′ ⊂ Diff(τ ′, a′)
are topologically (resp., holomorphically) conjugate: there exists the germ
of a map h : (τ, a) 7→ (τ ′, a′), holomorphic or continuous respectively, such
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that h conjugates each element of g with some element g′ ∈ G′ and respects
the group law.

Proof. Let τ be a cross-section to L at a and τ ′ = H(τ) (with the induced
chart), then the assertion is a tautology: the restriction h = H|τ realizes the
required conjugacy between G and G′. Any other choice of a′ and τ ′ results
in replacing G′ by a holomorphically conjugate group. ¤

However, the inverse statement is in general wrong (see Exercise 2.10).

Definition 2.16. Let F be a holomorphic foliation on a complex manifold
U , and B ⊆ U an arbitrary subset. The saturation of B by leaves of F is
the union of all leaves that intersect B:

Sat(B, F) =
⋃

L∈F, L∩B 6=∅
L.

In general, saturations of even simple sets can be rather complicated.
Yet some basic things can be guaranteed. The following can be considered
as a generalization of the theorem on continuous dependance of solutions of
differential equations on initial conditions.

Lemma 2.17. Saturation of an open set is open. In particular, saturation
of a neighborhood of any point on each leaf contains an open neighborhood
of the leaf. ¤

From this observation we can derive a corollary that will be used later.
Let G ⊂ Diff(τ, a) be a finitely generated subgroup. A germ of an analytic
function u ∈ O(τ, a) is called G-invariant, if u ◦ g = u for all germs of
self-maps g ∈ G.

Lemma 2.18. Any germ of a holomorphic function u ∈ O(τ, a) which is
invariant by the holonomy group G ⊆ Diff(τ, a), uniquely extends as a holo-
morphic function defined in some open neighborhood V of the leaf L and
constant along all leaves of the foliation F in V .

Proof. Let a′ ∈ L be any point on L, connected by a path γ : [0, 1] → L
with the base point a. The holonomy map ∆a,a′ allows us to translate
(analytically continue) the germ u, considered as a function from O(U, a)
constant along the local plaques of F, to the germ u′ ∈ O(U, a′), also constant
along the local plaques. This extension depends on the choice of the path
γ, yet for a different choice of this path γ′ the result will differ by the
continuation of the germ u ◦ g, where g is the holonomy map associated
with the loop γ′ ◦ γ−1 ∈ π1(L, a). Yet since u by assumption is G-invariant,
the result will be the same and thus correctly defined for an arbitrary point
a′ ∈ L. ¤
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2. Holomorphic foliations and their singularities 21

Remark 2.19. Most holonomy groups do not admit nonconstant invariant
functions. Exceptions correspond to integrable foliations; see §11.

2D. Singular foliations. The holonomy group may be nontrivial only for
a leaf of the foliation which has a nontrivial fundamental group. Such leaves,
in general difficult to find for arbitrary holomorphic foliations, can be easily
found for foliations with singularities, or singular foliations. Starting from
this moment, we consider only one-dimensional foliations unless explicitly
stated otherwise.

A holomorphic vector field F ∈ D(U) defines a nonsingular holomorphic
foliation on the complement to its singular locus Σ = ΣF = {x ∈ U : F (x) =
0} by Proposition 2.6. This singular locus can be an arbitrary analytic subset
of U . However, very often the foliation can be extended from U on a bigger
open subset eventually containing a part of Σ.

If U ⊂ U ′ are two domains and F′ a foliation on the larger domain,
then F′ can be restricted on U : by definition, this means the foliation whose
leaves are connected components of the intersections L′α ∩ U for all leaves
L′α ∈ F′.

Theorem 2.20. Let U be a connected open domain in Cn and 0 6≡ F ∈
D(U) a holomorphic vector field with the singular locus Σ ⊂ U .

Then there exists an analytic subset Σ′ ⊆ Σ of complex codimension > 2
in U and the foliation F′ of U r Σ′ whose restriction on U r Σ coincides
with the foliation generated by the initial vector field F .

Proof. The assertion needs the proof only when Σ is an analytic hypersur-
face (a complex analytic set of codimension 1).

Consider an arbitrary smooth point a ∈ Σ of the singular locus Σ:
nonsmooth points already form an analytic subset Σ1 ⊂ Σ of codimension
> 2 in U . Locally near this point Σ can be described by one equation
{f = 0} with f holomorphic and df(a) 6= 0. Let ν > 1 be the maximal
power such that all components F1, . . . , Fn of the vector field F are divisible
by fν . By construction, the vector field f−ν F extends analytically on Σ
near a and its singular locus is a proper analytic subset Σ2 ⊂ Σ (locally
near a). Since the germ of Σ at a is smooth hence irreducible, such a subset
necessarily has codimension > 2 respective to the ambient space.

The union Σ′ = Σ1 ∪ Σ2 has codimension > 2 and in U r Σ′ the field
locally represented as f−ν F is nonsingular and thus defines a holomorphic
foliation F′ extending F on the neighborhood of all points of Σ. ¤

Remark 2.21. If U is two-dimensional, the holomorphic vector field F can
be replaced by the distribution defined by an appropriate holomorphic 1-
form ω ∈ Λ1(U) with the singular locus Σ which consists of isolated points
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22 I. Normal forms and desingularization

only (the singular locus of a holomorphic 1-form is the common zero of its
coefficients).

Theorem 2.20 means that when speaking about holomorphic foliations
with singularities, generated by holomorphic vector fields, one can always as-
sume that the singular locus has codimension > 2; in particular, singularities
of holomorphic foliations on the plane (and more generally, on holomorphic
surfaces) are isolated points. The inverse statement is also true, as was
observed in [Ily72b].

Theorem 2.22 ([Ily72b]). Assume that Σ ⊂ U ⊆ Cn is an analytic subset
of codimension > 2 and F a holomorphic nonsingular 1-dimensional foliation
of U rΣ which does not extend on any part of Σ.

Then near each point a ∈ Σ the foliation F is generated by a holomorphic
vector field F with the singular locus Σ.

Proof. One can always assume that the local coordinates near a are chosen
so that the line field tangent to leaves of F, is not everywhere parallel to
the coordinate x1-plane. Then this line field is spanned by the meromorphic
vector field G = (1, G2, . . . , Gn), where Gj ∈ M(U r Σ) are meromorphic
functions in U r Σ. By E. Levi’s theorem, any meromorphic function can
be meromorphically extended on analytic subsets of codimension 1 [GH78,
Chapter III, §2]. Therefore we may assume that Gj are in fact meromorphic
in U . Decreasing if necessary the size of U , each Gj can be represented as
the ratio Gj = Pj/Qj , where Pj , Qj ∈ O(U) are holomorphic in U and the
representation is irreducible.

Let Σj = {Pj = Qj = 0}, j = 2, . . . , n: by irreducibility, Σj is of
codimension > 2, so

⋃
j>2 Σj is also of codimension > 2. Multiplying the

field G by the product of denominators Q2 · · ·Qn, we obtain a holomorphic
vector field tangent to the same foliation; cancelling a nontrivial common
factor for the components of this field as in Theorem 2.20, we arrive at yet
another holomorphic field F , also tangent to F, such that the singular locus
Σ′ = Sing(F ) of this field has codimension > 2.

It remains to show that the singular locus Σ′ coincides with Σ locally in
U . In one direction it is obvious: if Σ′ is smaller than Σ, this means that F is
analytically extended as a nonsingular holomorphic foliation to some parts of
Σ, contrary to the assumption that Σ is the minimal singular locus. Assume
that Σ′ is larger than Σ, i.e., there exists a nonsingular point b ∈ U rΣ of
F, at which F vanishes. Since the foliation F is biholomorphically equivalent
to the standard foliation near b, in the suitable chart F is parallel to the first
coordinate axis, so that singular points of F are zeros of its first component.
On the other hand, by construction Σ′ is of codimension > 2 and hence
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2. Holomorphic foliations and their singularities 23

cannot be the zero locus of any holomorphic function. The contradiction
proves that Σ′ ∩ U cannot be larger than Σ ∩ U . ¤
Example 2.23. The vector field ∂

∂x +e1/x ∂
∂y is analytic outside the line Σ =

{x = 0} of codimension 1 on the plane and defines a holomorphic foliation in
C2 r Σ. This foliation cannot be defined by a vector field holomorphically
extendable on Σ, which shows that the condition on the codimension in
Theorem 2.22 cannot be relaxed.

Together Theorems 2.20 and 2.22 motivate the following concise defin-
ition. Since we will never consider in this book holomorphic foliations of
dimension other than 1, this is explicitly included in the definition.

Definition 2.24. A singular holomorphic foliation in a domain U (or a
complex analytic manifold) is a holomorphic foliation F with complex one-
dimensional leaves in the complement U r Σ to an analytic subset Σ of
codimension > 2, called the singular locus of F.

Usually we will assume that the singular locus Σ is maximal, i.e., the
foliation cannot be analytically extended on any set larger than U rΣ.

The second part of Proposition 2.7 motivates the following important
definition.

Definition 2.25. Two holomorphic vector fields F ∈ D(U), F ′ ∈ D(U ′)
with singular loci Σ, Σ′ of codimension > 2 are holomorphically orbitally
equivalent if the singular foliations F, F′ they generate, are holomorphically
equivalent, i.e., there exists a biholomorphism H : U → U ′ which maps Σ
into Σ′ and is a biholomorphism of foliations outside these loci.

Proposition 2.7 remains valid also for singular holomorphic foliations: if
two such foliations are holomorphically equivalent, then the corresponding
vector fields are orbitally equivalent, i.e., related by the identity (2.3) with
the holomorphic function ρ nonvanishing in U .

Indeed, from Proposition 2.7 it follows that for the holomorphically or-
bitally equivalent fields there exists a holomorphic function ρ satisfying (2.3)
and nonvanishing outside Σ = Sing(F ). Since Σ has codimension > 2, ρ
must be nonvanishing everywhere on U .

Changing only one adjective in Definition 2.25 (requiring that H be
merely a homeomorphism), we obtain the definition of topologically orbitally
equivalent vector fields. This weaker equivalence cannot be translated into
a formula similar to (2.3), since homeomorphisms in general do not act on
the vector fields.

2E. Complex separatrices. Foliations with isolated singularities may
have multiply-connected leaves, i.e., leaves with a nontrivial holonomy group.
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Recall that a (singular) analytic curve S ⊂ U is a complex analytic set of
complex dimension 1 at its smooth points. Intrinsic structure of irreducible
components of analytic curves is relatively easy. This result can be found,
e.g., in [Chi89, §6].

Theorem 2.26. The germ of an irreducible analytic curve S ⊂ (Cn, 0)
admits a holomorphic injective map

γ : (C1, 0) → (Cn, 0), t 7→ γ(t) ∈ S. (2.8)

The map γ is called local uniformization, or local parametrization of ana-
lytic curves. It is obviously nonconstant, and without loss of generality one
may assume that the derivative d

dtγ(t) is nonvanishing outside the origin
t = 0. The local parametrization is defined uniquely modulo a biholomor-
phism: for any other injective parametrization γ′ there exists h ∈ Diff(C1, 0)
such that γ′ = γ ◦ h (cf. with Exercise 2.1).

Let F be a singular holomorphic foliation on an open domain U with
the singular locus Σ.

Definition 2.27. A complex separatrix of a singular holomorphic foliation
F at a singular point a ∈ Sing(F) is a local leaf L ⊂ (U, a)rΣ whose closure
L ∪ {a} is the germ of an analytic curve.

Since the leaves are by definition connected, the closure is irreducible (as
a germ) at any it’s point, hence (by the above uniformization arguments)
the complex separatrix is topologically a punctured disk near the singularity.
The fundamental group of the separatrix is nontrivial (infinite cyclic), thus
the holomorphic map generating the local holonomy group is an invariant of
the singular foliation. Note that the leaves are naturally oriented by their
complex structure, so the loop generating the local fundamental group is
uniquely defined modulo free homotopy.

In other words, every singular point that admits a complex separatrix,
produces at least one holomorphic germ of a self-map that is an analytic
invariant of the foliation. Later, in §14 we will show that every planar
foliation (on a complex 2-dimensional manifold) has at least one separa-
trix through each singularity. Besides, by blow-up (desingularization) and
Poincaré compactification, two related operations discussed in detail in §8
and §25A respectively, one can often create multiply-connected leaves of
singularities extending a given singular foliation.

The rest of this section consists of a few examples important for future
applications.

Example 2.28. Consider first the singular foliation spanned by a diagonal
linear system

ẋ = Ax, A = diag{λ1, . . . , λn}, λj 6= 0. (2.9)
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2. Holomorphic foliations and their singularities 25

This foliation has an isolated singularity (of codimension n) at the origin,
and all coordinate axes are complex separatrices.

Consider the first coordinate axis S1 = {x2 = · · · = xn = 0} and the
separatrix L1 = S1 r {0}. The loop γ = {|x1| = 1} parameterized coun-
terclockwise is the canonical generator of L1. Choose the affine hyperplane
τ = {x1 = 1} ⊂ Cn as the cross-section to S1 at the point (1, 0, . . . , 0) ∈ S1.
A solution of the system (the parameterized leaf of the foliation) passing
through the point (1, b2, . . . , bn) ∈ τ is as follows:

C1 3 t 7→ x(t) = (expλ1t, b2 expλ2t, . . . , bn expλnt) ∈ Cn.

The image of the straight line segment [0, 2πi/λ1] ⊂ C on the t-plane coin-
cides with the loop γ when b = 0 (i.e., on the separatrix S1) and is uniformly
close to this loop on all leaves near S1. The endpoints x(2πi/λ1) all belong
to τ and hence the holonomy map M1 : Cn−1 → Cn−1 is linear diagonal,

b 7→ M1b, M1 = diag{2πiλj/λ1}n
j=2. (2.10)

The other holonomy maps Mk for the canonical loops on the separatrices Sk

parallel to the kth axis, are obtained by obvious relabelling of the indices.

Particular cases of this result are of special importance.

Example 2.29. Consider an integrable planar foliation given by the Pfaffian
equation ω = 0 with an exact form ω = du, u ∈ O(C2, 0). If u has a
Morse critical point, then in suitable analytic coordinates (x, y) the germ
u takes the form u = xy, hence the foliation is given by the linear form
x dy + y dx = 0 corresponding to the vector field ẏ = y, ẋ = −x. The
holonomy operators corresponding to the two coordinate axes, are both
identical.

Integrable foliations with more degenerate singularities will be treated
in detail in §11.

Example 2.30. Let n = 2. Consider the vector field F = (x + y) ∂
∂x +

y ∂
∂y corresponding to a linear vector field with a nontrivial Jordan matrix.

The corresponding singular foliation has only one complex separatrix, the
punctured axis S = {y = 0}.

Consider the standard cross-section τ = {x = 1}. Solutions of the differ-
ential equation with the initial condition (x0, y0) can be written explicitly,

x(t) = (x0 + ty0) exp t, y = y0 exp t.

Let t(y0) be another moment of complex time when the solution close to
the separatrix again crosses τ after continuing along a path close to the
standard loop on the separatrix; by definition, this means that we consider
the initial point with x0 = 1 and x(t(y0)) ≡ 1, i.e., 1+t(y0)y0 = 1/ exp t(y0).
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If the holonomy map is linear, then y(t(y0)) = λy0 identically in y0, i.e.,
exp t(y0) = λ is a constant. Substituting this into the previous identity, we
obtain 1 + t(y0)y0 = 1/λ. This is impossible in the limit y0 → 0 unless
λ = 1. On the other hand, λ = 1 is also impossible since t(y0) 6≡ 0.

Thus the holonomy map cannot be linear. The principal term of this
map in a more general setting is computed in Proposition 27.14.

This example shows that a linear foliation may have nonlinear (and even
nonlinearizable) holonomy.

2F. Suspension of a self-map. The construction of holonomy associates
with any loop γ on a leaf L ∈ F of a holomorphic foliation F the holomorphic
self-map ∆γ . Very often the inverse problem appears: given an invertible
holomorphic self-map f , construct a foliation for which this self-map would
be the holonomy, associated with a loop on a leaf.

We will show that in absence of additional constraints on the phase space
M and the leaf L, this problem is always trivially solvable. The construction
is well known in the real analysis as suspension of a map to a flow.

Theorem 2.31. Any biholomorphic germ f ∈ Diff(Cn, 0) can be realized as
the holonomy map along a loop on the leaf of a holomorphic foliation on an
(n + 1)-dimensional holomorphic manifold Mn+1.

Construction of the foliation. For simplicity we discuss only the case
n = 1: the general case requires only minimal modifications.

Consider the segment [0, 1] ⊂ C and let U be its ε-neighborhood, ε < 1
2 .

In the Cartesian product M̃ = U×(C, 0) with the coordinates (z, w) consider
the trivial foliation F0 by “horizontal lines” {w = const}.

Any self-map from f ∈ Diff(C1, 0) can be considered as a map
f : (τ0, 0) → (τ1, 0), w 7→ f(w), between the cross-sections τ0 = {z = 0} and
τ1 = {z = 1}. The latter can be extended as a holomorphic invertible map
f : (z, w) 7→ (z+1, f(w)) between the open sets M0 = {|z| < ε}×(C, 0) ⊂ M̃

and M1 = {|z − 1| < ε} × (C, 0) ⊂ M̃ . By construction, this map preserves
the restriction of the foliation F0 on the open sets Mi.

The quotient space M = M̃/f is defined as the topological space ob-
tained from M̃ by identification of all points a and f(a). This space inherits
the structure of an (abstract) holomorphic manifold (the charts are inherited
from those on M). Moreover, since f preserves the foliation, the quotient
manifold M carries a well defined foliation F. Two different cross-sections
τ0, τ1 ⊂ M̃ after identification become a single cross-section τ to the leaf L
of the foliation F obtained from the zero leaf {w = 0} ∈ F0, and the segment
[0, 1] on this leaf becomes a closed loop on L. The holonomy of the foliation
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2. Holomorphic foliations and their singularities 27

F, associated with the loop γ ⊂ L, by construction coincides with the map
f which is transformed into the self-map. ¤

The construction can be modified by a number of ways, while keeping
the principal idea the same. If M̃ is a manifold with a foliation F0 on it,
and f : M0 → M1 is a biholomorphic map between open subsets of M̃ , which
is an automorphism of the foliation F0, then the quotient space M = M̃/f
is a new manifold with a different topology, which carries a holomorphic
foliation on it.

Exercises and Problems for §2.

Exercise 2.1. Let S ⊂ (Cn, 0) be the germ of an irreducible analytic curve and
γ an injective analytic parametrization. Prove that any other holomorphic map
γ′ : (C1, 0) → (Cn, 0) with the range in S differs from γ by a holomorphic map
h : (C1, 0) → (C1, 0) so that γ′ = γ ◦ h.

Problems 2.2–2.7 together constitute a proof of the Frobenius Theorem 2.9.

Problem 2.2. Prove that vector fields generating an integrable distribution, are
in involution, i.e., always satisfying condition (2.4).

Prove that Pfaffian forms generating an integrable distribution, are in involu-
tion, i.e., satisfy the conditions (2.5).

Problem 2.3. Prove that two holomorphic vector fields F, F ′ ∈ D(M) on a holo-
morphic manifold M , have identically zero commutator, [F, F ′] ≡ 0, if and only if
their flows exp(tF ), exp(t′F ′) ∈ Diff(M) commute for all complex values of t, t′ ∈ C.

Formulate and prove an analog of this result for incomplete vector fields (i.e.,
when the flows are not globally defined for all values of t, t′, as in the case where
U ⊆ C2 is a noninvariant planar domain).

Problem 2.4. Prove that any tuple of everywhere linearly independent commuting
vector fields generates an integrable distribution tangent to leaves of a holomorphic
foliation.

Problem 2.5. Let F1, . . . , Fk be holomorphic everywhere linearly independent
vector fields in involution (i.e., satisfying condition (2.4)).

Construct another tuple of holomorphic vector fields F ′1, . . . , F
′
k spanning the

same distribution, such that the fields [F ′i , F
′
j ] ≡ 0 for all 1 6 i, j 6 k.

Prove that vector fields in involution generate an integrable distribution.

Problem 2.6. Prove that for any differential 1-form ω and two vector fields F,G
on a manifold M ,

dω(F,G) = F ω(G)−Gω(F )− ω([F,G]) (2.11)

(the right hand side contains the evaluation of ω on the fields F, G and [F,G] and
their derivatives along G and F ).

Problem 2.7. Prove that a tuple of everywhere linearly independent 1-forms sat-
isfying (2.5), defines an integrable distribution.
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28 I. Normal forms and desingularization

Exercise 2.8. Prove that a nonvanishing Pfaffian form ω in C3 defines an integrable
distribution, if and only if ω ∧ dω = 0.

Problem 2.9. Prove that each holonomy operator g corresponding to any sepa-
ratrix of an integrable foliation du = 0 with an analytic potential u ∈ O(x, y), is
periodic: some iterated power of g is identity.

Exercise 2.10. Construct two foliations having leaves with holomorphically con-
jugated holonomy groups, which are themselves not holomorphically conjugate in
neighborhoods of the leaves.

Exercise 2.11. Is it always possible to rectify simultaneously two nonsingular
vector fields? Two commuting nonsingular vector fields? Give a simple sufficient
condition guaranteeing such simultaneous rectification.

Exercise 2.12. Consider the foliation {ω = 0} on C2 = {(z, t)} defined by a
meromorphic Pfaffian 1-form

ω =
dz

z
−

n∑

j=0

λj dt

t− aj
, λj ∈ C,

n∑
0

λj = 0,

and its extension on C× P1.
Prove that the projective line L = {0} × P1 is a separatrix of this foliation

carrying singular points (0, aj), j = 0, . . . , n. Compute the holonomy group of the
leaf Lr (singular points).

Exercise 2.13. The same question about the foliation on Cm × P1 defined by the
vector Pfaffian form

dz − Ωz = 0, Ω =
n∑
0

Aj dt

t− aj
,

where Aj ∈ Mat(m,C) are commuting matrix residues of the meromorphic matrix
1-form Ω.

Problem 2.14. Consider the Riccati equation

dz

dt
= a(t) z2 + b(t) z + c(t), a, b, c ∈ M(P) ∼= C(t), (2.12)

with meromorphic coefficients a, b, c having poles only on the finite point set Σ ⊆ P.
Is it true that solutions of this equation can be continued along any path on the
t-plane, avoiding the singular locus Σ?

Prove that equation (2.12) defines a singular holomorphic foliation F on the
compactified phase space P1 × P1, which is transversal to any “vertical” projective
line {t = a}, a /∈ Σ. Show that each leaf of F can be continued over any path in
the t-sphere, avoiding the singular locus. Prove that the induced transformation
between any two cross-sections {t = a} × P1 and {t = b} × P1, a, b /∈ U , is a well-
defined Möbius transformation (fractional linear map z 7→ αz+β

γz+δ with αδ−βγ 6= 0).
Does F always possess a separatrix?

Exercise 2.15. How many separatrices a homogeneous vector field of degree r on
C2 may have? How many separatrices a generic homogeneous vector field has?
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3. Formal flows and embedding 29

3. Formal flows and embedding theorem

The assumption on convergence of Taylor series for the right hand sides of
differential equations and their respective solutions is a very serious restric-
tion: if it holds, then one can use various geometric tools as described in
§2. However, considerable information can be gained without the conver-
gence assumption, on the level of formal power (Taylor) series. For natural
reasons, the corresponding results have more algebraic flavor.

In this section we introduce the class of formal vector fields and formal
morphisms (self-maps), and prove that the flow of any such formal field
can be correctly defined as a formal automorphism. The correspondence
“field 7→ flow” can be inverted for maps with unipotent linearization: as
was shown by F. Takens in 1974, any such formal map can be embedded
in a unique formal flow [Tak01]. In §4 we establish classification of formal
vector fields by the natural action of formal changes of variables.

3A. Formal vector fields and formal self-maps. For convenience, we
will always assume that all Taylor series are centered at the origin, and use
the standard multi-index notation: for α = (α1, . . . , αn) ∈ Zn

+ we denote
|α| = α1 + · · ·+ αn and α! = α1! · · ·αn!.

Definition 3.1. A formal (Taylor) series at the origin in Cn is the expression

f =
∑
α

cαxα, α ∈ Zn
+, cα ∈ C. (3.1)

The minimal degree |α| corresponding to a nonzero coefficient cα, is called
the order of f .

The set of all formal series is denoted by C[[x]] = C[[x1, . . . , xn]]. It
is a commutative infinite-dimensional algebra over C which contains as a
proper subset the algebra of germs of holomorphic functions, isomorphic to
the algebra C{x1, . . . , xn} of converging series.

Definition 3.2. The canonical basis of C[[x]] is the collection of all mono-
mials xα, α ∈ Zn

+, ordered in the following way: (i) all monomials of lower
degree |α| precede all monomials of higher degree, and (ii) all monomials of
the same degree are ordered lexicographically. This order will be denoted
deglex-order.

Since the series may diverge, evaluation of f(x0) at any point x0 ∈ Cn

other than x0 = 0, makes no sense. However, without risk of confusion we
will denote the free term of a series f ∈ C[[x]] by f(0) and the coefficient
cα by 1

α!
∂αf
∂xα (0). Under these agreements the Taylor formula becomes a

definition of the Taylor series f =
∑

α>0
1
α!

∂αf
∂xα (0) xα. Sometimes we write
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30 I. Normal forms and desingularization

f(x) as an indication of the formal variables x = (x1, . . . , xn) in which the
series f depends.

All formal partial derivatives ∂αf/∂xα of a formal series f are well de-
fined in the class C[[x]] as termwise derivatives.

The subset of C[[x]] which consists of formal series without the free term,
is (as one can easily verify) a maximal ideal of the commutative ring C[[x]];
it will be denoted by

m = {f ∈ C[[x]] : f(0) = 0} =
{ ∑

|α|>1

cαxα

}
.

The maximal ideal is unique (again a simple exercise). In other words, the
ring C[[x]] is a local ring .

For any finite k ∈ N the space of kth order jets can be described as the
quotient

Jk(Cn, 0) = C[[x1, . . . , xn]]/mk+1.

As a quotient ring, the affine finite-dimensional C-space Jk(Cn, 0) inherits
the structure of a commutative C-algebra.

Definition 3.3. The truncation of formal series to a finite order k is the
canonical projection map jk : C[[x]] → Jk(Cn, 0), f 7→ f mod mk+1.

The name comes from the natural identification of Jk(Cn, 0) with poly-
nomials of degree 6 k in the variables x1, . . . , xn. If l > k is a higher order,
then ml+1 ⊂ mk+1 so that the truncation operator jk naturally “descends”
as the projection J l(Cn, 0) → Jk(Cn, 0) which will also be denoted by jk.

In other words, a formal Taylor series f ∈ C[[x]] uniquely defines the
k-jet jkf of any finite order k so that C[[x1, . . . , xn]] is in a sense the limit
of the jet spaces Jk(Cn, 0) as k → ∞. We will sometimes refer to formal
series as infinite jets and write C[[x1, . . . , xn]] = J∞(Cn, 0).

The canonical monomial basis in C[[x]] projects into canonically deglex-
ordered monomial bases in all jet spaces Jk(Cn, 0). Convergence in C[[x]] is
defined via finite truncations.

Definition 3.4. A sequence {fj}∞j=1 ⊂ C[[x]] is said to be convergent, if and
only if all its truncations jkfj converge in the respective finite-dimensional
k-jet space Jk(Cn, 0) for any finite k > 0.

Remark 3.5 (important). All formal algebraic constructions described
above can be implemented over the field R rather than C as the ground
field. Moreover, for future purposes we will need the algebra A[[x]] of for-
mal power series in the indeterminates x = (x1, . . . , xn) with the coefficients
belonging to more general C- or R-algebras A. The principal examples are
the algebras A = C[λ1, . . . , λm] of polynomials in auxiliary indeterminates
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3. Formal flows and embedding 31

or the algebra A = O(U) of holomorphic functions of additional variables
λ1, . . . , λm.

After introducing the algebra of “formal functions” we can define formal
vector fields and formal maps via their algebraic (functorial) properties as
in §1G.

With any vector formal series F = (F1, . . . , Fn) (n-tuple of elements
from C[[x]]) one can associate a derivation F =

∑n
1 Fj∂/∂xj ∈ DerC[[x]] of

the algebra C[[x]], a C-linear application satisfying the Leibnitz rule (cf. with
(1.27)),

F : C[[x]] → C[[x]], F(gh) = g (Fh) + h (Fg).
Conversely, any derivation F ∈ DerC[[x]] is of the form F =

∑n
1 Fj∂/∂xj

with the components Fj = Fxj . By formal vector fields, we mean both
realizations, F ∈ C[[x]]n or F ∈ DerC[[x]]. The field F is said to have
singularity (at the origin), if all these series are without free terms, Fj(0) =
0, j = 1, . . . , n.

The collection of formal vector fields will be denoted D[[Cn, 0]]. It is
a C-linear (infinite dimensional) space which possesses additional algebraic
structures of the module over the ring C[[x]]. The commutator (Lie bracket)
of formal fields is defined in the usual way as [F,G] = FG−GF.

In a parallel way, a vector formal series H = (h1, . . . , hn) ∈ C[[x]]n can
be identified with an automorphism H ∈ AutC[[x]] of the algebra C[[x]]
if H(0) = 0, i.e., hj ∈ m. Under this assumption, for any formal series
f =

∑
α cαxα ∈ C[[x]] one can correctly define the substitution

Hf(x) = f(H(x)) =
∑

α>0

cαhα =
∑

α>0

cαhα1
1 (x) · · ·hαn

n (x). (3.2)

Indeed, any k-truncation of f(H(x)) is completely determined by the k-
truncations of f and H. We will say that H is tangent to identity, if j1H =
id.

The operator H defined by (3.2), is an automorphism of the algebra
C[[x]], a C-linear map respecting the multiplication,

H : C[[x]] → C[[x]], H(fg) = Hf ·Hf.

Conversely, any homomorphism preserving convergence in C[[x]] is of the
form f 7→ f ◦ H for an appropriate vector series H ∈ C[[x]]n with the
components hj = Hxj ∈ C[[x]]. By a formal map we mean either H or H,
depending on the context. If H is an homomorphism, then it must map
the maximal ideal m ⊂ C[[x]] into itself and hence hj(0) = 0, j = 1, . . . , n,
which can be abbreviated to H(0) = 0.

If H is invertible (an isomorphism of the algebra C[[x]]), we say it is a
formal isomorphism of Cn at the origin. The collection of such isomorphisms
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32 I. Normal forms and desingularization

forms a group denoted by Diff[[Cn, 0]] with the operation of composition.
The latter can be defined either via substitution of the series, or as the
composition of the operators acting on C[[x]].

Since the maximal ideal m is preserved by any formal map H ∈
Diff[[Cn, 0]] and any singular formal vector field F ∈ D[[Cn, 0]], F (0) = 0,

H(m) = m, F(m) ⊆ m,

truncation of the series at the level of k-jets commutes with the action of
H and F, therefore defining correctly the isomorphism jkH : Jk(Cn, 0) →
Jk(Cn, 0) and derivation jkF : Jk(Cn, 0) → Jk(Cn, 0) respectively, which
can be identified with the k-jets of the formal map H and the formal vector
field F . We wish to stress that jkF is defined as an automorphism of the
finite-dimensional jet space only if F (0) = 0.

3B. Inverse function theorem. For future purposes we will need the
formal inverse function theorem.

Theorem 3.6. Let H be a formal map with the linearization matrix A =(
∂H
∂x

)
(0) which is nondegenerate. Then H is invertible in Diff[[Cn, 0]].

If A = E is the identity matrix and H = (h1, . . . , hn), hi(x) = xi +
vi(x) mod mk+1, where vi are homogeneous polynomials of degree k > 2,
then the formal inverse map H−1 = (h′1, . . . , h

′
n) has the components h′i(x) =

xi − vi(x) mod mk+1.

Clearly, the first assertion of the theorem follows from the second asser-
tion applied to the formal map A−1H.

Recall that a finite-dimensional linear operator A : Cn → Cn is unipo-
tent , if A− E is nilpotent, (A−E)n = 0.

Lemma 3.7. If H ∈ Diff[[Cn, 0]] is a formal map with the identical lin-
earization matrix (∂H

∂x ), then its truncation jkH considered as an automor-
phism of the finite-dimensional jet algebras Jk(Cn, 0), is a unipotent map
for any finite order k.

Proof. For any monomial xα from the canonical basis, Hxα = xα+(higher
order terms)= xα+(linear combination of monomials of higher deglex-
order). ¤

Proof of Theorem 3.6. Consider the homomorphism H ∈ AutC[[x]] and
denote N = H − E the formal “finite difference” operator (E = id denotes
the identical operator), Nf = f ◦H − f (in the sense of the substitution of
formal series). By Lemma 3.7, all finite truncations jkN are nilpotent.

Define the operator H−1 as the series

H−1 = E−N + N2 −N3 ± · · · . (3.3)
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3. Formal flows and embedding 33

This series converges (in fact, stabilizes) after truncation to any finite order
because of the above nilpotency, hence by definition converges to an oper-
ator on C[[x]] satisfying the identities H ◦H−1 = H−1 ◦H = E. It is an
homomorphism of algebra(s), since for any a, b ∈ C[[x]] and their images
a′ = Ha, b′ = Hb which also can be chosen arbitrarily, we have H(ab) = a′b′

and therefore

H−1(a′b′) = H−1H(ab) = ab = (H−1a′)(H−1b′).

Direct computation of the components of the inverse map yields

h′i = H−1xi = xi −Nxi + · · · = xi − (hi(x)− xi) + · · · = xi − vi(x) + · · ·
as asserted by the theorem. ¤

The above formal construction is the algebraization of the recursive com-
putation of the Taylor coefficients of the formal inverse map H−1(x). Note
that stabilization of truncations of the series (3.3) means that computation
of the terms of any finite degree k of the components h′i of the inverse map
is achieved in a finite (depending on k) number of steps.

3C. Integration and formal flow of formal vector fields. Consider
an (autonomous) formal ordinary differential equation

ẋ = F (x), F = (F1, . . . , Fn) ∈ D[[Cn, 0]] ∼= C[[x]]n (3.4)

with a formal right hand side part F . Since evaluation of a formal series at
any point other than the origin makes no sense, the “standard” definition of
solutions can at best be applied to constructing a solution with the initial
condition x(0) = 0. Yet in the most interesting case where F (0) = 0, this
solution is trivial, x(t) ≡ 0.

The alternative, suggested by Remark 1.20, is to define a one-parametric
subgroup of formal self-maps {Ht : t ∈ C} ⊂ Diff[[Cn, 0]] satisfying the con-
dition

Ht ◦Hs = Ht+s ∀t, s ∈ C, H0 = E. (3.5)
Together with the group {Ht} of self-maps we always consider the corre-
sponding one-parameter group of automorphisms {Ht} ⊂ AutC[[x]].

This subgroup is said to be holomorphic, if all finite truncations jkHt

depend holomorphically on t. For a holomorphic subgroup the derivative

F =
dHt

dt

∣∣∣∣
t=0

= lim
t→0

t−1(Ht −E) : C[[x]] → C[[x]] (3.6)
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is a formal vector field,

F(fg) =
d

dt

∣∣∣∣
t=0

Ht(fg) =
d

dt

∣∣∣∣
t=0

[
(Htf)(Htg)

]

=
[

d

dt

∣∣∣∣
t=0

(Htf)
]
(H0g) + (H0f)

[
d

dt

∣∣∣∣
t=0

(Htg)
]

= g Ff + f Fg.

Definition 3.8. A holomorphic one-parametric subgroup of formal self-
maps {Ht} ⊆ Diff[[Cn, 0]] is a formal flow of the formal vector field F
corresponding to the derivation F ∈ DerC[[x]], if the corresponding group
of automorphisms {Ht} satisfies the identity

F =
dHt

dt

∣∣∣∣
t=0

∈ DerC[[x]]. (3.7)

The formal field F is called the generator of the subgroup {Ht}.
The above observation means that any analytic one-parametric subgroup

of formal maps is always a formal flow of some formal field F (3.7). The
following theorem is a formal analog of Proposition 1.19 showing that, con-
versely, any formal vector field F generates an holomorphic one-parametric
subgroup of formal self-maps {Ht} ⊂ Diff[[C, 0]].

Denote by Fm the iterated composition F ◦ · · · ◦ F : C[[x]] → C[[x]] (m
times) and consider the exponential series

Ht = exp tF = E + tF +
t2

2!
F2 + · · ·+ tm

m!
Fm + · · · . (3.8)

Theorem 3.9. Any singular formal vector field F admits a formal flow
{Ht}. This flow is defined by the series (3.8) which converges for all values
of t ∈ C and depends analytically on t.

Proof. We have to show that this series converges and its sum is an iso-
morphism of the algebra C[[x]] for any t ∈ C. Then the identity (3.7) will
follow automatically by the termwise differentiation of the series (3.8).

Convergence of the series (3.8) can be seen from the following argument.
Let k be any finite order. Truncating the series (3.8), i.e., substituting
jkF instead of F, we obtain a matrix formal power series. This series is
always convergent: for an arbitrary choice of the norm | · | on the finite-
dimensional space Jk(Cn, 0) the norm of the operator jkF is finite, |jkF| =
r < +∞, and hence the series (3.8) is majorized by the convergent scalar
series 1 + |t|r + |t|2r2/2! + · · · = exp |t|r < +∞ for any finite t ∈ C; cf. with
Definition 1.7. Denote its sum by exp jkF : Jk(Cn, 0) → Jk(Cn, 0).

Truncations exp jkF for different orders k agree in common terms: if
l > k, then jk(exp t jlF) = exp t jkF. This allows us to define the sum
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3. Formal flows and embedding 35

of the series exp tF as a linear operator Ht : C[[x]] → C[[x]] via its finite
truncations of all orders.

The group property Ht+s = Ht ◦Hs equivalent to the group property
(3.5), follows from the formal identity exp(t+s) = exp t · exp s, since tF and
sF obviously commute. It remains to show that Ht is an algebra homomor-
phism, i.e., Ht(fg) = Htf Htg for any two series f, g ∈ C[[x]].

By the iterated Leibnitz rule, for any f, g ∈ C[[x]],

Fk(fg) =
∑

p+q=k

(p+q)!
p!q! Fpf · Fqg.

Substituting this identity into the exponential series, we have

Ht(fg) =
∑

k

tk

k! F
k(fg) =

∑

k

∑

p+q=k

tp+q

p!q! Fpf · Fqg

=
(∑

p

tp

p! F
pf

) · (
∑

q

tq

q! F
qg

)
= Htf ·Htg. ¤

Motivated by the series (3.8), we will often use the exponential notation:
if F is a formal or analytic vector field with a singular point at the origin,
we will denote by exp tF the time t flow (formal or analytic) of this field.

3D. Embedding in the flow and matrix logarithms.

Definition 3.10. A holomorphic germ H ∈ Diff(Cn, 0) or a formal self-map
H ∈ Diff[[Cn, 0]] is said to be embeddable, if there exists a holomorphic germ
of a vector field F (resp., a formal vector field F ∈ D[[Cn, 0]]) such that H
is a time one (resp., formal time one) flow map of F , i.e., H = expF .

For a linear system ẋ = Ax with constant coefficients, the flow consists of
linear maps x 7→ (exp tA)x; see (1.12). Therefore for a linear map x 7→ Mx,
M ∈ GL(n,C), it is natural to consider the embedding problem in the class
of linear vector fields F (x) = Ax. Then the problem reduces to finding a
matrix logarithm, a matrix solution of the equation

expA = M, A, M ∈ Mat(n,C). (3.9)

Clearly, the necessary condition for solvability of this equation is nondegen-
eracy of M . It also turns out to be sufficient for matrices over the field
C.

Lemma 3.11. For any nondegenerate matrix M ∈ Mat(n,C), detM 6= 0,
there exists the matrix logarithm A = ln M , a complex matrix satisfying the
equation (3.9)

Proof. We give two constructions of matrix logarithms for nondegenerate
matrices.
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eigenvalues
of M

U

∂U

0

Figure I.3. Construction of the integral representation of the matrix
logarithm for a nondegenerate matrix with the given spectrum

1. First, for a scalar matrix M = λE, 0 6= λ ∈ C, the logarithm can be
defined as lnM = (lnλ)E, for any choice of lnλ. A matrix having a single
nonzero eigenvalue of high multiplicity has the form M = λ(E + N), where
N is a nilpotent (upper-triangular) matrix. Its logarithm can be defined
using the formal series for the scalar logarithm as follows:

lnM = ln(λE) + ln(E + N) = (lnλ) E + N − 1
2N2 + 1

3N3 − · · · (3.10)

(the sum is finite). This formula gives a well-defined answer by virtue of the
formal identity exp(x− x2

2 + x3

3 ± . . . ) = 1 + x, since the matrices E and N
commute.

An arbitrary matrix M can be reduced to a block diagonal form with
each block having a single eigenvalue. The block diagonal matrix formed by
logarithms of individual blocks solves the problem of computing the matrix
logarithm in the general case.

2. The second proof uses the integral representation for analytic matrix
functions. For any function f(x) complex analytic in a domain U ⊂ C
bounded by a simple curve ∂U and any matrix M with all eigenvalues in U ,
the value f(M) can be defined by the contour integral

f(M) =
1

2πi

∮

∂U
f(λ)(λE −M)−1 dλ (3.11)

[Gan59, Ch. V, §4]. In application to f(x) = lnx we have to choose a simple
loop ∂U containing all eigenvalues of M inside U but the origin λ = 0 outside
(cf. with Fig. I.3). Then in the domain U one can unambiguously select a
branch of complex logarithm lnλ which can be substituted into the integral
representation.

To prove that the integral representation gives the same answer as before,
it is sufficient to verify it only for the diagonal matrices, when the inverse
can be computed explicitly. The advantage of this formula is the possibility
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3. Formal flows and embedding 37

of bounding the norm | lnM | defined by the above integral, in terms of |M |
and |M−1|. ¤

Remark 3.12. The matrix logarithm is by no means unique. In the first
construction one has the freedom to choose branches of logarithms of eigen-
values arbitrarily and independently for different Jordan blocks. In the
second construction besides choosing the branch of the logarithm, there ex-
ists a freedom to choose the domain U (i.e., the loop ∂U encircling all the
eigenvalues of M but not the origin).

Remark 3.13. There is a natural obstruction for extracting the matrix
logarithm in the class of real matrices. If expA = M for some real matrix
A, then M can be connected with the identity E by a path of nondegenerate
matrices exp tA, in particular, M should be orientation-preserving. If M is
nondegenerate but orientation-reverting, it has no real matrix logarithm.

However, there are more subtle obstructions. Consider the real matrix
M =

(−1 1
−1

)
with determinant 1. If M = expA, then by (1.16) exp tr A = 1

so that for a real matrix necessarily trA = 0. The two eigenvalues cannot be
simultaneously zero, since then the exponent will have the eigenvalues both
equal to 1. Therefore the eigenvalues must be different, in which case the
matrix A and hence its exponent M must be diagonalizable. The contradic-
tion shows impossibility of solving the equation expA = M in the class of
real matrices.

3E. Logarithms and derivations. Inspired by the construction of the
matrix exponential, one can attempt to prove that for any formal map H ∈
Diff[[Cn, 0]] there exists a formal vector field F whose formal time one flow
coincides with H, as follows.

Consider an arbitrary finite order k and the k-jet Hk = jkH considered
as an isomorphism of the finite-dimensional C-algebra Fk = Jk(Cn, 0). By
Lemma 3.11, there exists a linear map Fk : Fk → Fk such that expFk = Hk.

Assume that for some reasons

(i) jets of the logarithms Fk of different orders agree after truncation,
i.e., jkFl = Fk for l > k, and

(ii) each Fk is a derivation of the commutative algebra Fk, thus a k-jet
of a vector field.

Then together these jets would define a derivation F of the algebra F =
C[[x]].

The first objective can be achieved if Fk are truncations of some poly-
nomial or infinite series. There is only one such candidate, the loga-
rithmic series lnH : C[[x]] → C[[x]], obtained from the formal series for
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38 I. Normal forms and desingularization

ln(1 + x) = x− 1
2x2 + 1

3x3 ∓ · · · by substitution,

lnH = (H−E)− 1
2
(H−E)2 +

1
3
(H−E)3 ∓ · · · (3.12)

(cf. with (3.10)). Until the end of this section we use the notation lnH only
in the sense of the series (3.12).

The series for lnH does not converge everywhere even in the finite-
dimensional case: the domain of convergence contains the ball |H−E| < 1
and all unipotent finite-dimensional matrices, but most certainly not the
matrix −E. Besides that difficulty, it is absolutely not clear why the formal
logarithm of an isomorphism of the commutative algebra C[[x]], even if it
converges, must be a derivation: no simple arguments similar to the one
used in the proof of Theorem 3.9, exist (sometimes this circumstance is
overlooked).

Let F be a commutative C-algebra of finite dimension n over C and H
an automorphism of F.

Theorem 3.14. The series (3.12) converges for all unipotent automor-
phisms H of a finite dimensional algebra F and its sum F = lnH in this
case is a derivation of this algebra.

Proof using the Lie group tools. Consider the matrix Lie group T ⊂
GL(n,C) of upper-triangular matrices with units on the principal diagonal
and the corresponding Lie algebra t ⊂ Mat(n,C) of strictly upper-triangular
matrices.

The exponential series (3.8) and the matrix logarithm (3.12) restricted
on t and T respectively, are polynomial maps defined everywhere. They
are mutually inverse: for any F ∈ t and H ∈ T we have ln expF = F and
exp lnH = H. This follows from the identities ln ez = z, eln w = w expanded
in the series. In particular, exp is surjective.

For any Lie subalgebra g ⊆ t and the corresponding Lie subgroup G ⊆ T

the exponential map exp: g → G is the restriction of (3.8) on g.
By [Var84, Theorem 3.6.2], the exponential map remains surjective also

on G, i.e., exp g = G. We claim that in this case the logarithm maps G into
g. Indeed, if H ∈ G and H = expF for some F ∈ g, then lnH = ln expF =
F ∈ g.

The assertion of the theorem arises if we take G = T∩Aut(F) to be the
Lie subgroup of triangular automorphisms of F ∼= Cn and g = t ∩Der(F) of
triangular derivations of the commutative algebra F. ¤

Remark 3.15. Surjectivity of the exponential map for a subgroup of the
triangular group T is a delicate fact that follows from the nilpotency of the
Lie algebra t. Indeed, by the Campbell–Hausdorff formula, expF · expG =
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expK, where K = K(F,G) is a series which in the nilpotent case is a
polynomial map t× t → t defined everywhere. Thus the image exp g is a Lie
subgroup in G ⊆ T for any subalgebra g, containing a small neighborhood of
the unit E. It is well known that any such neighborhood generates (by the
group operation) the whole connected component of the unit, so that exp g

coincides with this component. If G is simply connected, then exp g = G as
asserted.

Without nilpotency the answer may be different: as follows from Re-
mark 3.13, for two Lie algebras gl(n,R) ⊂ gl(n,C) and the respective Lie
groups GL(n,R) ⊂ GL(n,C), the exponent is surjective on the ambient
(bigger) group but not on the subgroup.

Remark 3.16. Using similar arguments, one can prove that for an arbitrary
automorphism H ∈ Aut(F) sufficiently close to the unit E, the logarithm
lnH given by the series (3.12) is a derivation, lnH ∈ Der(F). This follows
from the fact that ln and exp are mutually inverse on sufficiently small neigh-
borhoods of E and 0 respectively. However, the size of this neighborhood
depends on F.

3F. Embedding in the formal flow. Based on Theorem 3.14, one can
prove the following general result obtained by F. Takens in 1974; see
[Tak01].

Theorem 3.17. Let H ∈ Diff[[Cn, 0]] be a formal map whose linearization
matrix A = ∂H

∂x (0) is unipotent, (A−E)n = 0.
Then there exists a formal vector field F ∈ D[[Cn, 0]] whose linearization

is a nilpotent matrix N , such that H is the formal time 1 map of F .

Proof. As usual, we identify the formal map with an automorphism H of
the algebra F = C[[x1, . . . , xn]] so that its finite k-jets jkH become auto-
morphisms of the finite dimensional algebras Fk = Jk(Cn, 0). Without loss
of generality we may assume that the matrix A is upper-triangular so that
the isomorphism H and all its truncations jkH in the canonical deglex-
ordered basis becomes upper-triangular with units on the diagonal: the jets
jkH are finite-dimensional upper-triangular (unipotent) automorphisms of
the algebras Fk.

Consider the infinite series (3.12) together with its finite-dimensional
truncations obtained by applying the operation jk to all terms. Each such
truncation is a logarithmic series for ln jkH which converges (actually, sta-
bilizes after finitely many steps) and its sum is a derivation jkF of Fk by
Theorem 3.14. Clearly, different truncations agree on the lower order terms,
thus lnH converges in the sense of Definition 3.4 to a derivation F of F.
This derivation corresponds to the formal vector field F as required. ¤
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Exercises and Problems for §3.

Problem 3.1. Let F ∈ D[[Cn, 0]] be a formal vector field corresponding to the
derivation F ∈ DerC[[x]], and {Ht} ⊂ Diff[[Cn, 0]] its formal flow corresponding
to the one-parametric group of automorphisms {Ht} ⊂ AutC[[x]] related by the
identity (3.7).

Prove that in this case d
dtH

t = F ◦Ht for any t on the level of vector formal
series.

Exercise 3.2. Consider the derivation F = ∂
∂x on the algebra C[x] of univariate

polynomials. Prove that the exponential series exp tF is well defined for all values of
t ∈ C as an automorphism of C[x], but is not defined if the algebra C[x] is replaced
by the algebras C[[x]] or O(D), where D = {|x| < 1} is the unit disk.

Problem 3.3. Prove that the integral representation (3.11) coincides with the
standard definition of a matrix function f(M) in the case where f is a (scalar)
polynomial.

Exercise 3.4. Find all complex logarithms of the matrix M =
(−1 1

−1

)
(i.e.,

solutions of the equation expA = M).

4. Formal normal forms

In the same way as holomorphic maps act on holomorphic vector fields by
conjugacy (1.26), formal maps act on formal vector fields. In this section
we investigate the formal normal forms, to which a formal vector field can
be brought by a suitable formal isomorphism.

Definition 4.1. Two formal vector fields F, F ′ are formally equivalent, if
there exists an invertible formal self-map H such that the identity (1.26)
holds on the level of formal series.

The fields are formally equivalent if and only if the corresponding deriva-
tions F,F′ of the algebra C[[x]] are conjugated by a suitable isomorphism
H ∈ Diff[[Cn, 0]] of the formal algebra: H ◦ F′ = F ◦H.

Obviously, two holomorphically equivalent (holomorphic) germs of vec-
tor fields are formally equivalent. The converse is in general not true, as the
formal self-maps may be divergent.

4A. Formal classification theorem. Formal classification of formal vec-
tor fields strongly depends on its principal part, in particular, on properties
of the linearization matrix A =

(
∂F
∂x

)
(0) when the latter is nonzero (cases

with A = 0 are hopelessly complicated if the dimension is greater than one).
We start with the most important example and introduce the definition

of a resonance as a certain arithmetic (i.e., involving integer coefficients)
relation between complex numbers.
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4. Formal normal forms 41

Definition 4.2. An ordered tuple of complex numbers λ = (λ1, . . . , λn) ∈
Cn is called resonant , or, more precisely, additive resonance if there exist
nonnegative integers α = (α1, . . . , αn) ∈ Zn

+ such that |α| > 2 and the
resonance identity occurs,

λj = 〈α, λ〉 , |α| > 2. (4.1)

Here 〈α, λ〉 = α1λ1 + · · ·+αnλn. The natural number |α| is the order of the
resonance.

A square matrix is resonant, if the collection of its eigenvalues (with
repetitions if they are multiple) is resonant. A formal vector field F =
(F1, . . . , Fn) at the origin is resonant if its linearization matrix A =

(
∂F
∂x

)
(0)

is resonant.

Though resonant tuples (λ1, . . . , λn) can be dense in some parts of Cn

(see §5A), their measure is zero.

Theorem 4.3 (Poincaré linearization theorem). A nonresonant formal
vector field F (x) = Ax + · · · is formally equivalent to its linearization
F ′(x) = Ax.

The proof of this theorem is given in the sections §4B–§4C. In fact, it is
the simplest particular case of a more general statement valid for resonant
formal vector fields that appears in §4D.

4B. Induction step: homological equation. The proof of Theorem 4.3
goes by induction. Assume that the formal vector field F is already partially
normalized, and contains no terms of order less than some m > 2:

F (x) = Ax + Vm(x) + Vm+1(x) + · · · ,

where Vm, Vm+1, . . . are arbitrary homogeneous vector fields of degrees
m,m + 1, etc.

We show that in the assumptions of the Poincaré theorem, the term Vm

can be removed from the expansion of F , i.e., that F is formally equivalent
to the formal field F ′(x) = Ax + V ′

m+1 + · · · . Moreover, the corresponding
conjugacy can be in fact chosen as a polynomial of the form H(x) = x +
Pm(x), where Pm is a homogeneous vector polynomial of degree m. The
Jacobian matrix of this self-map is E +

(
∂Pm
∂x

)
.

The conjugacy H with these properties must satisfy the equation (1.26)
on the formal level. Keeping only terms of order 6 m from this equation
and using dots to denote the rest, we obtain(

E +
∂Pm

∂x

)
(Ax + Vm + · · · ) = A(x + Pm(x)) + V ′

m(x + Pm(x)) + · · · .
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42 I. Normal forms and desingularization

The homogeneous terms of order 1 on both sides coincide. The next non-
trivial terms appear in the order m. Collecting them, we see that in order
to meet the condition V ′

m = 0, the vector of homogeneous terms Pm must
satisfy the commutator identity

[A, Pm] = −Vm, A(x) = Ax, (4.2)

where A = Ax is the linear vector field, the principal part of F , and the
homogeneous vector polynomials Pm and Vm are considered as vector fields
on Cn. The left hand side of (4.2) is the commutator, [A, P ](x) =

(
∂P
∂x

)
Ax−

AP (x).
Conversely, if the condition (4.2) is satisfied by Pm, the polynomial map

H(x) = x + Pm(x) conjugates F = A + Vm + · · · with the (formal) vector
field F ′(x) = A + · · · having no terms of degree m.

Definition 4.4. The identity (4.2), considered as an equation on the un-
known homogeneous vector field Pm, is called the homological equation.

4C. Solvability of the homological equation. Solvability of the homo-
logical equation depends on invertibility of the operator adA of commutation
with the linear vector field A.

Let Dm be the linear space of all homogeneous vector fields of degree m
(we will be interested only in the case m > 2). This linear space has the
standard monomial basis consisting of the fields

Fkα = xα ∂
∂xk

, k = 1, . . . , n, |α| = m. (4.3)

We shall order elements of this basis lexicographically so that xi precedes
xj if i < j, but ∂

∂xj
precedes ∂

∂xi
. To that end, we assign to each formal

variable x1, . . . , xn pairwise different positive weights w1 > · · · > wn that
are rationally independent. This assignment extends on all monomials and
monomial vector fields if the symbol ∂

∂xj
is assigned the weight −wj . Now

the monomial vector fields can be arranged in the decreasing order of their
weights: the independence condition guarantees that the only different vec-
tor monomials having the same weight can be xα ·xj

∂
∂xj

and xα ·xk
∂

∂xk
with

the same α and j 6= k. The order between these monomials is not essential
for future exposition.

The operator

adA : P 7→ [A, P ], (adA P )(x) =
(

∂P

∂x

)
·Ax−AP (x), (4.4)

preserves the space Dm for any m ∈ N.
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4. Formal normal forms 43

Lemma 4.5. If A is nonresonant, then the operator adA is invertible. More
precisely, if the coordinates x1, . . . , xn are chosen such that A has the upper-
triangular Jordan form, then adA is lower-triangular in the respective stan-
dard monomial basis ordered in the decreasing weight order.

Proof. The assertion of the lemma is completely transparent when A is a
diagonal matrix Λ = diag{λ1, . . . , λn}. In this case each Fkα ∈ Dm is an
eigenvector for adΛ with the eigenvalue 〈λ, α〉 − λk. Indeed, by the Euler
identity,

Fkα = xα




0
...
1
...
0




,

(
∂Fkα

∂x

)
= xα




0
...

α1
x1

. . . αn
xn

...
0




,

so that in the diagonal case ΛFkα = λkFkα, and
(

∂Fkα
∂x

)
Λx = 〈λ, α〉Fkα.

Being diagonal with nonzero eigenvalues, adΛ is invertible.
To prove the lemma in the general case where A is in the upper-triangular

Jordan form, we consider the weight introduced above.
The operator adΛ with the diagonal matrix Λ preserves the weights,

since all vector monomials are eigenvectors for it.
On the other hand, the monomial vector field Jj = xj

∂
∂xj+1

with the
upper-diagonal constant matrix Jj acts by increasing weight. Indeed,

[
xα ∂

∂xk
, xj

∂
∂xj+1

]
= xα

[
∂

∂xk
, xj

∂
∂xj+1

]
+ αj+1x

α xj

xj+1
· ∂

∂xk
.

The second term, if present, has higher weight than Fkα = xα ∂
∂xk

, since
wj > wj+1. The first term is nonzero only if j = k, and in this case reduces
to xα ∂

∂xk+1
, which also has higher weight than Fkα.

It remains to notice that an arbitrary matrix A in the upper-triangular
Jordan normal form is the sum of the diagonal part Λ and a linear combi-
nation of matrices J1, . . . , Jn−1. The operator adA linearly depends on A,
so adA is equal to adΛ modulo a linear combination of the weight-increasing
operators adJj . Therefore, if the monomial fields Fkα are ordered in the de-
creasing order of their weights, as in the standard basis, then the operator
adA is lower-triangular with the diagonal part adΛ. ¤

Proof of Theorem 4.3. Now we can prove the Poincaré linearization the-
orem. By Lemma 4.5, the operator adA is invertible and therefore the
homological equation (4.2) is always solvable no matter what the term
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V = Vm is. Repeating this process inductively, we can construct an infi-
nite sequence of polynomial maps H1,H2, . . . ,Hm, . . . and the formal fields
F1 = F , F2, . . . , Fm, . . . such that Fm = Ax+(terms of order m and more),
and the transformation Hm = id +(terms of order m and more) conjugates
Fm with Fm+1. Thus the composition H(m) = Hm ◦ · · · ◦H1 conjugates the
initial field F1 with the field Fm+1 without nonlinear terms up to order m.

It remains to notice that by construction of Hm+1 the composition
H(m+1) = Hm+1 ◦ H(m) has the same terms of order 6 m as H(m) itself.
Thus the limit

H = H(∞) = lim
m→∞H(m)

(the infinite composition) exists in the class of formal morphisms. By con-
struction, H∗F cannot contain any nonlinear terms and hence is linear, as
required. ¤

Remark 4.6. The formal map linearizing a nonresonant formal vector field
and tangent to the identity, is unique. Indeed, otherwise there would exist
a nontrivial formal map id+h which conjugates the linear field with itself,(

∂h

∂x

)
Ax = Ah(x), i.e., adA h = 0.

But in the nonresonant case the commutator adA is injective, hence h = 0.
Thus the only formal maps conjugating a linear field with itself, are

linear maps x 7→ Bx, with the matrix B commuting with A, [A,B] = 0.

4D. Resonant normal forms: Poincaré–Dulac paradigm. The in-
ductive construction linearizing nonresonant vector fields, can be used to
simplify the resonant ones.

In this resonant case the operator adA = [A, ·] of commutation with the
linear part may be no longer surjective and in general the condition V ′

m = 0,
meaning absence of terms of order m after the transformation, cannot be
achieved.

In the presence of resonances one can choose in each linear space Dm

a complementary (transversal) subspace Nm to the image of the operator
adA, so that

Dm = Nm + adA(Dm) (4.5)
(the sum should not necessarily be direct).

Theorem 4.7 (Poincaré–Dulac paradigm). If the subspaces Nm ⊂ Dm are
transversal to the image of the commutator adA as in (4.5), then any formal
vector field F (x) = Ax + · · · with the linearization matrix A is formally
conjugated to some formal vector field whose all nonlinear terms of degree
m belong to the subspace Nm.
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4. Formal normal forms 45

Proof. If the transformation Hm(x) = x + Pm conjugates the field F (x) =
Ax + · · · + Vm(x) + · · · with another field F ′(x) = Ax + · · · + V ′

m(x) + · · ·
with the same (m− 1)-jet on the level of terms of order m, then instead of
the homological equation (4.2) in the case V ′

m 6= 0, the correction term Pm

must satisfy the equation

adA Pm = V ′
m − Vm. (4.6)

If Nm satisfies (4.5), then (4.6) can always be solved with respect to Pm for
any Vm provided that V ′

m is suitably chosen from the subspace Nm.
The transform Hm does not affect the lower order terms and hence the

process can be iterated for larger values of m exactly as in the nonresonant
case. As a result, one can prove that any formal vector field F is formally
equivalent to a formal field containing only terms belonging to the “comple-
mentary” parts Nm for all m = 2, 3, . . . .

The rest of the proof of Theorem 4.7 is the same as that of the Poincaré–
Dulac theorem. ¤

The choice of the transversal subspaces Nm depends on adA, hence on
the matrix A itself.

Example 4.8. Assume that the matrix A = Λ = diag{λ1, . . . , λn} is diag-
onal. In this case the operator adΛ was already shown to be diagonal in the
vector monomial basis, eventually with some zeros among the eigenvalues.
For diagonal operators on finite-dimensional space the kernel and the image
are complementary subspaces, so one may choose Nm = ker adL ⊂ Dm. The
kernel of the diagonal operator adΛ can be immediately described.

Definition 4.9. A resonant vector monomial corresponding to the reso-
nance λk − 〈λ, α〉 = 0, is the monomial vector field Fkα = xα ∂

∂xk
; see (4.3).

The kernel ker adΛ consists of linear combinations of resonant monomi-
als. From the discussion above it follows immediately that a formal vector
field with diagonal linear part Λx is formally equivalent to the vector field
with the same linear part and only resonant monomials among the nonlinear
terms.

Actually, the assumption on diagonalizability is redundant. The follow-
ing statement is one of the most popular formal classification results.

Theorem 4.10 (Poincaré–Dulac theorem). A formal vector field is formally
equivalent to a vector field with the linear part in the Jordan normal form
and only resonant monomials in the nonlinear part.

Proof. Assume that the coordinates are already chosen so that the lin-
earization matrix A is Jordan upper-triangular.
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46 I. Normal forms and desingularization

Choose the subspace Nm as the linear span of all resonant monomials,
Nm =

⊕
〈λ,α〉−λk=0

C · Fkα.

By Lemma 4.5, the operator Lm = adA |Dm is upper triangular with
the expressions 〈λ, α〉 − λk = 0 on the diagonal. By the choice of Nm,
whenever zero occurs on the diagonal of L, the corresponding basis vector
was included in Nm. This obviously means (4.5). The rest is the Poincaré–
Dulac paradigm. ¤

4E. Belitskii theorem. The choice of the “resonant normal form” (i.e., of
the family of subspaces Nm) in Theorem 4.10, is excessive in the sense that
the dimension of these spaces (the number of parameters in the normal form)
is not minimal. For example, if A is a nonzero nilpotent Jordan matrix, then
all monomials are resonant in the sense of Definition 4.9, whereas the image
of adA is clearly nontrivial. We describe now one possible minimal choice,
introduced by G. Belitskii [Bel79, Ch. II, §7].

Consider the standard Hermitian structure on the space Cn, so that the
basis vectors ej = ∂

∂xj
form an orthonormal basis.

For any natural m > 1 denote by Hm the complex linear space of all ho-
mogeneous polynomials of degree m. We introduce the standard Hermitian
structure in Hm in such a way that the normalized monomials ϕα = 1√

α!
xα

form an orthonormal basis,

(ϕα, ϕβ) = δαβ , ϕα = 1√
α!

xα, α, β ∈ Zn
+, |α| = |β| = m. (4.7)

Here, as usual, α! = α1! · · ·αn! for α = (α1, . . . , αn), 0! = 1 and δαβ is the
standard Kronecker symbol.

Then the linear space Dm of homogeneous vector fields of degree m can
be naturally identified with the tensor product Dm = Hm⊗CCn and inherits
the standard Hermitian structure for which the monomials ϕα⊗ek = 1√

α!
Fαk

form an orthonormal basis.
Given a matrix A ∈ Mat(n,C), denote by A∗ the adjoint matrix obtained

from A by transposition and complex conjugacy: a∗ij = āji. If A(x) = Ax is
the corresponding linear vector field on Cn and, respectively, A∗(x) = A∗x,
then both A,A∗ act as linear differential operators, A =

∑
aijxi

∂
∂xj

and

A∗ =
∑

ājixi
∂

∂xj
, on Hm. Furthermore, the commutation operators adA =

[A, ·] and adA∗ = [A∗, ·] are linear operators on Dm.
The following statement claims that the operators in each pair are mu-

tually adjoint (dual to each other) with respect to the standard Hermitian
structures on the respective spaces.
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Lemma 4.11.

1. The derivation A∗ : Hm → Hm is adjoint to the derivation A (with
respect to the standard Hermitian structure) and vice versa.

2. The commutator adA∗ = [A∗, ·] : Dm → Dm is adjoint to the com-
mutator adA = [A, ·] (with respect to the standard Hermitian structure) and
vice versa.

Proof. 1. The identity (Af, g) = (f,A∗g) for any pair of polynomials
f, g ∈ Hm “linearly” depends on the matrix A: if it holds for two matrices
A,A′ ∈ Mat(n,C), then it also holds for their combination λA + λ′A′ with
any two complex numbers λ, λ′ ∈ C.

Thus it is sufficient to verify the assertion for the monomial derivations
A = xi

∂
∂xj

and A∗ = xj
∂

∂xi
.

If i = j, then A = A∗ = xi
∂

∂xi
is diagonal in the orthonormal basis {ϕα}

with the real eigenvalues λα = αi = αj ∈ Z+, and hence is self-adjoint.
Otherwise both A and A∗ can be represented as permutations of the

basic vectors composed with the diagonal operators. If β is the multi-index
obtained from α by the operation

βk =





αk, k 6= i, j,

αi + 1, k = i,

αj − 1, k = j,

αk =





βk, k 6= i, j,

βi − 1, k = i,

βj + 1, k = j,

then β!/α! = (αi + 1)/αj = βi/αj and

Aϕα =
αj√
α!

xβ = αj

√
β!√
α!

ϕβ = αj

√
βi√
αj

ϕβ =
√

αjβi ϕβ.

Reciprocally, A∗ϕβ = βi x
α/
√

β! = · · · =
√

βiαj ϕα. But since the vectors
ϕα form an orthonormal basis,

(Aϕα, ϕβ) = (ϕα,A∗ϕβ) =
√

βiαj ∈ R
and all other matrix entries in the basis {ϕα} are zeros. Therefore the
derivations A and A∗ are mutually adjoint on Hm.

2. Using the structure of the tensor product Dm = Hm ⊗ Cn, one can
represent the commutators as follows:

adA = A⊗E − id⊗A.

Indeed, for any element ϕv, where ϕ ∈ Hm is a polynomial and v ∈ Cn a
vector considered as a constant vector field on Cn, by the Leibnitz rule

[A, ϕv] = (Aϕ)v + ϕ[A, v] = (Aϕ)v − ϕ Av.
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Obviously, because of the choice of the Hermitian structure on Hm ⊗ Cn,
the operator id⊗A is adjoint to id⊗A∗ whereas the adjoint to A⊗E is the
tensor product of the adjoint to A by the identity. By the first statement
of the lemma, the former is equal to A∗, so that the adjoint to [A, ·] is
A∗ ⊗ E − id⊗A∗ which coincides with [A∗, ·] = adA∗ . ¤

Theorem 4.12 (G. Belitskii [Bel79]; see also [Dum93, Van89]). A formal
vector field F (x) = Ax + V2(x) + · · · with the linearization matrix A is
formally equivalent to a vector field F ′(x) = Ax+V ′

2(x)+· · · whose nonlinear
part commutes with the linear vector field A∗(x) = A∗x:

[F ′ −A,A∗] = 0. (4.8)

If the vector field F is real (i.e., has only real Taylor coefficients, in par-
ticular, A is real), then both the formal normal form and the conjugating
transformation can be chosen real.

Proof. The proof is based on the following well-known observation: if L
is a linear endomorphism of a complex Hermitian or real Euclidean space
H into itself, then the image of L and the kernel of its Hermitian (resp.,
Euclidean) adjoint L∗ are orthogonal complements to each other:

(img L)⊥ = kerL∗.

It follows then that kerL∗ is complementary to img L in H.
Indeed, ξ ∈ (img L)⊥ if and only if (ξ, Lv) = 0 for all v ∈ H, which

means that any vector v is orthogonal to L∗ξ. This is possible if and only if
L∗ξ = 0.

Applying this observation to the operator Lm = adA restricted on
any space Dm and using Lemma 4.11, we see that the subspaces Nm =
ker adA∗ |Dm are orthogonal (hence complementary) to the image of Lm and
therefore satisfy the assumption (4.5) of Theorem 4.7. Therefore all nonlin-
ear terms V2, V3, . . . can be chosen to commute with A∗(x) = A∗x, which is
in turn possible if and only if their formal sum, equal to F −A, commutes
with A∗.

In the real case one has to replace the Hermitian spaces Hm, Cn and
Dm = Hm⊗CCn by their real (Euclidean) counterparts RHm, Rn and RDm =
RHm ⊗R Rn. Then for any real matrix A the image of the commutator adA

and the kernel of adA∗ , where A∗ is a transposed matrix, are orthogonal and
hence complementary. Then the homological equation adA Pm = V ′

m − Vm

can be solved with respect to Pm ∈ RDm and V ′
m ∈ ker adA∗ ∩RDm when

Vm ∈ RDm. The Poincaré–Dulac paradigm does the rest of the proof. ¤

This general statement immediately implies a number of corollaries.
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Example 4.13. If A is a diagonal matrix with the spectrum {λ1, . . . , λn},
then A∗ is also diagonal with the conjugate eigenvalues {λ̄1, . . . , λ̄n}. As was
already noted, restriction of adA∗ on Dm is diagonal with the eigenvalues〈
λ̄, α

〉−λ̄k = 〈λ, α〉 − λk. Its kernel consists of the same resonant monomials
as defined previously, so in this case Theorem 4.12 yields the usual Poincaré–
Dulac form.

Sometimes, diagonalization of the linear part is nonconvenient (espe-
cially for real vector fields). In such a case Theorem 4.12 may yield a simple
real normal form.

Example 4.14. If I = ( 0 1−1 0 ) = −I∗ is the matrix of rotation on the real
plane R2 with the coordinates (x, y), then ker adI∗ = ker adI and the entire
formal normal form, including the linear part, commutes with the rotation
vector field I = x ∂

∂y −y ∂
∂x . Any such rotationally symmetric real vector field

must necessarily be of the form

f(x2 + y2)
(
x ∂

∂x + y ∂
∂y

)
+ g(x2 + y2)

(
x ∂

∂y − y ∂
∂x

)
, (4.9)

where f(r), g(r) ∈ R[[r]] are two real formal series in one variable. Indeed,
A commutes with itself and the radial (Euler) vector field E = x ∂

∂x + y ∂
∂y

which form a basis at all nonsingular points; a linear combination fE + gI
with f, g scalar coefficients, commutes with I if and only if If = Ig = 0,
that is, if f and g are constants on all circles x2 + y2 = r2.

The linear part is of the prescribed form if f(0) = 0, g(0) = 1. Since g
is formally invertible, the normal form (4.9) is formally orbitally equivalent
to the formal vector field

F ′ = I + f(x2 + y2)E, f ∈ R[[u]], f(0) = 0,

I = x ∂
∂y − y ∂

∂x , E = x
∂

∂x
+ y

∂

∂y
,

(4.10)

with a formal series f(u) in the resonant monomial u = x2 + y2.
Note that the “standard” demonstration of this result via preliminary

diagonalization of A requires that all subsequent Poincaré–Dulac transfor-
mations be preserving the complex conjugacy, which is an additional inde-
pendent condition.

The same observation explains why the normal form is so often explicitly
integrable.

Corollary 4.15. Assume that the matrix A 6= 0 is normal, i.e., it commutes
with the adjoint matrix A∗. Then the vector field can be formally transformed
to a field which commutes with the (nontrivial) linear vector field A∗. ¤
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Indeed, in this case from (4.8) and [A,A∗] = 0 it follows that [F,A∗] = 0.
This observation allows us to decrease the dimension of the system; cf. with
§4J.

Remark 4.16. We wish to stress that there is no distinguished Hermitian
structure on Cn. One can choose this structure arbitrarily and only then the
standard Hermitian structure appears on Hm and Dm. Thus the assumption
of this corollary is not restrictive, in particular, it always holds whenever A
is diagonalizable.

4F. Parametric case. The Poincaré–Dulac method of normalization of
any finite jet or the entire Taylor series, involves only the polynomial (ring)
operations (additions, subtractions and multiplications) with the Taylor co-
efficients of the original field, except for inversion of the operator adA. This
allows us to construct formal normal forms depending on parameters.

Definition 4.17. A formal series f ∈ C[[x]] is said to depend polynomi-
ally on finitely many parameters λ = (λ1, . . . , λm) ∈ Cn, if each coefficient
depends polynomially on λ,

f =
∑
α

cαxα, cα ∈ C[λ].

No assumption on the degrees deg cα is made.
The formal series f =

∑
cαxα ∈ C[[x]] depends (strongly) analytically

on the parameters in a domain λ ∈ U , if each coefficient cα of this series
depends on the parameters analytically in the common domain U ⊆ Cm,
cα ∈ O(U).

The formal series f =
∑

cαxα weakly analytically depends on the pa-
rameters λ ∈ (Cm, 0), if each coefficient cα is a germ of analytic function,
cα ∈ O(Cm, 0). In contrast to the previously defined analytic dependence,
intersection of all domains where representatives of the germs cα are defined,
can reduce to the single point λ = 0.

We will use the common name semiformal series to denote elements
from the algebras A[[x]] in the above three cases when A = C[λ], A = O(U)
and A = O(Cn, 0) respectively.

Theorem 4.18 (Formal normal form with parameters).
1. If the vector field (holomorphic or formal) F = F (·, λ) = A(λ) +

F2(λ) + · · · depends weakly analytically on parameters λ ∈ (Cm, 0), then by
a formal transformation one can bring the field to the formal normal form
F ′ satisfying the condition

[F ′ −A,A∗(0)] = 0, (4.11)
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where A(0) is the linear vector field corresponding to λ = 0, and A∗(0) its
adjoint linear field. Both the formal normal form F ′ and the transformation
H reducing F to F ′ can be chosen weakly analytically depending on the
parameters λ ∈ (Cm, 0) in the sense of Definition 4.17. If F was real, then
also F ′ and H can be chosen real.

2. If the linear part A(λ) ≡ A(0) ≡ A is constant (does not depend on
λ) and the field itself depends polynomially or strongly analytically on the
parameters λ ∈ U , then both the normal form (4.11) and the correspond-
ing normalizing transformation can be chosen polynomially (resp., strongly
analytically) depending on the parameters in the same domain.

Proof. We start with a very general observation, basically, a geometrical
reformulation of the Implicit Function theorem.

If L : X → Y is a linear map between vector spaces, which is transversal
to a subspace Z ⊆ Y , then for any analytic or polynomial map y : λ 7→ y(λ),
λ ∈ U or λ ∈ Cn, one can find two maps x : λ 7→ x(λ) ∈ X and z : λ 7→
z(λ) ∈ Z, such that Lx(λ) + z(λ) = y(λ). If in addition L also depends on
λ and is transversal to Z for λ = 0, then the solutions still can be found,
but only locally for the parameter values λ ∈ (Cm, 0) sufficiently close to
the origin. In this case analyticity of x(λ), z(λ) in the larger domain U or
polynomiality in general may fail.

This observation can be applied to the homological operator L = adA

acting in the space X = Dm, and the subspace Y = Nm of homogeneous
vector fields commuting with A∗(0). Holomorphic (polynomial) solvabil-
ity of the homological equation on each step guarantees the possibility of
transforming the field to the normal form with the required properties. ¤
Remark 4.19 (Warning). The difference between constant and nonconstant linearization
matrices is rather essential in what concerns the size of the common domain of analyticity
of all Taylor coefficients of the normal form and/or conjugating transformation.

Suppose that all coefficients of the analytic family F (λ) of formal vector fields are
defined and holomorphic in some common domain U (e.g., the field is analytic in D × U ,
where D is a small polydisk).

If the linearization matrix of F (λ) does not depend on the parameters, then by the
second assertion of Theorem 4.18, one may remove from the expansion of F all terms that
are nonresonant (i.e., the terms that do not commute with the linear field A∗ which is
independent of the parameters). All coefficients of all series (the normal form and the
conjugacy) will be holomorphic in the maximal natural domain U .

All the way around, if the linearized field A(λ) depends on parameters, then by
a formal transformation one can eliminate all terms that are resonant with respect to
A(0). The coefficients of the normal form and the transformation will still be analytically
dependent on λ, but their domains should be expected to shrink as the degree of the
corresponding terms grow.

Indeed, assume that the linear field A(0) is nonresonant. Then the formal normal
form guaranteed by the first assertion of Theorem 4.18 is linear, F ′ = A(λ). Yet clearly
for some values of the parameter λ which are arbitrarily close to λ = 0, the spectrum of
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the matrix A(λ) can become resonant, hence it will be impossible to eliminate completely
all terms of the corresponding order. The apparent contradiction is easily explained: the
domain of analyticity of the coefficient of a high order cannot be so large as to include
values of the parameter corresponding to resonances of that order. Note that if A(0) is
nonresonant, then the possible order of resonances occurring for A(λ) necessarily grows
to infinity as λ → 0.

4G. Formal classification of self-maps. Besides formal vector fields,
formal isomorphisms act also on themselves by conjugacy: if

G(x) = Mx + V2(x) + · · · ∈ Diff[[Cn, 0]], detM 6= 0, (4.12)

is a formal self-map, then another formal self-map H ∈ Diff[[Cn, 0]] trans-
forms G to G′ = H ◦G ◦H−1. In the same way as before, one may ask if all
nonlinear terms V2, V3, . . . can be removed from the expansion by applying
a suitable formal conjugacy.

The strategy is the same as described in §4B. The polynomial trans-
formation H(x) = x + Pm(x) with a vector homogeneous nonlinearity
Pm of degree m conjugates G(x) as in (4.12) with a self-map G′(x) =
G(x) + Rm(x) + · · · , in which Rm is a homogeneous vector polynomial of
order m, implicitly defined by the identity

G(x) + Pm(G(x)) = G(x + Pm(x)) + Rm(x + Pm(x)) + · · · . (4.13)

After collection of terms of order m this yields the equation

P (Mx)−MP (x) = R(x), P = Pm, R = Rm, (4.14)

which we can attempt to solve with respect to P . This is the multiplicative
analog of the homological equation (4.2). The operator

SM : Dm → Dm, P (x) 7→ MP (x)− P (Mx), (4.15)

can be studied by methods similar to the operator adA. If M is a diagonal
matrix with the diagonal entries µ1, . . . , µn, then all monomials Fkα of the
standard basis in Dm are eigenvectors for SM with the eigenvalues µj−µα =
µj − µα1

1 · · ·µαn
n . If all these expressions are nonzero, the operators SM

will always be invertible and hence the formal self-map G will be formally
linearizable. If some of the expressions µj − µα are zeros, then one can
transform G to a nonlinear normal form. All these results can be obtained
in exactly the same way as for the formal vector fields.

Definition 4.20. A multiplicative resonance between nonzero complex
numbers µ = (µ1, . . . , µn) ∈ (C∗)n is an identity of the form

µj − µα = 0, |α| > 2, j = 1, . . . , n. (4.16)

A nondegenerate matrix M ∈ GL(n,C) and a formal self-map G(x) =
Mx + · · · ∈ Diff[[Cn, 0]] are nonresonant if there are no multiplicative reso-
nances between the eigenvalues of M . A multiplicative resonant monomial
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corresponding to the resonance (4.16), is the vector whose jth component
is xα and all others are zeros.

Theorem 4.21 (Poincaré–Dulac theorem for self-maps). Any invertible for-
mal self-map is formally equivalent to a formal self-map whose linear part is
in the Jordan normal form, and the nonlinear part contains only resonant
monomials with complex coefficients. In particular, a nonresonant formal
self-map is formally conjugated to the linear map G′(x) = Mx. ¤

Rather obviously, Theorem 4.21 can be further elaborated and an analog
of Belitskii Theorem 4.12 established. However, we will not deal with these
matters and concentrate from now on on vector fields and automorphisms
in low dimension (2 for fields, 1 for self-maps) which will be the principal
tool in the rest of the book.

* * *

4H. Cuspidal points. One important case where Theorem 4.12 is con-
siderably stronger than the Poincaré–Dulac Theorem 4.10 is that of vector
fields with nilpotent linear parts, which are “maximally nondiagonalizable”.
In this case all monomials will be resonant and Theorem 4.10 is void. We
will only consider the planar case where the linear part is the vector field
J = y ∂

∂x ∈ Mat(2,R) (the linearization matrix is a nilpotent Jordan cell
of size 2). From Theorem 4.12 we can immediately derive the following
corollary.

Theorem 4.22. A vector field on the plane with the linear part J = y ∂
∂x is

formally equivalent to the vector field

J + b(x)E + a(x) ∂
∂y , a, b ∈ C[[x]], E = x ∂

∂x + y ∂
∂y , (4.17)

with the formal series a, b ∈ C[[x]] in one variable x starting with terms of
order 2 and 1 respectively.

Proof. We need only to describe the kernel of the operator adJ∗ , where
J∗ = x ∂

∂y is the “adjoint” vector field. The kernel of the operator adJ∗ =
[x ∂

∂y , · ] restricted on Dm can be immediately computed. Indeed,

[x ∂
∂y , u ∂

∂x + v ∂
∂y ] = xuy

∂
∂x + (xvy − u) ∂

∂y ,

and the commutator vanishes only if both u and hence vy depend only on
x. Since both u, v must be homogeneous of degree m, we conclude that

ker adJ∗
∣∣
Dm

= β(xm ∂
∂x + xm−1y ∂

∂y ) + αxm ∂
∂y = βxm (x ∂

∂x + y ∂
∂y ) + αxm ∂

∂y

for some constants α = αm and β = βm which will be the coefficients of the
respective series a, b. ¤
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Yet the complementary subspaces Nm may be chosen in a different way,
not necessary as prescribed by Theorem 4.12. This may be more convenient
for some applications.

Theorem 4.23. The planar formal vector field with the linear part J = y ∂
∂x ,

is formally equivalent to the vector field

J + [yb(x) + a(x)] ∂
∂y , (4.18)

where a(x) and b(x) are two formal series of orders 2 and 1 respectively.

Proof. We reduce this assertion directly to the general Poincaré–Dulac par-
adigm. The image of adJ in Dm can be complemented by the 2-dimensional
space N′

m of vector fields (αxm + βxm−1y) ∂
∂x , as noted in [Arn83, §35 D].

Indeed, the condition [y ∂
∂x , f ∂

∂x + g ∂
∂y ] = u ∂

∂x + v ∂
∂y takes the form of the

system of linear partial differential equations

yfx − g = u, ygx = v.

While it can be not solvable for some u, v, the system of equations

yfx − g = u, ygx + αxm + βxm−1y = v (4.19)

can be always resolved for any pair of homogeneous polynomials u, v ∈
C[x, y] of degree m and the constants α, β. To see this, apply y ∂

∂x to the
first equation:

y2fxx = yux + v − αxm − βxm−1y.

The equation y2fxx = w is uniquely solvable for any monomial w divisible
by y2. On the other hand, the constants α, β can be found to guarantee
that the terms proportional to xm and xm−1y in the right hand side of
this equation vanish. This choice automatically guarantees solvability of the
second equation in (4.19) as well. The constants found in this way, appear
as coefficients of the respective series a, b. ¤

4I. Vector fields with zero linear parts. If the formal vector field F
starts with kth order terms, F (x) = Vk(x) + Vk+1(x) + · · · , k > 2, then
application of the formal transformation H(x) = x + P2(x) conjugates F
with the vector field F ′(x) = Vk + V ′

k+1 + · · · with the same (nonlinear)
principal part Vk, if

Vk(x)+Vk+1(x)+
(

∂P2

∂x

)
Vk(x)+ · · · = Vk(x+P2(x))+V ′

k+1(x+P2(x))+ · · ·

which after collecting the homogeneous terms of order k + 1 yields

[Vk, P2] = Vk+1 − V ′
k+1.

If this equation is resolved for a suitably chosen V ′
k+1 (e.g., equal to zero

if that is possible), one can pass to terms of order k + 2 by applying a
transform of the form H(x) = x + P3(x) which does not affect the terms of
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order Vk and Vk+1 and so on. As a result, one has to resolve in each order
the homological equation

adVk
Pm = Vm+k−1 − V ′

m+k−1 (4.20)

with respect to the homogeneous vector field Pm of degree m. As before,
complete elimination of all nonprincipal terms of orders k + 1 and more,
is possible if the operator adVk

is surjective, otherwise it will be necessary
to introduce the “normal subspaces” Nm+k−1 ⊂ Dm+k−1 complementary to
the image adVk

(Dm) ⊆ Dm+k−1 and choose the components V ′
m+k−1 of the

formal normal form from these subspaces.
In contrast to the case k = 1 discussed earlier, the operator adVk

in-
creases the degrees, i.e., acts between different spaces, the dimension of the
target space in general being higher than that of the source space. Thus
the number of parameters in the normal form will be infinite. A notable
exception is the one-dimensional case dimx = 1.

Theorem 4.24. A nonzero formal vector field from D[[C, 0]] is formally
equivalent to one of the vector fields of the form

(
xk+1 + ax2k+1

)
∂
∂x , k ∈ N, a ∈ C. (4.21)

Proof. Any nonzero formal vector field on C1 starts with the term
ak+1x

k+1 ∂
∂x , ak+1 6= 0. One can make ak+1 equal to 1 by a linear transfor-

mation x 7→ cx, if the ground field is C.
In this case all spaces Dm are one-dimensional, and the commutator

with the principal term xk+1 ∂
∂x can be immediately computed:

[
xk+1 ∂

∂x , xm ∂
∂x

]
= (k −m + 1)xk+m ∂

∂x . (4.22)

This operator is surjective for all m 6= k + 1. Thus only the term x2k+1 ∂
∂x

cannot be eliminated. ¤

Note that over the field of reals R the normal form is different: if k is
even, then by the real homothety one can make the principal coefficient only
±1, (± xk+1 + ax2k+1

)
∂
∂x , k ∈ N, a ∈ R.

For odd k the fields with different signs are equivalent (transformed into
each other by the symmetry x 7→ −x).

Remark 4.25. In fact, the above arguments show that any two formal
vector fields on the line having a zero of multiplicity k + 1 at the origin and
common (2k + 1)-jet, are formally equivalent.
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It is sometimes more convenient instead of the polynomial normal form
(4.21) to use the rational formal normal form

xk+1

1− axk
· ∂

∂x
, k ∈ N, a ∈ C. (4.23)

This (rational) field is analytically equivalent to the field (4.21) with the
same a. On the other hand, two vector fields in the normal form (4.23) with
different values of a cannot be equivalent, as will be shown in §6B2.

Theorem 4.26. Any self-map x 7→ x + xk+1 + . . . , k ∈ N, tangent to
identity, is formally equivalent to:

(1) the time one map of the polynomial vector field (4.21),
(2) the time one map of the rational vector field (4.23),
(3) the polynomial map x 7→ x + xk+1 + ax2k+1,

with the same complex parameter a ∈ C which is the formal invariant of the
classification together with the order k + 1.

Proof. One can prove this result in exactly the same way as Theorem 4.24,
namely, modifying the Poincaré–Dulac paradigm for the equation (4.13) and
using the computation from Proposition 6.11 below.

Yet one can circumvent this parallel construction by reference to the for-
mal embedding Theorem 3.17. Indeed, any formal self-maps from Diff[[C, 0]]
tangent to the identity with some order k + 1 can be represented as a time
one formal flow of a formal vector field from D[[C, 0]]. This field in turn
can be brought to one of the two formal normal forms or to the formal
(nonpolynomial!) field generating the polynomial normal form. ¤

4J. Formal normal forms of elementary singular points on the real
plane. In this section we summarize the (orbital) formal normal forms for
all planar (i.e., for n = 2) real vector fields with nonzero linear parts. Re-
call that two formal vector fields F, F ′ ∈ D[[R2, 0]] are called orbitally for-
mally equivalent, if there exist an invertible real formal series ϕ ∈ R[[x, y]],
ϕ(0, 0) 6= 0, such that F is formally equivalent to ϕ · F ′, and the corre-
sponding formal self-map has all real coefficients, i.e., belongs to the group
Diff[[R2, 0]]. We use everywhere the term singularity to denote jets or germs
of analytic vector fields or formal vector fields at the origin, depending on
the context.

Definition 4.27. A singularity of the planar vector field is elementary , if
at least one of the eigenvalues λ1,2 of its linearization matrix is nonzero.

The only nonelementary singularity that has nonzero linearization ma-
trix with both zero eigenvalues, is called cuspidal, or nilpotent singularity.
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Real elementary points can be of several types that exhibit essentially
different properties.

Definition 4.28. An elementary singularity is a resonant node, if the ratio
of its eigenvalues is a natural or inverse natural number. The singularity is
a resonant saddle, if both eigenvalues are real and their ratio is negative ra-
tional. A singularity is elliptic, if λ1,2 = ±iω, ω > 0. Finally, the singularity
is a saddle-node, if exactly one eigenvalue is zero.

Proposition 4.29 (Formal normal forms of planar singularities). By a real
orbital formal transformation from the group Diff[[R1, 0]]×Diff[[R2, 0]] any
real formal vector field D[[R2, 0]] appearing in Table I.1, can be brought to
the normal form from the right column of this table.

Proof. Most of these results are particular cases of the general results
proved earlier for the ground field C, modulo the following obvious remark.
If the linear part of the vector field can be brought into its Jordan normal
form by a real linear transformation, then all results of the formal classifi-
cation remain valid if the ground field is replaced by R. The only nontrivial
case where a real matrix cannot be normalized over R is that of the elliptic
singular points whose linear part is linear rotation ωx ∂

∂y − ωy ∂
∂x , with the

eigenvalues ±iω. From the complex point of view this is a resonant saddle,
yet diagonalization of this matrix requires enlarging the ground field. The
alternative treatment of the elliptic case is explained in Example 4.14.

The assertion concerning saddle-nodes is a combination of the Poincaré–
Dulac theorem and Theorem 4.24. While the condition λ2 = 0 is not a
resonance, it implies infinitely many resonances λj = λj +m for any m ∈ N.
By the Poincaré–Dulac theorem, the field is formally equivalent to the field
xf(y) ∂

∂x +yg(y) ∂
∂y with f(0) 6= 0 and g(0) = 0 (otherwise the singular point

cannot be elementary degenerate). Dividing by the invertible series f(y) one
can assume that f ≡ 1 and the variables (formally) separate. It remains to
make the formal change of the variable y which puts the one-dimensional
vector field g(y) ∂

∂y into the normal form (4.21).

The saddle case is analyzed similarly: the identity 〈λ,m〉 = 0 itself is
not a resonance, but its integer multiple can be added to the right hand side
of each of the identities λ1 = λ1 or λ2 = λ2, thus producing infinitely many
resonances. Without loss of generality we assume that λ1 = −p, λ2 = q,
p, q ∈ N. Clearly, there are no other resonances and the Poincaré–Dulac
normal form looks like −pxf(u) ∂

∂x + qy g(u) ∂
∂y , f(0) = g(0) = 1, where

u = xpyq is the resonant monomial. Passing to an orbitally equivalent
system, one can assume that f ≡ 1.
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Type Conditions Formal normal form

Nonresonant [λ1 : λ2] /∈ Q or λ1 =
λ2 6= 0

Linear

Resonant
node

[λ1 : λ2] = [r : 1],
r ∈ N, r > 2

ẋ = rx + ayr,
ẏ = y

a ∈ C formal invariant.

Resonant sad-
dle (orbital)

[λ1 : λ2] = −[p : q],
p, q ∈ N, not formally
orbitally linearizable

ẋ = −px,
ẏ = qy(1± ur + au2r),
u = xqyp,

r ∈ N, a ∈ R formal orbital
invariants

Elliptic points
(orbital)

λ1,2 = ±iω, not for-
mally orbitally lineariz-
able

ẋ = y ± x(ur + au2r),
ẏ = −x± y(ur + au2r),

u = x2 + y2, a ∈ R formal
orbital invariant

Saddle-node
(orbital classi-
fication)

λ1 6= 0, λ2 = 0,
formally isolated singu-
larity

ẋ = x,
ẏ = ±yr+1 + ay2r+1,

r ∈ N, a ∈ R formal orbital
invariants

Cuspidal
(nilpotent)
point (nonele-
mentary)

Nonvanishing lineariza-
tion matrix with two
zero eigenvalues

ẋ = y,
ẏ = a(x) + yb(x),

a, b ∈ R[[x]] two formal se-
ries, ord a > 2, ord b > 1.

One-
dimensional
degenerate
vector field

λ = 0, formally isolated
singularity

ẋ = ±xr+1 + ax2r+1,

or ẋ = ± xr+1

1− axr
,

r ∈ N, a ∈ C formal invari-
ants

Table I.1. Formal normal forms for real vector fields. All rows of the
table, except the last one, refer to planar formal vector fields and give
orbital formal normal forms.

The field in the Poincaré–Dulac normal form admits the projection R2 →
R1, (x, y) 7→ u = xpyq ∈ R1. The projected system has the form

u̇ = uF (u), F (u) = g(u)− 1, (4.24)
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called the quotient equation. By a suitable formal transformation u 7→ u′ =
u(1 + h(u)), h(0) = 0, the quotient vector field can be brought to the form
(4.21), corresponding to g(u) = 1 + uk−1 + au2k−1. It remains to observe
that any formal transformation of the variable u 7→ u[1 + h(u)], h(0) = 0,
can be “covered” by the transformation (x, y) 7→ (x′, y′(x, y)), where

x′ = x, y′ = y[1 + h(xpyq)]1/q ∈ R[[x, y]],

re-expanding the invertible series in square brackets into the binomial series.
This transformation brings the initial field into the required formal normal
form.

The same construction almost literally applies to the elliptic case: the
infinite formal normal form (4.10) admits projection onto the u-axis with
u = x2 + y2, and the quotient equation takes the form u̇ = 2uf(u). We
leave it as an exercise to prove that any formal line transformation u 7→
u[1 + h(u)], h(0) = 0, can also be “covered” by a suitable real plane formal
transformation. ¤

Remark 4.30. If necessary, the polynomial normal forms from Table I.1
can be replaced by rational normal forms involving the rational normal form
for one-dimensional quotient vector fields.

Note also that all normal forms of elementary singularities from this
table are integrable: the quotient equation can be explicitly integrated in
quadratures (especially easily if it has the rational normal form (4.23)). Af-
ter this integration the variables x and y always separate. This integrability
will be repeatedly used in the rest of the book to produce explicit compu-
tations with normal forms.

The cuspidal normal form is the famous Liénard system, corresponding
to one of the simplest nonlinear and nonintegrable vector fields for which
questions on the number of limit cycles is highly nontrivial. The Liénard
system is sometimes written under the form

ẋ = y − f(x), ẏ = −g(x),

or as a second order scalar differential equation.

Remark 4.31. The dynamic (full, nonorbital) formal normal form contains more para-
meters than indicated in Table I.1. For instance, for the saddle-node the formal normal
form is (

ẋ = x(λ1 + b1y + · · ·+ bkyk),

ẏ = yk+1k + ay2k+1, λ1, b1, . . . , bk, a ∈ C.
(4.25)

To prove this formula, we reduce the vector field to the form xf(y) ∂
∂x

+ g(y) ∂
∂y

as above

and then by a suitable change of the variable y only put g into the standard form g(y) =

yk+1 +ay2k+1. The function f(x) can be further simplified by transformations of the form
(x, y) 7→ (h(y)x, y), h(0) 6= 0, preserving the second component: one immediately verifies
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that such a transformation results in replacing the series f = f(y) ∈ C[[y]] by another
series

f ′ = f +
g

y
· dh

dy
= f + (yk+1 + ay2k+1)

d

dy
ln h.

Since g begins with terms of order k + 1, the difference between f and f ′ is necessarily
k-flat (the logarithmic derivative d

dy
ln h in the above formula is a well defined formal

series from C[[y]] since h(0) is nonvanishing). On the other hand, if the difference f − f ′

is divisible by yk+1, the quotient can be represented as the logarithmic derivative of a
suitable series h ∈ C[[y]]. Thus all terms of order k + 1 and above can be eliminated from
f by the formal transformation.

A similar result can be formulated for resonant saddles and elliptic singularities.

Exercises and Problems for §4.
A complex tuple λ = (λ1, . . . , λn) ∈ Cn is called single-resonant, if all reso-

nances between the components of this tuple follow from a single integer identity

〈α, λ〉 = 0, α ∈ Zn
+, α 6= 0. (4.26)

Problem 4.1. Describe the formal normal form of a vector field with a single-
resonant spectrum of the linearization matrix. Show that this normal form is inte-
grable in quadratures.

Problem 4.2. Describe all linear maps that preserve the formal normal form in
Problem 4.1.

Problem 4.3. Describe the real formal normal forms for vector fields in R3 with
the spectrum 0,±iω.

Problem 4.4. The same question for fields in R4 with the spectrum ±iω1, ±iω2,
if the ratio ω1/ω2 is irrational.

Problem 4.5. Describe symmetries of the formal normal forms in the Problems 4.3
and 4.4.

Exercise 4.6. Prove that if F is a resonant formal vector field, then exp tF is a
multiplicative resonant formal self-map for any t 6= 0. Is the inverse true?

Problem 4.7. Construct a formal normal form for vector fields in C3 with the
nilpotent Jordan linear part J = y ∂

∂x + z ∂
∂y .

Answer: J + a(x, u)E + b(x, u)F + c(x, u)F ′, where E = x ∂
∂x + y ∂

∂y + z ∂
∂z is

the Euler field in three dimensions, F = x ∂
∂y + y ∂

∂z , F ′ = ∂
∂z , and u = u(x, y, z) =

2xz − y2.

Exercise 4.8. Find a formal normal form for a saddle-nodal self-map with the
spectrum (1, µ), |µ| 6= 1, in two dimensions.

Problem 4.9. Give a complete proof of the Poincaré–Dulac theorem for self-maps
(Theorem 4.21).

Problem 4.10. Prove that the formal normal form of any vector field in the
Poincaré domain is integrable in quadratures.
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5. Holomorphic normal forms

5A. Poincaré and Siegel domains. To linearize a given (say, nonreso-
nant) vector field, on each step of the Poincaré–Dulac process one has to
compute the inverse of the operator adA = [A, · ] on the spaces of homoge-
neous vector fields. To that end, one has to divide the Taylor coefficients
by the denominators, expressions of the form λj − 〈α, λ〉 ∈ C with α ∈ Zn

+,
|α| > 2, that may a priori be small even in the nonresonant case where
adA is invertible. These denominators associated with the spectrum λ of
the linearization matrix A, behave differently as |α| grows to infinity, in the
following two different cases.

Definition 5.1. The Poincaré domain P ⊂ Cn is the collection of all tuples
λ = (λ1, . . . , λn) such that the convex hull of the point set {λ1, . . . , λn} ⊂ C
does not contain the origin inside or on the boundary.

The Siegel domain S is the complement to the Poincaré domain in Cn.
The strict Siegel domain is the set of tuples for which the convex hull

contains the origin strictly inside.

Sometimes we say about tuples, spectra or even germs of vector fields at
singular points as being of Poincaré (resp., Siegel) type.

Proposition 5.2. If λ is of Poincaré type, then only finitely many denom-
inators λj − 〈α, λ〉, α ∈ Zn

+, |α| > 2, may actually vanish.
Moreover, nonzero denominators are bounded away from the origin: the

latter is an isolated point of the set of all denominators {λj − 〈α, λ〉 |j =
1, . . . , n, |α| > 2}.

On the contrary, if λ is of Siegel type, then either there are infinitely
many vanishing denominators, or the origin 0 ∈ C is their accumulation
point (these two possibilities are not mutually exclusive).

Proof. If the convex hull of {λ1, . . . , λn} ⊂ C does not contain the origin, by
the convex separation theorem there exists a real linear functional ` : C2 → R
such that `(λj) 6 −r < 0 for all λj , and hence `(〈α, λ〉) 6 −r|α|. But then
for any denominator we have

`(λj − 〈α, λ〉) > `(λj) + |α|r → +∞ as |α| → ∞.

Since ` is bounded on any small neighborhood of the origin 0 ∈ C, the first
two assertions are proved.

To prove the last assertion, notice that in the Siegel case there are either
two or three numbers, whose linear combination with positive (real) coeffi-
cients is zero, depending on whether the origin lies on the boundary or in
the interior of the convex hull. We give the proof in the second case, more
difficult and more generic (the proof for the first case is simpler).
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If the origin lies inside a triangle formed by the eigenvalues, then modulo
their re-enumeration and a (nonconformal) affine transformation of the com-
plex plane R2 ∼= C, we may assume without loss of generality that λ1 = 1,
λ2 = +i and −λ3 ∈ R2

+ = R+ + iR+. In this case all “fractional parts”
−Nλ3 mod Z + iZ of natural multiples of −λ3 either form a finite subset
of the 2-torus R2/Z2 (in which case all points of this set correspond to in-
finitely many vanishing denominators), or are uniformly distributed along
some 1-torus, or dense. In both latter cases the point (0, 0) ∈ R2/Z2 is the
accumulation point of the “fractional parts” which are affine images of the
denominators. ¤

Corollary 5.3. If the spectrum of the linearization matrix A of a formal
vector field belongs to the Poincaré domain, then the resonant formal normal
form for this field established in Theorem 4.10, is polynomial. ¤

Remark 5.4. Resonant tuples λ ∈ Cn are dense in the Siegel domain S

and not dense in the Poincaré domain P. The proof of this fact can be
found in [Arn83].

5B. Holomorphic classification in the Poincaré domain. In the
Poincaré domain, the normalizing series reducing vector fields or holomor-
phic maps to their Poincaré–Dulac normal forms, always converge.

Theorem 5.5 (Poincaré normalization theorem). A holomorphic vector
field with the linear part of Poincaré type is holomorphically equivalent to
its polynomial Poincaré–Dulac formal normal form.

In particular, if the field is nonresonant, then it can be linearized by a
holomorphic transformation.

We prove this theorem first for vector fields with a diagonal nonresonant
linear part Λ = diag{λ1, . . . , λn}. The resonant case will be addressed later
in §5C. The classical proof by Poincaré was achieved by the so-called majo-
rant method. In the modern language, it takes a more convenient form of the
contracting map principle in an appropriate functional space, the majorant
space.

Definition 5.6. The majorant operator is the nonlinear operator acting on
formal series by replacing all Taylor coefficients by their absolute values,

M :
∑

α∈Z+
n

cα zα 7→
∑

α∈Z+
n

|cα| zα.

The action of the majorant operator naturally extends on all formal objects
(vector formal series, formal vector fields, formal transformations, etc.).
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Definition 5.7. The majorant ρ-norm is the functional on the space of
formal power series C[[z1, . . . , zn]], defined as

dcfdcρ = sup
|z|<ρ

|M f(z)| = |Mf(ρ, . . . , ρ)| 6 +∞. (5.1)

For a formal vector function F = (F1, . . . , Fn) the majorant norm is

dcF dcρ = dcF1dcρ + · · ·+ dcFndcρ . (5.2)

The majorant space Bρ is the subspace of formal (vector) functions from
C[[x]] having finite majorant ρ-norm.

Proposition 5.8. The space Bρ with the majorant norm dc·dcρ is complete.

Proof. If ρ = 1, this is obvious: B1 is the space of infinite absolutely con-
verging sequences {cα}, and hence is isomorphic to the standard Lebesgue
space `1 which is complete. The general case of an arbitrary ρ follows from
the fact that the correspondence f(ρx) ↔ f(x) is an isomorphism between
Bρ and B1. ¤

Remark 5.9. The space Bρ is closely related but not coinciding with the
space Aρ = A(Dρ) of functions, holomorphic in the polydisk Dρ = {|z| < ρ},
continuous on its closure and equipped with the usual sup-norm ‖f‖ρ =
max|z|<ρ |f(z)|.

Clearly, Bρ ⊂ Aρ, since a series from Bρ is absolutely convergent on the
closed polydisk Dρ. Conversely, if f is holomorphic in Dρ and continuous
on the boundary, then by the Cauchy estimates, the Taylor coefficients cα

of f satisfy the inequality

|cα| 6 ‖f‖ρ · ρ−|α|, α ∈ Zn
+.

Though the series dcfdcρ =
∑ |cα| ρ|α| may still diverge, any other norm

dcfdcρ′ with ρ′ < ρ, will already be finite:

dcfdcρ′ 6 ‖f‖ρ ·
∑

α∈Zn
+

δ|α| < C ‖f‖ρ, C = C(δ, n), δ = ρ′/ρ < 1.

To construct a counterexample showing that indeed Aρ % Bρ, consider
a convergent but not absolutely convergent Fourier series

∑
k∈Z+

cke
ikt in

one real variable t and let f(z) =
∑

ckz
k. Such a series converges at all

points of the boundary |z| = 1 and represents a function from A(D1), but
by construction its 1-norm is infinite. Details can be found in [Edw79,
§10.6]

The important properties of the majorant spaces and norms concern
operations on functions. We will use the notation f ¿ g for two vector
series from Cn[[x]] with positive coefficients, if each coefficient of f is no
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greater than the corresponding coefficient of g. In a similar way the notation
x ¿ y will be used to denote the componentwise set of inequalities between
two vectors x, y ∈ Rn. If f ∈ Rn[[x]] is a (vector) series with nonnegative
coefficients, then it is monotonous: f(x) ¿ f(y) if x ¿ y.

Lemma 5.10. 1. For any two series f, g ∈ C[[x]] and any ρ,

dcfgdcρ 6 dcfdcρ · dcgdcρ , (5.3)

provided that all norms are finite.
2. If G ¿ G′, are two formal series from Rn[[x]] and F is a series with

nonnegative coefficients, then F ◦G ¿ F ◦G′.
3. If F, G ∈ Cn[[z1, . . . , zn]] are two formal vector series, F (0) = G(0) =

0, then for their composition we have

dcF ◦Gdcρ 6 dcF dcσ , σ = dcGdcρ . (5.4)

Proof. The first two statements are obvious: all Taylor coefficients of the
product or composition are obtained from the coefficients of entering terms
by operations of addition and multiplication only. In particular, M(fg) ¿
M f ·M g. Evaluating both parts at ρ = (ρ, . . . , ρ) proves the first statement.

Since all binomial coefficients are nonnegative (in fact, natural numbers),
we have M(F ◦ G) ¿ (MF ) ◦ (MG). Evaluating at ρ = (ρ, . . . , ρ) yields
MG(ρ) = y ¿ σ = (σ, . . . , σ), where σ = dcGdcρ. By monotonicity, ‖F ◦
G‖ρ =

(
(MF ) ◦ (MG)

)
(ρ) ¿ MF (y) ¿ MF (σ) = dcF dcσ. The last

statement is proved. ¤

Lemma 5.11. If Λ ∈ Mat(n,C) is a nonresonant diagonal matrix of
Poincaré type, then the operator adΛ has a bounded inverse in the space
of vector fields equipped with the majorant norm.

Proof. The formal inverse operator ad−1
Λ is diagonal,

ad−1
Λ :

∑

k,α

ckαxα ∂

∂xk
7−→

∑

k,α

ckα

λk − 〈α, λ〉 xα ∂

∂xk
.

In the Poincaré domain the absolute values of all denominators are bounded
from below by a positive constant ε > 0, therefore any majorant ρ-norm is
increased by no more than ε−1:

⌈⌋
ad−1

Λ

⌈⌋
ρ

6
(

inf
j,α
|λj − 〈α, λ〉 |

)−1

< +∞.

This proves that adΛ has the bounded inverse. ¤

Remark 5.12. A diagonal operator of the form
∑

α cαzα 7→ ∑
µαcαxα with

bounded entries, supα |µα| < +∞, which is always defined and bounded in
the majorant norm, may be not defined or defined but unbounded on the
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holomorphic space A(Dρ); see Remark 5.9. The “real” counterexample is
even simpler: the operator which multiplies odd coefficients by −1, sends
the series 1 − x2 + x4 − · · · , converging and bounded on [−1, 1], into an
unbounded function.

Let F = (F1, . . . , Fn) ∈ D(Cn, 0) be a holomorphic vector function de-
fined in some polydisk near the origin. The operator of argument shift is
the operator

SF : h(x) 7→ F (x + h(x)), (5.5)
acting on holomorphic vector fields h ∈ D(Cn, 0) without the free term,
h(0) = 0. We want to show that SF is in some sense strongly contracting.
The formal statement looks as follows.

Consider the one-parameter family of majorant Banach spaces Bρ as in
Definition 5.7 indexed by the real parameter ρ ∈ (R+, 0). We consider Bρ′ as
a subspace in Bρ for all 0 < ρ < ρ′ (the natural embedding idρ′,ρ : Bρ′ → Bρ

is continuous).
Let S be an operator defined on all of these spaces for all sufficiently

small values of ρ, considered as a family of operators Sρ : Bρ → Bρ which
commute with the “restriction operators” idρ′,ρ for any ρ < ρ′, but we will
omit the subscript in the notation of Sρ = S.

Definition 5.13. The operator S ∼= {Sρ} is strongly contracting , if

(1) dcS(0)dcρ = O(ρ2) and

(2) S is Lipschitz on the ball Bρ = {dchdcρ 6 ρ} ⊂ Bρ of the majorant
ρ-norm (with the same ρ), with the Lipschitz constant no greater
than O(ρ) as ρ → 0.

Note that any strongly contracting operator takes the balls Bρ strictly
into themselves, since the center of the ball is shifted by O(ρ2) and the
diameter of the image S(Bρ) does not exceed 2ρO(ρ) = O(ρ2).

The involved definition of strong contraction intends to make the for-
mulation of the following claim easy.

Lemma 5.14. Assume that the germ F : (Cn, 0) → (Cn, 0) is holomorphic
and its linearization is zero,

(
∂F
∂x

)
(0) = 0.

Then the operator of argument shift (5.5) is strongly contracting.

Proof. First note that SF takes h = 0 into F (x); the latter function has ρ-
norm O(ρ2) for all sufficiently small ρ, since F begins with quadratic terms.

Next we compute the Lipschitz constant for S = SF restricted on the
ball Bρ ⊆ Bρ. If h, h′ ∈ Cn[[x1, . . . , xn]] are two vector fields, then the
difference

g = Sh− Sh′ = F ◦ (id+h)− F ◦ (id+h′)
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can be represented as the integral

g(x) =
∫ 1

0

(
∂F

∂x

) (
x + τh(x) + (1− τ)h′(x)

) · (h(x)− h′(x)) dτ.

By Lemma 5.10, since τ ∈ [0, 1], we have

dcgdcρ 6
⌈⌋

∂F
∂x

⌈⌋
σ
· ⌈⌋h− h′

⌈⌋
ρ
, σ =

⌈⌋
x + τh(x) + (1− τ)h′(x)

⌈⌋
ρ
.

The norm σ is no greater than dcxdcρ + max(dchdcρ , dch′dcρ) = (n + 1)ρ if both
h, h′ are from the ρ-ball Bρ. On the other hand, if F is a holomorphic vector
function without free and linear terms, its Jacobian matrix is holomorphic
without free terms and hence its σ-norm is no greater than Cσ for all suf-
ficiently small σ > 0. Collecting everything together, we see that SF is
Lipschitz on the ρ-ball Bρ, with the Lipschitz constant (contraction rate)
not exceeding (n + 1)Cρ, so SF is strongly contracting. ¤

Proof of Theorem 5.5 (nonresonant case). Now we can prove that a
holomorphic vector field with diagonal nonresonant linearization matrix Λ
of Poincaré type is holomorphically linearizable in a sufficiently small neigh-
borhood of the origin. The proof serves as a paradigm for a more technically
involved proof required for the resonant case.

A holomorphic transformation H = id +h conjugates the linear vector
field Λx (the normal form) with the initial nonlinear field Λx + F (x), if and
only if

Λh(x)− (
∂h
∂x

)
Λx = F

(
x + h(x)

)
. (5.6)

Using the operators introduced earlier, this can be rewritten as the identity

adΛ h = SF h, SF h = F ◦ (id+h), adΛ = [Λ, · ]. (5.7)

We will show in an instant that the operator ad−1
Λ ◦SF restricted on the

space Bρ has a fixed point h, if ρ > 0 is sufficiently small,

h =
(
ad−1

Λ ◦SF

)
(h), h ∈ Bρ. (5.8)

Applying to both parts the operator adΛ, we conclude that h solves (5.7)
and therefore id +h conjugates the linear field Λx with the nonlinear field
Λx + F (x) in the polydisk {|x| < ρ}.

Consider this operator ad−1
Λ ◦SF in the space Bρ with sufficiently small

ρ. The operator ad−1
Λ is bounded by Lemma 5.11; its norm is the reciprocal

to the smallest small divisor and is independent of ρ. On the other hand, the
argument shift operator SF is strongly contracting with the contraction rate
(Lipschitz constant) going to zero with ρ as O(ρ). Thus the composition will
be contracting on the ρ-ball Bρ in the ρ-majorant norm with the contraction
rate O(1) · O(ρ) = O(ρ) → 0. By the contracting map principle, there
exists a unique fixed point of the operator equation (5.8) in the space Bρ
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which is therefore a holomorphic vector function. The corresponding map
H = (id +h)−1 linearizes the holomorphic vector field. ¤

5C. Resonant case: polynomial normal form. Modification of the
previous construction allows us to prove that a resonant holomorphic vector
field in the Poincaré domain can be brought into a polynomial normal form.

Consider a holomorphic vector field F (x) = Ax+V (x) with the lineariza-
tion matrix A having eigenvalues in the Poincaré domain, and nonlinear part
V of order > 2 (i.e., 1-flat) at the origin. Without loss of generality (passing,
if necessary, to an orbitally equivalent field cF , 0 6= c ∈ C), one may assume
that the eigenvalues of A satisfy the condition

1 < Reλj < r ∀j = 1, . . . , n (5.9)

with some natural r ∈ N.

Theorem 5.15 (A. M. Lyapunov, H. Dulac). If the eigenvalues of the lin-
earization matrix A of a holomorphic vector field F (x) = Ax + V (x) satisfy
the condition (5.9) with some integer r ∈ N, then the holomorphic vector
field F (x) is locally holomorphically equivalent to any holomorphic vector
field with the same r-jet.

Proof. A holomorphic conjugacy H = id +h between the fields F and F +g
satisfies the functional equation

(
∂H
∂x

)
F = (F +g)◦H which can be expanded

to (
∂h

∂x

)
Ax−Ah = (V ◦ (id+h)− V ) + g ◦ (id+h)−

(
∂h

∂x

)
V. (5.10)

Consider the three operators,

TV : h 7→ V ◦ (id+h)− V, Sg : h 7→ g ◦ (id+h), Ψ: h 7→
(

∂h

∂x

)
V.

Using these three operators, the differential equation (5.10) can be written
in the form

adA h = Th + Sh + Ψh, (5.11)
where T = TV , S = Sg and, as before in (5.7), adA is the commutator with
the linear field A(x) = Ax. The key difference with the previous case is
two-fold: first, because of the resonances, the operator adA is not invertible
anymore, and second, since the field F is nonlinear, the additional operator
Ψ occurs in the right hand side. Note that this operator is a derivation of
h, thus is unbounded in any majorant norm dc·dcρ.

Let Bm,ρ = {f : jmf = 0} ∩ Bρ be a subspace of m-flat series in the
Banach space Bρ, equipped with the same majorant norm dc·dcρ. Since V is
1-flat, all three operators T, S, Ψ map the subspace Bm,ρ into itself for any
m > 1.
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Moreover, by Lemma 5.14, the argument shift operator S is strongly
contracting, regardless of the choice of m. The “finite difference” operator
TV differs from the argument shift, SV by the constant operator V = T (0)
which does not affect the Lipschitz constant. Since dcV dcρ = O(ρ2), the
operator T is also strongly contracting.

The operator adA preserves the order of all monomial terms and hence
also maps Bm,ρ into itself for all m, ρ, and is invertible on these spaces if m
is sufficiently large. Indeed, if |α| > r +1, then by (5.9) Re(〈α, λ〉−λj) > 0,
and all denominators in the formula

ad−1
A

∣∣
Bm,ρ

:
∑

|α|>m

ckα xα ∂

∂xj
7−→

∑

|α|>m

ckα

〈α, λ〉 − λj
xα ∂

∂xj
(5.12)

are nonzero if m > r + 1, and the restriction of ad−1
A on Bm,ρ is bounded.

Moreover, ⌈⌋
ad−1

A h
⌈⌋

ρ
6 O(1/m) dchdcρ (5.13)

uniformly over all h ∈ Bm,ρ of order m > r + 1.

Thus the two compositions, ad−1
A ◦S and ad−1

A ◦T , are strongly contract-
ing. To prove the theorem, it remains to prove that the linear operator
ad−1

A ◦Ψ: Bm,ρ → Bm,ρ is strongly contracting when m is larger than r + 1.

Consider the dc·dcρ-normalized vectors hkβ = ρ−|β|xβ ∂
∂xk

for all k =
1, . . . , m and all |β| > m spanning the entire space Bm,ρ. We prove that

⌈⌋
ad−1

A Ψhkβ

⌈⌋
ρ

= O(ρ) as ρ → 0 (5.14)

uniformly over |β| > m and all k. Since ad−1
A ◦Ψ is linear, this would imply

that ad−1
A ◦Ψ is strongly contracting.

The direct computation yields

Ψhkβ =
n∑

i=1

ρ−|β|
βi

xi
xβ Vi

∂

∂xk
.

Since V is 1-flat, dcVidcρ = O(ρ2); substituting this into the definition of the
majorant norm, we obtain

dcΨhkβdcρ 6
∑

i

βi ρ
−1O(ρ2) = βi O(ρ),

where O(ρ) is uniform over all β. Since the order of the products xβ

xi
Vi is at

least |β|+ 1, by (5.13) we have
⌈⌋
ad−1

A Ψhkβ

⌈⌋
ρ

6 βi

|β| O(ρ) = O(ρ)

uniformly over all β with |β| > m > r + 1. Thus the last remaining com-
position ad−1

A ◦Ψ is also strongly contracting, which implies existence of a
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5. Holomorphic normal forms 69

solution for the fixed point equation

h = ad−1 ◦(T + S + Ψ)h

equivalent to (5.11), in a sufficiently small polydisk {|x| < ρ}. ¤

Now one can easily complete the proof of the holomorphic normalization
theorem in the Poincaré domain in the resonant case.

Proof of Theorem 5.5 (resonant case). By the Poincaré–Dulac nor-
malization process, one can eliminate all nonresonant terms up to any finite
order m by a polynomial transformation. By Theorem 5.15, m-flat holo-
morphic terms can be eliminated by a holomorphic transformation if m is
large enough (depending on the spectrum of the linearization matrix). ¤

Remark 5.16. In the Poincaré domain one can prove an even stronger
claim: if a holomorphic vector field depends analytically on finitely many
additional parameters λ ∈ (Cm, 0) and belongs to the Poincaré domain for
λ = 0, then by a holomorphic change of variables holomorphically depend-
ing on parameters, the field can be brought to a polynomial normal form
involving only resonant terms. In such a form this assertion is formulated in
[Bru71]. The proof can be achieved by minor adjustment of the arguments
used in the demonstration of Theorem 5.15.

5D. Holomorphic normal forms for self-maps. In the same way as the
formal theory for vector fields D[[Cn, 0]] and maps Diff[[Cn, 0]] are largely
parallel (see §4G), the analytic theory of vector fields and biholomorphisms
are also parallel.

The additive resonance conditions λj−〈α, λ〉 6= 0 correspond to the mul-
tiplicative resonance conditions µ−1

j µα 6= 1. The additive Poincaré condition
(Definition 5.1) requires that (eventually after a rotation) all eigenvalues λj

of the vector field lie to one side of the imaginary axis. Its multiplicative
counterpart requires that all eigenvalues µj of the map must be to one side
of the unit circle. Such maps are automatically contracting or expanding,
and admit at most finitely many multiplicative resonance relations between
the eigenvalues.

The result parallel to the Poincaré Theorem 5.5 takes the following form.
Let M ∈ GL(n,C) be a matrix in the upper triangular Jordan normal form
with the eigenvalues µ1, . . . , µn ∈ C∗. The Poincaré–Dulac normal form is a
map

f : Cn → Cn, x 7→ f(x) = Mx +
∑

α∈Z+, |α|>2
µj=µα

xαej , (5.15)
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70 I. Normal forms and desingularization

where ej ∈ Cn is the jth basis vector. If M is in the multiplicative Poincaré
domain, i.e., if the eigenvalues are all of modulus less than one or all of mod-
ulus greater than one, then the normal form (5.15) is polynomial (contains
finitely many terms).

The general result for holomorphic self-maps in the Poincaré domain has
the following form.

Theorem 5.17. A holomorphic invertible map f ∈ Diff(Cn, 0) with the
spectrum µ1, . . . , µn inside the unit disk, 0 < |µj | < 1, j = 1, . . . , n, is
analytically equivalent to its polynomial Poincaré–Dulac formal normal form
(5.15). ¤

In the important particular case of one-dimensional maps, the multi-
plicative Poincaré condition holds automatically if the map is hyperbolic,
i.e., if its multiplicator µ has modulus different from one. This automat-
ically guarantees that resonances are impossible, and hence the Poincaré–
Dulac normal form (5.15) is linear. The corresponding result was proved by
E. Schröder (1870) and A. Kœnigs (1884).

Theorem 5.18. A holomorphic germ f : (C, 0) → (C, 0), f(x) = µx +
O(x2), is analytically linearizable if |µ| 6= 1.

If f = ft depends analytically on additional parameter t ∈ U ⊆ Cp, the
linearizing chart can also be chosen analytically depending on this parameter
as soon as the respective multiplier µt remains off the unit circle.

Because of its importance, we will give an independent proof of this
result by the path method in §5F below. Yet another (shortest known)
proof is outlined in Problem 5.6.

5E. Linearization in the Siegel domain: Siegel, Brjuno and Yoccoz
theorems (micro-survey). In the Siegel domain the denominators λj −
〈α, λ〉 are not separated from zero, hence even in the nonresonant case the
operator adA = [A, · ] of commutation with the linear part of the field has
unbounded inverse ad−1

a . Yet since the operator SF is strongly contracting,
the equation (5.7) can be solved with respect to h by Newton-type iterations,
provided that the small denominators |λj−〈α, λ〉 | do not approach zero too
fast as |α| → ∞.

The corresponding technique is known under the general name of
KAM theory (after A. Kolmogorov, V. Arnold and J. Moser). The issue
is very classical; accurate formulations and proofs can be found in many ex-
cellent sources, e.g., [CG93, Arn83]. We formulate only the basic results.

Definition 5.19. A tuple of complex numbers λ ∈ Cn from the Siegel
domain S is called Diophantine, if the small denominators decay no faster
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5. Holomorphic normal forms 71

than polynomially with |α|, i.e.,

∃C, N < +∞ such that ∀α ∈ Zn
+, |λj − 〈α, λ〉 |−1 6 C |α|N . (5.16)

Otherwise the tuple (vector, collection) is called Liouvillean.

Liouvillean vectors are scarce: the set of points λ ∈ Cn satisfying vi-
olating the condition 5.16 with a given N , has Lebesgue measure zero in
S ⊂ Cn if N > (n− 2)/2; see [Arn83].

Theorem 5.20 (Siegel theorem). If the linearization matrix Λ of a holomor-
phic vector field is nonresonant of Siegel type and has Diophantine spectrum,
then the field is holomorphically linearizable.

Thus the majority (in the sense of Lebesgue measure) of germs of holo-
morphic vector fields are analytically linearizable. Yet one may further relax
sufficient conditions for convergence of linearizing series in the Siegel domain.

Definition 5.21. A nonresonant collection λ ∈ Cn is said to satisfy the
Brjuno condition, if the small denominators decrease sub-exponentially,

|λj − 〈α, λ〉 |−1 6 Ce|α|
1−ε

, as |α| → ∞, (5.17)

for some finite C and positive ε > 0.

Theorem 5.22 (Brjuno theorem). A holomorphic vector field with nonres-
onant linearization matrix of Siegel type satisfying the Brjuno condition, is
holomorphically linearizable.

On the other hand, if the denominators |λj − 〈α, λ〉 | accumulate to
zero too fast, e.g., super-exponentially, then the corresponding germs are in
general nonlinearizable (cf. with Remark 5.33 below).

Analogs of the Siegel and Brjuno theorems hold for holomorphic germs.
The most important case is that of one-dimensional conformal germs from
the group Diff(C1, 0). Such germs belong to the Siegel domain if and only
if their multiplicator µ belongs to the unit circle, µ = exp 2πil, with some
l ∈ R; they are nonresonant if l is an irrational number. The Diophantine
and Brjuno conditions translate for this case as assumptions that this ir-
rational number l ∈ R r Q does not admit abnormally accurate rational
approximations.

For instance, if the complex number µ = exp 2πil, l ∈ R, satisfies the
multiplicative Brjuno condition

|µk − 1|−1 < Cek1−ε
, C < +∞, ε > 0, (5.18)

then any holomorphic map (C, 0) → (C, 0), z 7→ µz + z2 + · · · , is holomor-
phically linearizable. The sufficient arithmetic condition (5.18) turns out to
also be necessary in the following sense.
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72 I. Normal forms and desingularization

Theorem 5.23 (J.-C. Yoccoz [Yoc88, Yoc95]). If the complex number
µ = exp 2πil, l ∈ R, violates the multiplicative Brjuno condition (5.18),
then there exists a nonlinearizable holomorphic germ (C, 0) → (C, 0), z 7→
µz + f(z), f(z) = z2 + · · · .

In fact, in the assumptions of this theorem for almost all complex num-
bers w ∈ C the germ fw(z) = µz + wf(z) is analytically nonlinearizable;
cf. with Theorem 5.29 below and [PM01].

Remark 5.24. The condition on the rate of convergence of small denom-
inators can be reformulated in terms of the growth rate of coefficients of
decomposition of the irrational number l ∈ RrQ into the continuous frac-
tion. This is a more standard way of formulating the Brjuno condition in
the recent literature.

If a resonance occurs in the Siegel case, then the situation turns out to
be even more complicated: a resonant conformal germ f ∈ Diff(C, 0) with
multiplicator µ ∈ exp 2πiQ is almost never analytically equivalent to its
polynomial Poincaré–Dulac formal normal form described in Theorem 4.26.
This result and its numerous developments are explained in detail in §21.

A two-dimensional analytic orbital classification of Siegel resonant vec-
tor fields (saddle-nodes and resonant saddles from Table I.1) is at least as
difficult as the analytic classification of resonant germs from Diff(C, 0). In-
deed, in §7 we will show that the corresponding foliations have leaves with
nontrivial (infinite cyclic) fundamental group, whose holonomy is generated
by Siegel resonant germs from Diff(C, 0). The details can be found in Chap-
ter IV; see §22.

Somewhat unexpectedly, the cuspidal points behave better than their
less degenerate brethren. In [SZ02] H. ŻoÃla̧dek and E. Stróżyna proved that
one can always reduce a holomorphic planar vector field near a cuspidal sin-
gular point to a holomorphic normal form (4.17) (i.e., with converging series
a(x), b(x) ∈ O(C, 0)) by a biholomorphic transformation. The direct and
difficult proof from [SZ02] was recently replaced by beautiful geometric ar-
guments by F. Loray [Lor06]. This proof, based on nonlocal uniformization
technique, is split into a series of problems in §23 (Problems 23.6–23.13).

5F. Path method. In this section we outline another very powerful an-
alytic method of reducing holomorphic vector fields and self-maps to their
normal forms. This method is called path method (méthode de chemin,
homotopy method) since it consists of connecting the initial object (field,
self-map) with its normal form by a path (usually a line segment) and then
looking for a flow of a nonautonomous vector field that would conjugate
with each other all objects in this parametric family.
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5. Holomorphic normal forms 73

We illustrate the path method by proving two relatively simple results,
analytic reducibility of one-dimensional holomorphic vector fields (cf. with
Theorem 4.24) and one-dimensional hyperbolic self-maps to their normal
form. Both results, however, can be proved by shorter arguments; see Prob-
lems 5.5 and 5.6 below.

Theorem 5.25. Any analytic vector field F (x) = xk+1(1+· · · ) ∂
∂x ∈ D(C, 0)

is analytically conjugate to its polynomial formal normal form F0(x) =
(xk+1 + ax2k+1) ∂

∂x .

Proof. Without loss of generality we may assume from the beginning, that the jet of F
of any specified order is already reduced to the normal form. Thus we can assume that
the field F = F1 is given as F0(x) + R(x) ∂

∂x
, where R is as flat at the origin, as necessary.

It will be sufficient to require that the function R(x) has zero of multiplicity 2k + 2 at
the origin, R(x) = x2k+2S(x), S ∈ O(C, 0). We want to show that for all values of an
auxiliary complex parameter z from some domain U ⊆ C containing the segment [0, 1],
the vector fields Fz(x) = F0(x) + zR(x) ∂

∂x
are holomorphically equivalent to each other.

This, in particular, would imply that F0 and F1 are holomorphically equivalent, which
would immediately imply the assertion of the theorem.

Consider the planar domain (C, 0)× U and the vector field on it,

F = F0 + zR(x) · ∂
∂x

+ 0 · ∂
∂z

, F0 = (xk+1 + ax2k+1) ∂
∂x

, (5.19)

which is the suspension of the above parametric family of vector fields on the line.

Consider another planar vector field H ∈ Diff
�
(C1, 0) × U

�
, U ⊆ C, which has the

form
H = h(x, z) ∂

∂x
+ 1 · ∂

∂z
, h(0, z) ≡ 0. (5.20)

Lemma 5.26 (Path method paradigm). If there exists a holomorphic vector field H ∈
Diff

�
(C1, 0)× U

�
of the form (5.20) which commutes with F,

[F,H] = 0, (5.21)

then all germs of vector fields Fz ∈ D(C1, 0) are holomorphically equivalent to each other
for all values of z ∈ U .

Proof. If the vector fields F and H commute, then the flow of the vector field H commutes
with the flow of F and hence the flow maps of H are symmetries of the field F.

Because of the special structure of H, its flow sends the lines {z = const} into each
other, each time fixing the origin {x = 0}. Thus the flow expH maps {z = 0} into
{z = 1}, is defined in some neighborhood of the origin and conjugating F|z=0 = F0 with
F|z=1 = F1. ¤

Now we can complete the proof of Theorem 5.25, showing that in the assumptions
of the theorem, such a vector field H indeed exists. The homological equation (5.21) is
equivalent to a partial differential equation on the function H,

f · ∂h

∂x
− h · ∂f

∂x
= −R, f(x, z) = xk+1 + ax2k+1 + zR(x). (5.22)

Yet in fact this equation can be considered as a linear first order ordinary (with respect
to the x-variable) nonhomogeneous differential equation analytically depending on the
parameter z ∈ U . The solution of the corresponding homogeneous equation is immediate,
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74 I. Normal forms and desingularization

h0(x, z) = f(x, z), using the ansatz h(x, z) = s(x, z)h0(x, z) we obtain the equation (recall

that R = x2k+2S),

f2 · ∂s

∂z
= −R(x), i.e.

∂s

∂x
= − S(x)�

1 + axk + xk+1S(x)
�2 . (5.23)

Integration of the right hand side with the initial condition s(0, z) = 1 yields a solution
s = s(x, z) holomorphic at x = 0 for all z ∈ U . The vector field H = s(x, z)F + 1 · ∂

∂z
satisfies all conditions imposed by Lemma 5.26 and allows us to construct a holomorphic
conjugacy between F0 and F1. ¤

Obviously, the polynomial normal form (4.21) can be replaced by the rational normal
form (4.23).

Remark 5.27. Besides holomorphic differential vector fields, one may consider mero-
morphic differential 1-forms on the complex line (or, more precisely, their germs at the
origin): the set of all such forms is naturally denoted by Λ1(C, 0)⊗M(C, 0).

The group Diff(C, 0) acts on such forms, so one can establish normal forms. Yet
instead of developing parallel theory, one can use duality: a 1-form ω ∈ Λ1(C, 0) and a
vector field F ∈ D(C, 0) are called dual, if ω(F ) ≡ 1. Holomorphic transform of a dual
pair is again a dual pair.

Meromorphic (i.e., with a pole at the origin) 1-forms have two obvious invariants that
cannot be changed by holomorphic transformations: the order of the pole and the residue
at this point.

The form dual to the rational vector field (4.23) is dx
xk+1−a dx

x
, and the formal invariant

a ∈ C is the residue of this form (modulo the sign). This observation explains the role of
the formal invariant.

As yet another application of the path method, we give an independent proof of the
Schröder–Kœnigs Theorem 5.18.

Consider the analytic self-map f ∈ Diff(C, 0), f(x) = µx+r(x), with the multiplicator
µ ∈ C∗, |µ| < 1 and analytic nonlinearity r(x) = O(x2).

As before, we embed f into an analytic one-parameter deformation fz(x) = µx+zr(x)
with a complex parameter z ∈ U ⊆ C, [0, 1] ⊆ U , and suspend it to the planar self-map
f ∈ Diff(C2, 0),

f : (x, z) 7→ (µx + zr(x), z), (x, z) ∈ (C1, 0)× U. (5.24)

The following lemma is a reformulation of the main paradigm of the path method
(Lemma 5.26) for the current context.

Lemma 5.28. If a vector field H as in (5.20) is preserved by the self-map f , i.e.,

f∗ ·H = H ◦ f , f∗ =
∂f(x, z)

∂(x, z)
, (5.25)

then all self-maps fz for all z ∈ U , are analytically equivalent, in particular, f1 = f is
analytically equivalent to the linear map f0. The conjugacy is achieved by the flow of the
field H restricted on the lines {z = const}. ¤

The proof of Lemma 5.28 almost literally reproduces that of Lemma 5.26 and is
skipped. In order to prove Theorem 5.18, we need only to show that the homological
equation (5.25) is solvable.
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5. Holomorphic normal forms 75

Alternative proof of Theorem 5.18. The identity (5.25) reduces to a single scalar
linear nonhomogeneous functional equation

∂fz(x)

∂x
· h(x, z)− h(fz(x), z) = r(x). (5.26)

This equation can be solved in two steps, solving first the corresponding homogeneous
equation ( ∂f

∂x
)u− u ◦ f = 0, and then looking for a solution of (5.26) in the form h = su,

similar to the way the equation (5.22) was solved.

The homogeneous equation can be rewritten as a fixed point statement,

h =

�
∂f

∂x

�−1

· (h ◦ f), f = fz ∈ Diff(C, 0). (5.27)

It has a trivial (zero) solution, yet we can restrict the operator occurring in the right hand
side, on the subspace of functions tangent to identity, h(x) = x + O(x2).

Without loss of generality we may assume (passing to a sufficiently small neighborhood
of the origin which is rescaled to the unit disk) that all maps fz satisfy the inequalities����∂f

∂z

���� > µ−, |f(x)| < µ+|x|, ∀x ∈ D1 = {|x| 6 1},

0 < µ− < |µ| < µ+ < 1.

(5.28)

Here µ± are two positive constants which can be assumed to be arbitrarily close to |µ| < 1.

First we show that the operator Φ : h 7→ ( ∂f
∂x

)−1 · (h ◦ f) restricted on the subspace

M = {u ∈ A(D1) : u(0) = 0, du
dx

= 1}
of holomorphic functions tangent to the identity at the origin, is contracting in the sense
of the usual supremum-norm ‖u‖ = maxx∈D1 |u(x)|. Clearly, Φ(M) ⊆ M.

Indeed, since Φ is linear, it is sufficient to show that ‖Φq‖ < λ‖q‖ for any q ∈ A(D1)
having a second order zero at the origin and some λ strictly between 0 and 1. Note that
for any such function q(x), we have the inequality |q(x)| 6 ‖q‖·|x|2: it is sufficient to apply
the maximum modulus principle to the holomorphic ratio q(x)/x2. Then from (5.28) it
immediately follows that

‖Φq‖ 6 max
|x|61

1

µ−
‖q‖ · |f(x)|2 6 µ2

+

µ−
· max
|x|61

‖q‖ |x|2 6 µ2
+

µ−
· ‖q‖.

Since the ratio µ2
+/µ− can be made arbitrarily close to |µ| < 1, the operator Φ restricted

on M is contracting and hence has a holomorphic fixed point u analytically depending on
z and any additional parameters (if present).

Now a solution of the nonhomogeneous equation can be found using the ansatz h = su.
Substituting this ansatz into the equation (5.26), we obtain the Abel-type equation

s− s ◦ f = −R(x), R = Rz(x) =
r(x)

( ∂f
∂z

) · u(x, z)
, f = fz(x). (5.29)

The function Rz(x) is holomorphic and vanishes at the origin x = 0 for all values of x,
since fz has a simple zero and r(x) has a double zero at the origin.

The formal solution of the equation (5.29) is given by the series

s = −
∞X

k=0

R ◦ f◦k, s = s(·, z), f = fz, R = Rz, (5.30)
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76 I. Normal forms and desingularization

which is well defined because f is contracting. Moreover, since R vanishes at the origin,
we have |Rz(x)| < C|x| for some C < ∞ and all x ∈ D1. Combining this with the uniform

bounds |f◦k(x)| 6 µk
+|x| implied by (5.28), we conclude that the series (5.30) converges

uniformly on D1 and hence its sum is a holomorphic function vanishing at x = 0. The
holomorphic vector field H = s(x, z)u(x, z) ∂

∂x
+ 1 · ∂

∂z
solves the equation (5.25).

The alternative proof of Theorem 5.18 is complete. ¤

* * *

5G. Divergence dichotomy. As follows from the Poincaré, Siegel and
Brjuno theorems, for most linear parts the linearizing series converges, and
in the remaining cases the linearizing series may diverge. On the other
hand, no matter how “bad” the linearization and its eigenvalues are, there
are always nonlinear systems that can be linearized (e.g., linear systems
in nonlinear coordinates). It turns out that in some precise sense for a
given linear part, the convergence/divergence pattern is common for most
nonlinearities.

Consider a parametric nonlinear system

ẋ = Ax + z f(x), x ∈ Cn, z ∈ C, (5.31)

holomorphic in some neighborhood of the origin with the nonresonant lin-
earization matrix A and the nonlinear part linearly depending on the aux-
iliary complex parameter z ∈ C. For such systems for each value of
the parameter z ∈ C there is a unique (by Remark 4.6) formal series
Hz(x) = x + hz(x) ∈ Diff[[x, z]] linearizing (5.31). This series may con-
verge for some values of z while diverging for the rest. It turns out that
there is a strict alternative: either the linearizing series converges for all
values of z without exception, or on the contrary the series Hz diverges for
all z outside a rather small exceptional set K b C.

The exceptional sets are small in the sense that their (electrostatic)
capacity is zero. The notion of capacity is formally introduced below in
§5H, where some of its basic properties are collected. We mention here only
that zero capacity implies zero Lebesgue measure for any compact set.

Theorem 5.29 (Divergence dichotomy, Yu. Ilyashenko [Ily79a], R. Perez
Marco [PM01]). For any nonresonant linear family (5.31) one has the fol-
lowing alternative:

(1) Either the linearizing series Hz ∈ Diff[[Cn, 0]] converges for all
values of z ∈ C in a symmetric polydisk {|x| < r} of a positive
radius r = r(z) > 0 decreasing as O(|z|−1) as z →∞, or

(2) The linearizing series Hz diverges for all values of z except for a
set Kf b C of capacity zero.
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The proof is based on the following property of polynomials, which can
be considered as a quantitative uniqueness theorem for polynomials. If K
is a set of positive capacity and p ∈ C[z] a polynomial vanishing on K, then
by definition p vanishes identically. One can expect that if p is small on K,
then it is also uniformly small on any other compact subset, in particular,
on all compact subsets of C.

Theorem 5.30 (Bernstein inequality). If K b C is a set of positive capac-
ity, then for any polynomial p ∈ C[z] of degree r > 0,

|p(z)| 6 ‖p‖K exp(rGK(z)), (5.32)

where ‖p‖K = maxz∈K |p(z)| is the supremum-norm of p on K, and GK(z)
is the nonnegative Green function of the complement CrK with the source
at infinity; see (5.36).

We postpone the proof of this theorem until §5H and proceed with
deriving Theorem 5.29 from the Bernstein inequality.

Lemma 5.31. Formal Taylor coefficients of the formal series linearizing
the field (5.31) are polynomial in z.

More precisely, every monomial xα, |α| > 2, enters into the vector series
hz with the coefficient which is a polynomial of degree 6 |α| − 1 in z.

Proof. The equation determining h = hz is of the form(
∂hz

∂x

)
(Ax + z f(x)) = Ahz(x). (5.33)

Collecting the terms of degree m in x, we obtain for the corresponding mth
homogeneous (vector) components h

(m)
z , f (l), the recurrent identities(

∂h
(m)
z

∂x

)
Ax−Ah(m)

z = −z
∑

k+l=m, l>2

(
∂h

(k+1)
z

∂x

)
f (l).

From these identities it obviously follows by induction that each h
(m)
z is a

polynomial of degree m−1 in z for all m > 1 (recall that f does not depend
on z). ¤

Proof of Theorem 5.29. Assume that the formal series Hz(x) = x+hz(x)
linearizing the field Fz(x) = Ax + z f(x) converges for values of z belonging
to some set K∗ ⊂ C of positive capacity.

Consider the subsets Kcρ b C, ρ > 0, c < +∞, defined by the condition

z ∈ Kcρ ⇐⇒ |h(m)
z (0)| 6 cρ−m ∀m ∈ N.
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78 I. Normal forms and desingularization

By this definition, K∗ =
⋃

c,ρ Kcρ, since a Taylor series converges if and only
if satisfies some Cauchy-type estimate. Each of the sets Kcρ obviously is a
compact subset of C, being an intersection of semialgebraic compact sets.

The compacts Kcρ are naturally nested: Kc′ρ′ ⊆ Kcρ if ρ′ > ρ and
c′ < c. Passing to a countable sub-collection, one concludes that the set K of
positive capacity is a countable union of compacts Kcρ. By Proposition 5.35
(see below), one of these compacts must also be of positive capacity. Denote
this compact by K = Kcρ; by its definition,

|h(m)
z | 6 cρ−m, ∀z ∈ K, ∀m ∈ N.

Since the capacity of K is positive, Theorem 5.30 applies. By this theorem
and Lemma 5.31, the polynomial coefficients of the series hz for any z ∈ C
satisfy the inequalities

|h(m)
z | 6 cρ−m exp[(m− 1)GK(z)] 6 c(ρ/ expGK(z))−m, ∀z ∈ C, ∀m ∈ N.

This means that the series hz converges for any z ∈ C in the symmetric
polydisk {|x| < ρ/ expGK(z)}. Together with the asymptotic growth rate
GK(z) ∼ ln |z|+O(1) as z →∞ (see (5.36)) this proves the lower bound on
the convergence radius of Hz. ¤

The dichotomy established in Theorem 5.29 may be instrumental in con-
structing “nonconstructive” examples of diverging linearization series. Con-
sider again the nonresonant case where the homological equation adA g = f
is always formally solvable.

Theorem 5.32 ([Ily79a]). Assume that the formal solution g ∈ D[[Cn, 0]]
of the homological equation adA g = f is divergent.

Then the series linearizing the vector field Fz(x) = Ax+z f(x), diverges
for most values of the parameter z, eventually except for a zero capacity set.

Proof. Assume the contrary, that the linearizing series Hz converges for a
positive capacity set. By Theorem 5.29, it converges then for all values of z,
in particular, hz is holomorphic in some small polydisk {|x| < ρ′, |z| < ρ′′}.

Differentiating (5.33) in z, we see that the derivative g(x) = ∂hz(x)
∂z

∣∣
z=0

is a converging solution of the equation ( ∂g
∂x)Ax − Ag = f , contrary to the

assumption of the theorem. ¤

Remark 5.33. The divergence assumption appearing in Theorem 5.32 can
be easily achieved. Assume that A is a diagonal matrix with the spectrum
{λj}n

1 such that the differences |λj − 〈λ, α〉 | decrease faster than any geo-
metric progression ρ|α| for any nonzero ρ. Assume also that the Taylor
coefficients of f are bounded from below by some geometric progression.
Then the series ad−1

A f diverges.
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It remains to observe that a set of positive measure is necessarily of
positive capacity (Proposition 5.35), hence divergence guaranteed in the as-
sumptions of Theorem 5.32, occurs for almost all z in the measure-theoretic
sense, as stated in [Ily79a].

5H. Capacity and Bernstein inequality. The brief exposition below is based on
[PM01] and the encyclopedic treatise [Tsu59].

Recall that the function ln |z− a|−1 = − ln |z− a| is the electrostatic potential on the
z-plane C ∼= R2, created by a unit charge at the point a ∈ C and harmonic outside a. If µ
is a nonnegative measure (charge distribution) on the compact K b C, then its potential
is the function represented by the integral uµ(z) =

R
K

ln |z− a|−1 dµ(a) and the energy of
this measure is

Eµ(K) =

ZZ
K×K

ln |z − w|−1 dµ(z) dµ(w).

This energy can be either infinite for all measures, or Eµ(K) < +∞ for some nonnegative
measures. In the latter case one can show that among all nonnegative measures normalized
by the condition µ(K) = 1, the (finite) minimal energy E∗(K) = infµ(K)=1 Eµ(K) is
achieved by a unique equilibrium distribution µK . The corresponding potential uK(z) is
called the conductor potential of K.

Definition 5.34. The (harmonic, electrostatic) capacity of the compact K is either zero
(when Eµ = +∞ for any charge distribution on K) or exp(−E∗(K)) > 0 otherwise;

κ(K) =

8<:0, if ∀µ Eµ(K) = +∞,

sup
µ(K)=1, µ>0

exp(−Eµ(K)), otherwise. (5.34)

Proposition 5.35. Capacity of compact sets possesses the following properties :

(1) Countable union of zero capacity sets also has capacity zero.

(2) κ(K) >
p

mes(K)/πe, where mes(K) is the Lebesgue measure of K, in partic-
ular, if K is a set of positive measure, then κ(K) > 0.

(3) If K is a Jordan curve of positive length, then κ(K) > 0.

Proof. All these assertions appear in [Tsu59] as Theorems III.8, III.10 and III.11 re-
spectively. ¤
Proposition 5.36. For compact sets of positive capacity, the conductor potential is har-
monic outside K, and

uK 6 κ−1(K), uK |K = κ−1(K) a.e.,

uK(z) = − ln |z|+ O(|z|−1) as z →∞.
(5.35)

Proof. [Tsu59, Theorem III.12] ¤

As a corollary, we conclude that for sets of the positive capacity there exists the Green
function

GK(z) = κ−1(K)− uK(z) = ln |z|+ κ−1(K) + o(1) as z →∞, (5.36)

nonnegative on CrK, vanishing on K and asymptotic to the fundamental solution of the
Laplace equation with the source at infinity.
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80 I. Normal forms and desingularization

Proof of Theorem 5.30 (Bernstein inequality). Since the assertion is invariant by
multiplication by scalars, it is sufficient to prove for monic polynomials only.

Let p(z) = zr + · · · be a monic polynomial of degree r. Consider the function

g(z) = ln |p(z)| − ln ‖p‖K − rGK(z), z ∈ CrK.

We claim that this function is nonpositive, g 6 0 outside K. Indeed, g is negative near
infinity since g(z) = − ln ‖p‖K − rκ−1(K) + o(1) as z → ∞ by (5.36). On K we have
the obvious inequality ln |p(z)| 6 ln ‖p‖K , and the Green function Gk has zero limit on
K by (5.35). By construction, the function g is harmonic in C rK outside the isolated
zeros of p where it tends to −∞. By the maximum principle, the function g is nonpositive
everywhere, ln |p(z)| 6 ln ‖p‖K + rGK(z) for all z ∈ C rK. After passing to exponents
this nonpositivity proves the theorem. ¤
Example 5.37. Assume that K = [−1, 1] is the unit segment. Its complement is con-
formally mapped into the exterior of the unit disk D = {|w| < 1} by the function

z = 1
2
(w + w−1), w = z +

√
z2 − 1. The Green function GD of the exterior is ln |w|.

Thus we obtain the explicit expression for GK ,

GK = ln
���z +

p
z2 − 1

��� ,
which implies the classical form of the Bernstein inequality,

|p(z)| 6
���z +

p
z2 − 1

���deg p

max
−16z6+1

|p(z)|. (5.37)

Exercises and Problems for §5.

Problem 5.1. Prove that if h is a solution for the homogeneous homological equat-
ion (5.27) with a hyperbolic map f , then H = h(x) ∂

∂x ∈ D(C, 0) is a vector field that
only by a constant factor differs from the generator of the self-map f : f = exp cH,
for some c ∈ C.

Problem 5.2. Supply a detailed proof of the Poincaré theorem for self-maps (The-
orem 5.17).

Exercise 5.3. Let l ∈ R be an irrational number whose rational approximations
have only sub-exponential accuracy,

|l − p
q | > Ce−q1−ε

for some C, ε > 0, (5.38)

and µ = exp 2πil. Prove that for any holomorphic right hand side f the homological
equation

h ◦ µ− µh = f, f ∈ O(C, 0), (5.39)

has an analytic (convergent) solution h ∈ O(C, 0).

Exercise 5.4. Let l ∈ R be an irrational number which admits infinitely many
exponentially accurate rational approximations p/q such that |l − p

q | < e−q. Prove
that for some right hand sides f the homological equation (5.39) has only divergent
solutions (cf. with Remark 5.33).
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6. Finitely generated groups of conformal germs 81

Problem 5.5. Let F = F (x)x ∂
∂x ∈ D(C1, 0) be the germ of a holomorphic vector

field at a singular point of multiplicity k+1 > 2 at the origin, F (x) = xk+1(1+o(1)),
and F′ = F + o(x2k+1) ∈ D(C1, 0) is another such germ with the same 2k + 1-jet.
(i) Prove that these two germs are analytically equivalent if and only if two mero-
morphic 1-forms ω and ω′, dual to F and F′ respectively, are holomorphically
equivalent (cf. with Remark 5.27).
(ii) Show that in the assumptions of the problem, the orders of the poles and the
Laurent parts of the 1-forms ω and ω′ coincide so that the difference ω − ω′ is
holomorphic.
(iii) Passing to the primitives and denoting by ak, . . . , a1, a0 the common Laurent
coefficients of the forms ω, ω′, prove that the equation

ak

yk
+ · · ·+ a1

y
+ a0 ln y + O(y) =

ak

xk
+ · · ·+ a1

x
+ a0 ln x + O(z)

with holomorphic terms O(y) and O(x), admits a holomorphic solution y = y(x)
tangent to identity (substitute y = ux and apply the implicit function theorem to
the function u(x) with u(0) = 1).

Problem 5.6 (Yet another proof of Schröder–Kœnigs theorem; cf. with [CG93]).
Let f ∈ Diff(C, 0) be a contracting hyperbolic holomorphic self-map, f(z) = λz +
· · · , |λ| < 1, and g(z) = λz its linearization (the normal form).

Prove that the sequence of iterations hn = g−◦n ◦ f◦n is defined and converges
in some small disk around the origin. The limit h = lim hn conjugates f and g.

Problem 5.7. Prove Theorem 5.5 along the same lines (M. Villarini).

6. Finitely generated groups of conformal germs

Thus far we have studied classification and certain dynamic properties of
single germs of vector fields and biholomorphisms. However, in §2C we
introduced an important invariant of foliation, the holonomy group of a leaf
L ∈ F with nontrivial fundamental group π1(L, a), a ∈ L. By construction,
the holonomy is a representation of π1(L, a) by conformal germs Diff(τ, a),
where τ is a cross-section to L at a, and the holonomy group G is identified
with the image of that representation. Usually if the fundamental group of
a leaf of a holomorphic foliation is finitely generated, then so is the group
G. We will consider only the case of holomorphic foliations on complex 2-
dimensional surfaces, thus dealing only with finitely generated subgroups of
the group Diff(C, 0) of conformal germs.

In this section we study classification problems for finitely generated
groups of conformal germs and their dynamic properties, focusing on the
properties which will be later used in §11 and §28. In much more detail the
theory is treated in the recent monograph [Lor99].
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82 I. Normal forms and desingularization

6A. Equivalence of finitely generated groups of conformal germs.
The following definition is inspired by Proposition 2.15.

Definition 6.1. Two finitely generated subgroups G,G′ ⊆ Diff(C, 0) are
called analytically (topologically, formally) equivalent if one can choose two
systems of generators G = 〈f1, . . . , fn〉 and G′ = 〈f ′1, . . . , f ′n〉 which are
simultaneously conjugated by the germ of a holomorphic map (homeomor-
phism, formal series) h so that h ◦ fj = f ′j ◦ h for all j = 1, . . . , n.

Remark 6.2. If the generators of two groups are simultaneously conjugated
as below, then the groups are isomorphic in the group theoretic sense. In-
deed, any relation between generators of one group is automatically true in
the second groups and vice versa, since the identical germ id ∈ Diff(C, 0)
can be conjugated only to itself. Thus both groups are isomorphic to the
quotients of the free group on n generators by the isomorphic sets of rela-
tions.

Example 6.3. Two conformal germs f and g from Diff(C, 0) are analyti-
cally, topologically or formally equivalent if and only if the cyclic (commu-
tative) subgroups {f◦Z} and {g◦Z} of Diff(C, 0) generated by these germs
are equivalent in the corresponding sense. In particular, they must be both
finite or both infinite.

It turns out that some very important information on the analytic struc-
ture of the group is encoded in its algebraic properties.

Example 6.4. A generic single conformal germ can be linearized. However,
simultaneous linearization (analytic, formal or topological) of two or more
germs is possible only if the group generated by these germs is commutative.
Indeed, the subgroup generated by any finite number of linear germs fj : z 7→
µjz in Diff(C, 0) is commutative.

The “derivative map”

T : Diff(C, 0) → C∗, T g = dg
dz (0) ∈ C∗, (6.1)

associating with any germ g its multiplicator at the fixed point at the origin,
is a group homomorphism: by the chain rule of differentiation, T (g ◦ f) =
Tg · Tf = Tf · Tg with the kernel equal to the normal subgroup of germs
tangent to the origin, denoted by Diff1(C, 0):

KerT = Diff1(C, 0) = {g ∈ Diff(C, 0) : g(z) = z + O(z2)}. (6.2)

Definition 6.5. Elements of the subgroup Diff1(C, 0) tangent to identity,
are called parabolic germs.
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6. Finitely generated groups of conformal germs 83

The parabolic subgroup Diff1(C, 0) is filtered by the order of contact with
the identity:

Diff1(C, 0)r {id} = A1 tA2 tA3 t · · · ,

Ap = {g ∈ Diff1(C, 0) : g(z) = z · (1 + azp + · · · ), a 6= 0}. (6.3)

The natural index p in the above formulas will be referred to as the level
of a conformal germ g ∈ Ap: this parameter is slightly more convenient
to use than the order of tangency between the germ and identity, equal to
p + 1. One can easily verify that the level is invariant (does not change by
conjugacy g 7→ h ◦ g ◦ h−1, h ∈ Diff(C, 0)).

Example 6.6. If the group G has no nontrivial parabolic germs, i.e.,
G ∩ Diff1(C, 0) = {id}, then T is injective and hence G is necessarily com-
mutative as a group isomorphic to a subgroup of the commutative group C∗.
Moreover, if G is analytically or formally linearizable, then each element g
can be conjugated only with the linear germ x 7→ νgx, νg = Tg ∈ C∗, since
the multiplicators of g and h ◦ g ◦ h−1 necessarily coincide. Yet we wish
to stress that being algebraically isomorphic to a subgroup of C∗ (e.g., an
infinite cyclic subgroup) is not sufficient for linearizability of the group, even
on the formal level.

A simple sufficient condition for simultaneous linearizability (and hence
commutativity) of a finitely generated group is its finiteness.

Theorem 6.7 (Bochner linearization theorem). Any finite subgroup G ⊆
Diff(C, 0) can be linearized : there exists a biholomorphism h ∈ Diff(C, 0)
such that all germs h ◦ g ◦ h−1 are linear,

∀g ∈ G h ◦ g ◦ h−1(x) = νgx, νg = Tg ∈ C∗. (6.4)

Proof. Define the germ of the analytic function h ∈ O(C, 0) by the formula

h =
∑

g∈G

(Tg)−1 · g

in any chart on (C, 0) (note that the addition makes sense only in O(C, 0),
but not in Diff(C, 0)). The germ h has the linear part Th =

∑
g 1 = |G| 6= 0

and is therefore invertible.
By the chain rule T , for any germ f ∈ G we have

h ◦ f =
∑

g∈G

(Tg)−1 · (g ◦ f) = Tf ·
∑

g∈G

(
T (g ◦ f)

)−1 · (g ◦ f)

= Tf ·
∑

g′∈G

(Tg′)−1 · g′ = Tf · h,

which means that h conjugates f with the multiplication by νf = Tf . ¤
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This linearization theorem implies a simple but useful corollary. Re-
call that for nonhyperbolic germs with multiplicators on the unit circle the
problem of convergence of linearizing transformations is in general very dif-
ficult for the nonresonant case; see §5E. The resonant case turns out to be
unexpectedly simple.

Theorem 6.8. A resonant conformal germ f : z 7→ µz + · · · ∈ Diff(C, 0)
with µ ∈ exp 2πiQ, is formally linearizable if and only if it is analytically
linearizable.

Proof. Only one direction of the equivalence is nontrivial. Assume that h
is a formal germ linearizing the germ f . Since the multiplicator µ is a root
of unity, (h ◦ f ◦ h−1)◦n = h ◦ f◦n ◦ h−1 = id for some finite order n. This
means that the formal series h conjugates the holomorphic germ f◦n with
the identity. Yet the only holomorphic map formally equivalent to identity
is the identity itself, hence f◦n = id and thus f is periodic (generates a finite
group). By Theorem 6.7, f is analytically linearizable. ¤

One can replace finiteness of the group in the Linearization Theorem 6.7
by the assumption that all elements of this group have finite order.

Theorem 6.9. A finitely generated subgroup of germs G ⊂ Diff(C, 0) whose
elements all have finite order, is analytically linearizable and finite, hence
commutative and cyclic.

Proof of Theorem 6.9. If the group is noncommutative, then it contains
an element id 6= f ∈ Diff1(C, 0) (cf. with Example 6.6). Such an element
always has an infinite order in contradiction with our assumptions: if f(z) =
z + czp+1 + · · · , c 6= 0, then fn(z) = z + nc zp+1 + · · · 6= id. Thus G must be
commutative.

A commutative group generated by finitely many elements of finite or-
ders, is itself finite. By Theorem 6.7, the group G is analytically conjugate
to a finite multiplicative subgroup of C∗. All such subgroups are cyclic and
generated by appropriate primitive roots of unity. ¤

6B. First steps of formal classification. In this subsection we study
formal classification of finitely generated groups of conformal germs.
6B1. Solvable and metabelian groups. Recall that the commutator [G,G] of
an (abstract) group G is the group generated by all commutators of pairs
of elements [f, g] = f ◦ g ◦ f−1 ◦ g−1; it is a subgroup in G. Moreover, since
T [f, g] = 1, the commutator [G,G] is a subgroup in Diff1(C, 0).
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6. Finitely generated groups of conformal germs 85

A group is solvable, if the decreasing chain of iterated commutators
stabilizes on the trivial group:

G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ G`−1 % G` = {id},
G0 = G, Gk+1 = [Gk, Gk], k = 0, 1, 2, . . . .

(6.5)

If G is commutative (abelian), then ` = 1. Solvable groups with ` = 2 are
called metabelian: their first commutators are commutative.

While for arbitrary groups the index ` may take any finite value, for sub-
groups of Diff(C, 0) the only possibilities are ` = 0, 1 (abelian and metabelian
respectively) or ` = ∞ (for nonsolvable groups). In other words, we have
the following alternative.

Theorem 6.10 (Tits alternative for groups of conformal germs). A finitely
generated subgroup G ⊂ Diff(C, 0) is either metabelian (commutative or
noncommutative), or nonsolvable.

To prove this result, we start with a simple computation (in part ex-
plaining, why the level is more convenient to deal with than the order of
tangency with the identity).

Proposition 6.11. For two germs of different levels p 6= q their commutator
has the level p + q. More specifically, if f(z) = z + azp+1 + · · · , g(z) =
z + bzq+1 + · · · with p, q > 0, then

[f, g](z) = z + ab(p− q)zp+q+1 + · · · . (6.6)

Proof. The identity (6.6) is an assertion on the leading term of the germ of
the function

(
f ◦ g ◦ f−1 ◦ g−1

)
(z)− z ∈ O(C, 0) in any holomoprphic chart

z. This leading term is not changed if we change the local coordinate from
z to t = f−1 ◦ g−1(z). In the new chart z = (g ◦ f)(t) and the leading term
of the difference (f ◦ g)(t)− (g ◦ f)(t) can be computed directly:

(f ◦ g)(t)− (g ◦ f)(t) = t(1 + btq + · · · )(1 + atp(1 + btq + · · · )p + · · · )
− t(1 + atp + · · · )(1 + btq(1 + atp + · · · )q + · · · )
= ba ptp+q+1 − ab qtq+p+1 + · · · .

This proves (6.6). ¤

Remark 6.12. A similar (even easier) computation with q = 0 yields the
following: if g(z) = bz + · · · , b 6= 1, and f as above, then

[f, g](z) = z + a(bp − 1)zp+1 + · · · . (6.7)

This computation immediately implies the following alternative for
groups of conformal germs tangent to identity.
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Lemma 6.13. A finitely generated subgroup G of Diff1(C, 0) is either com-
mutative or nonsolvable.

Proof. If G = G0 contains two germs of different positive levels p 6= q,
p, q > 0 then it also contains the germ of level p + q (again different from
both p and q). Proceeding this way, we construct infinitely many germs of
different levels, all belonging to the commutator G1 = [G,G]. Thus G1 also
contains at least two germs of different levels which allows us to conclude
that all iterated commutators Gk = [Gk−1, Gk−1] are nontrivial.

If all germs in G are of the same level p > 1, then the group is in
fact commutative. Indeed, in this case the commutator of any two germs
f, g ∈ G, if nontrivial, must have the level strictly greater than p (again by
(6.6)), which again leads to nonsolvability. Hence [f, g] should be identity
and the group G commutative. ¤

Theorem 6.10 is now one step away.

Proof of Theorem 6.10. For any group G ⊆ Diff(C, 0) its commuta-
tor G1 = [G,G] belongs to Diff1(C, 0) = kerT and therefore can be ei-
ther trivial (and then G is commutative) or commutative (and then G is
metabelian noncommutative) or nonsolvable (and then G is also nonsolv-
able), by Lemma 6.13. ¤

Remark 6.14. The same argument shows that if G is a subgroup of
Diff(C, 0) disjoint from Diff1(C, 0) (apart from the identical germ), then
G is necessarily commutative, as [G,G] ⊆ G ∩ Diff1(C, 0) = {id}; cf. with
Example 6.6.

6B2. Centralizers and symmetries. Solvable subgroups admit a rather ac-
curate classification on the level of formal equivalence: unless formally lin-
earizable, they are all formally equivalent to subgroups of (twisted) flows
of certain nonhyperbolic vector fields. To establish this fact, we need a
description of symmetries of parabolic germs.

A centralizer of an element g in a group G is the set Z(g) ⊆ G of all
elements f ∈ G commuting with g: Z(g) = {f ∈ G : [f, g] = 0}. One can
instantly verify that the centralizer is a subgroup of G, but in general this
subgroup does not have to be commutative.

A parallel notion for the vector fields is a symmetry : a germ g ∈
Diff(C, 0) is called a symmetry of a vector field F ∈ D(C, 0) (interpreted as
a derivation F of the algebra O(C, 0)), if g∗F = Fg∗, in other words, if g
transforms F into itself. We will (lacking a better term) call g ∈ Diff(C, 0)
an orbital symmetry of a vector field F ∈ D(C, 0), if g conjugates F with its

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



6. Finitely generated groups of conformal germs 87

constant multiple λF , λ ∈ C∗. The construction is identical in the formal
context (i.e., for operators on the ring C[[z]]).

If g is a symmetry of F , then g commutes with any flow map f t = exp tF .
In general, mere commutativity of g and f = expF is not sufficient for g to
be a symmetry of F . Nevertheless, if f is parabolic, the inverse holds.

Recall (Theorem 3.17) that any parabolic germ f ∈ Diff1(C, 0) is for-
mally embeddable: there exists a formal vector field F ∈ D[[C, 0]] such that
f = expF . Without loss of generality we may assume that F is brought to
the formal normal form,

F = Fp,a = zp+1(1 + azp) ∂
∂z , a ∈ C, p ∈ N, (6.8)

where p is equal to the level of f (Theorem 4.24).

Lemma 6.15. If g ∈ Diff(C, 0) is a symmetry of a parabolic germ or a
formal series f = expF ∈ Diff1(C, 0), then g is also the symmetry of the
field F .

Proof. Let A be the algebra of analytic germs O(C, 0) or formal series C[[z]]
respectively (depending on the context).

Consider the operators (automorphisms) g, f ∈ AutA, corresponding to
the self-maps g and f , and denote by F ∈ DerA the derivation corresponding
to the field F ∈ D(C, 0). If g is a symmetry of f , then g commutes with f .

The derivation F can be restored from the isomorphism f by the formal
logarithmic series (3.12),

F = (f − id)− 1
2
(f − id)2 +

1
3
(f − id)3 ∓ · · · ,

which stabilizes on the level of any finite order jets, since the difference f−id
is nilpotent; cf. with Theorem 3.14.

If g commutes with f , then by the above identity g commutes also with
F, that is, the self-map g is a symmetry of the corresponding vector field
F . ¤

Symmetries (generalized and orbital) of a nonhyperbolic vector field can
be easily described. Without loss of generality we can consider only vector
fields in the polynomial normal form (6.8).

Proposition 6.16. A symmetry group of a vector field F = Fp,a is the
subgroup Gp,a ⊂ Diff(C, 0) of the form

Gp,a = {b · exp tFp,a : b ∈ C∗, bp = 1, t ∈ C} ∼= Zp × C. (6.9)

A nontrivial orbital symmetry g with λ 6= 1 may exist only if a = 0
(i.e., if the field is homogeneous), and then the orbital symmetry group is
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88 I. Normal forms and desingularization

the semi-direct product,

G′
p,0 = {b · expFp,0 : b ∈ C∗, t ∈ C} ∼= C∗ oC. (6.10)

Note that the groups Gp,a and G′
p,0 indeed consist of symmetries (resp.,

orbital symmetries) of the field Fp,a in the normal form (6.8). Thus the
description given by Proposition 6.16, is exact.

Corollary 6.17. The centralizer Z(f) of a parabolic element f ∈ Diff1(C, 0)
of level p in the group Diff(C, 0) is formally equivalent to the group Gp,a

∼=
Zp × C of germs of the form (6.9).

Proof. This follows from Proposition 6.16 and Lemma 6.15. ¤

Corollary 6.18. The centralizer of any parabolic element f ∈ Diff(C, 0) is
a commutative subgroup in Diff(C, 0). ¤

Remark 6.19. The orbital symmetry group G′
p,0 is solvable but nonabelian:

the composition law for this group has the form

(b, t) ◦ (b′, t′) = (bb′, tb′−p + t′) 6= (b′, t′) ◦ (b, t). (6.11)

Yet the commutator [G′
p,0, G

′
p,0] consists of all flow maps and hence is com-

mutative.

Proof of Proposition 6.16. Instead of the polynomial normal form (6.8),
we will use the rational normal form

F ′
p,a =

zp+1

1− azp
· ∂

∂z
(6.12)

with the same p ∈ N and a ∈ C: the fields Fp,a and F ′
p,a are analytically

equivalent; see Remark 4.25.
Let g ∈ Diff(C, 0) be an analytic germ, given in some chart z by the germ

of the function w = g(z) ∈ O(C, 0). This germ will be an orbital symmetry
of F ′

p,a if and only if the function w(z) satisfies the ordinary differential
equation

dw

dz
· zp+1

1− azp
= λ · wp+1

1− awp
. (6.13)

This differential equation has separating variables and can be immediately
integrated by reducing it to the Pfaffian form:

(1− azp) dz

zp+1
= λ · (1− awp) dw

wp+1
.

Note that the equality between two meromorphic 1-forms is possible only if
their residues at the origin, equal to−a and−λa respectively, coincide. Thus
a nontrivial (λ 6= 1) orbital symmetry is possible only for a homogeneous
vector field (with a = 0).
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6. Finitely generated groups of conformal germs 89

To find all genuine symmetries (with λ = 1), we integrate the above
identity and obtain the equality

1
pzp

+ a ln z =
1

pwp
+ a lnw − t, (6.14)

where t ∈ C is a constant of integration. Replacing the germ g by another
germ g◦(exp tF ), we can without loss of generality assume that the constant
of integration is equal to zero, t = 0. Since the germ g is analytic, the
solution w can be represented under the form w(z) = z u(z), with an analytic
nonvanishing function u(·). Substituting this ansatz into the above formula,
we arrive at the identity

1
pzp

(1− u(z)−p) = a ln u(z), u(0) 6= 0.

The right hand side is holomorphic at the origin, whereas the left hand side
has a pole unless up ≡ 1, i.e., u(z) ≡ b is a constant (root of unity). Then
we necessarily have a = 0 and the map g must be linear (modulo a flow
map, as mentioned above). ¤

6B3. Formal classification of solvable subgroups. The formal classification of
cyclical abelian groups coincides with that of their generators and was given
in §4I (Theorem 4.26). The first nontrivial classification problem concerns
noncyclical abelian groups.

Theorem 6.20. A commutative group G which contains no nontrivial par-
abolic germs, is formally linearizable, i.e., formally equivalent to a subgroup
of linear maps C∗ ⊂ Diff(C, 0).

Proof. If G contains a germ with a nonresonant multiplicator µ /∈ exp 2πQ,
then such a germ is formally linearizable. By Remark 6.14, the group must
be commutative, yet any germ commuting with the linear map z 7→ µz is
itself linear, as it follows immediately from (6.7).

Thus the only remaining possibility is that TG ⊆ exp 2πiQ. But all
such germs must be periodic, since their appropriate iteration powers must
be parabolic. By Theorem 6.9, this group is analytically linearizable. ¤

We note that the multiplicative group C∗ can be described in a way
similar to (6.9) as the flow group of any hyperbolic germ of vector field, e.g.,
F (z) = z,

C∗ = {g(z) = (exp t) · z : t ∈ C} ⊂ Diff(C, 0). (6.15)

Theorem 6.21 (classification of abelian nonlinearizable groups). If a fi-
nitely generated group G is commutative and contains a nontrivial parabolic
element of some level p, then G is formally equivalent to a subgroup of the
group Gp,a

∼= Zp × C as in (6.9) for some complex a ∈ C.
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90 I. Normal forms and desingularization

Proof of the theorem. Because of the commutativity of the group G, it
must belong to the centralizer (in Diff(C, 0)) of its nontrivial parabolic ele-
ment f which is described in Corollary 6.17. ¤

Theorem 6.22 (classification of noncommutative metabelian groups). Any
metabelian noncommutative group G is formally equivalent to a subgroup of
the group G′

p,0 for some finite level p.

Proof. 1. The parabolic subgroup G1 = G∩Diff1(C, 0) must be commuta-
tive by Lemma 6.13 and nontrivial by Remark 6.14. Therefore G1 belongs to
the centralizer (in Diff1(C, 0)) of any its nontrivial element f ∈ G1 and hence
is formally equivalent to a subgroup of exp(CF ) = {exp tF : t ∈ C}. Without
loss of generality we assume from the very beginning that G1 ⊆ exp(CF ),
where F is a vector field in the formal normal form (6.8).

2. Since G is noncommutative, there exists another element h ∈ G not
commuting with f . Indeed, the centralizer of f in the bigger group Diff(C, 0)
is still commutative by Corollary 6.18. Since G is noncommutative, G r
Z(f) 6= ∅.

3. The subgroup G1 = G ∩ Diff1(C, 0) of parabolic elements of G is a
normal subgroup, hence h ◦ G1 ◦ h−1 ⊆ G1 ⊆ exp(CF ). Thus we conclude
that f ′ = h◦f ◦h−1 = expλF ; by our choice of h, the constant λ is different
from 1. In other words, h is a nontrivial orbital symmetry of the field F .

By the second assertion of Proposition 6.16, F must be homogeneous
and h must belong to the subgroup G′

p,0 as in (6.10).

4. Any other element h′ ∈ G may either commute with f or not. In
the first case by Corollary 6.17 we conclude that h′ ∈ Gp,0 $ G′

p,0. In the
second case h′ ∈ G′

p,0 by the arguments of step 3 above. ¤

Remark 6.23. From the proof of Theorem 6.22 it immediately follows
that a metabelian noncommutative group is analytically equivalent to a
subgroup of C · exp(CFp,0) for some p, if at least one parabolic germ from
G is analytically embeddable.

6C. Integrable germs. Finitely generated groups may possess certain
symmetry. Because of the intimate connections with the geometry of fo-
liations, such groups are called integrable.

Definition 6.24. A symmetry group of the germ of an analytic function u ∈
O(C, 0) is the subgroup Su = {g ∈ Diff(C, 0) : u ◦ g = u} of holomorphisms
preserving u.

Conversely, we say that an analytic germ u is the first integral of a group
G ⊆ Diff(C, 0), if G ⊆ Su. The group G is said then to be integrable.
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6. Finitely generated groups of conformal germs 91

If G is cyclic and generated by a holomorphism g, then we say that u
is a first integral of g. The germ g is integrable if it admits a nontrivial
holomorphic first integral.

Proposition 6.25. An holomorphism is periodic if and only if it is inte-
grable.

More precisely, h ∈ Diff(C, 0) admits a first integral u(z) = czm + · · · ,
c 6= 0, if and only if hk = id, where k divides m.

Proof. A periodic holomorphism h is linearizable by Theorem 6.7 and any
linear map x 7→ νx, νk = 1, has the first integrals u(z) = zm for all m
divisible by k (the case m = 0 is trivial and has to be excluded).

Conversely, if h is integrable and u(z) = zm + · · · is the integral, then
every level set Mc = {u(z) = c} ⊆ (C, 0) in a sufficiently small neighborhood
of 0 consists of exactly m points that are permuted by h. By the Lagrange
theorem, h|Mc is of period k = k(c) that divides m. Let k be the minimal
value such that the set of k-periodic points is infinite. Then the kth iterate
of h is identity by the uniqueness theorem. ¤

From this proposition and Theorem 6.9 we immediately derive the fol-
lowing necessary condition of integrability.

Corollary 6.26. An integrable group is finite cyclic (commutative). ¤

Remark 6.27. Any germ of a holomorphic function u(z) = czm + · · · of
finite order m admits a cyclic symmetry group of order m. The group is
generated by the germ of a self-map f which is the linear rotation by the
primitive root of unity of order m in the holomorphic chart w = z · (c +
· · · )1/m, in which the function itself becomes a monomial.

* * *

Thus far we concentrated on commutative (finite or infinite) and
metabelian groups, which are relatively tame. As was already shown, they
admit simple formal classification based on the formal type of a single non-
trivial parabolic element from the group. Topological classification of solv-
able groups is also relatively simple and can be derived from Theorem 21.2
(see §21) which claims that the only topological invariant of a parabolic
germ is its level. The analytic classification of solvable groups of germs can
be reduced to that of the nontrivial parabolic element as above. The cor-
responding analytic theory is developed in §21 and involves nonpolynomial
normal forms; see Chapter IV. In summary,

(1) dynamics of solvable groups is relatively simple, in particular,
(2) they have no limit cycles, and
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92 I. Normal forms and desingularization

(3) their analytic classification is much finer than the formal one, and
the latter in turn is finer than topological classification.

For nonsolvable groups all of these properties fail. In the remaining part
of this section we will show that a generic (nonsolvable) finitely generated
group:

(1) has dense orbits, among which
(2) there exist countably many (properly defined) complex limit cycles.

Moreover,
(3) generic groups are rigid : two such groups can be topologically

equivalent if and only if they are analytically equivalent.

These phenomena will again manifest themselves for singular holomor-
phic foliations on P2: the subject will be treated in detail in §28.

The term generic in application to finitely generated pseudogroups will
mean the following. We fix the number n (usually 2 or more) of generating
germs and say that a certain property is generic, if it holds for all n-tuples
of germs whose jets of some finite order r belong to a “massive” (say, open
dense or full measure) subset of the total jet space

⊕
n times Jr(C, 0).

Example 6.28. A generic group with n > 2 generators is noncommutative
and, moreover, nonsolvable.

Indeed, both generators generically are hyperbolic (their multiplicators
are off the unit circle). Since the above definition of genericity does not
depend on the choice of the chart, without loss of generality, we may as-
sume that one of the generators, f1, is linear hyperbolic. The group will be
noncommutative if the second generator f2 in this chart is nonlinear (the
second Taylor coefficient of f2 is nonzero).

The commutator h = [f1, f2] will be a parabolic element which is gener-
ically of level 1 (i.e., tangent to identity with a quadratic nonlinearity).
Another parabolic element of level 1 is the commutator [f1, h]. One can
show that generically [[f1, h], h] will be nonzero and hence, by (6.6), have
level 2 or more, which would imply nonsolvability.

Usually we will omit routine checks that a certain collection of require-
ments is fulfilled for a generic finite generated group: in more details various
properties determined by finite or infinite order jets, will be discussed in §10,
where the notion of decidable properties will be introduced.

6D. Dynamics generated by finitely generated groups of germs:
pseudogroups. We need first to introduce a proper language for describing
dynamical properties of finitely generated groups of conformal germs.
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6. Finitely generated groups of conformal germs 93

If a group G acts (in an abstract manner) on a space X, then the orbit of
a point x ∈ X is defined as the subset G(x) = {g ·x : g ∈ G} ⊆ X. However,
if the elements of the group are not defined on the whole space X, then the
definition of an orbit requires appropriate modification.

This caveat is especially important when G is the holonomy group of
a holomorphic foliation. By the very definition of holonomy, if a point
a ∈ τ on the cross-section belongs to the domain of the holonomy map ∆γ ,
then the points a and b = ∆γ(a) belong to the same leaf of the foliation.
Thus orbits of the holonomy group understood as images of all well-defined
holonomy maps, describe intersection of leaves of the foliation with a fixed
cross-section.

We introduce a relaxed notion of a pseudogroup which differs from a
group by the fact that the composition is not always defined. For our pur-
poses it is sufficient to define pseudogroups of holomorphic maps whose
domains are open subsets of C containing a common fixed point (the ori-
gin); the modification for the general case can be made following the same
lines.

Definition 6.29. Let U be a neighborhood of the origin in C and G ⊆
Diff(C, 0) an arbitrary subgroup of the group of germs. A pseudogroup Γ
associated with G is a collection of pairs (fα, Uα), indexed by some index set
α ∈ A, such that Uα ⊆ U is an open set containing the origin, fα : Uα → U
is a holomorphic map defined (at least) in Uα and the group G consists of
the germs at the origin of all maps fα from the pseudogroup Γ .

Composition of two elements (fα, Uα) and (fβ, Uβ) is defined as the pair
(fα ◦ fβ, Uαβ) if and only if Uαβ ⊆ Uβ and fβ(Uαβ) ⊆ Uα.

In other words, each conformal germ f̂ ∈ G (in particular, the neutral
element îd ∈ G) is represented by many different maps fα with different, in
general, domains (of course, the maps coincide on the pairwise intersections
of their domains).

The natural way to associate a pseudogroup Γ with any finitely gen-
erated group G =

〈
f̂1, . . . , f̂r

〉 ⊂ Diff(C, 0) is as follows (we temporarily
use the hats to distinguish between germs at the origin and holomorphic
maps). Choose any collection of representatives f±j : Uj → C, j = 0, . . . , r,
of the germs f̂±1

1 , . . . , f̂±1
r generating G. Then with an arbitrary word

w = (w±jn
w±jn−1

· · ·w±j2w±j1) ∈ Fr (an element in the free group on r sym-
bols, written from right to left) we can associate the conformal map fw as
the composition f±jn

◦ f±jn−1
◦ · · · ◦ f±j2 ◦ f±j1 defined in the maximal domain

Uw on which all partial compositions

fj1 = f±j1 , fj2j1 = f±j2 ◦ f±j1 , . . . , fjn...j1 = f±jn
◦ · · · ◦ f±j2 ◦ f±j1
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94 I. Normal forms and desingularization

are well defined. Associating this domain (obviously, open and containing
the origin) with the map fjn...j1 = fw representing the respective germ f̂w,
we obtain a pseudogroup. Choosing a different collection of the initial do-
mains U1, . . . , Ur formally results in a different pseudogroup, though most
properties would not be affected.

If there are nontrivial identities in the group G, then the same germ
admits several representatives with eventually different domains. To distin-
guish between such elements, we will remember together with each element
(fα, Uα) ∈ Γ of the pseudogroup Γ the corresponding word wα in the free
group Fr. The corresponding collection of triples

{(fw, Uw, w) : w ∈ Fr, fw ∈ O(Uw)} = ΛG

will be called the pseudogroup associated with the finitely generated group of
conformal germs. A triple (element of the pseudogroup) is nontrivial, if the
corresponding word w is nontrivial in Fr, even if fw = id |Uw . Yet in most
cases we will omit the third component to simplify the notation.

Remark 6.30. In order to avoid technical problems, we will always assume
that if (f, U) belongs to a pseudogroup Γ , then all restrictions (f |V , V ) for
V ⊆ U , also belong to Γ .

For a pseudogroup Γ the notion of an orbit of a point can be introduced
without any complications. A “periodic” orbit is naturally called a cycle.

Definition 6.31. The orbit of a point x ∈ U by a pseudogroup Γ is the set
Γ (x) of all points fα(x) for all elements (fα, Uα) ∈ Γ such that x ∈ Uα.

Definition 6.32. The point x 6= 0 is called a cycle, if it is fixed by a
nontrivial element (fα, Uα) of the pseudogroup, i.e., x ∈ Uα and fα(x) = x
(thus for a cyclic group all points are cycles). The cycle is limit (in full, a
complex limit cycle of a pseudogroup), if x is an isolated fixed point of fα

in Uα.

The notion of equivalence of groups of conformal germs translates natu-
rally into equivalence of pseudogroups. Two pseudogroups Γ, Γ ′ are equiv-
alent if there exists a conformal biholomorphism h : (U, 0) → (U ′, 0) such
that Γ ′ consists of all pairs

(
h ◦ fα ◦ h−1, h(Uα)

)
such that (fα, Uα) ∈ Γ

(subject to the technical convention from Remark 6.30). Clearly, equivalent
pseudogroups have identical dynamical properties.

6E. Periodic orbits and periodic germs. To illustrate the usefulness
of the notion of a pseudogroup, we establish simple dynamic properties of
periodic (and aperiodic) germs.
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6. Finitely generated groups of conformal germs 95

Periodicity of a germ ĝ ∈ Diff(C, 0) (meaning that ĝn = id) implies that
all g-orbits are periodic (cycles) for any representative g of ĝ. The inverse
statement is less obvious.

Let ĝ ∈ Diff(C, 0) be a conformal germ that admits a representative
g defined in an open set V containing the origin. For any set U ⊆ V
consider the restriction g|U and the “cyclical” pseudogroup ΓU generated
by the element (g, U). For an arbitrary point x ∈ U denote by Γ (x|U) the
ΓU -orbit of the point x: by definition,

Γ (x|U) = {gn(x) : n ∈ Z, and for all k between 0 and n, gk(x) ∈ U}.
The orbit may be finite, in which case it consists of the consecutive iterates

g−n(x), g−n+1(x), . . . , g−1(x), x, g(x), . . . , gm−1(x), gm(x)

for some n,m > 0, or infinite in one or both directions. We consider only
maximal orbits, i.e., assume that g−n−1(x) and gm+1(x) already do not
belong to U if n (resp., m) is finite. Note that the infinite orbit may consist
of finitely many distinct points (if and only if the orbit is periodic).

Consider the integer-valued function ν(x) defined as the length of the
maximal orbit,

ν(x) = ν(x|U) = max{m + n : g−n(x), . . . , x, . . . , gm(x) ∈ U}. (6.16)

If the orbit is infinite, we set ν(x) = +∞. By construction, the function ν
is constant along orbits of g.

The continuity of g implies semicontinuity of the function ν: if U is
open and ν(x) < +∞, then for all y ∈ U sufficiently close to x, ν(y) > ν(x).
Conversely, if U is a closed subset of V and ν(x) is finite, then for all y ∈ U
sufficiently close to x, ν(y) 6 ν(x). In the latter case if x is a point of
discontinuity for ν, then the orbit Γ (x|U) intersects the boundary ∂U . All
these properties are immediate (Exercise 6.2).

Lemma 6.33. If the germ g ∈ Diff(C, 0) is aperiodic, i.e., if the cyclic
group G = {gZ} is infinite, then for any small open domain U 3 0 there are
uncountably many infinite aperiodic orbits Γ (x|U).

Proof. Consider an arbitrary closed circular disk Dρ = {|x| 6 ρ} and its
boundary circle Kρ = ∂Dρ, ρ > 0.

1. We prove that there are uncountably many points on Dρ with infinite
orbits in Dρ. To that end, we will show that on each circle Kr, r 6 ρ, there
is at least one point with an infinite orbit in Dr ⊆ Dρ. Since the number
of different circles which can intersect any given orbit is at most countable,
this will prove that the number of infinite orbits in uncountable.

Assume that all points on the circumference Kr have finite orbits in Dr,
i.e., the corresponding length function ν(·) = νDr(·) takes only finite values
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96 I. Normal forms and desingularization

on Kr. Since Kr is compact, this means that ν is bounded from above on
Kr, and all orbits intersecting the boundary, are finite and no longer than
some finite number N ∈ N.

On the other hand, since g(0) = 0, the orbit of the origin x = 0 is infinite
and ν(0) = +∞. Because of the semicontinuity of ν on the connected disk
Dr, the function ν must have a discontinuity point y ∈ Dr r Kr with the
value ν(y) strictly greater than N somewhere in the interior of Dr. Yet
this means that the orbit Γ (y|Dr) which is longer than N , intersects the
boundary Kr. Since ν is constant along orbits, this contradicts the choice
of N as the upper bound of ν on Kr.

2. To complete the proof of the lemma, note that the set of points with
infinite orbits is the union of periodic points and the infinite aperiodic orbits.
For each finite n, the n-periodic points inside Dr are roots of the equation
gn(x)− x = 0 and form a finite subset of Dr by the uniqueness theorem for
the analytic germ gn. The union of these finite sets is at most countable.
Therefore the complement, the union of infinite aperiodic orbits in Dr, is
uncountable. ¤

Thus we have the following alternative.

Theorem 6.34. Any finitely generated group G ⊂ Diff(C, 0) is either inte-
grable, or any pseudogroup associated with G has uncountably many infinite
aperiodic orbits.

Proof. If G includes an aperiodic germ g, then this germ has uncountably
many aperiodic orbits by Lemma 6.33. Conversely, if all elements of G are
of finite order, then by Theorem 6.9 the group is finite and cyclic, hence
linearizable. Its integrability follows from Proposition 6.25. ¤

6F. Closure of a pseudogroup and density of orbits. Once a group of
conformal germs is replaced by the pseudogroup, one can define the notions
of convergence, closure, etc.

Definition 6.35. A sequence of elements {(fj , Uj)}∞j=1 of a pseudogroup Γ

converges to an element (g∗, U∗) ∈ Γ , if U∗ ⊆ Uj for all j (starting from
some number) and the restrictions fj |U∗ converge uniformly to g∗ there.

The closure of a pseudogroup Γ is the collection of all limits of converging
sequences of elements from Γ .

Clearly, the closure is again a pseudogroup, denoted by Γ . The following
statement is proved by the standard approximation arguments.

Proposition 6.36. Let Γ be a pseudogroup of conformal maps and Γ its
closure. If the orbit Γ (x) of some point is dense in an open domain U , then
the orbit Γ (x) of the initial pseudogroup is also dense there. ¤
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6. Finitely generated groups of conformal germs 97

This proposition is especially useful when the closure of a pseudogroup
contains a sub-pseudogroup with dense orbits. This happens, as we will
show, when the group of germs G contains a pair of hyperbolic germs with
the multiplicators generating a dense lattice of points in C.

By Schröder–Kœnigs Theorem 5.18, a hyperbolic germ is always lin-
earizable: there exists a biholomorphism h conjugating g with the linear
map x 7→ µx. Replacing the pseudogroup Γ by an equivalent one, we may
assume from the very beginning that Γ contains a linear hyperbolic map.

Consider again the multiplicator homomorphisms T : G → C∗ and
T : Γ → C∗ mapping each germ fα ∈ G (resp., element (fα, Uα) ∈ Γ )
into its multiplicator at the origin (defined independently of the choice of a
chart). Denote the image of this application by ΛG or ΛΓ respectively: this
is a multiplicative subgroup of C∗.

Theorem 6.37. If the pseudogroup Γ = {(fα, Uα)} contains a linear hy-
perbolic map (µ0x,U0), |µ0| 6= 1, then the closure Γ contains also all linear
maps (µαx, 1

2Uα) for all µα = dfα(0)/dx ∈ ΛΓ .

Proof. Since Γ is a pseudogroup associated with a group G which together
with each germ contains its inverse, without loss of generality, we may as-
sume that the multiplicator µ0 denoted for brevity by µ, is contracting as a
linear map, |µ| < 1.

Let (g, V ) ∈ Γ be an arbitrary element. By Remark 6.30 we may assume
that V is a circular disk, so that µV ⊂ V . Hence all the elements (gn, V ),
gn = µ−n ◦ g ◦ µn, belong to Γ for all n > 0 (i.e., these compositions are all
defined in V ).

Expanding g into the Taylor series converging in V as g(x) =
∑∞

k=1 akx
k,

a1 = λ, we conclude that the kth Taylor coefficient of gn is akµ
(k−1)n. As

n → +∞, this tends to zero for all k > 2, which means that the elements
gn converge uniformly to the linear map (λx, V ′) for any V ′ b V . ¤

In the future we will often require the following condition imposed either
on groups of conformal germs, or on the associated pseudogroups of maps.

Definition 6.38. A finitely generated group G ⊂ Diff(C1, 0) (resp., a
pseudogroup Γ ) satisfies the density condition if the multiplicative subgroup
ΛG (resp., ΛΓ ) generated by multiplicators of all germs (resp., maps) is dense
in the multiplicative group C∗:

ΛG = C ⊃ C∗, resp., ΛΓ = C ⊃ C∗. (6.17)

Example 6.39 (Closed subgroups of C∗). Consider the exponential map
exp 2πi : C→ C∗, λ 7→ exp(2πiλ), which is a topological nonramified cover-
ing, and finitely generated (multiplicative) subgroup ⊆ C∗. The preimage of
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G by this map is a lattice of points L, a Z-module in C ∼= R2, which always
contains the unity (and hence all the integers Z): this lattice is generated by
1 and logarithms λj = 1

2πi lnµj , j = 1, . . . , n, of the generators µ1, . . . , µn of
G. Obviously, G is dense in C∗ if and only if L is dense in C.

The closed lattices of points in C can be easily described: they can be
only discrete (i.e., contain 0 as an isolated point) isomorphic to Z+λ1Z, the
union of parallel translates of a line Z+λ1R or R+λ1Z, and the whole plane
C. The latter case is generic if the number of generators is three or more
(it is sufficient to demand that the three generators are nonresonant, i.e.,
n0 + n1λ1 + n2λ2 never represents zero for a nontrivial choice of coefficients
n0, n1, n2). This implies that generically a multiplicative subgroup generated
by two generators µ1, µ2 ∈ C∗ is dense.

Other types of closed sublattices of points in C produce the following
closed subgroups of C∗ (for the sake of completeness we include C∗ as well):

(1) C∗ (the entire group);
(2) Zp × R∗+, 1 6 p < ∞ (finite number of spirals that eventually

degenerate into rays);
(3) 2Z × T (infinite many circles with the radii forming a geometric

progression);
(4) Zp × 2Z (finite number of complex geometric progressions).

In this list 2Z stands for the infinite cyclic multiplicative subgroup of C∗,
T = {|µ| = 1} ∼= R/Z is the unit circle (considered as the a multiplicative
group) and Zp ⊂ T is the group of roots of unity of degree p.

Example 6.39 explains why the density condition (6.17) is generic: for
any n > 2 the tuple of germs (f1, . . . , fn), fj ∈ Diff(C, 0) such that the
group generated by f±1

j satisfies (6.17), form a dense subset in the space of
all tuples

(
Diff(C, 0)

)n.

Corollary 6.40 (Density theorem for generic pseudogroups). If a pseudo-
group Γ satisfies the density condition (6.17), then for any x ∈ U there
exists a small neighborhood V such that the orbit Γ (x) is dense in V .

Proof of the corollary. If two multiplicators generate a dense subgroup
of C∗, then both of them should be hyperbolic (off the unit circle), hence
the closure of Γ contains two linear maps x 7→ µjx, j = 1, 2, defined in two
disks U1, U2.

By Proposition 6.36, to show density of orbits of the initial pseudogroup
Γ it is sufficient to prove that the orbits of the pseudogroup generated by
the two linear maps are dense.
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6. Finitely generated groups of conformal germs 99

Given any linear map x 7→ µx, we can find a product
∏

µ±1
1,2 approxi-

mating µ with any degree of accuracy by (6.17). Using commutativity of
C∗, we can always rearrange the factors in this product so that all contract-
ing terms come first and the expanding terms after. This would guarantee
that the composition of the respective linear maps is well defined in the
pseudogroup. ¤

6G. Abundance of limit cycles for generic pseudogroups. Under the
density assumptions one can show that a noncommutative pseudogroup has
infinitely many distinct complex limit cycles accumulating to the origin.

Theorem 6.41. A noncommutative finitely generated pseudogroup of con-
formal maps meeting the density condition, possesses infinitely many limit
cycles accumulating to the origin.

Both assumptions of the theorem (density condition and noncommuta-
tivity) are obviously generic.

Proof. Consider the maps of the pseudogroup Γ in the canonical chart
linearizing one (hence all) hyperbolic germs belonging to it. Being non-
commutative, Γ contains a nonidentical map (f, U) with multiplicator 1.
Rescaling the canonical chart, we may assume that U is large enough to
contain the unit disk: D = {|z| 6 1} b U , f(0) = 0, f(z) − z 6≡ 0. The
ratio f(z)/z is a nonconstant holomorphic function that takes at least two
distinct values, 1 (at the origin) and µ 6= 1 at some other point a. Without
loss of generality we may assume that |a| < 1

3 .
By Theorem 6.37 and the density condition (6.17), the closure of the

pseudogroup contains the linear map g(z) = µz defined on 1
2D, i.e., there

exists an element h ∈ Γ of the pseudogroup approximating g with arbitrary
high accuracy on 1

2D. The function f(z) − g(z) has at least two isolated
roots (z = 0 and z = a) in 1

2D; by the argument principle, f(z) − h(z) has
at least the same number of roots in this domain if the approximation is
accurate enough. In other words, the map f−1 ◦ h has at least two isolated
fixed points in 1

2D, one at the origin, the other elsewhere. The latter point
is the limit cycle.

Clearly, this construction can be repeated with U replaced by an ar-
bitrarily small neighborhood of the origin. This shows that limit cycles
accumulate to the origin, as asserted by the theorem. ¤

Remark 6.42. Theoretically, all limit cycles constructed in the proof of
Theorem 6.41, can belong to a single orbit of the pseudogroup.
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6H. Rigidity of finitely generated groups of conformal germs. The
term “rigidity” will repeatedly appear in this book in connection with vari-
ous phenomena sharing a common feature that “weaker equivalence implies
stronger equivalence”. Rigidity appears in the context where we consider
objects for which there is a hierarchy of equivalence relations of various
strength (topological, differentiable, holomorphic). An object is rigid when
any weaker equivalence between it and any other object means that the two
objects are strongly equivalent.

One rigidity-type result was already observed in Remark 4.6, when
weaker (formal) equivalence automatically implies analytic equivalence.

In general, however, rigidity deals with an interplay between topological
and stronger (smooth, analytic, etc.) classifications. In this more restricted
context rigidity means that there is no way to change the weak structure
(topology) in a nontrivial way (i.e., without changing all other, finer struc-
tures of the object).

Example 6.43. The sphere is rigid in the class of Riemann surfaces: any
other Riemann surface topologically equivalent to the sphere, is conformally
equivalent to it.

All the way around, the tori are not rigid: a two-dimensional torus T2

has conformal invariants.

The simplest rigidity-type property can be observed for finitely generated
groups of conformal germs.

Definition 6.44. A finitely generated group of germs G ⊂ Diff(C, 0) is
called rigid, or topologically rigid, if any germ of a homeomorphism h topo-
logically conjugating G with another group G′ ⊂ Diff(C, 0) is necessarily
conformal, h ∈ Diff(C, 0).

Sufficient conditions for rigidity are the same as for Theorem 6.41 on
abundance of limit cycles.

Theorem 6.45 (Rigidity theorem for groups of conformal germs). A non-
commutative finitely generated pseudogroup Γ of conformal maps meeting
the density condition, is rigid.

Moreover, if Γ ′t is a family of pseudogroups analytically depending on
a complex parameter t ∈ U ⊂ Cp and topologically equivalent to the
pseudogroup Γ with the above listed properties for all t, then there exists
a holomorphic conjugacy ht : (C1, 0) → (C1, 0) between Γ ′t and Γ which an-
alytically depends on t.

We start the proof of Theorem 6.45 by analyzing topological conjugacies
between dense subgroups of the commutative multiplicative group C∗.
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6. Finitely generated groups of conformal germs 101

Proposition 6.46. Let G,G′ ⊆ C∗ be two finitely generated dense subgroups
topologically conjugated by a homeomorphism h : (C, 0) → (C, 0) preserving
the orientation.

Then h(z) = cz |z|β for some complex numbers c ∈ C∗ and β ∈ C.

Proof. The topological conjugacy between the groups means that there
exists a multiplicative group isomorphism A : G → G′ ⊆ C∗ and a homeo-
morphism h : (C, 0) → (C, 0) such that

h(µz) = A(µ)h(z), ∀z ∈ (C, 0), ∀µ ∈ G. (6.18)

1. We claim first that A(µ) = µ |µ|β for some complex value of β ∈ C.
The automorphism A satisfies the multiplicativity condition

A(µν) = A(µ)A(ν), ∀µ, ν ∈ G, hence A(1) = 1, (6.19)

and the functional equation (6.18) implies immediately that both A and its
inverse are continuous as complex-valued functions of µ. Thus without loss
of generality we may assume that A (resp., A−1) is defined on the closed
subgroups G, resp., G′, i.e., A : C∗ → C∗ is a homeomorphism.

2. Intuitively, the functional equation (6.19) becomes additive after pass-
ing to logarithms. Yet since the logarithm is multivalued, one has to exer-
cise some extra care. In the special case where G = C∗, one can choose the
continuous branch of logarithm. More precisely, there exists a continuous
complex function Â : C → C which covers the automorphism A : C∗ → C∗
by the exponential map:

A(exp 2πiw) = exp 2πiÂ(w), w ∈ C. (6.20)

If normalized by the condition Â(0) = 0, it becomes uniquely defined and
the multiplicative identity (6.19) implies that Â is additive modulo Z,

Â(λ + λ′) = Â(λ) + Â(λ′) mod Z ∀λ, λ′ ∈ C.

The integer number N(λ, λ′) = Â(λ + λ′) − Â(λ) − Â(λ′) is a continuous,
hence constant function of (λ, λ′) ∈ C2: because of the normalizing condition
Â(0) = 0 we have N(0, 0) = 0 and therefore the application Â is truly
additive,

Â(λ + λ′) = Â(λ) + Â(λ′), ∀λ, λ′ ∈ C. (6.21)

This additivity implies that m · Â( 1
mλ) = Â(λ) for any natural m; since Â is

one-to-one, we conclude that Â( 1
mλ) = 1

mÂ(λ) and therefore Â is Q-linear
map of C into itself. Finally, the continuity of Â means that Â is an R-linear
automorphism of C ∼= R2. Any such automorphism necessarily has the form

Â(λ) = aλ + bλ, for some a, b ∈ C, |a| 6= |b|. (6.22)

The orientation is preserved if |a| > |b| and reverted otherwise.
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The R-linear map Â covers the multiplicative map A by the logarithmic
covering λ 7→ µ = exp 2πiλ. Therefore Â(1) must be an integer number
n ∈ Z. This means that

Â(λ) = nλ + 1
2β(λ− λ), (6.23)

for some β ∈ C, and hence

A(µ) = exp 2πi

{
n · ln µ

2πi
+

β

2

[
ln µ

2πi
−

(
lnµ

2πi

)]}

= µn exp β
2

[
ln µ + ln µ̄

]
= µn |µ|β.

It remains to notice that by (6.18) the map A must be an orientation-
preserving homeomorphism, which leaves only one possibility, n = 1. This
proves the equality A(µ) = µ |µ|β.

3. If the homeomorphism h solving the functional equation (6.18) is
represented under the form h(z) = z |z|βf(z) with the same β as before
and some complex-valued function f continuous on (C∗, 0), then from the
functional equation (6.18) we obtain after cancellation of all terms the trivial
“functional equation” on f ,

f(µz) = f(z), ∀µ ∈ G, z ∈ (C, 0).

Since G is dense in C∗, we conclude that f(z) ≡ c 6= 0 must be a constant.
This completes the proof of the proposition. ¤
Remark 6.47. Passing to a different chart in the preimage or the image,
one can always assume that c = 1.

Remark 6.48. If h is a homeomorphism reverting the orientation and
topologically conjugating G with G′ as in (6.18), then A(µ) = µ̄ |µ|β and
h(z) = cz̄ |z|β. This corresponds to the case n = −1 in (6.23). To prove
that, it is sufficient to replace h(z) by h̄(z) = h(z̄) which is an orientation-
preserving homeomorphism conjugating the two groups Ḡ, Ḡ′ ⊆ C∗ obtained
from G and G′ by conjugation with the mirror symmetry z 7→ z̄.

Remark 6.49. From the proof of Proposition 6.46 it follows that two dense
multiplicative subgroups 〈µ1, . . . , µn〉 and 〈µ′1, . . . , µ′n〉 are topologically con-
jugate if and only if there exists an R-linear map Â : C → C which takes 1
to 1 and establishes a one-to-one correspondence between logarithms of the
generators modulo integers for some choice of the branch of logarithm:

Âλj = λ′j mod Z, λj =
ln µj

2πi
mod Z, λ′j =

ln µ′j
2πi

mod Z. (6.24)

From this observation and the topological invariance of the holonomy at
infinity we can already conclude that the topological classification of certain
classes of foliations is nondiscrete.
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6. Finitely generated groups of conformal germs 103

Now we can prove the main result of this subsection, the Rigidity theo-
rem for finitely generated groups of conformal germs.

Proof of Theorem 6.45. Let G = 〈f1, . . . , fn〉 and G′ = 〈f ′1, . . . , f ′n〉 be
two topologically conjugated noncommutative groups of germs with G sat-
isfying the density condition 6.17. Without loss of generality we may assume
that f1 is hyperbolic, and the corresponding multiplicator µ1 has modulus
less than 1.

1. Consider the germ f ′1 ∈ G′ conjugated by h with f1. This germ is
also hyperbolic, moreover, we can easily see that |µ′1| < 1. Indeed, choose
representatives of f1, f ′1 defined in small topological disks U and U ′ = h(U)
respectively, so small that f1(U) b U . Then f ′1(U

′) b U ′ and by the Schwarz
lemma, |µ′1| < 1.

2. If a homeomorphism h conjugates G with G′, then a representative of
h conjugates (topologically) the corresponding pseudogroups Γ and Γ ′ and
also the respective closures Γ and Γ ′. By Theorem 6.37, each closure con-
tains a dense subgroup of the multiplicative group C∗. Thus a representative
of h topologically conjugates two dense subgroups as in Proposition 6.46.

3. Applying Proposition 6.46, we obtain an explicit description of the
conjugating homeomorphism h: there exist holomorphic charts on U and U ′

(linearizing the hyperbolic germs f1, f
′
1 respectively) in which h(z) = z |z|β.

4. If the commutator [G,G] is nontrivial, it must contain a para-
bolic germ f(z) = z + azn+1 + · · · ∈ Diff1(C, 0) which is conjugated by
a homeomorphism h(z) = z |z|β with another parabolic element f ′(z′) =
z′ + a′z′n

′+1 + · · · ∈ [G′, G′]. Clearly, n = n′ since this number is a topolog-
ical invariant of germs (related to the number of petals; see §21). We will
show that β = 0 so that h(z) = z.

To see this, we substitute the explicit form h(z) = z |z|β found in Propo-
sition 6.46 into the conjugacy equation h ◦ f = f ′ ◦ h. After substitution,
division by z |z|β and subtraction of 1 from each side we obtain the equation

zn[a + β
2 (a + ā)] + · · · = a′zn |z|nβ + · · ·

where the dots stay for the terms decreasing as |z| → 0 faster than the terms
explicitly written on each side. Note that the principal term of left hand
side after restriction on each circle |z| = r is a trigonometric polynomial of
degree n, whereas the principal part of the right hand side is a trigonometric
polynomial of the same degree n only if β = 0. Thus h(z) = z is a linear,
hence holomorphic, map.

5. To prove that the conjugacy h analytically depends on additional
parameters t, we proceed as follows. The condition that h(z) = cz conjugates
any generator fj,t with f ′j,t translates into an infinite number of analytic
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conditions on c and t. Thus the entire set Q = {(t, c) : fj,t(cz) = cf ′j,t(z), j =
1, . . . , r} is analytic near the point (0, 1). If ft(z) = z + atz

n+1 + · · · is
conjugate with f ′t(z) = z+a′tzn+1+· · · , and a0a

′
0 6= 0, then Q ⊆ {cn = a′t/at}

(equating the coefficients before zn+1). The latter analytic set consists of n
analytic branches c = ck(t), k = 1, . . . , n. Since these branches are locally
irreducible and Q ∩ {t = const} is nonempty for all t, the set Q contains
at least one such branch. This branch gives the holomorphic dependence of
h(z) = c(t) z on t.

The proof of Theorem 6.45 is complete. ¤
6I. Relaxing the genericity assumptions. Though the assumptions of noncommuta-
tivity and density required in Theorems 6.41 and 6.45 are generic, they fail for some impor-
tant classes of finitely generated groups. For instance, the density condition fails for groups
with resonant multiplicators; such groups constitute a dense subspace in Diff(C1, 0).

Yet the assumptions of the above theorems can be relaxed to an open and dense
condition of nonsolvability ; see Example 6.28. We formulate here without proofs several
results in this direction.

Theorem 6.50 (A. Shcherbakov [Shc84], I. Nakai [Nak94]). A nonsolvable finitely gen-
erated group G ⊂ Diff(C1, 0) is rigid.

The following result suggests that certain rigidity-like properties may occur even in
the infinite cyclic subgroups. Recall that a germ is called elliptic, if its multiplicator µ has
modulus one: µ = exp 2πiϕ, ϕ ∈ R/Z.

Theorem 6.51 (V. A. Năıshul [Năı82]; see also [GLCP96]). Suppose that two elliptic
germs of conformal maps f, f ′ ∈ Diff(C, 0) are topologically conjugate by an orientation-
preserving homeomorphism. Then the multiplicators of f and f ′ coincide.

This theorem is relatively easy in the case where the multiplicators are roots of unity
or Diophantine irrationalities (cf. with §5E). The real difficulties occur in the Cremer case.

Nonsolvability turns out also sufficient for existence of infinitely many limit cycles.

Theorem 6.52 (A. Shcherbakov [Shc86]; see also [BLL97] and [SRO98]). A nonsolv-
able finitely generated group G ⊂ Diff(C1, 0) possesses infinitely many complex limit cycles
accumulating to the origin.

The density of orbits obviously fails under the single nonsolvability assumption. For
instance, if a group G ⊂ Diff(C1, 0) consists of real (i.e., preserving R) germs with positive
multiplicators, then any orbit starting in the upper (resp., lower) open half-plane, remains
in the same half-plane forever and hence cannot be dense. Yet this is the only possible
deviation from the density pattern.

Theorem 6.53 (I. Nakai [Nak94], a weaker result was proved in [Shc82]). If G is
a nonsolvable subgroup of Diff(C1, 0), then there exits the germ of a real analytic curve
K $ (C1, 0) ∼= (R2, 0) invariant by G, such that orbits of any pseudogroup Γ associated

with G are dense in the connected components (sectors) of (C1, 0)rK.

Exercises and Problems for §6.

Exercise 6.1. Prove the rigidity assertions from Example 6.43.

Exercise 6.2. Prove the properties of the length function ν introduced in §6E.
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7. Holomorphic invariant manifolds 105

Problem 6.3. Compute all holonomy maps of an integrable foliation {du = 0},
u ∈ O(C2, 0), if u =

∏
u

pj

j is the primary decomposition of the holomorphic germ
u with irreducible factors uj and natural exponents pj ∈ N.

Problem 6.4. Prove that a formally integrable holomorphic self-map (or a finitely
generated group G of holomorphic germs of self-maps from Diff(C, 0)) is also ana-
lytically integrable; cf. with Theorem 6.8.

Suggestion. Use the formal chart in which û(z) = zm.

Problem 6.5. Prove that an (orbital) symmetry of a holomorphic vector field on
(C, 0) is necessary holomorphic itself.

Problem 6.6. Construct a finitely generated subgroup G ⊂ Diff(C, 0), whose
orbits are dense in each of the two half-planes {± Im z > 0} separately, yet both
half-planes are invariant by G.

Generalize this example and find a group whose orbits are dense in each of 2p
invariant sectors in (C, 0) for any p > 1 (cf. with Theorem 6.53).

Problem 6.7 (formal rigidity of generic groups). Assume that two finitely gener-
ated subgroups G,G′ ⊆ Diff(C, 0) are formally equivalent and one of these groups
contains a hyperbolic germ. Prove that in such case G and G′ are holomorphically
equivalent, moreover, any formal conjugacy between them is necessarily holomor-
phic (convergent).

7. Holomorphic invariant manifolds

In this short section we show that under rather weak conditions one can
eliminate enough nonresonant terms to ensure existence of holomorphic in-
variant (sub)manifolds. Recall that a holomorphic submanifold W ⊂ (Cn, 0)
is invariant for a holomorphic vector field F , if the vector F (x) is tangent to
W at any point x ∈ W . Traditionally the prefix ‘sub’ is omitted, though it
plays an important role: in §14 we will discuss invariant analytic subvarieties
that are not submanifolds because of their singularity.

7A. Invariant manifolds of hyperbolic singularities. Suppose that
the spectrum S ⊂ C of linearization matrix A of a holomorphic vector field
consists of two parts S± ⊂ C separated by a real line (i.e., each part belongs
to an open half-plane bounded by the line). In this case no eigenvalue from
one part can be equal to a linear combination of eigenvalues from the other
part with nonnegative coefficients,

λ−j −
∑

αiλ
+
i 6= 0, λ+

i −
∑

αjλ
−
j 6= 0,

λ+
i ∈ S+, λ−j ∈ S−, αi, αj ∈ Z+,

(7.1)

(we say that there are no cross-resonances between the two parts). Without
loss of generality A can be assumed to be in the block diagonal form. By
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the Poincaré–Dulac theorem, there exists a formal transformation eliminat-
ing all nonresonant terms corresponding to the nonzero cross-combinations
(7.1). The corresponding formal normal form has two invariant manifolds
coinciding with the corresponding coordinate subspaces.

Moreover, all denominators (7.1) are obviously bounded from below.
Therefore one can expect that the corresponding transformation converges
and the invariant manifolds will exist in the analytic category. This is indeed
the case, though the accurate proof is organized along different lines.

Theorem 7.1 (Hadamard–Perron theorem for holomorphic flows). Assume
that the linearization operator of a holomorphic vector field Ax + F (x) has
a transversal pair of invariant subspaces L± such that the spectra of A re-
stricted on these subspaces are separated from each other.

Then the vector field has two holomorphic invariant manifolds W± tan-
gent to the subspaces L±.

However, the proof of this result is indirect. We start by formulating
and proving a counterpart of Theorem 7.1 for biholomorphisms.

Definition 7.2. A holomorphic self-map H ∈ Diff(Cn, 0), x 7→ Mx + h(x),
h(0) = ∂h

∂x(0) = 0, is said to be hyperbolic if no eigenvalue of the linearization
matrix M ∈ GL(n,C) has modulus 1.

For a matrix M without eigenvalues on the unit circle, we denote
L± ⊆ Cn two invariant subspaces such that the restriction M |L− is contract-
ing (in a suitable Hermitian metric) and M |L+ expanding (i.e., M−1|L+ is
contracting).

To define invariant manifolds for biholomorphisms we need to be careful
and replace sets by their germs at the fixed points. Otherwise it would be
necessary to give different definitions for expanding and contracting sub-
manifolds.

Definition 7.3. A holomorphic submanifold W passing through a fixed
point of a biholomorphism H : (Cn, 0) → (Cn, 0) is invariant, if the germ of
H(W ) at the origin coincides with the germ of W .

Theorem 7.4 (Hadamard–Perron theorem for biholomorphisms). A hyper-
bolic holomorphism in a sufficiently small neighborhood of the fixed point at
the origin has two holomorphic invariant submanifolds W+ and W−.

These manifolds pass through the origin, transversal to each other and
are tangent to the corresponding invariant subspaces L± of the linearized
map x 7→ Mx.
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7. Holomorphic invariant manifolds 107

The dimensions of the invariant manifolds are necessarily equal to the
dimension of the corresponding subspaces. The manifold W+ is called un-
stable manifold, whereas W− is referred to as the stable manifold, because
the restriction of H on these manifolds is unstable and stable respectively.

Proof. The linearization matrix M of a holomorphic biholomorphism
H : (Cn, 0) → (Cn, 0) can be put into the block diagonal form. Choosing ap-
propriate system of local holomorphic coordinates (x, y) ∈ (Ck, 0)× (Cl, 0),
k + l = n, one can always assume that the map H has the form

H :
(

x
y

)
7−→

(
Bx + g(x, y)
Cy + h(x, y)

)
, (x, y) ∈ (Ck, 0)× (Cl, 0). (7.2)

Here the square matrices B, C and the nonlinear terms g, h of order > 2
satisfy the conditions

|B| 6 µ, |C−1| 6 µ, µ < 1,

|f(x, y)|+ |g(x, y)| < |x|2 + |y|2, for |x| < 1, |y| < 1.
(7.3)

with some hyperbolicity parameter µ < 1.
It is sufficient to prove the existence of the stable manifold only; the

unstable manifold for H is the stable manifold of the inverse map H−1

which is also hyperbolic.
The stable manifold W+ tangent to L+ = {(x, 0)} is necessarily the

graph of a holomorphic vector function ϕ : {|x| 6 ε} → {|y| 6 ε} defined in
a sufficiently small polydisk, ϕ(0) = 0, ∂ϕ

∂x (0) = 0. For this manifold to be
invariant, the function ϕ must satisfy the functional equation

ϕ
(
Bx + g(x, ϕ(x))

)
= Cϕ(x) + h(x, ϕ(x)). (7.4)

This equation can be transformed to the fixed point form as follows:

ϕ = Hϕ, (Hϕ)(x) = C−1ϕ
(
Bx + g(x, ϕ(x))

)− h(x, ϕ(x)). (7.5)

All assertions of Theorem 7.4 follow from the contracting map principle and
the following Lemma 7.5. ¤

The “linearization” (removal of all nonlinear terms of order 2 and higher)
of the operator H at the “point” ϕ = 0 results in the operator

ϕ(x) 7→ C−1ϕ(Bx), |B|, |C−1| 6 µ < 1,

which is obviously contracting. Lemma 7.5 shows that nonlinear terms do
not affect this property.

Denote by Aε the Banach space of functions holomorphic in the open
disk of radius ε > 0 and continuous on the closure.

Lemma 7.5. Under the assumptions (7.3), the nonlinear operator H has
the following properties:
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(1) H is well defined for ϕ in the ball Bε = {ϕ : sup|x|<ε |ϕ(x)| < ε}
inside the space Aε, and takes this ball into itself,

(2) the subset B1
ε of functions in Bε with the Lipschitz constant 6 1,

is preserved by H,
(3) the operator H is contracting on B1

ε,

provided that the value ε > 0 is sufficiently small.

Proof. To prove the first assertion, note that |Bx + g(x, ϕ(x))| < µ|x| +
|x|2 + |ϕ|2 < µε + 2ε2 < ε for |x| < ε, if ε is sufficiently small. Thus the
composition occurring in the definition of H makes perfect sense and Hϕ
is well defined. For the same reason, |ϕ| never exceeds µε + 2ε2 < ε which
means that Bε is taken by H into itself.

The Jacobian matrix J(x) = ∂ϕ
∂x is transformed into J ′ = C−1J(· · · )(B+

∂g
∂x+ ∂g

∂yJ)+(∂h
∂x + ∂h

∂y J). Since the terms g, h are of order > 2, their derivatives
vanish at the origin and therefore the Jacobian is no greater (in the sense of
the matrix norm) than (µ2 + O(ε))|J |. As µ < 1, this proves the assertion
about the Lipschitz constant.

To prove the last assertion that H is contractive, notice that the operator
ϕ(x) 7→ h(x, ϕ(x)) is strongly contracting:

|h(x, ϕ1(x))− h(x, ϕ2(x))| 6 ∣∣∂h
∂y

∣∣ |ϕ1(x)− ϕ2(x)| 6 O(ε)‖ϕ1 − ϕ2‖ε. (7.6)

Consider the operator ϕ 7→ Gϕ = ϕ(Bx + g(x, ϕ)) and the difference of the
values it takes on two functions ϕ1, ϕ2 ∈ B1

ε: by the triangle inequality,
|Gϕ1(x)− Gϕ2(x)| = |ϕ1(Bx + g1(x))− ϕ2(Bx + g2(x))|

6 |ϕ1(Bx + g2(x))− ϕ2(Bx + g2(x))|
+ |ϕ1(Bx + g1(x))− ϕ1(Bx + g2(x))|,

where we denoted gi(x) = g(x, ϕi(x)) for brevity. The first term does not ex-
ceed ‖ϕ1−ϕ2‖ε. Since the vector function ϕ1 ∈ B1

ε has Lipschitz constant 1,
the second term does not exceed |g1(x)−g2(x)| = |g(x, ϕ1(x))−g(x, ϕ2(x))|.
Similarly to (7.6), this part is no greater than O(ε)‖ϕ1 − ϕ2‖ε. Finally, we
conclude that G is Lipschitz on B1

ε: ‖Gϕ1 − Gϕ2‖ε 6 (1 + O(ε))‖ϕ1 − ϕ2‖.
Adding all terms together for H = C−1G − h(x, ·), we conclude that if

ϕ1,2 ∈ B1
ε, then

‖Hϕ1 −Hϕ2‖ε 6 (µ + O(ε)) ‖ϕ1 − ϕ2‖ε.

Since µ < 1, the operator H is contracting on the closed subset B1
ε of the

complete metric space Bε ⊂ Aε. ¤

Remark 7.6. Characteristically for the proofs based on the contracting
map principle, the germs of invariant manifolds are automatically unique.
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7. Holomorphic invariant manifolds 109

Now we can derive Theorem 7.1 from Theorem 7.4.

Proof. Passing if necessary to an orbitally equivalent field, one may assume
that the linearization A = diag{A+, A−} is block diagonal with the spectra
of the blocks are separated by the imaginary axis.

Consider the flow maps Φt = exp tF : (Cn, 0) → (Cn, 0) for t = 1/k,
k = 1, 2, . . . . Each of them is a biholomorphism with the linear part x 7→
exp tAx whose eigenvalues are the corresponding exponentials {exp tλi : λi ∈
S} separated by the unit circle {|λ| = 1}. In the assumptions of the theorem,
each flow map Φt is hyperbolic for the specified values of t ∈ 1/N. By
Theorem 7.4, the map Φt has a pair of invariant manifolds W±

t , tangent to
the corresponding invariant subspaces L± common for all t ∈ R.

Apriori, the invariant subspaces W±
t do not have to coincide. However,(

Φ1/k
)k = Φ1, therefore manifolds invariant for Φ1/k, are invariant also for

Φ1. Since the invariant manifolds for the latter map are unique, we conclude
that all the maps Φ1/k leave the pair W± = W±

1 invariant.
In other words, an analytic trajectory x(t) of the vector field which

begins on, say, W−, x(0) ∈ W−, remains on W− for t = 1/k. Since isolated
zeros of analytic functions cannot have accumulation points, x(t) is on W−

for all (sufficiently small) values of t ∈ (C, 0). Then W− is invariant for the
vector field Ax + F (x). The proof for W+ is similar. ¤
Remark 7.7. Intersection of invariant manifolds is again an invariant man-
ifold. This observation allows us to construct small-dimensional invariant
manifolds for holomorphic vector fields. For instance, if the linearization
matrix Λ has a simple eigenvalue λ1 6= 0 such that λ1/λj /∈ R+ for all other
eigenvalues λj , j = 2, . . . , n, then the vector field has a one-dimensional
holomorphic invariant manifold (curve) tangent to the corresponding eigen-
vector.

The Hadamard–Perron theorem for holomorphic flows, as formulated
above, is the nearest analog of the Hadamard–Perron theorem for smooth
flows in Rn. There are known stronger results in this direction; see [Bib79].

7B. Hyperbolic invariant curves for saddle-nodes. Consider a holo-
morphic vector field on the plane (C2, 0) with the saddle-node at the origin.
Recall that by Definition 4.28, this means that exactly one of the eigenvalues
is zero, while the other eigenvalue must be nonzero. The null space (line)
of the linearization operator is called the central direction. The direction of
eigenvector with the nonzero eigenvalue is referred to as hyperbolic.

The nonzero eigenvalue cannot be separated from the null one, thus the
Hadamard–Perron theorem cannot be applied. However, the invariant man-
ifold (smooth holomorphic curve) tangent to the eigenvector with nonzero
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110 I. Normal forms and desingularization

eigenvalue, exists and is unique in this case as well. As before, we start with
the case of biholomorphisms with one contracting eigenvalue |µ| < 1 and
the other eigenvalue equal to 1. For obvious reasons, such maps are called
saddle-node biholomorphisms.

Any saddle-node biholomorphism H : (C2, 0) → (C2, 0) can be brought
into the form

H :
(

x
y

)
7−→

(
µx + g(x, y)

y + y2 + h(x, y)

)
, µ ∈ (0, 1) ⊂ R, (7.7)

with g, h holomorphic nonlinear terms of order > 3, by a suitable holo-
morphic choice of coordinates x, y. Indeed, all other quadratic terms are
nonresonant and can be removed (Exercise 4.8).

Theorem 7.8. The biholomorphism (7.7) has a unique holomorphic invari-
ant manifold (curve) tangent to the eigenvector (1, 0) ∈ C2.

Proof. The manifold W = graphϕ is invariant for the saddle-node self-map
H of the form (7.7) if the function ϕ satisfies the functional equation

ϕ(µx + g(x, ϕ(x))) = ϕ(x) + ϕ2(x) + h(x, ϕ(x)). (7.8)

This equation can be represented under the fixed point form Hϕ = ϕ using
the operator H defined as follows:

(Hϕ)(x) = ϕ
(
µx + g(x, ϕ(x))

)− ϕ2(x)− h(x, ϕ(x)). (7.9)

This operator is no longer contracting: its linearization at ϕ = 0 is the
operator ϕ(x) 7→ ϕ(µx) which keeps all constants fixed. To restore the
contractivity, we have to restrict this operator on the subspace of functions
vanishing at the origin, with the norm ‖ϕ‖′ = supx6=0

|ϕ(x)|
|x| . Technically it

is more convenient to substitute ϕ(x) = xψ(x) into the functional equation
(7.8) and bring it back to the fixed point form. As a result, we obtain the
equation

(µx + g(x, xψ(x)) · ψ(
µx + g(x, xψ(x))

)
= xψ(x) + x2ψ2(x) + h(x, xψ(x)),

which yields the nonlinear operator H′,

(H′ψ)(x) =
(
µ+g′(x, ψ(x))

)·ψ(
µx+g(x, xψ(x))

)−xψ2(x)−h′(x, ψ). (7.10)

Here the holomorphic functions g′(x, y) = g(x, xy)/x, h′(x, y) = h(x, xy)/x
are of order > 2 at the origin.

The proof of Lemma 7.5 carries out almost literally for the operator
H′ as in (7.10), proving that it is contractible on the space of functions
ψ : {|x| < ε} → {|y| < ε} with respect to the usual supremum-norm on
sufficiently small discs. ¤
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7. Holomorphic invariant manifolds 111

Completely similar to derivation of Theorem 7.1 from Theorem 7.4 in
the hyperbolic case, Theorem 7.8 implies the following result concerning
holomorphic saddle-nodes.

Theorem 7.9. A holomorphic vector field on the plane (C2, 0) having a
saddle-node singularity (one eigenvalue zero, another nonzero) at the origin,
admits a unique holomorphic nonsingular invariant curve passing through
the singular point and tangent to the hyperbolic direction. ¤

This curve is called the hyperbolic invariant manifold.
It is important to conclude this section by the explicit example showing

that the other invariant manifold, the central manifold tangent to the central
direction, may not exist in the analytic category. Note, however, that the
formal invariant manifold always exists and is unique: this follows from the
formal orbital classification of saddle-nodes (Proposition 4.29).

Example 7.10 (L. Euler). The vector field

x2 ∂
∂x + (y − x) ∂

∂y (7.11)

has vertical hyperbolic direction ∂
∂y and the central direction ∂

∂x + ∂
∂y . The

central manifold, if it exists, must be represented as the graph of the function
y = ϕ(x), ϕ(x) = x +

∑
k>2 ckx

k. However, this series diverges, as was
noticed already by L. Euler. Indeed, the function ϕ must be the solution to
the differential equation

dϕ

dx
=

ϕ(x)− x

x2

which implies the recurrent formulas for the coefficients,

k ck = ck+1, k = 1, 2, . . . , c1 = 1.

The factorial series with ck = (k− 1)! has zero radius of convergence, hence
no analytic central manifold exists.

However, sufficiently large “pieces” of the central manifold for the saddle-
node can be shown to exist; see §22I.

Exercises and Problems for §7.

Exercise 7.1. Prove that a nonresonant hyperbolic self-holomorphism is analyti-
cally linearizable on its holomorphic invariant manifolds W+ and W−.

Problem 7.2. Prove that if a hyperbolic self-map analytically depends on addi-
tional parameters (and remains hyperbolic for all values of these parameters), then
the invariant manifolds W± also depend analytically on the parameters.

Problem 7.3. Formulate and prove a parallel statement for a saddle-node.

Exercise 7.4. Describe possible number and relative position of analytic separa-
trices of elementary planar singularities of holomorphic vector fields.
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112 I. Normal forms and desingularization

Problem 7.5. Assume that the first k eigenvalues λ1, . . . , λk from the spectrum
of a holomorphic vector field F ∈ D(Cn, 0), k 6 n, are real, and the others are not.

Prove that the field F has a holomorphic k-dimensional invariant manifold
tangent to the coordinate plane generated by the first k basis vectors.

8. Desingularization in the plane

Reasonably complete analysis of singular points of holomorphic vector fields
using holomorphic normal forms and transformations by biholomorphisms,
is possible under the assumption that the linear part is not very degener-
ate. The degenerate cases have to be treated by transformations that can
alter the linear part. Such transformations, necessarily not holomorphically
invertible, are known by the name desingularization, resolution of singu-
larities, sigma-process or blow-up. Very roughly, the idea is to consider a
holomorphic map π : M → (C2, 0) of a holomorphic surface (2-dimensional
manifold) M that squeezes (blows down) a complex 1-dimensional curve
D ⊂ M to the single point 0 ∈ C2, while being one-to-one between M rD
and (C2, 0) r {0}. The second circumstance allows us to pull back local
objects (functions, curves, foliations, 1-forms, etc.) from (C2, 0) to M and
then extend them on D. These pullbacks are called desingularizations, or
blow-ups of the initial objects; sometimes M is itself called the blow-up of
(the neighborhood of) the point 0 ∈ C2.

In this section we develop some basic algebraic geometry necessary to
deal with desingularizations and introduce the notion of multiplicity of an
isolated singularity of a foliation.

Using desingularization one can ultimately simplify singularities of holo-
morphic foliations in dimension 2. The main result of this section, the fun-
damental Desingularization Theorem 8.14 asserts that by a suitable blow-up
any singular holomorphic foliation in a neighborhood of a singular point can
be resolved into a singular foliation, defined in a neighborhood of a union
D =

⋃
i Di of one or more transversally intersecting holomorphic curves Di,

which has only elementary singularities on D.

8A. Polar blow-up. We start with a transcendental but geometrically
more transparent construction in the real domain.

Definition 8.1. The polar blow-down is the map P of the real cylinder
C = R× S1 → R2 onto the plane R2,

P : (r, ϕ) 7→ (r cosϕ, r sinϕ). (8.1)

This map is a real analytic diffeomorphism between the open half-
cylinder C+ = {r > 0} ⊂ C and the punctured plane R2 r {0}. The
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8. Desingularization in the plane 113

(iii)(ii)(i)

Figure I.4. Trigonometric blow-up of a nonsingular (i) and singular
(ii), (iii) foliations

image of the narrow band C = (R, 0)× S1 (cylinder) is a double covering of
the small neighborhood of the origin {|x| < ε} except for the central equator
S = {r = 0} ⊂ C, also called the exceptional divisor. The latter is squeezed
into one point, the origin 0 ∈ R2.

The map P pulls back functions and differential 1-forms from (R2, 0)
on C (in noninvariant terms, passing to the polar coordinates and ignoring
the inequality r > 0). However, the pullback P ∗ω ∈ Λ1(C) of any 1-form
ω ∈ Λ1(R2, 0) always has a nonisolated singularity on S. In the real analytic
case one can always divide P ∗ω by a suitable natural power rν so that the
1-form ω̃ = r−νP ∗ω ∈ Λ1(C) still remains real analytic but has only isolated
singularities on S.

Consider now the singular foliation F defined by the Pfaffian equation
{ω = 0} on (R2, 0) r {0}. As P is one-to-one outside the origin, P−1(F)
is a foliation of C r S with the Pfaffian equation {P ∗ω = 0}. Since r

is nonvanishing outside S, the foliation F̃ can be defined by the Pfaffian
equation {ω̃ = 0} which has only isolated singularities on S and thus extends
P−1(F) as a singular foliation on C.

Definition 8.2. The line field defined by the Pfaffian distribution r−νP ∗ω =
0 with isolated singularities and the corresponding singular foliation F̃ on
C are called the trigonometric blow-up of the distribution ω = 0 and the
corresponding foliation F respectively.

Intuitively, the singular point is “stretched” to the central circle so that
the complicated behavior of leaves near the singularity can be studied in
different “parts” separately. The first examples show that sometimes the
singularity may even disappear.
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114 I. Normal forms and desingularization

Example 8.3.

(i) The form dx = 0 defining a nonsingular foliation, after trigonometric
blow-up becomes cosϕdr − r sinϕ dϕ and has two isolated singular points
(0, 0) and (0, π) on R×S1. Both these points are nondegenerate saddles. The
exceptional circle without these points is the leaf of the blow-up foliation.
(ii) The form ω = y dx− x dy defines the “radial” singular foliation on R2.
The pullback P ∗ω = −r2 dϕ, has a nonisolated singularity on r = 0, but
after division the form ω̃ = r−2P ∗ω = dϕ defines the nonsingular “parallel”
foliation {ϕ = const}. All leaves of this foliation cross the exceptional circle
S transversally.
(iii) The form x dx+y dy = 1

2d(x2 +y2) which defines the foliation of R2 by
the circles x2 + y2 = const, pulls back as the line field r dr = 0 which after
division also becomes a nonsingular form dr on C. The exceptional circle is
a leaf of the blow-up foliation carrying no singular points.

The map P can be complexified and the above examples generalized.
However, the complexification will also be a two-fold covering, which is not
natural geometrically. Besides, using the trigonometric functions sinϕ, cosϕ
makes the corresponding formulas nonalgebraic.

There is an algebraic version of the map P , called the sigma-process,
monoidal transformation, or simply the blow-up without the adjective
trigonometric.

8B. Algebraic blow-up (σ-process). It is not so easy to construct a
holomorphic 2-dimensional manifold M and a holomorphic map σ : M → C2

such that (i) the preimage of the origin is a compact irreducible holomorphic
curve S ⊂ M and (ii) the map σ is one-to-one between M rS and C2r{0}.
These two requirements together imply rather specific properties of M and
S; cf. with Remark 8.6 below.

One such construction goes as follows. Consider the canonical map from
C2 r {0} to the projective line P1 that associates each point (x, y) 6= (0, 0)
different from the origin, with the line {(tx, ty) : t ∈ C} passing through this
point. The graph of this map is a complex 2-dimensional surface in the com-
plex 3-dimensional manifold (the Cartesian product) C2× P1. The graph is
not closed; to construct the closure, one has to add the exceptional curve
E = {0} × P1 ⊂ C2 × P1. The result is a nonsingular surface which we will
denote by M: by construction it is embedded in the complex 3-dimensional
space C2 × P1 and carries the compact curve (complex projective line, Rie-
mann sphere) E ∼= P1 ∼= S2 on it. The Cartesian projection C2 × P1 → C2

on the first component, after restriction on M becomes a holomorphic map

σ : M→ C2, σ(E) = {0} ∈ C2,
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8. Desingularization in the plane 115

which is by construction one-to-one between MrE and C2 r {0}.
Definition 8.4. The map σ : M→ C2 between two 2-dimensional complex
manifolds is called the (standard) monoidal map. The analytic curve E ⊂
M is referred to as the (standard) exceptional divisor . The inverse map
σ−1 : C2r{0} →MrE is called the (standard) blow-up map, or simply the
blow-up. A less frequently used term for the map σ is blow-down.

To see why M is a nonsingular manifold (and justify the assertions on
the closure and smoothness), we produce a convenient (“standard”) atlas
on M. Let z, w be two affine charts on the Riemann sphere P1, which take
the line passing through the point (x, y) 6= (0, 0) into the numbers z = y/x
and w = x/y respectively: by construction, w = 1/z. These charts induce
two affine charts in the respective domains V1, V2 on the Cartesian product
C2 × P1. In these charts the graph of the canonical map is given by the
equations

y − xz = 0, resp., x− wy = 0, (x, y) 6= (0, 0).

The surfaces defined by these equations, clearly remain nonsingular after
extension on the line {x = 0, y = 0} ⊆ C3. Moreover, the functions (x, z)
in the chart V1 and (y, w) in chart V2 respectively, become two coordinate
systems (charts) on M, defined in the two domains Ui = M ∩ Vi, i = 1, 2.
The transition map between these charts is a monomial transformation

y = zx, w = 1/z, and reciprocally, x = wy, z = 1/w. (8.2)

ThusM is indeed a nonsingular 2-dimensional complex analytic manifold. It
remains to observe that the map σ : M→ C2 in these charts is polynomial,
hence globally holomorphic: σ|Ui = σi, i = 1, 2, where

σ1 : (x, z) 7→ (x, xz), resp., σ2 : (y, w) 7→ (yw, y). (8.3)

The exceptional divisor E in the respective charts is given by the equations

E ∩ U1 = {x = 0}, resp., E ∩ U2 = {y = 0}.
Remark 8.5. The formulas (8.2) and (8.3) are real algebraic, thus defining
at the same time the real counterpart of the above construction. The real
projective line RP 1 is diffeomorphic to the circle S1, so the surface RM is
constructed as a submanifold of the cylinder R2 × S1. This submanifold is
homeomorphic to the Möbius band. Having this analogy in mind, we will
often refer to M as the complex Möbius band .

Remark 8.6. Nontriviality of the construction becomes even more striking
in the complex domain. Note that the exceptional divisor cannot be globally
defined by a single equation {f = 0} with a function f holomorphic on M
near E. Indeed, if such a function exists, it would uniquely define a function
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y

x

Figure I.5. Real Möbius band and its projection on R2 which is one-
to-one outside the origin and blows down the circle RP 1 ∼= S1 into the
origin

f ◦ σ−1 on (C2, 0) r {0}. This function is holomorphic and nonvanishing
outside the origin and, since the point has codimension 2 in C2, f extends
holomorphically at the origin. But the zero locus of a holomorphic function
cannot have codimension 2—contradiction.

Similar arguments show that E is exceptional in the following sense: it
sits rigidly inside M and cannot be deformed. Indeed, since E is compact,
any deformation E′ (a manifold uniformly close to E) should necessarily also
be compact, hence its image σ(E′) should be a compact subset of (C2, 0).
This is impossible unless this image is a point, since σ is one-to-one outside
the origin. The only remaining possibility is σ(E′) = {0}, i.e., E′ = E.

Remark 8.7. These properties of the map σ : (M, S) → (C2, 0) may seem
to be caused by the artificial construction. However, one can prove that the
construction of blow-up is natural and unique in the following sense. Con-
sider any holomorphic map σ′ : (M′,E′) → (C2, 0) defined in a neighborhood
of a compact holomorphic curve E′, which maps E′ to a single point and is
one-to-one on the complement M′ r E′.

Assume that E′ is irreducible. Then σ′ is necessarily equivalent to the
standard monoidal map σ: there exists a biholomorphic map H : (M,E) →
(M′,E′) such that σ = σ′◦H. (Without this assumption σ′ can be equivalent
to a composition of several monoidal maps.) In particular, the construction
does not depend on the choice of the local coordinates (x, y) near the origin.
The proof of these facts in the algebraic category can be found in [Sha94,
Chapter IV, §3.4].

Using the local model provided by the standard monoidal transformation
σ, we can construct a global map blowing up any finite set of points Σ on
any two-dimensional complex manifold (surface) M .
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Proposition 8.8. Let M be a complex surface and Σ ⊂ M a finite point
set on it.

Then there exists a holomorphic surface M ′ and a holomorphic map
π : M ′ → M such that the preimage of any point from Σ is a Riemann
sphere Ep = π−1(p) ∼= P1 whereas π is one-to-one between M ′ r

⋃
p∈Σ Ep

and M rΣ.
Restriction of π on a small tubular neighborhood of each exceptional

sphere Ep is equivalent to the standard monoidal map σ : (M,E) → (C2, 0)
restricted on a neighborhood of the exceptional divisor E.

The surface M ′ and the map π are unique modulo a biholomorphic
isomorphism and the right equivalence respectively. As follows from Re-
mark 8.7, the requirement that Ep are biholomorphically equivalent to the
Riemann sphere, can be relaxed to a mere irreducibility.

The inverse map π−1 : M rΣ → M ′ is called the simple blow-up of the
locus (finite point set) Σ. The map π itself is sometimes called a simple
blow-down.

Proof of Proposition 8.8. If M = C2 is the standard plane, then one might try to
prove the possibility of simultaneous blow-up of several points, constructing a suitable
polynomial map by interpolation.

Yet in the category of abstract holomorphic manifolds the construction of the map π
from local monoidal transformations is trivial (tautological). Consider an atlas of charts
{Uα} on M including special charts Up identifying neighborhoods of each point p ∈ Σ
with a neighborhood (C2, 0) of the origin. Without loss of generality we can assume that
all other charts do not intersect the locus Σ. The manifold M can be then described as
the quotient space of the disjoint union, M =

F
α Uα/ ∼ by the equivalence relationship

∼ (images of the same points in different charts are identified). The manifold M ′ in these
terms can be described as follows. Replace each special chart Up by the neighborhood U ′p =
(M,E)p, and consider again the disjoint union

F
α U ′α with U ′α = Uα when the chart does

not intersect Σ. The equivalence relationship ∼ lifts to an equivalence relationship ∼′ on
the new disjoint union (all nonsingular points have unique preimages in U ′α). The quotient
space M ′ =

F
α U ′α/ ∼′ by construction is a manifold. There are natural holomorphic maps

π : U ′α → Uα which coincide with the monoidal map σ if the chart Uα was special, and
identical otherwise. Clearly these maps agree with the equivalences ∼,∼′ and hence define
a holomorphic map π : M ′ → M with the required local properties. ¤

8C. Blow-up of analytic curves and singular foliations. As any holo-
morphic map, the standard monoidal map σ : (M,E) → (C2, 0) carries holo-
morphic functions and forms (by pullback) and analytic subsets (by preim-
ages) from (C2, 0) to the surface M. However, the results are quite degen-
erate on the exceptional divisor E.

The alternative is to carry the objects from the punctured plane C2r{0}
to the complement MrE of the exceptional divisor, and then extend them in
one way or another on E. The result is called the blow-up (desingularization)
of the initial object.
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118 I. Normal forms and desingularization

The accurate construction is slightly different for analytic curves and for
(singular) holomorphic foliations.
8C1. Blow-up of analytic curves. Recall that σ−1 is a well-defined holomor-
phic map of C2 r {0} to MrE.

Definition 8.9. The blow-up of an analytic curve γ ⊆ (C2, 0) is the closure
(in M) of the preimage of the punctured curve γ r {0}:

γ̃ = σ−1(γ r {0}). (8.4)

We have to verify that the result γ̃ is an analytic curve in M. The proof
is obtained by explicitly computing the blow-up.

Proposition 8.10. The blow-up of any analytic curve is again an analytic
curve in (M,E) intersecting the exceptional divisor E only at isolated points.

Proof. The equation of the blow-up in M is obtained by pulling back the
equation of γ and cancelling out all terms vanishing identically on E. How-
ever, because of the special properties of E in M (see Remark 8.6), it can be
done only locally.

Consider any holomorphic germ f defining γ and its pullback f ′ = σ∗f =
f ◦ σ ∈ O(M). For each point a ∈ E the germ of f ′ ∈ O(M, a) in the local
ring O(M, a) vanishes identically on E and can be divided by the maximal
power gν , ν > 1, where g ∈ O(M, a) is any irreducible germ locally defining
E = {g = 0} near a. After division we obtain the germ f̃ = g−νf ∈ O(M, a)
with the following properties:

(1) outside E the germs (at a) of the loci σ−1(γ) = {f ′ = 0} and
γ̃ = {f̃ = 0} coincide,

(2) f̃ |E 6≡ 0, hence E 6⊆ γ̃.

If the germ f̃ ∈ O(M, a) is invertible, then the germs of both γ̃ and γ at a

are both empty. If f̃ is noninvertible, then γ̃ = σ−1(γ r {0}) ∪ {a}, that is,
the analytic curve γ̃ is a one-point closure of the preimage of γ r {0}. ¤

The blow-up can be alternatively described as the smallest analytic curve
γ̃ ⊂ M such that σ(γ̃) = γ. Note that in general this curve can be noncon-
nected.
8C2. Blow-up of foliations. Let F be a singular holomorphic foliation of
(C2, 0) defined by a holomorphic Pfaffian form ω ∈ Λ1(C2, 0). By definition,
this means that F is a nonsingular holomorphic foliation of the punctured
neighborhood (C2, 0)r{0}. Its preimage σ−1(F) is a nonsingular foliation of
MrE generated by the 1-form σ∗ω. But since codimE = 1, by Theorem 2.20
this preimage foliation can be extended as a singular holomorphic foliation
σ∗F with isolated singular points on E.
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8. Desingularization in the plane 119

Definition 8.11. The blow-up of a singular foliation F of (C2, 0) is the sin-
gular holomorphic foliation F̃ = σ∗F of M extending the preimage foliation
σ−1(F) of MrE.

One may have two apriori possibilities for the blow-up F̃: either the
exceptional divisor E is a separatrix of F̃, or different points of E belong to
different leaves of F̃. In the latter case leaves of F̃ cross E transversally at
almost all points, with the exception of finitely many tangency points and
isolated singularities of F̃.

Definition 8.12. A singular point of a holomorphic foliation F on (C2, 0)
is called nondicritical, if the exceptional divisor E = σ−1(0) is a separatrix
of the blow-up σ∗F by the simple monoidal transformation σ.

Otherwise the singular point is called dicritical.

It will be shown that the “generic” singularities of a given order are
nondicritical, whereas dicritical singularities correspond to certain degen-
eracy of the principal homogeneous terms of the vector field defining the
foliation.

Remark 8.13. The previous arguments can be carried out verbatim for any
holomorphic nonconstant map π : (M, D) → (C2, 0) squeezing a holomorphic
curve D = π−1(0) (eventually, singular or reducible) into the single point at
the origin and one-to-one between MrD and (C2, 0)r{0}. Any holomorphic
foliation F on (C2, 0) can be pulled back as a foliation π−1(F) on M r D
and then extended on D everywhere except for finitely many points. The
resulting singular foliation on M will be denoted by π∗F and referred to as
a desingularization, or blow-up of F by the map π.

8D. Desingularization theorem. It turns out that singular points of any
holomorphic foliation can be completely simplified by iterated blow-ups. The
following result was first discovered by Ivar Bendixson [Ben01] in 1901 and
improved and generalized by S. Lefschetz [Lef56, Lef68], A. F. Andreev
[And62, And65a, And65b] and A. Seidenberg [Sei68]. A. van den Essen
simplified the proof considerably in [vdE79]; see also [MM80]. In [Dum77]
F. Dumortier obtained a generalization of this theorem for smooth rather
than analytic foliations and showed that tangencies can also be eliminated.
Recently O. Kleban in [Kle95] computed the number of iterates of simple
blow-ups required to desingularize completely an isolated singularity of a
holomorphic foliation.

Recall (see Definition 4.27) that a singularity of the foliation F defined
by the Pfaffian equation ω = 0, ω = f dx + g dy with the coefficients f, g ∈
O(C2, 0) without common factors, is elementary, if the linearization matrix

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



120 I. Normal forms and desingularization

A = ∂F (0, 0)/∂(x, y) of the dual vector field F = −g ∂
∂x + f ∂

∂y has at least
one nonzero eigenvalue.

Theorem 8.14 (I. Bendixson, A. Andreev, A. Seidenberg, S. Lefschetz,
F. Dumortier). For any singularity of a holomorphic foliation F one can
construct a holomorphic surface M with an analytic curve D on it and a
holomorphic map π : (M, D) → (C2, 0), one-to-one between M r D and
(C2, 0) r {0}, such that the blow-up π∗F has only elementary singularities
on D.

More precisely, the map π resolving the singularity can be constructed as
a composition of finitely many simple blow-downs.

The vanishing divisor D = π−1(0) is the union of finitely many projective
lines intersecting transversally, D =

⋃
Dj, Dj

∼= P1, Di t Dj.

In this section we give the constructive proof of this result, based on
the idea of van den Essen [vdE79, MM80]. This idea is to introduce the
multiplicities of isolated singularities of holomorphic foliations and monitor
their decrease under blow-ups.

Detailed inspection of this algorithm yields the following estimate for the
complexity of the desingularization map. It is formulated in terms of multi-
plicity of a singular point of holomorphic foliation, which will be introduced
in §8G–§8I.
Theorem 8.15. The number of simple blow-ups required to resolve an iso-
lated singularity of multiplicity µ, does not exceed 2µ + 1.

A stronger result was achieved by O. Kleban in [Kle95]. He proved
that besides resolving all singularities into elementary, in at most µ + 2
steps one can eliminate all tangency points between the foliation π∗F and
the vanishing divisor D (Theorem 8.37).

8E. Blow-up in an affine chart: computations. Let ω = f dx+g dy ∈
Λ1(C2, 0) be a holomorphic 1-form having an isolated singularity of order n.
By definition, this means that the Taylor expansions of the coefficients f, g
of this form begin with homogeneous polynomials fn, gn of degree n and at
least one of these two homogeneous polynomials does not vanish identically:

ord0 ω = min{ord0 f, ord0 g}.
Consider the pullback σ∗ω on the complex Möbius bandM in the coordi-

nates (x, z) in the chart U1. In this chart the exceptional divisor E is defined
by the equation {x = 0} and the map σ takes the form σ1 : (x, z) 7→ (x, xz)
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8. Desingularization in the plane 121

and pulls back the form ω to ω1 = σ∗1ω as follows:

ω1 = [f(x, xz) + zg(x, xz)] dx + xg(x, xz) dz

= x−1[(σ∗1h) dx + (σ∗1g
′) dz],

h = xf + yg, g′ = x2g, h, g′ ∈ O(C2, 0).

(8.5)

Both coefficients of the form ω1 are divisible at least by xn. However,
the second coefficient is in fact even divisible by xn+1. On the other hand,
the first coefficient can “accidentally” also be divisible by xn+1, if the ho-
mogeneous polynomial hn+1 = xfn + ygn vanishes identically.

In order to extend the foliation F̃ = σ−1
1 (F) on the line E = {x = 0}

in the chart U1, we have to divide the coefficients of the form (8.5) by the
maximal possible power of x so that the result will be not identically zero on
E. Thus we have two cases which correspond to dicritical and nondicritical
singularities; cf. with Definition 8.12.

Proposition 8.16. The singularity is nondicritical, if

ord0(xf + yg) = 1 + ord0 ω, (8.6)

and dicritical, if
ord0(xf + yg) > 1 + ord0 ω. (8.7)

The homogeneous polynomial hn+1 = xfn +ygn of degree n+1 will play
an important role in computations pertinent to the dicritical case. It will be
referred to as the tangent form for lack of a better name. The roots of hn+1

can be identified with the points of the projective line P globally isomorphic
to the exceptional divisor E.

Proof of the proposition. 1. In the first case (8.6) the blow-up of F in
the chart U1 is given by the Pfaffian equation with isolated singularities

ω̃1 = 0, ω̃1 = [hn+1(1, z) + x(· · · )] dx + x[gn(1, z) + x(· · · )] dz, (8.8)

where fn, gn and hn+1 = xfn + ygn are the homogeneous bivariate polyno-
mials from C[x, y] as above and the dots denote some holomorphic functions
of x and z.

The line E = {x = 0} is integral for the line field ω̃1 = 0, so the
exceptional divisor E in the nondicritical case is a separatrix of the blow-up
foliation F̃. The singular locus Σ = Sing(σ∗F) consists of the isolated roots
of the equation

Σ = {x = 0, z = zj}, hn+1(1, zj) = 0. (8.9)

Their number (counted with multiplicities) is equal to degz hn+1(1, z) which
can be less than n+1 if the homogeneous polynomial hn+1(x, y) is divisible
by x. In the latter case the point z = ∞ ∈ P1 is singular and should be
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studied in the second affine chart U2 on M. Globally the singular locus
Σ ⊂ P1 is defined by the tangent form hn+1 as the projective locus in
the homogeneous coordinates {(x : y) ∈ P1 : hn+1(x, y) = 0}. There is a
simple sufficient condition guaranteeing that a point a ∈ Σ is elementary
(Proposition 8.18 below).

2. In the second case (8.7) the tangent form vanishes identically, hn+1 ≡
0, and the Pfaffian form with isolated singularities which defines the blow-up
foliation in the affine chart U1, is

ω̃1 = 0, ω̃1 = [hn+2(1, z) + x(· · · )] dx + [gn(1, z) + x(· · · )] dz. (8.10)

Outside the set T = {gn(1, z) = 0} ⊂ E the form ω̃1 is nonsingular and
transversal to E, which means that the leaves of the blow-up foliation cross E
transversally outside T . Note that gn 6≡ 0; otherwise the condition hn+1 ≡ 0
would mean that fn ≡ 0 in violation of the assumption that the order of ω
is exactly equal to n.

The points of T may correspond to either tangency points if hn+2(1, z)
does not vanish (and hence the point is nonsingular), or true singularities if
both gn(1, z) and hn+2(1, z) vanish simultaneously there. ¤
Remark 8.17. If the singularity is nondicritical and the tangent form
hn+1(1, z) has degree n + 1 and only simple roots, the exceptional divi-
sor E carries exactly n + 1 singular points of F̃. The fundamental group of
the complement E r Σ is generated by small loops around these singulari-
ties. Hence the holonomy group of the foliation F̃ along the leaf E r Σ is
generated by n+1 germs g0, . . . , gn ∈ Diff(C1, 0) subject to a single relation-
ship g0 ◦ · · · ◦ gn = id. This group is sometimes referred to as the vanishing
holonomy group of the initial singular point of the foliation F. Later, in
§23D, we will discuss necessary and sufficient conditions for a group gen-
erated by n + 1 conformal germs to be a vanishing holonomy group of a
foliation satisfying the above assumptions.

Another computation will be required in the proof of the Desingulariza-
tion theorem.

Proposition 8.18. Each simple (nonmultiple) linear factor ax + by of the
tangent form hn+1 = xfn + ygn corresponds to an elementary singularity
z = −a/b (resp., w = −b/a) of the blow-up foliation.

Proof. In the assumptions of the proposition, the singularity is obviously
nondicritical and without loss of generality we may assume that the factor
is simply y, and hn+1(1, z) = zu(z) and u(0) = 1.

The vector spanning the same line field as the distribution (8.8), has the
form

ż = z + ax + m2, ẋ = −bx + m2,
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8. Desingularization in the plane 123

where a, b are some two complex numbers and m2 denote functions of order
> 2. The linearization matrix ( 1 ∗

0 ∗ ) of this field has nonzero eigenvalue 1 for
the eigenvector tangent to E. ¤

8F. Divisors. To proceed with the demonstration of the desingularization
theorem, we first introduce a convenient algebraic formalism for counting
analytic subvarieties (points and analytic hypersurfaces) with certain integer
multiplicities (positive or negative). While this formalism cannot be easily
extended for subvarieties of intermediate dimensions, for the two extreme
dimensions (zero and maximal, i.e., codimension 1) the theory is as complete
as possible.

The integer multiplicity can be easily attached to analytic subvarieties
of codimension one (hypersurfaces) using the fact that the ring of germs of
analytic functions admits unique irreducible factorization. This construction
leads to the notion of a divisor, introduced and discussed in this section.
Multiplicity of zero-dimensional sets (isolated points) can be introduced in
a different way via codimension of the respective ideals as explained in §8G
as the intersection multiplicity of two analytic curves. Behavior of these
multiplicities under blow-up is studied in §8H–§8I.
8F1. Definitions. A divisor on a complex manifold M is a finite union of
irreducible analytic hypersurfaces (analytic subsets of codimension 1) with
assigned integer multiplicities (coefficients). By this definition, each divisor
D is a formal sum

∑
γ kγ γ where the summation is formally over all irre-

ducible subvarieties of codimension 1, but only finitely many integer coeffi-
cients kγ ∈ Z can be in fact nonzero. Divisors form an Abelian group denoted
by Div(M) with the operation denoted additively,

(∑
kγ γ

)
+

(∑
k′γ γ

)
=∑

(kγ + k′γ) γ. The divisor is called effective if all kγ are nonnegative; any
divisor can be formally represented as a formal difference of two effective
divisors. The support of a divisor is the union of all subvarieties entering
into D with nonzero coefficients,

|D| =
⋃

kγ 6=0

γ ∼=
∑

kγ 6=0

γ,

which can be alternatively thought of as either the point set or an effective
divisor with all kγ being just 0 or 1.

If M is one-dimensional, divisors are finite point sets with integer mul-
tiplicities attached to each point. We will be interested here in the two-
dimensional case where M is a holomorphic surface and the divisors are
unions of irreducible curves counted with multiplicities.
8F2. Divisors and meromorphic functions. Each holomorphic function f ∈
O(M) defines an effective divisor Df called the divisor of zeros of f as
follows. The support |Df | is the zero locus Zf = {f = 0} ⊆ M , and if the

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



124 I. Normal forms and desingularization

germ of f at a point a ∈ M has the irreducible factorization f =
∏

f
νj

j in
the local ring O(M,a), then the component Dj = Dfj

of Df is assigned the
multiplicity νj > 0:

Df =
∑

j

νjDj , Dj = Dfj
= {fj = 0}.

This definition allows us to assign the multiplicity νj to each irreducible
component Dj ⊆ Df near the point a only, but the answer is obviously
locally constant as a varies along Dj . Since Dj is connected, the result does
not depend on a, moreover, one can always choose a being a smooth point
on Dj .

For a meromorphic function h = f/g the divisor Dh is defined as the
formal difference,

Df/g = Df −Dg.

It obviously does not depend on the choice of the representation.
Conversely, any divisor can be associated with a meromorphic function,

albeit only locally. Let D =
∑

kγ γ be a divisor on M . Then M can be
covered by a union of open domains {Uα} so that in each domain Uα each
hypersurface γ ⊆ |D| is represented by a holomorphic equation {fα,γ = 0}
with the differential dfα,γ nonvanishing outside a set of codimension 2 on
γ. The divisor D locally in Uα is defined by the meromorphic function
fα =

∏
γ f

kγ
α,γ ∈ M(Uα). The collection {fα} is called a meromorphic 1-

cochain defining the divisor D.
Consider the pairwise intersections Uαβ = Uα ∩ Uβ and the ratios

gαβ = fα/fβ in these intersections. These ratios are holomorphic and nonva-
nishing, since both fα and fβ define the same divisor in the intersection Uαβ.
The collection of holomorphic invertible functions gαβ is called the holomor-
phic cochain (more precisely, holomorphic 2-cochain) defining the divisor
D. Addition of divisors corresponds to multiplication of the holomorphic
cochains: if D, D′ are two divisors defined by the holomorphic cochains
{gαβ} and {g′αβ}, then the sum D + D′ is defined by the cochain {gαβg′αβ}.

Note that some divisors may not be definable by a single global equation
on M , e.g., the exceptional divisor E on the complex Möbius band M; see
Remark 8.6.

With respect to holomorphic maps, divisors behave like analytic func-
tions, i.e., they are pulled back by such maps. Let π : M ′ → M be a non-
constant holomorphic map between two connected manifolds of the same
dimension and D =

∑
kγ γ a divisor on M defined by the meromorphic

cochain {fα}.
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Definition 8.19. The preimage (pullback) π−1(D) of a divisor D ∈ Div(M)
is the divisor on M ′ which in the open domains (charts) U ′

α = π−1(U) is
defined by the meromorphic cochain f ′α = π∗fα ∈ M(U ′

α).

Since π∗ is a ring homomorphism, taking preimages commutes with ad-
dition/subtraction of divisors: for any two divisors D,D′ on M ,

π−1(D ±D′) = π−1(D)± π−1(D′).

In other words, π−1 : Div(M) → Div(M ′) is a homomorphism of Abelian
groups.

Example 8.20. Preimage of the sum of n different straight lines
∑n

1 `j

associated with the function f(x, y) =
∏

lj ∈ O(C2, 0) (the product of n
different linear factors) by the monoidal map σ : M → C2 is the divisor
nE +

∑n
1

˜̀
j , where E is the exceptional divisor and ˜̀

j the blow-ups of the
lines `j .

8G. Intersection multiplicity and intersection index. In this section
we define the multiplicity of intersection of two divisors (curves) at an iso-
lated point and the global intersection index between divisors. More details
can be found in [vdE79, MM80, Chi89]. The theorem on equivalence of
different definitions appears in [AGV85, §5], and the intersection theory in
the algebraic context is explained in [Sha94, Chapter IV].

We start with the particular case of effective divisors and define first the
local multiplicity of their intersection at a common point, say, the origin in
C2. Let f, g ∈ O(C2, 0) be two holomorphic germs and Df , Dg the respective
effective divisors in (C2, 0). We say that the intersection Df and Dg is
isolated at the origin, if |Df | ∩ |Dg| ∩ (C2, 0) = {0} (in the sense of germs
of analytic sets). The intersection is isolated if and only if no irreducible
component enters both divisors with positive coefficient, i.e., f, g have no
common irreducible factors in the ring of germs O(C2, 0). In this case we
can give several equivalent definitions of the intersection multiplicity µ =
Df

0. Dg between Df and Dg at the origin a = 0.
8G1. Algebraic construction. Consider the ideal If,g = 〈f, g〉 ⊂ O(C2, 0)
generated by these germs in the local ring of germs, and the quotient lo-
cal algebra Qf,g = O(C2, 0)/If,g as a linear space over C. The algebraic
multiplicity of intersection is defined as the dimension of the local algebra
(codimension of the ideal),

Df
0. Dg = dimCQf,g = codimO(C2,0) If,g,

If,g = 〈f, g〉 ⊂ O(C2, 0), Qf,g = O(C2, 0)/If,g.
(8.11)

By definition, the equality dimQf,g = µ < +∞ means that there exist the
germs e1, . . . , eµ which are a basis of the local algebra so that any other
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germ u ∈ O(C2, 0) admits the representation

u =
µ∑

1

ci ei + af + bg, c1, . . . , cµ ∈ C, a, b ∈ O(C2, 0), (8.12)

and the constant coefficients ci are defined uniquely. By this definition, the
multiplicity of intersection depends only on the ideal 〈f, g〉.
8G2. Geometric construction. The pair of analytic functions (f, g) consid-
ered as coordinate functions, defines a holomorphic map P = Pf,g : (C2, 0) →
(C2, 0). If the intersection Df and Dg is isolated, the preimage of the
P−1(0, 0) = (0, 0) is a single point. Maps with such properties have an
integer topological invariant, the degree. Consider a small 3-dimensional
real sphere S3

ρ = {|x|2 + |y|2 = ρ} ⊂ C2 ∼= R4 and the “normalization”
of P , the map P̂ = P̂f,g : (x, y) 7→ P (x, y)/|P (x, y)|. The normalized
map P̂ is not analytic, only differentiable, and its range is the unit sphere
S3

1 = {|z|2 + |w|2 = 1}. Restricting P̂ on a sufficiently small sphere S3
ρ, we

obtain thus a map between two spheres has an invariant, the topological de-
gree, which can be described as the number of preimages (counted with the
sign determined by the orientation) of a generic point in the target sphere.
This degree is the same for all sufficiently small choices of ρ > 0.

The geometric multiplicity of intersection between Df and Dg at the
origin is defined as the topological degree of the map P̂ ,

Df
0. Dg = top deg0 P̂f,g, P̂f,g : S3

ρ → S3
1,

P̂f,g : (x, y) 7→
(
f(x, y), g(x, y)

)

|f(x, y)|2 + |g(x, y)|2 .
(8.13)

8G3. Deformational construction. Let the positive number ρ > 0 be so
small that the system of equations {f = 0, g = 0} has a unique solution
{x = y = 0} in the ball Bρ = {|x|2 + |y|2 < ρ} (as before, f, g ∈ A(Bρ)
are holomorphic representatives of the initial germs). Then for almost all
sufficiently small (relative to ρ) complex values a, b ∈ C, |a|, |b| < ε, the
holomorphic level curves {f = a} and {g = b} are smooth inside Bρ and
intersect transversally. This follows from the Sard lemma: it is sufficient to
require a be a regular value for f and b a regular value of g restricted on the
nonsingular curve {f = a}. The transversality implies that the intersection
{f = a} ∩ {g = b} ∩ Bρ consists of isolated points. The deformational
multiplicity of intersection between Df and Dg at the origin is the number
of these points:

Da
0. Dg = #{f = a} ∩ {g = b} ∩Bρ for generic (a, b) ∈ (C2, 0). (8.14)

Apriori it is not clear why this definition makes sense and the above number
is the same for all generic combinations (a, b).
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8G4. Definition of multiplicity. One of the central results of the singularity
theory claims that the three definitions of multiplicity lead to the same
answer.

Theorem 8.21. For a pair of germs f, g ∈ O(C2, 0) without common fac-
tors in the irreducible decomposition, all three definitions (8.11), (8.13) and
(8.14) lead to the same finite number µ = µf,g ∈ Z+. ¤

The proof of this theorem can be found in [AGV85, §5].

Definition 8.22. The common value established in Theorem 8.21 is called
the multiplicity of intersection between the divisors Df and Dg at the origin.
Remark 8.23. The ideas behind the proof of Theorem 8.21 are rather natural and can
be explained as follows.

Coincidence between the geometric and deformational definitions is actually the the-
orem about the sum of indices of singular points of a vector field Pf−a,g−b ∈ D(Bρ) with
the coordinates (f − a, g − b) in the ball Bρ that is equal to the degree of this vector
field on the boundary of the ball. Important is the fact that each transversal intersection
in the complex domain corresponds to a singular point of index +1 (unlike the real case
where the index can be of positive and negative sign). The degree of the vector field
Pf−a,g−b on the boundary is an integer-valued function of a, b that is continuous, hence
it must be a constant equal to the limit, the degree of Pf−0,g−0 which is the geometric
multiplicity (8.13). This argument can be made into a rigorous proof that the geometric
and deformational multiplicities coincide.

If in the definition of the algebraic multiplicity we replace the germs f, g by the
holomorphic functions f−a and g−b considered as elements from the ring A(Bρ) for some
positive ρ, then the quotient algebra A(Bρ)/ 〈f − a, g − b〉 is isomorphic to the algebra of
functions on µ distinct points, where µ is the deformational multiplicity given by (8.14).
It requires some effort to prove that the dimension of the quotient algebra remains the
same, first in the limit as (a, b) → 0 ∈ C2, and then in the limit ρ → 0+. The latter is
exactly the algebraic multiplicity.

A convenient tool for computation of the intersection multiplicity is the
following lemma. Assume that the divisor Df is irreducible (i.e., the germ
f is irreducible in the local ring O(C2, 0). In this case Df can be locally
parameterized by an injective nonconstant map τ : (C1, 0) → (C2, 0) such
that 0 ≡ f ◦ τ ∈ O(C1, 0) (see Theorem 2.26).

Lemma 8.24. The intersection of an irreducible local divisor Df with an-
other effective local divisor Dg is isolated if and only if the germ g ◦ τ is not
identically zero, and the multiplicity Df

0. Dg of this intersection is equal to
the order ord0(f ◦ τ).

Proof. Consider a regular value b of the function g on the curve γ = {f = 0}
and the corresponding intersection locus Z0b = {f = 0, g = b} inside Bρ.
We prove first that the intersection multiplicity µ = Df

0. Dg is equal to the
number #Z0b of the points in this locus.

To that intermediate end, consider the coefficient h ∈ A(Bρ) of the 2-
form df ∧ dg = h dx ∧ dy. This coefficient cannot vanish identically on γ:
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by irreducibility of f , the differential df |γ vanishes only at the origin, hence
h ≡ 0 would mean that dg is proportional to df at all points of γ, therefore
dg|γ ≡ 0 and g|γ is a constant. As g(0) = 0, this constant is necessarily
equal to zero, in contradiction with our assumptions that Z00 consists of a
single point at the origin. Thus h|γ 6≡ 0, and one can assume without loss
of generality that ρ is so small that h|γ is nonvanishing outside the origin.

Nonvanishing of h at all points Z0b ⊆ γ for b 6= 0 means that the
restriction of f on the curve {g = b} has simple roots at exactly these points.
Any small perturbation f − a will have exactly the same number #Zab =
#Z0b of complex roots on {g = b} which is by deformational definition of
multiplicity equal to µ.

The points from Z0b are τ -parameterized by the small roots of the holo-
morphic function of one variable (g − b) ◦ τ = g ◦ τ − b which is a small
perturbation of the function g ◦ τ . It remains to observe that a small per-
turbation of a germ of order µ in O(C1, 0) is a function that has exactly µ
roots in a sufficiently small neighborhood of the origin. ¤

Another application of Theorem 8.21 is the following additivity of the
intersection multiplicity.

Proposition 8.25. For any three effective divisors D, D′, D′′ on (C2, 0),
such that D ∩ (|D′| ∪ |D′′|) is a single point 0, the intersection multiplicities
satisfy the equality

D 0. (D′ + D′′) = D 0. D′ + D 0. D′′. (8.15)

Proof. Let D′, D′′ and D be the divisors of the germs f, g and h respectively,
which are identified with their representatives holomorphic in a sufficiently
small ball Bρ. Then the divisor D′ + D′′ is that of the product fg.

By the deformational construction, for a generic combination of the val-
ues (a′, a′′, b) ∈ (C3, 0), the intersections Z ′a′b = {f = a′, h = b} and
Z ′′a′′b = {g = a′′, h = b} are transversal and consist of µ′ = D 0. D′ and
µ′′ = D 0. D′′ points respectively. Excluding only finitely many values of b,
one may assume without loss of generality that Z ′a′b and Z ′′a′′b are disjoint:
this happens if the level curve {h = b} avoids the common points of {f = a′}
and {g = a′′}. In these assumptions, the number of transversal intersections
between the curve {h = b} and the reducible curve {(f − a′)(g− a′′) = 0} is
exactly equal to µ′ + µ′′.

The function (f−a′)(g−a′′) is not a perturbation of the form fg−a that
appears in the deformational construction. Yet because of the continuity,
the degree of the vector fields Pfg−a,h−b, P(f−a′)(g−a′′),h−b and Pfg,h on the
boundary of the ball Bρ are the same if a, a′, a′′ and b are all sufficiently
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small compared to ρ. Thus by the geometric definition of the multiplicity,
we conclude that D 0. (D′ + D′′) = µ′ + µ′′. ¤

8G5. Intersection form between arbitrary global divisors. Using Proposi-
tion 8.25, one can extend the formulas for the multiplicity of intersections for
arbitrary (not necessarily effective) divisors, by the standard construction.

For a pair of local divisors, an effective divisor D′ and an arbitrary
divisor D represented as a difference of two effective divisors D = D1 −D2,
we define the multiplicity of intersection (always at the origin) as

D′ ·D = D′ ·D1 −D′ ·D2. (8.16)

If D = D3 − D4 is another representation, then by definition D1 + D4 =
D2+D3, so that by Proposition 8.25, D′ ·D1+D′ ·D4 = D′ ·D2+D′ ·D3 and
hence D3 ·D′−D4 ·D′ coincides with D′ ·D1−D′ ·D2, which means that the
definition is self-consistent. Multiplicity of intersection of two noneffective
divisors is defined by iterating this construction twice, and the additivity
law (8.15) holds automatically for any three divisors.

Consider now the general case of divisors on an arbitrary complex ana-
lytic surface M . Two divisors D, D′ on M are said to have isolated inter-
section, if |D| ∩ |D′| is a finite point set.

Definition 8.26. The intersection index between two divisors D,D′ with
isolated intersection is the sum of all intersection multiplicities:

D ·D′ =
∑

a∈M

D a. D′, if |D| ∩ |D′| is a finite set. (8.17)

The summation in (8.17) is formally extended over all points in M , but only
points from |D| ∩ |D′| may contribute nonzero terms.

The intersection index is a bilinear (over Z) symmetric form Div(M)×
Div(M) → Z, also called intersection index , defined on pairs of divisors with
isolated intersection,

D, D′ 7−→ D ·D′, when |D| ∩ |D′| is finite set,

D · (D′ ±D′′) = D ·D′ ±D ·D′′, (D, D′) = (D′, D).
(8.18)

Defined in this way, the intersection index generalizes the notion of the
number of intersection points counted with multiplicities. Its functoriality
(behavior by holomorphic maps) is studied in the next subsection.

8H. Blow-up and intersection index. The intersection index is well de-
fined and invariant by biholomorphisms: if π : M ′ → M is a biholomorphism,
then

π−1(D) · π−1(D′) = D ·D′,

D, D′ ∈ Div(M), π−1(D), π−1(D′) ∈ Div(M ′)
(8.19)
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for any two divisors D, D′ on M with an isolated intersection. However, if
σ is a blow-up then the preimage of the point {0} is the exceptional divisor
which therefore belongs to the preimage of any divisor. Hence σ−1(D) and
σ−1(D′) necessarily have nonisolated intersection even if |D| ∩ |D′| = {0}:
this intersection always contains the exceptional divisor E with a positive
multiplicity if D,D′ were effective; see Example 8.20.

One can attempt to extend the intersection form on pairs of divisors
R, R′ ∈ Div(C) which have no nonexceptional common components, i.e.,
when

|R| ∩ |R′| ⊆ S, (8.20)
so that the identity (8.19) would hold also when π is a blow-up. We shall
see that only one such extension is possible.

Remark 8.27. Theorem 8.21 can be interpreted as the local continuity of
the intersection index. For instance, consider an effective divisor D defined
by a family of local equations {fα = 0} in suitable charts Uα. If another
family {f ′α ∈ O(Uα)} is a sufficiently small perturbation of {fα ∈ O(Uα)} also
has nonvanishing holomorphic ratios f ′α/f ′β ∈ O(Uα ∩Uβ), it defines a small
perturbation D′ of the divisor D as explained in §8F2. By the deformational
construction, the intersection index of D and D′ with any other divisor D′′

is the same, D ·D′′ = D′ ·D′′ (while multiplicities of particular intersection
points may of course change).

Thus in principle one might wish to define the self-intersection index for
any divisor D by perturbing it slightly to become a divisor Dε and let by
definition D ·D = limDε→D D ·Dε. For instance, if D is defined by a global
equation D = Df for some f : M → C, then one can choose Dε = Df−ε:
since different level curves are disjoint, D ·De = 0 for all ε 6= 0, and hence we
have the identity D ·D = 0. On the other hand, if M = P2 is the projective
plane and D is a line on it, then D ·D = 1.

Yet the self-intersection index of the exceptional divisor E cannot be
obtained in this way because of the rigidity of E inside the Möbius band M
(Remark 8.6). Moreover, we will see that in order to preserve (8.19), one has
to assign the self-intersection index E·E the negative value −1 (note that the
intersection index between any two different divisors is always nonnegative).

Example 8.28. Consider two divisors defined by two lines `1,2 transversally
crossing at the origin in (C2, 0). Their preimages by the standard monoidal
map σ : M→ (C2, 0) consist of the blow-ups ˜̀

1,2 and the exceptional divisor:

σ−1(`j) = E+ ˜̀
j , j = 1, 2;

cf. with Example 8.20. Note that both blow-ups ˜̀
1,2 are smooth, intersect E

transversally, hence ˜̀
j ·E = 1, and are disjoint, so ˜̀

1 · ˜̀2 = 0. If the preimages
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were to have the same intersection index σ−1(`1) ·σ−1(`2) = `1 · `2 = 1, then
we would have the identity

1 = `1 · `2 = E · E+ E · (˜̀1 + ˜̀
2) + ˜̀

1 · ˜̀2 = E · E+ 1 + 1 + 0,

which leaves only one possibility, E · E = −1.

Theorem 8.29. The intersection form between divisors on M can be
uniquely extended for pairs of divisors satisfying (8.20) as a symmetric bi-
linear form with the following properties:

E · E = −1, (8.21)

σ−1(D) · E = 0, ∀D ∈ Div(C2, 0), (8.22)

σ−1(D) · σ−1(D′) = D ·D′, ∀D, D′ ∈ Div(C2, 0) (8.23)

(the last condition holds only for pairs of divisors D,D′ ∈ Div(C2, 0) having
isolated intersection).

Proof. We need to prove that the rule (8.21) if adopted as an axiom and
combined with bilinearity, would imply the identities (8.22) and (8.23) for
arbitrary divisors D, D′ ∈ Div(C2, 0). Because of the bilinearity and sym-
metry, it is sufficient to complete the proof when the divisor D = Df is a
curve defined by a holomorphic germ f ∈ O(C2, 0).

Denote by n = ord0 f the order of the holomorphic germ f = fn +
fn+1 + · · · . Without loss of generality we may assume that the principal
homogeneous part fn is not divisible by x, so that fn(x, y) = cyn + · · · ,
c 6= 0 (otherwise an affine change of coordinates should first be made). In
the chart U1 we have

σ∗1f(x, z) = xnfn(1, z) + xn+1(1, z) + · · · = xn[fn(1, z) + xfn+1 + · · · ]
= xnf̃(x, z), f̃(0, z) = fn(1, z) 6≡ 0,

so that by definition of the preimage of divisors,

σ−1(Df ) = nE+ D̃f , D̃f = D ef , n = ord0 f. (8.24)

As a curve, |D̃f | is the blow-up of the curve |Df |, since the function f̃ does
not vanish identically on E. Occurrence of the term nE stresses the difference
between preimage of the divisor and blow-up of its support curve.

The intersection between D̃f and E is isolated and consists of the roots
of the polynomial fn(1, z) of degree exactly n. If a = (0, a′) is such a point,
then the multiplicity of intersection D̃f

a. E at this point is equal to the mul-
tiplicity of the root of fn(1, z) at z = a′ ∈ C, since f̃(x, z) = fn(1, z) mod 〈x〉
and the quotient rings O(C2, a)/〈x, f̃〉 and O(C1, a′)/ 〈fn(1, ·)〉 are naturally
isomorphic. Adding the contributions of all points together, we obtain

D̃f · E = degz fn(1, z) = ord f = n. (8.25)
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Using the axiom (8.21), we obtain from (8.24) by linearity

σ−1(Df ) · E = (−1) · n + D̃f · E = −n + n = 0.

The proof of (8.22) is complete.
To prove (8.23) we assume that the analytic curve D = Df is irreducible

and parameterized by an injective holomorphic map τ : (C1, 0) → (C2, 0),
t 7→ (

x(t), y(t)
)
.

By Lemma 8.24, the intersection multiplicity Df
0. Dg is equal to the

multiplicity (order) ord0 g ◦ τ of the root t = 0 of the composition g ◦ τ .
If Df = γ is an irreducible curve parameterized by τ , then the map

τ̃ : t 7→ σ−1 ◦ τ , t 6= 0, parameterizes the points of σ−1(γ)r E. It obviously
extends holomorphically at the origin and becomes a map τ̃ : (C1, 0) → C

parameterizing the blow-up curve D̃f = γ̃.
If D′ = Dg is an arbitrary divisor (reducible or not), then using

Lemma 8.24 twice we obtain
Dg ·Df = ord0 g ◦ τ = ord0 g ◦ σ ◦ σ−1 ◦ τ = ord0(σ∗g) ◦ τ̃

= Dσ∗g · D̃f = σ−1(Dg) · D̃f .

Combining this with (8.24) and (8.22), we obtain

σ−1(Dg) · σ−1(Df ) = σ−1(Dg) · (nE+ D̃f )

= nσ−1(Dg) · E+ σ−1(Dg) · D̃f

= 0 + Dg ·Df = Dg ·Df .

The proof of (8.23) is complete when D is irreducible. As was already
mentioned, the proof in the general case follows from bilinearity of the in-
tersection index. ¤

As a corollary to Theorem 8.29, we obtain a simple formula for the
intersection index between blow-ups of two analytic curves.

Corollary 8.30. For any pair of two holomorphic curves γ, γ′ ⊆ (C2, 0) of
orders m and m′, and their blow-ups γ̃, γ̃′ ⊂ (M,E), the intersection indices
are related by the formula

γ · γ′ = γ̃ · γ̃′ + mm′. (8.26)

Proof. By (8.24), on the level of divisors

σ−1(γ) = mE+ γ̃, σ−1(γ′) = m′E+ γ̃′.

Using bilinearity, we conclude that

γ̃ · γ̃′ = (σ−1(γ)−mE) · (σ−1(γ′)−m′E) = γ · γ′ − 0m− 0m′ + (−1)mm′

by virtue of the three rules (8.21), (8.22) and (8.23). ¤
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Example 8.31. If γ, γ′ are two smooth (of order 1) analytic curves, then
their intersection multiplicity decreases by 1 after blow-up. Since in the
smooth case the intersection multiplicity is equal to the order of tangency
between γ and γ′ minus 1, the order of tangency between smooth curves is
also decreased by one by blow-up.

8I. Blow-up and multiplicity of singular foliations. Consider a sin-
gular holomorphic foliation F defined by the Pfaffian equation {ω = 0},
ω ∈ Λ1(C2, 0) or a holomorphic vector field F ∈ D(C2, 0) near an isolated
point at the origin. Denote by n the order of the form ω at the origin: by
definition, it means that

ω = f dx + g dy = (fn + fn+1 + · · · ) dx + (gn + gn+1 + · · · ) dy (8.27)

and the homogeneous polynomials fn, gn of lowest degree n do not vanish
identically: fn dx+gn dy 6= 0. The assumption that the singularity is isolated
means that the intersection of the coordinate divisors Df and Dg is isolated.

Definition 8.32. The multiplicity µ0(ω) of the singular point of the form
(8.27) at the origin is the intersection multiplicity Df

0. Dg between the
respective divisors.

The multiplicity µa(F) of a singular foliation F at a point a is the mul-
tiplicity of any holomorphic form ω tangent to F and having an isolated
singular point at a.

Consider a small perturbation Fε of the vector field, say, (f − ε1) ∂
∂x +

(g − ε2) ∂
∂y . If the vector field Fε has only nondegenerate singularities and

ε ∈ (C2, 0) is sufficiently small, then the number of these singular points
is exactly equal to the multiplicity by Theorem 8.21. By this definition,
multiplicities of nonsingular points are equal to zero.

The definition of multiplicity does not depend on the choice of local co-
ordinates used for writing the coefficients of the form. This follows from the
deformational interpretation of the multiplicity. An alternative argument
is as follows: changing the coordinates results in replacing the coefficients
(f, g) of the form by another tuple of functions (f ′, g′) belonging to the same
ideal 〈f, g〉. If the change of coordinates is invertible, the two ideals are equal
and so are the local algebras.

Our immediate goal is to compare the total multiplicity of all singu-
larities of a foliation F and its blow-up F̃ = π∗F for a simple blow-up π.
Clearly, it is sufficient to consider the case where F has an isolated singu-
larity on (C2, 0) and the blow-up is the standard monoidal transformation
σ : (M,E) → (C2, 0). The answer is different in the dicritical and nondicrit-
ical cases.
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Consider the singular foliation F determined by 1-form ω = f dx + g dy

of order n as in (8.27) and denote F̃ its blow-up as defined in Definition 8.11.

Theorem 8.33. Let F be a singular foliation on (C2, 0) and F̃ its blow-up.
Then in all cases except for the dicritical singularity of order 1,∑

a∈S

µa(F̃) = µ0(F)− k(k − 2) + n. (8.28)

Here n = ord0 ω, m = ord0(xf + yg) > n + 1 (with the equality occurring in
the nondicritical case) and

k = min(n + 2,m) =

{
n + 1, in the nondicritical case,
n + 2, in the dicritical case.

(8.29)

In the nondicritical case the formula (8.28) implies
∑

a

µa(F̃) = µ0(F)− (n2 − n− 1). (8.30)

In the dicritical case of order n > 1 the formula (8.28) yields
∑

a

µa(F̃) = µ0(F)− (n2 + n). (8.31)

In the dicritical case of order n = 1 we have µ0(F) = 1 whereas the blow-up
foliation F̃ is nonsingular, therefore∑

a

µa(F̃) = 0 = 1− 1 = µ0(F)− n2. (8.32)

Corollary 8.34. If n > 1, then the total number of singularities of F̃

counted with their multiplicities, hence the multiplicity of every particular
singularity, is strictly smaller than the multiplicity of the initial singularity,∑

a∈S

µa(F̃) < µ0(F). ¤ (8.33)

Proof of Theorem 8.33. We start with a convenient choice of the affine
chart to work in. Making an affine transformation if necessary, we will then
be able to assume without loss of generality that this chart is the standard
affine chart U1 with the coordinates (x, z).

First, we can assume that the only point not covered by the affine chart,
is nonsingular for the blow-up foliation F̃. In the nondicritical case this is
equivalent to assuming that the principal homogeneous part hn+1 = xfn +
ygn is not divisible by x.

Moreover, we can always assume in addition that the intersection of the
divisors Dg and Dh is isolated: since h = xf +yg, this happens if and only if
g is not divisible by x. To ensure that, we will assume that gn is not divisible
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by x. Unlike the previous assumptions which can always be achieved by a
suitable affine transformation, this last assumption can be achieved in all
cases except for the dicritical case of order n = 1. In the latter case we
always have g1(x, y) = x since the linear part of the corresponding vector
field is a scalar matrix which remains scalar in any affine coordinates.

In the affine chart U1
∼= C2 with the coordinates (x, z) the pullback of

the form ω by the monoidal map σ : (x, z) 7→ (x, xz) was computed in (8.5).
Technically it is more convenient to pull back the form xω ∈ Λ1(C2, 0): the
fact that it has a nonisolated singularity does not matter, as the pullback
will be in any case divided by a suitable power of x when extended on the
exceptional divisor. The advantage is that the coefficients of the 1-form
σ∗1(xω) = (σ∗1h) dx + σ∗1(x

2g) dz are pullbacks of two holomorphic germs h
and g′ = x2g.

To extend the form σ∗1(xω) on the exceptional divisor E = {x = 0}, one
has to divide the coefficients σ∗1h and σ∗1g

′ by the maximal positive power
xk of the function x which is the local (relative to the chart U1) equation
of the exceptional divisor. Depending on whether the initial singularity is
dicritical or not, we have two possibilities for this maximal order k, given by
(8.29). The intersection multiplicity between x−kσ∗1h and x−kσ∗1g

′ at any
point on the line x = 0 will then be the multiplicity of the corresponding
singularity of the blow-up foliation.

On the language of the divisors the total multiplicity of all singular points
of F̃ on the exceptional divisor E reduces to computation of the intersection
index between the divisors σ−1(Dh)− kE and σ−1(Dx2g)− kE = σ−1(Dg)−
(k − 2)E in the open domain U1 ⊂ M. However, by our assumption that
the point not covered by U1 is nonsingular, we may extend the summation
over all singular points on E using bilinearity and the rules established in
Theorem 8.29:∑

a

µa(F̃) = (σ−1(Dh)− kE) · (σ−1(Dx2g)− kE)

= (σ−1(Dh)− kE) · (σ−1(Dg)− (k − 2)E
)

= σ−1(Dh) · σ−1(Dg) + k(k − 2)E · E
= Dh ·Dg − k(k − 2).

(8.34)

It remains to compute the intersection index between two divisors Dh, Dg ⊂
(C2, 0) at the origin, where h = xf+yg, and express it via Df ·Dg. Using the
fact that the intersection multiplicity depends only on the ideal generated
by these germs, we obtain

Dh
0. Dg = Dxf+yg

0. Dg = Dxf
0. Dg = Dx

0. Dg + Df
0. Dg.
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The multiplicity of intersection Dx
0. Dg is equal to the order of the function

ord0 g(0, y). If gn is not divisible by x, this order is equal to n, so that
ultimately

Dh
0. Dg = µ0(F) + n, n = ord0 F.

Putting everything together, we obtain the formula (8.28). ¤

8J. Desingularization of cuspidal points. Multiplicity of isolated sin-
gularities of order n > 1 goes down after blow-up (dicritical or not). To prove
the desingularization theorems, we need to show that the only nonelemen-
tary points of order 1, the cuspidal points, can be desingularized in finitely
many steps. Note that since the order of a cuspidal point is 1, the total
multiplicity of all singularities which appear after blow-up (nondicritical)
goes up by 1 by (8.30). We will show that for cuspidal points the mul-
tiplicity decreases after two consecutive blow-ups if it was three or higher,
whereas a cusp of multiplicity 2 after three blow-ups gets desingularized into
elementary points.

Without loss of generality we may assume that the lower order terms of
the form ω are brought to the normal form

ω = y dy + [f(x) + yg(x)] dx, f, g ∈ C[[x]],

ord0 f = µ > 2, ord0 g > 0.
(8.35)

(cf. with (4.18)). In fact, we need only terms of order 2 for the analysis
below. The number µ > 2 is the multiplicity of the singular point (8.35).

The quadratic tangent form xf1 + yg1 for (8.35) is equal to y2. It is
nonzero (hence the singularity is nondicritical) and the only singular point
after blow-up is the point z = 0 in the chart U1, where the blow-up of ω
takes the form

xz dz + (ax + bx2 + cxz + z2) dx + m3 ⊗ Λ1, (8.36)

where a, b are the leading coefficients of f(x) = ax2 + bx3 + · · · (a 6= 0 if
and only if µ = 2) and c the leading coefficient of g(x) = cx+ · · · . Here and
below the notation mk is used to denote a collection of terms of order > k
and the tensor product stands for the 1-form with third order coefficients.

Further arguments are different for simple cusp with µ = 2 and higher
cusps with µ > 2.
8J1. Simple cusp. We show that after three consecutive blow-ups the sim-
ple cusp of multiplicity µ = 2 can be blown up into three nondegenerate
singularities.

If µ = 2, then without loss of generality one may assume that a = 1. The
order of the singularity (8.36) which appears after the first blow-up, is again
1 so it is a simple cusp, its multiplicity (by (8.30) with n = 1) is 3 = 2 + 1
and the tangent form is x2 6≡ 0. After the second blow-up (substitution
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x = uz and division by z) the cuspidal singular point (8.36) is transformed
into the foliation defined by the form

uz dz + (u + z)(u dz + z du) + m3 ⊗ Λ1, (8.37)

which has a unique singularity at u = 0. The order of this singularity is now
2 and multiplicity is equal to 4 = 3 + 1 by (8.30) (again with n = 1).

The tangent form for (8.37), uz2 + 2uz(u + z) = uz(2u + 3z), is the
product of three different (simple) linear factors which means that after the
third blow-up the foliation will have three singular points of total multiplicity
3 = 4 − 1 (again by (8.30) yet this time with n = 2). This leaves only
one combination of multiplicities 1, 1 and 1 respectively, meaning that all
three points are nondegenerate (hence elementary). One can show by direct
computation that all three points are resonant saddles.
8J2. Higher cusp. In this case already after the first blow-up the form (8.36)
has order 2, multiplicity µ+1 by (8.30) and the tangent form xz2 +x(bx2 +
cxz + z2) = x(bx2 + cxz + 2z2) which is divisible by x but not a power
of x. In other words, after the second blow-up there will appear at least
two distinct points (three if c2 6= 8b) of total multiplicity µ by (8.30). This
means that each of these two points has multiplicity at most µ− 1 after two
consecutive blow-ups.

Proof of Desingularization Theorems 8.14 and 8.15. We construct a
sequence of blow-ups that would resolve completely an isolated singularity.
The algorithm is very simple: starting from the initial singularity of a foli-
ation F = F0 at the origin 0 ∈ M0

∼= (C2, 0), we construct a simultaneous
simple blow-up πk : Mk → Mk−1, k = 1, 2, . . . , of all nonelementary singu-
lar points Σk−1 ⊂ Mk−1 of the foliation Fk−1 obtained on the previously
constructed surface Mk−1.

The assertion on the vanishing divisor D (preimage of the origin) can
be easily verified inductively. If γ ⊂ M is a nonsingular curve biholomor-
phically equivalent to P1 and a ∈ γ a center of blow-up π : M ′ → M , then
by Example 8.31 the blow-up π∗γ will again be a nonsingular curve γ̃ bi-
holomorphically equivalent to γ and therefore again equivalent to P1 (note
that the topology of embedding of γ̃ in M ′ may change). If γ, γ′ intersect
transversally, then their blow-ups will be disjoint and both transversal to
the exceptional divisor π−1(a) ⊂ M ′ created by π. Thus the assertion on
the vanishing divisor reproduces itself inductively and holds at any moment.
The proof of Theorem 8.14 is complete.

To prove Theorem 8.15, it remains to estimate the number of simple
blow-ups before the algorithm terminates, i.e., before all singularities become
elementary. Note that all singularities appearing in the process, can be
organized in a tree graph with branches connecting each singularity with its
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138 I. Normal forms and desingularization

descendants appearing by the simple blow-up. Take the longest branch in
this tree, 0 = a0, a1 ∈ Σ1, a2 ∈ Σ2, etc. We claim that, with the possible
exception of the last three steps, the multiplicity of singularities ai decreases
at least by one every step or, at worst, every two steps. Denoting by µi the
respective multiplicities, we already know that:

(1) if ai is of order > 1, then µi+1 < µi by Corollary 8.34;
(2) if ai is of order 1 and is neither elementary nor simple cusp, then

µi+2 < µi by §8J2;
(3) if ai is a simple cusp, then the branch terminates after three more

steps by §8J1.

These inequalities constrain the maximal length of the branch by 2(µ−1)+
3 = 2µ + 1. The proof of Theorems 8.14 and 8.15 is complete. ¤

8K. Concluding remarks: elimination of resonant nodes and di-
critical tangencies. Elementary singular points can also be to some extent
simplified by blow-up. For instance, a nondegenerate singularity with the
eigenvalues λ1, λ2, defined by the Pfaffian equation

x dy + λy dx + · · · = 0, λ = −λ1/λ2 6= −1,

is “split” by the blow-up into two singularities which are both nondegenerate
when λ 6= −1. The corresponding negative ratios of eigenvalues will be λ+1
and (λ−1 + 1)−1.

The case λ = −1 corresponds either to the dicritical node x dy + y dx +
· · · = 0 or to the Jordan node (x + y) dy + y dx + · · · = 0. The former
singularity disappears after blow-up, while the latter produces an elementary
singular point whose hyperbolic eigenspace is transversal to the exceptional
divisor (the corresponding tangent form is y2).

Combining these observations, one can make additional blow-ups on top
of the desingularization achieved in Theorem 8.14 and eliminate all resonant
nodes with natural ratios of eigenvalues. Indeed, such points correspond
to negative natural values λ = −n which can be increased by 1 in n − 1
steps until the parameter λ reaches the threshold value λ = −1 (all other
singularities appearing in the process will be resonant saddles with λ =
n/(n− 1)). On the next step the singularity either disappears or becomes a
saddle-node.

In another development, one can refine the assertion of the Desingular-
ization Theorem 8.15 to eliminate tangency points between the foliation π∗F
and the vanishing divisor D. We briefly outline here the required adjust-
ments.

The tangency order between two smooth curves {f = 0} and {g = 0}
is by definition the multiplicity of intersection Df

a. Dg minus 1: if two
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8. Desingularization in the plane 139

curves intersect transversally, the tangency order is 0, for a true tangency it
is always positive.

The tangency order between a foliation F defined by the Pfaffian equat-
ion ω = 0 and a smooth analytic curve γ = {f = 0} at a point a is defined
only when γ is not a leaf or separatrix of F.

If a is nonsingular for F, then the tangency order τa(F, γ) is by definition
the tangency order between γ and the leaf of F passing through a. If γ is
defined by the equation {f = 0} locally near a, then one can easily verify
that

τa(F, γ) = Dω∧df
a. Df , (8.38)

where Dω∧df is the divisor of zeros of the 2-form ω ∧ df = ρ(x, y) dx ∧ dy
identified with its coefficient ρ, Dω∧df = Dρ.

Indeed, if the tangency order is k, then after choosing suitable local
coordinates one can assume that ω = dy (recall that a is nonsingular) and
γ = {f = 0}, f(x, y) = y − b(x), ord0 b = k + 1. The expression in the right
hand side of (8.38) will be then equal to the order of σ(x, y) = db(x)/dx
restricted on the smooth curve γ parameterized by x, i.e., to k = ord0 b− 1.

In the case where a is a singular point, one can use (8.38) as a definition
of the tangency order. The important property of the tangency order thus
defined, is the following one.

Proposition 8.35. If a is a hyperbolic singular point of F which is not a
resonant node, and L is a separatrix of the foliation F passing through it,
then the order of tangency between L and any other smooth curve γ is by 1
greater than the order of tangency between F and γ,

γ 0. L = τ(F, γ) + 1.

Proof. We can assume that the local coordinates are chosen so that the
separatrix L is a coordinate axis, L = {y = 0}. Then ω = λy(1 + m) dx +
(x + m2) dy, where λ is the negative ratio of eigenvalues.

A curve γ tangent to {y = 0} with order k > 0, is defined by the equation
y − b(x) = 0, ord0 b = k + 1. Direct computation of (8.38) yields

τ0(F, γ) = ordx=0[λb(x)(1 + m)− b′(x)(x + m2)] = k + 1

if λ 6= k + 1, i.e., if the singular point is not a resonant node with the ratio
of eigenvalues −1 : (k + 1). ¤

Using the tangency order, one can combine the equalities (8.31) and
(8.32) into a single identity valid for both n > 1 and n = 1. Assume that
the origin is a dicritical singularity of a holomorphic foliation F. Denote by
Σ the singular locus of its blow-up F̃ and by T the collection of the tangency
points between F̃ and the exceptional divisor.
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140 I. Normal forms and desingularization

Proposition 8.36. If the singularity is dicritical of any order n > 1, then∑

a∈Σ

µa(F̃) +
∑

b∈T

τb(F̃, S) = µ0(F)− n2. (8.39)

Proof. When n > 1, the equality (8.39) follows from (8.31) and the obser-
vation that the order of tangency between F̃ given by the Pfaffian equation
x−n[(· · · ) dx + g(x, xz) dz] and E = {x = 0} at any point is equal to the
order of the root of the function x−ng(x, xz) = gn(1, z) + · · · restricted on
E. The total multiplicity of all roots of gn(1, z) is equal to n, which proves
(8.39) for n > 1. For n = 1 this formula is proved by direct inspection: there
are neither singular nor tangency points after blow-up, whereas the initial
multiplicity µ0(F) is equal to 1. ¤

Behavior of tangency points after blow-up can be easily controlled: by
(8.26), the intersection multiplicity between two smooth analytic curves de-
creases by 1 after blow-up. Using this fact, one can achieve by elemen-
tary inductive arguments the following improvement of the Desingulariza-
tion Theorem 8.14.

Theorem 8.37 ([Kle95]). In the formulation of the Desingularization The-
orem 8.14 one can always guarantee that the dicritical components of the
vanishing divisor D = π−1(0) carry no tangency points with the foliation
π∗F (in particular, no singularities of the latter).

The number of simple blow-ups necessary to desingularize the singular
point of multiplicity µ in this strong sense does not exceed µ + 2.

Exercises and Problems for §8.

Exercise 8.1. Compute blow-ups of:

(1) a smooth analytic curve passing through 0,

(2) several lines through 0 crossing each other by nonzero angles,

(3) the cusp y2 − x3 = 0.

Exercise 8.2. What happens after blow-up of a nonsingular point of a vector
field?

Exercise 8.3. What happens after blow-up of a homogeneous vector field?

Problem 8.4. Give direct algebraic proof of Proposition 8.25 based on constructing
the basis for the local algebra Qfg,h from the bases of the local algebras Qf,h and
Qg,h respectively.

Exercise 8.5. Compute the ratios of eigenvalues for all three nondegenerate sin-
gular points obtained by complete desingularization of the simple cuspidal point
described in §8J1.
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8. Desingularization in the plane 141

Problem 8.6. Prove that any holomorphic vector field F = (F1, F2) with an
isolated singular point at the origin 0 ∈ C2 satisfies the Lojasiewicz condition: there
exist finite positive C and M such that |F (x)| > C|x|M for all x ∈ (C2, 0)r {0}.
Problem 8.7. Prove that consecutive desingularization of a rational node, a sin-
gularity with the ratio of eigenvalues λ = p/q ∈ Q, p, q 6= 1, necessarily involves a
dicritical blow-up on some step. How many standard simple blow-ups are required
to obtain a singular point whose subsequent blow-up is dicritical?

Problem 8.8. Suppose that the complete desingularization of an isolated singu-
larity of multiplicity µ does not involve neither cusps nor dicritical blow-ups. Give
an upper bound for the number of blow-ups in the desingularization, better than
in Theorem 8.15.

Problem 8.9. Suppose that a nice blowing up of an isolated singular point of a pla-
nar analytic vector field is completely nondicritical and has at most one noncorner
singular point. Prove that all the characteristic numbers (ratios of the eigenvalues)
of the singular points of the nice blowing up are rational.
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Chapter II

Singular points of
planar analytic vector
fields

In this chapter we apply the analytic tools developed earlier in Chapter I,
to the study of singular points of planar, mostly real analytic vector fields.

9. Planar vector fields with characteristic trajectories

A real analytic vector field F on the plane or, more generally, a real analytic
2-dimensional manifold U (surface) defines a real analytic foliation FF by
real analytic curves on the complement to the zero locus ΣF = {F = 0}.
Note that the leaves of foliations generated by vector fields are naturally
oriented by the field F . By definition, we say that F is a singular real
analytic foliation, if in a neighborhood of any point it is locally defined by
a real analytic vector field with complex analytic singularities, as described
in §2D. Sometimes, when a real analytic foliations is originally defined by a
vector field, the foliation is called the phase portrait of the field.

Topological (“qualitative”) description of singularities of planar vector
fields was essentially achieved in the middle of the twentieth century and its
results exposed in several monographs. In this and the following section we
will describe the results, placing special emphasis on the effectiveness and
“algebraicity” of the algorithms which allow us to decide the topological
types of the singular points.

The “real topological theory”, while intuitively rather obvious, still
would require developing of an appropriate technique that would lead us

143
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144 II. Singular points of planar analytic vector fields

too far away from the main theme of the book. Thus in many cases we
had to compress accurate elementary topological reasoning into “sketches”
of the proofs. The interested reader is advised to consult the encyclope-
dic treatises [ALGM73, Har82] and the classical but recently reprinted
book [NS60] and transform these sketches into accurate proofs. The sur-
vey [AI85], especially Chapter III, may be instrumental in finding accurate
references.

9A. First steps of topological classification: Poincaré types and
saddle-nodes. Two vector fields F and F ′ defined on two surfaces U and
U ′ respectively, are topologically (orbitally) equivalent if there exists an
orientation-preserving homeomorphism H : U → U ′ mapping ΣF to ΣF ′

and the leaves of F to the leaves of F′ respecting the orientations. Two
germs of vector fields are topologically equivalent, if they admit topologi-
cally equivalent representatives.

One of the principal problems of the local theory of analytic differen-
tial equations on the plane is topological classification of germs of isolated
singularities of planar analytic vector fields. The initial steps of this classifi-
cation were implemented by H. Poincaré who gave topological classification
of nondegenerate linear planar vector fields (a degenerate singularity cannot
be linear and isolated simultaneously). Poincaré introduced the topological
types listed in Table II.1 and proved that any linear vector field is topolog-
ically equivalent to one of the first three types listed in the table.

Type Eigenvalues Normal form

1 Saddle λ1λ2 < 0 x ∂
∂x − y ∂

∂y

2 Nodes λ1λ2 > 0, Reλ1,2 6= 0 ±(x ∂
∂x + y ∂

∂y )

3 Center λ1,2 = ±iω −y ∂
∂x + x ∂

∂y

4 Saddle-nodes λ1 = 0 6= λ2 x2 ∂
∂x ± y ∂

∂y

Table II.1. Topological types of planar elementary singularities of real
analytic vector fields: λ1,2 are the eigenvalues of the linearization. The
nodes and saddle-nodes with different signs, are not equivalent.

For nonlinear nondegenerate analytic singularities no new types arise:
except for one case (center), any analytic (and even smooth) germ of vec-
tor field is topologically equivalent to its linear part. This follows from the
Grobman–Hartman topological linearization theorem for hyperbolic singu-
larities [Gro62, Har82]. A vector field whose linearization is a center, may
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9. Planar vector fields with characteristic trajectories 145

Figure II.1. Poincaré types of phase portraits: saddle, node, center
and saddle-node

be center or focus (see Definition 9.10); we shall explore this issue in depth
in §10C below.

Degenerate elementary singularities exhibit only one new topological
type, the saddle-node (see Table II.1). We summarize these results as fol-
lows.

Theorem 9.1 (see [ALGM73]). Any elementary singularity of a planar
real analytic vector field is topologically equivalent to one of the six types
listed in Table II.1.

The linear part uniquely determines (via the conditions described in the
second column of the table) the topological type for all nondegenerate sin-
gularities except for the case of purely imaginary eigenvalues, which may
correspond to a center or a focus (topological node).

A degenerate elementary singularity can be topologically equivalent to a
saddle-node if the multiplicity is even, or saddle or node if the multiplicity
is odd. ¤

9B. Sectorial decomposition of nonelementary singularities. Any
isolated singularity can be resolved into elementary ones by Theorem 8.14.
Blowing down the corresponding two-dimensional surfaces with foliations on
them, one can obtain description of phase portraits of degenerate singular-
ities in terms of sectors which were introduced by I. Bendixson (1901); see
also [Har82, Ch. VII, §8] and [Per01, §2.11].

Definition 9.2. A “standard sector” (which may be parabolic, hyperbolic
or elliptic) is the germ of a standard oriented foliation Fp, Fh or Fe defined
on the quadrant {x > 0, y > 0}r {0} ⊆ (R2, 0) by the vector fields

(i) Fp = x ∂
∂x + y ∂

∂y (parabolic),

(ii) Fh = x ∂
∂x − y ∂

∂y (hyperbolic),

(iii) Fe = z4 ∂
∂z , z = x + iy (elliptic)

respectively; see Fig. II.2.
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146 II. Singular points of planar analytic vector fields

Figure II.2. Hyperbolic, parabolic and elliptic sectors

Since the boundary rays of the sector are leaves of the standard folia-
tions, standard sectors of different types in the quadrant can be inscribed in
sectors of arbitrary positive opening and attached to each other in a cyclical
order to produce an oriented foliation on (R2, 0) r {0} (this construction
can be implemented in any smoothness, though in general not in the real
analytic category). If a nonelementary singularity of a planar vector field
is topologically equivalent to a foliation obtained by such a surgery, so that
the boundaries of the sectors are characteristic trajectories, we say that the
singularity admits sectorial decomposition.

Remark 9.3 (Warning). Boundaries between sectors of a sectorial decom-
position are not uniquely defined; see Exercise 9.9.

9C. Monodromic singularities, characteristic orbits, limit cycles.
Not all singularities, though, admit sectorial decomposition (e.g., centers).
To give sufficient conditions for existence of sectorial decomposition, we need
the following definitions which take the simplest form after a blow-up.

Let F be a foliation generated by a real analytic vector field on (R2, 0),
and F′ its blow-up, the foliation on the (real standard) Möbius band M =
RM, as described in Remark 8.5.

Definition 9.4. A leaf L of the foliation F, represented as a parameterized
curve γ : (−T, +∞) → (R2, 0), t 7→ γ(t), is called a characteristic orbit (or
characteristic curve), if limt→+∞ γ(t) = 0 and the preimage γ̃(t) = σ−1(γ(t))
has a well-defined limit a = limt→+∞ γ̃(t) on the exceptional divisor C ⊂ M .

In other words, the characteristic orbit is a semi-infinite trajectory which
tends in the corresponding limit (as the times tends to plus or minus infinity)
to the singular point along a certain direction with the slope a ∈ C ∼= RP 1.

Remark 9.5 (Warning). Blow-up σ of a real analytic oriented foliation F

is another real analytic oriented foliation F′, yet orientation of the preimage
leaf L′ = σ−1(L) ∈ F′ may differ from the one induced from its source L ∈ F

(consider the standard node given by the Euler field and its nonsingular
dicritical blow-up).
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9. Planar vector fields with characteristic trajectories 147

Assume that the foliation F is nondicritical and a ∈ M a nonsingular
point of F′ on the central circle C = σ−1(0) ⊂ M . Consider a cross-section
τ : (R1, 0) → (M, a) to F′ at a. The standard holonomy map associated with
such a choice, may be not defined if C carries singular points. Yet for certain
types of singularities one can still define the monodromy map without going
into the complex domain.

Definition 9.6. The foliation F is called monodromic, if all nonexceptional
leaves L 6⊆ C crossing τ sufficiently close to a, cross again this section at
least once in the future and in the past.

Example 9.7. Among foliations generated by linear planar vector fields,
only centers and foci are monodromic.

For monodromic foliations one may define the germ of the monodromy
map ∆ = ∆τ : (τ, a) → (τ, a) as the first return map associated with the
cross-section τ . Yet (mainly for historical reasons) the monodromy is defined
as the second return map.

Indeed, because of the topology of the real Möbius band, any trajectory
(leaf) close to the central circle C, cuts the cross-section τ : (R, 0) → (C, a)
from two sides so that the signs of the local coordinate, corresponding to
consecutive intersections, alternate. After two turns around the band, any
leaf of the monodromic singularity again crosses the section τ from the same
side; see Fig. II.3.

Definition 9.8. The monodromy map of a monodromic singularity is the
return map for the positive semi-section τ+ : (R+, 0) → (C, a) to the central
circle at a nonsingular point of the latter.

This map coincides with the square (second iteration) of the holonomy
of the real exceptional divisor C ⊂ M if this divisor carries no real singular
points of the foliation.

Remark 9.9. The property of being monodromic is not invariant by topo-
logical equivalence: a focus is monodromic, while a node which is topologi-
cally equivalent to the focus, is not.

It is a simple exercise to show that an isolated singularity of a planar
real analytic foliation is a center , i.e., topologically equivalent to the corre-
sponding field from Table II.1, if and only if all nonsingular leaves are closed
(compact, homeomorphic to the circle).

Definition 9.10. A singularity is focus, if it is a monodromic topological
node.

A monodromic singularity is a focus, if and only if some neighborhood
of it is free from periodic orbits (Problem 9.3).
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148 II. Singular points of planar analytic vector fields

cross-section

equator

second return 
map

first return
map

Mobius band (real)

Figure II.3. First and second return maps for foliations on the real
Möbius band

Finally, we define one of the most elusive objects in the analytic theory
of analytic differential equations.

Definition 9.11. A limit cycle of a planar vector field is an isolated periodic
trajectory (isolated compact leaf of the corresponding foliation).

A periodic orbit which has an annular neighborhood filled by periodic
trajectories, is called an identical cycle.

In other words, a periodic trajectory of a vector field is a limit cycle, if it
has an annular neighborhood free from other periodic trajectories. Identical
cycles are closely related to centers: indeed, each periodic orbit sufficiently
close to the center, is an identical cycle.

For cycles of real analytic vector fields, there is no third possibility.

Theorem 9.12. Every periodic orbit of a real analytic vector field is either
a limit cycle, or an identical cycle.

Proof. Any cycle is a multiply-connected leaf of the corresponding foliation,
hence on any cross-section one can define the holonomy map ∆ ∈ Diff(R1, 0).
This map is real analytic by construction, and any other periodic orbit
corresponds to a fixed point of ∆. Yet a real analytic one-dimensional self-
map which differs from identity, may have only isolated fixed points by the
uniqueness theorem. ¤

9D. Principal alternative and topological classification of singu-
larities with a characteristic orbit. Clearly, monodromic singularities
cannot have characteristic orbits, as the latter would constitute a barrier for
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9. Planar vector fields with characteristic trajectories 149

spiralling along the central circle C. The inverse assertion is also true so
that we have the following principal alternative.

Theorem 9.13 (Principal alternative). An isolated singularity of a planar
real analytic foliation is either monodromic, or has a characteristic trajec-
tory.

The foliation is monodromic if and only if after a complete desingu-
larization it exhibits only topological saddles (degenerate or hyperbolic) at
the corner points of the exceptional divisor, and all blow-ups leading to this
desingularization are nondicritical.

Singularities with characteristic orbits can be described in combinatorial
terms.

Theorem 9.14 ([ALGM73]). A singular planar real analytic foliation with
a characteristic orbit admits a sectorial decomposition into finitely many
standard sectors separated by characteristic orbits.

Sketch of the proof of Theorem 9.13. Consider the complete desingularization of
the singular real analytic foliation F. This is a singular foliation F′ on the real ana-
lytic surface M with the exceptional divisors D ⊂ M on it, such that D is the union of
transversally intersecting real analytic circles D1, . . . , Dm, and all singular points of F′

are elementary and belong to D.

If one of the blow-ups leading to F′ was dicritical, then there are infinitely many
smooth real analytic leaves of F′ crossing D; after blowing down they become characteristic
orbits of F. Thus we can concentrate only on the case where D is a union of separatrices
of all singular points of F′.

If F′ has a noncorner singular point , that is, a point a ∈ D that belongs to only
one component Di of the divisor D, then it must admit at least one more characteristic
orbit not belonging to D, since all elementary singularities from Table II.1 have at least
two pairs of such characteristic orbits (except for the center, yet the center cannot occur
in a nondicritical blow-up). In a similar way, a node or saddle-node, even occurring at
a corner (transversal intersection of two components Di and Dj), implies existence of a
characteristic orbit of F′ outside D. Clearly, the blow-down of this leaf is a characteristic
orbit of F.

Thus the only case where F has no apparent characteristic orbits, is the case where
after complete desingularization the foliation F′ has only saddle singularities at the corner
points. We show that in this case F is monodromic.

Indeed, consider a hyperbolic sector of the corner saddle and any pair of the cross-
sections τ, τ ′ to the sides of this sector at the points a, a′. We will assume that the
“positive” semi-intervals τ+, τ ′+ are inside the sector.

Then the leaves of the standard hyperbolic foliation, corresponding to hyperbolas
{xy = const > 0} in the positive quadrant, establish one-to-one smooth correspondence
between the positive semi-sections, which continuously extends at the vertex by associating
a with a′.

In a similar way, two cross-sections τ, τ ′ to the same smooth component Di admit real
analytic correspondence between them provided that one of the two arcs of Di connecting
the base points, is free from other singularities of F′. Note that the only case where both
such arcs are nonsingular and hence the construction ambiguous, corresponds to a foliation
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Figure II.4. Monodromic singularity: the monodromy is formed by
consecutive traversing of hyperbolic sectors of corner singular points

which becomes nonsingular after the first blow-up; all subsequent blow-ups create at least
one corner singularity on each divisor.

Thus we see that, by constructing a complete collection of 2m cross-sections (involving
4m semi-sections) and starting from an arbitrary semi-section τ = τ1, one can uniquely
determine the sequence of semi-sections τ2, τ3, . . . in such a way that the correspondence
maps ∆i : τi → τi+1 are well defined. Since the total number of the cross-sections is finite,
all of them will be ultimately traversed. The resulting composition ∆ = ∆4m ◦ · · · ◦∆1 is
a well-defined map which coincides with the monodromy map associated with the initial
semi-section; see Fig. II.4. ¤

Sketch of the proof of Theorem 9.14. For elementary singularities the assertion of
the theorem is obvious. The general case is proved by induction in the number of blow-
ups required for complete desingularization.

Consider the real monoidal map σ : (M, C) → (R2, 0). The blow-down of a sector of
each type with a vertex at a singular point a ∈ C is again the sector of the same type
with the vertex at the origin, provided that both boundary curves of the sector are off the
exceptional divisor.

New sectors can be formed by two characteristic orbits γ, γ′ landing at different
(adjacent on C) singular or tangency points a, a′ on C. In this case the new sector
is formed by squeezing two sectors between γ and C (resp., γ′ and C). The list of
possibilities for the nondicritical case may apriori consist of 6 possibilities (pp), (pe), . . . ,
corresponding to different types of sectors formed at the corresponding intersections γ∩C
and γ′∩C. Yet for obvious topological reasons only the combinations (pp), (ph) and (hh)
should be considered, since elliptic sectors cannot be adjacent to exceptional divisor C.
After blow-down these pairs of sectors form elliptic, parabolic and hyperbolic sectors at
the origin.

In a similar way one can construct sectorial decomposition of tangency points in
the dicritical blow-down. In the trivial case where C carries only one singular point (at
which the characteristic trajectory lands) and no points of contact, after blowing down we
obtain topologically nonsingular foliation which can be thought as having two hyperbolic
sectors. ¤
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9. Planar vector fields with characteristic trajectories 151

Sectorial decomposition allows us to associate with any real analytic fo-
liation a finite word in the three-letter alphabet {p,h,e}, defined modulo a
cyclic permutation. This word will be provisionally referred to as the secto-
rial description. The following result is rather obvious (see Problem 9.13),
but gives a reasonably accurate description of foliations with a characteristic
orbit.

Theorem 9.15. Two real analytic foliations with the same sectorial de-
scriptions are topologically equivalent (in the real domain). ¤

Note, however, that not all “words” may be obtained from real ana-
lytic foliations, besides, some words correspond to topologically equivalent
foliations, thus the “sectorial description” is not a classification (see Prob-
lem 9.12).

9E. Three questions. The topological results from §9D naturally suggest
the following questions.
Question 1. How effective is the principal alternative? Can one determine,
whether the singularity is monodromic or characteristic, by a finite order jet
of a real analytic singularity? What is the order of such a jet?

Theorem 9.13 reduces the answer to this question to investigation of
the complete desingularization. Since the desingularization procedure is
effective, one can expect an explicit affirmative answer to the first question.

Assuming the singularity has a characteristic orbit, the next natural
question is to determine its topological type.
Question 2. How constructive is the sectorial decomposition? In particular,
is it determined by a finite order jet? Of what order?

For similar reasons, Theorems 9.14 and 9.15 raise hopes that the answer
to the second question is also affirmative.

Finally, we have the last remaining case of monodromic singularities.
Such singularities can be centers, foci or more complicated singularities. The
following question reflects our belief that real analytic vector fields behave
nicely.
Question 3. Is it true that a monodromic real analytic singular foliation with
an isolated singularity is either center or focus (i.e., topologically equivalent
to a node)? Is the topological type determined by a finite order jet?

These questions will be collectively referred to as decidability of local
classification problems for germs of analytic vector fields. We will develop a
suitable language and address them in this and the following sections.
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152 II. Singular points of planar analytic vector fields

Figure II.5. “Ill” behavior of C∞-smooth vector fields: (a) nonmono-
dromic singularity without characteristic orbit, (b) infinitely many sec-
tors, (c) infinitely many alternating periodic and aperiodic orbits

9F. Three nightmares. Definitions of characteristic orbit and mon-
odromic singularity are usually given without resorting to blow-up in a form
that applies to only C1-smooth vector fields.

The principal alternative (Theorem 9.13 without reference to the com-
plete desingularization) also holds under much less stringent regularity as-
sumptions, while our proof uses heavily the existence of this desingular-
ization. A simple direct proof, valid for only C2-smooth vector fields and
requiring only one blow-up, can be found in [NS60, §3], [Har82, Ch. VIII];
see Problem 9.14.

Yet the decidability questions raised in §9E turn out to have negative
answers if the regularity is relaxed and real analytic vector fields are replaced
by C∞-smooth vector fields. First, the principal alternative may fail for such
fields.

Example 9.16 (Nonmonodromic singularity without characteristic orbits).
Consider a function of one real variable, defined on the interval (−1, 1),
which tends to +∞ at both endpoints. Shifting the graph of this function in
the vertical direction, one can construct a foliation without singular points
on the infinite strip [−1, 1]× R tangent to the two border lines of the strip
which are themselves the leaves. Rolling this strip (say, by the exponential
map of the plane R2 ∼= C1), a foliation on the annulus {1 6 |z| 6 2} can
be constructed. Finally, assembling together countably many homothetic
copies of such annulus, we obtain a foliation shown in Fig. II.5(b).

This foliation is neither monodromic (it simply admits no cross-section
to the exceptional divisor) nor does it have characteristic orbits.

Such an example can be constructed in the class of foliations generated
by C∞-smooth vector fields flat at the origin (i.e., the Taylor series is iden-
tically zero), bur cannot occur for real analytic foliations. Indeed, in this
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9. Planar vector fields with characteristic trajectories 153

case the foliation is tangent to a line passing through the origin at infinitely
many points accumulating to the origin, yet the line itself is not invariant.

The second nightmare shows that sectorial decomposition fails for C∞-
smooth vector fields.

Example 9.17 (Infinitely many sectors). The singular point schematically
pictured on Fig. II.5(b), has infinitely many alternating hyperbolic and par-
abolic sectors.

Finally, for monodromic singularities the center-focus alternative may
fail because of coexistence of infinitely many periodic and aperiodic tra-
jectories. If trajectories of both types accumulate to the origin, then this
singularity is neither center nor focus.

Example 9.18. Let Z ⊆ (R+, 0) be any (relatively) closed subset. There
exists a C∞-smooth function ϕ flat at the origin and nonnegative, ϕ > 0,
whose zero locus coincides with Z. Starting from this function, one can
construct a C∞-smooth monodromic vector field whose monodromy map
differs from identity by ϕ, ∆(x) = x + ϕ(x). If both Z and (R+, 0) r Z
accumulate to the origin, the corresponding singularity is neither center nor
focus; see Fig. II.5(c).

If the foliation is real analytic, the monodromy map is necessarily real
analytic at all interior points of the semi-interval (R+, 0), which means
that the set Z in this case may consist only of isolated points eventually
accumulating to the origin. For some types of vector fields this accumulation
is impossible for relatively simple reasons; see §10 below. Yet it is very
difficult to prove that such accumulation is impossible for arbitrary analytic
vector fields (the so-called Nonaccumulation theorem; see [Ily91, Eca92,
Ily02] and §24D).

9G. Algebraicity of the decision. The proof of Theorem 9.13 is con-
structive: to decide, whether the singularity is monodromic or possesses
a characteristic orbit, one has to construct complete desingularization and
verify position (corner or noncorner) and topological types of all elementary
singularities. These operations involve only algebraic manipulations with
finitely many Taylor coefficients (arithmetic operations, sign testing and so-
lution of algebraic equations). In this and the next section we formalize the
respective notion of algebraic decidability and show that the principal al-
ternative is indeed algebraically decidable, answering thus the first question
from §9E.

We start with describing “decidable” subsets in affine finite-dimensional
spaces. Without going into deep discussion on the general nature of com-
putability, we postulate the class of semialgebraic sets as the only reasonable

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



154 II. Singular points of planar analytic vector fields

class of subsets of Rn or Cn, which can be finitely presented. For any such
set, one can imagine an “algorithm” involving only algebraic computations
and sign tests, that in a finite number of steps allows us to decide, whether
a given input (point) belongs to the set or not.

Definition 9.19. A subset of Rn is called real semialgebraic if it can be
defined by finitely many polynomial equalities and inequalities of the form
p(x) = 0, p(x) < 0 or p(x) 6 0, where p ∈ R[x1, . . . , xn].

Semialgebraic sets form a Boolean algebra (their finite unions and in-
tersections are obviously semialgebraic). What is more important, the class
of semialgebraic sets is closed by taking complements and affine projections
(and, more generally, polynomial maps).

Theorem 9.20 (A. Tarski–A. Seidenberg; see [vdD88]). Affine projection
of a semialgebraic set is again semialgebraic.

Semialgebraic spaces are decidable: any such set can be defined
by a finite formula involving polynomial equalities and inequalities over
R[x1, . . . , xn, y1, . . . , ym] with “auxiliary” variables y1, . . . , ym, the logical op-
erations “and”, “or”, “not”, and the quantifiers ∀yi, ∃yj which tie down the
auxiliary variables. The Tarski–Seidenberg theorem asserts that all quanti-
fiers can be effectively eliminated, meaning that the decision process is fully
constructive.

Consider a subset M in the space, say, of germs of real or complex an-
alytic vector fields at the origin on the plane D = D(C2, 0) (other analytic
objects, e.g., germs of functions, self-maps, can be treated exactly the same).
Note that for any finite order n the space Jn = JnD(C2, 0) of n-jets of such
vector fields is a finite-dimensional complex affine space. In our construc-
tions the set M will be defined by some properties of vector fields (e.g.,
topological type, multiplicity, order, existence of analytic separatrix, etc.),
so we will often speak of properties of vector fields.

First we formalize the assertion that some property M is determined by
a finite order jet.

Definition 9.21. A jet g ∈ Jn of order n is said to be sufficient for the
set M (resp., for the corresponding property), if all germs having this jet,
either belong to M or to its complement DrM :

(jn)−1(g) ⊆ M or (jn)−1(g) ⊆ DrM, (jn)−1(g) = {F : jnF = g}.
Definition 9.22. The set M is said to be decidable at the level of n-jets,
if there exists a subset M (n) ⊆ JnD(C2, 0) such that F ∈ M if and only if
jnF ∈ M (n).

The property is algebraically decidable (on the level of n-jets), if the set
M (n) is semialgebraic in the affine space JnD(C2, 0).
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9. Planar vector fields with characteristic trajectories 155

In other words, the set (or the respective property) is algebraically de-
cidable at the level of n-jets, if all such jets are sufficient. This is a relatively
rare opportunity: in most cases when M is described by its topological or
analytic properties, there always are some jets that are insufficient to guar-
antee whether or not their representatives belong to M ; see §10.

9H. Decidability of multiplicity. We illustrate the notion of decidability
by showing that the multiplicity of an isolated singularity is a “decidable”
function of analytic germs.

Theorem 9.23. For any finite µ the set Mµ of holomorphic vector fields
having multiplicity 6 µ at the origin, is algebraically decidable at the level
of n-jets with n = µ.

Proof. First we show that if F is a germ of multiplicity 6 µ, then its µ-jet
is sufficient in the sense that any germ F ′ with the same µ-jet also has the
same multiplicity. To prove that, we use the definition of the multiplicity as
the dimension of the quotient local algebra, µ = dimCO0/ 〈F1, F2〉, where
F1,2 are the coordinate functions of the germ F of the vector field.

Indeed, by [AGV85, Lemma 1, §5.5], any power xayb of order a + b >
µ+1 belongs to the ideal of any finite codimension µ. Thus any analytic germ
of the form F ′

i = Fi + o((|x| + |y|)µ), i = 1, 2, belongs to the ideal 〈F1, F2〉
and hence 〈F ′

1, F
′
2〉 = 〈F1, F2〉. Clearly, the arguments are symmetric and

all germs with the same µ-jet generate the same ideals and hence have the
same multiplicity.

Thus we can define the set M
(µ)
µ as the set of polynomial vector fields of

degree µ, having a singularity of multiplicity 6 µ at the origin. Regardless
of the local coordinates, if the Taylor polynomial (truncation) of F belongs
to M

(µ)
µ , then the corresponding µ-jet is sufficient for Mµ.

It remains to prove that M
(µ)
µ is semialgebraic in the space of µ-jets

JµD(C2, 0). Consider the affine space Dµ
∼= CN , N = N(µ), of polynomial

vector fields of degree µ. The polynomial formula with quantifiers

∀ε > 0 ∃y ∈ C2,∃ x1, . . . , xµ+1 ∈ C2,
∏

i<j

|xi − xj | 6= 0 & {|xi|, |y| < ε} & F (xi) = y,

after substitution F (x) =
∑
|α|6µ aαxα, aα ∈ C2 defines a subset in

Dµ
∼= {aα}|α|6µ whose elements are polynomial vector fields having the

singularity of multiplicity > µ + 1 (or nonisolated) at the origin, i.e., the
complement to M

(µ)
µ . By the Tarski–Seidenberg Theorem 9.20, the set M

(µ)
µ

is semialgebraic. ¤
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Remark 9.24. If a certain set (property) M is algebraically decidable at
the level of n-jets, then for trivial reasons it is algebraically decidable at the
level of any higher order jets.

9I. Algebraic decidability of the principal alternative. We prove
now that the principal alternative is algebraically decidable after restriction
on the subspace of analytic germs of any given finite multiplicity. These
results develop the ideas put forward in the seminal paper [Dum77].

Theorem 9.25. For each multiplicity µ ∈ N there exists a finite order n =
n(µ) ∈ N and two disjoint semialgebraic subsets C(n),M (n) ⊆ Jn(D(R2, 0))
in the space of n-jets of planar vector fields, such that a field F of multiplicity
6 µ at the origin has a characteristic orbit (resp., is monodromic) if and
only if its jet jnF belongs to C(n) (resp., M (n)).

Sketch of the proof of Theorem 9.25. By Theorem 9.23 and Remark 9.24, in all suf-
ficiently high order jet spaces Jn = JnD(R2, 0) there exists semialgebraic subsets sufficient
for the corresponding singularities to have multiplicity 6 µ. By Theorem 8.15, any such
singularity can be completely resolved into elementary singularities in no more than 2µ+1
steps (consecutive simple blow-ups of finite sets).

As follows from Theorem 9.13, to decide between characteristic and monodromic
cases, it is sufficient to identify (“recognize”) the location and topological types of these
elementary singularities which appear after complete desingularization.

Nondegenerate singularities (saddles and nodes) can be recognized looking at their 1-
jets; the criteria (inequalities for the discriminants of characteristic polynomials of degree
2) are obviously semialgebraic in the elements of the linearization matrices.

Degenerate isolated elementary singularities of finite multiplicity µ can be saddles,
nodes or saddle-nodes. To decide between these two types, one has to know the jet of
order µ, as will be independently shown in §10B. The test condition is polynomial.

Finally, the decision on whether a given nonelementary singularity has a dicritical
blow-up or not, depends on the terms of lower order (and is obviously expressed by an
algebraic condition involving these terms). Since the order of a singularity cannot exceed
its multiplicity (as follows from [AGV85, Lemma 1, §5.5] already cited in the proof of
Theorem 9.23), we arrive at the following intermediate conclusion: existence of a charac-
teristic orbit can be expressed as a semialgebraic condition on the jets of order 6 µ + 1 at
all singularities that appear in the process of complete desingularization.

Inspection of the process shows that the multiplicities and hence orders of all interme-
diate singularities which appear in the process, do not exceed µ + 1. Thus all information
sufficient to determine uniquely the desingularization process and the topological types of
elementary singularities that appear after this construction terminates, is contained in a
sufficiently high order jet of the initial singularity. The order n = n(µ) of this jet should
be so large as to determine uniquely (µ + 1)-jets at all intermediate singularities on each
of at most 2µ + 1 steps; cf. with Theorem 8.15.

Consider an isolated singularity of order ν (hence of multiplicity > ν) and its blow-up.
The corresponding transformation of the Pfaffian equation involves a change of variables
from (x, y) to (x, z), z = y/x, and division by an appropriate power of x, more precisely,
by xν−1 in the nondicritical case and by xν in the dicritical case respectively. This con-
struction implies that jets of order k + ν (respectively, k + ν + 1) at the initial point
determine uniquely the jet of order k at any singularity that appears on the exceptional
divisor after blow-up. Clearly, the formulas describing the transformation on the level of
jets, are (real) algebraic.
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9. Planar vector fields with characteristic trajectories 157

Iterating these arguments, one obtains an upper bound for the order n(µ) of the initial
jet that encodes all (µ + 1)-jets on all 2µ + 1 steps of the desingularization process. In
other words, all representatives of n-jets of vector fields of multiplicity µ have the same
desingularization schemes and the same jets of order µ+1 at all elementary singular points
of multiplicity 6 µ + 1 that appear after complete desingularization.

Based on this information and a algebraic algorithm of detecting topological types
of elementary singularities which will be discussed in more details in §10, one can apply
Theorem 9.13 to obtain explicitly the semialgebraic conditions necessary and sufficient for
existence of a characteristic orbit. ¤

9J. Topologically sufficient jets. Theorems 9.14 and 9.15 together im-
ply that the topological type of a real analytic singular foliation F with a
characteristic orbit is uniquely determined by its complete desingulariza-
tion. Recall that the latter is a map π : (M, D) → (R2, 0) between some
2-dimensional surface with an exceptional divisor D with normal crossings,
and a small neighborhood of the origin on the plane. The singular real an-
alytic foliation F′ = π∗F has only elementary singular points, all of them
on D. In addition we will also assume in this subsection that the dicritical
components of the exceptional divisor D have no interior tangency points
(in particular, carry no singularities). This can always be achieved by ad-
ditional blow-up of such tangencies; see Theorem 8.37. We show in this
subsection, how this claim can be translated into the language of sufficient
jets.

Definition 9.26. An m-jet of a planar vector field is called topologically
sufficient, if any two real analytic vector fields extending this jet, are topo-
logically equivalent to each other.

Theorem 9.27 (O. Kleban [Kle95]). For an isolated singularity of a planar
vector field of multiplicity µ, its 2µ + 2-jet is topologically sufficient.

Sketch of the proof. The same arguments as were used in the proof of Theorem 9.25,
show that the map π : (M, D) → (R2, 0) implementing the complete desingularization (in
the above mentioned strong sense) is completely defined by a jet of some finite (depending
on µ) order of the initial vector field. A higher order jet determines uniquely the topological
types of all elementary and corner singularities of the strong desingularization of the initial
foliation, so that any other foliation G with the same jet is desingularized by the same map
π and the preimage G′ = π∗G has topologically equivalent singularities at all corresponding
points. Moreover, the homeomorphisms conjugating the respective singularities, can be
chosen identical on the vanishing divisor.

It remains to notice that (a) two foliations F′, G′ on M with topologically equivalent
elementary singularities at the same points, are topologically equivalent globally on M , and
(b) topologically equivalent singularities have the same sectorial decomposition. Detailed
proofs of these results can be found in [Dum77, Kle95]. Reference to Theorem 9.15
completes the proof. ¤

9K. Conclusion. The results established in this section prove that for any
finite value of µ, the affine space Jn = JnD(R2, 0) of n-jets of planar vector
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fields for n > 2µ + 2 admits decomposition as the disjoint union of three
semialgebraic subsets

Jn = C(n) tM (n) t Z(n), C(n) =
N⋃

α=1

C(n)
α .

Here C(n) is the subset of n-jets sufficient to guarantee existence of the
characteristic orbit; different components C

(n)
α correspond to topologically

different germs of vector fields, M (n) consists of n-jets sufficient to guarantee
that all their representatives are monodromic, and Z(n) is the collection of
jets whose representatives have multiplicity > µ + 1 or are nonisolated.
The codimension of the “nonsufficient” set Z(n), where the topological type
cannot yet be specified, tends to infinity together with n. The polynomial
equalities and inequalities defining the components, depend only on the
components of the 2µ+2-jets and hence stabilize as n grows to infinity with
the fixed µ.

Exercises and Problems for §9.

Problem 9.1. Prove that all linear real vector fields are topologically equivalent
(at the origin) to the three Poincaré types.

Exercise 9.2. Find minimal (involving minimal number of sectors) sectorial de-
composition of all standard normal forms from Table II.1.

Problem 9.3. Prove that an isolated monodromic singularity which has an open
neighborhood free from closed leaves, is homeomorphic to a node, i.e., is a focus.

Exercise 9.4. Construct a cycle of C∞ smooth planar vector field, which is neither
limit nor identical.

Exercise 9.5. Assume that after a single blow-up σ of a foliation F the foliation
σ∗F on the real Möbius band carries two nodal elementary singularities. Describe
the topological type of F in terms of sectors.

Exercise 9.6. Describe all topologically nonequivalent phase portraits of generic
vector fields of order 2 on the plane.

Exercise 9.7. Give an example of degenerate monodromic singularity.

Exercise 9.8. Show that a simple cusp on the real plane admits a characteristic
orbit.

Exercise 9.9. Show that in the sectorial description of any singularity every letter
‘e’ occurs between two letters ‘p’.

Exercise 9.10. Find two sectorial descriptions of different length, which corre-
spond to topologically equivalent foliations.

Exercise 9.11. Show that the sectorial description of a real analytic foliation
cannot consist of exactly three hyperbolic sectors.
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Problem 9.12. Under what restrictions does a sectorial description (considered
as a word in the three-letter alphabet) correspond to a C∞-smooth foliation on
(R2, 0)?

Problem 9.13. Give detailed proofs of Theorems 9.14 and 9.15.

Problem 9.14. Prove the principal alternative for isolated singularities of C2-
smooth planar vector fields directly (cf. with [NS60]).

Problem 9.15. Construct explicitly C∞-smooth vector fields whose phase por-
traits exhibit pathologies as in Examples 9.16 and 9.18.

Exercise 9.16. Prove that the foliation F of the real plane (R2, 0) by the level
curves given by the complex equation Im z3/2 = const, z ∈ (C1, 0) ∼= (R2, 0),
cannot be complexified, i.e., there cannot exist a foliation CF on (C2, 0), whose
leaves intersect the real plane R2 ⊆ C2 by leaves of the foliation F.

The following problem shows that the analog of the Tarski–Seidenberg theorem
fails if semialgebraic sets are replaced by semianalytic sets, subsets of affine space,
defined locally near each point of this space by equalities and inequalities involving
real analytic functions.

Problem 9.17. Consider the one-dimensional semianalytic subset of R3 (curve),
defined by the analytic equations {xz = −1, y(y − ez) = 0, z > 0}. Prove that its
projection on the (x, y)-plane parallel to the z-axis is not semianalytic.

10. Algebraic decidability of local problems and center-focus
alternative

The previous section gives a partial affirmative answer to the decidability
Questions 1 and 2 from §9E. For every given finite value of the multiplicity
µ, existence of a characteristic trajectory and topological classification of
foliations having such a trajectory are algebraically decidable in jets of a
certain finite (depending on µ) order. Rather obviously, with the natural
parameter µ growing to infinity, the number of different topological types
also grows to infinity and hence one cannot get rid of this parameter in the
formulations, at least for Question 2.

On the other hand, the role of multiplicity when discussing decidability
of the center-focus alternative (Question 3 from the same section) seems
to be marginal. Already the center-focus problem for vector fields whose
linear part is rotation, is nontrivial, as we shall see below. Besides, simplest
examples show that for any n the set of centers is not decidable on the level
of n-jets. Indeed, by adding arbitrarily high order terms one can destroy
center making it into stable or unstable focus (Exercise 10.1).

Thus we arrive at the problem of defining decidable (semialgebraic) sub-
sets in the infinite-dimensional jet space J∞D(R2, 0) ∼= D[[R2, 0]].
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The general notion of algebraic decidability was introduced by V. Arnold
in [Arn70a, Arn70b]; see also [Arn83, §37]. Arnold proved algebraic
decidability of several natural problems of local analysis, yet noticed that
for sufficiently advanced problems this algebraic decidability may ultimately
fail. For instance, the Lyapunov stability problem for singularities in dimen-
sion n > 3 and topological classification of holomorphic singular foliations
in (C2, 0) are algebraically undecidable. In §10G we show that the stabil-
ity problem is not algebraically decidable already for planar analytic vector
fields (i.e., for n = 2).

We discuss decidability of the topological classification for elementary
real analytic planar singularities. We show that topological classification of
degenerate elementary singularities (saddle/node/saddle-node trichotomy)
and center-focus alternative for elliptic vector fields are algebraically decid-
able in the strongest sense of this notion (introduced later). On the other
hand, we prove that for general monodromic singularities the center-focus
alternative is not algebraically decidable.

10A. Decidability in the jet spaces: the language. Two holomorphic
germs of analytic functions f, f ′ ∈ O(Cn, 0) are said to be n-equivalent at
the origin, if their difference vanishes with order n + 1 at this point. The n-
jet (at the origin) is the equivalence class with respect to this n-equivalence.
The space of all jets has the natural structure of linear n + 1-dimensional
space over C; in any local coordinates x1, . . . , xn n-jets of functions can be
identified with (Taylor) polynomials of degree 6 n.

This construction can be modified for various other classes of objects
(vector fields, differential forms, complex or real, and even in the infinitely-
smooth nonanalytic case).

The space of germs of real analytic vector fields D(R2, 0) (or, what is
the same in the planar case, the space of germs of real analytic 1-forms
Λ1(R2, 0)) is infinite-dimensional and thus the decidability of subsets of this
space cannot be defined in terms of semialgebraic sets. Yet this infinite-
dimensional space is naturally endowed with infinitely many projections jk

associating with each germ its k-jet at the singular point. The jets of any
finite order form a finite-dimensional space with the natural affine structure.
Thus one can define decidable sets of germs in terms of decidability of their
jet projections.

Consider a subset M in a space of all analytic germs G, for example, in
the space of germs of 1-forms G = Λ1(R2, 0) = Λ1. By Jk(G) we will denote
the finite-dimensional space of k-jets of germs from G.
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Definition 10.1. A set M ⊂ G is algebraically decidable to codimension
r ∈ N, if for some jet order k there exist two disjoint semialgebraic subspaces
S±k ⊆ Jk(G) such that:

(1) any germ whose k-jet belongs to S+
k , necessarily belongs to M ;

(2) any germ whose k-jet belongs to S−k , necessarily belongs to the
complement GrM ;

(3) the complement Nk = Jk(G)r (S+
k ∪ S−k ), automatically semialge-

braic, has codimension > r in Jk(G).

Jets from the subsets S±k are referred to as sufficient k-jets, while the com-
plementary set Nk consists of neutral jets.

Algebraic decidability of a certain property M ⊂ G means that the
corresponding set can be approximated from two sides by “cylindrical” semi-
algebraic subspaces in subspaces of k-jets,

S+
k ⊆ M ⊆ Gr S−k , S±k = (jk)−1(S±k ),

so that the “accuracy” of this approximation, Nk = G r (S+
k ∪ S−k ), has a

well-defined codimension that is at least r. It is the codimension r rather
than the order k of the jets that plays the central role in this definition.

Definition 10.2. A subset M ⊂ G of the space of germs is algebraically
decidable to infinite codimension (or simply decidable), if it is algebraically
decidable to any finite codimension r.

According to this definition, for a decidable property (set) M there exists
an infinite sequence of two-sided semialgebraic cylindrical approximations
for M ,

S+
0 ⊆ S+

1 ⊆ · · · ⊆ S+
k+1 ⊆ · · · ⊆ M ⊆

· · · ⊆ (Gr S−k+1) ⊆ (Gr S−k ) ⊆ · · · ⊆ (Gr S−0 ),

such that the codimension of the decreasing differences Nk = Gr (S+
k ∪ S−k )

grows to infinity:

G ⊇ N1 ⊇ · · · ⊇ Nk ⊇ Nk+1 ⊇ · · · , codimG Nk → +∞.

In particular, this codimension condition holds if stabilization occurs and
Nk = ∅ for some k. As before, the sets S±k , Nk are cylindrical, that is,
preimages of respective semialgebraic subsets S±k and Nk in Jk(G).

The intersection N∞ =
⋂

k>0 Nk, which may be empty even if all Nk

are nonzero, may also be nontrivial, since the space of germs G is infinite-
dimensional.

Definition 10.3. The subset M ⊆ G is ultimately (algebraically) decidable,
if the intersection N∞ entirely belongs either to M or to its complement.
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162 II. Singular points of planar analytic vector fields

Speaking in terms of algorithms, a set of germs (“property”) M ⊆ G

is decidable (i.e., algebraically decidable to infinite codimension), if there
exists an algorithm that allows for any given germ g ∈ G to verify whether
it belongs to M or not. This algorithm must be algebraic, meaning that
it tests conditions expressed by polynomial equalities and inequalities on
Taylor coefficients. On each step either the decision is made, whether g ∈ M
or g /∈ M , or the computations should be continued involving higher order
Taylor coefficients. The algorithm should terminate for almost all germs
except for an eventual set of infinite codimension. The set is ultimately
decidable, if all germs on which the algorithm never stops, belong to M or
its complement simultaneously.

Remark 10.4. The definition of decidability admits possible variations.
Clearly, the constructions remain the same for any other types of germs
(vector fields, functions, self-maps etc.) and various types of properties.

In particular, instead of just two sets, M and its complement G rM ,
one can consider a partition of the total space of germs into finitely many
sets (types) M1, . . . , Mm, m > 2, pairwise disjoint. The decision prob-
lem in this context is to determine the type of a given germ g ∈ G. The
“classification scheme” into the types M1, . . . , Mm is algebraically decid-
able, if for any t = 1, . . . , m and any k = 1, 2, . . . , there can be constructed
pairwise disjoint semialgebraic subsets St

k ∈ Jk(G) of “sufficient jets”, i.e.,
St

k = (jk)−1(St
k) ⊆ Mt, which exhaust Jk in the sense that the complement

Nk = Jk(G)r
⋃

t St
k of neutral (“undecided”) jets has codimension growing

to infinity together with k. The decidability is ultimate, if the intersection
N∞ =

⋂
k>0(j

k)−1(Nk) belongs to only one of the sets M1, . . . , Mm (classi-
fication types).

The classification problems are seldom decidable in the whole set of
germs G; however, some parts of the respective subsets (and sometimes large
parts) can be.

Let B ⊂ G be a subset in the space of germs, defined by semialgebraic
conditions on some finite order jet. This means that for some finite l there
is a semialgebraic subset Bl ⊂ Jk(G) such that B = (jl)−1(Bl).

Definition 10.5. A subset M is decidable (resp., ultimately decidable)
relative to a semialgebraic set B, if the corresponding sufficient sets S±k are
semialgebraic in the intersection with Bk = {jkg : jlg ∈ Bl} for all k > l.

When speaking about classification problems or alternatives, discussing
relative decidability means that from the outset the problem is restricted
only on a subclass of germs already defined by some semialgebraic conditions
on their l-jets. In this setting the relative (ultimate or not) decidability
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10. Center-focus alternative 163

means that the property is determined by algebraic conditions imposed on
the higher order jets. In such cases we will say about (un)decidability of an
alternative for the specific class. For example, the center-focus alternative
is undecidable in general, but decidable (and even ultimately decidable) for
germs with nondegenerate linear part; see §10C.

10B. Topological classification of degenerate elementary singular-
ities on the plane. An isolated degenerate elementary singular point of a
real analytic vector field on the real plane (R2, 0) may be of three topological
types: saddle-node, topological node or topological saddle, represented by
the three standard models as described in §9A. We show that this classifi-
cation is algebraically decidable to infinite codimension and even ultimately
decidable. This classification problem constitutes perhaps the simplest non-
trivial example of algebraic decidability.

To fit the formal settings, we consider the subspace Belem = B of germs
of holomorphic 1-forms having one zero and one nonzero eigenvalue of the
linearization: on the level of 1-jets this subspace is determined by the semi-
algebraic conditions detA = 0, trA 6= 0 on the linearization matrix A of the
corresponding vector field. Without loss of generality we may assume that
A is already reduced to the diagonal form, so that

B = {ω : j1ω = y dx} ⊂ Λ1(R2, 0) = G.

The three subsets of B, corresponding to different topological types, will
be denoted MS (saddles), MN (nodes), MSN (saddle-nodes). However, for
the sake of completeness one has to introduce the fourth class MI ⊆ B

of germs having a nonisolated singularity (such germs become nonsingular
after division by a noninvertible function y + · · · ). By Theorem 9.1,

B = MS tMN tMSN tMI . (10.1)

Theorem 10.6. The problem of topological classifications of degenerate el-
ementary singular points of analytic vector fields on the real plane is ulti-
mately algebraically decidable.

Formally the assertion of the theorem means that the partition (10.1)
is ultimately decidable in the sense explained in Remark 10.4. The proof
occupies the rest of §10B.

The proof is organized as follows: for every order k, we construct ex-
plicitly partition of jets of order k into jets sufficient for saddles, nodes and
saddle-nodes and the neutral jets, and show that this partition is semial-
gebraic. Then conditions on the codimension will be verified. Finally, we
verify that the germs with neutral jets of all orders, constitute the class MI

of the partition.
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164 II. Singular points of planar analytic vector fields

Denote by Nk ⊆ Jk = Jk(Λ1) the collection of k-jets of 1-forms y dx +
· · · ∈ B, which are orbitally linearizable (equivalent to the linear jet y dx):
in suitable coordinates, any germ ω with jkω ∈ Nk, takes the form

ω = f(x, y)(y dx + ω′), ord0 ω′ > k + 1, f(0, 0) 6= 0. (10.2)

Denote by Sk = B rNk the complement. We first claim that all jets from
this complement are topologically sufficient.

Lemma 10.7. The jets from the set Sk are topologically sufficient. More
precisely, germs with the k-jet in Sk = BrNk have one of the three “isolated”
topological types,

(jk)−1(Sk) ⊆ MS tMN tMSN .

Sketch of the proof. This lemma is a refinement of the last assertion of Theorem 9.1.
We briefly indicate the arguments which after proper elaboration yield an accurate proof.

If jkω /∈ Nk, then the 1-form ω by a formal orbital transformation can be brought to
the polynomial form

ω = (±xm + a x2m−1) dy + y dx, 2 6 m 6 k.

We claim that ω is a saddle-node, saddle or node depending on the parity of m and
the sign of the leading coefficient. Since these data are uniquely determined by the k-jet,
this proves sufficiency of the latter.

By the center manifold theorem [Kel67], there exists an invariant curve C tangent to
the axis y = 0 (in general, this center manifold is only finitely smooth, but in the planar
case one can prove its C∞-smoothness; see [Ily85]). The curve C has a flat tangency with
the axis y = 0 at the origin.

Consider the real analytic planar vector field F = (±xm + · · · ) ∂
∂x
− y ∂

∂y
generating

the distribution {ω = 0}. Its restriction on the center manifold C is a smooth vector
field whose topological type is determined by the order m and the sign of the princi-
pal coefficient. This restriction is topologically equivalent to the field ±xm ∂

∂x
by an

orientation-preserving homeomorphism of the x-axis.

By the Pugh–Shub–Shoshitaishvili reduction principle [PS70b, Šoš72, Šoš75] (see
also [Tak71]), the vector field F is topologically orbitally equivalent to hyperbolic sus-
pension of its restriction on the center manifold. In our case this means that the germ F
is topologically orbitally equivalent to the vector field

F ′ = −y ∂
∂y
± xm ∂

∂x
.

Topological classification of these fields is obvious. ¤

Remark 10.8. The description of the jet sets Sk and Nk can be reformu-
lated in terms of multiplicity. The k-jet of a germ ω ∈ B is topologically
sufficient, if and only if its multiplicity µ0(ω) is no greater than k.

Proof of Theorem 10.6. First we show that for any k the components of
the set Sk corresponding to jets topologically sufficient for saddles, nodes
and saddle-nodes, are semialgebraic. To that end we will prove that the
complement Nk is semialgebraic. Semialgebraicity of Nk follows from its
definition as a normal form for a suitable polynomial action.
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10. Center-focus alternative 165

Indeed, consider the orbital action of all k-jets of self-maps H ∈
Diff[[R2, 0]] tangent to the identity, on the linear 1-form y dx, that is, all 1-
forms ω′ = f(X,Y ) ·Y dX, with X, Y, f ∈ R[X,Y ], f(0, 0) = 1, X = x+ · · · ,
Y = y + · · · , after truncation at the level of k-jets. By definition, the orbit
of this action coincides with Nk. Without loss of generality we may assume
that deg X, Y, f 6 k (higher order terms will in any case be truncated). On
the other hand, the coefficients of ω′ are polynomial in the coefficients of
the polynomials X, Y, f that can be arbitrary. Thus the set Nk is the poly-
nomial image of a finite-dimensional affine space. By the Tarski–Seidenberg
theorem, this image is semialgebraic in Jk(Λ1). Clearly, Nk is also closed
and the codimension of this set grows to infinity as k →∞.

The sufficiency sets Sk are therefore algebraic as complements of the
semialgebraic sets Nk. Each sufficiency set consists of three different parts
(sufficiency components), Sk = Sk,NtSk,StSk,SN . In principle one can prove
semialgebraicity of each component separately, using the same method. Yet
in our case this step can be replaced by general arguments.

The different sufficiency components belong to different connected com-
ponents of the set Sk, since it is impossible to deform continuously a saddle
to a node or a saddle-node. But it is known [vdD88] that a connected
component of a semialgebraic set is itself a semialgebraic set. Thus parti-
tion of topological sufficiency components the level of jets of any order is
semialgebraic and the codimension of the neutral jets grows to infinity. The
algebraic decidability of the topological classification is proved.

To show the ultimate decidability, we use Remark 10.8. By this remark,
the germs with neutral k-jets must have multiplicity at least k. Thus the
real analytic germs whose jets of any order are insufficient, have infinite mul-
tiplicity, i.e., a exhibit a nonisolated singularity at the origin. By definition,
such germs form a separate class MI . ¤

10C. Generalized elliptic points and alternative. Ultimate decidabil-
ity of degenerate elementary singular points is in a sense a model problem
serving to illustrate the concepts and use of some important tools. On the
contrary, the problem of distinction between center and focus traditionally,
since the times of Poincaré, is one of the most challenging in the quali-
tative theory of ordinary differential equations on the plane. We discuss
this problem (in terms of algebraic decidability) for generalized elliptic sin-
gularities for which the principal homogeneous terms guarantee absence of
characteristic trajectories, so that generalized elliptic singularities are always
monodromic. For these singularities the center-focus is easily proved to be
a valid alternative (i.e., accumulation of periodic orbits implies center). In
this section we show that the alternative for generalized elliptic singulari-
ties is ultimately algebraically decidable if the principal homogeneous part is
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166 II. Singular points of planar analytic vector fields

fixed. Yet if the principal part is considered as a variable parameter, the
boundary between stable and unstable foci is nonalgebraic, as will be shown
in §10G. This undecidability was first conjectured by A. Brjuno and proved
in [Ily72a]. We give a simple proof here.

Everywhere in this section we use the Pfaffian forms. Consider the real
singular foliation ω = 0 defined by the real analytic Pfaffian form whose
expansion into homogeneous components begins with terms of order n,

ω = ωn + ωn+1 + · · · , ωk = pk(x, y) dx + qk(x, y) dy, n > 1,

pk, qk ∈ R[x, y], deg pk = deg qk = k, k = n, n + 1, . . . .
(10.3)

Definition 10.9. The singular point is called generalized elliptic, if the real
homogeneous polynomial hn+1 = ypn +xqn ∈ R[x, y] is nonvanishing except
at the origin,

hn+1(x, y) ≡ xpn(x, y) + yqn(x, y) 6= 0 for (x, y) ∈ R2 r (0, 0). (10.4)

Consider the complexification of a singularity (10.3) and its subsequent
blow-up. By definition, this is a singular holomorphic foliation F′ defined
in a small complex neighborhood of the exceptional divisor E = P1 in the
complex 2-dimensional surface M (complex Möbius band). This surface is
covered by the two charts, (x, z), z = y/x, and (y, w), w = x/y respectively.
In the chart (x, z) the foliation F′ is defined by the Pfaffian form

ω′ =
(
hn+1(1, z) + xhn+2(1, z) + x2hn+3(1, z) + · · · ) dx

+ x
(
qn(1, z) + xqn+1(1, z) + x2qn+2(1, z) + · · ·) dz.

(10.5)

Here hk+1 = xpk + yqk are homogeneous polynomials of degree k + 1 in two
variables; see §8E, in particular, (8.8).

The singular points of F′ on the exceptional divisor are roots of the
polynomial pn(1, z) + zqn(1, z) = x−(n+1)hn+1(x, xz). For a generalized
elliptic singularity this polynomial is not identically zero, hence the blow-up
is always nondicritical in the sense of Definition 8.12. Then Definition 10.9
guarantees that there are no singular points of F′ on the real line R ⊂ E in
the chart (x, z). For similar reasons the point z = ∞ (mapped as w = 0 in
the second chart) is also nonsingular.

Thus we obtain an invariant description of generalized elliptic singular-
ities.

Corollary 10.10 (invariant definition of generalized elliptic singularities).
A real analytic singularity is generalized elliptic if and only if it is nondi-
critical and after the blow-up all its singularities on the exceptional divisor
are off the real projective line (equator) RP 1 ⊂ E ⊂M. ¤

Elliptic singularity whose linearization matrix is ( 0 1−1 0 ), after blow-up
has two singular points at z = ±i.
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Figure II.6. Real equator and its complexification

The real equator RP 1 ∼= S1 is a closed loop on the Riemann sphere
S2 ∼= E, which is “visible” as the real line R in the affine chart C ⊂ E.
Thus the holonomy map ∆R along this loop is well defined for the foliation
F′, e.g., for the cross-section τ = {z = 0} with the coordinate x as a local
chart on it. As the form ω was real analytic, the blow-up is a well-defined
real singular foliation on the Möbius band which is the neighborhood of its
central circle. The holonomy map ∆R is therefore real analytic.

Note, however, that this loop does not belong entirely to any of the two
canonical charts: to compute the holonomy, one has to “continue” across
infinity z = ∞, that is, pass to the other chart.

Still this difficulty can be easily avoided after complexification: if the
singularity is generalized elliptic, the holonomy can be computed in the
chart (x, z) as the result of analytic continuation along the semi-circular
loop [−R, R] ∪ {|z| = R, Im z > 0} homotopic to the real equator on the
sphere.

The holonomy operator ∆R is visible on the real plane (R2, 0) before
the blow-up: the cross-section τ blows down as the x-axis on the (x, y)-
plane. By construction, (∆R(x), 0) is the first point of intersection with the
x-axis of a solution starting at (x, 0), after continuation counterclockwise.
The monodromy map (as it is defined in §9C) is the square ∆R ◦∆R of the
holonomy map.

Definition 10.11. The holonomy map ∆R (as well as its complexification)
will be called the semi-monodromy of a generalized elliptic singular point.
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168 II. Singular points of planar analytic vector fields

This description of the semi-monodromy via holonomy immediately al-
lows us to prove analyticity of it and the classical monodromy by referring
to the standard results from §2C.

Theorem 10.12. The semi-monodromy of a generalized elliptic singular
point is real analytic on (R, 0), in particular, at the origin.

If the Pfaffian form or the vector field depends analytically on additional
parameters, the respective semi-monodromy depends analytically on these
parameters as far as the singularity remains generalized elliptic. ¤

As a consequence, repeating verbatim the arguments proving Theo-
rem 9.12, we immediately obtain the center-focus alternative for generalized
elliptic point.

Corollary 10.13. If infinitely many periodic orbits accumulate to a gener-
alized elliptic singularity, then this singularity is a center, i.e., nonsingular
trajectories are periodic. ¤

10D. Computation of the holonomy map. Corollary 10.13 means that
decision between center and focus is the true alternative for generalized ellip-
tic points (no third possibility exists). It is equivalent to deciding whether
∆R is periodic with period 2. The latter alternative is ultimately alge-
braically decidable in terms of the coefficients of the map ∆R; see Prob-
lem 10.4. Thus decidability of the center-focus alternative is reduced to
algebraic computability of the Taylor coefficients of ∆R via the Taylor coef-
ficients of the form ω.

We compute explicitly the coefficients of the semi-monodromy map. This
computation is pretty much standard (see [Bau54]), yet in most sources it
is carried out in the polar coordinates, corresponding to the trigonometric
blow-up, which obscures their algebraic nature.

The Pfaffian equation ω = 0 with the form ω which after blow-up takes
the form (10.5), can be rewritten using the convergent expansion

dx = xθ1 + x2θ2 + x3θ3 + · · · . (10.6)

Here θi are rational (meromorphic)1 1-forms on the exceptional divisor,

θi = Ri(z) dz ∈ Λ1(E)⊗M(E), i = 1, 2, . . . ,

which are holomorphic (nonsingular) outside the polar locus

Σ = {z ∈ C : hn+1(1, z) = 0} ⊂ E.

1The tensor multiplication ⊗M by the algebra of meromorphic functions transforms spaces
of holomorphic objects to their meromorphic counterparts, for instance, D(Ck, 0) ⊗ M(Ck, 0)
is the space of germs of meromorphic vector fields at the origin of the complex k-space, while
Λk(T )⊗M(T ) would denote the space of meromorphic k-forms on a manifold T , etc.
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10. Center-focus alternative 169

The expansion (10.6) can be obtained by division of both parts of (10.5)
by the holomorphic function

∑
j>0 xj hn+1+j(1, z) nonvanishing on the line

{x = 0}rΣ. In particular,

θ1 = −qn(1, z) dz

hn+1(1, z)
. (10.7)

The equation (10.6) can be rewritten in the other chart (y, w) on the
complex Möbius band. After the change of variables z = 1/w, x = yw we
obtain an analogous Pfaffian system

dy = yϑ1 + y2ϑ2 + · · · , (10.8)

with the meromorphic coefficients ϑi ∈ Λ1(E)⊗M(E) related to the coeffi-
cients θi of the system (10.6) by the formulas

ϑ1 = θ1 − dw

w
, ϑk = wk−1θk, k > 2. (10.9)

The nontrivial formula for transition from θ1 to ϑ1 is the consequence of the
fact that the complex Möbius band M on which the blow-up is defined, is
not the Cartesian product E × C. The linearization form θ1 should rather
be considered as a meromorphic connexion on the nontrivial normal line
bundle over E (cf. with Remark 14.8 and especially §17G).

Remark 10.14. Conversely, a foliation F′ on the complex Möbius band
defined by the holomorphic (convergent) Pfaffian equation (10.6) and sym-
metric by the complex conjugacy (z, x) 7→ (z̄, x̄), always blows down to a
singular real analytic foliation F on (R2, 0) defined by a real analytic form
ω, provided that the point at infinity z = ∞ is a nonsingular or at worst
a finite order pole for all forms ϑk. The latter assumption means that
supk ordw=0 ϑk < +∞.

In particular, assume that Σ ⊂ C is a finite set (necessarily symmetric
with respect to the involution z 7→ z̄), disjoint with the real axis, Σ∩R = ∅,
and θk are rational forms whose singularities always belong to Σ. Then the
equation (10.6) corresponds to a generalized elliptic singularity, if the point
w = 0 is nonsingular for all forms ϑk, i.e., when

θ1 +
dz

z
, z−1θ2, . . . , z−kθk, . . . are holomorphic at z = ∞ (10.10)

as 1-forms on E at the point z = ∞ (recall that this holomorphy for θ =
R(z) dz means that R(z) = O(z−2)). In this case the conditions (10.10)
imply that ∑

Σ

res θ1 = −1 (10.11)

where the summation is extended on all finite singularities of the form θ1.
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170 II. Singular points of planar analytic vector fields

The rational 1-forms θi ∈ Λ1(E) ⊗ M(E) depend on the homogeneous
components of the 1-form ω ∈ Λ1(C2, 0) in a rather simple way.

Lemma 10.15. Assume that the blow-up of the real analytic form ω =
ωn + ωn+1 + · · · is nondicritical. Then:

(1) The coefficients of the rational forms θk depend rationally on the
coefficients of the initial form ω.

(2) The form θk does not depend on the coefficients of the homogeneous
components of order n + k and higher.

(3) If the principal homogeneous part ωn is fixed, the first form θ1

is uniquely determined and all other forms θk, k > 2, depend
polynomially on the remaining coefficients of higher order terms
ωn+1, ωn+2, . . . of the form ω.

Proof. Everything follows immediately from (10.5) and computation of the
reciprocal

1
hn+1(z) + xhn+2(z) + · · · =

1
hn+1(z)

(
1− x · hn+2(z)

hn+1(z)
+ · · ·

)

on any compact set K × (C, 0), K b CrΣ. ¤

Remark 10.16. It would be wrong to assume that, conversely, the principal
homogeneous part ωn is determined by the linearization form θ1 only. For
instance, the form θ1 may be nonsingular at some points of Σ (when pn and
qn have common factor), whereas some of the higher forms θk, k > 2, may
have poles and therefore necessarily contribute to ωn.

To compute the coefficients of the semi-monodromy map associated with
the cross-section z = 0 with the chart u ∈ (C1, 0) on it, we will integrate
the equation (10.6) in the form x = X(z, u) subject to the initial condition
X(0, u) = u. Expanding this solution in the series X(z, u) =

∑
k>1 ukXk(z)

and substituting this expansion into (10.6), we obtain a triangular (infinite)
system of ordinary differential equations in the Pfaffian form with the initial
conditions

dX1 = X1θ1,

dX2 = X2θ1 + X2
1θ2,

dX3 = X3θ1 + 2X1X2θ2 + X3
1θ3,

...

X1(0) = 1,

X2(0) = 0,

X3(0) = 0,
...

(10.12)

This system can be recursively solved in quadratures, since on each step the
equation for Xk is linear nonhomogeneous with the same linear part and
variable yet known nonhomogeneity.
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The coefficients of the semi-monodromy map are obtained as the result
of analytic continuation of solutions of the system (10.12) along the loop
RP 1 (i.e., along the real line across infinity),

∆R(x) =
∑

k>1

akx
k, ak = (∆RP 1Xk)(0) ∈ R, k = 1, 2, . . . , (10.13)

where ∆RP 1 denotes the operator of analytic continuation of the function
Xk(·) along RP 1, not to be confused with the map ∆R. Clearly, each coef-
ficient ak depends only on the forms θ1, . . . , θk and does not depend on the
remaining forms θk+1, θk+2, . . . .
Remark 10.17. The algorithm of computation of the semi-monodromy and monodromy
maps for generalized elliptic points, provides also a tool for definition of the (semi-
)monodromy for formal vector fields or formal Pfaffian forms. Indeed, consider a formal
Pfaffian form ω as in (10.3) but without assumption that the series converges. The condi-
tion (10.4) makes sense since it involves only the lowest order homogeneous terms ωn of
ω.

The “formal blow-up” of this form is well defined and gives a Pfaffian equation (10.6)
with the forms θi still rational in z, but the series in the powers of x in the right hand
side will be only formal.

It remains to notice now that the infinite triangular system of Pfaffian equations
(10.12) remains exactly the same (no changes are required) and solving any finite number
of equations from this system determines uniquely the infinite formal series (10.13) for
the holonomy ∆R. Thus the map ∆R ∈ Diff[[R, 0]] is consistently defined for the specific
choice of the cross-section τ = {z = 0}. Choosing any other cross-section {z = ϕ(x)},
even formal so that ϕ ∈ C[[x]], may change ∆R by the formal conjugacy: the arguments
remain the same.

Finally, we remark that if the homogeneous forms ωn, ωn+1, . . . depend analytically on
any additional parameters λ1, . . . , λm in the sense of Definition 4.17, then the coefficients
of the formal holonomy (semi-monodromy) will depend analytically on λ as far as the
form remains generalized elliptic, that is, the roots of the homogeneous polynomial hn+1

in (10.4) remain off the real axis.

10E. Relative decidability of alternative in the generalized elliptic
case. The established structure of the map ∆R allows us to prove relative
decidability of the alternative for generalized elliptic singularities with fixed
principal part. Denote by B(ωn) = (jn)−1(ωn) = {ω = ωn + ωn+1 + · · · } ⊆
Λ1(R2, 0) the space of all holomorphic forms with the fixed principal homo-
geneous part ωn.

Theorem 10.18 (see [Ily72a]). For generalized elliptic foliations with the
principal part ωn the center-focus alternative is ultimately decidable within
the class B(ωn).

Proof. We show that in the assumptions of the theorem, the coefficients
ak = ak(ω) = aj(ωn+1, an+2, . . . ) of the semi-monodromy map ∆R(x) =
a1x + a2x

2 + · · · are quasihomogeneous polynomials in the nonprincipal
Taylor coefficients ωn+1, ωn+2, · · · of ω. When written as an argument, each
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172 II. Singular points of planar analytic vector fields

ωk is identified with the string of its coefficients which are in turn natural
coordinates on the jet space.

By Lemma 10.15, each coefficient ak depends only on the components
ωn, . . . , ωn+k−1 and this dependence is real analytic.

Consider an arbitrary real number 0 6= µ ∈ R and the linear transfor-
mation Dµ = (x, y) 7→ (µx, µy). This transformation acts diagonally on
1-forms if we choose a monomial basis. After the appropriate rescaling the
1-form

µ−n−1 D∗
µω = ωn + µωn+1 + µ2ωn+2 + · · ·

again belongs to B(ωn).
On the other hand, Dµ changes the chart on the x-axis by the linear

transformation x 7→ µx and hence transforms the semi-monodromy map
∆R into

µ−1∆R(µx) = a1x + µa2x
2 + µ2a3x + · · · .

Since the coefficients of the semi-monodromy are uniquely defined, we con-
clude that

ak(µωn+1, µ
2ωn+2, . . . , µ

k−1ωn+k−1) = µk−1 ak(ωn+1, ωn+2, . . . , ωn+k−1).

In other words, each ak is a quasihomogeneous analytic function of its ar-
guments. Such a function is necessarily a quasihomogeneous polynomial.

The ultimate algebraic decidability of the center-focus alternative now
follows immediately from ultimate decidability of the identity ∆R ◦∆R = id
for holomorphic self-maps (Problem 10.4). Indeed, since aj are polynomial
functions on B(ωn), vanishing of any finite number of coefficients of ∆R ◦∆R
is an algebraic condition on a finite jet of ω. If all nonlinear coefficients of
∆R ◦∆R vanish, then the singularity is a center. ¤

10F. Decidability to codimension 1. Analyzing system (10.12), we im-
mediately see that the first coefficient a1(ω) depends nonalgebraically on
(the Taylor coefficients of) θ1. Yet despite this nonalgebraicity, the neu-
trality condition a1(ω) = −1 on 1-jet of the self-map ∆R ∈ Diff(R1, 0) to
be 2-periodic, turns out to be algebraically decidable. This assertion is not
completely trivial, since its complex counterpart fails (Problem 10.9).

Theorem 10.19.

1. The multiplicator a1 = a1(ωn) of the semi-monodromy map ∆R of a
generalized elliptic singular point is equal to −1, if and only if

∑

Re z>0

resz θ1 = −1
2
. (10.14)

2. The center-focus alternative for generalized elliptic singularities is
algebraically decidable to codimension 1.
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10. Center-focus alternative 173

Proof. The first equation of (10.12) can be immediately integrated, yielding
for the solution X1(z) and the multiplicator a1 of its continuation along RP 1

the transcendental expressions

X1(z) = exp
∫ z

0
θ1, a1 = exp

∮

RP 1
θ1.

The neutrality condition a1 = −1 holds if and only if
∮
RP 1 θ1 = πi(2m + 1),

m ∈ Z, i.e.,
∑

Re z>0

resz θ1 =
1
2

+ m, m = 0,±1,±2, . . . . (10.15)

This equality is not yet an algebraic condition, since it is the union of in-
finitely many conditions for different values of m ∈ Z. However, since ω
is real on the real axis, its singular locus Σ is symmetric by the reflection
z 7→ z̄, and the residues at symmetric points are complex conjugate. The
total of all residues of θ1 on the whole plane C is −1 by (10.11). Therefore,
the real part of the expression in the left hand side of (10.15) is −1

2 , which
is compatible with the right hand side only when m = −1, thus proving
(10.14).

The second assertion of the theorem immediately follows from the first
one, since (10.14) is an algebraic condition on the form θ1. ¤

10G. Nondecidability of the weak focus stability alternative. In-
spection of the next nontrivial equation in (10.12) already suggests nonal-
gebraicity of the second nontrivial condition a3(ω) = 0.

The real topological type of vector fields with a1 = −1 and a3 6= 0 is
called a weak focus: the weakness means that the convergence of integral
trajectories to the origin is slower than that of logarithmic spirals. Weak
foci can be stable (if a3 < 0) and unstable if a3 > 0; see Problem 10.12.

Remark 10.20. Note that if a1 = −1, then for any choice of a2(ω) the
square ∆R ◦∆R starts from cubic terms, hence nonalgebraicity of the condi-
tion a3(ω) = 0 would mean that the unrestricted center-focus alternative is
not decidable to codimension 2. In other words, Theorem 10.19 establishes
a sharp bound on the codimension to which the unrestricted center-focus
alternative is algebraically decidable (Problem 10.14).

To prove the nonalgebraicity of the condition a3(ω) = 0, we consider
a polynomial foliation which after blow-up is defined by a rational Pfaffian
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174 II. Singular points of planar analytic vector fields

equation in the affine chart (x, z), z = y/x, of the following form:

dx = xθ1 + x3θ3, θ1 =
(

A

z2 + 4
− A + 1

z2 + 1

)
z dz,

θ3 = µdz +
zdz

z2 + λ2
, λ, µ ∈ R, λ 6= 0.

(10.16)

Here A ∈ R r Z is any fixed noninteger number. The foliation defined by
(10.16) on the complex Möbius band M tangent to the exceptional divisor
E can be blown down to a polynomial foliation defined by a polynomial
form ω = 0 in C2 by Remark 10.14 (see also Problem 10.13). Note that
the forms θ1 + dz

z and z−2θ3 are both holomorphic at z = ∞, therefore the
infinite point z = ∞ on E is nonsingular in the other affine chart on M. In
particular, the holonomy operator along the real equator can be replaced by
the holonomy along the contour Γ which consists of a real segment [−R, R]
and the large semicircle {|z| = R, Im z > 0} in the upper half-plane,

Γ = [−R, R] ∪ {|z| = R, Im z > 0} ⊂ C, R À 2, (10.17)

with a standard orientation inherited from C.
The conditions (10.10) for this system are obviously verified, meaning

that in the semialgebraic domain λ 6= 0 the equation (10.16) is generalized
elliptic. The total residue of the form θ1 at the singular points i, i

√
2 in

the upper half-plane is exactly −1
2 , so the condition (10.14) is automatically

verified for all values of λ, µ.
Obviously, the second coefficient a2 = a2(λ, µ) of ∆R is zero, since the

term x2θ2 is absent in (10.16). The third coefficient, a3 = a3(λ, µ) is a real
analytic function of λ, µ in the domain λ 6= 0, 1, 2 where (10.16) is generalized
elliptic. The generalized ellipticity holds also for the values λ = 1, 2, yet the
holomorphic dependence on parameters fails at these points, as will be seen
from the proof of the following result.

Theorem 10.21. The second integrability condition a3(λ, µ) = 0 for the
family (10.16) defines a nonalgebraic real curve on the plane of parameters
{λ > 0, µ ∈ R}.

The complement of this curve {a3(λ, µ) = 0} consists of sufficient jets
(foci), thus Theorem 10.21 indeed proves undecidability of the center-focus
problem.

Proof of Theorem 10.21. Consider the holonomy ∆Γ of the system
(10.16) along the contour Γ ; see Fig. II.7. This holonomy depends on the
parameters λ, µ, and we will show that the condition ∆Γ ◦∆Γ = id is non-
algebraic with respect to these parameters.
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10. Center-focus alternative 175

z3

z2

z1

z
0

Figure II.7. Holonomy group and continuous deformation of the loops
generating this group, when parameters change

To do this, we first transform the first three (in fact, only two, since θ2 =
0 is absent) equations from the corresponding system (10.12) into a linear
form. This is achieved by the substitution y1 = X2

1 , y2 = X3/X2
1 . Such

a substitution naturally arises when solving the first three equations from
(10.12) by the method of variation of constants. The resulting equations
have the form {

dy1 = 2θ1y1,

dy2 = θ3y1,

y1 = X2
1 ,

y2 = X3/X2
1 .

(10.18)

This system is linear, and it obviously has identical holonomy associated
with the contour Γ , if and only if the holonomy of the initial nonlinear
system is 2-periodic. We will show that this condition is nonalgebraic in
(λ, µ).

Because of the reducibility of this system, its holonomy group can be
easily computed. The linearity of the system implies that this group is
linear. In what follows we perform computations with linear systems, that
will be described in more details in §15C.

The holonomy group is generated by three linear operators correspond-
ing to circulation around the three singular points. Fix a base point z0 ∈ R+

somewhere on the positive semiaxis and let γi, i = 1, 2, 3, be the stan-
dard small loops going around the three singular points z1 = i, z2 = 2i
and z3(λ) = iλ back and forth along the line segments. Fix a solution
Y = Y (z; λ, µ) of the system (10.18) with the initial data y1(z0) = 1,
y2(z0) = 0.
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176 II. Singular points of planar analytic vector fields

Note that the form θ1 does not depend on the parameters, and the first
coordinate subspace is invariant (i.e., the result of analytic continuation of
y1 does not depend on y2). Therefore the function y1 admits a holomorphic
branch along the loop γ3. On the other hand, the form θ1 admits a holomor-
phic branch along the paths γ1, γ2. This allows us to compute the integrals∫
γi

y1θ3. These integrals allow us to represent the linear transformations

∆γiY = Y Mi, Mi ∈ GL(2,C),

by the three 2 × 2-matrices M1, M2,M3. These matrices, with entries de-
pending on the parameters λ, µ, are as follows:

M1 =
(

α β1

1

)
M2 =

(
α−1 β2

1

)
M3 =

(
1 β3

1

)

α = exp 2πiA, A = 2 resz1 θ1 = −2 resz2 θ1,

β1 = (1− α)
∫

`1

y1θ3, β2 = (1− α−1)
∫

`2

y1θ3,

β3 = 2πi y1(z3) resz3 θ3 = πi y1(z3).

(10.19)

In all formulas `i, i = 1, 2, 3, denote the line segments connecting the base
point z0 with the points zi. The integrals involving the multivalued solution
along these segments, as well as the value y1(z3), are obtained by continuing
the branch with y1(z0) = 1 along these segments.

The values of β1, β2, β3 depend on the parameters λ, µ in a locally holo-
morphic (as soon as λ /∈ {0, 1, 2}) yet rather complicated way.

First since the form θ3 itself depends on these parameters, the integrals
β1, β2 are linear functions of µ and rational functions of λ. Indeed, the form
θ1 has no singularities at z3 and hence such a variation does not affect the
result of integration along `1 and `2: the branch of y1 on these segments
remains the same. Since θ3 depends linearly on µ and rationally on λ,
the matrix entries βi(λ, µ), i = 1, 2 are also single-valued functions of the
parameters λ, µ, linear in µ.

On the contrary, if the singular point z3 = iλ makes a full turn along a
circular path around, say, the point z2 = 2i, then the corresponding path
γ3 will be replaced by the conjugate loop γ̃3 = γ2γ3γ

−1
2 in the fundamental

group (this is called the braid group action) . Accordingly, the integral∫

eγ3

y1θ3 = 2πi ỹ1(z3) resz3 θ3 = iπ ỹ1(z3) = α−1

∫

γ3

y1θ3

differs from its initial value by the multiplier α−1 as a result of the transition
to the different branch of the function ỹ1 = α−1y1 (the first component). In
the same way the result of the point z3 circulating around the point z1 = i
consists of multiplication of β3 by α.
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10. Center-focus alternative 177

In other words, if α is not a root of unity, i.e., if A is an irrational
number, then the matrix entry β3 = β3(λ) has logarithmic ramification
points at λ = 1 and λ = 2 in the half-plane {Reλ > 0}: when λ goes around
one of these points, the value β3(λ) gets multiplied by α or α−1 respectively.
Thus for A /∈ Q the function β3(λ) is a nonalgebraic function of λ.

The holonomy of the system (10.18) associated with the contour Γ , is
the linear operator represented by the product of the three upper-triangular
matrices M = M2M3M1, itself an upper-triangular 2× 2-matrix with units
on the diagonal. From the above analysis it follows that the nonzero off-
diagonal entry β∗ = β∗(µ, λ) of the matrix product M is a sum of a linear
form in µ, a rational (single-valued) function of λ and a transcendental
function with nontrivial logarithmic ramification at the points λ = 1, 2.

We will show that the function β∗ depends on µ in a nontrivial way. To
verify this, we fix λ and let |µ| grow to infinity. The off-diagonal term of the
operator ∆Γ is equal to the integral∮

Γ
y1θ3 = µ

∮

Γ
y1 dz + O(1) = µ

∫

R
y1 dz + O(1) as |µ| → ∞.

Yet along the real equator R the function y1 is single-valued and every-
where positive as a solution of the first equation in (10.18) with the form
θ1 real on R and the initial value y1(z0) = 1 which is positive. Thus we see
that β∗(µ, λ) = Cµ + L(λ) with C > 0 and L a function with logarithmic
singularities at λ = 1, 2.

Thus the trivial holonomy condition M2M3M1 = E occurs on the non-
algebraic curve {µ = −L(λ)/C} (the graph of a transcendental function) on
the (µ, λ)-plane of the parameters. ¤

Remark 10.22. Nonalgebraicity of the condition {a3(ω) = 0} in fact does
not mean that the alternative is not decidable in the sense of Definition 10.2.
Indeed, the variety of centers is given by the infinite number of equations
{aj(ω) = 0}, j = 2, 3, . . . , imposed on all Taylor coefficients of the square
∆R ◦∆R of the monodromy map. Though the equations are nonalgebraic,
the corresponding zero locus Nk of vanishing of the first k coefficients may
be a proper analytic subset of a larger but algebraic variety N ′

k ⊂ Jk. If
the codimension of N ′

k grows to infinity together with k, this would mean
decidability of the alternative.

What the assertion of Theorem 10.21 implies is algebraic nondecidability
of the Lyapunov stability for generalized elliptic singularities. Indeed, the
stable foci correspond to the domain S+ = {a3 > 0}, while unstable foci are
determined by the inequality S− = {a3 < 0}. These sets are relatively open
in the locus {a1 = 0} in any jet space Jk, and the hypersurface separating
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178 II. Singular points of planar analytic vector fields

them is real analytic but nonalgebraic in the intersections. Clearly, such a
situation is incompatible with algebraic decidability to any codimension.

It turns out that the Lyapunov stability for generalized elliptic singu-
larities is in fact ultimately analytically decidable in some rigorously de-
fined sense (we do not give details here). This result was achieved by
N. Medvedeva [Med06].

Exercises and Problems for §10.

Exercise 10.1. Prove that no finite jet of a planar real analytic vector field can
be sufficient for a center.

Suggestion. Consider together with the field F (z) (in the complex notation)
its small perturbation F (z) + if(z)F (z) where the scalar function f(z) is flat and
nonnegative.

Exercise 10.2. Prove that the property of having local (strict) minimum is ulti-
mately algebraically decidable for germs of real analytic functions of one variable.

An isolated singularity of a vector field (resp., fixed point of a self-map) is
Lyapunov stable, if for any open neighborhood U of this point one can find a
(smaller) neighborhood V such that any trajectory of the field (resp., the orbit of
the self-map), starting in V , never leaves U .

Exercise 10.3. Prove that Lyapunov stability is algebraically decidable for germs
of real analytic vector fields on the real line.

Problem 10.4. Prove that the problem of deciding, whether a germ is periodic
with period 2, is ultimately algebraically decidable for germs of real analytic self-
maps tangent to the symmetry x 7→ −x.

Problem 10.5. Prove that the periodicity/aperiodicity alternative for holomorphic
self-maps Diff(C, 0) is not algebraically decidable.

Suggestion. Prove that this problem is undecidable for linear self-maps.

Exercise 10.6. Prove that an elliptic singular point (in the sense of Definition 4.28)
is generalized elliptic.

Exercise 10.7. Prove the assertions made in Remark 10.14.

Problem 10.8. Let F, F ′ be two formally orbitally equivalent generalized ellip-
tic formal vector fields. Prove that their formal monodromy maps as defined in
Remark 10.17, are formally conjugate in the group Diff[[R1, 0]].

Problem 10.9. Consider the set B of germs of holomorphic 1-forms, which have
no singularities on the real axis after the first blow-up (an analog of generalized
ellipticity condition). We will call a form ω ∈ B a pseudo-center, if the holonomy
operator ∆R associated with the loop RP 1 ⊂ P1 of the blown-up foliation, is 2-
periodic. Otherwise we call the germ pseudo-focus.

Prove that the set B is semialgebraic, but the alternative pseudo-center/pseudo-
focus relative to B is not algebraically decidable to codimension 1.
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11. Holonomy and first integrals 179

Exercise 10.10. Determine, for which values of the real parameters a, b the ana-
lytic singularity

ẋ = −x2 + axy + · · · , ẏ = −y + bx2 + · · ·
(the dots denote cubic terms) is Lyapunov stable.

Problem 10.11. Give a necessary and sufficient condition of Lyapunov stability
for nonmonodromic singularities with nondicritical complete desingularization.

Problem 10.12. Prove that the weak focus with the semi-monodromy map
∆R(x) = −x + ax3 + · · · is stable if a > 0 and unstable if a < 0.

Problem 10.13. What is the order of singularity obtained by blowing down the
foliation F defined by the Pfaffian equation (10.16) in a neighborhood of the excep-
tional divisor E?

Problem 10.14. Prove that Lyapunov stability for germs of planar vector fields
is algebraically decidable to codimension 11, but not to codimension 12.

11. Holonomy and first integrals

In this section we study the inter-relations between analytic and topological
properties of singular foliations. The main tool of this study is construction
and analysis of some finitely generated subgroups of the group Diff(C, 0),
especially the vanishing holonomy group. Using properties of this group,
we show, following [Mou82], that integrability of a real analytic foliation,
existence of nontrivial analytic first integral, is equivalent to the topological
property of being a center, for elliptic foliations (this result is known as the
Poincaré–Lyapunov theorem. ). On the other hand, the equivalence fails for
generalized elliptic foliations with degenerate linear part: such systems can
be centers without analytic integrals.

The second part of the section is devoted to generalizations of the
Poincaré–Lyapunov theorem for arbitrary isolated singularities of holomor-
phic (nonreal) foliations on (C2, 0). We introduce, following the seminal
paper by J.-F. Mattei and R. Moussu [MM80], the class of (topologically)
simple foliations and show that simplicity of a holomorphic foliation is nec-
essary and sufficient for its analytic integrability.

11A. Integrability and its decidability. Thus far the term “integrabil-
ity” was used in three different senses: for distributions (when integrabil-
ity means existence of foliation tangent to the distribution), for differential
equations (which sometimes admit complete solution in quadratures), and
for groups of conformal germs (when integrability means existence of func-
tions constant along all orbits). Integrability of foliations, introduced below,
is very close to the last notion: a foliation is integrable if there exists a non-
trivial holomorphic function constant along all leaves of the foliation.
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180 II. Singular points of planar analytic vector fields

Note that at any nonsingular point of a holomorphic foliation there ex-
ists a germ of holomorphic function with nonvanishing differential, which is
constant along the local leaves (plaques) of the foliation. Thus an integrable
distribution near a nonsingular point generates an integrable foliation.

Definition 11.1. A singular foliation F = {ω = 0} on (C2, 0) is said to
be integrable, if there exists a nonconstant holomorphic function (germ)
u ∈ O(C2, 0) such that ω ∧ du = 0.

Equivalently, the germ of a vector field F ∈ D(C2, 0) is integrable, if
there exists a nonconstant holomorphic function such that Fu = 0. In both
cases the nonconstant function is called first integral, or simply integral of
the foliation.

Every leaf of an integrable foliation entirely belongs to a level curve
{u = const} and hence is an analytic curve in (C2, 0).

The first integral, if it exists, is by no means unique: any nonconstant
function f ∈ O(C, 0) applied to a first integral u ∈ O(C2, 0) produces another
first integral v = f ◦ u. Clearly, if the germ f is invertible in Diff(C, 0),
the two integrals can exchange their roles. All the way around, if f is
noninvertible, the level curves of v necessarily consist of several leaves of
the foliation: for all small c, the preimage f−1(c) consists of more than one
point, hence v−1(c) cannot be connected.

Definition 11.2. A nonconstant holomorphic function u ∈ O(C2, 0) is
called a primitive (first) integral of an integrable foliation, if the level curves
{u = const} are all connected (in a sufficiently small neighborhood of the
origin).

Proposition 11.3. If u is a primitive first integral of a foliation F, then
any other first integral v is an analytic function of u, v = f(u) for some
analytic nonconstant germ f ∈ O(C, 0).

Proof. If both u and v are first integrals, then dv ∧ du ≡ 0, which means
that v takes constant values on each connected component of any level curve
{u = const}. By the implicit function theorem, v is an analytic function of u
outside the set of the critical values of the latter. If the neighborhood of the
singularity is sufficiently small, there is only one critical value u = 0, even
if the critical point of u were nonisolated, while the image by u of any such
neighborhood is always an open set containing the origin. Thus v = f(u),
where f is analytic and bounded in a punctured neighborhood of the origin
on the u-line. By the removable singularity theorem, f is analytic also at
the origin, f ∈ O(C, 0). ¤

The definition of integrability admits a formal counterpart: a formal
Pfaffian form ω (resp., formal planar vector field F ) is formally integrable,
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11. Holonomy and first integrals 181

if there exists a nonconstant formal series u ∈ C[[x, y]] such that ω ∧ du = 0
(resp., Fu = 0) on the level of formal series. However, we will show later
in §11G2 that formal integrability for analytic 1-forms, vector fields and
foliations coincides with analytic integrability.

Theorem 11.4. Integrability of foliations is algebraically decidable.

Proof. The formal identity ω∧du = 0 involving the series u = u2+u3+· · · ∈
C[[x, y]] and the Pfaffian 1-form ω = ω1 + ω2 + · · · is equivalent to the in-
finite triangular system of polynomial identities involving the homogeneous
components ui, ωj respectively,

∀k = 1, 2, . . .
∑

i+j=k+1

ωi ∧ duj = 0. (11.1)

Truncation of this system to any order k 6 N is a linear homogeneous sys-
tem of algebraic equations on the unknown components u2, . . . , uN with the
coefficients linearly depending on the forms ω1, . . . , ωN . Nontrivial solvabil-
ity of the system is a semialgebraic condition on the N -jet of the form ω by
the Tarski–Seidenberg theorem. We leave it to the reader to verify that the
codimension of neutral jets tends to infinity with the order of the jet. ¤

11B. Integrability of real foliations. Integrability of real analytic fo-
liations is closely related to having a singularity of the topological type
“center”.

Proposition 11.5. A monodromic integrable singularity is a center.

Proof. Without loss of generality we may choose the cross-section τ used in
the construction of the monodromy map (see Definition 9.6) such that the
restriction of the integral on τ is a nonconstant function. Being real analytic,
this function gives one-to-one parametrization of all points on the positive
semi-section in a sufficiently small neighborhood of the singularity. Thus
a real leaf crossing τ at some point a, cannot cross it again at a different
point, which means that all real leaves are closed. ¤

For elliptic singularities analytic integrability can be easily replaced by
formal integrability.
Proposition 11.6. Formally integrable elliptic singularity is a center.

Proof. Formal integrability is obviously invariant by formal orbital classification. We
prove first that for an elliptic vector field in the formal normal form (4.10), the formal
integrability is equivalent to formal orbital linearizability.

Indeed, if the vector field is nonlinearizable, then in suitable “formal coordinates”
(x, y) it takes the form (see Table I.1)

F = I + (r2k + ar4k+2)E, r2 = x2 + y2,
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where I and E are the rotation field −y ∂
∂x

+x ∂
∂y

and the Euler field x ∂
∂x

+y ∂
∂y

respectively.

If u = um +um+1 + · · · is a nontrivial formal integral, then the functions um, . . . , um+2k−2

must be radial (depend only on the polar radius r), hence powers of r2 with constant
coefficients. In particular, m = 2n must be even, so that u starts with the term r2n + · · · .
Yet for the determination of the term u2n+2k we obtain the equation Iu2n+2k = (2n +

2k)r2k+2n which is nonsolvable, since the right hand side has nonzero integral on all circles
r = const.

On the other hand, if the field is formally linearizable, F = I, then it is obviously
formally integrable, u = r2 being the nontrivial integral.

To prove the proposition, it is sufficient to show that a formally orbitally linearizable
real analytic foliation is necessarily a center. Indeed, formal orbital linearizability means
that the monodromy map is formally equivalent to the identity in the group Diff[[R1, 0]]
(Problem 10.8). But then the monodromy map is itself identity (cf. with Theorem 6.8),
which means that the singularity is a center. ¤

In other words, we proved that out of the three conditions,

(AI) existence of analytic first integral,
(FI) existence of formal first integral,
(C) center (identical monodromy map),

the first obviously implies the second and the third, regardless of whether
the monodromic singularity is elliptic or not.

The implication (FI) =⇒ (C) is asserted by Proposition 11.6 for elliptic
singularities, yet in fact it is valid without this assumption; see §11G2. We
will now discuss the remaining implication (C) =⇒ (AI) showing that for
elliptic singularities, all three conditions are equivalent. This is the famous
Poincaré–Lyapunov theorem, proved by Poincaré for polynomial differential
equations and by Lyapunov for analytic singularities. The modern proof
given below, is based on [Mou82].

Theorem 11.7 (Poincaré–Lyapunov). A real analytic elliptic singularity
which is a center, admits a real analytic first integral with the nondegenerate
quadratic part.

As a corollary to this result and Proposition 11.6, we have a result on
“convergence of formal integrals”.

Corollary 11.8. An elliptic singularity which admits a formal first integral
with nondegenerate quadratic part, also admits an analytic first integral with
the same property.

For elliptic singularities integrability is ultimately decidable. ¤
Remark 11.9. The stress in the assertion of Theorem 11.7 is on analyticity of the first
integral. Indeed, existence of a first integral that is simply continuous at the origin x = y =
0 and real analytic outside, is obvious. Indeed, take the cross-section τ = {y = 0, x > 0}
and the function x2 on it, and extend this function on the entire neighborhood of the origin
by a constant along each trajectory of the vector field. Since all trajectories are closed,
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11. Holonomy and first integrals 183

this extension is unambiguous and real analytic outside the origin where its continuity is
obvious. Applying this construction in the coordinates linearizing any finite order jet, we
can in fact guarantee smoothness of the constructed integral to any finite order and even
its C∞-smoothness (Exercise 11.13).

Note that the isolated point where the analyticity break may eventually occur, is a
small set of codimension 2. Thus, if all objects were defined in (C2, 0) rather than in
(R2, 0), the analyticity would follow automatically unlike in the real context where no
removable singularity theorems are available. In other words, the natural way to prove
analyticity is to complexify the situation.

The proof of Theorem 11.7 is based on application of results on inte-
grability of groups of conformal germs (see §6C) to the vanishing holonomy
group introduced below. For an elliptic singularity this group is especially
simple (cyclic).

11C. Vanishing holonomy of singularity. Vanishing holonomy already
appeared implicitly in §10C.

Definition 11.10. The vanishing holonomy group of an isolated nondi-
critical singular foliation F is the holonomy group of the exceptional leaf
L = Er Sing F′ for the foliation F′ = σ∗F on the Möbius band M obtained
by a simple blow-up σ : (M,E) → (C2, 0) of the singularity.

For real analytic foliations the vanishing holonomy requires preliminary
complexification. By construction, the vanishing holonomy is a finitely gen-
erated subgroup of the group Diff(C, 0) of conformal germs. For dicritical
singularities the vanishing holonomy group is not defined.

Computations from §10C show that after a simple blow-up of the elliptic
singularity the foliation F′ has exactly two singular points on the exceptional
divisor E at the points z = ±i, both of them saddles with the ratio of
eigenvalues equal to−1

2 . By the Hadamard–Perron Theorem 7.1, each saddle
has two holomorphic invariant curves. One of them is the common complex
separatrix E, the other are holomorphic curves W+ and W− transversal to
E at z = ±i respectively.

The fundamental group of L = E r Σ, Σ = {±i}, is cyclic and gener-
ated by the loop RP 1 (the equator of the Riemann sphere). Therefore the
vanishing holonomy group H of an elliptic singularity is cyclic, generated
by the single germ of the semi-monodromy f = ∆R,

f = ∆R|τ ∈ Diff(C, 0), τ = {z = 0} ∼= (C, 0), f(x) = −x + · · · . (11.2)

As explained in §10C, the monodromy of a real elliptic singularity is the
square of the vanishing holonomy generator f .

If the foliation F is integrable and u is an analytic integral, then this
analytic integral pulls back on M as an analytic function on (M, S) constant
along the leaves of F′. By definition of the holonomy, this means that the
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184 II. Singular points of planar analytic vector fields

restriction of u on the cross-section τ used to compute the holonomy maps,
is invariant by the vanishing holonomy group H. In other words, we have
the obvious implication.

Proposition 11.11. The vanishing holonomy group of an integrable fo-
liation is an integrable subgroup (in the sense of Definition 6.24) in
Diff(C, 0). ¤

Integrability of a group of conformal germs is a very stringent condition,
implying that the group is finite abelian and linearizable; see §6C. Together
with Proposition 11.11 this gives necessary conditions of integrability of
foliations.

For an elliptic center, the generator f of the vanishing holonomy group
H is 2-periodic, hence integrable. Thus the necessary conditions dictated
by Proposition 11.11 are fulfilled. The Poincaré–Lyapunov theorem asserts
that for elliptic singularities they are also sufficient, i.e., if H ∼= Z2, then
there exists a real analytic function u ∈ O(R2, 0) constant along the integral
curves.

The proof will indeed be organized by proper complexification of the
insufficient “real” arguments mentioned in Remark 11.9. First, we construct
an integral ũ ∈ O(τ, 0) of the holonomy group H, a function analytic on the
cross-section τ and invariant by all holonomy maps. Using the construction
of saturation (Lemma 2.18), we extend the integral of the group to the
integral of the foliation F′ in a neighborhood of the exceptional leaf L =
E rΣ.

Local analysis of the singular points ±i shows that for each of them the
local integral defined near one of the separatrices, can be extended along
leaves of the foliation onto the full neighborhood of the singular point except
the other separatrix. By the removable singularity theorem, we achieve an
integral of the foliation F′ defined in a full neighborhood of the exceptional
divisor E in the complex Möbius band M. Blowing down this integral, we
obtain an analytic integral of the initial elliptic foliation F.

11D. Complex topology and (non)integrability of elementary sin-
gularities. In order to carry out the above program, we need to generalize
Lemma 2.18 for the singular context.

We consider the following problem. Let F be a singular foliation on a
neighborhood of the origin U = (C2, 0), say, a bidisk, with an irreducible
complex separatrix S (analytic curve) through the unique singularity of F

at the origin. Let a ∈ Sr{0} be a regular point on S and u0 ∈ O(C2, a) the
germ of holomorphic function at a, which is a local integral of F near a. The
extension problem is to find an integral u ∈ O(U) of F in the entire domain
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11. Holonomy and first integrals 185

U in such a way that the germ of u at a coincides with u0. For simplicity we
may assume that u0 is defined on a small cross-section τ : (C, 0) → (C2, a)
to S at a.

The obvious obstruction for existence of such an extension is the ho-
lonomy of F associated with a small loop γ ∈ π1(S r {0}, a). Indeed, if
f ∈ Diff(τ, a) is the holonomy map associated with the loop γ, then the
extension problem can be solved only if the germ u0 is invariant by f , that
is, the holonomy germ f must be integrable. Yet integrability of f may be
insufficient.

Indeed, assume that there is an infinite number of leaves of F passing
near a, such that each of these leaves contains the origin in its closure. Then
the foliation F cannot be integrable: the restriction of u on each of these
leaves must be equal to the common constant 0 = u0|S . This scenario is
compatible with the identical monodromy (Exercise 11.3) and hence is a
genuine obstruction for the extension of analytic integrals.

On the other hand, assume that there exists a small neighborhood D ⊂
(τ, a) of a on τ such that the saturation U ′ = Sat(D, F) is dense in U
and the difference S′ = U r U ′ is an analytic set. Then any f -invariant
germ, in particular, u0, can be extended along the leaves of the foliation
F to a function u ∈ O(U ′) analytic and bounded in the complement to
an analytic set, though eventually multivalued. If for some reasons the
extension u is single-valued in U ′, then by the removable singularity theorem,
the holomorphic function u can be extended on the whole of U and by
construction is an integral of F extending the germ u0.

These two patterns are clearly distinct for real foliations. Foliations
which are topological nodes (including foci) or saddle-nodes, cannot be in-
tegrable, since infinitely many trajectories accumulate to the origin. On the
other hand, for topological saddles saturation of a small cross-section to a
separatrix S by trajectories of the foliation, entirely fill one the half-planes
into which the other separatrix S′ cuts a small neighborhood of the origin.
One can expect that after complexification the saturation will fill the whole
complement to U ′ = U r S′. Recall that these types of real elementary
singular foliations are determined by the characteristic ratio λ (the ratio of
eigenvalues). The nodes, foci and saddle-nodes correspond to the case λ
positive, nonreal or zero. The saddles (and centers) correspond to negative
values of λ.

In the complex domain the “saddle” and “nodal” features are not mu-
tually exclusive, yet for all elementary singularities the extension problem
can be easily solved in the negative or affirmative sense.
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186 II. Singular points of planar analytic vector fields

It will be convenient to extend the relations <,>,6, > from real to
complex numbers in the following intuitive way: for a, b ∈ C we will write

a > b ⇐⇒ a− b ∈ R and a− b > 0,

a > b ⇐⇒ a− b ∈ R and a− b > 0.
(11.3)

The relations 6>, 6> are formed by logical negations of the above, while a 6 b
or a < b mean that b > a and b > a respectively. Note that in contrast with
the real case the relations 6 and > define only partial order on C, so a 6> b
does not mean a 6 b and vice versa, a 6> b is not equivalent to a < b.

Lemma 11.12 (Complex “nodal” case). Each leaf of an elementary singular
foliation with the characteristic ratio λ 66 0 contains the singularity in its
closure.

Corollary 11.13. None of these singularities are integrable. ¤

Lemma 11.14 (Complex “saddle” case). For any hyperbolic singular foli-
ation F with the characteristic ratio Reλ < 0, saturation Sat(τ, F) of any
cross-section τ to each separatrix fills a complement to the other separatrix
in a small neighborhood of the origin.

Corollary 11.15. If the holonomy map f ∈ Diff(τ, a) of a separatrix S of
a hyperbolic singularity is integrable (this is possible only if λ < 0), then
any germ u0 ∈ O(τ, a) invariant by f extends to an analytic integral of the
foliation F.

Proof of Lemmas 11.12 and 11.14. If λ 66 0, then the corresponding
vector field belongs to the Poincaré domain and one can use the holomorphic
normal forms established in Theorem 5.5; cf. with Table I.1.

In the nonresonant case the field is linearizable and solutions are graphs
of the multivalued function y = c xλ. If x tends to the origin x = 0 along a
logarithmic spiral, x = expαt, t ∈ R+, t → +∞, Re α < 0, then the value of
y varies along the spiral y = c expλαt. If λ is not negative, one can always
find α such that both α and αλ belong to the left half-plane, Reλα < 0,
Reα < 0, so that the origin is the limit point of the leaf.

In the resonant case where λ or 1/λ is a natural number r, one can show
by direct computation that, say, for the differential equation

dy

dx
= r

y

x
+ axr−1, a ∈ C,

all solutions tend zero as x → 0 along the real axis.
In the saddle-node case we choose local coordinates so that the x-axis

is tangent to the formal center manifold, while the y-axis is the hyperbolic
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manifold (analytic invariant curve). The differential equation corresponding
to the vector field in these coordinates takes the form

dy

dx
= ±x−n

(
y + O(xn+1) + O(y2)

)
, n > 2.

Again by direct inspection one can verify that solutions y = y(x) of this
equation tend to zero exponentially fast as x → 0 along to a positive, neg-
ative or imaginary semiaxis on the x-axis, depending on the sign in the
normal form and parity of n.

In the “saddle” case λ 6> 0, the Hadamard–Perron Theorem 7.1 always
applies, and therefore the foliation F has two holomorphic smooth complex
separatrices that can be normalized to become coordinate axes. The dif-
ferential equation defining the foliation F in these coordinates will take the
form

dy

dx
=

y

x

(
λ + a(x, y)

)
, a(0, 0) = 0. (11.4)

Rescaling the variables if necessary, we assume that the equation (11.4) is
defined in the bidisk U = {|x| < 1, |y| < 1}, the cross-section τ is a small
disk, τ = {x = 1, |y| < δ}, and the holomorphic term a(x, y) is bounded in
U ,

|a(x, y)| < 1
2 |Re λ| ∀(x, y) ∈ U.

We will show that for each point (x0, y0) ∈ U with x0 6= 0 there is a path
on the punctured x-plane connecting x0 with x = 1 and a positive finite
constant C depending only on the equation (11.4) such that the solution
y = y(x) of this equation with the initial condition y(x0) = y0 admits
continuation along this path without leaving U and the value y(1) = y1 at
the end satisfies the inequality |y1| < C|y0|.

For all points x on the circumference this assertion is obvious: any such
point can be connected with x = 1 by an arc of the circle {|x| = 1}. Since
the circle is compact and the right hand side of (11.4) is bounded on it, we
can choose C = exp 2π(|λ|+ A), A = maxU |a(x, y)|.

A point inside the disk is connected first by the radial segment with a
point on the boundary, and then by a circular arc with x = 1 as explained
above. Along the radial segment we have the differential inequality

d|y|2
dx

=
ȳy

x
(λ + a(x, y)) +

yȳ

x
(λ + a(x, y)) = 2

|y|2
x

Re(λ + a(x, y)) < 0,

which means that the corresponding flow map is contracting and one can
choose C = 1.

Thus we proved that every leaf passing through interior point (x0, y0) of
the bidisk U with |y0| < δ/C, except for the vertical axis x = 0, crosses the
section τ ⊆ {x = 1} at some point (1, y1) with |y1| < δ, i.e., belongs to the
saturation of the cross-section by leaves of the foliation. ¤
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Proof of Corollary 11.15. Every point not on the other separatrix S′ of
the saddle singular point, can be connected by at least one path on the leaf
with a point on the cross-section τ , which means that the germ u0 extends
as a multivalued analytic function on U r S′ constant along the leaves.

The fundamental group of U rS′ is cyclic, generated by the loop γ ⊂ S
going around the origin on the smooth separatrix. Since u0 is invariant by
the holonomy map f = ∆γ associated with this very loop, the extension
u is in fact a single-valued and bounded holomorphic integral of F on the
complement U r S′ to the analytic curve S′. By the removable singularity
theorem, u extends as an analytic integral of F on U . ¤

11E. Poincaré–Lyapunov theorem: proof and (counter)examples.
Now everything is ready for the proof of Theorem 11.7.

Proof of Theorem 11.7. Assume that an elliptic singular real analytic
foliation F is a center, and consider blow-up of its complexification, the
foliation F′ on the complex Möbius band M near the exceptional divisor E.
The foliation F′ has two singular points Σ = {±i}, both off the real equator
RP 1 ⊂ E.

The semi-monodromy map f = ∆R ∈ Diff(τ, 0) associated with the
equator RP 1 must be 2-periodic (an involution), as explained in §10C. It
generates the vanishing holonomy group,

H = {id, f} ∼= Z2, f : x 7→ −x + · · · , f ◦ f = id . (11.5)

By Proposition 6.25, the vanishing holonomy group H is integrable, hence
there exists a germ u0 ∈ O(τ, 0), holomorphic on the cross-section τ and
invariant by f . By Saturation Lemma 2.18, the germ u0 can be extended as
an integral of the foliation F′ near the leaf L = ErΣ, where Σ is the singular
locus of F′ consisting of two points ±i. Each of these points is a “complex
saddle” with the same characteristic ratio equal to the negative number
−1

2 . The restriction of u on any cross-section to E close to these points, is
invariant by the respective local holonomy map. By Corollary 11.15, the
integral u extends analytically on the full neighborhoods of both singular
points, producing a holomorphic first integral of F′ on M.

The blow-down (σ∗)−1u of u is a holomorphic first integral of the initial
elliptic foliation F on the punctured neighborhood of the origin in (C2, 0).
Again by the removable singularity theorem, the blow-down extends to a
holomorphic first integral on the plane.

These arguments alone do not yet guarantee that the constructed inte-
gral u has nondegenerate quadratic part, but a closer inspection of Propo-
sition 6.25 yields the principal part of a germ invariant by a periodic map
of period p. In the case p = 2 the proof of Proposition 6.25 implies that
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11. Holonomy and first integrals 189

the germ u0 defined on the cross-section τ at the point {z = 0} ∈ E with
the chart x on it, can be chosen with the 2-jet u0(x) = x2 + · · · . The corre-
sponding extension after blow-down is the analytic function whose 2-jet is
rotationally symmetric and u(x, 0) = x2 + · · · . The only possibility is that
u(x, y) = x2 + y2 + · · · , i.e., the integral is nondegenerate. The proof of the
Poincaré–Lyapunov theorem is complete. ¤

Literally the same proof applies to a much more general situation and
gives a partial inversion of Proposition 11.11.

Theorem 11.16. Assume that all singularities which appear after a single
blow-up of a singular holomorphic foliation F, are elementary. Then F is
integrable if and only if the following two conditions are met :

(1) the vanishing holonomy group of F is integrable, and
(2) all singularities of F′ = σ∗F, are complex saddles with negative

rational characteristic ratios λi < 0.

Proof. If the holonomy group is nonintegrable, then it must contain an
aperiodic element. By Theorem 6.34, the foliation has uncountably many
leaves which intersect an analytic cross-section by an infinite number of
points, which is impossible in the integrable case.

If a holonomy map associated with a separatrix of an elementary sin-
gularity is periodic, then the corresponding multiplicator must be a root
of unity, that is, the characteristic ratio λi is a rational number, λi ∈ Q.
The nodal (λi > 0) and saddle-nodal cases (λi = 0) are incompatible with
the integrability by Lemma 11.12, which leaves only one possibility that all
these singularities are saddles.

Conversely, a first integral of the vanishing holonomy group can be ex-
tended to a full neighborhood of each saddle by Corollary 11.15, producing
a global integral of the foliation F′ and hence of F. ¤

On the other hand, the proof of Theorem 11.7 clarifies the role played
by the assumption on the linear part of the real singular foliation F. This
assumption guarantees that the vanishing holonomy group is generated by a
single map, the semi-monodromy. For generalized elliptic singularities, the
vanishing holonomy map may have more than one generator, so periodicity
of only one of them does not imply periodicity of the entire vanishing ho-
lonomy. In other words, one should expect existence of degenerate singular
real analytic foliations with center but without analytic (first) integrals.

One of the earliest counterexamples of this sort was constructed in
[NS60, §4.656, p. 122] explicitly.
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190 II. Singular points of planar analytic vector fields

Example 11.17. Consider the function

u(x, y) = (2x2 + y2) exp
[
1/(x2 + y2)

]
.

This function is real analytic on the punctured real plane, but has essential
singularities on the imaginary cross x = ±iy. The logarithmic derivative
ω = du

u is a rational 1-form with a second order pole on this cross, and the
Pfaffian equation ω = 0 can be transformed to a polynomial vector field.
This vector field has transcendental first integral, hence center on the real
plane, but cannot have an analytic first integral.

Similar examples can be constructed from real analytic functions fj(x, y)
which vanish at the origin x = y = 0 and are positive on a punctured
neighborhood (R2, 0)r {(0, 0)}. For any collection of positive weights αj >

0 linearly independent over Q, the function f =
∏

j f
αj

j is a nonanalytic
first integral for the corresponding foliation ω = 0 with the rational 1-form
ω = df/f .

Another way to construct counterexamples is to start directly from the
nonintegrable vanishing holonomy.

Example 11.18. Let θ = θ1 be a real rational meromorphic 1-form on
E = P1 without real poles, satisfying the condition (10.10). Consider the
corresponding Pfaffian equation (10.6) with θ2 = θ3 = · · · = 0. By Re-
mark 10.14, this equation can be blown down to a generalized elliptic sin-
gularity.

Being linear in x, the equation (10.6) is integrable, and all holonomy
maps are linear in the natural chart x. By (10.11) and the symmetry of θ
by the involution z 7→ z̄, the total residue of all singularities in each half-
sphere ± Im z > 0 on E is −1

2 . Thus the holonomy of the real (projective)
line is 2-periodic (the linear symmetry x 7→ −x), so the first return map of
the real singularity would be a center.

On the other hand, if there is more than one pole of θ, the above con-
straints are compatible with the fact that some of the corresponding residues
are not negative rational numbers. This means that the holonomy operators
for small loops around these singularities cannot be periodic.

Clearly, this is impossible for an integrable singularity by Theorem 11.16.

In yet another example centrality follows from axial symmetry of the
foliation on the real plane.

Example 11.19 (R. Moussu [Mou82]). The real polynomial 1-form

ω = x3 dx + y3 dy − 1
2x2y2 dy (11.6)
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11. Holonomy and first integrals 191

defines a real analytic singular foliation on (R2, 0). The singular point at the
origin is the center, being symmetric by the mirror symmetry (involution)
(x, y) 7→ (−x, y).

The principal part (3-jet) of ω is integrable: j3ω = 1
4d(x4+y4). However,

by direct inspection one can show that there is no 5-jet of the form u =
x4 + y4 + · · · such that j5(ω ∧ du) = 0.

11F. Simple foliations on (C2, 0). As was already noted, the Poincaré–
Lyapunov Theorem 11.7 relates certain topological simplicity of a real an-
alytic foliation with its integrability which is an analytic property. We will
describe a generalization of this theorem for arbitrary singular holomorphic
foliations on (C2, 0), establishing necessary and sufficient topological condi-
tions for integrability.

Topology of integrable foliations is necessarily simple in the following
precise sense.

Definition 11.20. A singular foliation F on (C2, 0) is simple, if

(1) all leaves are relatively closed in (C2, 0)r {0}, and
(2) at most countably many leaves contain the isolated singular point

{0} in their closure.

Obviously, any integrable foliation is simple in the sense of this definition.
Moreover, the number of leaves adjacent to the singular point, is in fact at
most finite: every such leaf must be an irreducible component of the germ
of the analytic curve {u = 0} ⊂ (C2, 0).

The inverse result generalizes Poincaré–Lyapunov Theorem 11.7 as well
as Theorems 11.16 and 6.34.

Theorem 11.21 (J.-F. Mattei and R. Moussu [MM80], [Mou98]). A sim-
ple singular holomorphic foliation is always integrable, moreover, it always
admits a primitive first integral.

Proof. The proof of Theorem 11.21 is achieved by induction in the number
of blow-ups required to desingularize the foliation completely.

1. As a base of induction, we verify case by case the assertion of the
theorem for all elementary singularities.

If the holonomy map associated with a separatrix of a saddle point is
periodic, then the map is integrable and by Corollary 11.15 this integral
extends as an integral of the foliation. If this integral is not primitive, a
suitable root of it (in the chart linearizing the holonomy) is primitive.

On the other hand, aperiodicity of the holonomy means that the folia-
tion is not simple: by Lemma 6.33, there are uncountably many leaves not
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relatively closed. Nonsaddle elementary singularities are also nonsimple by
Lemma 11.12. The base of induction is verified.

2. To implement the induction step, let F be a simple foliation and F′ its
standard blow-up. The blow-up obviously must be nondicritical (otherwise F

is not simple), thus F′ has finitely many isolated singularities {a1, . . . , am} =
Σ on the exceptional divisor E ⊂ M. Clearly, all these singularities must
also be topologically simple (though by no means elementary).

By the induction assumption, near each singularity ai the foliation F′ is
integrable and admits a primitive first integral ui ∈ O(M, ai). Furthermore,
the vanishing holonomy group H is also integrable, i.e., H admits an analytic
“semi-global” integral u0 ∈ O(M,E r Σ). Our goal will be achieved if we
replace all these “partial integrals” by functions of the form ϕi ◦ ui, i =
0, 1, . . . , m which will agree with each other and form a single holomorphic
integral u ∈ O(M, S) with connected level curves.

To do this, we will explicitly construct a finitely generated subgroup G =
GF ⊂ Diff(C, 0) of conformal germs such that the orbits of this subgroup
(more precisely, of a pseudogroup obtained by specifying domains of the
generators) will coincide with the intersections of leaves of F′ with the cross-
section: G(b) = {Lb ∩ τ} for all sufficiently small points b ∈ (τ, a), where
Lb ∈ F′ is the leaf of the foliation F′. Note that G must contain the vanishing
holonomy group H, yet the latter group can be too small for that purpose
(Problem 11.6).

If the foliation F is simple, the orbits of the group GF must all be finite,
that is, the group itself must be integrable by Theorem 6.34. The integral
u of the foliation F′ will be obtained away from the singular locus Σ by
extending the primitive integral u∗ of the group G, and we will show that this
primitive integral, after continuation along leaves of F into a complement
of the singular locus, extends further as a suitable function ϕi(ui) into a
neighborhood of each singularity ai for all i = 1, . . . , m.

The detailed description of the construction follows.
3. Without loss of generality, using continuation along leaves over the

paths γi connecting the singular points ai with the base point a ∈ S r Σ,
we can assume that all local integrals are defined on the same cross-section
τ : (C, 0) → (M, a) at the base point.

By assumption, the integrals ui were all primitive, hence the level sets
{ui = ε} ⊂ τ belong to intersection of the same leaf with τ . Let pi = orda ui

be the respective orders, so that each level set consists of pi > 1 points for
ε 6= 0.

Let fi ∈ Diff(C, 0) be a holomorphic map which generates the complete
symmetry group of the germ ui (see Remark 6.27) for each i = 0, 1, . . . , m.
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By construction, fi takes any level set of ui into itself and hence the orbit
belongs to the same leaf.

The group G ⊂ Diff(C, 0) generated by the germs f0, f1, . . . , fm, has the
same property: its orbits remain on the same leaves of the foliation F′.

We claim that if the foliation F (and hence F′) were integrable, the group
G is also integrable. Indeed, otherwise by Theorem 6.34 there would coexist
uncountably many leaves of F′ crossing τ by infinite point sets.

4. By the structural Corollary 6.26, the group G is cyclic and generated
by a germ that we denote by f∗ ∈ Diff(C, 0). Let u∗ ∈ O(C, 0) be the
corresponding minimal f∗-invariant integral of the group G. Each map fi,
i = 0, 1, . . . ,m, is an iterate of this generator, fi = f◦qi∗ for some qi ∈ N.
We claim that there exist holomorphic functions ϕi of order qi such that u∗
coincides with ϕi ◦ ui.

To prove this claim (see also Problem 11.7), consider for every i =
0, 1, . . . , m the quotient space Qi = (C, 0)/fi of a small neighborhood of
the origin by the action of the periodic germ fi. This space is the germ of a
nonsingular analytic curve. By the construction of fi, the natural chart on
Qi is given by the function ui. The map f∗ descends on the quotient space
as a qi-periodic self-map, and its integral u∗ descends on Qi as the integral
of this periodic map. In a suitable holomorphic chart w = w(ui) such an
integral is the monomial of degree qi of w, u∗ = wqi , that is, a function ϕi

of order qi of the natural coordinate ui.
5. The standard construction of saturation allows us to extend u∗ as the

holomorphic function on M near the exceptional divisor E with the deleted
singular points, while keeping the identities u0 = ϕi ◦ ui near these points
(these identities are preserved by backwards continuation along leaves of F′

over the paths γi).
Since the functions ϕi ◦ ui are well defined and holomorphic in some

full neighborhoods of the singular points ai ∈ Σ, these identities allow us
to extend the integral u∗ to the neighborhood of each singular point. One
can easy see that this integral is primitive, since its level sets coincide with
the connected local leaves of F′ near E. The proof of Theorem 11.21 is
complete. ¤

11G. Survey of further results. Here we briefly mention some of the
results that link integrability with properties of the holonomy group.
11G1. Primitive vs. nonprimitive integrals. The demonstration of Theo-
rem 11.21 automatically produces a primitive first integral for any simple fo-
liation. Any integrable foliation is automatically simple, therefore existence
of any analytic integral implies existence of a primitive integral [MM80].
Yet it is instructive to have a direct construction of this integral.
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Theorem 11.22. Any integrable foliation admits a primitive integral.

Sketch of the direct proof. Consider u as the map, u : (C2, 0) → (C, 0) and choose a
sufficiently small ball B ⊆ (C2, 0) whose boundary is transversal to the zero level curve.
Then one can choose a small disk D in the target such that u = 0 is the only critical
value of the map in this disk. Denote by M the preimage u−1(D) ∩ B. Then the map
u : M → D is a proper map, surjective outside the origin in the target space.

It can be shown (cf. with the arguments that appear in the more difficult context
in §26F), that u : M → D∗ = D r {0} is a topological bundle: preimages of points
Xt = u−1(t) ⊂ M are continuously depending on 0 6= t ∈ D. Without loss of generality
we may assume that D is the unit disk.

Assume that the first integral u is not primitive (otherwise one can take w = u and
use Proposition 11.3). Assume that some regular fiber, say, X1, consists of p different
connected components, denoted by C0, . . . , Cp−1. Denote by γ the oriented unit circle
bounding D and consider the operators ∆1,t of continuation of the fibers Xt along γ,
which is a homeomorphism between X1 and Xt, continuously depending on t for t varying
along γ. After making the full turn the fiber X1 returns onto itself, but eventually with
permuted connected components: ∆ = ∆1,exp 2πi maps X1 into X1 but ∆(Cj) = Cσ(j).

We claim that this permutation σ is cyclic. Indeed, consider any two components
C 6= C′ and a path α in M connecting these components while avoiding the singular fiber
Σ = u−1(0) (that is, a continuous map α : [0, 1] → M rΣ such that α(0) ∈ C, α(1) ∈ C′).
The image u ◦ α : [0, 1] → D∗ is a closed loop in D∗ which is homotopic to k simple turns
around the origin. Then the kth iterate ∆k maps C into C′. Since C, C′ were arbitrary,
we proved that permutation σ is transitive and hence a cycle of maximal length on p
symbols. In other words, the components C0, . . . , Cp−1 can be enumerated in such a way
that ∆(Cj) = Cj+1 mod p.

Consider the function w : M → C which can be described as “the pth root of u with
separately chosen branches”. More precisely, define the function first on X1 =

Sp−1
0 Cj

and then continue it analytically as follows.

Assign the value of w on each component Cj as the constant equal to exp(2πij/p) so
that passing from Cj to Cj+1 mod p results in w being multiplied by the primitive root of
unity of degree p. Then for each t ∈ D∗ and each point x ∈ Xt we let w(x) be the value

of the root t1/p obtained by continuation along the path connecting t with the base point
t = 1.

This function is well defined (single-valued) and continuous. Indeed, consider any
path α in M , connecting Cj with Cj+1 mod p and avoiding Σ. The corresponding loop
β = u◦α ∈ π1(D

∗, 1) has index 1 mod p in D∗, because of the ordering of the components.

After continuation of the branch of the root t1/p along β the value w(Cj) = exp(2πij/p)
will be multiplied by exp(2πi/p) which coincides with the value of w assigned to the
component Cj+1 mod p. Thus the definition of the function w is self-consistent in the
complement M rΣ.

Moreover, w is also analytic outside Σ. Indeed, locally near any connected component
of any fiber Xt this function is a lift of the appropriate branch of the analytic function
u1/p, hence analytic itself.

Being bounded, w extends analytically on the entire space M as a first integral with
connected level sets. The proof of Theorem 11.22 is complete. ¤

11G2. Formal and true integrability. Existence of a first integral is possible
to establish via desingularization, if integrability of saddles at the end is
known. Alternatively, one can look for a formal integral as a formal solution
u = u2 + u3 + · · · for the triangular system of linear equations (11.1) (this
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solution may start with several zero terms but ultimately must be nontriv-
ial).

Yet the formal series u ∈ C[[x, y]] found in such a way, does not nec-
essarily have to converge, moreover, together with convergent solutions, if
they exist, there will always be divergent ones of the form g(u(x, y)), where
g is a divergent series in one variable.

However, existence of at least one nonzero formal solution implies ex-
istence of holomorphic first integrals. For elliptic singular points it was
proved in Proposition 11.6. The general result, also due to J.-F. Mattei and
R. Moussu [MM80], holds for all isolated singularities.

Theorem 11.23. Assume that the holomorphic foliation F = {ω = 0} in
(C2, 0) has a formal first integral u ∈ C[[x, y]]. Then there exists a holomor-
phic first integral 0 6= v ∈ O(C2, 0).

Sketch of the proof. We prove that formally integrable foliations are always simple by
induction in the number of steps required for complete desingularization of the singularity.

Indeed, an elementary singularity is simple if and only if it has a negative characteristic
ratio and the holonomy maps associated with holomorphic separatrices are periodic. A
formally integrable elementary singularity has negative rational hyperbolicity ratio and
admits formal first integral for the respective holonomy (Problem 11.8). But a formally
integrable holomorphic self-map from Diff(C, 0) is necessarily periodic by Problem 6.4.
This observation establishes the base of induction.

Consider an arbitrary formally integrable foliation after a blow-up (necessarily nondi-
critical) produces a foliation with isolated singularities, all of them formally integrable.
By the induction assumption, for each of the singularities there are only finitely many
leaves that contain these singularities in their closure.

Thus if F′ were not simple, then any leaf eventually accumulating to the exceptional
divisor or not relatively closed, must intersect infinitely many times any cross-section to a
nonsingular point a /∈ Σ. This means that the vanishing holonomy group H contains an
infinite nonperiodic orbit.

On the other hand, the group H is formally integrable (again by Problem 11.8).
By Problem 6.4, H is analytically integrable, which contradicts existence of an infinite
aperiodic orbit.

Thus a formally integrable holomorphic foliation is necessarily simple. By Theo-
rem 11.21, it admits an analytic integral. ¤

In fact, both Theorems 11.21 and 11.23 are particular 2-dimensional
cases of more general results concerning holomorphic singular foliations in
(Cn, 0). We will not discuss these generalizations.
11G3. Meromorphic and Darboux integrability. Besides holomorphic inte-
grals, one may consider more general types of integrals, say, meromorphic
integrals. The definition remains formally the same: the germ of a singular
foliation F defined in (C2, 0) by the Pfaffian equation ω = 0 is said to be
meromorphically integrable, if there exists a nonconstant meromorphic germ
u ∈ M(C2, 0) such that ω ∧ du ≡ 0.
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196 II. Singular points of planar analytic vector fields

Theorem 11.21 fails for meromorphically integrable foliations, as they
can be nonsimple (Exercise 11.10). Still meromorphic integrability implies
that the holonomy associated with any analytic separatrix, as well as the
vanishing holonomy group (if it is defined) is periodic and linearizable. We
prove a more general result.

Definition 11.24. A singular holomorphic foliation on (C2, 0) is said to be
Darboux integrable, if it can be defined by a closed meromorphic 1-form ω.

Definition 11.25. A closed meromorphic 1-form is called logarithmic, if
all poles of this form are of the first order. A foliation generated by a
logarithmic form, is called logarithmic foliation.

Both (truly) and meromorphically integrable foliations correspond to
particular cases of Darboux integrable foliations.

Theorem 11.26. The holonomy group associated with any analytic sepa-
ratrix of a logarithmic foliation, as well as the vanishing holonomy (if the
foliation is nondicritical), is abelian and linearizable (i.e., isomorphic to a
subgroup of C∗).

The proof is based on the description of closed meromorphic forms on
(C2, 0). Let Σ =

⋃n
i=1 Ci be the germ an analytic curve in (C2, 0), repre-

sented as the union of the irreducible components Ci = {fi = 0}, i = 1, . . . , n
defined by square-free germs fi ∈ O(C2, 0).

Lemma 11.27. Any closed 1-form ω ∈ Λ2(C2, 0) with the polar locus on
Σ =

⋃n
i=1{fi = 0}, admits the representation

ω =
n∑

j=1

λj
dfj

fj
+ d

(
g

f0

)
, f0, g ∈ O(C2, 0), λj ∈ C, (11.7)

where the holomorphic germ f0 is nonvanishing outside Σ.
A logarithmic form ω is a linear combination of logarithmic derivatives

modulo an exact holomorphic form,

ω = dg +
n∑

j=1

λj
dfj

fj
, λ1, . . . , λn ∈ C, g ∈ O(C2, 0). (11.8)

Proof of the lemma. The primitive of a closed 1-form with the polar locus
Σ is a multivalued function on the complement (C2, 0) r Σ, ramified over
Σ. The fundamental group of the complement is generated by small loops
δj around smooth points on the irreducible components Cj , defined modulo
free homotopy. Let

λj =
1

2πi

∮

δj

ω, j = 1, . . . , n
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be the residues of the form ω on the irreducible components Cj . (The fact
that the integral remains unchanged when δj is replaced by another loop
freely homotopic to it, follows from the closedness of the form ω).

The 1-form ω′ = ω − ∑n
j=1 λj

dfj

fj
is closed and has zero integrals over

all loops δj . Hence ω′ is exact in (C2, 0) r Σ; its primitive has at most
polynomial growth near Σ and hence ω′ is the differential of a meromorphic
function g/f0. By construction, f0 may vanish only on the union of the loci
{fj = 0}. Hence all irreducible factors of f0 should be in the list {f1, . . . , fn}.

If ω has only first order poles, so has the exact form ω′ = ω−∑
λj

dfj

fj
=

d(g/f0). But the differential of any nonconstant meromorphic function has
poles of order > 2, hence the exact form ω′ must be holomorphic. ¤

Proof of Theorem 11.26. We prove that the vanishing holonomy group
is commutative if the foliation is nondicritical, explicitly constructing the
linearizing chart.

Blowing up a logarithmic 1-form ω =
∑n

j=1 λj
dfj

fj
+ dg, fj , g ∈ O(C2, 0),

we obtain a meromorphic 1-form on a small neighborhood (M,E) of the
exceptional divisor in the complex Möbius band. Everywhere outside E this
form obviously has poles of order no more than one. One can immediately
verify that the eventual pole on E has the order at most one. Indeed,
passing to the coordinates (x, z = y/x), we can write fj(x, zx) = xpjΦj(x, z),
Φj |S 6≡ 0, where pj = ord fj , so that dfj

fj
= pj

dx
x + dΦj

Φj
has the first order

pole on E = {x = 0}. The blow-up is nondicritical if and only if the residue
λ0 =

∑
λjpj is nonzero. The blow-up foliation in the chart (x, z) is given

by the 1-form

Ω = λ0
dx

x
+

n∑

j=1

λj
dΦj

Φj
+ dG, λ0 =

∑
λjpj 6= 0. (11.9)

with the functions Φj , G holomorphic in x and z. The form Ω is closed.
Consider the nondicritical case and denote by Σ the union of roots of

all polynomials Φj(0, z). Without loss of generality we may assume that all
fj are irreducible, in which case for each j the corresponding term Φj(0, ·)
vanishes at only one point aj ∈ S, though not all these points may be
distinct.

Exactly as in the proof of Lemma 11.27, we can find complex numbers
µj such that the 1-form Ω −∑

µj
dz

z−zj
− λ0

dx
x is exact in the narrow band

with the deleted cylindrical neighborhoods of the singular points M∗ =
(M, S) r

⋃
j=1{|z − zj | < ε}, that is, there exists a holomorphic function
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H(x, z) such that

Ω = λ0
dx

x
+

∑
µj

dz

z − zj
+ dH, H ∈ O(M∗).

This formula immediately implies that the Pfaffian equation for leaves of
the logarithmic foliation after the blow-up can be written in M∗ as follows:

dW

W
= −

∑

j

µj

λ0

dz

z − zj
, W = x exp

(
λ−1

0 H(x, z)
)

Consider the cross-section τ = {z = z0} at a nonsingular point z0 and the
holomorphic chart w = W |τ = x exp

(
λ−1

0 H(x, z0)
)

on it. The holonomy
transformation in this chart can be instantly computed, since the variables
in the above equation are separated: the holonomy map associated with the
loop around the point zj is the linear rotation,

∆j : w 7→ w exp(−2πiµj), j = 1, 2, . . . .

Thus the vanishing holonomy group consists of linear maps.
The proof of the linearizability of the holonomy associated with an ar-

bitrary separatrix, is achieved by the same arguments as before, after the
separatrix is desingularized to a smooth analytic curve transversal to the
exceptional divisor. The details are left to the reader as an exercise. ¤

11G4. Reversibility. Another reason for the appearance of centers of real
analytic foliations is a certain symmetry as in Example 11.19.

Assume that a real analytic foliation F has an isolated monodromic sin-
gularity at the origin and in addition is symmetric by a nontrivial involution
S ∈ Diff(R2, 0): S ◦ S = id, S reverses the orientation and S∗ω = ω. Such
involution in suitable coordinates is an axial symmetry (x, y) 7→ (−x, y).

The corresponding vector field F will be antisymmetric: S∗F = −F ,
which explains why the corresponding singularities are called reversible.

Proposition 11.28. A monodromic reversible singularity is a center. ¤

It turns out that for some types of singularities reversibility is the only
possible scenario of producing centers.

Theorem 11.29 (M. Berthier, R. Moussu [BM94]). A singular real an-
alytic foliation defined by 1-form ω ∈ Λ1(R2, 0) with the linear part ω =
y dy + · · · is a center if and only if it is reversible, i.e., there exists an
analytic involution S ∈ Diff(R2, 0) such that S∗ω = ω. ¤

One can generalize reversibility by considering foldable (equivariant) foli-
ations generated by generalized folds, real analytic maps Φ : (R2, 0) → (R2, 0)
which are many-to-one proper maps. We say that a foliation is foldable by Φ,
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11. Holonomy and first integrals 199

if it is a Φ-preimage Φ−1(G) of another real analytic (eventually, nonsingular)
foliation G on (R2, 0). The folding map associated with the standard axial
symmetry has the form (x, y) 7→ (x2, y). Monodromic foldable foliations
also are centers.

Yet it would be wrong to conclude that generalized reversibility and Dar-
boux integrability are the only reasons why a real foliation may be a center.
In the illuminating paper [BCLN96] an example of a real analytic folia-
tion is constructed, which has a center but is not foldable by any nontrivial
proper map and does not admit even Liouvillean (multivalued) integral2.

Exercises and Problems for §11.

Problem 11.1. Prove that a singular foliation is integrable if and only if its blow-
up, the foliation F′ = σ∗F on the complex Möbius band M, is integrable in a
neighborhood of the exceptional divisor.

Exercise 11.2. Give a proof of Proposition 11.6 based on Problem 6.4.

Exercise 11.3. Construct a singular foliation with a separatrix S, such that the
holonomy of S is identical but the saturation of a small cross-section τ to S by
leaves of F is not dense in any neighborhood of the singularity.

Problem 11.4. Prove the assertion of Lemma 11.14 under the relaxed assertion
on the characteristic ratio λ 6> 0.

Problem 11.5. Compute the vanishing holonomy group for foliations described in
Examples 11.17 and 11.19 and prove that these examples are indeed nonintegrable.

Problem 11.6. Consider the integrable foliation in (C2, 0) with the first integral
x2(x + y)3y4. Compute the holonomy of each separatrix and compare the orbits of
each holonomy map with the intersections of leaves with small cross-sections to the
respective separatrix.

Problem 11.7. Prove the claim from part 4 of the proof of Theorem 11.21 (see
p. 193) by direct reasoning in the chart linearizing the map f0.

Problem 11.8. Assume that a singular holomorphic foliation is formally inte-
grable. Prove that any holonomy map associated with any separatrix, and the
entire vanishing holonomy group are formally integrable.

Exercise 11.9. At which moment the proof of Theorem 11.21 fails if instead of
the larger group G the vanishing holonomy group H were taken?

Exercise 11.10. Give an example of nonsimple meromorphically integrable folia-
tion.

Exercise 11.11. Compute the holonomy of each separatrix for a foliation with the
meromorphic integral u = xp/yq, p, q ∈ N.

2A function is called Liouvillean, if it can be obtained by finite differential extension of the
field of rational functions by algebraic functions, exponents and primitives of exponents. Existence
of a Liouvillean first integral is closely related to the solvability of the vanishing holonomy group;
see [BCLN96] and references therein.
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Exercise 11.12. Prove Proposition 11.28.

Exercise 11.13. Construct a real analytic foliation with C∞-smooth integral but
without formal or analytic integrals.

Suggestion. Modify Example 11.17.

Exercise 11.14. Show that the vanishing holonomy group is an analytic invariant
of the nondicritical foliations: if two such foliations are analytically equivalent, the
respective groups are analytically conjugated.

Problem 11.15. Is the inverse assertion true?
Suggestion. Solve the next two problems.

Problem 11.16. Consider nondicritical foliations having at most three hyperbolic
singularities on the exceptional divisor after blow-up.

Prove that for such singularities analytic conjugacy of the vanishing holonomy
groups implies analytic equivalence of the foliations themselves.

Problem 11.17. How many smooth pairwise transversal holomorphic curves
through the origin can be simultaneously holomorphically rectified (transformed
to straight lines by a suitable biholomorphism)?

Exercise 11.18. Prove that integrability of planar analytic foliations is ultimately
decidable.

12. Zeros of parametric families of analytic functions
and small amplitude limit cycles

This section, somewhat aside from the mainstream, deals with analytic local
multiparametric families (deformations) of functions of one variable (real or
complex). If a function has an isolated root of multiplicity µ < ∞, then by
the Weierstrass preparation theorem any deformation of this function has
no more than µ zeros nearby (exactly µ in the complex analytic settings).
We describe an object, called Bautin ideal, that determines the bound for
the number of isolated zeros in the case where deformations of an identically
zero function are considered. This ideal was introduced by R. Roussarie
[Rou89]; in our exposition we focus on the additional structure (filtration)
on the Bautin ideal and discuss its functoriality.

This subject is traditionally linked to the problem of describing bifurca-
tions of limit cycles from an elliptic center. The problem was studied first
by Poincaré and H. Hopf and later by A. Andronov and L. Pontryagin. In
the least degenerate case it is customarily referred to as the Andronov–Hopf
bifurcation. N. Bautin formulated the problem in full generality, includ-
ing cases of infinite degeneracy (centers), and gave a complete solution for
quadratic vector fields in 1939; see [Bau54]. We give in §13A the modern
exposition of this work, based on [ŻoÃl94].
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12A. Poincaré–Andronov–Hopf–Takens bifurcation: small limit
cycles bifurcating from elliptic points. Consider a real analytic local
family of planar vector fields Fλ = F (x, y; λ) defined in a small neighbor-
hood (R2, 0) of the origin on the real plane and depending analytically on
a number of real parameters λ = (λ1, . . . , λn) ∈ (Rn, 0). Suppose that this
family is elliptic, i.e., the eigenvalues of the linearization matrix A(0) form
a pair of nonzero complex conjugate numbers.

This assumption immediately implies that the singular point itself de-
pends analytically on the parameters (by the implicit function theorem).
Moreover, the local coordinates (x, y) can be chosen such that linear part A
of F has the form

A = α(λ)E + β(λ)I, E = x ∂
∂x + y ∂

∂y , I = y ∂
∂x − x ∂

∂y , (12.1)

with real analytic coefficients (germs) α(λ) and β(λ) before the radial (Euler)
vector field E and the rotation field I. The ellipticity assumption means that
the real analytic function β(λ) is nonvanishing.

The monodromy (first return) map P (·, λ) for any elliptic family is real
analytic and depends analytically on the parameters by Theorem 10.12.
Denote by f(x, λ) the displacement function f = P − id for some choice of a
cross-section, say, the semiaxis τ+ = {y = 0, x > 0}, and an analytic chart
x on this cross-section. By definition, sufficiently small limit cycles of the
field Fλ intersect τ+ at isolated zeros of f .

The number of small limit cycles born by small perturbations from a
singular point, is usually referred to as the cyclicity of this singular point
relative to the family F = {Fλ}.

Cyclicity can be relatively easily determined if the field F (·, 0) is not a
center. In this case the real analytic displacement function f(·, 0) is different
from the identical zero and hence there exists a finite natural number µ such
that f(x, 0) = cxµ + O(xµ+1) with some c 6= 0.

In this case there exist ε > 0 and δ > 0 such that for all |λ| < ε the
function f(·, λ) has no more than µ roots in the interval (0, δ), necessarily
isolated. In fact, in the analytic case we are dealing with, the number of
zeros of the complexified function is exactly equal to µ in the small complex
disk {|x| < δ} ⊆ (C1, 0), if the zeros are counted with multiplicities.

The proof follows from the standard Rouché-type argument. The holo-
morphic function f(x, 0) = cxµ(1 + o(1)) is nonvanishing on a sufficiently
small circle {|x| = δ} and its variation of argument (index) along this circle
is equal to 2πµ. By continuity in the parameters, the variation of argument
of f(·, λ) along {|x| = δ} remains the same for all |λ| < ε if ε > 0 is suffi-
ciently small. By the argument principle, the number of complex roots of
f(·, λ) in the disk {|x| < δ} is equal to µ.
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202 II. Singular points of planar analytic vector fields

The bound for cyclicity established by this simple argument, does not
depend on the family, only on the field F (·, 0). On the other hand, these
arguments break almost completely if the field F (·, 0) is integrable (center).
In this case the bound necessarily depends on the family. This section
describes the algebraic procedure that allows us to produce an upper bound
for the cyclicity of an elliptic family of real analytic planar vector fields.

12B. Bautin ideal and generating functions. The initial steps of the
construction exposed below, refer to semi formal series introduced in Defin-
ition 4.17.

Let A be a Noetherian ring of functions. The most important are the
particular cases when A is:

(1) the rings of germs O(Cm, 0) or O(Rn, 0), complex or real analytic
respectively,

(2) the ring O(U) of analytic functions in a domain U ⊆ Rn, or U ⊆ Cn,
(3) the ring of polynomials in m variables λ1, . . . , λm (again, real or

complex).

However, sometimes we will need combinations of these types, e.g., inves-
tigation of quadratic planar vector fields in §13A requires working in the
ring A = O(R1, 0)⊗R[λ1, . . . , λ5] ⊂ O(R6, 0) of analytic germs polynomially
depending on all variables except for the first one.

In this section we refer to the variables λ1, . . . , λm as the parameters and
U as the parameter space. Using anyone of these rings, we can construct the
rings A[[x, y, . . . ]] of semiformal series, formal in the variables x, y, . . . with
coefficients from the algebra A of one of the above types.

With any sequence of functions

a0(λ), a1(λ), . . . , ak(λ), . . . , ak ∈ A, (12.2)

we can associate a growing chain of ideals,
B0 ⊆ B1 ⊆ · · · ⊆ Bk ⊆ · · · ⊆ (1) = A,

Bk = 〈a0, a1, . . . , ak〉 .
(12.3)

Since the ring A is Noetherian, the chain (12.3) stabilizes at some moment
k = ν, so that Bν−1 6= Bν = Bν+1 = · · · .

With the sequence (12.2) we will associate the generating function, the
semiformal series in one formal variable

a(x, λ) =
∑

k>0

ak(λ)xk ∈ A[[x]]. (12.4)

Conversely, with any formal or converging series a(x, λ) of the form (12.4)
we can associate the sequence of its coefficients (12.2), the ascending chain
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12. Parametric families of analytic functions 203

of ideals (12.3), denoted by Bk(a), and the limit ideal

B(a) = lim
k→∞

Bk(a) = Bν(a). (12.5)

Definition 12.1. The ideal B(a) is called the Bautin ideal of the semiformal
series a(x, λ). The chain of ideals (12.3) will be referred to as the Bautin
chain and denoted B(a). The stabilization moment ν is the Bautin index .

We stress that the enumeration of ideals in the Bautin chain begins
with B0 which, however, may be zero ideal. For application to real analytic
problems instead of the Bautin index we will use another number, the Bautin
depth that is by one less the number of nonzero different ideals in the chain
(12.3).

Definition 12.2. The Bautin depth of the chain (12.3) is the number of
instances in which the inclusion is strict and nontrivial,

µ = #{k ∈ N : 0 6= Bk−1 6= Bk} > 0.

Obviously, µ 6 ν, with the equality possible only if 0 6= B0 $ · · · $ Bν =
Bν+1 = · · · .

For two Bautin chains of ideals B = {Bk} and B′ = {B′
k} in the same

ring A[[x]] we will write B = B′ if all ideals in the two chains coincide, and
B ⊆ B′ when Bk ⊆ B′

k for all k = 0, 1, 2, . . . .

Remark 12.3 (terminological). The term “Bautin ideal” is rather standard
and widely used [Rou98, Yom99], whereas the combination “Bautin chain”
is not. In algebraic terms the Bautin chain B(a) defines a filtration on the
Bautin ideal B(a). In order to be consistent with the accepted terminology,
we will speak mostly about Bautin ideals, while always bearing in mind that
they are in fact filtered. We will use the notation B(a) for the Bautin ideal
in order to stress the fact that it is considered together with the filtration,
whereas B(a) usually denotes the unfiltered ideal.

On the contrary, the term “Bautin depth” seems to be new. The rea-
son why the Bautin depth is introduced, is closely related to the so-called
fewnomial theory developed by A. Khovanskii [Kho91]. Its usefulness will
be clear from Example 12.10 and Theorem 12.25.

Recall that the radical of an ideal B ⊆ A is√
B = {f ∈ A : fk ∈ B for some k ∈ N}. (12.6)

Obviously, B ⊆ √
B. The ideal is radical (adjective), if B =

√
B.

For polynomial ideals in A = C[λ1, . . . , λn] over the algebraically closed
field C, the radical consists of all polynomials vanishing on the complex null
locus XB = {λ ∈ Cn : f(λ) = 0∀f ∈ B} of the ideal B ⊆ C[λ1, . . . , λn]. This
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204 II. Singular points of planar analytic vector fields

assertion is known under the name Nullstellensatz introduced by D. Hilbert.
By the Nullstellensatz, the radical polynomial ideals over C are in one-to-
one correspondence with their null loci: any radical polynomial ideal can be
characterized as the biggest ideal with the same null locus.

The null locus XB (real or complex) of the Bautin ideal B corresponds
to the parameter values when the series a(·, λ) vanishes identically.

The Bautin ideal (and more generally, the Bautin chain) describes para-
metric deformations of the identically zero functions (series). In a similar
way, we can introduce ideals describing deformations of “maximally degen-
erate” objects of other types, that can be translated into univariate series.

(1) Families of formal self-maps, defined as automorphisms AutA[[x]]
preserving the ring A = C[λ] (we will be only interested in the case
of one formal variable x);

(2) Families of formal vector fields, defined as derivations DerA[[x]]
(one-dimensional) or DerA[[x, y]] (planar families), with the field
of constants C(λ), the field of fractions of the ring A;

Sometimes we will use the notation C[[x]]⊗A for the algebra of semiformal
series (the tensor product is over the ground field R or C depending on
the type of the ring A). This tensorial notation will be extended to other
types of semiformal objects: Diff[[C1, 0]]⊗ A denotes semiformal self-maps,
D[[R2, 0]]⊗ A stands for formal real planar vector fields, etc.

12C. Basics of formal theory. We begin by pointing out several almost
obvious properties of the Bautin ideals of “univariate” objects. These prop-
erties reflect simple combinatorics of coefficients of product and composition
of formal series in one independent variable.

We start by observing that a semiformal series f =
∑

akx
k ∈ A[[x]]

is invertible, i.e., 1/f ∈ A[[x]], if and only if a0 ∈ A is invertible in A, in
particular, a0 is a nonzero constant if A is a polynomial ring. In a similar
way a semiformal self-map H : x 7→ y =

∑
ckx

k is well defined if and only
if c0 ≡ 0 and invertible (i.e., H−1 ∈ AutA[[x]]) if and only if c1 is invertible
in A.

Proposition 12.4. If f, g ∈ A[[x]], then B(fg) ⊆ B(f). If g is invertible
in A[[x]], then B(fg) = B(f).

Proof. Denote by fk, gk ∈ A the Taylor coefficients of f and g respectively,
and by f ′k the coefficients of their product fg. Then, obviously,

f ′k = g0fk mod 〈f0, f1, . . . , fk−1〉 ,
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which means that Bk(fg) ⊆ Bk(f) for all k = 0, 1, . . . . The first assertion
is thus proved; the second assertion is obvious by the invertibility criterion
in A[[x]]. ¤

The Bautin ideal is in fact independent of the choice of the coordinate
x, or, in algebraic terms, of the generator of the ring A[[x]].

Proposition 12.5. The Bautin ideal is invariant by formal conjugacy: for
any f ∈ A[[x]] and any semiformal automorphism H : x 7→ y =

∑∞
1 ckx

k of
A[[x]], the Bautin ideals of f and Hf = f ◦ y coincide.

Proof. Denote the Taylor coefficients of f and f ′ = f ◦ y by fk and f ′k
respectively. Re-expanding f ′ =

∑
fky

k, we obtain

f ′k = ck
1fk mod 〈f0, f1, . . . , fk−1〉 .

The morphism H is invertible in AutA[[x]] if and only if c1 is invertible in
A. This immediately means that Bk(f ′) = Bk(f). ¤

A semiformal family of vector fields F ∈ A⊗D[[C1, 0]] on the line having
a singularity at the origin, preserves the maximal ideal m = A⊗ 〈x〉: Fm ⊆
m.

Definition 12.6. The Bautin ideal of the semiformal vector field F ∈
DerA[[x]] is the Bautin ideal of the semiformal series Fx.

Definition 12.7. The Bautin ideal of an endomorphism H is the Bautin
ideal of the difference H − id, i.e., the Bautin ideal of the series Hx− x.

These definitions in fact do not depend on the choice of the generator.

Proposition 12.8. (Semi)formally equivalent vector fields or self-maps
have the same Bautin ideals.

Proof. By Proposition 12.4, if F is a derivation, then for any automorphism
H : x 7→ y = Hx ∈ A[x], we have

B(FHx) = B(g · Fx) = B(Fx), g =
dH

dx
invertible series.

If G ∈ AutA[[x]], then for any automorphism H we have B(H−1GHx−x) =
B(H−1(G− id)Hx) by Proposition 12.5. ¤

In coordinates, the Bautin ideal of the semiformal vector field F =
f(x, λ) ∂

∂x is the Bautin ideal of the coefficient (series) f . If g =
∑

k>0 gk xk,
F =

∑
k>1 fk xk ∂

∂x and Fg = g′ =
∑

k>0 g′k xk, then

g′0 = 0, g′k = kf1gk mod 〈g0, . . . , gk−1〉 , k = 1, 2, . . . . (12.7)
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206 II. Singular points of planar analytic vector fields

Remark 12.9. Note that since a formal derivation F must have zero “free
terms”, the Bautin chain B(F ) always starts with the zero ideal B0(F ) = 0.

Noninvertible but not identically zero transformations of the formal vari-
able may change the Bautin chain (i.e., the filtration on the Bautin ideal)
without changing its limit (the ideal itself).

Example 12.10. Consider a semiformal vector field F = f(z, λ) ∂
∂z with

f(z, λ) = a1(λ) z + a2(λ) z2 + a3(λ) z3 + · · · . The substitution z = x2

brings this vector field to the field f ′(x, λ) ∂
∂x with f ′(x, λ) = 1

2x−1f(x2, λ) =
1
2 [a1(λ)x + a2(λ)x3 + a3(λ)x5 + · · · ].

The Bautin chain B′ for the transformed vector field is obtained by
“shearing transformation” of the chain B:

B′
1 = B′

2 = B1, B′
3 = B′

4 = B2, . . . B′
2k−1 = B′

2k = Bk.

Clearly, this transformation does not affect the Bautin ideal as the limit
of the Bautin chain, and changes the Bautin index. Yet the Bautin depth
remains the same.

Remark 12.11. More generally, let d > 2 be a natural number. Then one
can introduce the dth periodic Bautin ideal of semiformal families of self-
maps as the Bautin (filtered) ideal of the displacement of the dth iterated
power H◦d = H ◦ · · · ◦H︸ ︷︷ ︸

d times

of the formal map H, B◦d(H) = B(H◦d). This

iterated ideal describes analytic perturbations of periodic formal maps.

The main (though still very simple) result of this section compares the
Bautin ideals of a (semi)formal vector field F and that of its (semi)formal
flow exp tF .

Proposition 12.12. The Bautin ideals B(F ) and B(exp tF ) of a vector
field F and its formal flow map respectively, coincide for t 6= 0.

Proof. We use the exponential series (3.8), extending it on the algebra
A[[x]] literally,

exp tF = id +tF +
t2

2!
F 2 + · · ·+ tk

k!
F k + · · · . (12.8)
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The “matrix” of the operator F in the basis 1, x, x2, x3, . . . of A[[x]] is the
infinite matrix

MF =




0
a1

a2 2a1

a3 2a2 3a1

a4 2a3 3a2 4a1
...

. . .




.

The proposition can be proved by inspection of the structure of the powers
F k and hence of the entire sum (12.8). Looking at the first coefficient, we
see that F kx = ak

1 x+O(x2), so that (exp tF )x = x+
∑

k>1
tk

k! ak
1 x+O(x2),

and therefore the first Bautin ideal B1(exp tF ) is the ideal

B1(exp tF ) = 〈exp(ta1)− 1〉 = 〈ta1(1 + · · · )〉 = 〈ta1〉 .
Assume by induction that the equalities Bi(exp tF ) = Bi(F ) =

〈a1, . . . , ai〉 are proved for all i = 1, 2, . . . , k−1. To prove that Bk(exp tF ) =
Bk(F ), note that modulo the ideal 〈a1, . . . , ak−1〉 [[x]] ⊆ A[[x]], the deriva-
tion F coincides with the derivation [ak xk + O(xk+1)] ∂

∂x . Substituting it
into the exponential series, we obtain

(exp tF )x = x+ t ak xk +O(xk+1)+
t2

2!
O(x2k−1)+ · · · mod 〈a1, . . . , ak−1〉 .

By induction, the coincidence of the ideals is proved. ¤

Remark 12.13. All assertions of this section on coincidence of Bautin ideals
become completely transparent if the (filtered) Bautin ideal were replaced
by the respective zero locus X = XB ∈ (Cn, 0). This locus corresponds
to trivial objects (identically zero formal vector fields and identical formal
self-maps). Obviously, such objects remain trivial by any conjugacy.

12D. Bautin ideal of a convergent series. It was already noted (see
Proposition 12.5), that formal changes of variables leaving the origin fixed,
preserve the Bautin ideals of various “one-dimensional” objects.

For convergent (analytic) families of functions the translation (shift) of
the variable x also keeps the Bautin ideal.

Theorem 12.14. Assume that the series
∑

k>0 ak(λ)xk is convergent in
some small neighborhood of the origin (x, λ) ∈ (C1, 0)× (Cn, 0).

Then for any analytic germ t : (Cn, 0) → (C, 0) the nonfiltered Bautin
ideal of the shifted function St(a), St(a)(x, λ) = a(x + t(λ), λ) does not
depend on the germ t,

B(St(a)) = lim
k

Bk(St(a)) = lim
k

Bk(a) = B(a).
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208 II. Singular points of planar analytic vector fields

In other words, the ideal

B(a; y) =
〈
a(y, λ),

∂a

∂x
(y, λ),

∂2a

∂x2
(y, λ), . . . ,

∂ka

∂xk
(y, λ), . . .

〉 ⊆ A (12.9)

generated by the derivatives at a variable point y ∈ (C1, 0), is independent
of this point as long as it remains in the domain of analyticity of a.

Remark 12.15 (important). The Bautin chains (filtrations) induced on the
limit ideal, are not preserved by the shift. In other words, the ideal B(a; y)
depends on the point y if considered as a filtered ideal.

The following corollary restores the complete invariance of the Bautin
ideals by arbitrary analytic changes of variables.

Corollary 12.16. The Bautin ideal is invariant by analytic conjugacy fixing
the origin: for any analytic family of functions f(x, λ) and any family H =
H(x, λ) of invertible analytic transformations depending on parameters with
H(0, 0) = (0, 0), the Bautin ideals of f and Hf = f ◦ y coincide.

Proof of the corollary. An arbitrary family H can be represented as a
composition of a translation (shift) (x, λ) 7→ (x+t(λ), λ), and a holomorphic
transformation H ′ preserving the origin, H ′(0, λ) ≡ 0 for all λ. The germ
t(λ) is holomorphic and t(0) = 0. ¤

The proof of Theorem 12.14 is based on a rather nontrivial fact, the
closedness of analytic ideals, which in turn is a consequence of the fact that
the operator of expansion in generators of an analytic ideal is bounded.

Let I ⊆ O(Cn, 0) be an ideal generated by the germs of analytic functions
a1(λ), . . . , an(λ). Denote by D ∼= (Cn, 0) a small polydisk D centered at
the origin, on which all germs ak extend as holomorphic functions. Recall
that ‖f‖D = supλ∈D |f(λ)| denotes the norm on the space of holomorphic
functions O(D).

Theorem 12.17 (Division theorem for germs [Her63]). For any polydisk
D′ b D there exist a constant K depending, in general, on D′, such that
any holomorphic function f ∈ O(D′) whose germ at the origin belongs to I,
admits expansion f =

∑m
1 hiai with hi also holomorphic in D′ and

‖hi‖D′ 6 K‖f‖D′ .

This theorem implies that ideals in the ring of germs are closed in the
following sense.

Corollary 12.18 (closedness of ideals). If a sequence of functions {fi}∞i=1

is defined in a common open neighborhood of the origin, converges uniformly
on a smaller set, and their germs at the origin belong to an arbitrary ideal
I ⊆ O(Cn, 0), then the germ of the limit function also lies in this ideal. ¤
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Remark 12.19. Formulation of Theorem 12.17 is somewhat technical be-
cause of the interplay between germs and representing them as holomorphic
functions: the ring of germs cannot be equipped by a single norm with
respect to which the ideals are closed.

There exists a parallel assertion for polynomials that is free of this draw-
back. For a (multivariate) polynomial p =

∑
cαλα ∈ C[λ] denote by |p| the

sum of absolute values of all its coefficients, |p| =
∑

α |cα|. The corre-
spondence p 7→ |p| is a multiplicative norm on the algebra of the complex
polynomials, |p + q| 6 |p|+ |q|, |pq| = |p| |q|.

Consider an arbitrary polynomial ideal I = 〈a1, . . . , am〉 ⊂ C[λ1, . . . , λn].
By definition of the basis, any other polynomial q ∈ I from this ideal can be
expanded as q =

∑m
1 hiai with some polynomial coefficients h1, . . . , hm ∈

C[λ]. This expansion is by no means unique, however, it is well-posed in the
following precise sense.

Theorem 12.20 (Hironaka division theorem for polynomial ideals). For
some (hence, for any) basis a1, . . . , am of an arbitrary polynomial ideal I ⊆
C[λ1, . . . , λn] there exist two finite constants K1,K2, depending in general
on the choice of the basis, such that any member q ∈ I admits expansion
q =

∑m
1 hiai with

deg hi 6 deg q + K1, |hi| 6 Kdeg q
2 |q|.

This result can be proved by thorough inspection of the division algo-
rithm involving Gröbner bases of ideals [CLO97]. In this form the result
appears in [Yom99].

Proof of Theorem 12.14. Consider a series
∑

ak(λ)xk converging to a
function a(x, λ) holomorphic in some polydisk U ×D ⊆ (Cn+1, 0). Consider
first the case where t ∈ C is an independent variable parameter. The coeffi-
cients ak,t ∈ A of the expansion of St(a)(x, λ) = a(t + x, λ) with the center
t, i.e., the derivatives of a(·, λ) at the point t, coincide (modulo the factorial
coefficients) with the derivatives of the shifted function at t. In particular,

a0,t(λ) = a(t, λ) =
∞∑

0

ak(λ) tk.

This series converges if |t| is sufficiently small and its kth partial sums belong
to Bk(a) ⊆ B(a). By Corollary 12.18, the limit belongs to B(a). Differen-
tiating this converging series termwise in t proves that the kth partial sum
for k! aj,t(λ) = ∂ka(t, λ)/∂tk belongs to Bk+j(a) ⊆ B(a) for all j = 1, 2, . . . .
Thus the ideal generated by aj,t belongs to B(a),

B(St(a)) = 〈a0,t, a1,t, . . . , aj,t, . . . , 〉 ⊆ B(a).
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210 II. Singular points of planar analytic vector fields

The inclusion remains valid after substitution of a holomorphic germ t =
t(λ) instead of the formal parameter t. The arguments being symmetric
(reversible), we conclude that the two ideals in fact coincide. ¤

Another very important corollary of the closedness of the ideals is the
possibility of grouping their terms. Consider a convergent series a(x, λ) =∑

ak(λ)xk and its filtered Bautin ideal B(a) in the ring A = O(Cn, 0).

Lemma 12.21. If the Bautin depth of the Bautin ideal B(a) is equal to µ,
then the germ a can be represented as the finite sum

a(x, λ) =
µ∑

j=0

akj (λ)xkjhj(x, λ),

0 6 k0 < k1 < · · · < kµ, hj(0, 0) = 1, j = 0, 1, . . . , µ.

(12.10)

Here kj are the instances where the strict inclusions in the chain (12.3)
occur, Bkj−1 6= Bkj .

Proof. If the series a converges, then ‖ak‖U 6 Cr−k for some positive
constants 0 < r,C < +∞.

By definition of the Bautin depth, the functions {ak0 , ak1 , . . . , akµ} =
{aj : j ∈ S}, S ⊂ N, which will be referred to as basic elements, generate
the limit Bautin ideal B(a). Therefore all coefficients ak can be expressed
as combinations of the basic elements,

ak =
∑

j∈S,j>k

hkjaj , hkj ∈ A, k = 0, 1, . . . , (12.11)

(we expand the basic elements in a trivial way so that hjj ≡ 1 for all j ∈ S).
By Theorem 12.17, the representation can be chosen so that ‖hkj‖U 6 C ′ r−k

with another constant C ′. But this means that the series

h′j(x, λ) =
∑

k

hkj(λ)xk = xkjhj(x, λ),

hkj(x, λ) = 1, j = 0, 1, . . . , µ,

is convergent and begins with the term xkj . Multiplying the identities
(12.11) by xk and rearranging the terms of the converging series, we ob-
tain the required representation. ¤

12E. Bautin index and cyclicity. Let f = f(x, λ) ∈ O(Cn+1, 0) be a
holomorphic (or real analytic) germ represented by a function holomorphic
in a small polydisk D × U . This function can be considered as an analytic
local family of functions in A⊗ O(D), A = O(U).
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12. Parametric families of analytic functions 211

Definition 12.22. The complex cyclicity (sometimes referred to as local
valency) of the complex analytic local family of functions f(x, λ) is the
smallest integer number µ ∈ N such that the number of isolated zeros of the
function f(·, λ) in a sufficiently small polydisk {|x| < δ, |λ| < ε} does not
exceed µ,

∃ε > 0, δ > 0 ∀|λ| < ε, #{x : |x| < δ, f(x, λ) = 0} 6 µ. (12.12)

Here and below by #M we will denote the number of isolated points in
a real or complex analytic set M ⊆ U .

Remark 12.23 (terminological). The term cyclicity is related to bifurca-
tions of limit cycles, as explained in §12A. Assume that L is a limit cycle
of a planar real analytic vector field analytically depending on parameters
λ1, . . . , λn varying near the origin in Rn. Let f(x, λ) be the displacement
function for the first return (real holonomy) map associated with any choice
of the cross-section to L. Then cyclicity of the germ f is equal to the max-
imal number of limit cycles that can be observed in a small annulus around
L for any sufficiently small value of the parameters.

For applications to the study of small limit cycles of elliptic vector fields,
we need a modification of the construction.

Definition 12.24. The real cyclicity of a real analytic local family of func-
tions f(x, λ) is the maximal number of positive isolated roots of f(·, λ) in
a sufficiently small semi-interval (R1

+, 0), the maximum taken over all small
values of the parameters λ ∈ (Rn, 0).

The formal definition with quantifiers coincides with (12.12) except that
instead of the disk {|x| < δ} one has to take the real interval {0 < x < δ}.

By definition, cyclicity is defined for a family, i.e., for a deformation,
though if f0 = f(·, 0) is not identically zero, it can be majorized uniformly
over all analytic families containing f0, as explained in §12A.

Theorem 12.25.

1. If f is a real analytic germ and the associated Bautin ideal B(f) ⊆
O(Rn, 0) has the depth µ, then the real cyclicity of the family on the real
semiaxis is 6 µ.

2. If f(x, λ) =
∑∞

0 ak(λ)xk is an holomorphic germ and the associated
Bautin ideal B(f) ⊆ O(Cn, 0) has index ν, then the complex cyclicity of the
family is 6 ν.

Proof. The real assertion is proved by the classical derivation-division
process which is one of ingredients of the much broader fewnomial theory
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[Kho91]. The complex counterpart is treated using the Cartan inequality
and the perturbation technique following [Yak00].

1. By Lemma 12.21, the germ f can be represented as the finite sum
f(x, λ) =

∑
j∈S aj(µ) xkjhj(x, λ), S = {k0, . . . , kµ} ⊂ N (see (12.10)) with

k0 < k1 < · · · < kµ.
The neighborhood U = (Rn, 0) of the origin in the parameter space can

be represented as the union of the domains where the jth coefficient aj is
not too small compared to the other coefficients ai, i 6= j,

U = Z ∪ U0 ∪ · · · ∪ Uµ, Z = {λ : a0 = · · · = aµ = 0},
Uj = {λ : 2(µ + 1) |aj | >

∑

i6=j

|ai|}, j = 0, . . . , µ.

For λ ∈ Z there is nothing to prove since f(x, λ) ≡ 0 there. It remains to
show that f(x, λ) has no more than µ zeros in some interval (0, ε) uniformly
over λ restricted to each Uj .

Consider the following derivation-division process. The sum involving
µ + 1 terms f(x, λ) = f0(x, λ) =

∑
j∈S aj(λ) xkjhj(x, λ) is divided by the

function xk0h0(x, λ) and then the derivative in x is taken. This division
leaves the sum real analytic since the exponents kj increase and h0(0, 0) 6= 0.
As a result, the first term disappears completely and the remainder f1(x, λ)
has the same structure, f1(x, λ) =

∑
j∈Sr{k0} aj(λ)xkj−k0hj,1(x, λ), but with

different exponents kj − k0 > 0 and some analytic invertible coefficients,
hj,1(0, 0) 6= 0, j ∈ S r {k0}.

Fix one of the domains Uν . After ν “division+derivation” steps described
above, we arrive at the function

fν(x, λ) = aν(λ)xkν−kν−1 +
∑

j∈Sr{k0,...,kν−1}
aj(λ)xkj−kν−1hj,ν(x, λ).

This function is nonvanishing for all values of λ ∈ Uν on a sufficiently small
real interval (0, ε). Indeed, the exponents kj − kν−1 are all bigger than
kν − kν−1 because of the monotonicity of the indices ki, and the ratios
|aj(λ)|/|aν(λ)| do not exceed 1

2(µ+1) by construction of Uν . Thus the first
term in fν dominates on a sufficiently small interval (0, ε) the rest of the
sum, therefore fν has the same sign as aν(λ) 6= 0 in Uν .

It remains to notice that each step “division+derivation” may decrease
the number of isolated zeros on (0, ε) at most by 1:

#{x ∈ (0, ε) : fν(x, λ) = 0} > #{x ∈ (0, ε) : fν−1(x, λ) = 0}
for any ν = 1, 2, . . . , µ. Indeed, multiplication by any power of x does
not affect the number of roots on any positive interval, while derivation
can decrease the number of roots by 1 at worst. This follows from the
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12. Parametric families of analytic functions 213

Rolle lemma, since (i) between any two distinct roots of f there must be at
least one root of the derivative, and (ii) the multiplicity of a multiple root
decreases after derivation exactly by 1.

Since fν(x, λ) is nonvanishing on (0, ε) for λ ∈ Uν , the function f = f0

has no more than ν isolated zeros there. On the union
⋃µ

ν=0 Uν the function
f has no more than µ real roots. The statement on real zeros is proved.

2. To prove the assertion on complex zeros, we use the same represent-
ation f(x, λ) =

∑µ
0 aj(λ)xkj hj(x, λ) (see (12.10)) which should be further

prepared as follows. Let D = {|x| < ε} ⊂ C be a small disk on which the
functions hj are explicitly bounded, say, by 2 uniformly over λ. Restricting
the parameters on the domain Uj and dividing the function f by aj there,
we obtain

a−1
j (λ) f(x, λ) = pj(x, λ) + xkj+1qj(x, λ), (12.13)

where pj are monic polynomials of degree kj , while the remainders qj are
explicitly bounded,

pj(x, λ) = xkj +
∑

k<kj

bkj(λ) xk, bj ∈ O(Uj),

|qj(x, λ)| 6 C = 4(µ + 1), (x, λ) ∈ D × Uj .

(12.14)

The rest of the proof goes independently for each domain Uj . We show that
a function (12.13) constrained by the inequality (12.14) may have at most
kj complex zeros in a disk of radius

r0 =
1
2
(
(8e)kj (C + 1)

)−1 > 1
2
(
(8e)ν(C + 1)

)−1
. (12.15)

This will prove the theorem since k0 < · · · < kµ = ν. To simplify the
notation, we omit explicit dependence on λ.

Let r be a positive number between 0 and ε to be chosen later. As the
polynomial pj is monic, by Cartan inequality [Lev80] there exists a finite
number of exceptional disks with the sum of their diameters less than r
such that outside their union pj admits the lower bound |pj(x)| > (r/4e)kj ,
where e ≈ 2.71828 . . . is the Euler number.

Consider the annulus {r 6 |x| 6 2r} foliated by concentric circumfer-
ences {|x| = ρ}, r 6 ρ 6 2r. As the sum of diameters of the exceptional
disks is less than r, at least one such circumference is disjoint with their
union and hence pj is bounded from below on it by (r/4e)kj .

On the other hand, on any such circumference the term xkj+1qj(x) ad-
mits an explicit upper bound using (12.14):

|xkj+1qj(x)||x|=ρ 6 C
ρkj+1

1− ρ
6 C

(2r)kj+1

1− 2r
.
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214 II. Singular points of planar analytic vector fields

The domination inequality (r/4e)kj > (2r)kj+1C/(1− 2r) ensures that the
Rouché theorem applies to the circumference {|x| = ρ} and guarantees that
the number of roots of pj and a−1

j f (the former being at most kj) in the
disk {|x| 6 r} coincide. Resolving the domination inequality with respect
to r gives r < 1

2

(
(8e)kj (C + 1)

)−1. ¤
Remark 12.26. The proof of Theorem 12.25 is constructive in the sense that, knowing
the parameter K characterizing the ideal in Theorem 12.17, one can produce explicitly
the lower bound for the size of the interval or disk containing no more than the asserted
number of roots (in the complex case this was done explicitly).

The simple bound of this type asserted by Theorem 12.25, is not the best known
one. In [RY97] N. Roytwarf and Y. Yomdin considered the general problem of uniform
localization of zeros of an analytic family of functions with the specified Bautin ideal and
explicit constraints on the growth of Taylor coefficients, the so-called Bernstein classes.
Using a dual description of the Bernstein classes in terms of the growth rate of the functions
represented by the series, they obtain a lower bound for the radius of the disk in which

at most ν zeros can occur. This bound was achieved in the form r0 =
�
8ν max(C, 2)

�−1

(in the equivalent settings). These results are generalized in [FY97] for A0-series with
polynomial coefficients in A = C[λ1, . . . , λn] of degree growing at most linearly and the
norms at most exponentially.

Yet somewhat surprisingly, the best result can be obtained by properly “complexi-
fying” the derivation-division process, based on the complex analog of the Rolle lemma
[KY96]. In this way one can prove that the number of small complex isolated roots in the

family (12.13)–(12.14) does not exceed ν in the disk of radius rs = 1
2
(1−s−1)

�
sν+1C+1

�−1

for any value of s > 1. All details can be found in [Yak00].

The assertion of Theorem 12.25 can be improved in another direction. An integral
closure of an ideal I ⊂ A is the collection of all roots y ∈ A of all equations of the form
yn + q1y

n−1 + · · · + qn−1y + qn = 0 with the coefficients qk belonging to the kth powers
of I, qk ∈ Ik. If B = 〈a0, a1, . . . , an, . . .〉 is the filtered Bautin ideal, its reduced Bautin
index is defined in [HRT99] as the minimal number r ∈ N such that the integral closure
of 〈a0, . . . , ar〉 coincides with B. Obviously, the reduced Bautin index does not exceed its
(usual) Bautin index. In [HRT99] an analog (also constructive) of the second assertion
of Theorem 12.25 is proved for the reduced Bautin index rather than ν.

Theorem 12.25 is a general tool linking cyclicity of analytic families of
functions of one variable with the depth of the corresponding Bautin chain
of ideals generated by the coefficients. In the next sections this tool will be
applied to the study of bifurcations of limit cycles in analytic vector fields
on the plane.

12F. Elliptic vector fields on the plane: Bautin and Dulac ideals.
Consider a real analytic family of vector fields on the plane,

F = A + nonlinear terms, A = α(λ)E + β(λ)I,

E = x ∂
∂x + y ∂

∂y , I = y ∂
∂x − x ∂

∂y ,

A = O(Rn, 0), α, β ∈ A, F ∈ A⊗D(R2, 0),

(12.16)

with the linear part A normalized as in (12.1) and elliptic, i.e., α(0) = 0,
β(0) 6= 0.
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12. Parametric families of analytic functions 215

There are several univariate semiformal series that are more or less nat-
urally associated with the family F . One series is the first return map
P ∈ A ⊗ Diff(R1, 0); this series is always convergent. The first return map
depends on the choice of the cross-section and a local chart on it, but the
corresponding Bautin ideal denoted by B(F ), is well defined by Proposi-
tion 12.8. The Bautin ideal is obviously invariant by the action of real
analytic orbital transformations on the family (12.16).

As was already remarked before, the Poincaré return map for the elliptic
family is the square of the holonomy operator ∆ ∈ A⊗Diff(R1, 0) associated
with the real equator on the Möbius band after blow-up of the corresponding
foliation. The 2-periodic Bautin ideal of the holonomy map represented by
a convergent series, by definition is the Bautin ideal of the Poincaré return
map (see Remark 12.11).

The third series, sometimes referred to as the Poincaré–Dulac series, ap-
pears as the generating function of the coefficients of the Poincaré–Dulac
orbital formal normal form. By Theorem 4.18, there exists a semiformal
transformation bringing the family (12.16) to the rotationally invariant nor-
mal form (4.9). After division by the nonvanishing formal series the normal
form can be further transformed to the semiformal vector field

F ′ = f(r2, λ)E + I, f(u, λ) =
∞∑

k=1

fk(λ)uk ∈ A[[u]]. (12.17)

The semiformal series f occurring the orbital formal normal form (12.17),
will be referred as the Poincaré–Dulac series. By construction, the Poincaré–
Dulac series can apriori be divergent and is not uniquely defined (because of
the freedom in the choice of resonant coefficients during the Poincaré–Dulac
normalization). Later on we explain an invariant construction for this series
and introduce in Definition 12.31 the corresponding Dulac ideal D(F ) which
will also be a formal orbital invariant of the family (12.16).

In addition to these series and corresponding chains of ideals, there
are some other univariate semiformal series, usually associated with certain
methods of formal integration. Yet these series may produce filtered ideals
B0 ⊆ B1 ⊆ · · · ⊆ A that are noninvariantly related to the family (12.16):
only the corresponding filtered zero loci Xk = {λ : a(λ) = 0∀a ∈ Bk} in the
parameter space (Rn, 0) usually have invariant meaning.

Vanishing of all coefficients of the return map P means that the field F
exhibits a center for the corresponding values of the parameters. Vanishing
of all coefficients of the Poincaré–Dulac series f in (12.17) means that the
field F is formally orbitally linearizable and hence admits a formal first
integral. By Proposition 11.6, the two properties are equivalent for elliptic
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216 II. Singular points of planar analytic vector fields

vector fields, which means that the respective zero loci of the two (unfiltered)
ideals B(F ) and D(F ) coincide.

This observation suggests a conjecture that the ideals generated by co-
efficients of these two series, should also coincide. This assertion, if true,
can be considered as a parametric generalization of Proposition 11.6 and the
Poincaré–Lyapunov Theorem 11.7 with appropriate implications for cyclic-
ity of the elliptic families.

This conjecture turns out, broadly speaking, true. However, in order to
make its formulation precise, one has to overcome several technical obstacles
arising since the normal form can be divergent. Furthermore, we give an
alternative construction for the Dulac ideal that will be invariant by formal
transformations (Definition 12.31).
12F1. Formal first return map for semiformal families. The monodromy
and vanishing holonomy maps for an elliptic vector field can be consistently
defined in the (semi)formal category. Indeed, one can blow up the origin on
the plane and transform the Pfaffian equation associated with the semifor-
mal vector field on the plane,

F = α(λ)E + β(λ)I + (nonlinear terms) ∈ A⊗D[[R2, 0]],

α, β ∈ A = O(Rn, 0), β(0) 6= 0, α(0) = 0
(12.18)

to the form (10.6). In this formal Pfaffian equation the 1-forms θk ∈
A⊗Λ1(E) on the projective line E continue to be meromorphic, nonsingular
on the real equator RP 1 ⊂ E and analytically depending on the parameters
λ ∈ (Rn, 0) by virtue of the formulas (10.5). The only difference with the
analytic case is that the series in powers of the variable x in the right hand
side of (10.6) is in general divergent. Yet despite this divergence integration
of the triangular system of linear ODE’s (10.12) yields the “formal holo-
nomy map” ∆RA ⊗ Diff[[R, 0]] as a well-defined semiformal series (10.13);
see Remark 10.17. The formal square ∆R ◦∆R ∈ A⊗Diff[[R, 0]] defines the
semiformal first return map.

Definition 12.27. The Bautin ideal B(F ) (with the corresponding filtra-
tion) of a semiformal elliptic family of vector fields F ∈ A⊗D[[R2, 0]], is the
Bautin ideal B(P ) of its semiformal first return map P as defined above.

However, instead of the algebraic blow-up, for computations of the for-
mal return map we can use the trigonometric blow-up passing to the polar
coordinates (r, ϕ) on the real plane R2; see Exercise 12.4.
12F2. Quotient equation. In this section we give an invariant definition of
the second ideal associated with a semiformal elliptic family (12.18). This
definition is based on integrability of the Poincaré–Dulac formal normal form
for all planar singularities.
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12. Parametric families of analytic functions 217

The integrability, usually understood as a possibility to express solutions
of a differential equation in elementary functions, quadratures and their in-
verse (implicit) functions, implies that a given planar vector field can be
reduced to a one-dimensional vector field. In the particular context we say
that the planar semiformal vector field F ∈ A⊗D[[R2, 0]] admits projection
on the line, if there exists another semiformal vector field G ∈ A⊗D[[R1, 0]]
on the real line and a projection, a semiformal “map” u : R2 → R1 an-
alytically depending on the parameters λ, which conjugates the fields F
and G. Interpreting u as a semiformal series from A[[x, y]], i.e., choosing a
fixed chart on the target space, and writing the vector field in this chart as
G = g(u) ∂

∂u with g ∈ A[[u]], we derive the necessary and sufficient condition
of the conjugacy between F and G under the form

Fu(x, y) = g(u(x, y)), u ∈ A[[x, y]], g ∈ A[[u]]. (12.19)

The solution of this equation, if it exists, can be found by the method of
indeterminate coefficients, using the ansatz g(v) =

∑∞
k=1 gkv

k and finding
consecutively the unknown homogeneous components of the series u = up +
up+1 + · · · starting from the leading order p > 1.

Example 12.28. The leading component up ∈ R[x, y] must be an eigen-
vector of the linear differential operator associated with the linear part
A = α(λ)E + β(λ)I of the vector field F .

The operator A restricted on the space of homogeneous polynomials of
degree p, is diagonalizable over the complex field: a monomial zkz̄p−k is
an eigenvector with the eigenvalue kµ + (p − k)µ̄, where µ = α + iβ is the
eigenvalue of the 2×2-matrix A of the linear vector field A. Yet for an elliptic
family all these eigenvalues and eigenvectors are nonreal, the only exception
being the middle eigenvalue associated with the eigenvector (zz̄)p/2 = rp for
even values of p, starting from p = 2.

Having this example in mind, it makes sense to normalize solutions of
the equation (12.19) by the additional requirement that

u2(x, y) = x2 + y2. (12.20)

Definition 12.29. The quotient equation for a semiformal elliptic family F
of real planar vector fields is the equation (12.19) on the unknown semiformal
series u ∈ A[[x, y]], g ∈ A[[u]], normalized by the condition (12.20). The
quotient field is the semiformal vector field GF = g(u) ∂

∂u ∈ A⊗D[[R1, 0]].

In [Arn69] the quotient equation is introduced under the name cocycle,
but this term is too overburdened and will never be used in this sense.

Existence of the projection is obviously invariant by the formal conju-
gacy, but in general not invariant by the orbital formal conjugacy. On the
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218 II. Singular points of planar analytic vector fields

other hand, the semiformal projection u is certainly not uniquely defined, as
any semiformal transformation u 7→ u′ ∈ A[[u]] tangent to the identity, pro-
duces another projection and another quotient field G′, albeit semiformally
conjugate to the initial field G. It turns out that this is the only freedom,
and hence the Bautin ideal of the quotient field is an invariant of elliptic
semiformal fields.

Lemma 12.30. Any semiformal elliptic planar vector field F ∈ A ⊗
D[[R2, 0]] admits a semiformal projection on the real line.

The quotient field G = GF ∈ A ⊗ D[[R1, 0]] normalized by condition
(12.20) is defined by F uniquely modulo a semiformal conjugacy from A ⊗
Diff[[R1, 0]]. The Bautin filtered ideal B(GF ) of the quotient field is uniquely
defined by F .

Proof. Solvability of the quotient equation does not depend on the semi-
formal conjugacy class of the elliptic field: the transformation conjugating
two fields F, F ′ simultaneously conjugates the respective series u, u′.

Thus one can assume without loss of generality that the elliptic semi-
formal family is already in the normal form given by the first assertion of
Theorem 4.18:

F ′ = a(r2, λ)E + b(r2, λ)I, a, b ∈ A[[r2]], r2 = x2 + y2; (12.21)

cf. with (4.9). For the field F ′ in the normal form (12.21) all assertions of
the lemma are immediate. Indeed, the two series

u(x, y) = x2 + y2, g(u) = 2u a(u) (12.22)

give a solution of (12.19) by the Euler identity Eu = 2u and the rotational
symmetry Iu = 0.

Next we show that any solution u = u2+u3+· · · of the quotient equation
starting with u2 = x2 + y2, is in fact rotationally symmetric, i.e., depends
on r2 only. Indeed, apply the differential operator I to both parts of the
quotient equation: using the fact that I and F ′ commute (Theorem 4.18),
we conclude that s = Iu is a solution of the equation

F ′s = ϕ(u) · s, s ∈ A[[x, y]], ϕ = 2 d
du

(
ua(u)

) ∈ A[[u]].

In particular, if s 6≡ 0, then the principal homogeneous polynomial term
sq ∈ R[x, y] of degree q > 3 is an eigenvector of the operator A = a(0)E +
b(0)I. As follows from Example 12.28, the only possibility for a nonzero
polynomial to be such an eigenvector occurs when the order q is even and
sq = (x2 + y2)q/2. Clearly, such a polynomial has a nonzero average on any
circle r = const and hence cannot be a derivative of the form Iuq+1 of any
polynomial uq+1. Thus any solution of the quotient equation is rotationally
symmetric, Iu = 0, and hence a semiformal series in r2. ¤
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12. Parametric families of analytic functions 219

12F3. Dulac ideal. Lemma 12.30 asserts that the Bautin ideal of the quo-
tient vector field is an invariant object.

Definition 12.31. The Dulac ideal D(F ) ⊆ A of the semiformal planar
elliptic vector field F is the (filtered) Bautin ideal B(GF ) of the quotient
semiformal vector field GF on the real line.

Theorem 12.32. The Dulac chain (filtered ideal) D(F ) = {Dk} of any
semiformal elliptic family F is obtained by shearing the Bautin chain
B(F ) = {Bk} of this family, i.e.,

D1 = D2 = B1, D3 = D4 = B2, . . . D2k−1 = D2k = Bk, . . . . (12.23)

In particular,

D(F ) = limDk(F ) = limBk(F ) = B(F ).

In other words, the Dulac and Bautin ideals coincide as unfiltered ideals in
A, and have the same depth as filtered ideals.

Proof. For the elliptic family in the formal normal form (12.21) the Dulac
ideal is the ideal of the univariate series ua(u, λ) in the powers of the formal
variable u.

To compute the monodromy map, we transform the normal form to the
polar coordinates (r, ϕ) ∈ (R1

+,S1); note that the restriction of r on the
positive cross-section coincides with the chart x. In the polar coordinates
(12.21) takes the form

dr

dt
= r a(r2, λ),

dϕ

dt
= b(r2, λ). (12.24)

The first equation is obtained from the quotient equation (12.22), the second
follows from the formulas Eϕ = 0, Iϕ = 1. The field (12.24) is orbitally
equivalent to the vector field

dr

dt
=

r a(r2, λ)
b(r2mλ)

,
dϕ

dt
= 1, (12.25)

since the series b(r2, λ) is invertible in A[[r2]] (recall that b(0, 0) 6= 0 is the
ellipticity condition). The monodromy map for the field (12.25) is the time
2π flow exp 2πG′ of the semiformal vector field

G′(r) = b(r2, λ)−1 · r a(r2, λ) ∂
∂r , (12.26)

which differs from the quotient field G = ua(u, λ) ∂
∂u by the “folding trans-

formation” u = r2 (cf. with Example 12.10) and division by the invertible
series b. The latter transformation does not affect the Bautin ideal, while
the former shears the chain B(GF ), as explained in Example 12.10. This
proves the theorem. ¤
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220 II. Singular points of planar analytic vector fields

This theorem immediately implies a number of corollaries.

Corollary 12.33. The Dulac ideal is invariant by orbital semiformal con-
jugacy of the elliptic family.

Proof. The Bautin ideal is invariant by the orbital transformation F 7→ sF
with an invertible series s ∈ A[[x, y]]. ¤

Corollary 12.34. Cyclicity of an elliptic family of real analytic vector fields
is equal to the depth of the corresponding Dulac chain (filtered ideal).

Proof. Each small limit cycle appearing in the elliptic analytic family of
planar vector fields (12.18) corresponds to a unique isolated positive root
of the Poincaré displacement function δF (r) = P (r) − r, where P is the
monodromy map. The Bautin ideal of the function δF is by definition the
Bautin ideal of the family F , B(δF ) = B(F ). By the first assertion of
Theorem 12.25, cyclicity of the analytic family of real functions δF is equal
to the depth of this ideal. By Theorem 12.32, the depths of B(F ) and D(F )
coincide. ¤

12G. Universal polynomial families, cyclicity and localized Hilbert
problem. Consider the universal family of elliptic polynomial vector fields
of a given degree d,

F = αE + βI +
∑

26i+j6d

λ′ijx
iyj ∂

∂x + λ′′ijx
iyj ∂

∂y . (12.27)

parameterized by the real parameters

α ∈ R1, β ∈ R1 r {0}, λ = {λ′ij , λ′′ij} ∈ Rn, n = n(d).

Cyclicity of the origin in the family (12.27) is closely related to Hilbert’s six-
teenth problem about the number and location of limit cycles of a polynomial
vector field of degree d; see §24A. Knowing this cyclicity would answer the
question about the maximal number of small limit cycles near the origin, at
least for vector fields close to linear centers.
12G1. Reduced universal family and chains of polynomial ideals. As follows
from Corollary 12.34, cyclicity of the elliptic family (12.27) is equal to the
depth of the Dulac chain (filtered ideal). Despite the fact that the universal
family is polynomial, Dulac and Bautin ideals for the universal family (12.27)
apriori belong only to the ring O(Rn+2, 0) of real analytic germs of functions
of n + 2 variables α, β, λ.

However, the question about cyclicity of the family (12.27) can be re-
duced to computation of the depth of some polynomial filtered ideal, the Du-
lac ideal of the auxiliary reduced family with fixed linear part I = y ∂

∂x −x ∂
∂y
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12. Parametric families of analytic functions 221

(pure rotation),

F ′ = I +
∑

26i+j6d

λ′ijx
iyj ∂

∂x + λ′′ijx
iyj ∂

∂y . (12.28)

Denote by D = {Dk} and D′ = {D′
k} the Dulac chain of ideals for the

corresponding families (12.27) and (12.28),

D = {Dk}, Dk ⊆ O(Rn+2, 0), D′ = {D′
k}, D′

k ⊆ O(Rn, 0).

Denote the depths of these chains by µ and µ′ respectively.

Proposition 12.35. The auxiliary chain of ideals D′ is generated by poly-
nomials in λ and D′

1 = 0. The depths of the two chains differ by 1,

µ = µ′ + 1.

Proof. To compute the first Dulac ideal of a vector field, one has to solve
the linearization of the quotient equation: since Ir2 = 0, we have for the
leading coefficient g1 the equality g1r

2 = αEr2 so that D1 = 〈α〉, D′
1 = {0}.

Since the ideal D1 is radical, the quotient ideals Dk mod D1 are isomor-
phic to the ideals obtained by fixing α = 0 in the universal family. Moreover,
since the Dulac ideal(s) are invariant by orbital transformation, one can also
fix the second parameter, setting β = 1. Then the universal family takes
the form (12.28), and we conclude that

D′
k = Dk mod D1, for all k > 2.

This instantly proves the proposition. The fact that ideals D′
k are polyno-

mial (i.e., belong to R[λ]) follows from the fact that the nonlinear coefficients
of the monodromy map are quasihomogeneous functions of the parameters
λ, as explained in Theorem 10.18. ¤

Proposition 12.35 reduces the transcendental problem on the number
of small limit cycles that can appear near an elliptic singular point of a
polynomial vector field of degree d, to a completely algebraic problem of
determination of the depth of a growing chain of polynomial ideals Di ⊆
R[λ]. This chain of ideals in “universal” in the sense that it serves all
deformations of planar polynomial vector fields of the given degree d.

Computing any finite number of ideals in the Dulac chain D is the-
oretically feasible and can be relegated to one of many existing symbolic
computation programs. Yet computation of the Bautin index (or depth) of
the chain is a problem beyond the reach of any computer algebra system,
even if we ignore the practical limitations on memory and time. Indeed,
after observing that the chain D stops growing at some moment µ, one has
to prove that all infinitely many remaining coefficients of, say, the series
g(u, λ), belong to the ideal generated by the first µ of them.
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222 II. Singular points of planar analytic vector fields

In practice the only case for which the construction of Dulac ideal and
computation of its depth is fully implemented, is that of quadratic vector
fields corresponding to d = 2. The corresponding results are described in
§13.
12G2. Practical computation of the Dulac chain. The most important advantage of work-
ing with the Dulac chain (ideal) rather than with the Bautin ideal, is practical: compu-
tation of D does not require solving differential equations which is a necessary step when
computing the first return map (cf. with §10E). From the outset we can work with the
reduced universal polynomial family (12.28) with the linear part I = y ∂

∂x
− x ∂

∂y
.

Assume that the Taylor polynomials Up−1 and G(p−1)/2 of degrees p−1 and b(p−1)/2c
of the respective series u ∈ R[λ][[x, y]] and g ∈ R[λ][[u]] are already found (for p odd we
take the integer part of the ratio (p− 1)/2). Recall that, for the reduced family, g1 = 0.

The homogeneous component up and the next coefficient gp/2 of the series g will be
a solution of the equation

Iup = vp + gp/2r
p,

vp = pth degree terms of G(p−1)/2(Up−1)−NUp−1

(12.29)

where N = F ′ − I is the nonlinear part of the vector field F ′ considered as a differential
operator with polynomial coefficients and polynomially depending on the parameters λ.
The term gp/2r

p is absent when p is odd.

This equation is always solvable. If p is odd, then any homogeneous polynomial
occurring in the right hand side of (12.29) has zero average on any circle r = const and
hence admits a unique homogeneous primitive up = I−1vp.

If p is even, then the average of vp on the circles may be nonzero, but it will be always
of the form crp for some constant c ∈ R. If we set gp/2 = −c, the right hand side will have

zero average and hence a polynomial primitive up = I−1(vp + gp/2r
p), which is defined

uniquely modulo addition of c′rp (this nonuniqueness creates nonuniqueness of solution of
the quotient equation).

In both cases we can determine uniquely the next Taylor coefficients up and gp/2 so
that the process continues by induction. Inspection of this process yields an independent
proof of polynomial dependence of all coefficients on the parameters λ, the nonlinear
coefficients of the universal polynomial family.

12G3. Dulac ideal and Poincaré–Lyapunov constants. Besides the quotient equation
(12.19), there are other constructions which associate a univariate semiformal series with
an elliptic family. For instance, in [Sch93] and in some other sources the following equat-
ion appears,

Fv = b(r2, λ), b(r2, λ) =
X
j>1

bj(λ) r2j , (12.30)

where v ∈ A[[x, y]] is a semiformal series in two variables, and F is an elliptic family with
the fixed linear part I. The equation (12.30) also always admits a formal solution (v, b)
for the same reasons as explained in §12G2. The coefficients bj ∈ A are called by different
names as Poincaré–Lyapunov constants, Lyapunov values, focal values, etc. Starting from
the generating series b, in the standard way arrive at a growing chain of ideals

〈b1〉 ⊆ 〈b1, b2〉 ⊆ 〈b1, b2, b3〉 ⊆ · · · (12.31)

in the ring of polynomials R[λ].

The construction of Poincaré–Lyapunov constants and the chain of ideals (12.31) is
not intrinsically invariant (unlike the definition of the Dulac ideal). Nevertheless, the
common zero locus of the first k polynomials, {b1 = · · · = bk = 0} ∈ Rn corresponds to
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13. Quadratic vector fields and the Bautin theorem 223

parameter values for which the elliptic field admits a jet of order 2k of the first integral.
The same condition in terms of the Dulac ideal translates as a vanishing of the first k
coefficients of the vector fields G. Thus at least as far as the Dulac ideals remain radical,
the chains of ideals D and (12.31) coincide. We will not explore this direction.

Exercises and Problems for §12.

Exercise 12.1. Assume that A = O(Cn, 0), m ⊆ A is the maximal ideal, and the
coefficients of a semiformal series f =

∑∞
1 akxk have the following properties:

(1) the first m coefficients a1, . . . , am belong to m2,

(2) the next n coefficients am+1, . . . , am+n span the linear space m/m2 ∼= Cn.

Compute the index of the corresponding Bautin chain.

Exercise 12.2. Let Xk be the zero locus of the kth Bautin ideal of a semiformal
vector field (or a self-map). Give a direct proof that this locus is the same for any
two formally equivalent vector fields (resp., self-maps); cf. with Remark 12.13.

Problem 12.3. Formulate and prove an analogous statement for zero loci of Bautin
and Dulac ideals of an elliptic family of planar vector fields.

Exercise 12.4. Compute the formal holonomy map for the semiformal elliptic field
(12.17) in the Poincaré–Dulac normal form.

Exercise 12.5. Consider the planar elliptic polynomial family given in the complex
notation by the differential equation

ż = z(i + λzpz̄p), λ ∈ R, p > 1.

Compute the Bautin and Dulac ideals and Lyapunov “constants” for this field.

Exercise 12.6. Let f be a complex analytic family satisfying the assumptions of
Example 12.1.

Prove that the depth of the translated ideal B(f(x + t)) is the same for all
sufficiently small t ∈ (C1, 0) except for a possible discrete set.

13. Quadratic vector fields and the Bautin theorem

13A. Quadratic vector fields. The only universal polynomial family for
which the depth of the Bautin ideal was computed, is the family of quadratic
vector fields corresponding to d = 2. In this section we prove the following
famous theorem.

Theorem 13.1 (N. Bautin [Bau39, Bau54]). Cyclicity of an elliptic sin-
gular point in the family of quadratic vector fields is equal to 3.

The Bautin theorem inspired the conjecture that the number of all limit
cycles of a planar quadratic vector field can be at most 3. This conjecture
was believed to be true until in 1980 Shi Songling discovered an example of
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224 II. Singular points of planar analytic vector fields

a quadratic vector field in which 3 small limit cycles coexist with one “large”
limit cycle away from the elliptic singularity [Shi80a].

Consider the reduced family F ′ of quadratic vector fields with the fixed
linear part, which we write as a system of differential equations

ẋ = y + λ1 x2 + λ2 xy + λ3 y2,

ẏ = −x + λ4 x2 + λ5 xy + λ6 y2.
(13.1)

By Corollary 12.34 and Proposition 12.35, the Bautin theorem follows
from the following purely algebraic fact.

Theorem 13.2. The reduced Bautin chain of ideals B′ = {B′
k} for the

family (13.1) of quadratic vector fields with the rotation linear part I, has
depth 2, specifically,

0 6= B′
2 $ B′

3 $ B′
4 = B′

5 = B′
6 = · · · . (13.2)

The proof of Theorem 13.2 occupies the rest of §13A and all of §13B.
It was already noted on several occasions that many assertions concern-

ing Bautin ideals admit counterparts concerning the respective zero loci in
the space of the parameters, and almost always these assertions are much
simpler. The Bautin theorem is not an exception: its proof is based on a no
less remarkable theorem proved by H. Dulac in 1908.

Together with the chain of real polynomial ideals B′ ⊆ R[λ] consider
the chain of their complexified zero loci

C6 ⊇ X2 ⊇ X3 ⊇ X4 ⊇ · · · ⊇ Xk ⊇ · · · ,

Xk = {λ ∈ Cn : p(λ) = 0∀p ∈ B′
k}.

(13.3)

The limit X = limk→∞Xk of the chain (13.3) consists of the complex
values of the parameters λ for which the complex vector field is formally
integrable, i.e., there exists a formal solution u = (x2 + y2) + · · · of the
quotient equation F ′u ≡ 0 corresponding to g ≡ 0. By Proposition 11.6, in
this case there exists another, convergent formal integral.

Theorem 13.3 (H. Dulac [Dul08]). The complex variety X4 ⊆ C6 corre-
sponds to integrable quadratic systems.

In other words, the chain of complex algebraic varieties (13.3) stabilizes
on the fourth term, X4 = X5 = · · · = X.

The chain of ideals (13.2), starting from the term B′
4, in principle may

exhibit nontrivial growth, but only in such a way that the zero loci of all
subsequent ideals B′

4,B
′
5, . . . remain constant. This is, however, impossible.

The following theorem asserts that B′
4 is the biggest ideal with the null locus

X4, so that further growth of the Bautin chain B′ is impossible.
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13. Quadratic vector fields and the Bautin theorem 225

Theorem 13.4 (H. ŻoÃla̧dek [ŻoÃl94]). The ideal B′
4 from the Bautin chain

(13.2) is radical: any polynomial p ∈ C[λ] vanishing on X4, belongs to B′
4.

Theorem 13.2 obviously follows from Theorems 13.3 and 13.4, whose
complete proofs are postponed until §13B. Here we outline the general struc-
ture of these proofs in a brief historical discourse. From the outset it should
be stressed that heavy computations cannot be avoided, though almost all
of them can now be done by computers.

The first step is to compute the initial segment of the Bautin chain. On the level
of null loci this computation was done by Dulac in [Dul08]. To minimize the number of
independent parameters, Dulac used rotation of the coordinates (x, y) on the real plane to
reduce the vector field to the so-called Kapteyn normal form involving only 5 parameterseλ2, . . . , eλ6 (different from the initial parameters λ1, . . . , λ6),

ẋ = −y − eλ3 x2 + (2eλ2 + eλ5) xy + eλ6 y2,

ẏ = x + eλ2 x2 + (2eλ3 + eλ4) xy − eλ2 y2.
(13.4)

For this family Dulac derived the polynomial conditions over R[eλ] necessary for existence
of a 7-jet of a first integral u = (x2 +y2)+ · · · , and discovered that under these conditions
the vector field is integrable.

Bautin recycled the computations of Dulac to compute (by hand!) the coefficients

of the return map and discovered that the corresponding Dulac ideal eD7 = 〈ea3,ea5,ea7〉 ⊆
R[eλ] of the quotient equation is not radical . The main lemma of the paper [Bau54],
proved by lengthy calculations (partially explained in [Yak95]), claims that despite this

nonradicality, all higher coefficients of the quotient equation in fact belong to eD7.

This circumstance remained completely mysterious until H. ŻoÃla̧dek in 1994 real-

ized that both nonradicality of the ideal eD7 in the Bautin chain and the fact that this
chain stabilizes despite this nonradicality, are aberrations caused by the Kapteyn form,
since transformation of the general equation (13.1) to the Kapteyn form (13.4) is singular
(discontinuous). When written with respect to the original parameters λ, the respective

(Bautin or Dulac) ideals B′
4 = D7 become radical. ŻoÃla̧dek himself in [ŻoÃl94] gave an

elementary (though long and technical) proof of this radicality with respect to the ring of
polynomials equivariant by a natural circle action (see Remark 13.6 below) and noted in
passing that the equivariance is irrelevant and the fact remains true in the full ring C[λ],

though the proof of this is “much more complicated” [ŻoÃl94, Remark 1, p. 236].

However, unlike the claim on effective termination of the infinite chain of ideals which
amounts to the infinite number of equalities between individual ideals in the chain, the
claim on radicality of a given single ideal admits verification in finite time. Moreover,
algorithms for computing the radical of a polynomial ideal given by its generators, as
well as the coincidence test for two such ideals are well developed and efficient computer
algebra systems exist for implementing them. Proving Theorem 13.4 can be completely
delegated to the computer in the same way as computation of the initial coefficients
of formal integrals, normal forms, etc. This observation in some sense “downgrades”
Theorem 13.4 to the level of a polynomial identity which for the moment cannot be proved
by any method other than direct tedious computation. Below we give a five-line script for
CoCoA (Commutative Computer Algebra, [CNR00]), which computes the radical

p
B′

4

and verifies that it coincides with B′
4.

Unlike Theorem 13.4, Dulac Theorem 13.3 is a claim that requires human intervention
and ingenuity (together with unavoidable computations).
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226 II. Singular points of planar analytic vector fields

13B. Dulac center conditions. It was another observation of H. ŻoÃla̧dek
that using the “complex notation” greatly simplifies computations. If we
identify a point (x, y) on the real plane R2 with the complex number z =
x + iy ∈ C, then any quadratic vector field with the linear part I can be
written as

ż = iz + Az2 + B zz̄ + C z̄2, A,B,C ∈ C, (13.5)
with complex coefficients A,B, C. This observation can be explained by the
fact that after complexification (allowing the coefficients λ to take complex
values) the linear part can be diagonalized by passing to the coordinates
z = x + iy, w = x − iy. The complex quadratic vector field F ∈ D[C2]
acquires then the form given by the differential equations

ż = iz + Az2 + Bzw + Cw2,

ẇ = −iw + C ′z2 + B′zw + A′w2,
A, . . . , C ′ ∈ C. (13.6)

The real vector fields (with real values of the parameters λ) correspond to
systems of the form (13.6) with the complex parameters A, . . . , C ′ meeting
the conditions

A′ = Ā, B′ = B̄, C ′ = C̄ (13.7)
(the bar denotes the complex conjugation), after restriction on the real sub-
space R2 ∼= {w = z̄} ⊆ C2. Clearly, solving the quotient system (12.19)
when the vector field F has diagonal linear part, is much easier; see §12G2.

The first several steps of formal solution of the quotient equation for
the equation (13.6) yield the following results for coefficients of the series
g(u) = g1u + g2u

2 + · · · ,
g1 = 0,

g2 = c2 (AB −A′B′),

g3 = c3 [(2A + B′)(A− 2B′)CB′ − (2A′ + B)(A′ − 2B)C ′B],

g4 = c4 (BB′ − CC ′)[(2A + B′)B′2C − (2A′ + B)B2C ′],

(13.8)

where ci 6= 0 are nonzero constants, i = 2, 3, 4. Under the “reality” assump-
tions (13.7) these conditions take the form

g1 = 0,

g2 = c2 Im(AB),

g3 = c3 Im[(2A + B̄)(A− 2B̄)B̄C],

g4 = c4 Im[(|B|2 − |C|2)(2A + B̄)B̄2C],

(13.9)

as they appear in [ŻoÃl94]. Clearly, cancellation of the nonzero constants
does not change the chains of ideals, so from now on we will omit them.

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



13. Quadratic vector fields and the Bautin theorem 227

In §12G2 we explained how the computations of the polynomials g2,3,4

should be organized; the algorithm described there, can be easily made into
a code for Mathematica.

Remark 13.5. Computation of the coefficients of the first return map is
considerably more resource-consuming than that of the quotient equation.
Bautin in [Bau54] reveals no details, only the ultimate results. This compu-
tation was reproduced using computers (see [FLLL89]) confirming Bautin’s
formulas modulo an inessential error in the numeric coefficient c4. ŻoÃla̧dek
in [ŻoÃl94] double-checked part of the results using perturbations technique.
All existing methods corroborate the formulas (13.9).

13C. Irreducible components of the Dulac variety. The Dulac vari-
ety X4 = {g2 = g3 = g4 = 0} ⊆ C6 is reducible and consists of 4 components
(their names will be later explained by the different mechanisms of integra-
bility),

V4 = {B = B′ = 0} (Darbouxian),

VH = {2A + B′ = 2A′ + B = 0} (Hamiltonian),

Vª = {AB −A′B′ = B′3C −B3C ′ = 0} (symmetric),

VG = {A− 2B′ = A′ − 2B = BB′ − CC ′ = 0} (meromorphic).

(13.10)

Indeed, the locus B = B′ = 0 of codimension 2 satisfies all equations
(13.8) and gives the component of X4 denoted by V4. Outside V4 the
equation g2 = 0 yields A/B′ = A′/B; denoting this common value by R, we
transform the remaining equations g3 = 0, g4 = 0 respectively to

(2R + 1)(R− 2)(B′3C −B3C ′) = 0,

(BB′ − CC ′)(2R + 1)(B′3C −B3C ′) = 0.

Two more components are given by the equations 2R+1 = 0 which (together
with g2 = 0) corresponds to the locus VH , and the equation B′3C−B3C = 0
that defines Vª. Outside all these components of codimension 2 the last
remaining component is defined by the equations R = 2, BB′ − CC ′ = 0
which gives us VG.

13D. Proof of the Dulac Theorem 13.3. We begin the proof by noting
that the linear part of normal form (13.6) is invariant by diagonal transfor-
mations (z, w) 7→ (γz, γ′w), γ, γ′ ∈ C r {0}, in particular, by the transfor-
mations (z, w) 7→ (γz, γ−1w). These transformations, however, change the
coefficients A, . . . , C ′ of the field as follows:

(z, w) 7→ (γz, γ−1w),

(A,B, C,A′, B′, C ′) 7→ (γA, γ−1B, γ−3C, γ3A′, γB′, γ−1C ′).
(13.11)
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228 II. Singular points of planar analytic vector fields

These formulas define an action of C r {0} on the space of the coefficients;
all components of the loci (13.10) are invariant by this action.

Remark 13.6. Though the action of (Cr{0})2 or Cr{0} does not preserve
the subset of real systems (13.7), the restriction of this action on the circle
S1 = {|γ| = 1, γ′ = γ−1 = γ̄}, corresponding to the rigid rotation of the real
plane z 7→ γz, induces the circle action on the space of real quadratic vector
fields with an elliptic singular point at the origin. It is this circle action that
was used by ŻoÃla̧dek in [ŻoÃl94] to simplify the proof of radicality.

We prove Theorem 13.3 by proving separately that each of the four
components (13.10) corresponds to integrable systems.

1. VH : Hamiltonian case. The divergence of the vector field (13.6) is

i + 2Az + Bw + (−i) + B′z + 2A′w = z(2A + B′) + w(2A′ + B)

and vanishes identically along the component VH . The corresponding Hamil-
tonian is a cubic polynomial 1

2zw + · · · .
When establishing integrability of vector fields for the three remaining

components of the locus (13.10), we will first establish it for a particular
combination of parameters in the corresponding component and then show
that by a suitable action (13.11) any other point on this component can be
brought to this particular form.

2. Vª: Symmetric, or reversible case. The component Vª parameterizes
systems whose phase portrait is symmetric by a line passing through the
origin.

Indeed, if
A′ = −A, B′ = −B, C ′ = −C, (13.12)

then the vector field (13.6) is anti -invariant by the symmetry σ : (z, w) 7→
(w, z): this symmetry preserves the field modulo the constant factor −1,
σ∗F = −F . Therefore the complex holomorphic foliation F is symmetric (σ
sends leaves into leaves). We claim that this symmetry implies integrability.

Indeed, denote by ∆R the holonomy (semi-monodromy) map of F after
blow-up, corresponding to the symmetric cross-section τ = {z + w = 0};
see Definition 10.11. The symmetry σ changes the orientation of the loop
(equator) R ⊂ E on the exceptional divisor E, on the other hand, it does
not change the intersection points between the leaves and the cross-section.
Therefore

∆−1
R = ∆σ(R) = ∆R,

which means that ∆R is 2-periodic, ∆2
R = id, and the field is a center.

Now we claim that any other combination of parameters on Vª can be
brought to the special form (13.12) by a suitable action (13.11). Indeed, the
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13. Quadratic vector fields and the Bautin theorem 229

equations of Vª can be reduced to the form

A/A′ = B′/B, (B′/B)3 = C ′/C. (13.13)

By a suitable choice of γ one can make the ratio A/A′ equal to −1. The
equations (13.13) imply then that the other two ratios B′/B and C ′/C are
automatically equal to −1, i.e., the conditions (13.12) are achieved. Thus
any combination of the parameters on Vª corresponds to a field having a
symmetry axis and hence integrable.

Darbouxian cases. In both the two remaining cases the vector field has
several (real algebraic) invariant curves pi(z, w) = 0. Starting from the
functions pi one can construct Darbouxian integrals of the form Φ =

∏
pαi

i

with suitable (in general, noninteger or even nonreal) exponents αi ∈ C.

3. V4: Darbouxian triangle. The component V4 defined by the condition
B = B′ = 0, corresponds to vector fields having (generically) three invariant
lines. To see them, note that the straight line {w−z = α}, α ∈ C is invariant
by the field (13.6) with B = 0, if and only if

C ′ + A′ = C + A, 2α(C −A′) + 2i = 0, α2(C −A′) + iα = 0. (13.14)

To see this, it is sufficient to differentiate z − w + α along the field (13.6)
and restrict the result iz + Az2 + Cw2 + iw − C ′z2 − A′w2 on the line
w = z + α; the corresponding quadratic polynomial must vanish identically,
which yields the three equations (13.14).

This system (13.14) admits solution α only if

C ′ + A′ = C + A; (13.15)

moreover, if C 6= A′ (i.e., generically), this solution indeed exists. For an
arbitrary combination A,C, A′, C ′ the condition (13.15) can be achieved by
a suitable diagonal action (13.11): one should resolve the equation

γ−3C + γA = γ3C ′ + γ−1A′ (13.16)

with respect to γ ∈ C r {0}. This equation of degree 6, cubic with respect
to γ2, generically has three pairs of roots differing by a sign in each pair;
each pair of roots corresponds to an invariant line.

Thus we conclude that for the parameter values in the component V4,
the vector field F has (generically) three invariant straight lines pi = 0,
i = 1, 2, 3, two of them eventually conjugate. The invariance means that the
derivatives Fpi are divisible by pi in the ring of polynomials in z, w. Denote
by qi the corresponding cofactors, the polynomials such that

Fpi = qipi, i = 1, 2, 3, deg qi = 1.

Clearly, qi(0, 0) = 0. Since any three homogeneous linear forms on C2 are
linearly dependent, there exist three nonzero complex numbers α1, α2, α3
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230 II. Singular points of planar analytic vector fields

such that
∑

αiqi = 0. The direct computation shows (cf. with §25G below)
that the function Φ =

∏3
1 pαi

i is the first integral:

FΦ = Φ ·
3∑

1

Fpαi
i

pαi
i

= Φ ·
3∑

1

αiqi = 0.

Since pi(0, 0) 6= 0, every branch of Φ is analytic at the singular point. Thus
the component V4 corresponds to the Darbouxian integrable vector fields
having an invariant triangle p1p2p3 = 0.

Thus a generic vector field corresponding to the component V4 is a
center. Yet since being center is a closed property, the entire component V4
consists of centers.

4. VG: Meromorphic integrable systems. In the last remaining case where
the parameters belong to the component VG, we show that one can find a
meromorphic (rational) first integral as a ratio of two degree 6 polynomials,
both nonzero at the singular point.

By a suitable action (z, w) 7→ (γz, γ′w) multiplying B by γ and B′ by γ′,
the vector field can be brought to the form with B = B′ = 1. The remaining
equations of VG imply then that

B = B′ = 1, A = A′ = 2, CC ′ = 1, (13.17)

so that the vector field has the form
ż = iz + 2z2 + zw + Cw2,

ẇ = −iw + (1/C) z2 + zw + 2w2.
(13.18)

We show that this vector field has two invariant curves, a quadric {p2(z, w) =
0} and a cubic {p3(z, w) = 0}, with the corresponding cofactors coinciding
modulo the rational coefficient,

Fp2 = 2(z + w)p2, Fp3 = 3(z + w)p3. (13.19)

Consequently, the rational first integral of the field F has the form Φ =
p3
2p
−2
3 . The polynomials p2(z, w) =

∑
i+j63(P2)ij zi−1wj−1 and p3(z, w) =∑

i+j64(P3)ij zi−1wj−1 have the following coefficient matrices,

P2 =



−1 −2 i C

2 i −2
1
C


 , P3 =




2 i
1+C

−6
1+C −3 i C

6
1+C

3 i (1+C)
C −3

−3 i
C

3
C

− 1
C2




and the fact that they satisfy condition (13.19), can be verified by a direct
(though tedious) computation. Actually, they were found by Mathematica
[Wol96] as solutions of (13.19) using the indeterminate coefficients method.
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13. Quadratic vector fields and the Bautin theorem 231

Thus all four components (13.10) correspond to nonlinear centers, which
completes the proof of Theorem 13.3. ¤

13E. Symbolic computations and the “proof” of the ŻoÃla̧dek The-
orem 13.4. We have to prove that the ideal generated in the polynomial
ring in 6 variables C[A,B, C, A′, B′, C ′] by the three polynomials g2, g3, g4

from (13.8), is radical. Checking radicality is a task that is well algorith-
mized. The computer system CoCoA includes both the computation of the
complex radical and the coincidence test for two ideals defined by their gen-
erators, as the standard functions; see [CNR00].

Use R::=Q[axbycz];

G2:=ab-xy;
G3:=(2a+y)(a-2y)cy-(2x+b)(x-2b)zb;
G4:=(by-cz)((2a+y)y^2c-(2x+b)b^2z);

D:=Ideal(G2,G3,G4);
D=Radical(D);

Figure II.8. The CoCoA code verifying radicality of the Bautin ideal

The code checking radicality, is given in Fig. II.8. Due to the technical
constraints (independent variables should be denoted by lowercase letters)
we denoted by a,b,c,x,y,z the variables A,B, C,A′, B′, C ′ respectively.
The first line instructs the computer to use the ring of characteristic zero
in the six indeterminates, then D is defined as the ideal generated by the
polynomials G2,G3,G4 encoding respectively g2, g3, g4. Finally, the last line
is the logical command checking equality between the ideal D and its radical
Radical(D). After 2 seconds of computations on a laptop, the program
prints TRUE. This proves the ŻoÃla̧dek theorem. ¤
13F. Concluding remarks. We conclude the proof of the Bautin theorem by two tech-
nical remarks.

Remark 13.7. The “complex notation” (i.e., writing the quadratic vector field so that
its linear part is diagonal) simplifies computations not only for humans, but also for
computers. An attempt to compute the radical of the Bautin ideal B′

4 written for the real
system (13.1) fails miserably, apparently because the corresponding polynomials gi have
too many monomial terms for the standard algorithms to cope with (recall that we are
dealing with polynomials of degree 6 in 6 independent variables!).

Remark 13.8. One may recycle information already stored in the equations of the four
Dulac loci (13.10) to simplify computation of the radical

p
B′

4. Indeed, this radical is
the intersection of the four ideals J4, JH , Jª and JG in C[A, . . . , C ′] which consist of
polynomials vanishing on the respective components.
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232 II. Singular points of planar analytic vector fields

However, one has to bear in mind that while the three ideals,

J4 =


B, B′� ,

JH =


2A + B′, 2A′ + B

�
,

JG =


A− 2B′, A′ − 2B, BB′ − CC′

�
,

are all radical, the polynomial equations defining Jª in (13.10), span a non-radical ideal,

Jª =
q


AB −A′B′, B′3C −B3C′
�

=


AB −A′B′, B′3C −B3C′, AB′2C −A′B2C′, A2B′C −A′

2
BC′

�
.

In any case, computing intersection of ideals (i.e., computing a basis for the intersection)
is in general a tedious task which amounts to computing resultants and elimination of
variables. On top of that one should solve the membership problem, checking that all
elements of the constructed basis again belong to B′

4. To double-check the above described
CoCoA-proof of Theorem 13.4, these computations were also implemented (by another
CoCoA script) and gave the same answer, thus further reducing the chances of computer-
or human-generated errors.

Exercises and Problems for §13.
Any line on the plane cannot have more than two isolated tangencies with a

quadratic vector field. This obvious observation immediately implies a number of
simple geometric properties of real quadratic foliations. All problems below are
formulated for quadratic foliations (vector fields).

Problem 13.1. Prove that any periodic orbit is convex.

Problem 13.2. Prove that a limit cycle necessarily contains a singular point inside.
Prove that this point cannot be neither saddle nor node. Prove that this point must
be unique and is necessarily a focus.

Problem 13.3. A Lotka–Volterra system is a quadratic vector field tangent to the
coordinate axes and having a saddle point at the origin.

Write explicitly this vector field and prove that it has a unique equilibrium
in the positive quadrant {x, y > 0}. Find the conditions guaranteeing that the
Lotka–Volterra system has a center. List the Dulac components to which integrable
Lotka–Volterra systems may belong.

Problem 13.4. Determine cyclicity of the origin for an analytic unfolding of the
quadratic center

ż = iz + z2 + zz̄ + iz̄2

in the class of quadratic fields.

14. Complex separatrices of holomorphic foliations

In this section we generalize the result on existence of holomorphic invariant
curves from the hyperbolic or semi-hyperbolic context of §7A to arbitrary
isolated planar singularities. The invariant curves will be analytic, but in
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14. Complex separatrices of holomorphic foliations 233

general nonsmooth. Their order at the singular point in many cases can
be majorized by the order of the vector field generating the foliation: the
corresponding result can be considered as a solution of a local version of the
Poincaré problem (on degree of algebraic solutions of polynomial differential
equations, which will be treated in §25).

14A. Invariant curves. Consider the germ of a holomorphic foliation F

on (C2, 0), defined by a Pfaffian equation {ω = 0}, with an isolated singu-
larity of multiplicity µ and order n at the origin.

Recall (see Definition 2.27) that a complex separatrix of F is a leaf L ∈ F

whose closure L ∪ {0} is an analytic curve γ = {f = 0} ⊂ (C2, 0).
For an elementary singular point, there always exists at least one smooth

complex separatrix. More precisely, there are two smooth complex separa-
trices if the singular point is not a saddle-node or a resonant node, and one
or two smooth separatrices in the latter cases. The question on existence of
complex separatrices for more degenerate singular points was first discussed
by C. Briot and J. Bouquet in 1856. However, the complete solution was
achieved only in 1982 by C. Camacho and P. Sad [CS82].

Theorem 14.1 (C. Camacho–P. Sad, 1982). Every isolated singularity of a
planar holomorphic vector field admits a complex separatrix.

Remark 14.2. If F is a real analytic foliation on (R2, 0), then a real separatrix, if it
exists, is necessarily a characteristic trajectory. Thus nondegenerate foci and centers do
not have real separatrices, though they have a pair of complex separatrices. The inverse
claim is false: a characteristic trajectory is not necessarily a separatrix. For instance,
among all real trajectories of a nonresonant node with an irrational characteristic ratio,
only two are separatrices, the rest being nonanalytic at the origin.

The idea of the proof of Theorem 14.1 is to blow up the foliation until
it has only elementary singularities. Each such singularity has at least one
complex separatrix. If this separatrix is not contained in the vanishing
divisor D (preimage of the singular point), then the image of this separatrix
will be a nonconstant analytic curve and hence a complex separatrix. To
prove the theorem, one has to show that after complete desingularization,
at least one elementary singularity always has an invariant curve (it will be
always a hyperbolic invariant curve) transversal to D. This is achieved by
careful study of characteristic ratios of hyperbolic singularities that appear
by blow-up. The most difficult combinatorial part of the original proof from
[CS82] was recently simplified by J. Cano [Can97], whose proof we largely
follow.

14B. Linearization along invariant curves and index of a com-
plex separatrix. We start by introducing in invariant terms the notion
which generalizes the characteristic ratio of nondegenerate singularities. The
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234 II. Singular points of planar analytic vector fields

Camacho–Sad index (or simply index of a smooth complex separatrix of a
foliation is defined in terms of residue of the linearization of the foliation
along this separatrix.

The construction of linearization along a smooth invariant curve S (leaf
or separatrix) is intuitively rather clear. Assume that S is locally given by
the equation {y = 0} and a holomorphic Pfaffian form ω = f dx + g dy ∈
Λ1(C2, 0) with isolated singularities vanishes on the tangent direction to S.
This condition means that f(x, 0) ≡ 0. Keeping only the terms of first order
in y and dy, we have

f(x, y) = a(x)y + O(y2), g(x, y) = b(x) + O(y),

so that the “linearized” Pfaffian equation (truncated to the terms linear in
y and dy) takes the form

y a(x) dx + b(x) dy = 0. (14.1)

Denote by θ the meromorphic 1-form on the curve S,

θ = −a(x)
b(x)

dx, θ ∈ Λ1(S)⊗M(S). (14.2)

For reasons to be explained in Chapter III, which is entirely devoted to
linear systems, the form θ will be called the connexion form of the foliation
F along the smooth invariant curve S. Using the connexion form, we can
rewrite the linearized equation (14.1) as follows:

dy = yθ, y ∈ C, θ ∈ Λ1(S)⊗M(S);

cf. with the nonlinear equations (10.6).
The form θ is only meromorphic on S: from its definition it follows im-

mediately that it is holomorphic at all nonsingular points of S. Singularities
of the foliation, corresponding to isolated roots of the holomorphic function
b ∈ O(S), are poles of the connexion form.

Definition 14.3. The index i(p, S,F) of the smooth analytic invariant curve
(separatrix) S passing through a singular point p ∈ S of a singular foliation
F is the residue resp θ of the connexion form (14.2) along S.

In the notation below we will sometimes omit one or more arguments
from the list i(p, S,F), when they are unambiguously determined by the
context.

The construction of linearization and the connexion form θ via special
local coordinates leaves open the question, to what extent different parts of
this construction, in particular, the definition of index, are invariant.

To show that the index in fact does not depend on either the coordinates
used for the linearization, or on the choice of ω (i.e., remains the same if ω
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14. Complex separatrices of holomorphic foliations 235

is replaced by a multiple uω, u 6= 0), we re-expose the same construction in
more invariant terms as follows.

Consider a holomorphic 2-dimensional manifold M covered by an atlas
of charts Uα, and assume that this manifold carries a singular holomorphic
foliation F with a globally defined smooth separatrix, a complex curve S ⊂
M . In each chart Uα the foliation is defined by a different Pfaffian equation
{ωα = 0}, and the separatrix by a different holomorphic equation {hα = 0}
with nonvanishing differential dhα. On the pairwise intersections Uαβ = Uα∩
Uβ the corresponding forms and functions differ by invertible holomorphic
factors:

ωα = uαβωβ, hα = vαβhβ,

uβα = 1/uαβ , vβα = 1/vαβ , uαβ , vαβ ∈ O(Uαβ).
(14.3)

We show first that in each neighborhood Uα, if it is sufficiently small, the
Pfaffian equation ωα = 0 is equivalent to the equation dhα−hαθα = 0, where
θα is a suitable 1-form on Uα whose restriction of S is uniquely defined.
Proposition 14.4. Assume that U ∼= (C2, 0) is a small neighborhood and a smooth curve
S ⊂ U is given by the equation {h = 0}, where h is a holomorphic function on M with
the differential dh not vanishing on S.

Then any holomorphic 1-form ω tangent to S can be represented as

ω = g(dh− h θ), (14.4)

where g is a holomorphic function and θ a meromorphic 1-form whose poles can be only
at singular points of ω.

The restrictions of the function g and the form θ on S and the tangent bundle TS =S
a∈S TaS respectively, are uniquely defined by ω and h.

Proof. Since ω vanishes on vectors tangent to S, we have ω = g dh at all points of S
(two forms with the same null space must be proportional). The holomorphic function
g : (S, 0) → C, originally defined only on S, can be extended on the neighborhood of S in
M ; this extension (denoted again by g) is vanishing only at singular points of ω on S.

The difference ω − g dh is a 1-form vanishing identically at all points of S and hence
divisible by h: ω − g dh = hϑ, where ϑ is a holomorphic 1-form. Denote by θ the mero-
morphic 1-form θ = g−1ϑ: this yields the representation (14.4).

The extension of g from S on M is nonunique, hence θ is nonunique. However, if
ω = g′(dh − h θ′) is an alternative representation with a different choice of g′, θ′, then g
and g′ must coincide on S and hence their difference is divisible by h, g − g′ = uh. From
equality between the two representations g(dh − h θ) = (g + uh)(dh − h θ′) of the same
form ω it follows that g(θ′ − θ) = u(dh − hθ′). Both terms dh and hθ′ in the right hand
side vanish on vectors tangent to S, hence the restrictions of θ and θ′ on TS coincide. ¤

The restriction of the 1-form θ on S, the meromorphic 1-form θ ∈ Λ1(S, 0)⊗M(S, 0), in
the local coordinates coincides with the expression (14.2) obtained by the straightforward
computation in local coordinates.

Corollary 14.5. The connexion form θ is not changed when ω is replaced by a propor-
tional form uω with u|S 6= 0.
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236 II. Singular points of planar analytic vector fields

If the function h is replaced by a proportional function h′ = vh, v|S 6= 0, then θ is
replaced by the form

θ′ = θ + v−1 dv, v|S 6= 0. (14.5)

Consequently, the residue resa θ of the form (14.4) does not depend either on the
choice of ω or on the choice of the holomorphic function h defining the local equation of
S. ¤

As a result of this local analysis, we conclude that the collection of local
data (14.3) defining a global separatrix S ⊂ M of a foliation F on M , defines
a collection of meromorphic 1-forms θα with the following properties:

θα ∈ Λ1(S ∩ Uα)⊗M(S ∩ Uα), θα = θβ +
dvαβ

vαβ
on Uαβ. (14.6)

Such a collection will be identified later in §17 with a meromorphic connexion
on the normal line bundle over S.

For convenience we will assume that the index of a holomorphic curve
at a nonsingular point of a foliation is always zero.

The following proposition explains why the Camacho–Sad index is a
proper geometric generalization of the characteristic ratio.

Proposition 14.6. Let S = S1 be a smooth invariant curve through an
elementary singular point of a planar foliation F.

If the eigenvalue λ1 of the linearization matrix, associated with the eigen-
vector tangent to S, is nonzero, then the index of the singularity is equal to
the characteristic ratio λ2/λ1, where λ2 is the other eigenvalue, zero or
nonzero,

i(0, S1,F) = λ2/λ1.

Proof. The proof immediately follows from the computation in a coordinate
system which normalizes the 2-jet of the field to the form given in Table I.1.

¤

As an immediate corollary, we conclude that for a foliation with two
transversal smooth separatrices S1, S2 the corresponding indices are recip-
rocal,

i(0, S1, F) = λ2/λ1 = [i(0, S2, F)]−1. (14.7)
The index of a hyperbolic invariant curve of a saddle-node is zero. Note,
however, that if a saddle-node has a holomorphic center manifold, then its
index may well be nonzero: for the normal form ω = y dx− (xn +ax2n−1) dy
the index of the x-axis is equal to

resx=0
dx

xn + ax2n−1
= res0[x−n(1− axn−1 + · · · )] = −a.
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14. Complex separatrices of holomorphic foliations 237

14C. Total index along a smooth compact invariant curve. Con-
sider a singular foliation F on a complex 2-dimensional surface M and as-
sume that a smooth compact holomorphic curve S becomes a leaf of F after
deleting from it the singular points a1, . . . , an of the latter.

Theorem 14.7. Assume that S is a smooth compact holomorphic curve on
a complex 2-dimensional manifold M .

Then for all foliations F on M which are tangent to S, the sum of indices
of F at all singular points Sing F∩S is the same and depends only on S and
M : ∑

a∈S

i(a, S, F) = c(S, M). (14.8)

Proof. Consider a covering of M by open neighborhoods Uα, the corre-
sponding local equations {hα = 0} for S and two singular holomorphic
foliations F, F′ tangent to S.

These foliations define two collections of the connexion forms, denoted
respectively by θα and θ′α, on the open covering of S by the (relatively) open
domains Uα ∩ S.

On the pairwise intersections Uαβ ∩ S we have the formulas (14.6) for
each collection {θα} and {θ′α} separately, but with the same terms vαβ which
are determined solely by the choice of the local equations for S.

Subtracting one representation from the other, we see that the differences
ξα = θα − θ′α ∈ Λ1(Uα)⊗M(Uα) satisfy the identity

ξα = ξβ +
dvαβ

vαβ
− dvαβ

vαβ
= ξβ on S ∩ Uαβ .

In other words, the 1-forms ξα together correctly define a global meromor-
phic 1-form ξ ∈ Λ1(S)⊗M(S).

It remains to notice that the sum of residues of any such form is zero,∑
resa ξ = 0, if S is compact without boundary; see [For91]. On the other

hand, singularities of ξ are all in the union of the singular loci of the foliations
F and F′, and in each neighborhood Uα,∑

a∈Uα

resa ξ =
∑

a∈Uα

resa θ −
∑

a∈Uα

resa θ′ =
∑

a∈Uα

i(a, S, F)− i(a, S, F′).

Adding these equalities over all singular points, we conclude that

0 =
∑

a∈S

i(a, S, F)−
∑

a∈S

i(a, S,F′),

as asserted by the theorem. ¤
Remark 14.8 (forward reference). This elementary proof is a particular case of the
general argument explained in full details in Chapter III (cf. with Theorem 17.33). In
geometric terms introduced there, Corollary 14.5 means that the sum of residues of any
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238 II. Singular points of planar analytic vector fields

meromorphic connexion on a line bundle does not depend on the connexion, only on the
bundle.

The common number c(S, M) is the degree of this (normal) bundle, a topological
invariant of the embedding of S in M .

Theorem 14.7 provides an easy way of computing the total index of any
invariant curve on M : it is sufficient to find any foliation tangent to S. For
instance, when S can be defined by one global equation, S = {h = 0} on
M , the total index of S at all singularities is zero for any foliation tangent
to S. Indeed, the Pfaffian form dh is (by assumption on the smoothness)
nonsingular at all points of the level curve S, hence has the total index equal
to zero.

Another application of this sort is the following result. Consider the
exceptional divisor E in the complex Möbius band.

Lemma 14.9.
c(E,M) = −1. (14.9)

Corollary 14.10. The simple blow-up F′ of any nondicritical foliation F

satisfies the identity ∑

b∈E
i(b,E,F′) = −1. (14.10)

Proof of the lemma. Consider the nonsingular foliation dy = 0 on
(C2, 0). After the monoidal blow-up y = xz we obtain the foliation F′

on the Möbius band M, defined by the Pfaffian equation ω′ = z dx + x dz.
This foliation has a unique nondegenerate saddle at {z = x = 0} with the
characteristic ratio −1 on the exceptional divisor E ⊂M. By Theorem 14.7,
c(E,M) = −1. ¤

14D. Index and blow-up. Let S be an integral curve through a singular
point a = 0 of a singular foliation F on (C2, 0). Consider the blow-up F′ of
F on the complex Möbius band M. Denote by S′ the blow-up of the curve
S and let a′ = S′ ∩ E.

Lemma 14.11.
i(a′, S′, F′) = i(a, S, F)− 1. (14.11)

Proof. Consider the local coordinates such that S = {y = 0}. In these local
coordinates the linearized Pfaffian equation of F has the form dy − yθ = 0,
where θ ∈ Λ1(S, 0)⊗M(S, 0) is the connexion form.

Blowing up corresponds to the change of variables y = xz; the curve
S′ in the chart (x, z) is given by the equation z = 0. After the change we
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14. Complex separatrices of holomorphic foliations 239

obtain the Pfaffian equation x dz + z dx − xzθ = 0, which after division by
x takes the form

dz − zθ′ = 0, θ′ = θ − dx

x
.

Since the change of variables is linear in z, no additional linearization is
required. Computation of residues of θ and θ′ at the origin yields (14.11). ¤

14E. Cano points. Consider a divisor with normal crossings D on a com-
plex 2-dimensional holomorphic manifold M , and a singular foliation F tan-
gent to D. As before, this means that D r Sing F is the union of leaves of
the foliation F. The following definition is given in terms of the index of one
or two separatrices through a singular point and the partial order (11.3) on
the complex numbers.

Definition 14.12. A singular middle point a on the divisor D is called the
Cano middle point for the foliation F, if

i(a,D) 6> 0. (14.12)

A (singular) corner point a ∈ D+ ∩ D− on the intersection of two smooth
components is called the Cano corner point, if two conditions

i(a,D−) < 0, (14.13)

i(a,D+) 6> [i(a,D−)]−1 (14.14)

hold simultaneously. A Cano point is a Cano middle point or a Cano corner
point.

Note that the two curves D± play asymmetric roles in (14.13)–(14.14),
thus being a Cano corner point is the property of the triplet (a,D+, D−) or
the triplet (a,D−, D+).

Proposition 14.13.

(1) A Cano middle point which is elementary, must have an holomor-
phic separatrix passing through it and not contained in D;

(2) a Cano corner point cannot be elementary.

Proof. Both assertions follow from Proposition 14.6.
1. If the Cano middle point is a saddle-node, then its hyperbolic invariant

manifold (curve) cannot locally coincide with D, since in this case the index
would be zero.

2. A nondegenerate elementary Cano point must have two hyperbolic
invariant curves (complex separatrices). Indeed, as soon as the ratio of the
two eigenvalues is not a positive real, this is asserted by the Hadamard–
Perron Theorem 7.1.
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240 II. Singular points of planar analytic vector fields

But two transversal separatrices of a middle point cannot simultaneously
belong to the vanishing divisor.

3. A Cano corner point cannot have zero index along any smooth compo-
nent, since then the other index i(D−) must be negative and the inequality
0 = i(D+) > 1/i(D−) means violation of the Cano property (14.14).

Thus a saddle-node cannot be a Cano corner point. Similarly, a non-
degenerate singularity cannot be a Cano corner point since in this case
i(D+) = 1/i(D−) in contradiction with (14.14) even if both are negative
and (14.13) holds. ¤

The raison d’étre of the Cano points is their persistence under nondi-
critical blow-up. Consider a singular foliation F tangent to a divisor D with
normal crossings, and let a ∈ D∩Sing F be a singular point, either corner or a
middle with respect to D. After the simple blow-up σ : (M,E) → (C2, a) we
obtain the new foliation F′ defined on the neighborhood of σ−1(D) = D′∪E,
where the D′ is the blow-up of the components of D and E the exceptional
divisor.

Lemma 14.14 (J. Cano [Can97]). If a ∈ D is a Cano point, then at least
one of the singularities that appear by the nondicritical blow-up of a on E,
is again a Cano point with respect to the divisor σ−1(D).

Proof. 1. Consider first the case where a is a middle Cano point, i.e.,
D consists of a single smooth curve through a. In this case the blow-up
D′ is a single smooth curve on M which intersects the exceptional divisor
E transversally at the corner point a′ = E ∩ D′ ∈ σ−1(D). The singular
locus for the blow-up foliation F′ on M consists of the corner point a′ and,
eventually, several middle points m1, . . . , mk on E.

Assume that all singularities of F′ are non-Cano.
Since the points mj are middle, the negation of (14.12) yields i(mj ,E) >

0 for all of them. By Corollary 14.10,

i(a′,E) = −1−
∑

j

i(mj ,E) 6 −1 < 0.

Therefore (14.13) holds for a′ and E. Since the corner point a′ is also non-
Cano, the negation of (14.14) yields i(a′, D′) > 1/i(a′,E) > −1. By (14.11),

i(a,D) = 1 + i(a′, D′) > 1 + 1/i(a′,E) > 1− 1 = 0,

and we arrive at a contradiction with the assumption that a was a middle
Cano point. The contradiction proves that among all singularities Sing F′ =
{a′,m1, . . . , mk} on E there must be at least one Cano point.

2. Consider the case where a ∈ D−∩D+ is a Cano corner point with I =
i(a,D−) < 0. After the blow-up σ−1(D) has two corner points a′± = D′±∩E
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on the intersection of E with the blow-ups D′± of the smooth components
D± both singular for F′. The foliation F′ may also have one or more middle
singular points m1, . . . ,mk ∈ E rD′.

Assume that all these singularities are non-Cano points.
Then i(a′−, D′) = i(a,D−) − 1 < 0 and (14.13) holds for a′− and D′−.

Since a′− is non-Cano, then by negation of (14.14) we obtain

i(a′−,E) > 1/i(a′−, D′
−) = 1/[i(a,D−)− 1] = 1/(I − 1).

If all middle points are non-Cano, their indices i(mj ,E) are nonnegative and

i(a′+,E) = −1− i(a′−,E)−
∑

i(mj ,E) 6 −1− 1/(I − 1) = I/(1− I).

This last quantity is negative so (14.13) holds for a′+ and E. Since a′+ is
non-Cano, the negated (14.14) implies that i(a′+, D′

+) > 1/i(a′+,E). Again
by (14.11),

i(a, D+) = 1 + i(a′+, D′
+) > 1 + 1/i(a′+,E) > 1 + (1− I)/I = 1/I.

As a result we conclude that i(a,D+) > 1/I = 1/i(a,D−) in contradic-
tion with the assumption that a was a corner Cano point. This contradiction
proves that among Sing F′ = {a′±, m1, . . . , mk} there must be at least one
Cano point. ¤

14F. Proof of the Camacho–Sad theorem. Consider a singular foli-
ation F0 at an isolated singular point. By Theorem 8.14, there exists a
map π : (M,D) → (C2, 0) resolving all singularities of F. Expanding π
as a composition of simple blow-ups, we obtain a chain of holomorphic 2-
dimensional surfaces Mk carrying singular foliations Fk and simple blow-
down maps πk : Mk+1 → Mk such that the preimage of the origin by any
composition πk ◦ · · · ◦ π1 is a vanishing divisor Dk with normal crossings.
At the end we obtain the foliation Fn = π∗F which has only elementary
singularities on Dn = π−1(0).

If one of the blow-ups πk were dicritical, there would be infinitely many
leaves of Fk transversal to Dk, which after blow-down produce complex
separatrices. Thus we may consider only the case where all blow-ups πk are
nondicritical.

We claim that in this case at least one singularity of each Fk is a Cano
point. Indeed, the first vanishing divisor D1 = E is smooth. If all singu-
larities from Sing F1 are non-Cano, then by negation of (14.12) we would
have i(a,E) > 0 for each a ∈ Sing F1. Adding these inequalities, we see that∑

a∈E i(a,E, F1) > 0 in contradiction with Corollary 14.10. The contradic-
tion proves presence of at least one Cano (middle) point on D1.

By Lemma 14.14, the π2-preimage of the Cano point p1 on D1 must
contain a Cano point p2 ∈ D2, either corner or middle. For the same reason
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the preimage π−1
3 (p2) must contain a Cano point p3 ∈ D3, etc., until we find

a Cano point pn ∈ Dn. By the assumption on the resolution, Fn has only
elementary points.

By Proposition 14.13, an elementary Cano point has a complex separa-
trix not contained in Dn. Its blow-down is the complex separatrix of the
initial singularity. The proof of the theorem is complete. ¤

* * *

14G. Local Poincaré problem. The next natural question is the number
of “different” complex separatrices of a singular foliation F generated by a
holomorphic vector field F ∈ D(C2, 0). Note that if C1, . . . , Cr are different
irreducible analytic separatrices of F with the local reduced (square-free)
equations {fk = 0}, fk ∈ O(C2, 0), then the union C =

⋃
k Ck is a reducible

analytic separatrix with the square-free local equation {f = 0}, f =
∏

k fk.
Thus the problem of “counting” different separatrices can be transformed
into the question about the “maximal” square-free germ f such that the Lie
derivative Ff is divisible by f in O(C2, 0), Ff = 0 mod 〈f〉.

In several cases this problem obviously admits no meaningful solution.
Assume that the foliation F is dicritical. Then there is a continuum of
smooth irreducible analytic separatrices, thus any finite union of them is
also an analytic separatrix, but none such union is maximal.

Definition 14.15. A singular point of a holomorphic foliation is called
generalized dicritical , if it has infinitely many analytic separatrices.

Obviously, the singularity is generalized dicritical if and only if its com-
plete desingularization as described in §8, involves at least one dicritical
blow-up (or contains a rational node which after subsequent desingulariza-
tion involves a dicritical blow-up; see Problem 8.7). Then all leaves that
cross transversally the corresponding exceptional divisor, will become ana-
lytic separatrices after blowing down.

In all other cases the number of smooth separatrices of the desingular-
ized foliation, and hence that of the initial foliation, is finite, and one may
ask about their number. Yet a more appropriate characteristic is not the
number, but rather the order of the “maximal” invariant curve. It turns out
that in the situation when the maximal separatrix exists, its order admits
an upper bound in terms of the order of the singular foliation.
Remark 14.16 (forward reference). A similar problem arises when F is a polynomial
vector field on the plane C2 and C = {f = 0} an invariant algebraic curve. In this case
Ff = fg, where the cofactor g ∈ C[x, y] is also polynomial, and the question, usually
referred to as the Poincaré problem, arises: determine an apriori bound on the degree
deg f in terms of deg F . This problem will be discussed in detail in §25B.
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Definition 14.17. The order of a planar analytic curve C ⊂ (C2, 0) at the
point 0 ∈ C, denoted by ord0 C, is the degree of the principal homogeneous
terms of any reduced (square-free) convergent Taylor series f which locally
defines the germ of the curve.

Though the local equation of a curve is not uniquely defined, the order
is (Problems 14.1 and 14.3). The order of a curve at its smooth point is 1.
Curves of order > 2 exhibit a singularity: a generic curve of order 2 is the
transversal intersection of two smooth branches.

The reason why the order is convenient for “counting” analytic curves,
is its additivity.

Proposition 14.18. The order of a finite union of germs of pairwise
different analytic curves C =

⋃
k Ck with isolated pairwise intersections

Cj ∩ Ck = {0} for j 6= k, is the sum of their respective orders. ¤

A parallel construction can be used to define the order of a singular
foliation.

Definition 14.19. The order of a holomorphic foliation F at an isolated
singular point (C2, 0) is defined as the order of any holomorphic 1-form ω
with an isolated singularity, defining F by the Pfaffian equation ω = 0,

ord0 F = ord0 ω, ω ∈ Λ1(C2, 0), (14.15)

where the order ord0 ω is the degree ν of the first nonzero homogeneous
component of the Taylor expansion ω = ων + ων+1 + · · · .

This order is also defined independently of the choice of local coordinates
and the Pfaffian form; it can be equally defined as the order of a holomorphic
vector field defining F locally.

The following result by C. Camacho, A. Lins Neto and P. Sad in
[CLNS84] gives a sharp inequality between the orders of a foliation and
its maximal analytic invariant curve.

Theorem 14.20. Assume that a singular holomorphic foliation F on (C2, 0)
is not generalized dicritical, i.e., has at most finitely many separatrices.

Then the order of any local separatrix C ⊂ (C2, 0) satisfies the inequality

ord0 C 6 ord0 F + 1. (14.16)

If the complete desingularization of F has no saddle-nodes and C is
the union of all separatrices passing through the singular point, then the
inequality becomes the equality,

ord0 C = ord0 F + 1. (14.17)
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244 II. Singular points of planar analytic vector fields

The proof of Theorem 14.20 is based on thorough investigation of the
desingularization process.

14H. Weight of a component of the vanishing divisor. Consider an
arbitrary desingularization, a nonconstant holomorphic map π : (M, S) →
(C2, 0) holomorphically invertible outside the origin. Denote by S =

⋃m
j=1 Lj

the vanishing divisor, S = π−1(0), which is the union of projective lines,
S =

⋃
Lj , Li t Lj for i 6= j. We will associate with each component Lj

its weight, a natural number, which measures the topological complexity of
the map π near Lj . As before, we will distinguish between middle (smooth)
points of the divisor S, which belong to only one component Lj , and corner
points which belong to the intersection of two smooth components.

The construction of the weight starts with the following observation.

Lemma 14.21. For any holomorphic cross-section τ : (C1, 0) → (M,a) to
the exceptional divisor S at a noncorner point a ∈ L of a component L ⊆ S,
the order of its blow-down curve γ = π ◦ τ : (C1, 0) → (C2, 0), does not
depend on the choice of the cross-section as soon as the point a remains
noncorner on the same component L.

This lemma makes the following definition self-consistent.

Definition 14.22. The weight w(L) of a component L ⊆ S = π−1(0) with
respect to the blow-up π : (M, S) → (C2, 0) is the order of any blow-down
π ◦ τ for an arbitrary cross-section τ to L in M .

Proof of Lemma 14.21. Let τ, τ ′ be two cross-sections to the same com-
ponent L at two different nonsingular points a, a′, and let w, w′ ∈ N be the
respective orders of the curves,

w = ord0 γ, w′ = ord0 γ′, γ = π ◦ τ, γ′ = π ◦ τ ′.

These orders can be described as the numbers of intersection points between
the curves γ, γ′ and the affine line `ε = {l = ε} for a generic linear function
l : C2 → C and all sufficiently small 0 6= ε ∈ (C, 0) (cf. with Problem 14.3).

Consider the nonsingular foliation G on (C2, 0) defined by the Pfaffian
equation dl = 0. The foliation G is integrable and not generalized dicritical:
there is only one leaf `0 whose closure passes through the “singular” point
at the origin. The blow-up G′ = π∗G of this foliation is a singular foliation
on M . The singular locus of this foliation can be easily described: after
the first simple blow-up there will be a unique hyperbolic singularity s ∈ E,
and by choosing a generic direction l one may without loss of generality
assume that this point will never be blown further by π (we will say that
the direction l is nonexceptional for π). Thus Sing G′ consists, besides s, of
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only corner singularities on the intersections of smooth components of the
exceptional divisor.

Both τ and τ ′ are cross-sections for G′: indeed, by construction both
are transversal to the same leaf L ∈ G′ of the latter. Hence the holonomy
correspondence (map) between these cross-sections along leaves of G′ is well
defined: in particular, any other leaf of G′ that crosses τ , crosses also τ ′ and
vice versa. Hence the number of intersections between Cε = π−1(`ε) with
each of the cross-sections τ, τ ′ is the same for all small ε 6= 0. ¤
Remark 14.23. From Lemma 14.21 it follows that the weight w(L) of a
component L ⊂ π−1(0) can be alternatively defined as the order of the
restriction of π∗l on a cross-section to L at any middle point a ∈ L for a
generic linear function l : C2 → C. The genericity condition is the same as
in the proof of Lemma 14.21: l must be nonexceptional for π.

The weights of components can be computed recursively if π is repre-
sented as a composition of simple blow-ups. Assume that S is a divisor
with normal crossings in a holomorphic surface M and a ∈ S is a smooth or
corner point.

After an extra simple blow-up σ with the center at a we obtain another
manifold M ′ with a new vanishing divisor S′ ⊂ M ′ and the chain of maps

(M ′, S′,E) σ−→ (M, S, a) π−→ (C2, 0, 0).

The exceptional divisor E ⊂ M ′ is a “newly created” component of S′, while
all other components of S′ are blow-ups of “old” smooth components of S.

The composition π′ = σ ◦ π : (M ′, S′) → (C2, 0) is a blow-up. Denote by
w′(L′) the weights of the smooth components of the new vanishing divisor
S′, to distinguish them from the weights associated with the blow-up map
π : (M, S) → (C2, 0).

The center of the blow-up a can be middle (belonging to only one smooth
component of S) or corner (on the intersection of two components). In both
cases the weight of its preimage E = σ−1(a) is the sum of the weights of
these components. More accurately, we have the following assertion.

Lemma 14.24. The weights of components L′j ⊆ S′ which are blow-up of
the respective components Lj ⊆ S, are unchanged, w′(L′j) = w(Lj).

The weight w′(E) of the exceptional divisor E = σ−1(a) ⊆ S′ is equal to
the sum of the weights of the components of S passing through a,

if σ(E) = a, then w′(E) =
∑

L : a∈L⊆S

w(L). (14.18)

Proof. The first assertion is obvious, since π′ and π are biholomorphically
equivalent outside a by definition of the simple blow-up σ.

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



246 II. Singular points of planar analytic vector fields

To prove the second assertion, assume that the local coordinates are
chosen so that one or two components of S that contain a, are coordinate
axes of suitable local coordinates (x, y) ∈ (C2, 0). Consider the pullback π∗

of a generic linear function l. We claim that in these coordinates

π∗l(x, y) =

{
ywh(x, y), a a middle point,
xvywh(x, y), a a corner point,

h(0, 0) 6= 0,

where v and w are the weights of the respective components {x = 0} and
{y = 0} of the vanishing divisor S.

Indeed, divisibility of π∗l by the appropriate powers of x and y follows
from Remark 14.23. It remains to prove that the corresponding quotient h
is in both cases nonvanishing. Yet if h(0, 0) = 0, then the level curve π∗l = 0
will have a branch not in the vanishing divisor, which is therefore a complex
separatrix of the trivial foliation dl = 0, which contradicts the choice of l.

To complete the proof of the lemma, note that a generic cross-section
τ : (C, 0) → (M ′, a′) to the exceptional divisor E ⊂ M ′ at the point a′ ∈ E
is mapped by σ to a smooth analytic curve through the origin in the (x, y)-
plane, transversally crossing one or both axes. Such a curve can be parame-
terized as t 7→ (αt + · · · , βt + · · · ), αβ 6= 0. Restricting the function π∗l on
this curve, we obtain a holomorphic germ of order w or w + v respectively.
The lemma follows now from Remark 14.23. ¤

The simple combinatorial law (14.18) allows us to compute immediately
the order of separatrices of a foliation if the complete desingularization is
known. If a hyperbolic saddle (with nonpositive characteristic ratio) occurs
as a middle singularity on a component L of weight w of the vanishing
divisor, then the smooth holomorphic invariant curve transversal to L at
this point produces (after blow-down) a local separatrix of order w for the
initial foliation.

14I. Weighted sum of vanishing orders. Let F be the germ of a sin-
gular holomorphic foliation on (C2, 0) generated by a holomorphic vector
field F ∈ D(C2, 0) with an isolated singular point at the origin, and γ
the germ (at the origin) of an irreducible invariant curve (a separatrix)
C = {f = 0} ⊆ (C2, 0) for F (as usual, f is assumed to be square-free).
Denote by γ : (C1, 0) → (C2, 0) also the local parametrization established in
Theorem 2.26.

Definition 14.25. The vanishing order of the foliation F along an irre-
ducible separatrix γ is the order of the holomorphic vector field γ∗F ∈
D(C1, 0), the pullback of F ,

κ0(F, γ) = ord0 γ∗F, F ∈ D(C2, 0). (14.19)
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Clearly, this definition does not depend either on the arbitrariness of
the choices of the field F generating F or on the parametrization of γ. If
γ is a smooth curve, then the vanishing order is equal to the order of zero
of the restriction of F on γ. Note that the Pfaffian form ω defining the
foliation, cannot be directly used for computation of the vanishing order,
since γ∗ω ≡ 0.

The vanishing order is obviously invariant by biholomorphisms, yet non-
invertible maps (blow-ups) can change it.

Proposition 14.26. Let F be the germ of a nondicritical singular holomor-
phic foliation on (C2, 0) and F′ the blow-up of F by the standard monoidal
map σ : (M,E) → (C2, 0). Then

∑

a∈E
κa(F′,E) = ord0 F + 1. (14.20)

If γ ⊂ (C2, 0) is an irreducible separatrix of F and γ′ its blow-up which
intersects E at a point a = γ′ ∩ E, then

κa(F′, γ′) = κ0(F, γ)− ord0 γ · (ord0 F − 1). (14.21)

Proof of the proposition. Let F be a holomorphic vector field which gen-
erates F. Denote Fν = pν(x, y) ∂

∂x + qν(x, y) ∂
∂y the principal homogeneous

component of order ν = ord0 F of the field F . Without loss of generality
we may assume that all singularities of the foliation F′ belong to the affine
chart (x, z), z = y/x on the complex Möbius band M. In this chart the
vector field F ′ defining F′, takes the form

F ′ = [qν(1, z)− zpν(1, z) + x(· · · )] ∂
∂z + x[pν(1, z) + x(· · · )] ∂

∂x .

After restriction on the smooth exceptional divisor E = {x = 0} we obtain
the polynomial field Z = hν+1(z) ∂

∂z , hν+1 = qν(1, z) − zpν(1, z). The van-
ishing order of the field Z at each singularity corresponding to a root of the
polynomial hν+1, is equal to the multiplicity of this root. The total order of
all roots is equal to ν + 1 = deg hν+1. This proves (14.20).

To prove (14.21), we compare the vector field F ′ generating its blow-up
F′ = σ∗F near a ∈ S ∩ γ′ with the vector field F ′′ = σ−1∗ F obtained by
the pullback of F on M. These two fields are tangent to the same foliation
F′ and differ by the factor xν−1, i.e., F ′′ = xν−1F ′. Thus the restriction
of the field F ′ on the curve γ′ differs from that of F ′′ by the scalar factor
(x ◦ γ′(t))ν−1. It remains to notice that the function x ◦ γ′(t) itself has the
vanishing order at t = 0 equal to ord0 γ by Remark 14.23. ¤

The first assertion of Proposition 14.26 suggests that the sum of vanish-
ing orders of all singularities obtained by a blow-up π : (M,S) → (C2, 0) of
an isolated singular foliation F, whether complete or not, could be expressed
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248 II. Singular points of planar analytic vector fields

via the order ord0 F of the singularity. This is indeed the case, though the
definition of the vanishing order must be modified because of the corner
(nonsmooth) points of the vanishing divisor.

Let S =
⋃

Lj be decomposition of the vanishing divisor of the blow-up
π and F′ the blow-up of the foliation F on M . Let a ∈ S be a point on
the vanishing divisor, either “middle” (smooth) or corner (the transversal
intersection of two different smooth components). Let L 3 a be a smooth
component of the vanishing divisor through a. Denote

κa(F′, L) =

{
κa(F′, L) if a is a middle point,
κa(F′, L)− 1 if a is a corner point,

(14.22)

where κa(F′, L) is the vanishing order introduced in Definition 14.25. In
what follows we refer to κ as the vanishing order along a component of the
vanishing divisor : this should not lead to confusion with the vanishing order
along a separatrix.

The definition (14.22) seems to be somewhat artificial, yet it leads to the
elegant formula for the sum of weighted vanishing orders, due to the same
authors [CLNS84].

Theorem 14.27. Assume that F is a singular holomorphic foliation on
(C2, 0) and π : (M, S) → (C2, 0) a blow-up without dicritical components,
i.e., the corresponding foliation F′ is everywhere tangent to the vanishing
divisor S = π−1(0) =

⋃
Lj.

Then the weighted sum of vanishing orders of F′ along all components
of the vanishing divisor is by one greater than the order of the initial singu-
larity : ∑

Lj

∑

a∈Lj

w(Lj)κa(F′, Lj) = ord0 F + 1. (14.23)

Though the summation in (14.23) is formally extended over all points of
each component Lj , only singularities of F′ may contribute nonzero terms.
On the other hand, all corner points appear in this sum twice, contribut-
ing the vanishing order along each of the two smooth components passing
through them.

Demonstration of Theorem 14.27. The proof goes by induction in the
number of simple blow-ups necessary to obtain π.

For the standard monoidal map σ : (M,E) → (C2, 0) the identity (14.23)
coincides with (14.20), since the weight of the unique component of the
exceptional divisor is equal to 1.

Assume now that for a map π : (M,S) → (C2, 0) the formula (14.23) is
true. Consider an arbitrary point a, a simple blow-up σ of M at a and the
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composition π′ : (M ′, S′) → (C2, 0), π′ = σ ◦ π. The proof will be achieved
if we establish the equality (14.23) for the blow-up π′. This will be achieved
by showing that the weighted sum which occurs in the left hand side of the
equality (14.23), computed for the foliation G = π∗F and its simple blow-up
G′ = σ∗G = π′∗F, is the same.

As usual, we have to consider two cases, when a is a middle point on
some smooth component, and when it is a corner formed by two components.

1. Assume that a = (0, 0) is a middle point of order ν on the separatrix
L = {y = 0} of the foliation G = π∗F, and assume that the weight of this
component is equal to w. Then the contribution of this point to the sum
(14.23) for the foliation G on M is just wκ, where κ = κ is the vanishing
order of F along L.

After the blow-up σ we obtain the foliation G′ = σ∗G; there will appear
a new component of S′, the vanishing divisor E = σ−1(0), and the curve L′,
the blow-up of L, will cross E at the new corner singularity of the foliation
G′.

The contribution of the new singularities to the sum (14.23) for the
blow-up foliation G′ consists of the total sum of weighted vanishing orders
along E, plus the vanishing order along L′ at a′. The new weights can be
immediately computed by Lemma 14.24:

w(E) = w(L) = w, w(L′) = w(L) = w.

Note that all singularities of G′ on E, except for a′, are middle points, while
a′ is a corner. Thus the (nonweighted) sum of vanishing orders is equal to[∑

b∈E
κb(G′,E)− 1

]
+ [(κa(G′, a′)− 1)] = [ν + 1− 1] + [κ − (ν − 1)− 1] = κ

by (14.20), (14.21), (14.22) since all invariant curves are smooth of order
1. Thus the weighted contribution from all singular points on E is equal to
wκ = wκ, the same as before, that is, the total weighted sum of vanishing
orders for G and G′ = σ∗G remains the same.

2. If the point a is a corner formed by two smooth components L1 and L2

of the weights w1 and w2 with the vanishing orders κ1 and κ2 respectively,
then the corresponding contribution from a to the weighted sum for the
foliation G is equal to

wkκ1 + w2κ2 = wk(κ1 − 1) + w2(κ2 − 1). (14.24)

This is to be compared with the contribution from all singularities on the
newly created exceptional divisor E which now carries not one, but two
corner points a′1,2 on the intersection of E with the blow-ups L′1,2 of L1,2.
The weight of E is equal to w1 + w2, thus, denoting again by ν = orda G the
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order of the corner singularity, we obtain for the contribution

w(E)
∑

b∈E
κb(G′,E) + w(L′1)κa′1(G

′, L′1) + w(L′2)κa′2(G
′, L′2)

to the sum (14.23) from all singularities on E the value

(w1 + w2)[ν + 1− 2] + w1[κ1 − (ν − 1)− 1] + w2[κ2 − (ν − 1)− 1], (14.25)

again by the same formulas (14.20)–(14.22). One can immediately verify
that the expressions (14.24) and (14.25) coincide, which means that the total
sum (14.23) remains the same for the foliations G and G′. This completes
the inductive proof of the theorem. ¤

14J. Minimality of integrable foliations. Theorem 14.20 is proved by
comparing the foliation F with an integrable foliation H with the same
separatrices.

Demonstration of Theorem 14.20. Let F be a singular holomorphic fo-
liation on (C2, 0) having only finitely many analytic separatrices, and C one
of these separatrices defined by a square-free equation {f = 0}, f ∈ O(C2, 0).
Since f is square-free, the Pfaffian form df vanishes only at the origin.

Consider the integrable foliation H defined by the Pfaffian equation
{df = 0} on (C2, 0). By construction, the curve C is a common separa-
trix for both F and H. By definition of the order,

ord0 H = ord0 f − 1 = ord0 C − 1, (14.26)

since H can be generated by the Hamiltonian vector field H = −∂f
∂y

∂
∂x + ∂f

∂x
∂
∂y

with an isolated singularity. The foliation H is automatically not generalized
dicritical: the curve C is its maximal separatrix.

The proof of the theorem will be obtained by comparing the weighted
sums of the vanishing orders for F and H after blow-up by a map
π : (M, S) → (C2, 0) which desingularizes completely both foliations F, H.
Existence of such a simultaneous desingularization is obvious: first one has
to desingularize F and then to continue by blowing up singularities of H

regardless of the nature of singularities of F (and their mere presence)
at the singularities of H. Since blow-up of an elementary singularity (or
a nonsingular point) is again elementary, we end up constructing a map
π : (M,S) → (C2, 0) such that blow-up by π of both foliations, denoted F′

and H′ respectively, has only elementary singularities on S. The foliation
H′ remains to be analytically integrable, since this property is stable by
blow-ups.

An elementary integrable singularity can be only a saddle which has
two smooth separatrices with the vanishing order along each one equal to
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1. Thus we have for any smooth component L ⊂ S of the vanishing divisor,
the following values:

∀a ∈ L ⊆ S, κa(H′, L) =

{
1, a a middle singularity for H′,
0, a a corner point.

(14.27)

As for the foliation F′, it must have singularities at every corner point
of S and also at any middle singularity of H′. Indeed, through any such
middle singularity passes a smooth analytic separatrix common for H and
F′ and transversal to S.

Since the vanishing order at a singular point is at least one, we have the
following inequalities:

∀a ∈ L ⊆ S, κa(F′, L) >
{

1, a a middle singularity for H′,
0, a any other point.

(14.28)

These inequalities become equalities if the foliation F′ has only hyper-
bolic singular points on S and the separatrix C used to construct the Hamil-
tonian foliation, is maximal. Indeed, under these additional assumptions any
middle singularity a of F′ on S has another separatrix transversal to S; be-
cause of the maximality, it is also a separatrix for H′, which means that a
is also singular for H′.

By Theorem 14.27, the weighted sum of vanishing orders is equal to
the order of the initial foliations, related to the order of the separatrix C
by (14.26). Adding together the equalities (14.27) and inequalities (14.28)
with the corresponding weights w(L) over all smooth components L of the
vanishing divisor S, we obtain the inequality

ord0 C = 1+ord0 H =
∑

L

w(L)κa(H′, L) 6
∑

L

w(L)κa(F′, L) = 1+ord0 F,

which becomes equality if the complete desingularization of F has no saddle-
nodes and C is maximal. This proves the theorem. ¤

The main idea of the proof of Theorem 14.20 is the comparison of two fo-
liations sharing a common separatrix: one arbitrary and another integrable.

Let F and H be two singular holomorphic foliations on (C2, 0) having
nontrivial common leaves. If the foliations are different, then these common
leaves can be only analytic separatrices, as was observed by R. Moussu. In-
deed, if the wedge product of the two Pfaffian forms defining these foliations
is not identically zero, then it can vanish only on an analytic curve which
should contain all leaves common for F and H.

Denote by C ⊆ (C2, 0) the common separatrix (in general, reducible)
for F and H. Then for each connected (irreducible) component γ ⊆ C one
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252 II. Singular points of planar analytic vector fields

can compare the vanishing orders of F and H on this component. It turns
out, that the integrable foliations possess the following minimality property:
the vanishing order is minimal compared to any other holomorphic foliation
with the same separatrix.

Theorem 14.28. Let C ⊂ (C2, 0) be an analytic curve which is a common
separatrix for two singular holomorphic foliations F and H. Assume that :

(1) F is not generalized dicritical,
(2) H is holomorphically integrable,
(3) C is maximal for H.

Then for any irreducible component γ ⊆ C the vanishing orders of F and H

satisfy the inequality
κ0(F, γ) > κ0(H, γ). (14.29)

This assertion for elementary singularities (Problem 14.8), is equivalent
to the inequalities (14.27)–(14.28) which are the key ingredient in the proof
of Theorem 14.20. In turn, the latter theorem is a key tool for demonstra-
tion of Theorem 14.28 in the general case. We stress that here and below we
deal with the “true” vanishing order κ0(·, γ) and not the “modified” vanish-
ing order κ0(·, γ) as in (14.22), even for separatrices γ which are “partial”
(nonmaximal, e.g., separate sides of corner points).

Proof of Theorem 14.28. Consider a branch of the simultaneous desin-
gularization of the foliations F and H on the common irreducible curve.
This means that we consider a sequence of blow-ups π1, . . . , πk, obtained as
follows:

(1) π1 = σ1 is a standard blow-up at the origin a0 = (0) ∈ C2;
(2) πi+1 = σi+1 ◦ πi is the composition of πi and the standard blow-up

σi+1 of a point ai ∈ Si = π−1
i (0) on the vanishing divisor Si.

Each subsequent center of desingularization, the point ai ∈ Si is at the
intersection between Si and the (strict) blow-up γi of the curve γ = γ0 by
πi: since the curves γ0 = γ, γ1, . . . , γk are all irreducible, this intersection
point is uniquely determined.

Denote by Fi and Hi the blow-ups of F and H respectively by the maps
πi, i = 1, . . . , k. Each γi is a common irreducible separatrix through ai for
both foliations Fi and Hi.

In the assumptions of the lemma, all singularities Fi at ai are not gen-
eralized dicritical and all Hi are integrable foliations. Denote

νi = ordai Fi, µi = ordai Hi, ρi = ordai γi, i = 1, . . . , k.
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14. Complex separatrices of holomorphic foliations 253

Iterating the equalities (14.21), we obtain the explicit expressions for the
tangency orders

κ0(F, γ) = ρ1(ν1 − 1) + · · ·+ ρk(νk − 1) + κak
(Fk, γk), (14.30)

κ0(H, γ) = ρ1(µ1 − 1) + · · ·+ ρk(µk − 1) + κak
(Hk, γk). (14.31)

By Theorem 14.20, we have the inequalities between all orders,

νi > µi, i = 0, 1, . . . , k. (14.32)

By construction, the terminal point ak is elementary for both Fk and
Hk. The curve γk obtained on the last step, is smooth and transversal to the
vanishing divisor Sk, since all analytic separatrices of elementary integrable
singularities are smooth and transversal to each other. All these properties
imply that

κak
(Fk, γk) > 1 = κak

(Hk, γk). (14.33)
The relations (14.30)–(14.33) taken together prove (14.29). ¤

Exercises and Problems for §14.

Problem 14.1. Show that the definitions of the order of an analytic curve and of
a singular foliation at an isolated singularity are self-consistent.

Exercise 14.2. Let u ∈ O(C2, 0) be a primitive integral of an holomorphic foliation
F. Is it true that ord0 u = ord0 F + 1?

Problem 14.3. Prove that an order of a planar analytic curve C at a point a
is equal to the multiplicity of intersections between C and a generic line passing
through a. Formulate and prove an analogous result for the order of foliation at an
isolated singular point.

Exercise 14.4. Compare the vanishing order of a holomorphic foliation on a local
separatrix before and after a dicritical blow-up; cf. with Proposition 14.26.

Problem 14.5. Prove that resonant nodes (with integer or inverse integer charac-
teristic ratio) can be desingularized by suitable blow-up.

Problem 14.6. Describe all elementary singularities which are generalized dicrit-
ical.

Problem 14.7. Assume that C, the maximal separatrix of an integrable foliation
H, is the union of pairwise transversal smooth curves. Compute the vanishing order
of H along any such curve.

Problem 14.8. Prove Theorem 14.28 for the case where H is an elementary sin-
gularity.

Problem 14.9. Prove that any derivation F ∈ Der A always possesses an “eigen-
vector” a ∈ A such that Fa = ab, b ∈ A, for the following two algebras,

(1) A = O(C2, 0), the algebra of holomorphic germs;

(2) A = C[[x, y]], the algebra of formal series in two variables.
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254 II. Singular points of planar analytic vector fields

Is this assertion true when A = C[x, y] is the algebra of polynomials? (see §25 for
a hint).

Problem 14.10. A separatrix C of a holomorphic foliation F on U = (C2, 0) is
called isolated, if for some regular point a ∈ C r {0} there exists a small open
neighborhood V , a ∈ V ⊆ U , such that the only separatrix of F which crosses V ,
is C itself. A separatrix is called identical, if any regular point a ∈ C r {0} has a
neighborhood V such that any point b ∈ V belongs to a separatrix of the foliation.

Prove that any separatrix of a singular holomorphic foliation is either isolated,
or identical.

Problem 14.11. Prove that the number of isolated separatrices of an isolated
singularity of holomorphic foliation is always finite.
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Chapter III

Local and global theory
of linear systems

Analysis of holomorphic vector fields and analytic foliations beyond the local
theory exposed in Chapter I, is very difficult in more than two dimensions.
Perhaps the only case where such a study is possible, both locally and glob-
ally, is that of (nonautonomous) linear systems. These systems exist on a
rather special type of holomorphic manifolds, holomorphic vector bundles.
The latter are “locally cylindric manifolds” made of cylinders (Cartesian
products) U ×Cn, U ⊆ C in the same way the manifolds are made of locally
Euclidean charts. In this section we develop local and global theory of linear
systems and their singularities.

15. General facts about linear systems

15A. Linear differential equations: Pfaffian, ordinary, matrix. Let
T be a Riemann surface, a complex one-dimensional (connected) manifold,
which will play the role of the “complex time axis”. The particular cases
most important for the following are an arbitrarily small neighborhood of a
point (punctured or not), subdomains of the complex line C and the Rie-
mann sphere (the projective line P1 denoted for brevity by P). We com-
pletely ignore in this book the linear systems defined over Riemann surfaces
of positive genus.

255
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256 III. Linear systems

Let n be a natural number and ωij ∈ Λ1(T ), i, j = 1, . . . , n a collection of
n2 holomorphic differential forms on T , arranged as an n×n-matrix 1-form

Ω =




ω11 · · · ω1n
...

. . .
...

ωn1 · · · ωnn


 ∈ Mat(n,Λ1(T )).

Consider the complex n-space Cn equipped with the coordinates x =
(x1, . . . , xn) and the Cartesian product T ×Cn. The one-dimensional distri-
bution on T × Cn defined by the common null space of the n holomorphic
1-forms θi = dxi −

∑n
j=1 ωijxj ∈ Λ1(T × Cn), i = 1, . . . , n, defines a holo-

morphic foliation. Its leaves, considered as graphs of holomorphic vector
functions x(·) : T → Cn, are solutions of the system of linear Pfaffian dif-
ferential equations

dx = Ωx, or, after expansion, dxi =
n∑

j=1

ωijxj . (15.1)

Note that in general linear systems have only multivalued holomorphic solu-
tions, since the leaves may cross many times the “vertical” lines {t = const}
which will be called fibers (having in mind future generalizations of the
theory).

If Ũ ⊆ T is a chart on T with a coordinate function t : Ũ → C on it with
the range U = t(Ũ), then the 1-forms ωij and the respective matrix Ω can
be represented as

ωij = aij(t) dt, resp., Ω = A(t) dt,

where aij(t) are holomorphic functions on U together forming the holomor-
phic matrix function A(t) ∈ Mat(n,O(U)). In the chart t the system of
Pfaffian equations (15.1) takes the form of a system of n ordinary linear
differential equations

ẋ(t) = A(t)x(t), t ∈ U ⊆ C, x = (x1 . . . , xn)> ∈ Cn. (15.2)

Together with vector solutions of the equations (15.1) or (15.2), it is
very useful to consider also their matrix solutions. While any rectangular
matrix solution with n rows can be considered, the most important is the
case of square n× n-matrices. To distinguish the matrix equation from the
vector one, we will choose the capital letters, writing

dX = ΩX,

Ω ∈ Mat(n,Λ1(T )),

(Pfaffian),

or

Ẋ(t) = A(t)X(t),

A(t) ∈ Mat(n,O(T )),

(ordinary),

X = X(t) ∈ Mat(n,O(t)), Ω = A(t) dt, t ∈ T.

(15.3)
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15. General facts about linear systems 257

Such matrices represent n-tuples of vector solutions of (15.2) or (15.1).

15B. Fundamental solutions. In general not all solutions of differential
equations can be continued over all paths. Linear systems are exceptionally
well behaved in this respect.

Proposition 15.1. Any solution of a differential system (15.1) can be con-
tinued as an analytic vector function along any simple path γ ⊂ T . The
result of this continuation is a linear map ∆γ between the fibers τa and τb

at the endpoints a, b ∈ T of the path γ.

Proof. The zero solution obviously can be continued along any path, thus
all sufficiently close solutions can also be continued. Yet because of the
linearity, any solution admits continuation.

More precise arguments run as follow. The null leaf , the curve T×{0} ⊂
T ×Cn, is always the leaf of any foliation defined by a linear system (15.1).
This curve is transversal to each fiber τa = {a} × Cn ⊂ T × Cn.

Let γ ⊂ T be any path connecting two points a, b ∈ T . Then for any
foliation F defined by a system (15.1) the holonomy (correspondence) map
∆γ : (τa, a) → (τb, b) is always defined between sufficiently small neighbor-
hoods of the points a and b on the respective cross-sections τa, τb, as ex-
plained in §2C. Yet because of the linearity of the system, the holonomy
map is in fact linear and hence can be defined between the entire transver-
sals τa, τb

∼= Cn.
Indeed, let x′(t), x′′(t) be solutions of (15.1) corresponding to the initial

conditions v′, v′′ ∈ τa and small enough so that both their graphs and the
graph of their sum x(t) = x′(t)+x′′(t) belong to a sufficiently small tubular
neighborhood of the curve γ ⊂ T × {0} ⊂ T × Cn. Then the sum x(t) also
satisfies (15.1)

dx = d(x′ + x′′) = dx′ + dx′′ = Ωx′ + Ωx′′ = Ω(x′ + x′′) = Ωx,

with the initial condition v = v′ + v′′ and takes the terminal value ∆γ(v) =
∆γ(v′) + ∆γ(v′′). A similar argument shows also that ∆γ(cv) = c∆γ(v) for
all sufficiently small v and cv. ¤

From now on we will always consider the holonomy maps ∆γ as globally
defined (automatically invertible) linear maps between different copies of Cn

if a 6= b or linear self-maps from GL(n,C) if a = b and the path γ is a closed
loop. As follows from the general properties of the holonomy, the map ∆γ

depends only on the homotopy class of the path γ with the fixed endpoints.
In particular, if T is simply connected, then the correspondence map ∆b

a is
well defined for any two endpoints a, b ∈ T . In this case solutions of the
linear system obviously form a linear space over C.
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258 III. Linear systems

Definition 15.2. A tuple of solutions is called a fundamental system of
solutions of the systems (15.1) or (15.2) on a simply connected base T ,
if it is a basis in the linear space of all such solutions. A fundamental
matrix solution of the equation (15.3) is a holomorphic matrix function
X : T 7→ Mat(n,C) which is everywhere nondegenerate, detX(t) 6= 0 for all
t ∈ T .

The following basic result describes the structure of the linear space of
solutions of a linear system.

Theorem 15.3. Any linear system (15.1) of order n over a simply connected
Riemann surface T admits an n-dimensional linear space of solutions. The
“evaluation map” x(·) 7→ x(a) assigning to any solution x(·) its value x(a)
is an isomorphism between this space and the vertical cross-section τa =
{a} × Cn for any choice of the point a ∈ T .

Any n solutions with linearly independent initial conditions in τa form
a fundamental matrix solution defined on the entire surface T . Any two
fundamental matrix solutions X(t), X ′(t), differ by a constant right matrix
factor, X ′(t) = X(t)C, where C ∈ Mat(n,C).

Proof. Let a ∈ T be a fixed base point. Then for any s ∈ T the holonomy
map ∆s

a between the cross-sections τa = {t = a} and τs = {t = s} is
a uniquely defined linear operator by Proposition 15.1, and for any initial
value v ∈ τa the function

s 7−→ xv(s) = ∆s
a(v), s ∈ T,

is a globally defined solution to the linear system (15.1). The map v 7→ xv(·),
inverse to the evaluation map x(·) 7→ x(a), is a linear operator between two
linear spaces: it is surjective by the existence part and injective by the
uniqueness part of the assertion of Theorem 1.1.

Choosing any n linearly independent initial values v1, . . . , vn ∈ τa and
arranging them into the nondegenerate square matrix V , we may as before
use the holonomy ∆s

a to construct the matrix solution s 7→ XV (s). This
solution is automatically nondegenerate at every point, since all holonomy
operators ∆s

a are invertible.
To prove the last remaining assertion, consider the quotient C(t) =

X−1(t)X ′(t) of two fundamental matrix solutions for the same system (15.3).
Differentiating this quotient, we obtain

dC = d(X−1X ′) = −X−1 dX ·X−1X ′ + X−1 dX ′

= −X−1ΩX ′ + X−1ΩX ′ = 0,

which means that this quotient is a constant invertible matrix C. ¤
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15. General facts about linear systems 259

Remark 15.4. An alternative proof of the fact that any solution of a linear system can
be continued along any path, can be achieved by purely real arguments. We start with a
general a priori growth rate bound characteristic for linear systems.

Lemma 15.5 (Gronwall inequality). Let A(·) be a continuous matrix function on the real
interval t ∈ [t0, t1] ⊂ R of explicitly bounded norm,

∀t ∈ [t0, t1] A(t) ∈ Mat(n,C), ‖A(t)‖ 6 c.

Then any solution x(t) of the linear system (15.2) satisfies the inequality

‖x(t)‖ 6 ‖x(t0)‖ exp(c |t− t0|).

Proof. By the limit triangle inequality, d
dt
‖x(t)‖ 6 ‖ d

dt
x(t)‖, therefore

d
dt
‖x(t)‖ 6 ‖A(t)‖ ‖x(t)‖ 6 c ‖x(t)‖.

Therefore the logarithmic derivative d
dt

ln ‖x(t)‖ is bounded by c everywhere on [t0, t1], so
that its growth between t0 and an arbitrary t is no greater than C |t−t0|. This immediately
implies the inequality for the norm ‖x(t)‖ itself. ¤

By the Gronwall inequality, any solution with the initial condition x0 ∈ Rn cannot
leave the compact set K = [t0, t1] × {‖x‖ 6 R′} ⊂ R1+n, R′ = ‖x0‖ exp(R |t1 − t0|),
except for the right section K ∩{t1}×Rn. On the other hand, by one of the fundamental
theorems for real ordinary differential equations [Arn92], any solution beginning in any
compact K ⊂ R×Rn in the “space-time” can be continued until it reaches the boundary
of K. Together with the above argument, this implies that solutions of linear systems on
real intervals are always globally defined.

One can use this real theorem to continue solutions along arbitrary parameterized
curves in T . It remains to prove that these restricted solutions are in fact holomorphic on
T and prove (in the same way as before) that the results are independent of the choice of
the curves in case the domain is simply connected.

Remark 15.6 (variation of constants). Solution of nonhomogeneous sys-
tems can be reduced to that of homogeneous systems using the method of
variation of constants. If X(t) is a fundamental matrix solution of the linear
system dX = ΩX, then a particular solution of the nonhomogeneous system
dY = ΩY + Θ, where Θ is a known matrix 1-form on T , is given by the
formulas

Y (t) = X(t)C(t), dC = X−1Θ, (15.4)
where solutions of the second equation can be found by immediate integra-
tion, C =

∫
X−1Θ, since any holomorphic 1-form on a simply connected

Riemann surface T is exact. Any other solution of the nonhomogeneous
system can be obtained as the sum of the particular solution Y (t) and a
general solution of the homogeneous system.

15C. Monodromy and holonomy. If the Riemann surface T is not sim-
ply connected, the leaves of the foliation F tangent to the distribution
dx − Ωx = 0 on T × Cn in general are not graphs of vector functions:
they may intersect the fibers τa = {t = a}×Cn ⊂ T ×Cn by more than one
point. In the classical language it is said that solutions of the system (15.3)
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are multivalued functions of t. Speaking geometrically, the foliation F may
have a nontrivial holonomy group.

As it was defined in §2C, this group associates with any loop γ ∈ π1(T, a)
on the null leaf T ∼= L0 = {x = 0} ∈ F a linear invertible self-map ∆γ

of the cross-section τa. If a coordinate system is fixed on the section τa,
then ∆γ becomes a square matrix denoted by Fγ . By construction, for
any fundamental matrix solution X(t) of (15.3) the result of its analytic
continuation over the loop γ is

∆γX(a) = FγX(a), Fγ ∈ GL(τa) ∼= GL(n,C). (15.5)

Note that the linear operators Fγ depend on the choice of the base point a.
A different construction requires a choice of fundamental matrix solution.

If X(t) is such a solution, then the result of its analytic continuation along a
loop γ ∈ π1(T, a) is another fundamental matrix solution. By Theorem 15.3,
there exists a constant matrix M = Mγ , called the monodromy matrix , such
that

∆γX(t) = X(t) ·Mγ , Mγ ∈ GL(n,C). (15.6)
The monodromy matrices do not depend on the choice of the base point a ∈ T
in the following sense: the identity (15.6) holds for all points t sufficiently
close to a, if we identify the loops γ ∈ π1(T, t) for different base points t suf-
ficiently close to a. On the other hand, the monodromy matrices depend on
the choice of a fundamental solution X(t): choosing a different fundamental
solution X ′(t) = X(t)C results in replacing Mγ by M ′

γ = C−1MγC.
Both correspondences, the holonomy γ 7→ Fγ and the monodromy γ 7→

Mγ , are linear representations of the fundamental group:

∀γ1, γ2 ∈ π1(T, a) Mγ1·γ2 = Mγ2Mγ1 , Fγ1·γ2 = Fγ2Fγ1 , (15.7)

where γ1 · γ2 is the composite loop circumscribing first γ1 and then γ2. The
two representations are equivalent: as follows from their definitions, the
monodromy matrices Mγ numerically coincide with the holonomy matrices
Fγ for the standard choice of coordinates on Cn and a special choice of
the fundamental solution X(t), normalized by the condition X(a) = E.
The image of these representations in GL(n,C) will be referred to as the
monodromy group of the linear system (15.3).

15D. Gauge transform and gauge equivalence. The special structure
of the phase space on which linear systems are defined, restricts the class
of admissible transformations. Instead of arbitrary biholomorphisms of the
Cartesian product T × Cn, only maps linear in the “vertical” (“linear”)
variables are allowed.

More precisely, consider two cylinders S = T × Cn and S′ = T ′ × Cn

over two Riemann surfaces T and T ′ respectively. Each cylinder is naturally
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equipped by the projection π : S → T (resp., π′ : S′ → T ′) on the base. A
gauge map, or gauge transform between these two cylinders is a holomor-
phism H : S → S′ which respects these projections and is linear on each
fiber τa = π−1(a) = {a} × Cn, for any a ∈ T . This means that there exists
a holomorphic map h : T → T ′ such that

π′ ◦H = h ◦ π, H|τa : τa → τh(a) is linear,

τa = π−1(a), τh(a) = π′−1(h(a)).
(15.8)

In coordinates a gauge map takes the form

(t, x) 7→ (
h(t),H(t)x

)
, H ∈ GL(n,O(T )), (15.9)

where H(·) is a holomorphic matrix function (“linear change of the depen-
dent variables”). If necessary, we will specify explicitly that the gauge trans-
form is fibered over the base map h. A gauge map is invertible if and only
if h is a biholomorphism and H(t) is invertible for any t ∈ T . In practice
we will almost always consider cylinders over the same Riemann surface and
use maps fibered over the identity map h = id. The holomorphic invertible
matrix function H = H(t) ∈ GL(n,O(T )) is called the conjugacy matrix.

Gauge equivalence naturally acts on linear systems defined on the re-
spective cylinders. If X(t) is a fundamental matrix solution to a sys-
tem dX = ΩX and H : (t, x) 7→ (

t,H(t)x
)

a gauge map, then the image
X ′(t) = H(t)X(t) is a fundamental matrix solution to another linear system
dX ′ = Ω′X ′. One can immediately see by expanding the expression for the
derivative dX ′ ·X ′−1, that

Ω′ = dH ·H−1 + H · Ω ·H−1. (15.10)

Two linear systems of the same order defined on the same Riemann surface
T , are said to be gauge equivalent (more precisely, holomorphically gauge
equivalent) if they can be transformed into each other by an invertible gauge
map.

Clearly, gauge equivalent systems have isomorphic monodromy and ho-
lonomy groups. The corresponding matrix representations are equivalent.
If the two fundamental solutions used to compute the monodromy group
are X(t) and X ′(t) = H(t)X(t), then the monodromy matrices coincide
identically. This explains why in many cases the monodromy matrices are
more convenient to deal with than the holonomy operators. The holonomy
groups for two gauge equivalent systems, if associated with the same base
point a ∈ T , are linearly conjugate by the map H(a) ∈ GL(τa).

15E. Systems with isolated singularities. A linear system with singu-
larities over a Riemann surface T is a singular holomorphic foliation F on
T ×Cn which coincides with a foliation defined by some linear system (15.3)

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



262 III. Linear systems

outside a “small” exceptional set. The exception, nonanalyticity locus Σ of
the matrix 1-form Ω, is a subset of the complex one-dimensional base T . It
is reasonable to assume that this set is discrete (zero-dimensional), so that F

is defined on the complement (T rΣ)×Cn to an analytic subset of complex
codimension 1.

One can show that in order to be extendable to the complement of an
analytic subset of codimension > 2, the matrix elements of the form must
be meromorphic, i.e., have at worst a finite order pole at every point of the
singular locus Σ; cf. with Problem 15.5. In this case, assuming that the
singular point is at the origin t = 0, the foliation can be generated by a
holomorphic vector field

F = tr+1 ∂

∂t
+

n∑

j=1

aij(t)xj
∂

∂xj
, r ∈ Z+, (t, x) ∈ (C1, 0)×Cn. (15.11)

One can see immediately that the singularities of the foliation after maximal
extension are all isolated (apriori they should only form a locus of complex
codimension > 2) and belong to the closure of the null leaf T × {0} which
thus becomes a common separatrix for all singularities. This observation
explains the special role that the null leaf plays in investigation of the linear
systems.

Definition 15.7. A linear system with singularities on a Riemann surface
T is the singular holomorphic foliation defined by a Pfaffian system (15.3)
with a meromorphic matrix 1-form Ω ∈ Mat(n, M(T )) with the polar locus
Σ ⊂ T . Points of this locus are called singular points, or simply singularities
of the linear system.

Clearly, a linear system with singularities on Σ is a holomorphic (non-
singular) linear system on the Riemann surface T ′ = T rΣ. Since T ′ is not
simply connected when Σ 6= ∅, the holonomy (monodromy) group of this
restricted system is usually nontrivial.

Definition 15.8. The monodromy group of a linear system with singular-
ities on the Riemann surface is the monodromy group of its restriction on
(T rΣ)× Cn.

Example 15.9 (Euler system). A linear system with constant coefficients,
Ω = Adt, has no singularities on C but when considered on P, it has a pole
of second order at infinity: in the chart w = 1/t, it has the Pfaffian matrix
Ω = −Aw−2dw.

A simplest nontrivial example of a linear system on P having the minimal
number of simple poles, is the Euler system,

dX = ΩX, Ω = At−1dt, A ∈ Mat(n,C), (15.12)
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defined by a single constant matrix A called the residue. The singular locus
of the system (15.12) on P consists of two points {0,∞}.

The Euler system can be immediately integrated. Consider the logarith-
mic chart z = ln t on the universal covering C of PrΣ. In this chart (15.12)
becomes a system with constant coefficients Ω = Adz, whose fundamental
solution is given by the matrix exponent. In the initial chart the exponential
solution takes the form

X(t) = tA = exp(A ln t), t 6= 0 (15.13)

which is indeed ramified over Σ.
The fundamental group of P rΣ = C r {0} is cyclic, generated by the

loop s 7→ exp 2πis, s ∈ [0, 1], around the origin. The monodromy matrix
of the Euler equation, corresponding to the above constructed fundamental
solution, can be easily computed:

M = exp 2πiA (15.14)

(going around the origin corresponds to choosing a different branch of the
logarithm, shifted by 2πi from the initial one).

The integer index r > 0 determining the order of pole of the matrix
Ω at a singular point, is called the Poincaré rank of the corresponding
singularity. The holomorphic gauge transformations act in a natural way
on meromorphic linear systems as well. Obviously, the Poincaré rank is
invariant by the gauge equivalence.

Remark 15.10. Once the class of holomorphic linear linear systems is ex-
tended to the class of meromorphic linear systems (with singularities), it
is natural to extend also the class of admissible gauge transformations, re-
laxing holomorphy of the matrix function H(t) in (15.9) to meromorphy of
H(t) together with its inverse H−1(t).

However, the meromorphic gauge equivalence introduced this way, is
too strong. In particular, any two systems with poles of first order (i.e.,
of Poincaré rank zero) are meromorphically gauge equivalent if and only if
their monodromy groups are isomorphic, both locally and globally (Prob-
lem 16.2). On the other hand, the Poincaré rank is not necessarily preserved
by meromorphic gauge transformations.

Exercises and Problems for §15.

Problem 15.1. Prove directly, using Theorem 1.1, that for any point a ∈ T there
exists a small neighborhood Uα ⊂ T of a such that the linear system (15.3) has a
fundamental matrix solution Xα in U , normalized by the condition Xα(a) = E.
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Exercise 15.2. Assume that the covering {Uα}, constructed in the previous prob-
lem, is finite. Prove that the constant matrix factors Cαβ = X−1

α Xβ defined on the
pairwise intersections Uαβ = Uα ∩ Uβ , satisfy the identities

CαβCβα = id, CαβCβγCγα = id (15.15)

on Uα ∩ Uβ and Uα ∩ Uβ ∩ Uγ respectively (whenever the latter intersections are
nonempty).

Problem 15.3. Consider a simply connected Riemann surface T and its covering
Uα by open domains such that all nonempty pairwise and triple intersections are
connected.

Prove that for any collection of matrices Cαβ satisfying the identities (15.15),
one can find constant matrices Cα so that Cαβ = C−1

α Cβ whenever the intersection
Uα ∩ Uβ is nonempty.

What happens if T is not simply connected?

Problem 15.4. Derive from Exercise 15.2 and Problem 15.3 that any linear system
on a simply connected Riemann surface admits a globally defined fundamental
matrix solution.

Problem 15.5. Let F be a holomorphic foliation generated by a linear system
dx − Ωx = 0 on the cylinder T × Cn outside the locus Σ × Cn, where Σ ⊂ T is a
discrete set.

Prove that this foliation extends as a singular holomorphic foliation with a
singular locus of codimension > 2 on T ×Cn if and only if Ω has a finite order pole
at every point of Σ.

Problem 15.6. Prove that any linear system on P with two simple poles is gauge
equivalent to the Euler system (15.12).

Exercise 15.7. Prove that any nondegenerate matrix M can be realized as the
monodromy of an appropriate Euler system.

Problem 15.8. Let A1, . . . , Am ∈ Mat(n,C) be commuting constant matrices with
A1 + · · ·+ Am = 0, and t1, . . . , tm ∈ C different points.

Prove that the rational 1-form Ω =
∑m

1 Aj
dt

t−tj
defines a singular linear system

on P1. Describe the singular locus and the monodromy group of this system.

Problem 15.9. Prove that two holomorphically or meromorphically gauge equiv-
alent linear systems have isomorphic monodromy groups.

Problem 15.10 (Liouville–Ostrogradskii formula). Let X(t) be a meromorphic
matrix function in a domain U with det X 6≡ 0, and Ω = dX ·X−1 the meromorphic
matrix 1-form (the “logarithmic derivative” of X). Prove that the scalar 1-form tr Ω
is the logarithmic derivative of det X, i.e., it satisfies the identity trΩ = d(det X) ·
(detX)−1 in U ; cf. with (1.16).
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16. Local theory of regular singular points and applications

In this section we consider linear systems defined by the germs of meromor-
phic 1-forms Ω = A(t) dt at the origin which is a singular point t ∈ (C, 0) of
finite order r + 1. Such a germ will be referred to as a singular point of a
linear system or simply a singularity.

The fundamental group of the punctured neighborhood (C, 0) r {0} is
infinite cyclic, generated by a single loop γ0 going counterclockwise around
the origin. The corresponding operator of analytic continuation will be
denoted by ∆. In a similar way indication of the loop will be omitted in the
notations for the monodromy matrix

∆X(t) = X(t)M, M ∈ GL(n,C). (16.1)

The notion of gauge equivalence (holomorphic or meromorphic) can be
easily localized so that one can speak about (locally) holomorphically (mero-
morphically) equivalent singularities of linear systems. More precisely, this
means that we consider gauge maps of the “infinitely narrow cylinder”
(C, 0) × Cn into itself, having the form (15.9), where h : (C, 0) → (C, 0)
is the identical germ and the invertible matrix function H(t) belongs to
GL(n, O(C, 0)) or GL(n, M(C, 0)) respectively. Furthermore, we can con-
sider formal gauge transforms, when H is a formal matrix series, H ∈
GL(n,C[[t]]). Such formal gauge transforms naturally act on formal linear
systems defined by formal Pfaffian equations

tr+1 dx = Ωx, Ω = A(t) dt, A ∈ Mat(n,C[[t]]).

Our immediate goal in this section is to give a local classification (holo-
morphic, meromorphic or formal) of singularities of linear systems. It turns
out that for a special class of singularities, so-called regular singularities,
the problem admits complete solution.

16A. Regular singularities. A pole of an analytic function f(t) can be
described as an isolated singular point at which the absolute value |f(t)|
grows at most polynomially in |t|−1 (assuming the singular point at the
origin). This moderate growth condition ensures numerous important prop-
erties, the most important of them being finiteness of the number of Laurent
terms for f . A parallel notion can be defined for singularities of linear sys-
tems, but special care has to be exercised because of the multivaluedness of
their solutions.

Definition 16.1. A vector or matrix function X(t), eventually ramified at
the origin, is said to be of moderate growth there if its norm grows at most
polynomially in |t|−1 as t tends to the origin in any sector α < Arg t < β of
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opening less than 2π.

‖X(t)‖ 6 C|t|−d, as |t| → 0+, α < Arg t < β, (16.2)

for some finite d and C (which a priori may depend on the sector).

Definition 16.2. A singular point of a linear system is called regular, if some
(hence any) fundamental matrix solution X(t) of the system has moderate
growth at this point.

Differentiating the formula dX = ΩX, we see that all derivatives of
components of a fundamental solution also grow moderately at a regular
singularity, since the meromorphic matrix form has at worst a pole at the
singular point. This observation also remains valid for the higher derivatives
of any finite order.

Remark 16.3. This terminology is counterintuitive, since “regular” does
not mean “nonsingular”. However, it is too firmly established to replace the
adjective “regular” by “tame” or “moderate” which would be less confusing.

Lemma 16.4. For a regular singularity, the inverse X−1(t) of any funda-
mental solution also grows moderately.

Proof. From the monodromy property (16.1), the determinant h(t) =
detX(t) of any solution, is ramified over the origin:

∆h(t) = µh(t), µ = detM ∈ C∗.
The function t−λh(t), λ = (2πi)−1 lnµ, is therefore single-valued, not iden-
tically zero and growing moderately as t → 0. Hence it must have a zero or
pole of some finite order k ∈ Z,

detX(t) = tk−λu(t), u ∈ O(C, 0), u(0) 6= 0.

Therefore the reciprocal 1/h(t) is a function of moderate growth. The inverse
X−1 can be expressed as (detX)−1 times the adjugate matrix formed by all
(n− 1)× (n− 1)-minors of X(t). Hence X−1(t) also grows moderately. ¤
Corollary 16.5. Let X(t) be a monodromic matrix function, such that
∆X(t) = X(t)M for some nondegenerate matrix M . If X(t) has moderate
growth, then the “logarithmic derivative” Ω = dX ·X−1 is a meromorphic
matrix 1-form.

Proof of the corollary. The form Ω is single-valued in the punctured
neighborhood of the singular point: ∆Ω = dX ·MM−1X−1 = Ω. Because
of the moderate growth, Ω has at worst a pole at this point. ¤
Lemma 16.6. If the homogeneous linear system (15.3) is regular at the ori-
gin and b(t) is a vector function of moderate growth at t = 0, then solutions
of the nonhomogeneous system ẋ = A(t)x + b(t) also have moderate growth.
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16. Local theory of regular singular points and applications 267

Proof. This follows from the explicit formula (15.4). ¤

Meromorphic classification of regular singularities is very simple. Re-
call that cyclic matrix groups are isomorphic if their generators M, M ′ are
conjugated by an invertible matrix, M ′ = C−1MC. Isomorphism of the
monodromy groups is a necessary condition of any gauge equivalence (Prob-
lem 15.9). For meromorphic gauge equivalence there are no other obstruc-
tions.

Theorem 16.7 (meromorphic classification of regular singularities). Any
two regular singularities with the same monodromy are meromorphically
gauge equivalent to each other.

In particular, any regular singularity is meromorphically equivalent to
an Euler system.

Proof. Without loss of generality we can find two fundamental matrix solu-
tions X(t) and X ′(t) for the two systems, which have the same monodromy
matrix M ∈ GL(n,C):

∆X(t) = X(t)M, ∆X ′(t) = X ′(t)M.

Then the matrix ratio H(t) = X ′(t)X−1(t) is single-valued in the punctured
neighborhood of the singular point, since

∆H = X ′M ·M−1X−1 = H.

Since H has (together with X ′, X and X−1) moderate growth, we con-
clude that H is a meromorphic matrix function, holomorphically invertible
everywhere outside the singular point. By construction, H as a gauge map
conjugates X with X ′ = HX.

Any monodromy matrix M has a matrix logarithm, thus there exists
a complex matrix A such that exp 2πiA = M . The corresponding Euler
system dX = AX with the fundamental matrix solution X(t) = tA has an
arbitrary specified monodromy (Exercise 15.7). ¤

The explicit formula (15.13) for solutions of the Euler system implies
the following corollary.

Corollary 16.8. Any fundamental matrix solution of a linear system with
a regular singularity at the origin, can be represented as

X(t) = H(t) tA, H ∈ GL(n,M(C, 0)), A ∈ Mat(n,C) (16.3)

with some constant matrix A and meromorphic invertible matrix function
(germ) H(t). ¤
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16B. Fuchsian singularities. The problem of detecting regular singular-
ities is in general rather difficult. For instance, Exercise 16.3 shows that no
necessary condition of regularity can be given in terms of the Poincaré rank.
However, there exists a simple sufficient condition of regularity.

Definition 16.9. A singularity is called Fuchsian, if its Pfaffian matrix has
a simple pole, i.e., if its Poincaré rank r is equal to zero:

Ω = (A0 + A1t + · · · ) t−1dt, A0, A1, · · · ∈ Mat(n,C).

The matrix coefficient A0 before the term t−1 is called the residue of the
Fuchsian singularity.

Theorem 16.10 (L. Sauvage, 1886). Any Fuchsian singularity is regular.

Proof. In the logarithmic chart z = ln t the Fuchsian system defined by a
matrix 1-form Ω = A(t) · t−1 dt with the first order pole, becomes the linear
system defined in some “sufficiently left” half-plane {Re z < −B}, B À 0
by a bounded 2πi-periodic matrix 1-form Ω′ = A(exp z) dz.

By the Gronwall inequality (Lemma 15.5), in any horizontal semi-strip
{α < Im z < β, Re z < −B} the norm of the fundamental matrix solution
‖X(z)‖ grows no faster than ‖X(a)‖ · expK|z − a|, where a is a point on
the right boundary of the strip and K = sup ‖A(z)‖ < +∞. Since the
semi-strip is horizontal, |z − a| 6 |β − α| + |Re z − B| on it. Combining
these estimates and returning to the initial chart t = exp z, we obtain the
bound ‖X(t)‖ 6 const |t|−K in the sector bounded by the rays Arg t = α
and Arg t = β. ¤

Corollary 16.11. Any Fuchsian singularity is meromorphically gauge
equivalent to an Euler system. ¤

However, it would be wrong to assume that a Fuchsian system with the
residue matrix A0 is always meromorphically equivalent to the Euler system
tẋ = A0x with the same matrix A0 (cf. with Problem 16.6). In the next
several subsections we establish a polynomial integrable normal form for the
local holomorphic classification of Fuchsian systems and prove its integra-
bility, computing explicitly the fundamental solution and the monodromy.

16C. Formal classification of Fuchsian singularities. The first step
in the local holomorphic classification of Fuchsian singularities consists of
studying formal equivalence. Recall that two singularities Ω,Ω′ are formally
(gauge) equivalent, if there exists a formal gauge transformation defined by
a formal series H ∈ GL(n,C[[t]]) such that the identity (15.10) holds on the
level of formal power series.
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16. Local theory of regular singular points and applications 269

As was observed by V. I. Arnold, the formal classification of Fuchsian
singularities of linear systems can be reduced to the formal classification of
nonlinear vector fields. Indeed, consider a system of linear equations

ẋ = t−1(A0 + tA1 + t2A2 + · · · ) x,

and the corresponding meromorphic vector field (15.11) with r = 0 in
(C, 0)×Cn. This analytic field is associated with the system of holomorphic
nonlinear ordinary differential equations

ẋ = A0x + tA1x + · · · ,

ṫ = t,
(16.4)

having an isolated singular point at the origin (0, 0).
The linearization matrix that is block diagonal with two blocks, one

being the residue matrix A0 of size n×n and another 1×1-block consisting of
the single entry 1. Without loss of generality we can assume that the matrix
A0 is already in the upper-triangular Jordan normal form; its eigenvalues
will be denoted λ1, . . . , λn.

By the Poincaré–Dulac theorem, after an appropriate formal transfor-
mation one can remove from the system (16.4) all nonresonant terms. Yet
the system (16.4), linear in all variables but one, has its specifics. On one
hand, only the formal transformations from Diff[[Cn+1, 0]] preserving the
t-variable and linear in x-variables, are allowed by definition of the formal
gauge equivalence. On the other hand, all resonant monomials are linear
in x1, . . . , xn and have the form tkxj

∂
∂xi

. Thus the only resonances between
the eigenvalues λ1, . . . , λn, 1 that can prevent these monomials to be elimi-
nated from (16.4), should have the form λi = λj + k with k ∈ Z+; all other
eventual resonances correspond to monomials that do not appear in (16.4)
from the outset.

Definition 16.12. A Fuchsian singularity with the residue matrix A0 is
resonant , if there are two eigenvalues of A0 that differ by a natural number.
Otherwise the Fuchsian singularity is nonresonant.

In the resonant case one can immediately describe all resonant monomi-
als linear in x. If A(t) =

∑∞
k=0 tkAk is the matrix function containing only

monomials resonant in the sense of Poincaré–Dulac, then the matrix coeffi-
cient Ak may have nonzero entry at the (i, j)th position only if λi− λj = k.
If the eigenvalues are arranged in the nonincreasing order in the sense of the
partial order (11.3),

λi > λj in the sense (11.3) =⇒ i < j ∀i, j, (16.5)

then the matrix A(t) is upper-triangular.
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This condition formulated in terms of matrix elements, can be refor-
mulated in terms of commutation of special matrices, i.e., as identity in
GL(n,C). Denote by Λ = diag{λ1, . . . , λn} the diagonal part of the residue
matrix A0. For any constant matrix C the conjugacy C 7→ tΛCt−Λ by the
power matrix function tΛ multiplies (i, j)th element of C by tλi−λj . There-
fore the resonant terms Akt

k can be described via their commutator with
tΛ as follows:

tΛAk t−Λ = tkAk, k = 1, 2, · · · . (16.6)

Definition 16.13. A linear system of equations

ẋ = t−1(A0 + tA1 + · · ·+ tkAk + · · · )x, Ak ∈ Mat(n,C), (16.7)

with the residue matrix A0 is said to be in the Poincaré–Dulac–Levelt normal
form, if

(1) the residue matrix A0 is in the upper-triangular block diagonal
Jordan form with the diagonal part Λ = diag{λ1, . . . , λn},

(2) the eigenvalues are enumerated in the nonincreasing order: if λi −
λj = k ∈ N, then i < j, i.e., λj , follows after λi,

(3) the higher order matrix coefficients Ak satisfy the condition (16.6).

Remark 16.14. It is convenient to arrange the eigenvalues λ1, . . . , λn in such a way that
all eigenvalues with integer differences stay together and form a resonant group (the order
of different, “incomparable” resonant group is not essential). If inside each group the
eigenvalues are arranged in the decreasing order, then the matrix A(t) will have block-
diagonal form with upper-triangular blocks corresponding to each resonant group. Such
an arrangement will be convenient for reasoning.

Note also that the condition (16.6) for systems in the normal form is automatically
satisfied also for k = 0: the matrix in the Jordan form commutes with its diagonal
part. The requirement that A0 is (nonstrictly) upper-triangular is explicitly stated in
Definition 16.13.

In the nonresonant case the Poincaré–Dulac–Levelt form is especially
simple: it must be an Euler system with all Ak absent for k > 1. As there
can be only finitely many differences between the eigenvalues, the Poincaré–
Dulac–Levelt normal form is necessarily polynomial.

Theorem 16.15 (Poincaré–Dulac theorem for Fuchsian singularities). A
Fuchsian singularity is formally equivalent to an upper-triangular system in
the Poincaré–Dulac–Levelt normal form (16.7)–(16.6).

In particular, a Fuchsian system with a nonresonant residue matrix A0

is formally equivalent to the Euler system tẋ = A0x.

The proof of this theorem follows immediately from the Poincaré–Dulac
Theorem 4.10. Indeed, Definition 16.13 is specifically designed so that the
normal form contains all resonant terms and only them. All other (nonres-
onant) monomials can be eliminated from the system (16.4).
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16. Local theory of regular singular points and applications 271

It remains only to check whether the resulting formal transformation
will be linear in xi and preserving the t-coordinate identically. This can be
seen by inspection of the Poincaré–Dulac method: the normalizing map is
constructed as an infinite composition of polynomial maps, each preserving
the t-coordinate and linear in the x-coordinates, since only monomials of
this form may need to be eliminated on each step.

However, the direct proof, largely parallel to the proof of Theorem 4.10,
is shorter.

Direct proof of the theorem. To remove nonresonant terms of order k−
1 from the Fuchsian system whose matrix A(t) = t−1

∑
j>0 tjAj has all

lower order terms already normalized, consider a gauge equivalence with the
conjugacy matrix H(t) = E+tkHk, whose inverse is H−1(t) = E−tkHk+· · · .
The transformed system will have the terms of order (k − 1) as follows:

A′(t) = ktk−1Hk + t−1(E + tkHk)A(t)(E − tkHk + · · · )
= A(t) + tk−1(kHk + HkA0 −A0Hk) + · · · .

This computation shows that all matrix coefficients A′0, . . . , A
′
k−1 of A′(t)

will remain the same as the matrix coefficients of A(t), while the last matrix
coefficient A′k can be modified by subtracting (or adding) any matrix B
representable as kH + [H,A0] for some H ∈ Mat(n,C).

The operator of twisted commutation Tk = k + adA0 : D1 → D1 on the
space D1 of linear vector fields (matrices) is lower triangular1 in the basis
{xi

∂
∂xj

: 1 6 i, j 6 n} by Lemma 4.5 with the eigenvalues λi− λj − k on the

diagonal. All nonresonant vector monomials xi
∂

∂xj
belong to the image of

Tk and hence can be eliminated, as explained in §4C.
In other words, the matrices A′k can be brought into the resonant normal

form containing nonzero entries only on (i, j) such that λi − λj = k. This
entails the condition tΛA′kt

−Λ = tkA′k. The process continues further by
induction in k. ¤

16D. Holomorphic classification of Fuchsian singularities. As we
have seen before, convergence of formal normalizing transformations for ar-
bitrary nonlinear vector fields can be a rather delicate issue. However, for
Fuchsian systems the situation is ideal.

Theorem 16.16 (holomorphic classification of Fuchsian singularities). Any
formal gauge transformation conjugating two Fuchsian singularities, always
converges.

1Triangularity occurs with respect to the order of vector monomials chosen as the Lemma 4.5,
regardless of the order of the variables x1, . . . , xn themselves.
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In particular, any Fuchsian singularity is locally holomorphically equiv-
alent to a polynomial Fuchsian system in the upper-triangular normal form
(16.7)–(16.6). A nonresonant Fuchsian system is holomorphically equivalent
to an Euler system.

The proof of this result can be obtained by several arguments. First,
one can modify the proof of the Poincaré normalization Theorem 5.5 to
show that the series converges; this is possible since all nonzero “small”
denominators λi − λj − k are in fact bounded away from zero, exactly as in
the Poincaré domain. However, there is an alternative simple proof avoiding
all technical difficulties.

We start with a lemma concerning convergence of formally meromor-
phic solutions of Fuchsian systems. By definition, a formally meromorphic
solution of a linear system (15.2) is a formal vector Laurent series

x(t) =
+∞∑

t=−d

tkxk, x−d, . . . , x0, x1, · · · ∈ Cn, (16.8)

satisfying formally the equation (15.2).

Lemma 16.17. Any formal meromorphic solution of a regular system is
convergent and hence truly meromorphic.

Proof. The property of having only convergent formally meromorphic so-
lutions, is obviously invariant by (truly) meromorphic gauge equivalence of
linear systems. As any regular system is meromorphically equivalent to an
Euler system (Theorem 16.7), the assertion of the lemma is sufficient to
prove only in this particular case.

For an Euler system tẋ = Ax, A ∈ Mat(n,C), any formal solution (16.8)
after substitution gives an infinite number of conditions

kxk = Axk, k = −d, . . . , 0, 1, . . . .

Each of these conditions means that the vector coefficient xk must be either
zero or an eigenvector of A with the eigenvalue k ∈ Z. But as soon as |k|
exceeds the spectral radius of A, the second variant becomes impossible and
hence all formal meromorphic solutions of the Euler system must be Laurent
(vector) polynomials, thus converging. ¤

Proof of Theorem 16.16. Let H(t) be a formal matrix Taylor series con-
jugating two Fuchsian singularities Ωi = Ai(t) t−1dt, i = 1, 2. By (15.10), it
means that

t−1A2 = Ḣ ·H−1 + t−1HA1H
−1,

implying the “matrix differential equation” for the matrix function H(t),

tḢ = A1H −HA2.
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This is not the equation in the form (15.3) with respect to the unknown
matrix function H, since both left and right matrix multiplication occurs
in the right hand side of this equation. However, it can be expanded to
a system of n2 linear ordinary differential equations with respect to all n2

entries of the matrix H. The coefficients of this large (n2 × n2)-system
are picked from among the entries of t−1Ai(t) and hence exhibit at most a
simple pole at the origin.

All this means that H(t) is a formal vector solution to a Fuchsian system
of order n2. By Lemma 16.17, it converges. ¤

16E. Integrability of the normal form. Similarly to the nonlinear res-
onant Poincaré–Dulac normal forms, the Poincaré–Dulac–Levelt form is in-
tegrable even in the resonant case. This allows us to compute explicitly the
corresponding monodromy operator.

Consider the matrix polynomial A(t) = A0 + A1t + A2t
2 + · · ·+ Adt

d ∈
Mat(n,C[t]) in the Poincaré–Dulac–Levelt normal form, i.e., with the ma-
trix coefficients Ak satisfying the conditions (16.6). The constant matrix
difference

I = A(1)− Λ = (A0 − Λ) + A1 + · · ·+ Ad, (16.9)
is called the characteristic matrix of the corresponding Poincaré–Dulac–
Levelt normal form.

The characteristic matrix I is nilpotent. Indeed, by Remark 16.14 all
matrices A1, . . . , Ad are strictly upper-triangular, and so is A0 − Λ. Thus I
is a strictly upper-triangular matrix involving contributions from both off-
diagonal terms of the Jordan form of the residue A0 and also from the higher
order terms of A(t). Notice that in general Λ and I do not commute.

The characteristic matrix I allows us to write explicitly the fundamental
matrix solution of a linear system in the normal form.

Lemma 16.18. The system in the Poincaré–Dulac–Levelt normal form with
the characteristic matrix I and the diagonal part of the residue Λ admits the
fundamental matrix solution

X(t) = tΛtI . (16.10)

Proof. Direct computation yields

tẊX−1 = Λ + tΛIt−Λ = tΛ(Λ + I)t−Λ

= tΛ(Λ + A0 − Λ + A1 + · · ·+ Ad)t−Λ

= (Λ + A0 − Λ) + tA1 + · · ·+ tdAd

= A(t)

by virtue of (16.6). ¤
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274 III. Linear systems

If the matrices tI and tΛ were commuting, the monodromy of the system
would be equal to the product exp(2πiΛ) exp(2πiI) (in any order). It turns
out that the formula still holds even if [tI , tΛ] 6= 0.

Corollary 16.19. The monodromy matrix M of the Poincaré–Levelt nor-
mal form is the product of two commuting matrices,

M = exp(2πiΛ) exp(2πiI) = exp(2πiI) exp(2πiΛ). (16.11)

Proof. Recall that a root subspace of an operator A0 corresponding to an
eigenvalue λ is the maximal invariant subspace in Cn, on which A0 − λE is
nilpotent.

The space Cn is the direct sum of resonant subspaces: by definition, each
such subspace is the union of the root subspaces of all eigenvalues whose
difference is an integer number. By construction, each resonant subspace
is invariant by A0. The conditions (16.6) guarantee also that the resonant
space is invariant by all higher matrix coefficients Ak, k = 1, 2, . . . .

The exponent of the diagonal term

exp(2πiΛ) = diag{exp 2πiλ1, . . . , exp 2πiλn}
is a scalar matrix on each resonant subspace of A, because all eigenvalues
corresponding to this subspace have integer differences. Hence on each reso-
nant subspace exp(2πiΛ) commutes with I, thus also with tI and exp(2πiI).
Ultimately the monodromy operator ∆ around the singularity can be ex-
pressed as follows:

∆X(t) = tΛ exp(2πiΛ) tI exp(2πiI)

= tΛtI exp(2πiΛ) exp(2πiI)

= X(t)M,

where M is given by the commuting product (16.11). ¤

For a nilpotent matrix I the matrix power tI = exp(ln tI) is a matrix
polynomial in ln t of degree 6 n, hence Lemma 16.18 indeed yields a solu-
tion of the system in a closed form. Yet the true power of this result is a
description of invariant subspaces, coordinate subspaces in Cn of different
dimensions, which are invariant by the flow of the Fuchsian system (15.2).

Corollary 16.20. Eigenvalues νj of the monodromy operator of a Fuchsian
singular point may be put in one-to-one correspondence with the eigenvalues
λj of the residue matrix in such a way that νj = e2πiλj .

Proof. This is an immediate consequence of Lemma 16.18. It may be
checked directly for the fundamental matrix (16.10). Choice of another fun-
damental matrix results in conjugacy of the monodromy operator, hence,
leaves the eigenvalues unchanged. ¤
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16. Local theory of regular singular points and applications 275

16F. Further simplification of the normal form for Fuchsian systems. Differ-
ent Poincaré–Dulac–Levelt normal forms may still be holomorphically equivalent to each
other. The problem of complete holomorphic classification, including recognition of pair-
wise nonequivalent normal forms, was only very recently reduced to a purely algebraic
problem of classification of upper-triangular matrices by the Heisenberg group.

More precisely, consider the splitting of Cn into the resonant subspaces as described
in Remark 16.14, with eigenvalues in each resonant group following in the nonincreasing
order.

The Poincaré–Dulac–Levelt normal form implies that the characteristic matrix I (see
(16.9)) of the system (16.7)–(16.6), is block-diagonal with respect to this resonant splitting
and each block is upper-triangular.

Theorem 16.21 (Complete holomorphic classification of Fuchsian singularities [VR04]).
Two different systems in the Poincaré–Dulac–Levelt normal form are holomorphically
equivalent if and only if their characteristic matrices (16.9) are conjugated by a constant
matrix which is block-diagonal with upper-triangular blocks.

Proof. Since the residue matrices are invariant, we can assume by (16.10) that both
systems are in the normal form with the fundamental matrix solutions

X1(t) = tΛtI1 and X2(t) = tΛtI2 (16.12)

with common diagonal matrix Λ. If these systems are holomorphically conjugate, then for
some analytic matrix-function H(t) ∈ GL(n, O(t)) and a constant matrix U ∈ GL(n,C)
we have H(t)X1(t) = X2(t)U , i.e.,

t−ΛH(t) t−Λ = tI2U t−I1 . (16.13)

Since I1, I2 are nilpotent matrices, the right hand side is a matrix polynomial in ln t, while
the left hand side is a converging matrix series involving only different powers of t. The
equality is possible only if both parts are in fact constant. This constant is necessarily
equal to U , as follows from the right hand side of (16.13) computed at t = 1:

H(t) = tΛU t−Λ, tI2U = U tI1 . (16.14)

The fact that H(t) involves only nonnegative powers of t, implies that U has the specified
block-triangular structure (note that the matrix tΛ is diagonal with entries tλi , so that the

matrix elements hij(t) are of the form uij tλi−λj ). The second condition in (16.14) after
derivation in t at t = 0 yields I2U = UI1 which proves that the characteristic matrices I1

and I2 are conjugated by U as required.

Conversely, if U is the block-triangular matrix conjugating I1 with I2, then it also
conjugates tI1 with tI2 . By assumption, H(t) = tΛU t−Λ is a matrix polynomial (in-
volves only integer nonnegative powers of t), and, inverting the above computations, we
conclude that the two Fuchsian systems in the Poincaré–Dulac–Levelt normal forms are
holomorphically (in fact, polynomially) conjugated: H(t) tΛtI1 = tΛtI2U . ¤

16G. Nonlocal theory of linear systems on P: the Riemann-Fuchs
theorem and the Riemann–Hilbert problem. At the end of his short
life, Riemann asked the following question: How to describe all the functions
that may occur as solutions of a linear differential equations of order n with
regular singular points only? He gave an answer in a short manuscript that
was found ten years after his death. By that time Lazarus Fuchs developed
the theory of complex linear equations and obtained the same answer.

In modern terms, his answer may be given in the language of systems.
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Definition 16.22. A linear system (15.1) on P is called regular if Ω is
meromorphic on P, and all the poles of Ω are regular singular points for the
system (15.1).

In the affine chart t ∈ C, a regular system may be written as a system
of differential equations

ẋ = A(t)x (16.15)
with the matrix function A(t) meromorphic on P. Any meromorphic (ma-
trix) function on P is rational. By definition, all the solutions of (16.15)
have moderate growth at all the singular points. Moreover, the system has
the monodromy property : for any fundamental matrix X, the circuit of a
singular point aj results in the right multiplication of X by a nonsingular
matrix Mj .

Theorem 16.23 (Riemann-Fuchs theorem). Any matrix function with a
finite number of ramification points or logarithmic singularities which has
the monodromy property and moderate growth is a fundamental matrix of
some regular system.

Proof. Let X be the matrix function from the statement of the theorem.
Consider the matrix function

A = ẊX−1

This matrix function is meromorphic on P by Corollary 16.5. Hence, it is
rational. The corresponding linear system is regular because the matrix X
has moderate growth at all singular points by assumption. ¤

The Riemann-Fuchs theorem is very close to Theorem 16.7. The latter
theorem, in turn, is based on Riemann’s ideas.
16G1. Fuchsian systems and the Riemann-Hilbert problem.

Definition 16.24. A linear system on the Riemann sphere is Fuchsian
provided that all its singular points are Fuchsian in sense of Definition 16.9,
that is, the matrix coefficient in the right hand side has simple poles only.

The following statement may be checked by the coordinate change τ = 1
t .

Proposition 16.25. The system (16.15) has a regular (i.e., nonsingular),
point at infinity if and only if limt→∞ tA(t) = 0. The same system has a
Fuchsian singular point at infinity, provided that the previous relation fails,
but limt→∞A(t) = 0. ¤
Corollary 16.26. Any Fuchsian system on the Riemann sphere has the
form

ẋ =
m∑

1

Aj

t− aj
x.
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16. Local theory of regular singular points and applications 277

Definition 16.27. The matrices Aj are called the residue matrices of the
corresponding Fuchsian system.

This definition is a particular case of Definition 16.9:
Denote by Mj the monodromy operator of aj . Under a proper choice of

the loops γj around aj , we have:

γ1 · · · γm = e,

where e is a trivial (contractible) loop on the punctured Riemann sphere
P r (a1, . . . , am). Then

Mm · · ·M2M1 = E. (16.16)

Definition 16.28. The monodromy data is a collection of m points
a1, . . . , am as above and invertible linear operators M1, . . . ,Mm ∈ GL(n,C)
whose product in the specified order is the identity; see (16.16). The mon-
odromy data is realized by a Fuchsian system if the monodromy map asso-
ciated with each loop γj coincides with Mj for all j = 1, . . . , m.

When the position of the singular points is irrelevant, we will consider
the tuple (M1, . . . ,Mm) as the monodromy data.

The following problem stayed open for more than hundred years.
Riemann–Hilbert problem: Is it possible to realize any tuple of invertible

operators with the relation (16.16) as the monodromy data for some Fuchsian
system?

Hilbert (1900) conjectured the positive answer. Bolibruch (1989) con-
structed a counterexample.

The history, together with different statements of the problem, is pre-
sented in 18, which contains different positive and negative results on the
problem. The exposition in 18 is geometrical. Below we present the coun-
terexample of Bolibruch in a purely analytic setting. The presentation is
based on [Ily04].
16G2. Equations of class B. Nonrealizable monodromy data will be con-
structed in a special class defined below.

Definition 16.29. An ordered tuple of nonsingular linear operators is of
class B provided that their product equals the identity and the following
holds:

1. Any of the operators is equivalent to one Jordan cell.
2. The tuple is reducible, that is, all the operators have a common

invariant subspace different from zero and the whole space.

Definition 16.30. A Fuchsian system is of class B (or a Bolibruch system)
provided that its monodromy data is of class B.
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278 III. Linear systems

Theorem 16.31. The spectrum of any residue matrix of a Bolibruch system
is a singleton. In other words, all the eigenvalues of such a matrix are equal.

Without loss of generality, assume that infinity is not a singular point
of the Fuchsian system under consideration. Then the system has the form

ż =
∑ Aj

t− aj
z,

∑
Aj = 0. (16.17)

The following theorem provides a necessary condition for realizability of
a monodromy data of class B by a Fuchsian system.

Theorem 16.32. Suppose that the monodromy data of class B is realized
by a Fuchsian system. Then the product of the eigenvalues of the operators
of the tuple equals one (the unique eigenvalue of each operator is taken just
once).

Theorem 16.32 is an immediate consequence of Theorem 16.31. Indeed,
in assumptions of Theorem 16.31, the unique eigenvalue νj of the mon-
odromy operator Mj equals e2πiλj , where λj is the unique eigenvalue of the
corresponding residue matrix; see Corollary 16.20. Equation (16.17) implies
that the sum of traces of the residue matrices vanishes. Theorem 16.31
implies that the sum of the (unique) eigenvalues of these matrices vanishes
as well. Hence the product of the eigenvalues of the monodromy operators
equals one.

Theorem 16.32 allows us to construct a tuple of three operators, nonre-
alizable as a monodromy data, the famous Bolibruch counterexample.

Theorem 16.33. The following three matrices M1,M2,M3 ∈ GL(4,C),



1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1







3 1 1 −1
−4 −1 1 2
0 0 3 1
0 0 −4 −1







−1 0 2 −1
4 −1 0 1
0 0 −1 0
0 0 4 −1


 (16.18)

cannot be realized as a monodromy data for a Fuchsian system.

Proof. It is easy to check that the three operators above form a data of
class B. Indeed, their product is the identity and the Jordan normal form
of each operator consists of one cell. On the other hand, the corresponding
eigenvalues are 1, 1,−1. Hence, these operators cannot be realized as the
monodromy of a Fuchsian system by Theorem 16.32. ¤

In order to complete the justification of the counterexample, we need to
prove Theorem 16.31.
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16. Local theory of regular singular points and applications 279

16G3. Invariant subsystems of the normalized system.

Proof of Theorem 16.31. Theorem 16.31 is proved below for n = 4 under
the assumption that the mutual invariant subspace of the operators has
dimension 2, as in the example above. In the general case, 4 and 2 should
be replaced by n and k, and the ratio 1

2 below by the ratio k
n . The geometric

proof of an improved version of Theorem 16.31 may be found at the end of
Section 18.

Consider two solutions x1(t), x2(t) that span a plane preserved by all
the monodromy operators. Take a base point t = a and choose the co-
ordinates in the phase space in such a way that the initial values are
x1(a) = e1, x2(a) = e2, the first two columns of the identity matrix E.
Let X be the fundamental matrix of the system (16.17) with the initial con-
dition X(a) = E. In a neighborhood of any singular point the coordinate
change xj = Hj(t)x bringing the original equation to the Poincaré–Dulac–
Levelt normal form is defined. By (16.10), the fundamental matrix of the
normalized system has the form

Xj = (t− aj)Λj (t− aj)Ij , (16.19)

where Λj is a diagonal matrix. We assume that the eigenvalues λij of Λj

decrease in the sense that λij − λi+1,j ∈ Z+. In this case Ij is an upper-
triangular nilpotent matrix. The gauge transformation Hj may be extended
to an arbitrary simply connected domain on the punctured Riemann sphere
P r (a1, ..., am). Therefore, we may assume that the domain of any Hj

contains a. The following natural question arises: What is the image of the
solutions x1, x2 under the gauge transformation Hj?

The answer is the key point in the proof of Theorem 16.31: the images
of the solutions x1, x2 under the gauge transformation Hj belong to the plane
spanned by the first two columns of the matrix (16.19). The reason is that a
linear operator equivalent to one Jordan cell has one and only one invariant
space in any dimension; see Lemma 18.16 below.

In more detail, consider the first two columns of the fundamental matrix

Xj . They form a 4×2 matrix Ṽj =
(

Vj

0

)
, where Vj and 0 are 2×2 matrices,

and

Vj(t) =

(
(t− aj)

λ1,j cj(t− aj)
λ2,j ln(t− aj)

0 (t− aj)
λ2,j

)
, λ1,j − λ2,j = k ∈ Z+.

(16.20)
When t circuits around aj counterclockwise, this matrix is multiplied from

the right by mj =
(

νj αj

0 νj

)
, where νj = e2πiλj , αj = 2πicjνja

−k.
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Here we do not need an explicit expression for the first two columns of
Xj , but only the fact that they span an invariant plane of the monodromy
operator. The solutions Hjx

1,Hjx
2 have the same property. But the mon-

odromy operator Mj is equivalent to one Jordan cell. Hence, these two
planes coincide. Therefore, for any j the equality

(x1(t), x2(t)) = H−1
j (t)Ṽj

holds in some simply connected domain Uj that contains a and aj . Denote
by Y (t) the upper left 2× 2 minor of the matrix Z(t). In the domain Uj it
has the form:

Y (t) = hj(t)Vj(t).
As Y (a) = E, dethj 6≡ 0.

This representation of Y (t) completes the main part of the proof of
Theorem 16.31. The remaining part of the proof is based on the Liouville–
Ostrogradskii formula and on the theorem about the sum of the residues of
a meromorphic function. It is presented in the next subsection.
16G4. The Wronski determinant of the invariant subsystem. Consider the
Wronskian

detY (t) = w(t).

The matrix-valued function Y on the punctured Riemann sphere has
the properties of monodromy and regularity. Namely, under a circuit of aj

it is multiplied by mj . On the other hand, it has moderate growth at any
singular point aj . Therefore, by the Riemann–Fuchs theorem, Y satisfies a
regular linear system of the form Ẏ = PY . The matrix–valued function P
is meromorphic on the Riemann sphere. Hence,

∑

b∈P
res btr P = 0. (16.21)

On the other hand, by the Liouville–Ostrogradskii formula,
d

dt
(lnw) = tr P. (16.22)

Formula (16.20) implies that in Uj we have:

w(t) = (t− aj)λ1,j+λ2,j dethj(t).

Hence,

resaj

d

dt
(lnw) > λ1,j + λ2,j . (16.23)

At all the other points different from the singular ones, the residue of the
logarithmic derivative of w is nonnegative because at these points w is holo-
morphic. Because of the ordering of the eigenvalues of the residue matrices,
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16. Local theory of regular singular points and applications 281

we have:
λ1,j + λ2,j > 1

2
tr Aj ∀j ∈ {1, . . . , m}.

Theorem 16.31 is equivalent to the statement that all the inequalities above
are equalities. Suppose, on the contrary, that at least one of these inequali-
ties is strict. Then equations (16.21), (16.22), (16.23) imply:

0 =
∑

b∈P
resbtr P >

1
2
tr Aj = 0.

This contradiction proves Theorem 16.31. ¤

* * *

We conclude this section by the Permutation Lemma due to Bolibruch.
It is a powerful tool in the study of linear systems.

16H. Monopoles. For linear systems defined on a compact Riemann
curve, in particular, on P, the notion of holomorphic equivalence is meaning-
less, since there are no holomorphic gauge transformations globally defined
over P. However, there is a sufficiently rich class of meromorphic gauge
transformations holomorphic everywhere except for a single point.

Definition 16.34. A monopole is a rational matrix function on the Riemann
sphere, holomorphic and holomorphically invertible everywhere except for
one point.

If the pole is set at t = ∞, then the monopole is a polynomial matrix
function Π(t). Since it must be invertible everywhere except for t = ∞,
detΠ(t) is a polynomial without roots, e.g., a constant. Therefore Π−1(t)
is also a polynomial matrix. Conversely, if both Π and Π−1 are polynomial,
then both are monopoles with the pole at infinity:

Π ∈ GL(n,C[t]) def⇐⇒ Π, Π−1 ∈ Mat(n,C[t]) ⇐⇒ Π, Π−1 are monopoles.

Example 16.35. If D = diag{d1, . . . , dn} is a diagonal matrix with non-
increasing integer entries d1 > · · · > dn and Π(t) a constant or polynomial
upper-triangular matrix function, then the conjugated matrix tDΠ(t) t−D

will again be an upper-triangular matrix polynomial.
Indeed, after the conjugacy, every nonzero (i, j)th entry of Π(t) will be

multiplied by tdi−dj which is a Taylor monomial for all i 6 j.
In particular, if C is a constant upper-triangular matrix and D as above,

then tDC t−D is a monopole, since its determinant is a nonzero constant.
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If a point t = ∞ is a singularity for a linear system (15.3), then after
a monopole transform the singularity remains regular but may cease to be
Fuchsian. Yet the same argument suggests that a regular non-Fuchsian
singularity can sometimes be made Fuchsian by a monopole gauge transform.
This modification cannot affect the other singularities, since the monopole
map is holomorphically invertible there.

For instance, consider a linear system with a nonsingular point at in-
finity. Let H = H(t) be the germ of a fundamental matrix solution near
this point. The matrix function tDH(t) is a fundamental matrix solution
to another system which in general have a singularity at infinity. This sin-
gularity will even be non-Fuchsian (though obviously regular). Indeed, the
matrix form Ω′ of this system is obtained from the nonsingular matrix form
Ω = dH ·H−1 by the gauge transform

Ω′ = t−1D dt + tDΩt−D. (16.24)

The first term is always Fuchsian, yet the second will in general be non-
Fuchsian at infinity unless Ω has very special properties depending on D.
For instance, if the sequence of the integers d1, . . . , dn is nondecreasing and
Ω is upper-triangular, then Ω′ is obviously Fuchsian.

However, it turns out that in this special case the regular non-Fuchsian
singularity Ω′ can be brought back into the Fuchsian form by a suitable
monopole transform. The following result appears in [Bol92].

Lemma 16.36 (Permutation Lemma). Any matrix germ at t = ∞ of the
form tDH(t) with a holomorphically invertible factor H(t) ∈ GL(n,O(P,∞))
and an integer diagonal matrix D is monopole equivalent to a germ of the
form H ′(t) tD

′
with H ′(t) also holomorphic and invertible at infinity and D′

a diagonal matrix with the same diagonal entries di, eventually in a permuted
order.

In other words, there exists a monopole Π ∈ GL(n,C[t]) such that

Π · tD ·H = H ′ · tD′ . (16.25)

Proof of Lemma 16.36. We start by proving the lemma in a simple particular case, and
then reduce the general case to the former one by a series of suitable gauge transformations.

1. Consider first the case where the (constant) matrix H(∞) has all nonzero
principal (upper-left) minors, while the diagonal matrix D is of the form ( 0

νE ) =
diag{0, . . . , 0, ν, . . . , ν}, ν > 0. This means that D is block diagonal with only two dis-
tinct eigenvalues and they are arranged in the ascending order. We show that in this
case the meromorphic germ R(t) = tDH(t) t−D is monopole equivalent to a holomorphic
germ H ′(t) that is automatically nondegenerate at infinity. This is a particular case of
the lemma, when D′ = D.

More precisely, we will show that in this case the monopole transformation can be
chosen lower triangular with the block structure ( E 0

∗ E ), so that the upper left blocks of
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H ′(t) and H(t) are the same. Denoting the appropriate blocks of H(t) as follows yields:

H(t) =

�
M(t) N(t)
P (t) Q(t)

�
, R(t) = tDH(t) t−D =

�
M(t) t−νN(t)
tνP (t) Q(t)

�
.

The upper left block M(t) is nondegenerate by assumption. The only elements that may
have poles at infinity, are these of the lower right block tνP . We show how these poles
can be removed by lower triangular monopole transformations.

The principal Laurent part of the matrix tνP (t) at infinity can be expanded as

tνP (t) = tνPν + tν−1Pν−1 + · · ·+ t P1 + P0,

with constant rectangular matrices Pi. Linear combinations of rows of the nondegenerate
matrix M(0) generate any row of the appropriate length, in particular, any row of the
constant matrix Pν . Subtracting these combinations with the rational factor tν allows us to
eliminate from tνP (t) all terms with poles of order ν at infinity. Being an elementary row
operation, this corresponds to the left multiplication by an appropriate lower triangular
monopole matrix Πν(t), polynomial in t and with determinant 1. Since elements of the
upper right block of R(t) were all divisible by t−ν , the lower right block of R(t) will remain
holomorphic after multiplication by Πν(t): one can easily see that

Πν =

�
E 0

−tνPνM−1 E

�
, ΠνR =

�
M t−νN

tν−1Pν−1 + · · · Q + PνM−1N

�
with holomorphic matrices M, N, Q (the first of them invertible) and constant matrix Pν .
Note that the order of pole in the lower left corner is at most ν − 1.

Iterating this step, by suitable left multiplications one can eliminate consecutively all
terms with poles of order ν−1, ν−2 and so on until the constant terms will be eliminated.
The overall product Π0(t)Π1(t) · · ·Πν(t) of all monopoles used in the process, will again
be a monopole at infinity (polynomial in t), also lower triangular. This completes the
proof in the particular case where the matrix D has only two distinct eigenvalues 0 < ν
ordered in the ascending (nondecreasing) order.

2. Any diagonal matrix D with ascending integer eigenvalues d1 6 · · · 6 dn can be
represented as a sum of several matrices of the type considered above. More precisely, we
can always represent such D as the sum

D = D0 + D1 + · · ·+ Dm, m 6 n− 1, (16.26)

so that D0 is scalar (diagonal with a single eigenvalue) and each Di with i > 1 is block
diagonal with two eigenvalues 0 and νi > 0 arranged in the ascending order. To see this,
consider the monotonous integer function i 7→ di, i ∈ {1, . . . , n}. This function can be
represented as a sum of m− 1 “step functions” (nonincreasing integer functions assuming
only two values, one of them zero) plus a constant term. Indeed, the first difference
i 7→ di+1 − di is a nonnegative integer function which can be represented as the sum of
6 m− 1 “delta-functions” taking a positive nonzero value only once. Taking “primitives”
of these “delta-functions” (the sums restoring integer functions from their differences)
and adding the “constant of integration” proves the claim: each step function can be
considered as a diagonal matrix Di with one zero and one positive eigenvalue.

Since the powers tDi commute between themselves, the terms in the representation
(16.26) can be arranged so that the matrices with biggest-size upper-left (zero) block come
last.

3. Splitting (16.26) permits us to prove the assertion of the lemma for every product
tDH(t) where the diagonal matrix is ascending (its eigenvalues nondecreasing) and H(t)
having nonzero principal minors. In this case one can also choose D = D′. Indeed, in the
representation

tD0tD1 · · · tDmH(t)
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the term tDm can be permuted with H(t) if the appropriate monopole Π(t) is inserted
between tDm−1 and tDm , as shown on Step 1. To do this, the whole product must be
multiplied from the left by the matrix function

Π ′(t) = tD0+···+Dm−1Π(t) t−(D0+···+Dm−1).

But since both D and all matrices Di were ascending and Π(t) lower triangular, the matrix
Π ′(t) will again be a monopole; cf. with Example 16.35. By construction,

Π ′(t) tDH(t) = tD0+···+Dm−1H ′(t) tDm ,

and the upper-left corner of H ′(t) will coincide with that of H(t). The process can be
clearly continued by induction, since on the next step one may require nondegeneracy
of only smaller or same size upper-left minors of H(t), thus preserving inductively the
assumptions required in Step 1. After m permutations all terms tDi will appear to the
right from the holomorphically invertible term, while the scalar term tD0 commutes with
everything.

4. For an arbitrary nondegenerate H(∞), the required condition on principal minors
can always be achieved by a suitable permutation of columns, that is, multiplying tDH
from the right by a suitable constant permutation matrix P . By Step 3, tDH(t)P is mono-
pole equivalent to H ′(t) tD for any ascending matrix D. Therefore tDH(t) is monopole

equivalent to H ′(t)P−1 · P tDP−1 = H ′′(t)tD′ , where D′ = PDP−1 is a diagonal matrix
with entries obtained by the permutation of entries of D.

5. The last remaining assumption that D is ascending, can also be removed by a
suitable permutation of rows. Indeed, if P is a permutation matrix such that the entries

of D′ = PDP−1 are ascending, then tDH is monopole equivalent to tD′H ′ with H ′

holomorphically invertible at infinity:

P · tDH = P tDP−1 · PH = tD′H ′.

By Step 4, tD′H ′ is monopole equivalent to H ′′ tD′′ as required.

This proves Lemma 16.36 in full generality. ¤

Exercises and Problems for §16.

Exercise 16.1. Prove that any linear system at a nonsingular point is holomorphi-
cally gauge equivalent to the trivial (identically zero) system defined by the matrix
1-form Ω′ ≡ 0.

Problem 16.2. Prove that any two regular (in particular, Fuchsian) linear systems
on P with the same singular loci are meromorphically gauge equivalent if and only
if their monodromy groups are isomorphic.

Exercise 16.3. Compare the Poincaré ranks of a nonsingular point 0 and its
meromorphic gauge transform by a diagonal matrix H(t) = tD = diag{td1 , . . . , tdn}.
Exercise 16.4. Show that the definition of the residue matrix of a Fuchsian sin-
gularity does not depend on the choice of the chart t.

Problem 16.5. Prove that any algebraic function x = x(t) of one complex vari-
able t, defined by a polynomial equation P (x, t) = 0, satisfies (say, as the first
component) a regular linear system over P of rank at most n.
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Problem 16.6. Let ∆a : τa → τa be the holonomy operator corresponding to a
simple positive loop around the origin beginning and ending at a nonsingular point
a 6= 0 for a Fuchsian system tẋ = (A0 + tA1 + · · · )x. Prove that ∆a depends
analytically on a as a 6= 0, extends (as an analytic matrix function) at the origin
a = 0 and the limit ∆0 is equal to exp 2πiA0. Show that the operators ∆a are
conjugate to each other for all a 6= 0, but not necessarily to ∆0.

Problem 16.7. Bring to the Poincaré–Dulac–Levelt normal form the linear sys-
tems with the matrix 1-form Ω = A(t)dt

t , where A(t) is one of the following matrix
functions,

(
1 sin 2t

2

)
,




1 et − 1 t3

2 t2

3


 .

Problem 16.8. Prove that for any resonant tuple of the form λ1 = (λ, λ + k)
or λ2 = (λ, λ + k, λ + k + m) there exists but a finite number of normal forms
of equations with a Fuchsian singular point, for which the residue matrix has the
spectrum λ1 or λ2.

17. Global theory of linear systems: holomorphic vector
bundles and meromorphic connexions

Linear systems appear in a natural way by linearization of arbitrary com-
plex one-dimensional holomorphic foliations along particular leaves (usually,
separatrices). Example of such linearization for foliations on complex sur-
faces already appeared in the computation of the vanishing holonomy group
in §10D and in slightly more general context in §14B. Both these exam-
ples suggest that, while locally a linear system “lives” on cylinders which
are Cartesian products of the base leaf L by a complex linear space of the
complementary dimension, globally the situation may be nontrivial. In par-
ticular, it may be impossible to define the linearized system globally over
L by a single meromorphic 1-form (matrix or even scalar): the nontrivial
relationship between 1-forms θ1 and ϑ1 in (10.9) shows that the linearized
system is defined on a more general object than the “simple” Cartesian
product E× C. This object is called (holomorphic) vector bundle.

The material exposed in this section is rather standard and can be found
in numerous sources, of which we recommend the books [For91, §29, §30]
and [Bol00], but also [GH78, §0.5] and [Wel80, §2].

17A. Holomorphic vector bundles. A real or complex vector bundle of
rank n over a topological manifold T (the “horizontal” base) is a topological
manifold which is “built” from Cartesian cylinders Uα × Rn or Uα × Cn re-
spectively, where Uα is a chart on T , in the same way as the base manifold is
built from the charts Uα themselves. The added value is the linear structure
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along the “vertical” fibers {a} × Rn, resp., {a} × Cn. We will be interested
only in the complex case. The formal definition looks as follows.

Definition 17.1. Let π : S → T be a continuous map between two topo-
logical spaces. A map Φ is called a local trivialization (sometimes trivial-
izing chart, or simply trivialization) of π over an open subset U ⊆ T , if
Φ : π−1(U) → U × Cn is a homeomorphism which conjugates π with the
projection of the Cartesian product (cylinder) π0 : U ×Cn → U on the first
component, so that π0 ◦ Φ = π.

Trivializations play the role of special coordinate charts keeping track of
the linear structure on the fibers.

Definition 17.2. The topological space S together with a continuous map
(projection) π : S → T is called a topological complex vector bundle or rank
n over a topological space T (called the base), if:

(1) for any point a ∈ T of the base there exists an open neighborhood
Uα 3 a and a trivialization Φα of π over Uα,

(2) the family of trivializations {Φα} respects the linear structure of
the fibers π−1(a): if Φα, Φβ are two trivializations of π over two
open domains with the nonempty intersection Uαβ = Uα∩Uβ, then
the transition map between them is a gauge transform fibered over
the identity map as in §15D, i.e.,

Φβ ◦ Φ−1
α : Uαβ × Cn → Uαβ × Cn,

Φβ ◦ Φ−1
α (a, x) =

(
a,Hβα(a) x

)
, Hβα(a) ∈ GL(n,C), a ∈ Uαβ.

(17.1)

The triplet π : S → T is called a holomorphic complex vector bundle, if both
S and T are holomorphic manifolds, π is a holomorphic projection which
admits biholomorphic trivialization near each point of T . In this case the
transition maps are biholomorphic gauge transformations.

Preimages of points τa = π−1(a) are called fibers of the vector bundle.
The space S is called the total space of the vector bundle.

The bundles will usually be denoted by the symbols for the corresponding
projections, provided that the two other components of the triplet (the total
space and bundle) are clearly defined by the context.

Geometry provides a vast source of bundles. For any holomorphic mani-
fold M of complex dimension n the collection of tangent vectors attached to
different points of M has a natural structure of a holomorphic vector bundle
of rank n over the base M , called the tangent bundle. Indeed, if U ⊂ Cn

is a domain in the affine space, then vectors tangent to different points of
U can be identified with elements of the vector space Cn itself. Thus every
chart on M , defined in a domain U ⊂ M provides a local trivialization of
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the tangent bundle. The tangent bundle is usually denoted TM . In a simi-
lar way the cotangent bundle T∗M is defined as the collection of covectors
(linear functionals on tangent spaces) at all points of M (see Problem 17.1).

17B. Cocycles. Obviously, if π : S → T is a topological (resp., holomor-
phic) vector bundle, then for each two local trivializations over overlapping
domains the matrix functions

Hβα : Uαβ → GL(n,C), Uαβ = Uα ∩ Uβ, (17.2)

is continuous (resp., holomorphic) together with its inverse H−1
βα . Since the

construction is symmetric with respect to the two trivializations, this inverse
is the transition matrix Hαβ , i.e., we have the identities

Hαβ ·Hβα ≡ E on Uαβ. (17.3)

Besides, if Uα, Uβ and Uγ are three domains with the pairwise intersections
Uαβ , Uβγ , Uαγ and a nonvoid triple intersection Uαβγ , then

Hαβ ·Hβγ ·Hγα ≡ E on Uαβγ . (17.4)

Indeed, this composition corresponds to the transition between the trivial-
izations Φα, Φγ and Φβ (in the specified order) back to Φα.

Definition 17.3. Let U = {Uα} be an open covering of the base T . A
holomorphic matrix cocycle inscribed in this covering (or subordinated to
this covering) is a collection of holomorphic matrix functions H = {Hαβ}
defined in all nonempty pairwise intersections Uαβ and satisfying the iden-
tities (17.3) and (17.4) on all nonempty double (resp., triple) intersections.

Definition 17.4. A holomorphic matrix cochain G subordinated to the cov-
ering U, is a collection of holomorphic matrix functions Gα ∈ Mat(n,Uα)
defined and holomorphic in the domains of the covering. In a similar way
meromorphic, vector and other types of cochains are defined with obvious
modifications.2

Definition 17.5. The operator transforming a cochain G = {Gα} into the
cocycle H = {Hαβ} with Hαβ = GαG−1

β , is called the coboundary (or mul-
tiplicative matrix coboundary, if necessary to distinguish it from similar op-
erators).

Any family of trivializations of a holomorphic vector bundle defines a
holomorphic matrix cocycle. Conversely, any holomorphic matrix cocycle
inscribed in an open covering of T determines a holomorphic vector bundle
over T .

2The notions of cocycle and cochain belong to algebraic topology which defines cohomology
with coefficients in different sheaves. It would be more appropriate to use the terms 1-cocycle
and 0-cochain rather than simply cocycle and cochain, yet we will never need the general case of
k-cochains or k-cocycles in this book.
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Theorem 17.6. Any matrix cocycle inscribed in a covering of a holomorphic
manifold T , can be realized as the collection of transition gauge maps between
local trivializations of a suitable holomorphic vector bundle over the base T .

Proof. Consider the disjoint union of cylinders S̃ =
⊔

α Uα × Cn together
with the equivalence relation on it, identifying the points

Uα × Cn 3 (a, x) ∼ (a′, x′) ∈ Uβ × Cn ⇐⇒ a = a′ ∈ Uαβ and x′ = Hβαx.

This relation is indeed symmetric by (17.3) and transitive by (17.4). The
quotient space S = S̃/ ∼ by this relation obtains thus a natural structure of
a holomorphic manifold with the charts Uα×Cn. The Cartesian projections
πα : Uα × Cn → Uα respect the equivalence and hence together define an
analytic map π : S → T . The cylinders Uα × Cn provide trivializations of
the map π over Uα, and the transition maps between these trivializations
tautologically coincide with the gauge transforms defined by the specified
matrix functions from the cocycle. ¤

Description of vector bundles by matrix cocycles provides analytic tools
(methods of theory of analytic matrix functions) for working in the geometric
category of vector bundles.

Example 17.7. The trivial vector bundle π : T × Cn → T , π(a, x) = a, of
any rank n exists over any base T and is associated with the trivial cocycle
{Hαβ = E} inscribed in an arbitrary covering of T .

The definition of a vector bundle does not specify any particular choice
of the trivializations (there mere existence is required). Clearly, if Φα is a
trivialization of a vector bundle π over a domain Uα ⊆ T and Gα : Uα×Cn →
Uα × Cn a collection of invertible gauge map fibered over the identity, then
Φ′α = Gα◦Φα is another trivialization over the same domain Uα. The cocycle
H′ = {H ′

αβ} of the transition maps associated with the new collection of
trivializations, is related to the initial cocycle as follows:

H ′
αβGβ = GαHαβ on Uαβ . (17.5)

Definition 17.8. Two cocycles H = {Hαβ} and H′ = {H ′
αβ} inscribed in

the same covering U = {Uα} are equivalent , if there exists a holomorphic
matrix cochain G = {Gα}, such that (17.5) holds.

Summarizing, we conclude that each holomorphic vector bundle over the
base T is associated with a family of equivalent holomorphic matrix cocycle
inscribed in some open covering U = {Uα} of T . Conversely, any matrix
cocycle can be realized by a suitable bundle.

The question that was not yet addressed is equivalence of bundles ob-
tained from different coverings. Clearly, if a covering U = {Uα} is a refine-
ment of another, more coarse covering U′ = {U ′

i}, i.e., if each Uα entirely
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belongs to one of the larger domains U ′
i , then any cocycle inscribed in U′

can be refined to a cocycle inscribed in U, by restriction (postulating the
identical transitions Hαβ = id, if both Uα and Uβ belong to the same larger
domain U ′

i). This allows us to define equivalence of two cocycles H, H′ in-
scribed in two different coverings U,U′, by passing to cocycles inscribed in
the common refinement U′′ = {Uα ∩ U ′

i}.
Replacing the domains Uα by smaller ones, we can (and will always)

assume that each of them are topological disks with smooth boundaries.
A difficult problem is to pass from fine to more coarse coverings. To that

end one has to combine two trivializations over overlapping domains Uα, Uβ

into a trivialization over the union Uα ∪Uβ. This problem will be discussed
in detail later, in §17J.

17C. Operations on bundles. Speaking informally, a holomorphic bun-
dle is a union of linear spaces (fibers) parameterized by points of the base T
in a locally trivial way. Most constructions of linear algebra can be trans-
lated into the category of vector bundles by implementing these construc-
tions “fiberwise”. We provide a brief glossary of the most basic terms.

Definition 17.9. A (holomorphic) bundle map between two vector bundles
π : S → T and π′ : S′ → T ′ is a holomorphic map F : S → S′ between the
total spaces, which maps fibers of π linearly to fibers of π′.

Formally this means that there exists a map f : T → T ′ between the
bases, such that π′ ◦ F = f ◦ π. We say that the map F is fibered over f .
Two vector bundles are equivalent, if there exists an invertible holomorphic
bundle map between them.

To write bundle maps “in coordinates” we need to choose a pair of
trivializations near a given point a ∈ T and its image a′ = f(a). Consider
a pair of domains Uα ⊂ T and U ′

i ⊂ T ′, containing a and a′ respectively,
and let Φα, Φ′i respectively be two collections of trivializations of these two
bundles. Then a bundle map becomes a gauge map between Uα × Cn and
U ′

i × Cm (we do not assume that the two bundles have the same rank). In
other words, in the trivializing charts the map Φ′i ◦ F ◦ Φ−1

α takes the form

Uα × Cn → U ′
i × Cm, (a, x) 7→ (

f(a), Fα,i(a) · x)
,

with a (n×m)-holomorphic matrix function Fα,i. If instead of the trivializa-
tion Φα another trivialization Φβ of the total space at the source is chosen,
the matrix function Fα,i will be replaced by the matrix function Fβ,i which
on the intersection Uαβ satisfies the identity Fβ,i(a) = Fα,i(a) · Hαβ(a). A
similar rule applies when changing the trivialization of the target total space.
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Example 17.10. If the bundle S′ is trivial (of some dimension m), then a
bundle map between S and S′ is defined by a cochain F = {Fα} such that
Fα ·Hαβ = Fβ.

Conversely, a map from the trivial bundle S′ to S is defined by a cochain
G = {Gα} such that Hαβ ·Gβ = Gα.

Definition 17.11. A holomorphic cocycle H = {Hαβ} is called solvable, if
there exists a holomorphic matrix cochain G = {Gα} such that

Hαβ = GαG−1
β . (17.6)

By this definition, solvable cochains correspond to bundles which are
holomorphically equivalent to the trivial bundle. In analytic terms cocycle
is solvable if and only if it is equivalent to the trivial cocycle.

The general construction of a bundle map becomes more transparent if
both the source and the tangent bundle π, π′ are over the same base and the
map is fibered over the identity. In this case it is natural to use trivializations
Φα, Φ′α inscribed in the same covering. In each pair of trivializations the map
F : S → S′ is associated with a holomorphic matrix function

Φ′α ◦ F ◦ Φ−1
α : Uα × Cn → Uα × Cn, (a, x) 7→ (

a, Fα(a)x
)
.

In other words, a bundle map is associated with a holomorphic matrix
cochain (the matrices can be nonsquare, if the ranks of π, π′ are different.

On the overlapping of two domains the two matrix functions Fα, Fβ are
related by the identity

Fβ = H ′
βαFαHαβ, i.e., H ′

αβFβ = FαHαβ on Uαβ, (17.7)

where {Hαβ}, {H ′
αβ} are two cocycles defining the bundles π, π′ respectively.

This identity coincides with (17.5) if the matrices Fα are holomorphic invert-
ible, which again illustrates the notion of equivalence of cocycles as equiva-
lence of the corresponding bundles.

Other linear algebraic constructions are introduced in a similar way. A
subbundle S′ of a holomorphic bundle π : S → T is a holomorphic subman-
ifold S′ ⊆ S such that the restriction of π on S′ is itself a vector bundle of
some rank k less or equal to the rank of S. If S′ is a subbundle, then one
can define the quotient bundle S/S′, whose fibers are quotient spaces τa/τ ′a,
τa = π−1(a), τ ′a = τa ∩ S′ ⊆ τa. Given any two bundles π, π′ over the same
base, one can construct their direct sum π ⊕ π′, the tensor product π ⊗ π′,
dual bundle π∗, etc.

For instance, the tangent and cotangent bundles π = TM and π∗ =
T∗M over any holomorphic manifold M are dual to each other: for every
point a ∈ M there is a bilinear pairing π−1(a) × π∗−1

(a) → C between the
fibers of these bundles.
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The notions of holomorphic vector bundle, cocycle, cochain make perfect
sense in the case of minimal rank n = 1. This case is especially important,
since 1× 1-matrices commute, and hence it is much easier to study cocycles
and equivalence. To distinguish this case, bundles of rank 1 are called line
bundles.

One construction very important for future applications, allows us to
associate with a vector bundle of any rank a line bundle called determinant,
though a more appropriate name would be the maximal wedge product.

Note that for any linear space of dimension n its n-times wedge power
(the wedge product of n copies of the space) is one-dimensional. Thus for
any bundle π of rank n the wedge product

det π = π ∧ · · · ∧ π︸ ︷︷ ︸
n times

is a line bundle. Every linear map H ∈ GL(n,C) induces a map detH ∈
GL(1,C) between the wedge products,

x1 ∧ · · · ∧ xn 7→ Hx1 ∧ · · · ∧Hxn = (detH) · x1 ∧ · · · ∧ xn.

This allows us to define the determinant of a bundle in terms of cocycles.

Definition 17.12. The determinant of a vector bundle π : S → T of rank
n, associated with a cocycle H, is the holomorphic vector bundle of rank 1,
associated with the cocycle

det H = {hαβ}, hαβ = detHαβ. (17.8)

One can instantly verify that detH is indeed a (scalar) cocycle. From
(17.5) it follows that equivalent cocycles produce the same determinant co-
cycle.

17D. Classification of line bundles over the Riemann sphere. As a
first step towards classification of holomorphic vector bundles of arbitrary
rank over the Riemann sphere P in §17J, we now give a complete classifica-
tion of line bundles over P.

Consider the standard covering of the Riemann sphere P by an atlas of
two charts, U0 = {|t| < r0} ⊆ C (the disk in the affine part with the chart
t inherited from the affine line) and U1 = {|t| > r1} ∪ {∞} with the chart
z = 1/t, in which it also becomes an open disk. The intersection A = U01

of these two charts is the circular annulus A = {r1 < t < r0}. The exact
choice of the parameters r1 < r0 is not important.

A (holomorphic matrix) cocycle inscribed in the standard covering con-
sists of a single pair of matrix functions H01(t) = H−1

10 (t) holomorphic and in-
vertible in the annulus A. Such cocycles will be called Birkhoff–Grothendieck
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cocycles. For instance, a Birkhoff–Grothendieck cocycle of rank 1 is just a
nonvanishing function h(t) = h01(t) = 1/h10(t) holomorphic in the annulus.

Denote by ξd the line bundle corresponding to the standard Birkhoff–
Grothendieck cocycle

Ld = {h01, h10}, h01(t) = td
∣∣
t∈A

= 1/h10(t), d ∈ Z, (17.9)

in an annulus A. The integer number d will be referred to as the degree of
the line bundle ξd and the corresponding standard cocycle.

Proposition 17.13. Any scalar Birkhoff–Grothendieck cocycle L = {h01(t),
h10(t)} is equivalent to one of the standard cocycles (17.9) of some degree
d. Standard cocycles of different degrees are not equivalent to each other.

To prove the proposition, we need an additive (rather than multiplica-
tive) analog of holomorphic solvability of cocycles.

Lemma 17.14. Let U,U ′ ⊆ P be two domains such that both of them and
their intersection V = U ∩ U ′ have piecewise-smooth boundary.

Then any function v ∈ A(V ) holomorphic in V and continuous on the
closure V = V ∪ ∂V can be represented as the difference, v = u − u′, with
u ∈ A(U), u′ ∈ A(U ′).

For continuous functions the corresponding claim is obvious: among
other solutions, one can simply choose u′ = 0 (such a function is defined
everywhere) and construct u as an arbitrary continuation of the function v
from a closed subset V to a larger set U . However, holomorphic functions
are very rigid, and Lemma 17.14 is a nontrivial (though simple) fact.

Proof of Lemma 17.14. The function v can be represented by the Cauchy
integral over the boundary ∂V . This boundary can be represented as the
disjoint union of two parts, ∂V = B t B′, with B ⊂ ∂U and B′ ⊂ ∂U ′.
Thus we have

v(t) =
1

2πi

∮

∂V

f(z) dz

z − t
=

1
2πi

∮

B

f(z) dz

z − t
− 1

2πi

∮

−B′

f(z) dz

z − t
.

The integral over B (resp., B′) is holomorphic in U ⊂ P r B (resp., U ′ ⊂
P rB′), and both are continuous on the boundary. ¤

Example 17.15. The function u holomorphic in the annulus A = U01 as
above, can be expanded in a converging Laurent series. Collecting together
nonnegative and negative powers of t, we obtain two series converging in the
respective disks U0, U1 ⊂ P.
Proof of Proposition 17.13. There exists a unique integer number d such
that the argument of the function t−dh(t) is a well-defined function in the
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annulus A = U01. This number is equal to the index (rotation number) of
the loop h(S1) around the origin, where S1 is the unit circle {|t| = 1}.

For such a choice of d the function t−dh(t) admits a well defined loga-
rithm u(t) = ln

(
t−dh(t)

)
, a holomorphic function in A unique modulo 2πiZ.

Expanding u as in Lemma 17.14, we obtain two functions u0, u1 holomorphic
in the respective disks Di ⊂ P. The exponents gi = expui of these functions
are holomorphic, nonvanishing in Ui and satisfy the identity t−dh(t) = g0/g1

on U01. Rewriting this identity in the form

h(t) · g1(t) = g0(t) td,

we prove that the holomorphic cocycles L and Ld are equivalent; cf. with
(17.5). The equality td

′
g1 = g0 td with d 6= d′ is impossible, since the

variation of argument of each holomorphic nonvanishing function gi along
the circle is zero, while that of the ratio td−d′ is 2π(d− d′). ¤

Proposition 17.13 gives classification of scalar cocycles inscribed in the
standard covering of the Riemann sphere P by two charts. In fact, this
particular case suffices to describe all scalar cocycles, hence all holomorphic
line bundles over P.

Theorem 17.16. Any line bundle over the Riemann sphere is holomorphi-
cally equivalent to the standard bundle ξd of some degree d ∈ Z.

Proof. We first show that any line bundle π0 over the unit disk D ⊂ C is
equivalent to the trivial bundle. Indeed, consider the cocycle L which defines
the bundle π0. This cocycle is inscribed in a finite covering U. By further
refinement of this covering we may assume that it is a “triangulation”, i.e.,
the domains Uα are small ε-neighborhoods of triangles of some triangulation
of D (one can also choose partition of the disk into small squares arranged
in a grid). For our purposes it is important that the domains U1, . . . , UN

can be ordered in such a way that the intersections

Uk+1 ∩ (U1 ∪ · · · ∪ Uk), k = 1, 3, . . . , N − 1,

are all connected and simply connected ; see Fig. III.1.
Assume by induction that the cocycle L is solvable over U ′ = U1∪· · ·∪Uk.

Then, replacing the cocycle H by an equivalent cocycle, we may assume that
all transitions hij between domains with numbers 6 k are trivial. We claim
that the cocycle can be trivialized also over U ′ ∪ U , U = Uk+1. Indeed, in
this case all we have to show is that any holomorphic invertible function h
in the intersection V = U ∩ U ′ can be represented as the quotient of two
functions, h = g/g′, holomorphic and invertible in U and U ′ respectively.
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Figure III.1. Triangulation and “triangulated covering” of a disk

Since V by construction is simply connected, lnh is a well-defined holo-
morphic function which can be represented as a difference of two holomor-
phic functions by Lemma 17.14. After exponentiation we obtain the re-
presentation h = g/g′ and hence prove the solvability of the cocycle L re-
stricted on the union U ′ ∪ U = U1 ∪ · · · ∪ Uk ∪ Uk+1. By induction, the
cocycle is solvable (and hence the corresponding line bundle π0 is solvable).

Thus any holomorphic bundle over P can be trivialized over each of two
charts of a standard Birkhoff–Grothendieck covering. This means that the
problem of classification of arbitrary cocycles over P is reduced to classi-
fication of (scalar) Birkhoff–Grothendieck cocycles inscribed in a standard
covering. By Proposition 17.13, each such cocycle is equivalent to a standard
cocycle. ¤

17E. Sections of holomorphic vector bundles. Since the total space
of a vector bundle is in general not a Cartesian product, we need a suitable
generalization of the notion of vector functions.

Definition 17.17. A section of a holomorphic vector bundle π : S → T is a
map s : T → S, such that π ◦ s = id, i.e., such that the image of every point
a ∈ T belongs to the fiber π−1(a). We will specifically deal with continuous,
holomorphic and meromorphic sections (the latter will be defined separately
later).

Remark 17.18. Sometimes we will deal with “sections” defined only over
some (open) subset U of the base T . In this case, to avoid confusion, we
will say about local sections, explicitly specifying their domains.
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Trivializations over domains Uα allow us to associate with every section
s a holomorphic vector cochain {xα}, the collection of vector functions

xα : Uα → Cn, xα = Φα ◦ s
∣∣
Uα

.

Using a different trivialization Φβ on the intersection of two domains of
trivialization, replaces the function xα by the function xβ,

xβ = Hβαxα on Uαβ . (17.10)

Conversely, given a matrix cocycle H = {Hαβ} and a vector bundle
defined by this cocycle, any holomorphic vector cochain {xα} which satisfies
the conditions (17.10) on the pairwise intersections, defines a section of the
bundle.

However, not all bundles admit nontrivial (not identically zero) holo-
morphic sections (Problem 17.7).

Example 17.19. Sections of the tangent bundle TM are called (holomor-
phic) vector fields on M . Sections of the cotangent bundle are called (holo-
morphic) 1-forms. There are no globally defined holomorphic 1-forms with-
out poles on the Riemann sphere P (otherwise their primitives would be
globally defined holomorphic nonconstant functions), hence T∗P does not
admit holomorphic sections. Globally defined holomorphic vector fields on
P do exist, but they must necessarily have zeros.

Absence of holomorphic sections motivates introduction of a slightly
more general notion of a meromorphic section of a holomorphic bundle.

Definition 17.20. A meromorphic section of a holomorphic vector bundle
defined by a holomorphic matrix cocycle H = {Hαβ}, is a meromorphic
vector cochain {xα}, xα ∈ M(Uα)⊗CCn which satisfies the identities (17.10)
on the intersections Uαβ.

All meromorphic sections of a given bundle form an infinite-dimensional
linear space over C and, moreover, a linear space over the field M(T ) of
meromorphic functions on the base T , since two sections can be added,
and any meromorphic section can be multiplied by a meromorphic (scalar)
function. The corresponding meromorphic vector cochains obey the obvious
rules,

s = s′ + s′′ ⇐⇒ xα = x′α + x′′α, s′ = ϕ · s ⇐⇒ x′α = ϕxα.

The set of all meromorphic sections of a bundle π : T → S will be denoted
by Γ (π).
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17F. Degree of a holomorphic bundle. Recall that the order of a mero-
morphic scalar function ϕ ∈ M(C, 0) of a scalar argument t ∈ (C, 0) is the
order (positive or negative) of its principal Laurent term, ord0 ϕ = ν if and
only if ϕ(t) = cνt

ν + cν+1t
ν+1 + · · · , with c0 6= 0.

Definition 17.21. The order of a meromorphic vector -function x(t) =(
x1(t), . . . , xn(t)

) ∈ M⊗ Cn is the minimal order of its components,

ord0 x = min
16j6n

ord0 .

One can instantly verify that ord0 x(·) is the unique integer number
d ∈ Z such that t−dx(t) is holomorphic and nonvanishing at t = 0,

ord0 x(t) = d ⇐⇒ t−dx(t) ∈ O(C, 0)⊗ Cn and lim
t→0

t−dx(t) 6= 0.

If π is a holomorphic vector bundle over a one-dimensional base (Rie-
mann surface) T , then the order orda s of a meromorphic section s ∈ Γ (π)
at a given point a ∈ T of the base can be defined as the order of the
corresponding vector function xα in any trivialization Uα 3 a: since the
transition cocycle consists of holomorphic matrix functions, this definition
is self-consistent. The order is nonzero at all points except for a discrete set.

Proposition 17.22. All nontrivial meromorphic sections of a line bundle
over a compact Riemann surface T have the same total order : for any mero-
morphic section the sum

deg s =
∑

a∈T

orda s, s ∈ Γ (π), (17.11)

is the same and depends only on the bundle π itself.

Proof. If the fibers are one-dimensional, then any two sections s, s′ ∈ Γ (π)
are proportional, i.e., there exists a meromorphic function ϕ ∈ M(T ) such
that s′ = ϕs. Obviously, deg s′ = deg s +

∑
a orda ϕ, where the last term is

the sum of orders of all poles and zeros of ϕ. Yet any meromorphic function
ϕ considered as a map ϕ : T → P, assumes each value the same number of
times (equal to the degree of this map). Applying this to the values 0 and
∞, we conclude that

∑
a orda ϕ = 0, hence deg s = deg s′. ¤

Definition 17.23. The common degree of all meromorphic sections is called
the degree of a line bundle π and denoted by deg π.

The degree of arbitrary holomorphic vector bundle is defined as the
degree of its determinant, the line bundle associated with the determinant
cocycle (17.8),

deg π = deg(detπ). (17.12)
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We will need the following property of the degree. A holomorphic bundle
map between bundles of the same dimension will be called nondegenerate,
if it has a full rank at some point.

Lemma 17.24. Let π : S → T and π′ : S′ → T be two bundles of the same
rank over the same compact one-dimensional base T .

If there exists a nondegenerate holomorphic bundle map F : S → S′

fibered over the identity map of the base, then deg π 6 deg π′.

Proof. Consider first the case where S and S′ are both line bundles defined
by scalar cocycles H = {hαβ},H′ = {h′αβ} on trivializations over the same
covering U, then a bundle map between them is defined by a collection of
holomorphic functions fα 6≡ 0 related to the cocycles H, H′ by (17.7).

An arbitrary meromorphic section s ∈ Γ (π) and its image s′ = Fs ∈
Γ (π′) are defined by the meromorphic scalar cochains xα and x′α which
satisfy the identity

x′α = fαxα. (17.13)
Since fα 6≡ 0, this implies that orda s′α = orda sα + orda fα > orda sα.
Adding these inequalities over all points of T , we arrive at the inequality
deg s′ > deg s. By Proposition 17.22, this means that deg π′ 6 deg π.

A general nondegenerate linear map F : S → S′, represented by a matrix
cochain {Fα}, defines a nondegenerate map detF between the determinant
bundles detπ and detπ′. The map detF is defined by the nonzero scalar
holomorphic cochain fα = detFα: this follows (17.7) after passing to deter-
minants and the definition of the determinant bundle (17.8). The lemma
follows from the assertion for line bundles and the definition of degree of an
arbitrary bundle. ¤

As a corollary, we may conclude that subbundles of a trivial bundle all
have nonpositive degree.

Corollary 17.25. Every subbundle of the trivial bundle over a compact
Riemann curve has nonpositive degree.

Proof of the corollary. Let π : S → T be a subbundle of rank n of the
trivial bundle π0 : T × Cn+m → T . We will prove that deg π 6 0. Indeed,
one can always find a splitting of the fiber Cn+m = Cn ⊕ Cm into two
subspaces such that the fiber π−1(a) is transversal to Cm at some point a ∈
T . The projection on Cn parallel to Cm after restriction on the subbundle S
becomes a holomorphic nondegenerate bundle map between π and the trivial
subbundle π′ = T × Cn → T . By Lemma 17.24, deg π > deg π′ = 0. ¤
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17G. Holomorphic and meromorphic connexions. If x : T → Cn is a
holomorphic vector function of one or several variables, then its differential
is a vector-valued 1-form on T . Once fibers over different points of the base
T are different, as in the case of holomorphic vector bundles, the notion of
derivation of a section needs to be appropriately modified. The result is the
notion of a connexion, or in full meromorphic connexion on a holomorphic
vector bundle.

Connexions can be described axiomatically by their geometric proper-
ties. Denote by Λ1(T )⊗M(T ) Γ (π) the M(T )-module of meromorphic fiber-
valued 1-forms on the base T of a holomorphic vector bundle π, the tensor
product is taken over the field of meromorphic functions M(T ). By defini-
tion, a fiber-valued 1-form ω⊗s can be evaluated on any meromorphic vector
field Z ∈ D(T ), and the result will be the meromorphic section ϕ · s ∈ Γ (π),
ϕ = ω(Z). This object generalizes the notion of a vector-valued 1-form.
Now we give a generalization of the exterior derivative for vector-valued
functions. This is a differential operator called a connexion on the bundle.

Definition 17.26. A meromorphic connexion on a holomorphic vector bun-
dle π is a C-linear operator

∇ : Γ (π) → Λ1(T )⊗ Γ (π)

which satisfies the Leibnitz rule:
∇(λs + λ′s′) = λ∇s + λ′∇s′, ∀s, s′ ∈ Γ (π), λ, λ′ ∈ C,

∇(ϕ · s) = ϕ · ∇s + df ⊗ s, ∀s ∈ Γ (π), ϕ ∈ M(T ).
(17.14)

The result ∇s of a derivation is a fiber-valued 1-form on T .

Example 17.27. If π is a trivial bundle with S = T×Cn, then the standard
(vector) exterior derivative

∇x = dx, ∀x : T → Cn

obviously satisfies the rules (17.14). In fact, for trivial bundles we can easily
describe all differential operators satisfying the axioms (17.14). Indeed, if
∇,∇′ are two such operators, then their difference is a linear operator on
each fiber : from (17.14) it immediately follows that

(∇−∇′)(ϕ · x) = ϕ · [(∇−∇′)x].

This means that the difference between the operators is defined by an n×n-
matrix-valued form: evaluated on a tangent vector at a point a ∈ T of the
base, it becomes a linear automorphism of the respective fiber π−1(a) ∼= Cn

into itself.
In other words, any connexion∇ on the trivial bundle can be represented

using a suitable meromorphic matrix 1-form Ω ∈ Mat(n,Λ1(T )⊗M(T )) as
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the difference ∇ = d− Ω, that is,

∇x = dx− Ωx, ∀x : T → Cn, (17.15)

The matrix 1-form Ω is called the connexion form of the connexion ∇.

For arbitrary (nontrivial) bundles such characterization is true only lo-
cally, in trivializing charts.

17H. Connexions vs. linear systems. If F : S → S′ is an invertible
holomorphic bundle map between two bundles π, π′ over the same base,
then this map allows us to carry any connexion on S to a connexion on
S′ and vice versa. Two connexions ∇,∇′ on the two bundles are called F -
related , if F (∇s) = ∇′(Fs) for any section s ∈ Γ (π). Here by Fs is denoted
the section s′ ∈ Γ (π′) obtained by application of F to the section s.

Assume that both S, S′ are trivial bundles (of the same rank) and F is
a gauge map defined by the matrix function F (a) ∈ GL(n,C) as in (15.9).
It transforms a vector function a 7→ x(a) into the vector function x′(a) =
F (a)x(a). Thus two connexions, ∇ = d−Ω and ∇′ = d−Ω′, defined by two
matrix forms Ω,Ω′, are F -related if and only if F (dx−Ωx) = d(Fx)−Ω′Fx
for any vector-valued holomorphic function x(·). This condition is equivalent
to the matrix identity

Ω′ = dF · F−1 + FΩF−1 (17.16)

which naturally coincides with the law of gauge transformation (15.10).
This observation allows us to represent any connexion on a holomor-

phic bundle by a collection of matrix 1-forms associated with different local
trivializations of this bundle. Indeed, if Φα is a local trivialization of a holo-
morphic vector bundle with a meromorphic connexion ∇, then there exists
a unique meromorphic connexion ∇α on the trivial bundle Uα × Cn, which
is Φα-related to ∇. On the intersection of two charts Uαβ two different trivi-
alizations lead to two different connexion 1-forms Ωα, Ωβ. By (17.16), these
two matrix forms are related by the identity

dHαβ = ΩαHαβ −HαβΩβ. (17.17)

Conversely, given a collection of trivializations of a holomorphic vector
bundle, related by a matrix cocycle H = {Hαβ} and an arbitrary collection of
meromorphic matrix 1-form Ωα satisfying the transition identities (17.16) on
the pairwise intersections, we can define a meromorphic matrix connexion ∇
as the operator sending the vector cochain {xα} defining an arbitrary section
s ∈ Γ (π) into the cochain {θα} of vector-valued 1-forms θα = dxα − Ωxα.
It is a standard exercise to verify that if the initial cochain satisfies (17.10),
then the cochain {ωα} defines a section of Λ1(T ) ⊗ Γ (π), i.e., satisfies the
analogous identity Hαβθβ = θα on the pairwise intersections.
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Describing a meromorphic connexion by its connexion (matrix) forms in
suitable trivializations allows us to translate all notions and properties of
theory of linear systems, which are invariant by holomorphic gauge equiva-
lence, from the local theory of linear systems to the global context. We skip
trivial checks.

Definition 17.28. The singular locus of a meromorphic connexion ∇ is
defined as the collection of points at which the connexion matrix Ωα in
some (hence in any) trivialization has a pole. A meromorphic connexion is
holomorphic if it has no poles.

Definition 17.29. A singular point of ∇ is Fuchsian, if it has a first order
pole in some (hence in any) trivialization.

A singular point is regular, if it is regular for some (hence for any) linear
system dx = Ωαx.

For a Fuchsian connexion one can define its residue resa∇ at each Fuch-
sian singularity. This is a linear operator of the fiber π−1(a) into itself,
defined in the local trivializing chart as the residue of the corresponding
matrix connexion form:

resa∇ : π−1(a) → π−1(a),

res0(d− Ω) = A ⇐⇒ Ω = (t−1A + A0 + A1t + · · · ) dt.
(17.18)

A vector function x(·) whose differential vanishes, dx(·) ≡ 0, is (locally)
constant and its graph is a horizontal hyperplane in the cylinder T × Cn.
Such horizontal hyperplanes allow us to identify between themselves any
two fibers {t = a} and {t = b}, if the corresponding points belong to the
same horizontal hyperplane.

The analogous notions for general bundles are defined using the covariant
derivative ∇ instead of the exterior derivative d.

Definition 17.30. A horizontal section for a connexion∇ on a holomorphic
vector bundle π is a section satisfying the differential equation ∇s = 0.

If ∇ is a connexion on the trivial bundle U ×Cn with a connexion form
Ω, then horizontal sections t 7→ x(t) satisfy the Pfaffian linear equation
dx − Ωx = 0. Thus we see that connexions correspond to globally defined
linear systems introduced in a geometric (coordinate-free) way.

Remark 17.31. Existence of horizontal local holomorphic sections over any simply con-
nected chart free from singular points of a connexion, is automatic only in the case where
the base T is complex one-dimensional. In all other cases even local existence of horizontal
sections is guaranteed only under certain condition of flatness (absence of the curvature)
of the connexion; see Problem 17.13.

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



17. Bundles and connexions 301

Linear systems Meromorphic connexions

Domain T (Riemann surface) Base of the bundle T

Vector functions M(T )⊗ Cn Sections of the bundle Γ (π)

Matrix 1-form
Ω ∈ Mat(n,Λ1(T )⊗M(T ))

Meromorphic connexion
∇ : Γ (π) → Γ (π)⊗ Λ1(T )

Solutions of the linear system dx = Ωx Horizontal sections ∇s = 0

Holonomy (monodromy), Cauchy op-
erators

Parallel transport between
fibers

Gauge transform Bundle map

Table III.1. Glossary of terms: meromorphic connexions on holomor-
phic vector bundles vs. linear systems

In the same way as solutions of linear systems, horizontal sections are
usually multivalued, i.e., exist only on the universal cover of T r Σ, where
Σ = Sing∇ is the singular locus of the connexion. On the other hand, if
the base T is one-dimensional, Theorem 15.3 implies that horizontal sections
can be constructed over any simply connected domain in the punctured base
T rΣ. Moreover, partition of S on horizontal sections defines a horizontal
foliation F∇ (with singularities) of the total space S, transversal to all fibers
over nonsingular locus T rΣ.

Horizontal sections are “locally constant” with respect to the connexion
∇ and hence can be used to define the parallel transport between nearby
fibers π−1(a) and π−1(a′) over two sufficiently close points a, a′ ∈ T . This
transport is the precise equivalent of the holonomy map between two cross-
sections τa and τa′ to the null leaf of the foliation defined by an arbitrary
linear system (15.3). In the same way as for the linear systems (connexions
on the trivial bundles), the parallel transport along the leaves of horizontal
foliation defines the holonomy group of the connexion. All these notions
for connexions on trivial bundles coincide with their previously introduced
homologues for linear systems. Table III.1 provides a glossary of parallel
terms.

Theorem 17.32. Let π : S → T be a holomorphic vector bundle of rank n
and ∇ a meromorphic connexion on this bundle with the singular locus Σ.
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Then for any point a, any linearly independent vectors in the fiber π−1(a)
and any simply connected domain U ⊆ T r Σ there exist n holomorphic
sections of π over U , linearly independent in each fiber.

The parallel transport along horizontal sections over closed paths γ from
the fundamental group π1(SrΣ, a) defines a representation γ 7→ ∆γ of this
group by linear holonomy operators ∆γ ∈ GL(π−1(a)).

If π, π′ are two bundles over the same base and F is a holomorphic or
meromorphic bundle map between them fibered over the identity, and ∇,∇′
are two F -related connexions on these two bundles, then the correspond-
ing holonomy groups are also F -related, i.e., conjugated3 by the linear map
F (a) : π−1(a) → π′−1(a). ¤

17I. Connexions on line bundles. Trace of a meromorphic connex-
ion. Connexions on line bundles (of rank 1) are determined by the scalar
meromorphic 1-forms ωj in each trivialization, i.e., each connexion ∇ is
determined by its cochain of scalar 1-forms {ωα}. Since 1 × 1-matrices
commute, on the overlapping of domains Ui and Uj of two different triv-
ializations, two forms ωi, ωj differ by an additive holomorphic term, the
logarithmic derivative of the transition cocycle,

ωi = d ln hij + ωj , d lnhij = dhij/hij . (17.19)

In particular, the residue resa∇ is well defined as the scalar residue of any
of the two forms,

resa∇ = resa ωi = resa ωj , a ∈ Uij .

The total of residues of any meromorphic 1-form on a compact Riemann
surface is zero: the sum makes sense since the residues are (complex) num-
bers that can be added between themselves. The following is a generalization
of this fact for arbitrary line bundles.

Theorem 17.33. The total of residues of any meromorphic connexion on
a line bundle π over a compact Riemann surface T is the same for all con-
nexions and equal to the degree of the bundle,∑

a∈T

resa∇ = deg π.

Proof. The difference between any two meromorphic connexions ∇,∇′ on
the same line bundle is a globally well-defined meromorphic 1-form η =
∇−∇′ ∈ Λ1(T ). Indeed, by (17.15) the difference is a well-defined operator-
valued 1-form, but every linear self-map from GL(1,C) can be identified with

3In particular, if a point aj ∈ T is singular for one connexion and nonsingular for another,
then the holonomy operators corresponding to a simple loop around this point are both trivial
(identical).
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its multiplicator which is a complex number (rather than an element of some
fiber). From this observation it obviously follows that

∑
a

resa∇−
∑

a

resa∇′ =
∑

a

resa η = 0,

since the total of residues of any meromorphic 1-form is zero (the total of
integrals of η along all small loops around all singularities on T ). Thus the
sum of residues indeed does not depend on the connexion.

To show that it is equal to the degree, consider an arbitrary meromorphic
section s ∈ Γ (π) defined by a holomorphic cochain, s ∼ {xα}, and let ∇
be the unique connexion for which s is horizontal (see Exercise 17.6). This
connexion is defined by the cochain of logarithmic derivatives {ωα},

∇ ∼= {ωα}, where ωα = dxα · x−1
α .

The residue of the connexion ∇ at any point is the order of the section s at
this point. Therefore∑

a

resa∇ =
∑

a

resa ωα =
∑

a

orda xα =
∑

a

orda s = deg π

by (17.11). ¤

This result cannot be directly generalized to connexions on arbitrary
bundles of rank greater than 1, since for such bundles the residues are linear
self-maps of different fibers, hence cannot be simply added together. Thus
the “total of all residues” for an arbitrary connexion is meaningless. The
best one can get is a formula for the “total of traces of all residues” which
is defined as follows.

Any meromorphic connexion ∇ on a holomorphic vector bundle π in-
duces the trace connexion, denoted by tr∇, on the determinant bundle
detπ. If the connexion ∇ is trivialized by a cochain of meromorphic matrix
1-forms {Ωα}, then tr∇ is trivialized by the cochain {ωα},

∇ ∼= {Ωα} def⇐⇒ tr∇ ∼= {trΩα}. (17.20)

Proposition 17.34. The connexion tr∇ is a well-defined meromorphic con-
nexion on the bundle detπ.

Two connexions ∇ and tr∇ are det-related : if s1, . . . , sn are n linearly
independent meromorphic sections of a rank n bundle π, horizontal for ∇,
then their wedge product s1 ∧ · · · ∧ sn is a section of the line bundle detπ,
horizontal for the connexion tr∇.

Both connexions have the same singular locus, and at every singular
point

resa tr∇ = tr resa∇. (17.21)
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Proof. To prove the first assertion, consider the cocycle H = {Hαβ} defin-
ing π and the respective cocycle detH = {hαβ}, hαβ = detHαβ . By the
Liouville–Ostrogradskii formula (Problem 15.10),

tr Ωβ = tr(dHβα ·Hαβ) + tr(HβαΩαHαβ) = dhβα · hαβ + tr Ωα,

that is, the cochain {trΩα} representing tr∇, is indeed a connexion on the
bundle defined by the cocycle detH.

If {Xα(t)} is a fundamental (multivalued) matrix solution associated
with the sections s1, . . . , sn, then {uα} = {detα X(t)} is a cochain defining
the corresponding section of detπ. By the Liouville–Ostrogradskii formula,

Ωα = Ẋα ·X−1
α , trΩα = u̇α/uα,

which proves that the two connexions are det-related. ¤

By definition of degree of the arbitrary bundle, we have an immediate
corollary from Theorem 17.33 and Proposition 17.34.

Corollary 17.35 (Index theorem for connexions on a vector bundle). For
any meromorphic connexion π on a holomorphic vector bundle π over a
compact Riemann surface,∑

a

resa tr∇ =
∑

a

tr resa∇ = deg π. ¤ (17.22)

17J. Classification of holomorphic vector bundles over P. We con-
clude this section by a complete description of all holomorphic vector bundles
over the Riemann sphere.

Theorem 17.36. Any holomorphic vector bundle over the open unit disk D
or the affine line C, is holomorphically trivial.

Theorem 17.37. Any holomorphic vector bundle π over the Riemann
sphere P is holomorphically equivalent to the direct sum of standard line
bundles of different degrees

ξD
def= ξd1 ⊕ · · · ⊕ ξdn , D = diag{d1, . . . , dn}, di ∈ Z.

The collection of integer numbers {d1, . . . , dn}, called the splitting type, is
defined by the bundle uniquely modulo permutation.

These results will be derived from assertions on solvability and equiva-
lence of matrix cocycles.

Consider first the simplest cocycles inscribed in a covering by two charts
U0, U1 ⊂ P (they may not cover the entire sphere P). Assume that both
Ui are topological disks with piecewise-smooth boundaries in C and their
intersection U01 is connected.
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There are then two topologically different possibilities: either the inter-
section U01 is also a topological disk (bounded by piecewise-smooth curve),
or U01 is a topological annulus.

In the first case the holomorphic cocycle inscribed in such a covering
will be referred to as a Cartan cocycle.

Lemma 17.38. Any Cartan cocycle is holomorphically solvable.

Matrix cocycles inscribed in the covering of the second type, in which the
intersection U01 is a topological annulus, will be referred to as the Birkhoff–
Grothendieck cocycle, cf. with §17D. Without loss of generality we will
assume that the covering is standard (formed by two circular disks centered
at t = 0 and t = ∞ respectively).

Lemma 17.39. Any Birkhoff–Grothendieck matrix cocycle H = {H01,H10}
is equivalent to a Birkhoff–Grothendieck cocycle defined by the diago-
nal matrix function {tD, t−D} with an integer diagonal matrix D =
diag{d1, . . . , dn}.

In other words, Lemma 17.39 asserts that any holomorphic function
H01(t) in the annulus U01 = A admits factorization

H01(t) = F0(t) ·




td1

. . .
tdn


 · F1(t) (17.23)

with the matrix functions F0, F1 holomorphic and invertible in the disks
U0, U1 around t = 0 and t = ∞ respectively.

This very deep result can be viewed from different angles. The treat-
ment based on the operator theory and integral equations can be found in
the article [GK60]. In this article the authors construct the factorization
(17.23) of a matrix function H01 of very weak regularity (defined on the
circle |t| = 1 and merely integrable on it), and obtain the factors F0,1 holo-
morphic invertible inside and outside this circle, so that the identity (17.23)
is understood on the circle in the sense of the limit values.

An alternative approach uses methods of analytic matrix functions. The
first step is to show that any cocycle can be solved in meromorphic rather
than in holomorphic functions. In other words, we show that there are no
analytic (nonalgebraic) obstructions for solvability of matrix cocycles.

Theorem 17.40. Any Cartan or Birkhoff–Grothendieck cocycle is mero-
morphically solvable: there exists a pair of meromorphic and meromorphi-
cally invertible matrix functions Fi defined in the domains Ui, i = 0, 1, such
that

F0 = H01F1 on the intersection U01. (17.24)
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Idea of the proof. In the noncommutative (matrix) case one cannot reduce the “multi-
plicative” matrix equation (17.24) to the “additive” equation by simply taking logarithms
as in the proof of Proposition 17.13. Yet if H01 is a near identical cocycle, H01 = E + εH
for a small parameter ε, then one can use the ansatz Fi = E+εGi, i = 0, 1, and “linearize”
the equation (17.24), rewritten as εG0 = ε(H +G1)+O(ε2), by keeping only terms of first
order in ε. This linearized equation G0 = H+G1 is additive and can always be solved with
respect to G0, G1 in holomorphic matrix functions by literally reproducing the proof of
Lemma 17.14. From this solvability after some additional efforts one can derive holomor-
phic solvability of the matrix equation (17.24) for all near-identical holomorphic matrix
cocycles. This step resembles solving a nonlinear integral equation using the resolvent of
a linearized equation. Somewhat unexpectedly, the resolvent operation for the Birkhoff–
Grothendieck case is bounded and the corresponding nonlinear equation can be solved
using contracting mapping principle. In the Cartan case the resolvent operator (given by
the Cauchy integral) is unbounded and one has to use an appropriate modification of the
Newton–Kolmogorov method of accelerated convergence to overcome this difficulty.

Once the problem is solved for any near-identical cocycles, any other (not necessarily
near-identical) matrix cocycle can be approximated with any specified accuracy by a
rational matrix cocycle. The rational cocycles are obviously meromorphically solvable (it
is sufficient to collect factors with poles in the corresponding charts). From this observation
one can easily derive meromorphic solvability of an arbitrary cocycle.

Accurate demonstrations can be found in [GR65, §VI.E], [AB94, §3.3] and in the
recent book [Bol00, Lecture 9]. ¤

The second part of the proof transforms meromorphic solution of a cocy-
cle into holomorphic solution of this cocycle or a into a holomorphic conju-
gacy of it with some standard cocycle. It is this step in which the difference
between noncompact (C or D) and compact (P) base plays the key role. We
will derive Lemmas 17.38 and 17.39 from Theorem 17.40 by elementary row
and column operations with matrix functions.

Recall that an elementary operation on rows of a matrix is one of the
following three:

(1) transposition of two rows of a matrix,
(2) adding to one of the rows a linear combination of other rows,
(3) multiplication of a row by a nonzero scalar.

Each elementary operation can be achieved by the left multiplication of the
matrix by an appropriate elementary matrix. Except for the third type,
the determinant of the corresponding elementary matrix is 1. Three par-
allel elementary operations on columns of a matrix can be achieved by an
appropriate right multiplication.

In an obvious way, these elementary operations can be generalized for
meromorphic matrix functions: transformations of the second type consist
of adding to a row of a matrix function a linear combination of other rows
with meromorphic coefficients. Transformations of the third type consist
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of multiplication of a row by a nonzero meromorphic function. Elemen-
tary operations on columns of meromorphic matrix functions are also self-
explanatory.

Proof of Lemma 17.38. By Theorem 17.40, any Cartan cocycle can be
resolved by a meromorphic cochain {F0, F1}. We will implement a series
of modifications transforming this meromorphic cochain to a holomorphic
cochain.

First, the meromorphic cochain can be modified so that all matrix func-
tions Fi(t) become holomorphic in the corresponding domains Ui ⊆ C. To
that end, all functions Fi(t) should be multiplied by a suitable scalar power
(t − tk)νk , νk ∈ N, for each finite pole tk of order νk. Clearly, the deter-
minants of the holomorphic matrices Fi(t) obtained by such multiplication,
remain not identically vanishing, though they still may have isolated zeros
of finite order.

In order to get rid of these zeros, we will further multiply Fi simul-
taneously by rational matrix functions from the right (this operation ob-
viously will preserve the identity H01F1 = F0). If t∗ is an isolated root
of, say, detF1(t), then one of the columns of the matrix F1(t∗) is a lin-
ear combination of other columns, so that after the right multiplication by
an appropriate constant matrix C one of the columns of F1(t∗) becomes
zero. Then all entries from this column of the matrix function F1(t)C have
the common factor (t − t∗). After the right multiplication by the rational
matrix function R(t) = diag{1, . . . , (t − t∗)−1, . . . , 1}, the modified matrix
function F1(t)CR(t) = F ′

1(t) remains holomorphic at t∗, and so apparently
is F ′

0(t) = H01(t)F ′
1(t) = F0(t)CR(t).

The total number of zeros of detF ′
i (t), counted with multiplicities in

C, will decrease by 1 compared to that of detFi(t). After a finite number
of such steps we will get rid of all zeros of the determinant. The resulting
cochain will resolve the cocycle, since by definition of the Cartan cocycle,
both U0 and U1 belong to the finite part C. The proof of Lemma 17.38 is
complete. ¤

The proof of Lemma 17.39 requires the following result, known as the
Sauvage lemma [Har82]. Let (P,∞) be a small circular neighborhood of
infinity. Any matrix function H(t) = H01 ∈ Mat(n,M(P,∞)), meromor-
phic and not identically zero in this neighborhood, can be considered as a
cocycle on the covering of the Riemann sphere by two charts, U0 = C and
U1 = (P,∞), which intersect by the punctured disk, itself a limit case of an
annulus. We will refer to such cocycle as a Sauvage cocycle
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Lemma 17.41 (Sauvage lemma). Any Sauvage cocycle is holomorphically
equivalent to a standard matrix cocycle {tD} with an appropriate diagonal
integer matrix D, inscribed in the same covering.

Proof. The proof is achieved by a series of suitable monopole gauge trans-
forms which realize elementary matrix transformations bringing the Sauvage
cocycle to a diagonal form.

1. If the germ H(t) is holomorphic at (P,∞) and degenerate at t = ∞,
then there exists a constant upper-triangular matrix C and a holomorphic
germ H ′(t) such that

CH(t) = tD
′
H ′(t), D′ = diag{0, . . . ,−1, . . . , 0}. (17.25)

Indeed, if detH(∞) = 0, then the rows of the constant matrix H(∞) must
be linearly dependent, in particular, some row of it must be equal to a linear
combination of the subsequent (relatively lower) rows. In other words, there
exists an upper-triangular constant matrix C with determinant 1, such that
the matrix CH(∞) has a zero row. But then this same row of the matrix
function CH(t) is divisible by t−1, so that the matrix H ′(t) = t−D′CH(t) is
holomorphic at t = ∞.

Clearly, the order of zero of detH ′(t) is strictly inferior (by one less)
than the order of zero of detH(t):

ord∞ det H ′(t) = ord∞ det H(t)− 1. (17.26)

2. If D is an integer diagonal matrix D = diag{d1, . . . , dn} with non-
increasing entries d1 > · · · > dn, and H(t) is holomorphic and degenerate
at infinity, then the product tDH(t) is monopole equivalent to tD+D′H ′(t)
with D′ and H ′(t) as above.

Indeed, by Step 1, there exists a constant upper-triangular matrix C
such that CH(t) = tD

′
H ′(t) with holomorphic H ′(t) satisfying (17.26).

Consider the conjugacy of C by tD, Π(t) = tDC t−D. Because of the
upper-triangularity of C and monotonicity of the sequence {di}, the matrix
function Π(t) is an upper-triangular monopole. Since D and D′ commute,

Π(t) tDH(t) = tDC t−D · tDH = tDCH = tDtD
′
H ′ = tD+D′H ′.

3. For an arbitrary diagonal matrix D one can find a constant permu-
tation matrix P ∈ GL(n,C) (particular case of monopole) such that the
diagonal entries of D′ = PtDP−1 will be monotonous as required in Step 2.
This shows that the condition on the order of the diagonal entries di, im-
posed in Step 2, can be always achieved by a suitable monopole equivalence
(left multiplication by P ):

P tDH = P tDP−1 · PH = tD
′
H ′,

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



17. Bundles and connexions 309

with a holomorphic H ′ degenerate at infinity together with H.
4. The proof of the Sauvage lemma can be achieved by simple induction.

Any meromorphic germ H(t) can be represented as tD1H1(t) with H1(t)
holomorphic at infinity: it is sufficient to multiply H(t) by a suitable (scalar)
power of t. Since detH(t) 6≡ 0, the multiplicity of the root of detH1(t) at t =
∞ is finite. The inductive application of the construction described above
in Steps 1–3, allows us to construct a sequence of monopole transformations
reducing H1(t) to the form of a product of two terms, tDkHk(t) as above
(diagonal and holomorphic at infinity respectively), with strictly decreasing
orders of the roots ord∞ detHk(t). After finitely many steps the holomorphic
term Hm(t) becomes nondegenerate at infinity, and the Sauvage lemma is
proved. ¤

Proof of Lemma 17.39. Proceeding as in the proof of Lemma 17.38, we
may assume without loss of generality that the Birkhoff–Grothendieck co-
cycle H01 is already solved by the meromorphic cochain {F0, F1} such that
both F0, F1 are holomorphic and holomorphically invertible everywhere in
their domains, possibly except for the point t = ∞, where F1 has a finite
order pole.

By the Sauvage lemma 17.41, the meromorphic matrix function germ
F−1

1 (t) can be represented as a composition F−1
1 = Π(t) tDG(t) with

a polynomial and polynomially invertible (monopole) function Π(t) and
holomorphically invertible germ G(t) at t = ∞. The matrix function
G1 = t−DΠ−1F−1

1 defined on the entire domain U1, is holomorphic and
holomorphically invertible in this domain. Indeed, since terms in the lat-
ter equality are holomorphically invertible in U1 r {∞}, while at the point
t = ∞ the germ of this composition is G. Substituting the expression for
F1 = G−1

1 t−DΠ−1 into the identity H10(t)F0(t) = F1(t), we get

H10F0 = G−1
1 t−DΠ, i.e., H10F0Π

−1 = G−1
1 t−D.

In other words, the holomorphic cochain {F0Π
−1, G−1

1 }, conjugates the ini-
tial Birkhoff–Grothendieck cocycle H = {H01} with the standard cocycle
{t−D}. ¤

Proof of Theorems 17.36 and 17.37. The proof of both these theorems
is achieved by literally the same arguments as the proof of Theorem 17.16.
Namely, we consider a “triangulated” covering and consecutively resolve
the Cartan cocycles using Lemma 17.38, until the disk D is exhausted. In
the case of the Riemann sphere P we can replace the initial cocycle by an
equivalent Birkhoff–Grothendieck cocycle. Then Lemma 17.39 proves that
this cocycle is equivalent to one of the standard cocycles corresponding to
the vector bundle ξD.
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It remains only to prove the uniqueness of the splitting type D (clearly,
bundles with permuted linear subbundles are equivalent). Assume that there
exists a holomorphic bundle map between two bundles of different types D
and D′. Then there exist a holomorphic matrix cochain {H0,H1} inscribed
in the Birkhoff–Grothendieck covering, such that

H1 = tDH0 t−D′ , Hi ∈ GL(n, O(Ui)).

Consider an arbitrary matrix element of the form h0
ij(t) tdi−d′j in the right

hand side. If di > d′j , then this element is holomorphic both in U0, since h0
ij

is holomorphic there, and in U1, since it is equal to h1
ij(t) ∈ O(U1). This is

possible only if h0
ij is a constant, necessarily zero if di > d′j .

Assume that the two tuples of numbers d1, . . . , dn and d′1, . . . , d
′
n are

both arranged in the nonincreasing order. Consider the largest elements
d1 and d′1. If d1 > d′1, then the matrices H0,H1 will have identically zero
first row, contrary to their nondegeneracy. For reasons of symmetry, the
strict inequality d′1 < d1 is also impossible. This leaves only one possibility,
d1 = d′1. Let k be the first place when the numbers dk and d′k are different.

If dk > d′k, then the matrix function H0(t) is block-upper-triangular
with the upper k×k-block having identically zero last row. Such a matrix is
identically degenerate contrary to the assumption on the cochain {H0,H1}.
Thus dk 6 d′k. For reasons of symmetry we also have d′k 6 dk, i.e., dk = d′k.

In other words, after arranging in the same nonincreasing order, both
splitting types D and D′ must coincide; but this means that they are per-
mutations of each other. ¤

Exercises and Problems for §17.

Problem 17.1. Let hα : Uα → Cn be an atlas of charts for some open covering U
of a holomorphic manifold M . Write explicitly the trivializations for the tangent
and cotangent bundles TM and T∗M .

Exercise 17.2. Prove that two equivalent holomorphic cochains define two holo-
morphic equivalent vector bundles over the same base.

Problem 17.3. Let H,H′ be two cocycles (of different size matrices) corresponding
to the vector bundles S, S′ respectively. Construct explicitly the cocycles associated
with the direct sum S ⊕ S′ and the tensor product S ⊗ S′.

Problem 17.4. Let S′ ⊂ S be a subbundle. Prove that the cocycle H associated
with S, is equivalent to a cocycle of block upper-triangular matrices. Describe the
cocycle associated with the quotient bundle S′′ = S/S′.

Exercise 17.5. Prove that among all cocycles {td} on the Riemann sphere, only
the cocycle with d = 0 is solvable.

Exercise 17.6. Prove that for a given meromorphic section of a line bundle, there
exists a unique connexion for which this section is horizontal.
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Problem 17.7. Prove that the line bundle ξd over the projective line P admits
nontrivial holomorphic sections if and only if its degree d is nonnegative.

Problem 17.8. Prove that the line bundle ξd over the projective line P admits
nontrivial automorphisms different from multiplication by a constant factor, if and
only if its degree d is negative.

Problem 17.9. Prove that the tangent bundle TP and cotangent bundle T∗P over
the Riemann sphere have degrees 2 and −2 respectively.

Problem 17.10. Prove that a holomorphic bundle of rank n admits n holomorphic
sections linearly independent in each fiber, if and only if the bundle is equivalent
to the trivial one.

Exercise 17.11. Prove from the definition that the notion of connexion is local.
More precisely, prove that for any two meromorphic sections s, s′ of the same bun-
dle, both holomorphic at a point a ∈ T and with the same 1-jet, the respective
values coincide, ∇s(a) = ∇s′(a) ∈ π−1(a).

Exercise 17.12. Prove that any connexion on a bundle of rank n is completely
determined by n linearly independent horizontal sections: if two connexions have
n common horizontal sections, then they coincide as differential operators.

Problem 17.13. Let π0 : T ×Cn → T be a trivial bundle over a simply connected
holomorphic manifold T and ∇ a holomorphic connexion on it (holomorphic means
meromorphic without singularities).

Prove that a collection of n horizontal holomorphic sections linearly indepen-
dent in each fiber over a neighborhood U of a point a exists if and only if the
connexion matrix form Ω = (ωij)

n
i,j=1, ωij ∈ Λ1(T )⊗M(T ), satisfies the equation

dΩ− Ω ∧ Ω = 0, (17.27)

in a neighborhood of the point a, where

dΩ = (dωij)
n
i,j=1 , Ω ∧ Ω =

(∑
k
ωik ∧ ωkj

)n

i,j=1

are two matrix-valued 2-forms on T .

Problem 17.14 ([Bol00]). Find the splitting type (collection of the indices
d1, . . . , dn) for the bundles defined by the Birkhoff–Grothendieck cocycles

(
t λ

t−1

)
,

(
t
λ t−1

)
(17.28)

Problem 17.15. Let H be a holomorphically solvable Birkhoff–Grothendieck co-
cycle (say, rational). Prove that any other rational cocycle H′ sufficiently close to
H in the annulus A = U0 ∩ U1, is also solvable.

Problem 17.16 (Yu. L. Shmul’yan, 1954). Assume that the splitting type d1 6
· · · 6 dn of a Birkhoff–Grothendieck cocycle H has at most one gap, i.e., dn−d1 6 1.
Prove that any close cocycle has the same splitting type. Give an example showing
that this is not necessarily the case if dn − d1 > 1.
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Exercise 17.17. Prove that the degree of the bundle ξD is equal to |D| = d1 +
· · ·+ dn.

Problem 17.18. Prove that any holomorphically invertible matrix function F (t)
in the annulus A = U0 ∩ U1 can be factored out as F (t) = H0(t)H1(t) tD with
the terms Hi(t) holomorphically invertible in Ui, i = 0, 1, and an integer diagonal
matrix D. It is this form that is sometimes called the Birkhoff factorization.

In particular, any nonzero meromorphic germ of a matrix function F (t) at
the infinity admits factorization F (t) = Π(t)H(t) tD with a monopole Π(t) and a
holomorphically invertible germ H(t) at infinity.

Problem 17.19 ([Bol00]). Prove that a holomorphic vector bundle π : S → T
is topologically trivial if and only if its degree is equal to zero. The topological
triviality means that there exists a homeomorphism F : S → T × Cn fibered over
the identity and linear on each fiber.

18. Riemann–Hilbert problem

The problem is as follows: To show that there always exists a linear
differential equation of the Fuchsian class, with given singular points and
monodromy group. The problem requires the production of n functions
of the variable z, regular throughout the complex z-plane except at the
given singular points; at these points the functions may become infinite
of only finite order, and when z describes circuits about these points the
functions shall undergo the prescribed linear substitutions.

D. Hilbert, 1901, reprinted from [Hil00]

The Riemann–Hilbert problem, also known as Hilbert’s twenty-first prob-
lem, requires constructing a linear system with the prescribed monodromy
group and positions of all singularities. The original formulation by Hilbert
is somewhat confusing, since the clarification given in the text after it, de-
scribes only the regularity condition, while the main formulation explicitly
mentions Fuchsian systems.

One can think of not one but rather three different accurate formulations,
when a given monodromy group is required to be realized by:

(i) a Fuchsian linear nth order differential equation,
(ii) a linear system having only regular singularities, or
(iii) a Fuchsian system on the whole Riemann sphere P.

In each case it is required that the equation (resp., the system) be nonsin-
gular outside the preassigned points.

The negative answer in the first problem was known already by A. Poin-
caré: the reason is that the dimension of the space of all Fuchsian equations
having m prescribed singular points on P, is strictly smaller than the dimen-
sion of all admissible monodromy data, except for the case of second order
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equations with three singular points studied by Riemann. The correspond-
ing problem is discussed in §19F.

J. Plemelj [Ple64] gave a solution of problem (ii) while claiming solution
of the strongest problem (iii). The gap was discovered by Yu. Ilyashenko
[AI85] and A. Treibich [Tre83] in the earlier eighties. The positive part of
the Plemelj theorem is described in §18B.

Yet only recently it became clear that there is a substantial difference be-
tween the formulations (ii) and (iii). It was proved independently by A. Boli-
bruch [Bol92] and V. Kostov [Kos92] that an irreducible monodromy group
can always be realized by a Fuchsian system. In this section we explain a
remarkably simple proof of the Bolibruch–Kostov theorem which was com-
municated to us by the late A. Bolibruch.

However, for a reducible monodromy group the answer to problem (iii)
may be negative. The counterexample, also due to Bolibruch, is described
in §18E.

The way to understand reasons and obstructions for solvability of the
Riemann–Hilbert problem passes through its generalization, the Riemann–
Hilbert problem for meromorphic connexions on holomorphic vector bundles.
The “elementary” (analytic) demonstration of these results, is given in 16.

18A. Riemann–Hilbert problem on abstract bundles. In invariant
terms the Riemann–Hilbert problem can be formulated as follows: construct
a meromorphic connexion on the trivial bundle over the Riemann sphere,
having preassigned Fuchsian singular points at the specified points and the
preassigned holonomy group.

In the category of abstract vector bundles the Riemann–Hilbert problem
becomes in a sense trivial: any collection of matrix connexion forms can
be realized by a meromorphic connexion on a suitable holomorphic vector
bundle.

We start by choosing a special system of generators for the monodromy
group. Consider m distinct points a1, . . . , am on the affine plane C ⊂ P. By
choosing an appropriate affine chart one can always guarantee that ai/aj /∈
R+, i.e., that the line segments [0, aj ] connecting the origin with these points
are pairwise disjoint except for the common origin.

Definition 18.1. The canonical loops generating the fundamental group
of the Riemann sphere with finitely many deleted points P r Σ, Σ =
{a1, . . . , am} are the loops which consist of line segments connecting the
origin with each singular point ai ∈ C, encircling the latter along a small
counterclockwise circular arc and then returning along the same segment in
the opposite direction; see Fig. III.2. All circular arcs are pairwise disjoint.
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Figure III.2. Canonical loops and specification of the monodromy data

The fundamental group π1(PrΣ, 0) is generated by the canonical loops
γi, i = 1, . . . , m, related by a single identity γ1◦· · ·◦γm = id. We will always
assume that the points are numbered counterclockwise (see Fig. III.2) and
cyclically, i.e., the point am follows after am−1 and is in turn followed by a1.
Denote by U0 ⊆ C the disk {|t| < R} containing all points aj .

Recall that the monodromy data is a collection of m points a1, . . . , am

as above and invertible linear operators M1, . . . , Mm ∈ GL(n,C) such that
their product in the specified order is the identity; see (16.16).

Definition 18.2. The monodromy data is realized by a meromorphic con-
nexion ∇ on a holomorphic vector bundle of rank n over P, if the singular
points of the connection are aj , j = 1, 2, ...,m, and the holonomy ∆j (the
linear self-map of the fiber τ0 = π−1(0) ∼= Cn associated with each canonical
loop γj) coincides with Mj for all j = 1, . . . , m.

Example 18.3 (Realization of a single operator). Every single holonomy
operator can be immediately realized by the holonomy of a Fuchsian system.
Indeed, let U = Uj ⊂ C be a simply connected domain containing both the
origin and the point aj . Then the holonomy operator for the Fuchsian matrix
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1-form

Ωj =
Aj dt

t− aj
∈ Λ1(Uj)⊗M(Uj), exp 2πiAj = Mj , (18.1)

associated with the fiber {0} × Cn, coincides with Mj . Recall that the
equation exp 2πiAj = Mj is solvable for any nondegenerate matrix Mj by
Lemma 3.11.

Note that the realization is by no means unique: besides the freedom of
choice for the matrix logarithm discussed in §3D, one can also construct (in
the resonant case) a non-Euler system.

We show now how an arbitrary monodromy data for several singularities
can be realized as a holonomy of a Fuchsian connexion on an abstract bun-
dle. Consider a collection of meromorphic matrix 1-forms Ωj , j = 1, . . . , m,
such that each form is meromorphic in U0 and has a unique pole at aj . The
collection {Ωj}m

1 of such meromorphic matrix 1-forms will be called admis-
sible, if ∆m ◦ · · · ◦∆1 = id. This happens automatically if each Ωj realizes
the holonomy operator Mj from the monodromy data {M1, . . . ,Mm}.
Theorem 18.4. For any admissible collection of meromorphic 1-forms

Ωj ∈ Λ1(U0)⊗M(U0), Sing Ωj = {aj}, j = 1, . . . , m,

∆j = ∆γj ∈ GL(τ0), ∆m ◦ · · · ◦∆1 = id,
(18.2)

there exists a holomorphic vector bundle π : S → P of rank n over the Rie-
mann sphere and a meromorphic connexion ∇ on this bundle such that the
singular locus of ∇ coincides with Σ = {a1, . . . , am} and at each singular
point ak the connexion is locally biholomorphically equivalent to the connex-
ion d− Ωk.

In other words, one can construct holomorphic bundles over P with any
preassigned holonomy group, specifying in addition the types of singularities
(regular, Fuchsian or even arbitrary irregular) as well as their position. Of
course, there is no guarantee that the bundle obtained this way, will be
trivial.

Proof. The assertion of the theorem is largely a tautology very similar to
that asserted in Theorem 17.6. The accurate proof consists of two steps.

On the first step we construct a holomorphic bundle π : S → U0 over
the large disk U0 and a meromorphic connexion on it with the specified
holonomy operators. Because of the admissibility, the holonomy associated
with the boundary of the disk is identical. On the second step we “seal” the
hole at infinity, constructing a holomorphic vector bundle over P.

We construct explicitly the cocycle which defines the bundle π over the
disk U0 as follows. To define the covering, we slice the disk into sectors
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Sj = {αj 6 Arg t 6 αj+1, |t| < R} in such a way that each sector Sj

contains only one singular point, and consider the covering of U0 by the open
domains Uj , j = 1, . . . , m, which are small ε-neighborhoods of these sectors.
The number ε is chosen so small that the intersections Uj,j+1 = Uj ∩ Uj+1,
the ε-neighborhoods of the rays Arg t = αj , are all disjoint from the singular
locus Σ. Note that the origin t = 0 belongs to all domains Uj .

If we slit each domain Uj along the radius connecting the corresponding
point aj with the boundary of the disk U0, then none of these slits inter-
sect the pairwise intersections Uij . On the other hand, in the slit domains
we may define holomorphic invertible matrix solutions Xj(t) of the matrix
differential equations dXj = ΩjXj with the initial condition Xj(0) = E.

Define the holomorphic matrix cocycle

Hij = Xi ·X−1
j on Uij . (18.3)

The cocycle identities are obviously satisfied, and differentiating (18.3), we
conclude that

dHij = dXi ·X−1
j + Xi(−X−1

j dXj ·X−1
j ) = ΩiHij −HijΩj .

Let π : S → U0 be the holomorphic vector bundle π : S → U0 over the disk
U0, described in Theorem 17.6, for which the cocycle H = {Hij} is the
collection of transition maps. Then the collection of the matrix forms Ωi

defines a meromorphic connexion ∇ on S with the polar locus Σ. Since
Hij(0) = E, the holonomy maps of this connexion, associated with the
section π−1(0) and the loops γj , coincide with the prescribed linear operators
∆j . In particular, the holonomy of the boundary circumference of the disk
U0 is trivial by (18.2).

To “seal the gap” and extend the bundle π just constructed over U0 on
the disk P r U0, we consider the trivial bundle of the same rank n over the
disk U1 = {|t| > R − ε} ⊂ P on the Riemann sphere, equipped with the
trivial connexion ∇ = d.

Any linear invertible map of a fiber π−1(a) → Cn, a ∈ U01 = U0 ∩ U1,
can be extended uniquely as a holomorphic gauge map H01 : π−1(U01) →
U01 × Cn fibered over the identity map of the annulus U01, which sends
horizontal sections of ∇ to the horizontal (constant) sections of the trivial
bundle. In a standard way we can now construct the holomorphic bundle
over the union U0 ∪ U1 = P with a holomorphic connexion on it, without
singularities outside U0 and the prescribed holonomy group in U0. ¤

18B. Connexions on the trivial bundle. If the abstract bundle π : S →
P constructed in Theorem 18.4 is holomorphically equivalent to the trivial
bundle π0 : P× Cn → P, the globally defined connexion matrix would solve
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the Riemann–Hilbert problem in the classical sense. However, this holo-
morphic triviality may be only accidental, and in general the bundle will be
nontrivial.

Nevertheless we can assume that the bundle is already in the standard
Birkhoff–Grothendieck normal form, i.e., a pair of trivializations is chosen
so that the transition cocycle between them is the standard matrix tD.

For such a standard bundle we will construct an explicit meromorphic
trivialization, a bundle map F : S → P × Cn with a single pole at infinity.
This bundle map is given by the cochain F = {id, t−D}, where D is the
splitting type.

The trivializing map F carries the connexion ∇ on S to a meromorphic
connexion on the trivial bundle over P. The resulting connexion has the
same holonomy group, yet its singularity at infinity will in general only be
regular non-Fuchsian.

The bundle π constructed in Theorem 18.4 is holomorphically equivalent
to the standard Birkhoff–Grothendieck bundle, the equivalence being defined
by a holomorphic matrix cochain G = (G0, G1). The meromorphic bundle
map F which trivializes π, is the composition {F0 = G0, F1 = t−DG1},
whose components are columns of the commutative diagram

U0⊃ A
H−−−−→ A ⊂U1

G0

y
yG1

U0⊃ A
tD−−−−→ A ⊂U1

id

y
yt−D

U0⊃ A
id−−−−→ A ⊂U1

,

A = U0 ∩ U1,

P = U0 ∪ U1,

G0 ∈ GL(n,O(U0)),

G1 ∈ GL(n,O(U1)).

(18.4)

The upper square of this diagram is the holomorphic equivalence of the
bundle π and the standard bundle ξD, the lower square is the meromorphic
trivialization.

The Fuchsian connexion∇ on the bundle π constructed in Theorem 18.4,
is F -related with a connexion∇0 on the trivial bundle π0. Yet this connexion
is obviously regular, even if the point t = ∞ was singular (Fuchsian) for ∇.
This immediately implies the affirmative solution of Problem (ii) (p. 312).

Theorem 18.5. Any monodromy group can be realized by a regular linear
system on the Riemann sphere.

Moreover, the regular system can always be constructed with all singu-
larities Fuchsian, except for at most one. ¤

Somewhat embarrassingly, the singularity of ∇0 created at the point t =
∞, is non-Fuchsian even if this point was nonsingular for ∇. Yet the regular
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singular point at infinity for the connexion ∇0 sometimes can be further
simplified using monopole gauge transforms. Recall that the monopole gauge
transforms are meromorphic gauge self-maps of the trivial bundle, which are
nonsingular at all points of P except the point t = ∞ (cf. Definition 16.34).

The following result was first proved4 by J. Plemelj in [Ple64].

Theorem 18.6. If at least one monodromy operator Mj is diagonalizable,
then the corresponding monodromy data can be realized by the holonomy of
a Fuchsian system on P.

Proof. Consider the abstract bundle π realizing the specified holonomy
group as in Theorem 18.4. Without loss of generality we may assume that
the bundle is trivialized over two charts U0, U1 by a Birkhoff–Grothendieck
cocycle H and the connexion ∇ is represented by two meromorphic matrix
1-forms Ω0, Ω1. Again without loss of generality we may assume that the
diagonalizable monodromy operator corresponds to the singular point t = ∞
and the corresponding Fuchsian connexion form over U1 is already diagonal
and is an Euler system in the standard chart,

dX = Ω1X, Ω1 = Λdt
t , Λ = diag{λ1, . . . , λn}. (18.5)

Consider the meromorphic gauge transform (18.4) which trivializes the
bundle π. This transform carries ∇ to the meromorphic connexion ∇0

on the trivial bundle, defined by the single meromorphic matrix 1-form
Ω ∈ Mat(n,Λ1(P)⊗M(P)) with all singularities in the finite plane already
Fuchsian.

The singularity at infinity is regular non-Fuchsian and has a fundamental
(multivalued) matrix solution of the form X(t) = t−DG1t

Λ, as follows from
the explicit form (18.5) and the diagram (18.4), where G1 is a holomorphic
invertible matrix function near t = ∞.

Inverting the order of matrix terms by Lemma 16.36, we may rewrite
the solution X(t) under the form

X(t) = Π−1(t)G′(t) t−D′tΛ, G′ ∈ GL(n, O(P,∞)), Π ∈ GL(n,C[t]).

After application of the monopole gauge transform Π we obtain a matrix
form Ω′ = dΠ ·Π−1 + ΠΩΠ−1 with all finite singularities still Fuchsian (as
the order of pole cannot be changed by a holomorphic local gauge equiv-
alence) and the regular singular point at infinity, having a fundamental
matrix solution X ′(t) = G′(t) tΛ−D′ , since diagonal matrices commute and
t−D′tΛ = tΛ−D′ .

4The assumption on diagonalizability was missing in [Ple64], as was noted by Ilyashenko
and Treibich.
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From this representation it follows immediately that Ω′ has a first order
pole at infinity with the principal term conjugate to (Λ−D′)dt

t , that is, Ω′

is Fuchsian also at infinity. ¤

18C. Invariant subbundles and irreducibility. Solvability of the Rie-
mann–Hilbert problem for an arbitrary monodromy data is determined to
a very large extent by existence and structure of invariant subspaces of the
holonomy.

Let π : S → T be an arbitrary holomorphic vector bundle with a mero-
morphic connexion ∇ on it.

Definition 18.7. A subbundle L ⊂ S is called ∇-invariant, if fibers of
this subbundle are mapped into each other by all the horizontal transport
operators.

In other words, L is invariant, if any parallel transport operator ∆γ

between two fibers τa, τb along any path γ connecting these points in T rΣ,
maps La = L ∩ τa into Lb = L ∩ τb.

A subspace ` ⊂ Cn is invariant by a linear group G ⊂ GL(n,C), if it
is invariant by all operators from the group. Obviously, if for a finitely
generated group G = 〈M1, . . . , Mm〉 it is sufficient to verify invariance only
by the generators.

Since monodromy operators ∆γ for all loops γ ∈ π1(T r Σ, a) are a
special class of parallel transport maps, any subbundle L ⊂ S invariant for
a meromorphic connexion generates the invariant subspace `a = L ∩ τa for
the monodromy group, regardless of the type of singular points. The inverse
statement is true only for regular connexions (cf. with Problem 18.4).

Proposition 18.8. Let ∇ be a regular meromorphic connexion on a holo-
morphic bundle π : S → T .

If ` ⊂ τa = π−1(a) is a linear subspace (sub-fiber) invariant by all
holonomy operators ∆γ, γ ∈ π1(T r Σ, a), then there exists a holomorphic
subbundle L ⊂ S invariant by ∇ and extending `, so that L ⊃ `.

Proof. The only candidate for such a subbundle is the saturation of ` by
horizontal sections. We show that this saturation is indeed a holomorphic
subbundle of S, namely, it extends holomorphically at all regular singulari-
ties.

1. By parallel transport along a path connecting the base point a with
any nonsingular point t /∈ Σ, we can carry the subspace ` to a subspace
L(t) in the fiber π−1(t). The result of this transport does not depend on the
choice of the path, since ` is invariant by all holonomy operators.
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The subspaces L(t), t /∈ Σ, holomorphically depend on the base point:
to see this locally near any point b ∈ TrΣ, it is sufficient to choose a trivial-
ization in which the connexion form is identically zero. In this trivialization
L(t) is independent of t.

2. It remains to prove that the subbundle L over T r Σ, analytically
extends to any singular point. This is a purely local problem that can be
solved in a fixed trivialization (C, 0)×Cn. Let X(t) be a fundamental matrix
solution of the corresponding linear system dX = ΩX.

3. Consider first the case where the monodromy is trivial, i.e., X(t) is
a meromorphic matrix function. Without loss of generality we may assume
that the subspace L(t) is spanned by the first k columns (vector functions)
of X. Our goal is to show that one can find some other k holomorphic vector
functions, linearly independent for all t ∈ (C, 0).

If k = 1, then any meromorphic vector function x1(t) can obviously be
uniquely represented as x1(t) = tν1y1(t) with y1(·) holomorphic and y1(0) 6=
0. The function y1(t) spans the same subspace (line) and is holomorphic.

Assume that any k-dimensional meromorphic family of subspaces can be
spanned by k holomorphic linearly independent vector functions. Making
an additional holomorphic gauge transform, we may assume without loss
of generality that these vector functions coincide with the first coordinate
vector functions y1(t) = (1, 0, . . . , 0)>, y2(t) = (0, 1, 0, . . . )>, etc. Consider
the meromorphic vector function xk+1(t). Without changing the subspace
L(t), we can replace it by another vector function x′k(t) whose first k co-
ordinates are identically zero (subtracting a suitable linear combination of
x1(t), . . . , xk(t) with meromorphic coefficients). The vector function x′k+1(t)
can again be uniquely represented as x′k+1(t) = tνk+1yk+1(t) with yk+1(t)
holomorphic and yk+1(0) 6= 0. Since the first components of yk+1 are iden-
tically zeros, the vector functions y1, . . . , yk+1 are linearly independent.

4. Assume now that the monodromy of the singular point is nontrivial
and the linear space generated by the first k < n columns of the fundamental
matrix solution X(t) is invariant. If these columns are arranged in the
form of a rectangular n× k-matrix Y (t), then the invariance means that for
some constant k× k-invertible matrix M the result of analytic continuation
of Y around the origin is Y (t)M . Choosing any matrix logarithm A ∈
Mat(k,C) such that exp 2πiA = M , we conclude that the matrix function
Z(t) = Y (t)t−A is single-valued hence meromorphic at the origin. The
columns of Z generate the same subspace as the columns of Y , thus by
the previous arguments this subspace holomorphically depends on t at any
regular singular point. ¤
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Definition 18.9. A meromorphic connexion on a holomorphic vector bun-
dle is called reducible, if it admits a nontrivial invariant holomorphic sub-
bundle. Otherwise the connexion is called irreducible.

From Proposition 18.8 it follows that a regular connexion is irreducible
if and only if its holonomy group is irreducible as a linear representation of
the fundamental group π1(T rΣ, a). In other words, (ir)reducibility is the
property of the holonomy rather than of the connexion itself.

Example 18.10. Let Ω be a rational matrix 1-form on P defining a con-
nexion on the trivial bundle over the Riemann sphere. If Ω has a block
upper-triangular form, then the connexion ∇ = d − Ω is reducible. The
corresponding invariant subbundle is the “constant” coordinate subbundle
spanned by the first coordinate vectors.

Lemma 18.11. Suppose that a rational n×n-matrix 1-form Ω on the Rie-
mann sphere P has m > 1 Fuchsian points and a regular non-Fuchsian point
at the origin. Assume that locally near the origin the fundamental solution
of the system admits representation

X(t) = tN Y (t), N = diag{ν1, . . . , νn}, νi ∈ Z,

where the multivalued matrix function Y (t) is a fundamental solution for a
Fuchsian singularity (so that dY · Y −1 has a first order pole at the origin)
and νi are some integer numbers.

If the global monodromy group of the system is irreducible, then the dif-
ference between the numbers νi is explicitly bounded,

|νi − νj | 6 (m− 2)(n− 1), ∀i, j = 1, . . . , n. (18.6)

Proof. The Pfaffian matrix of the system locally near the origin has the
form

Ω = N t−1dt + tNΩ′ t−N,

where Ω′ = dY · Y −1 has a first order pole at the origin. Without loss of
generality, we may assume that the entries of the integer diagonal matrix N
are arranged in the nonincreasing order,

ν1 > · · · > νn

(one can always permute the rows by a global constant gauge transformation
that preserves the irreducibility).

The idea of the proof is rather transparent: if two consecutive numbers
νk, νk+1 differ too much, then the matrix 1-form Ω will have a corner filled
by rational forms of bounded degrees which are too flat to be nonzero. On
the other hand, a zero corner implies reducibility which is forbidden by the
assumptions of the lemma.
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More accurate reasoning is as follows. If νk − νk+1 > m − 1 for some
k between 1 and n − 1, then all entries in some upper right corner of the
matrix Ω will have zero of order > m − 2 at the origin. Indeed, if i 6 k
and j > k + 1, then the (i, j)th matrix element of the Pfaffian matrix Ω
is obtained by multiplying the corresponding element ω′ij of Ω′ by td, d =
νi − νj > νk − νk+1 > m− 1. Since Ω′ is Fuchsian, its entries have at most
first order pole, thus the order of zero of all ωij with i 6 k and j > k + 1
will be greater than m− 2.

On the other hand, since the form Ω is globally defined on the whole
sphere, its entries are rational 1-forms. By assumptions, these forms have
at most simple poles at no more than m − 1 other points of P1. Thus the
order of zero at the origin cannot be greater than m− 2, unless the form is
identically zero (the difference between the total number of poles and zeros
for any rational form is always equal to 2). This necessarily implies that
ωij ≡ 0 for all combinations of i, j such that i 6 k and j > k + 1.

But the simultaneous occurrence of a corner of identical zeros as was
described above, in the (rational, i.e., globally defined) Pfaffian matrix Ω
means that the coordinate subspace {x1 = · · · = xk = 0} is invariant by the
system, hence by all monodromy operators, contrary to the irreducibility
assumption.

Thus for the case where the diagonal entries νi are arranged in the
nonincreasing order, the difference between any two consecutive numbers
cannot be greater than m − 2. Hence the difference between any two νi is
no greater than (m − 2)(n − 1) in the absolute value, and this assertion is
already independent on the order of these numbers. ¤

This lemma immediately implies an impossibility result of Riemann–
Hilbert type. It provides for a wide class of holomorphic bundles on which
the Riemann–Hilbert problem admits no solution.

Theorem 18.12. An irreducible matrix group with m generators cannot be
realized as a holonomy group of a meromorphic connexion with m+1 singular
points on a holomorphic bundle with the splitting type D = {d1, . . . , dn} over
P, unless the following inequalities hold,

|di − dj | 6 (m− 2)(n− 1) ∀i, j = 1, . . . , n. (18.7)

Proof. Assume that such a connexion ∇ exists and the point at infinity is
singular for it.

Consider the meromorphic trivialization of the bundle π by the cochain
(18.4) described in §18B. This trivialization does not change the holonomy
group, thus the connexion ∇0 on the trivial bundle is also irreducible.
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A fundamental matrix solution for horizontal sections ∇0X = 0 near in-
finity has the form X(t) = t−DG(t)Y (t), where G is holomorphically invert-
ible at infinity and Y (t) is a fundamental solution of the equation ∇Y = 0
near infinity. This follows from the explicit form of the trivialization (18.4).

By assumption, ∇ is Fuchsian, so the logarithmic derivative dY ·Y −1 of
the matrix function Y (t) has a first order pole. Since G is holomorphic and
invertible, the logarithmic derivative of the product GY also has a first order
pole at infinity. If one of the equalities (18.7) is violated, after change of
the independent variable t 7→ 1/t which sends infinity to the origin, it would
contradict Lemma 18.11, since all other singularities of ∇0 are Fuchsian. ¤

Remark 18.13. The assertion of Theorem 18.12 is remarkable for the fol-
lowing reason. In construction of the holomorphic bundle as in Theorem 18.4
each monodromy operator Mj can be realized by infinitely many different
local connexion forms Ωj . Even if only the Euler equations are used, still
there is a freedom to choose matrix logarithms which can be used to pro-
duce infinitely many holomorphically nonequivalent types of singularities at
each point aj ∈ Σ. One could expect that combining these nonequivalent
singularities and patching them together, one can produce infinitely many
different splitting types of holomorphic bundles.

Theorem 18.12 claims that the global condition of irreducibility of the
monodromy group imposes a global restriction that is compatible with fi-
nitely many different splitting types only. In the next subsection we will
show that in fact one of these splitting types admits holomorphic trivializa-
tion.

18D. Bolibruch–Kostov theorem. The most remarkable positive result
on solvability of the Riemann–Hilbert problem was discovered independently
by A. Bolibruch [Bol92] and V. Kostov [Kos92].

Theorem 18.14. Any irreducible matrix group can be realized as the holo-
nomy group of a Fuchsian connexion on the trivial vector bundle over P.

In other words, any monodromy data {M1, . . . , Mm} such that the matri-
ces Mj do not have a common nontrivial invariant subspace, can be realized
by a linear system with rational matrix function Ω having only simple poles
at the specified points and no other singularities. This is the strongest, the
third form of the solvability of the Riemann–Hilbert problem on p. 312.

Proof. Unlike the previous demonstrations, when we started from an arbi-
trary Fuchsian connexion defined by a collection of connexion 1-forms {Ωα}
on an abstract holomorphic vector bundle, realizing the specified holonomy
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group, this time we will use explicitly the freedom in the choice of the con-
nexion forms Ωj realizing each holonomy. It is sufficient to vary only one of
the forms.

More precisely, we will assume that one of the preassigned singularities
is at the point t = ∞ and the corresponding holonomy operator is upper-
triangular. Such a singularity can be realized by the local connexion form
Ωm = Amt−1 dt with an upper-triangular residue matrix A = Am with a
fundamental matrix solution tA. Yet without changing the holonomy ∆m

we can replace Ωm by a meromorphically gauge equivalent 1-form which
corresponds to replacing the matrix solution by another function tNtA. More
specifically, we consider the new connexion form of the structure

Ω′N = Nt−1 dt + tNΩmt−N. (18.8)

The term tNΩmt−N has the first order at infinity by the usual arguments,
if the matrix A is upper-triangular and the integer numbers νi follow in the
ascending order, ν1 < · · · < νn.

Denote by πN the holomorphic vector bundle obtained by gluing together
the connexions Ω1, . . . , Ωm−1, ΩN. This bundle carries the meromorphic con-
nexion represented by the above cochain of 1-forms, which will be denoted
∇N. The connexion ∇N is irreducible by construction. Hence the splitting
type D = diag{d1, . . . , dn} = D(N) of the bundle itself is constrained by the
inequalities from Theorem 18.12.

Consider the meromorphic trivialization (18.4) of the bundle πN. As
usual, it has only Fuchsian singularities at all finite points, and a regular
singularity at infinity with a fundamental matrix solution of the form

X(t) = t−DG1(t) tNtA,

where the splitting diagonal matrix D and the holomorphic invertible matrix
G1(t) depend on the diagonal matrix N. By the Permutation Lemma 16.36,
there exists a monopole gauge transform that brings the fundamental solu-
tion X ′ into the form

X ′(t) = G′(t) t−D′tNtA = G′(t) t−D′+NtA, G′ ∈ GL(n,O(P,∞)),

where the integer diagonal matrix D′ has the same entries di but in a per-
muted order.

Yet (and this is the key step of the proof) if the sequence νi was ascending
sufficiently fast and the sequence d′i is constrained by the inequality |d′i −
d′i+1| 6 (m − 2)(n − 1) (cf. with (18.6)), then the sequence ν ′i = νi − d′i is
also ascending (increasing). To ensure the monotonicity, it is sufficient to
require that

νi+1 − νi > (m− 2)(n− 1) for all i = 1, . . . , n− 1.
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The monotonicity of ν ′i is sufficient to guarantee that the singularity with
the fundamental solution t−D′+NtA is Fuchsian (recall that A is upper-
triangular). Left multiplication by the holomorphically invertible matrix
G′ does not change this fact: after meromorphic trivialization F and the
subsequent monopole gauge transform we obtain the trivial bundle with a
Fuchsian connexion on it. ¤

18E. Bolibruch counterexample. In this section we describe a reducible
matrix group that cannot be realized as the holonomy of a Fuchsian connex-
ion on the trivial bundle. More precisely, we describe an obstruction that
prevents a given matrix group to be realized by a Fuchsian connexion on
the trivial bundle. A similar obstruction is obtained for nontrivial bundles.

Recall that each linear operator M ∈ GL(n,C) over the field C always
has at least one invariant subspace of each dimension k = 1, . . . , n − 1
(Exercise 18.6). There are operators for which there are no other invariant
subspaces.

Definition 18.15. A linear operator M : Cn → Cn will be called a
monoblock , if its Jordan normal form consists of a single block of maximal
size.

By definition, the spectrum of each monoblock is a singleton, i.e., the
operator has a single eigenvalue ν and for any k 6 n the power (M − νE)k

has the rank exactly equal to n− k.

Lemma 18.16. A monoblock operator on a complex n-space has exactly one
invariant subspace of each intermediate dimension k between 1 and n−1. In
a basis in which M has an upper-triangular matrix, this subspace is spanned
by the first k vectors.

Proof. Without loss of generality assume that the unique eigenvalue of M
is zero, ν = 0, that is, M is nilpotent.

If V is an invariant subspace of dimension k 6 n for M , then the restric-
tion of M on V must also be nilpotent, more precisely, Mk|V = 0. But for a
nilpotent operator of class B the rank of Mk is exactly n− k, which means
that dimKerMk = k, and hence V must coincide with KerMk, being thus
uniquely defined.

It remains to notice that for an upper-triangular nilpotent matrix M ,
KerMk consists of the first k basic vectors. ¤

Monoblocks are rather rigid; for instance, any monoblock admits a
unique matrix logarithm modulo a scalar matrix (cf. with Remark 18.13)
which is also a monoblock (Problem 18.7). In other words, if a monoblock
is realized as a holonomy of a Fuchsian singular point which is linearizable
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(i.e., equivalent to an Euler system), then the corresponding residue matrix
is a monoblock as well.

In the class of non-Euler systems one may have really different (not lo-
cally holomorphically equivalent) Fuchsian realizations of a monoblock holo-
nomy. In particular, a Fuchsian singular point with a monoblock holonomy
can have different (though necessarily, resonant) eigenvalues. The following
assertion may be considered as a true “nonlinear” analog of the fact that a
monoblock matrix has a monoblock logarithm.

Lemma 18.17. If a Fuchsian singular point of a connexion ∇ of rank n has
a monoblock local monodromy, then for each intermediate dimension k, 1 6
k 6 n− 1, there exists exactly one holomorphic subbundle πk : Lk → (C, 0),
rankπk = k, invariant by ∇, and the residue of the restriction ∇k = ∇|Lk

of the connexion on the subbundle satisfies the inequalities
1
k tr res0∇k > 1

n tr res0∇. (18.9)

The equality is possible only for all values k = 1, . . . , n − 1 simultaneously
and only in the case where the residue matrix res0∇ has a single eigenvalue.

Proof. The assertion is purely local, so it can be verified for a linear system
in the Poincaré–Dulac–Levelt normal form (16.7).

Since the monodromy has a single eigenvalue, all eigenvalues λ1, . . . , λn

of the residue res0∇ fall in the same resonant group, i.e., differ only by inte-
gers, as follows from the explicit formula (16.11). Arranging the eigenvalues
in the nonincreasing order λ1 > · · · > λn (recall again that this means non-
negativity of all differences λi − λj > 0 for i < j). In these settings the
connexion matrix A(t) in (16.7) is upper-triangular (Remark 16.14).

For the system (16.7) in the upper-triangular form, each coordinate sub-
space Lk = {xk+1 = · · · = xn = 0} ⊂ (C, 0) × Cn generated by the first k
coordinate vectors, is invariant and hence constitutes a “constant” invariant
subbundle πk : Lk → (C, 0) of rank k. Moreover, the trace of the residue
matrix restricted on Lk is the sum of the first k eigenvalues λ1, . . . , λk of
the residue matrix. Yet since the largest eigenvalues come first, we instantly
obtain the inequalities

1
k tr res0∇k > 1

n tr res0∇
for the restrictions ∇k of ∇ on the subbundles Lk. The equality is possible
if and only if the smallest and the largest eigenvalues are equal, i.e., if
λ1 = · · · = λn = λ.

To prove the uniqueness, note that since the connexion is of Bolibruch
type, each invariant subspace `k ∈ Cn of rank k for the monodromy operator
M ∈ GL(n,C) is unique and extends as a holomorphic invariant subbundle,
necessarily coinciding with Lk. ¤
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Globalization of this construction leads to a very important notion which
will play a central role in the construction of the counterexample.

Definition 18.18. A meromorphic connexion on a holomorphic vector bun-
dle is called a Bolibruch connexion, if it has a nontrivial invariant subbundle,
all the singular points of the connection are Fuchsian, and the local holo-
nomy of each singular point is a monoblock operator.

The global analog of Lemma 18.17 then takes the following form. Note
that, unlike the “inequality” between the complex numbers, understood
in the “artificial” sense (11.3), the inequality (18.10) relates two rational
numbers.

Theorem 18.19. Suppose that a Bolibruch connexion ∇′ on a holomorphic
bundle π′ over P has a nontrivial invariant subbundle π. Then the ratio
of degree to rank for the subbundle is greater or equal to this ratio for the
ambient bundle,

π ⊆ π′ =⇒ deg π

rankπ
> deg π′

rankπ′
. (18.10)

The equality occurs if and only if the spectrum of each singularity of ∇′ is
a singleton.

Proof. Let ∇ = ∇′|π be the restriction of ∇′ on the subbundle π : L → P.
Denote k = rankπ, n = rankπ′. By Corollary 17.35, the degree of both
bundles is equal to the sum of traces of the residues of all singularities.

Adding together the local inequalities (18.9) over all singularities a ∈ Σ,
we conclude that

1
k deg π =

∑
1
k resa tr∇ >

∑
1
n resa tr∇′ = 1

n deg π′.

The equality occurs if and only if all spectra are singletons. ¤

Together with Corollary 17.25, Theorem 18.19 imposes rather strong
restrictions on Bolibruch connexions on the trivial bundle.

Theorem 18.20. For a Bolibruch connexion on a trivial bundle, the spectra
of all singularities must necessarily be singletons, and the invariant subbun-
dle itself must be trivial.

Proof. If π0 is a trivial bundle and π its subbundle invariant by a Bolibruch
connexion ∇, then deg π0 = 0. By Theorem 18.19, we have deg π > 0 and
by Corollary 17.25, deg π 6 0. Together these inequalities leave only one
possibility deg π = 0, so that in both assertions the extreme cases occur.
This implies both assertions. ¤
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We have arrived at the main step of the impossibility proof. The as-
sumptions of Theorem 18.20 (reducibility and Jordan block structure of the
monodromy matrices) are imposed on the holonomy group of the connexion
∇ rather than on the connexion itself. However, the assertion concerns the
connexion (more specifically, its residue matrices). In other words, Theo-
rem 18.20 implicitly describes an obstruction to realizability of a reducible
monodromy data of monoblock operators by a Fuchsian connexion on the
trivial bundle. In particular, we arrive at the following result which is just
a geometric reformulation of Theorem 16.33.

Theorem 18.21. If a Fuchsian connexion ∇ on a holomorphic bundle π of
rank 4 over P with three singular points has the monodromy matrices



1 1
1 1

1 1
1


 ,




3 1 1 −1
−4 −1 1 2

3 1
−4 −1


 ,




−1 2 −1
4 −1 1

−1
4 −1


 , (18.11)

then the bundle π is necessarily nontrivial.

Proof. One can easily see that all three matrices (18.11) are monoblocks
(with the respective eigenvalues µ1,2 = 1, µ3 = −1) and have an invariant
subspace spanned by the first two coordinates. Hence the connexion ∇ real-
izing the corresponding monodromy data, is necessarily a Bolibruch connex-
ion. If the bundle π were trivial then by Theorem 18.20 each residue matrix
Aj = resaj ∇ must have a singleton spectrum λj such that exp 2πiλj = µj

for all j = 1, 2, 3. Resolving the corresponding equations exp 2πiλ1,2 = 1,
exp 2πiλ3 = −1, we obtain the congruences

λ1 ≡ λ2 ≡ 0 mod Z, λ3 ≡ 1
2 mod Z. (18.12)

On the other hand, by the index theorem (Corollary 17.35) we would
have for the trivial bundle the equality

deg π = 0 = trA1 + trA2 + trA3 = 4(λ1 + λ2 + λ3).

The resulting impossible congruence 0 ≡ 2 mod 4Z proves that the bundle
π cannot be trivial. ¤

This argument gives an alternative proof of Theorem 16.33.

Exercises and Problems for §18.

Problem 18.1. Prove that the Riemann–Hilbert problem is solvable if all mon-
odromy matrices commute, [Mi,Mj ] = 0 for all i, j.

Exercise 18.2. Write a detailed proof of Theorem 18.5.
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Exercise 18.3. Prove that the Riemann–Hilbert problem can be always solved
by a Fuchsian linear system for any monodromy data if the meromorphic matrix
form is allowed to have a single extra singular point with identical holonomy at any
preassigned point off the singular locus Σ.

Problem 18.4. Construct an example of an irregular singularity and a subspace
invariant by the (local) monodromy, which does not extend as an invariant holo-
morphic subbundle over a neighborhood of the singular point (cf. with Proposi-
tion 18.8).

Problem 18.5. Prove that any meromorphic rectangular matrix function X(t) of
size n× k, k < n can be locally near t ∈ (C, 0) represented under the form X(t) =
L(t)D(t)R(t), where L(t) and R(t) are holomorphic invertible square matrices of
sizes n × n and k × k respectively, and D(t) is the rectangular truncation (first k
columns) of a diagonal matrix which has only integer powers tνi or zeros on the
diagonal.

Exercise 18.6. Prove that any operator M ∈ GL(n,C) has at least one invariant
subspace Lk ⊂ Cn of each intermediate dimension k = 1, . . . , n− 1.

Problem 18.7. Prove that any two matrix logarithms A,A′ of the same monoblock
operator differ by an integer multiple of the identity matrix modulo conjugacy:

exp A = exp A′ is a monoblock =⇒ A− CA′C−1 = 2πikE

for a suitable integer number k ∈ Z and an invertible conjugacy matrix C ∈
GL(n,C). Prove that each logarithm is also a monoblock.

Problem 18.8. Prove that the Riemann–Hilbert problem is always solvable in the
classical sense (i.e., on the trivial bundle) in dimension 2.

Problem 18.9. Prove that the monodromy data with one diagonal matrix can be
realized by infinitely many nonequivalent Fuchsian systems.

Problem 18.10. Prove that any irreducible monodromy data can be realized by
infinitely many nonequivalent Fuchsian systems.

Problem 18.11. Prove that the Riemann–Hilbert problem is nonsolvable in all
dimensions greater than 4.

Problem 18.12. Prove the following generalization of Theorem 18.12. Let ∇ be
a meromorphic non-Fuchsian connexion on a holomorphic vector bundle of rank
n and the splitting type D = {d1, . . . , dn} with at least one Fuchsian singularity.
Denote by m the total order of poles of all singularities. Prove that if for some pair
of indices |di− dj | > (m− 2)(n− 1), then the connexion ∇ is reducible, i.e., has an
invariant subbundle.

19. Linear nth order differential equations

Linear high order scalar differential equation can be reduced to a rather
special class of companion linear systems which are naturally defined con-
nexions on the jet bundle. Because of the special form, regular singular
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points of such connexions can be easily identified and explicit meromor-
phic transformation bringing them to the Fuchsian form is well known since
L. Fuchs himself. However, this meromorphic transformation is nontrivial
and globally Fuchsian equations on the Riemann sphere P naturally “live” on
nontrivial holomorphic vector bundles, whose type depends on the number
of singular points.

An additional feature, an important tool of investigation, is the structure
of (noncommutative) algebra on the set of linear differential operators, which
implies the possibility of factorization of operators. The latter circumstance
plays an important role when studying roots of solutions of linear ordinary
differential equations.

At the end of the section we address several questions in the spirit of
the Riemann–Hilbert problem for linear high order equations in the cases
where these questions make sense.

19A. High order differential operators: algebraic theory. Let T be a
Riemann surface (complex 1-dimensional manifold). Denote by M = M(T )
the field (commutative C-algebra) of meromorphic functions on T . Any
derivation D ∈ DerM, a C-linear self-map of M into itself which satisfies
the Leibnitz rule D(fg) = f Dg + GDf , is associated with a meromorphic
vector field on T ,

DerM ∼= D(T )⊗M.

Since T is one-dimensional, any two derivations differ by a meromorphic
multiplier,

D, D′ ∈ DerM ⇐⇒ D′ = rD, for some r ∈ M. (19.1)

Definition 19.1. A linear nth order differential operator is any C-linear
operator L : M → M, which admits a representation

L = a0 Dn + a1 Dn−1 + · · ·+ an−1D + an,

D ∈ DerM, a0, a1, . . . , an ∈ M, a0 6≡ 0.
(19.2)

The operator a0D
n is called the leading term of L. The operator L is called

monic (more precisely, D-monic), if a0 = 1. A linear nth order homogeneous
differential equation is the equation of the form

Lf = 0. (19.3)

This definition formally depends on the choice of the derivation D, yet
one can immediately verify using (19.1) and the Leibnitz rule, that an ex-
pansion (19.2) can be re-expanded (with different coefficients, but of the
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19. Linear nth order differential equations 331

same degree) in powers of any other derivation D′. We will denote

LO(n, T ) = {L : M(T ) → M(T ), ordL = n},
LO(T ) =

⋃

n>0

LO(n, T ).

Differential operators of order 0 are multiplications by scalar functions and
hence can be identified with the algebra M = M(T ) itself. The collection
of differential operators of all orders is naturally filtered by the order.

The space of all differential operators LO(T ) forms a noncommutative
associative algebra by composition:

L,L′ ∈ LO(T ) =⇒ LL′, L′L ∈ LO(T ),

ord LL′ = ordL′L = ordL + ordL′.

The only units of LO(T ) are zero order operators corresponding to multipli-
cation by a nonzero meromorphic function5. Though the algebra LO(T ) is
noncommutative, it has many features similar to that of the commutative
algebra M[D] of polynomials in a single indeterminate D with coefficients
in the ring M = M(T ) of meromorphic functions. Thus, the representation
(19.2) can be considered now as a (noncommutative) polynomial expansion
in LO(T ) in powers of the derivation D ∈ DerM(T ) with all coefficients
occurring to the left of all powers D,D2, . . . , Dn. Another feature is the
possibility of division with remainder similar to the division of univariate
polynomials.

Lemma 19.2. For any two operators L ∈ LO(n, T ) and Q ∈ LO(k, T ) of
orders n > k, then there exist two operators P (the incomplete ratio) and R
(the remainder), such that

L = PQ + R, ord P = ordL− ordQ, ordR < ordQ. (19.4)

Proof. The operators P,R can be constructed by the following algorithm
which is a modification of the division algorithm for polynomials in one
variable. If the operators L,Q are expanded in powers of any derivation
D ∈ DerM as follows:

L = a0D
n + a1D

n−1 + · · ·+ an,

Q = b0D
k + b1D

k−1 + · · ·+ bk,
ai, bj ∈ M, (19.5)

then the leading term of the operator Dn−kQ is b0D
n and hence the operator

L1 = L− P0Q, where P0 = (a0/b0)Dn−k, has the order 6 n− 1. Repeating
this step, we construct P1 so that L2 = L1 − P1Q is of the order strictly
inferior to that of L1, etc.

5The property of linear operators on the algebra M to be differential operators can be defined
in purely algebraic terms of commutation with the units of the algebra of self-maps (Problem 19.1).
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After at most n−k steps we will be left with an operator of order strictly
less than k, which is designated to be the residue R. The “partial incomplete
ratios” P0, P1, . . . add together to form the operator P = P0 +P1 + · · · . ¤

Remark 19.3. Assume that all coefficients ai, bj of the operators L and Q
in (19.5) are holomorphic at a given point t0 ∈ T , and the leading coefficient
b0 of the divisor Q is nonvanishing at this point, b0(t0) 6= 0. Under these
assumptions both the remainder and the incomplete ratio will be obtained
as expansions in powers of D with coefficients holomorphic at t0. This can
be seen by direct inspection of the algorithm.

Definition 19.4. An operator L ∈ LO(n, T ) is divisible by Q ∈ LO(k, T ),
if L = PQ with P ∈ LO(n − k, T ). An operator L is reducible, if it is
divisible by an operator Q ∈ LO(k, T ) with 0 < k < n. Otherwise L is called
irreducible.

19B. Linear ordinary differential equations: the näıve approach.
Linear high order equations can be considered as a particular case of linear
systems of first order differential equations of a special, so-called companion
form.

In this section it will be convenient to enumerate coordinates of the
complex space Cn+1 = {(x0, . . . , xn)} starting from the zero index value,
x0. Let D ∈ DerM be an arbitrary derivation; for instance, if T = C or
T = P, we may assume that D = ∂

∂t . Then, denoting the unknown function
by y = x0 and its derivatives by xk = Dky, k = 1, . . . , n, we reduce the
scalar equation (19.3) to the system

Dx = A(t)x, where:

D ∈ DerM,

A ∈ Mat(n,M),

A =




0 1
0 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 1

−an
a0

−an−1

a0
· · · −a2

a0
−a1

a0




, (19.6)

called the companion system for the linear equation (19.2)–(19.3). This re-
duction immediately allows us to reformulate for linear equations all results
from §15.

Definition 19.5. A regular (nonsingular) point of a linear equation (19.2)–
(19.3) is any point t0 ∈ T at which the vector field D ∈ D(T ), associated
with the derivation D ∈ DerM(T ), is nonsingular and all ratios ai(t)/a0(t)
are holomorphic (have no poles).

Nonregular points are naturally called singularities of the equation and
denoted by Sing L. A singular point is called regular , if it is regular for the
companion system in the sense of Definition 16.2.
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19. Linear nth order differential equations 333

In other words, a singular point for the equation is regular, if all solutions
of the equation together with their derivatives grow moderately (in the sense
of Definition 16.1) as t tends to t0.

Proposition 19.6. Solutions of the linear equation (19.2)–(19.3) locally
exist near any nonsingular point and admit unique analytic continuation
along any path free from singularities of this equation.

Dimension (over C) of the space of solutions of this equation in any
simply connected domain free from singularities of the equation, is equal to
the order of the equation.

Proof. The first assertion is a reformulation of Theorem 15.3 for the com-
panion system.

The second assertion immediately follow from the fact that the linear
map which assigns to every holomorphic function f(·) the initial conditions,

f(·) 7−→ (
f(t0), d

dtf(t0), . . . dn−1

dtn−1 f(t0)
) ∈ Cn,

becomes a linear isomorphism between solutions of the linear equation
(19.2)–(19.3) and the space of initial conditions. Injectivity of this map is the
uniqueness part, and surjectivity the uniqueness part of Theorem 15.3. ¤

Proposition 19.6 implies that solutions of a linear equation Lf = 0
are holomorphic functions eventually ramified over the singular locus Σ =
Sing L. Since analytic continuation along paths preserves the space of solu-
tions of this equation, the operator of analytic continuation ∆γ along any
loop γ ∈ π1(T rΣ, t0) acts by a linear transformation on the row vector of
functions,

∆γ(f1, . . . , fn) = (f1, . . . , fn) ·Mγ , Mγ ∈ GL(n,C), (19.7)

where Mγ are the monodromy matrices. In the future any tuple of holo-
morphic functions satisfying the monodromy property (19.7), will be called
a monodromic tuple.

The monodromy property is almost sufficient for a collection of functions
to satisfy a linear differential equation with meromorphic coefficients. The
additional requirement is regularity of all singular points.

Theorem 19.7 (G. F. B. Riemann). A monodromic tuple of n functions
regular at each ramification point of a finite set Σ ⊂ T , satisfies a linear
ordinary differential equation Lf = 0 with meromorphic coefficients, L ∈
LO(k, T ), k 6 n.

This equation can be explicitly written using Wronskians; see Proposi-
tion 19.9.

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



334 III. Linear systems

Definition 19.8. The Wronskian, or Wronski determinant, of n functions
is the determinant of the Wronski matrix,

W (f1, . . . , fn) = det




f1 f2 . . . fn

Df1 Df2 . . . Dfn
...

...
. . .

...
Dn−1f1 Dn−1f2 . . . Dn−1fn


 . (19.8)

The Wronskian is a holomorphic (resp., meromorphic) function of t ∈
U ⊂ T if all functions f1, . . . , fn were holomorphic (resp., meromorphic) and
D is holomorphic vector field in U .

The Wronskian depends multi-linearly (over C) and anti-symmetrically
on the functions fj . In particular, it vanishes identically if the functions fj

are linearly dependent over C. If f1, . . . , fn are solutions of a linear equation
(19.3), then W (f1, . . . , fn) is the determinant of the matrix solution X(t)
of the associated companion system (19.6). By the Liouville–Ostrogradskii
theorem (Problem 15.10),

Dw = −a1(t)
a0(t)

w, w = W (f1, . . . , fn). (19.9)

From this identity it follows that a Wronskian of n solutions of a linear
equation is either nonvanishing everywhere outside the singular locus, or
vanishes identically.

The Riemann theorem follows immediately from the following assertion.

Proposition 19.9 (gloss of Riemann Theorem 19.7). For any regular mon-
odromic tuple f1, . . . , fn such that the Wronskian w(t) = W (f1, . . . , fn)(t) is
not identically zero, the operator

L = w−1W (f1, . . . , fn, · ), Lf = w−1W (f1, . . . , fn, f), (19.10)

is a monic differential operator of order n with meromorphic coefficients,

L = Dn + a1D
n−1 + · · ·+ an−1D + an ∈ LO(n, T ), ai ∈ M, (19.11)

vanishing on all functions f1, . . . , fn.

Proof. To prove that L is a monic differential operator, we expand the
“large” (n + 1) × (n + 1)-determinant W (f1, . . . , fn, f) in the elements of
the last column containing the derivatives of f . The coefficients ai of the
expansion are n × n-minors of the “large” matrix, formed by the first n
columns. The leading coefficient (before the highest derivative) is exactly
the minor w = W (f1, . . . , fn). After division by w we conclude that L is
a monic differential operator with the coefficients which are ratios of the
minors.

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



19. Linear nth order differential equations 335

All these minors have the same monodromy (the corresponding matrices
are multiplied from the right by the same matrix factors Mγ), hence the
ratios of their determinants are single-valued. Because of the regularity, the
singularities of these ratios are finite order poles.

Since the Wronskian vanishes when any two columns coincide, each fj

belongs to the null space of L. ¤

Remark 19.10 (warning). The singular locus of the operator (19.11) can
be larger than the ramification locus of the monodromic tuple (f1, . . . , fn).

19C. Factorization of differential operators. Solutions of a linear dif-
ferential equation in general do not belong to the field M = M(T ), but
rather to some bigger field (extension) M′ ⊇ M. This field can be obtained
by formally adjoining these solutions and their derivatives of order < n. The
extension field, denoted by

M′ = M(f1, . . . , fn) = M(L),

is called the Picard–Vessiot extension of the initial field M = M(T ).
Picard–Vessiot extensions are differential fields (i.e., any derivation D ∈

DerM extends as a derivation to DerM′) with the same subfield of constants
(i.e., Du = 0, u ∈ M′, is possible if and only if u = const ∈ C). Besides
formally algebraic construction of such extensions, they can be identified
with subfields of the field M(T, t0) of meromorphic germs at a nonsingular
point t0 /∈ T .

In the same way as any polynomial admits factorization by linear terms
over the field obtained by adjoining its roots to the field of the coefficients,
every linear differential operator can be represented as a composition of first
order operators with coefficients in M′ = M(L).

We start with an observation that divisibility of operators can be easily
described in terms of common solutions.

Proposition 19.11. An operator L ∈ LO(T ) is divisible by another operator
Q ∈ LO(T ), if and only if any solution of Qf = 0 is also a solution of Lf = 0.

Proof. The “if” part is obvious. To prove divisibility, consider a fundamen-
tal system f1, . . . , fk of solutions of the equation Qf = 0 and divide L by
Q with remainder R, L = PQ + R, as in Lemma 19.2. Being in the null
space for L and Q by assumption, f1, . . . , fk also belong to the null space of
PQ and hence to the null space of R. Since ordR < k, this is possible only
when R = 0 by Proposition 19.6. ¤

For any meromorphic germ 0 6≡ f ∈ M(T, t0) one can immediately
construct a first order linear operator vanishing on this germ, e.g., in the
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form
Q = fD − f ′, f ′ = Df.

By Proposition 19.6, any operator L such that Lf = 0, can be divided by
Q, L = L′Q. If another solution (germ) g ∈ M(T, t0), is known, Lg = 0,
then the germ g′ = Qg is a meromorphic solution of the equation L′g′ = 0
and can be used to further factor the operator L′.

If all n solutions f1, . . . , fn of the homogeneous nth order equation
Lf = 0 are known, this procedure allows us to construct complete fac-
torization of L as a composition of n first order operators with coefficients
in M′ = M(f1, . . . , fn). The factorization involves Wronskians, or Wronski
determinants of the functions.

Now we can describe the factorization of an arbitrary differential op-
erator L ∈ LO(T ) with a known system of n linearly independent solutions
f1, . . . , fn, using the Wronskians of these functions. Assume that U is a sim-
ply connected domain without singularities of L, so that f1, . . . , fn ∈ O(U),
and denote by

wk = W (f1, . . . , fk) ∈ O(U), k = 1, . . . , n,

w−1 = w0 = 1, wn+1 = wn,
(19.12)

the Wronskians of the first k functions from the ordered tuple f1, . . . , fn (the
functions w−1, w0 and wn+1 are introduced for convenience).

Theorem 19.12. If f1, . . . , fn ∈ O(U) are linearly independent solutions
of the equation Lf = 0 with a monic operator L = Dn + · · · , then L is
a composition of n derivations D interspersed with n + 1 multiplications
b0, . . . , bn ∈ M(U) ∼= LO(0, U), as follows:

L = bn D bn−1 D bn−2 · · · b2 D b1 D b0,

bk =
w2

k

wk−1wk+1
, k = 0, 1, . . . , n.

(19.13)

Proof. Consider the monic differential operators Lk of order k = 0, 1, . . . , n,

L0 = id, Lk = w−1
k (t) ·W (f1, . . . , fk, ·), k = 1, . . . , n.

We claim that these operators satisfy the operator identity

D
wk−1

wk
Lk−1 =

wk−1

wk
Lk, k = 1, . . . , n. (19.14)

Indeed, both parts are differential operators of the same order k with the
same leading terms (wk−1/wk) Dk. The null spaces of both operators also
coincide with the linear span of f1, . . . , fk and hence with each other. Indeed,
the functions f1, . . . , fk−1 obviously belong to the null space of both parts.
On the last function fk the operator Lk vanishes by definition, whereas
Lk−1fk = wk/wk−1, so the left hand side of (19.14) also vanishes. Being
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both monic and having the same null space, the operators occurring in the
two sides of (19.14), must coincide.

The identity (19.14) can be rewritten as

Lk =
wk

wk−1
D

wk−1

wk
Lk−1, k = 1, . . . , n.

Applying it recursively to the monic operator L = Ln which is what we are
interested in by Proposition 19.9, we obtain its decomposition into n terms

Ln =
(

wn

wn−1
D

wn−1

wn

)
· · ·

(
w2

w1
D

w1

w2

)
·
(

w1

w0
D

w0

w1

)
· L0,

which coincides with (19.13). ¤

The advantage of such “complete factorization” becomes clear when solv-
ing homogeneous or nonhomogeneous equations. Denote by D−1 any “prim-
itive” operator, i.e., D−1f =

∫
f dt in the case D = ∂

∂t (defined modulo a
constant). Then the general solution of the equation Lf = g for L factored
as in (19.13), is given by the symbolic formula

f = b−1
0 D−1 b−1

1 D−1 · · ·D−1 b−1
n−1 D−1 b−1

n g. (19.15)

In other words, knowing a fundamental system of solutions of a homogeneous
differential equation allows us to solve any nonhomogeneous equation by
taking n quadratures. This may be a convenient alternative to reducing the
equation to the companion system and using the method of variation of
constants.

In general, solutions of linear equations, are ramified at singular points
hence the formal factorization (19.13) has in general multivalued coefficients.
In other words, factorization (19.13) holds over the extension M′ % M and
not over the initial field M = M(T ). Reducibility of operators in over M is
closely related to reducibility of their monodromy group.

Theorem 19.13. A linear operator L ∈ LO(T ) having only regular singu-
larities in T , is reducible in the algebra LO(T ) if and only if its monodromy
group is reducible (i.e., has a nontrivial invariant subspace).

Proof. Assume that L = PQ and f1, . . . , fk is a fundamental system of
solutions for Qf = 0. Then these functions also solve the equation Lf = 0
and span an invariant subspace of the monodromy group which is therefore
reducible. Conversely, assume (without loss of generality) that an invariant
subspace of the monodromy group for Lf = 0 is generated by the first k
functions f1, . . . , fn of some fundamental system of solutions. Then by the
Riemann Theorem 19.7, there exists an operator Q ∈ LO(T ) of order k,
annulled by these first functions. By Proposition 19.11, L is divisible by Q
and hence reducible in LO(T ). ¤
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Factorization of operators is compatible with regularity. For brevity we
say that a differential operator L ∈ LO(T ) is regular in U ⊂ T , if it has only
regular singular points there.

Lemma 19.14. Composition of two regular operators is regular. Con-
versely, if a regular operator is reducible in LO(T ), then both factors are
also regular.

Proof. If L = PQ, then any solution of the equation Lf = 0 is a solution
of the nonhomogeneous equation Qf = g, where g is some solution of the
lower order equation Pg = 0. For any singular point t0 ∈ T , the function
g grows moderately at t0 since P is regular. Since Q is also regular at this
point, by Lemma 16.6 we conclude that f also grows moderately at t0. This
proves regularity of PQ.

Conversely, if L = PQ is regular, then any function from the null space
of Q grows moderately at any singular point t0 regardless of regularity of P .
To prove regularity of P , choose any solution g of the equation Pg = 0. As
before, let f be any solution of Qf = g: by construction, f grows moderately
as a solution of Lf = 0 and can be represented as

f(t) = (h1, . . . , hn) (t− t0)A(c1, . . . , cn)>,

where the row vector function (h1, . . . , hn) is meromorphic at t0, the col-
umn vector (c1, . . . , cn)> has constant entries and A is any logarithm of
the monodromy matrix around t0. Any such function admits any number
of derivations and multiplications by meromorphic functions while retaining
the moderate growth at t0. Therefore application of any operator Q ∈ LO(T )
proves that g = Qf grows moderately at t0, so that P is regular. ¤

As an immediate application of this result, we have the local theorem
on complete factorization.

Theorem 19.15. Any differential operator L ∈ LO(T ) having a regular sin-
gularity at a point t0 ∈ T , admits complete factorization in a small neigh-
borhood U = (T, t0) of this point,

L = PnPn−1 · · ·P1, Pi ∈ LO(U), ordPi = 1, (19.16)

with first order factors Pi having meromorphic coefficients in U and regular
singularity at t0.

Proof. The monodromy group of any operator in a punctured neighborhood
U of an (isolated) singular point is cyclic and hence always admits a one-
dimensional invariant subspace. By Theorem 19.13, L = L0 is divisible from
the right by a first order operator P1 ∈ LO(U) whose leading term can be
prescribed arbitrary. By Lemma 19.14, both P1 and its left cofactor L1 are
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19. Linear nth order differential equations 339

regular at t0. Thus the process can be continued by induction until the
complete factorization is achieved. ¤

Remark 19.16. Note that the leading terms of P1, . . . , Pn−1 can be pre-
scribed arbitrarily, as multiplication by a meromorphic germ is a unit of the
algebra LO(n, T ).

19D. Fuchsian singularities of nth order equation. Similarly to the
general case of linear systems, regular singularity is not necessarily a first
order pole of the companion system if the derivation D itself is nonsingular
at this point. However, unlike the general case, we can introduce the class
of equations with “first order pole”, which turns out to coincide with the
class of regular equations.

The reason why the words above are enclosed by the quotation marks,
is noninvariance of this notion. Indeed, the companion system (19.6) by
definition has a singularity at a point t0 ∈ T if either the vector field D is
singular at t0, i.e., D = r(t) ∂

∂t in a local chart on T with ordt0 r(t) > 0, or D
is nonsingular, ordt0 r(t) = 0, but some of the ratios ai/a0, i = 1, . . . , n have
a pole at t0 (in such a case we denote by ordA the negative of the maximal
order of the poles of all entries of a meromorphic matrix function A(t)). In
both cases the order of the pole, understood as ord r − ordA, is positive.
Yet this order explicitly depends on the choice of the derivation D used to
write the companion system.

Definition 19.17. A differential operator L ∈ LO(T ) is Fuchsian at a sin-
gular point t0, if in the companion form (19.6)

ordt0 D = 1, ordt0 A = 0.

This definition is equivalent to another, more transparent (though less
invariant) description.

Proposition 19.18. A differential operator L is Fuchsian at a finite point
t0, if after expansion in the powers of D′ = (t − t0) ∂

∂t and reduction to the
monic form, it has holomorphic coefficients. ¤

Obviously, instead of the linear vector field D′ one can use any other
holomorphic germ with a simple singularity at t0. Re-expanding an expres-
sion for the monic operator D′n + · · ·+an−1D

′+an in powers of the “usual”
differentiation D = ∂

∂t , we obtain the property that is often used as the
definition of finite Fuchsian singularity [Inc44, Har82].

Proposition 19.19. A monic operator L = Dn + · · · + an ∈ LO(n,C),
D = ∂

∂t , has a Fuchsian singularity at a finite point t = t0 ∈ C, if and only
if ordt0 ak(t) > −k for all k = 0, . . . , n. ¤
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The advantage of the invariant Definition 19.17 is that it can automat-
ically be reformulated for the case where the Fuchsian singularity is at in-
finity, t0 = ∞ ∈ P (Problem 19.6).

From the Sauvage Theorem 16.10 we immediately conclude that any
Fuchsian singularity of an operator L ∈ LO(T ) is always regular. Somewhat
unusual is the fact that for high order equations the inverse is also true.

Theorem 19.20 (L. Fuchs, 1868). Any regular singularity of a linear ordi-
nary differential equation with meromorphic coefficients, is Fuchsian.

Proof. 1◦. For equations of the first order the assertion of the theorem is
verified by a straightforward computation. Assume that the regular singu-
larity occurs at t = 0. Consider the equation L′f = 0, where L = D′+ a′1(t)
is expanded using the standard Euler derivation D′ = t ∂

∂t . If L has a reg-
ular singularity at t = 0, we can represent its solution as f(t) = tλh(t)
with an appropriate complex λ ∈ C and some meromorphic function h(t).
Changing λ by a suitable integer number, we can assume in addition that
h is holomorphic and holomorphically invertible at t = 0. Substituting this
representation for f into the equation D′f +a′1f = 0, we obtain the formula
−a′1(t) = D′f/f = λ + (D′h/h). Since h is holomorphically invertible and
D′ = t d

dt holomorphic, we conclude that a′1 is holomorphic at t0 and hence
L = D′ + a′1 is Fuchsian.

2◦. The case of an arbitrary order follows from the factorization The-
orem 19.15. By this theorem, any regular operator L can be factored as
L = a′0Pn · · ·P1 with each Pi being a first order operator regular at t = 0.
Since the leading terms of Pi can be chosen arbitrarily (Remark 19.16), we
assume that

Pi = tD + a′i = D′ + a′i, i = 1, . . . , n.

By Step 1◦, each Pi is Fuchsian, that is, the free terms a′1, . . . , a
′
n are nec-

essarily holomorphic at t0. But then the composition Pn · · ·P1 begins with
the leading term D′n and has all holomorphic coefficients after the com-
plete expansion. In other words, L differs from a Fuchsian operator by a
meromorphic factor a′0 and hence is also Fuchsian. ¤

The companion system can be rewritten in the Pfaffian form. Let ω ∈
Λ1(T )⊗M(T ) be the (scalar) meromorphic 1-form dual to the vector field
D: by definition, this means that ω(D) ≡ 1. By duality, D has a simple
singularity at t0 ∈ T if and only if ω has a simple pole at this point. Using
this form, the companion system can be written in the Pfaffian form as
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follows:

d




x0

x1
...

xn−2

xn−1




= ω




0 1
0 1

. . . . . . . . . . . . . . . . . . . . .

0 1
bn bn−1 · · · b2 b1







x0

x1
...

xn−2

xn−1




, (19.17)

with holomorphic entries b1, . . . , bn ∈ O(T, t0) and a form ω with the first
order pole at t0.

The matrix residue of the corresponding matrix 1-form Ω = ωA is equal
to A(t0) · rest0 ω. Its eigenvalues are called characteristic exponents of the
Fuchsian (regular) singularity.

Example 19.21. Any linear ordinary differential equation with a regular
singularity at t = 0 can be written under the form Lf = 0, where

L = D′n + a1(t)D′n−1 + · · ·+ an−1(t)D′ + an(t), D′ = t
∂

∂t
, (19.18)

is the monic expansion in powers of the Euler derivation D′ with the coeffi-
cients aj(t) holomorphic at the origin. The characteristic exponents of the
corresponding singularity are roots of the polynomial

λn + a1(0)λ−1 + · · ·+ an−1(0)λ + an(0) = 0. (19.19)

Obviously, instead of the Euler operator one can use any other operator D′′

with a simple singularity and eigenvalue (linearization 1 × 1-matrix) equal
to 1 (see also Problem 19.5).

Fuchsian singularities in the companion form (19.17) are considerably
more rigid than general singularities of linear systems, for instance, analytic
gauge transform to the Poincaré–Dulac–Levelt normal form destroys the
“companion structure”. Yet despite all that, one can apply Lemma 16.18
and obtain an ansatz for construction of analytic (ramified) solutions of
linear equation near Fuchsian singularity under the form

n∑

1

hj(t) tλjpj(ln t), hj ∈ O(C, 0),

where λ1, . . . , λn are characteristic exponents and pj are polynomials with
constant coefficients. The degrees of the polynomials are determined by the
resonance identities λi ≡ λj mod Z between the characteristic exponents, as
encoded by the structure of the matrix I in (16.10).
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342 III. Linear systems

19E. Jet bundles and invariant constructions. To describe the global
structure of regular equations, we need geometric (invariant) description of
the jet bundles. We recall briefly their construction; more details can be
found in [AVL91].

Consider the n-jet space Jn(T ) which is the union of all jet spaces at
all points of T . The space Jn(T ) is equipped with the natural projection
τn : Jn(T ) → T . This projection equips Jn(T ) with the structure of a holo-
morphic vector bundle as follows.

Let Uα ⊂ T be an open domain and Dα ∈ D(Uα) a holomorphic vector
field (derivation) nonsingular in Uα, as usual identified with the derivation
of the algebra M(Uα). This derivation allows us to associate any jet of a
function f at a point p with the (column) vector

(jet of f at p ∈ Uα) Φα7−→ (f, Df,D2f, . . . , Dnf)>
∣∣
p
, D = Dα. (19.20)

The map Φα defines a trivialization of Jn(T ) over the domain Uα.
If Uβ is another domain and D′ = Dβ another derivation holomorphic

and nonsingular in Uβ, then on the intersection Uαβ = Uα ∩ Uβ the two
respective derivations D = Dα and D′ = Dβ = rβαDα and their powers are
related by the formulas



1
D′

D′2
...

D′n




=




1
... r
...

... r2

...
...

...
. . .

∗ . . . . . . . . . . rn



·




1
D
D2

...
Dn




,

D = Dα ∈ D(Uα),

D′ = Dβ ∈ D(Uβ),

r = rβα ∈ O(Uαβ).
(19.21)

These formulas define the gauge transform

Φβ ◦ Φ−1
α : (t, x) → (t,Hβα(t)x), (19.22)

with the same matrix as in (19.21). The collection of matrices H = Hβα =
H−1

αβ ∈ GL(n,O(Uαβ) form a matrix cocycle defining the bundle τn.

Definition 19.22. The bundle τn : Jn(T ) → T , defined by the trivializa-
tions (19.20) (or, equivalently, by the matrix cocycle (19.21)) is called the
n-jet bundle over the base T .

Example 19.23. The line bundle defined by the cocycle rαβ is equivalent
to the cotangent bundle T∗T over the base T . Indeed, consider an arbitrary
meromorphic cochain {fα} associated with a section of this bundle. This
means that fβ = rαβfβ on any intersection Uαβ. We claim that this cochain
consistently defines a meromorphic 1-form ω by the rules

ωα(Dα) = fα, ωα ∈ Λ1(Uα)⊗M(Uα).
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19. Linear nth order differential equations 343

Indeed, on the overlapping Uαβ the forms coincide, ωα = ωβ (can be verified
either on Dα or Dβ), thus the cochain {ωα} defines a global meromorphic
1-form ω ∈ Λ1(T )⊗M(T ).

Example 19.24. On the Riemann sphere T = P the two fields D0 = ∂
∂t ∈

D(C) and D1 = t2 ∂
∂t ∈ D(P r {0}) define the Birkhoff–Grothendieck cocy-

cle corresponding to the bundle τn(P) : Jn(P) → P with the corresponding
function r10(t) = t2. The determinant bundle det τn is associated with the
cocycle detH10 = tn(n+1). Thus the degree of the bundle is nonzero,

deg τn = −n(n + 1) 6= 0 for n > 1, (19.23)

and hence the jet bundle is nontrivial for all n > 1. For n = 0 the bundle
τ0 is obviously trivial, J0(T ) = T × Cn+1 for any base T . The 1-jet bundle
is described in Problem 19.8.

Every meromorphic function u ∈ M(T ) defines a meromorphic section of
the jet bundle t 7→ jn

u (t), called the jet extension of u, which is holomorphic
outside the polar locus of u. However, not every section of τn is the collection
of jets of some function: there are integrability conditions that are necessary.

Let ωα be holomorphic 1-forms dual to the vector fields Dα, ωα(Dα) ≡
1. This is a holomorphic cochain of 1-forms. On any trivializing chart
τ−1
n (Uα) ∼= Uα × Cn+1, using the scalar form ωα, we can construct a 2-

dimensional distribution as the common null space of n− 1 Pfaffian forms

dx0 − x1ωα = 0, dx1 − x2ωα = 0, . . . , dxn−1 − xnωα = 0. (19.24)

One can instantly verify that two such distributions defined over two differ-
ent trivializations, are related by the same gauge transforms (19.21) (note
that the formulas (19.24) “naively mean” that Dαxk = xk+1).

Definition 19.25. The 2-dimensional distribution defined on the n-jet bun-
dle Jn(T ) by the formulas (19.24) in the trivializing charts, is called the
Cartan distribution.

The Cartan distribution singles out sections of the jet bundle, which are
jet extensions of meromorphic functions. Namely, if Cq is the 2-dimensional
subspace of the Cartan distribution at a point q ∈ Jn(T ) and u ∈ O(T, p)
is a holomorphic germ at the point p = τn(q) ∈ T such that jn

u (p) = q,
then the graph of the section t 7→ jn

f (t) is a holomorphic curve tangent to
the plane Cq. Moreover, one can easily verify that C can be “axiomatically”
(invariantly) defined as the only 2-dimensional distribution on Jn(T ) which
is tangent to graphs of all meromorphic sections of the form t 7→ jn

u (t).
Conversely, any meromorphic section s ∈ Γ (τn) whose graph is tangent

to the Cartan distribution at all points, is the graph of a jet extension of
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a meromorphic function u ∈ M(T ), s = jn
u . In the future we will refer to

sections tangent to the Cartan distribution as the integrable sections.
Finally we make the following obvious observation: the bundles Jn(T )

are naturally “nested”, more precisely, there exist bundle maps (all fibered
over the identity) making the following diagram commutative:

J0(T )
τ1
0←−−−− J1(T )

τ2
1←−−−− · · · τn

n−1←−−−− Jn(T ) τn+1
n←−−−− · · ·

τ0

y τ1

y
yτn

T T . . . T . . .

(19.25)

The maps τk
k−1 simply “forget” the last derivative. The kernel of each

such map is one-dimensional. The corresponding one-dimensional subbundle
Vk ⊂ Jk(T ) will be referred to as vertical subbundle.

Now everything is ready to define in invariant terms linear ordinary
differential equations.

Theorem 19.26. For any holomorphic subbundle L ⊂ Jn(T ) of codimen-
sion 1 in the n-jet bundle, transversal to the vertical subbundle V = ker τn

n−1

almost everywhere, there exists a meromorphic connexion ∇ = ∇L on Jn(T )
with the following properties:

(1) the subbundle L is invariant by ∇,
(2) the singular locus of Σ = Sing∇ consists of the points where L is

nontransversal to the vertical bundle V,
(3) all ∇-horizontal sections of τn are integrable, i.e., are graphs of

n-jet extensions of functions on T .

The restriction of ∇ on L is uniquely defined.

Proof. The Cartan distribution restricted on the subbundle L (holomorphic submani-
fold of codimension 1) induces a 1-dimensional distribution (line field) on this bundle,
eventually with singularities at the points of nontransversality between L and C. The
Cartan distribution always contains the vertical direction, hence transversality to V im-
plies transversality to C. Because of one-dimensionality, the constructed distribution is
integrable. The integral curves (leaves of the integral foliation) by construction are tan-
gent to the Cartan distribution C. It remains to verify that the leaves of this foliation
on L are horizontal sections for some meromorphic connexion ∇ on Jn(T ). We will ex-
plicitly construct the (n + 1) × (n + 1)-matrix connexion 1-form Ω in any trivialization
of Jn(T ), defined by a nonsingular vector field D ∈ D(U), U ⊆ T , or the dual form
ω ∈ Λ1(U)⊗M(U), as in (19.20).

The subbundle L in this trivializing chart is defined by a holomorphic equationPn
0 ai(t)xn−i = 0. Its differential (the tangent hyperplane to L) modulo the Pfaffian

equations (19.24) which define the Cartan distribution, is equal to

a0 dxn + xn(da0 + a1ω) + xn−1(da1 + a2ω) + · · ·+ x1(dan−1 + anω) + x0 dan.

If outside the singular locus {a0 = 0}∩U this Pfaffian equation can be resolved with respect
to dxn. In conjunction with the Cartan equations this yields a meromorphic linear system
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over U , which by construction is tangent to the hypersurface {Pn
0 aixn−i = 0} and the

Cartan distribution. ¤

The connexion constructed in Theorem 19.26 is not a companion connex-
ion on Jn(T ): its only advantage is the invariant construction. In practice
the bundle L satisfying the assumptions of the theorem, is projected along
the vertical direction onto the (n − 1)-jet bundle. The projection τn

n−1 re-
stricted on L, is a meromorphic bundle map, which carries the connexion
∇|L to the meromorphic connexion defined by the Pfaffian companion sys-
tem (19.17) with bi = −ai/a0: the last equation is obtained by resolving the
linear identity

∑
aixn−i = 0 with respect to xn and substituting the result

in the last Cartan equation dxn−1 = ωxn. Thus ρn
n−1|L carries ∇|L into the

companion connexion on Jn−1(T ).
For arbitrary (not regular) equations their interpretation as a connexion

tangent to a subbundle L ⊂ Jn(T ) is as good (or as bad) as any other
connexion meromorphically equivalent to it, in particular, as the companion
connexion on the bundle Jn−1(T ) associated with an arbitrary meromorphic
vector field D ∈ D(T ) or the corresponding dual form ω ∈ Λ1(T ) ⊗M(T ).
The “naive approach” described in §19B, corresponds to the choice of D =
∂
∂t ∈ D(P) (note that the bundle Jn−1(T ) is also nontrivial, and this choice
of D does not properly address the presence or absence of singularities at
infinity).

However, if the connexion is regular, then it is natural to look for a
bundle with Fuchsian connexion on it, meromorphically equivalent to the
bundle L ⊂ Jn(T ) with the connexion ∇L.

Theorem 19.27. If L ∈ LO(P) is an arbitrary differential operator such that
the linear equation Lu = 0 has m > 0 regular singularities, then the mero-
morphic connexion ∇|L constructed in Theorem 19.26 is meromorphically
gauge equivalent to a Fuchsian connexion on a holomorphic vector bundle π
of rank n over P. The degree of this bundle is equal to (m− 2)n(n− 1)/2.

Proof. The existence of a Fuchsian connexion on an abstract bundle follows
from the fact that any regular singularity at t = tj ∈ P becomes Fuchsian
after the local meromorphic gauge transform (re-expanding L in powers of
(t− tj) ∂

∂t rather than in powers of ∂
∂t) by Theorem 19.20.

If m = 2, then there exists a holomorphic vector field D on P with exactly
two simple (hyperbolic) singularities at two specified points. Expanding L
in powers of D, we obtain expansion with holomorphic (hence constant)
coefficients and nonvanishing leading term. Such an equation is necessarily
an Euler equation (Problem 19.12) on the trivial bundle over P.

If m 6= 2, such a vector field does not exist and the resulting bundle
will be nontrivial. Assume that the point at infinity is nonsingular for the
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equation Lu = 0, and denote by t1, . . . , tm ∈ C distinct singular points of
the equation, maxj |tj | < R. Consider two meromorphic vector fields on P,

D0 =
m∏

j=1

(t− tj)
∂

∂t
, D1 = t2−mD0.

They are holomorphic in the respective domains U0 = C, U1 = P r {|t| <
R} of the standard Birkhoff–Grothendieck covering and have singularities
(“roots”) only at the singular points of the equation.

By Theorem 19.20, after expansion in powers of D0, D1 and reduction to
the corresponding companion form, we will obtain two meromorphic matrix
functions Ω0, Ω1, with the following properties:

(1) Ω0 has only Fuchsian singularities (simple poles) at the points
t1, . . . , tm and holomorphic at all other points of U0,

(2) Ω1 is holomorphic in U1,
(3) in the annulus U01 the two forms are conjugated by the matrix

function H = H10(t) as in (19.21) with the function r = r10(t) =
t2−m.

The determinant detH10 = t(2−m)n(n−1)/2 = detH−1
01 is the standard cocycle

associated with the bundle ξd, d = (m−2)n(n−1)/2. Hence Ω0, Ω1 are two
trivializations of a Fuchsian connexion on the holomorphic vector bundle
associated with the cocycle {H01,H10}, which has degree d. ¤

From this result and Corollary 17.35 we immediately derive the assertion
on the sum of all characteristic exponents.

Corollary 19.28. The total of all characteristic exponents of a regular
equation of order n with m singular points is equal to (m−2)n(n−1)/2. ¤

19F. Riemann–Hilbert problem for higher order equations. The
Riemann–Hilbert problem for scalar equations is to construct a Fuchsian
equation of order n on P with the specified monodromy group. This problem
is usually not solvable for one simple reason: the dimension of the variety
of different monodromy data is larger than the dimension of the variety of
Fuchsian equations.

Indeed, any equation with m + 2 singular points t0 = 0, t1, . . . , tm ∈ C,
tm+1 = ∞ ∈ P, is Fuchsian if and only if the corresponding linear operator
can be written in the form

L = Dn + a1D
n−1 + · · ·+ an, D = ∂

∂t , ak =
pk(t)
∆k(t)

,

pk ∈ C[t], deg pk 6 mk, k = 1, . . . , n, ∆(t) =
m∏

1

(t− tj)
(19.26)
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because of the restrictions on the order of the poles of coefficients at all
singularities (note that D has a simple pole at both t0 and tm+1). The total
number of parameters (assuming that the singular locus is fixed) is equal to

(m + 1) + (2m + 1) + · · ·+ (nm + 1) = 1
2mn(n + 1) + n.

The total number of entries in m + 1 monodromy matrices is (m + 1)n2,
(the last matrix is uniquely defined by the requirement that the product
is equal to identity). In fact, one can assume that one of the matrices is
reduced to the Jordan normal form which involves n diagonal terms (and
the discrete choice 0 or 1 for the above-diagonal sequence). Thus the variety
of all monodromy data has dimension equal to mn2 + n.

The second number is almost always greater than the first, thus the
Riemann–Hilbert problem is not solvable for most monodromy data. The
exceptional combinations when the equality occurs, are m = 0 and n = 1.
The first case corresponds to Euler equations (Problem 19.12), the second
to the scalar equation. In the second case the monodromy is commutative
and clearly any collection of m multiplicators can be realized by a scalar
first order equation with preassigned poles.

For the Euler equation the monodromy group is determined by a single
matrix M .

Proposition 19.29. Any invertible matrix M ∈ GL(n,C) can be realized
(modulo conjugacy) as the monodromy matrix of an Euler operator

D′n +a1D
′n−1 + · · ·+an−1D

′+an, D′ = t ∂
∂t , a1, . . . , an ∈ C. (19.27)

Proof. We will show how a matrix in the Jordan normal form can be real-
ized by the monodromy of an Euler equation.

One can immediately verify that the monodromy matrix of the operator
D′k, k > 1, is the (maximal) nilpotent Jordan k × k-block in the basis
1, ln t, . . . , lnk−1 t. The “conjugated” operator (D′ − λ)k has the maximal
Jordan block with the eigenvalue µ = exp 2πiλ in the basis tλ lnj t, j =
0, 1, . . . , k − 1.

To build an arbitrary matrix with several Jordan blocks of various sizes,
we use the composition of elementary factors of this form, which is again a
monic Euler operator. Note that the Euler operators are always commuting
between themselves, since their coefficients are constant.

If M consists of several Jordan blocks of sizes ν1, . . . , νs with the same
eigenvalue µ 6= 0, then this monodromy matrix is realized by the composi-
tion of commuting operators L =

∏s
j=1(D

′− λ− j)νj for any fixed choice of
the logarithm λ = 1

2πi lnµ.
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348 III. Linear systems

Finally, if M = diag{M1, . . . , Mr} with the spectra Mj being singletons
µj , then each block can be realized by an Euler operator Lµj , and the entire
matrix is realized by the “product” (composition) of commuting operators
L = Lµ1 · · ·Lµr . ¤

One can attempt to relax the Riemann–Hilbert problem for Fuchsian
equations and demand less. For instance, the natural question would be
whether one can realize a given collection of characteristic exponents by a
suitable Fuchsian equation.

The “variety of exponents” of a Fuchsian system with m singularities
has dimension mn− 1. This dimension is by one less than the product mn
because the exponents are constrained by the equality from Corollary 19.28.
Compared to the dimension of the variety of Fuchsian equations of the given
order with the specified number of singularities, it is almost always less than
the latter, which means that in general the solution should be nonunique.

There is only one case where the two dimensions coincide: m = 3, n = 2,
i.e., for equations of second order with three singularities. The total sum of
characteristic exponents in this case is equal to 1 by Corollary 19.28.

Theorem 19.30. Any 6 numbers whose sum is equal to 1, can be realized
as characteristic exponents of a Fuchsian equation of second order with three
singular points.

Proof. First we note that the characteristic exponents at each point can
be shifted by an arbitrary constant, provided that these three constants
added together give zero (Problem 19.16). Thus it is sufficient to realize the
collection of exponents of the form

(0, α), (0, β),
(
γ, 1− (α + β + γ)

)
(19.28)

One can always use the method of indeterminate coefficients (19.26), ex-
pressing explicitly the characteristic exponents of this equation and show
that the corresponding interpolation problem for polynomial coefficients in-
deed has a unique solution.

The freedom to choose the derivation allows us to reduce these compu-
tations very substantially. Assume (as is always done) that the three singu-
larities are at the points 0, 1 and ∞. Consider the vector field D = t(t−1) ∂

∂t
which has simple singularities at t = 0, 1 with eigenvalues −1 and 1 respec-
tively, and nonsingular point at infinity.

The operator

L = D2 + p1(t)D + q2(t), D = t(t− 1) ∂
∂t , (19.29)

is Fuchsian if p1, q2 are holomorphic functions in the entire finite part C with
poles of respective orders at most 1 and 2 at infinity (Proposition 19.19).
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19. Linear nth order differential equations 349

This means that p1 and q2 are polynomials in t of the degrees 1 and 2
respectively.

The corresponding characteristic exponents at the points t0 = 0 and t1 =
1 are roots of the polynomials (−λ)2+p(t0)(−λ)+q(t0) and λ2+p(t1)λ+q(t1)
respectively (changing λ to −λ happens since the eigenvalue of D at t0 is
−1); see Example 19.21. Thus p is a linear polynomial taking values −α
and β at the points t0 = 0 and t1 = 1 respectively, and q vanishes at
both these points, q = ct(t− 1). To express the characteristic exponents at
infinity, we re-expand the operator (19.29) in powers of the Euler operator
D′ = (t−1)−1D which has eigenvalue −1 at infinity. After division by (t−1)2

we obtain a monic differential polynomial with the free term ct/(t−1) −→
t→∞ c,

whose value at t = ∞ is equal to the product γ1γ2 of the characteristic
exponents at the point t2 = ∞.

Thus letting c = γ(1−(α+β+γ)) we obtain the hypergeometric equation
which solves the “relaxed Riemann–Hilbert problem” in the specific case of
second order and three singularities,

L = D2+
(−α+tβ)

)
D+γ

(
1−(α+β+γ)

)
t(t−1), D = t(t−1) ∂

∂t . (19.30)

This expansion can be more easily memorized than the standard expansion
[Inc44] of the hypergeometric equation

L = t(1− t)D′2 +
(
γ′ − (α′ + β′ + 1)t

)
D′ − α′β′, D′ = ∂

∂t , (19.31)

which has characteristic exponents at the same three points 0, 1,∞ equal to

(0, 1− γ′), (0, γ′ − α′ − β′), (α′, β′).

The old-fashioned name for a general solution of this equation is the Rie-
mann P -function. ¤

Remark 19.31. The term “hypergeometric system” is reserved for linear
systems on P of a special form. Let S ∈ Mat(n,C) be a diagonalizable
matrix with simple spectrum {s, . . . , sm}, and A ∈ Mat(n,C) an arbitrary
matrix. Consider the linear system associated with the ordinary differential
equation

(tE − S)ẋ = Bx, x ∈ Cn, t ∈ C ⊂ P, (19.32)
where E stands for the identical matrix. By a linear change of variables the
matrix S can always be diagonalized. After inversion we have the meromor-
phic system

ẋ =




(t− s1)−1

. . .
(t− sn)−1


Bx. (19.33)

This system has simple poles at the points s1, . . . , sn and at the point t = ∞.
The residue matrix Aj at each point has rank 1: the only nonzero row of
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this matrix is the jth row of the matrix B. Therefore the characteristic
exponents at this point are all zeros, eventually except for the value bjj ∈ C.

The bridge between two notions, the hypergeometric systems and hy-
pergeometric equations, is obvious. Each component of the hypergeometric
2× 2-system (

t
t− 1

)
ẋ =

(
a b
c d

)
x. (19.34)

satisfies a hypergeometric equation (19.30) (Problem 19.17).

Exercises and Problems for §19.

Problem 19.1 ([VK75], [Kra97]). Prove that a C-linear self-map L : M → M

is a linear differential operator of order 6 n, if and only if the iterated commuta-
tor [g0, [g1, [· · · , [gn, L] · · · ]]] vanishes identically as a self-map of M for any n + 1
multiplications gi : M → M, f 7→ gif .

Exercise 19.2. Prove that the monodromy of a linear equation Lf = 0, L ∈ LO(T ),
is reducible if and only if the holonomy of the respective companion system is
reducible.

Problem 19.3. Let f1, . . . , fn be functions holomorphic in a domain U ⊂ T . Prove
that if W (f1, . . . , fn) ≡ 0, then these functions are linearly dependent over C. Is
this true for C∞-smooth functions?

Exercise 19.4. Prove in detail Proposition 19.19.

Problem 19.5. Find characteristic exponents at the origin for a Fuchsian operator
L = Dn + a1D

n−1 + · · · + an with holomorphic coefficients ak ∈ O(C, 0) and a
holomorphic vector field D = (ct + · · · ) d

dt with c 6= 0.

Problem 19.6. Prove that the point t0 = ∞ is Fuchsian for the monic linear
operator (19.2) expanded in the powers of D = ∂

∂t with a0 ≡ 1, if and only if
ord∞ ak > k + 2− n.

Exercise 19.7. Let s = λ1 + · · · + λn be the sum of characteristic exponents
of a regular singularity of a linear equation Lf = 0. Prove that the Wronskian
of a fundamental system of solutions w(t) = W (f1, . . . , fn) can be represented as
w(t) = ts+n(n−1)/2h(t), h ∈ O(C, 0), h(0) 6= 0.

Problem 19.8. Prove that the 1-jet bundle J1(T ) is equivalent to the direct sum
of the trivial bundle of rank 1 and the cotangent bundle T∗T for any base T .

Problem 19.9. Let C′ be a holomorphic 2-distribution on the jet bundle, which
is tangent to graphs of all sections of the form t 7→ jn

u (t) for all holomorphic germs
u ∈ O(T, p), p ∈ T .

Prove that C′ coincides with the Cartan distribution.

Problem 19.10. Prove that any integrable section s ∈ Γ (τn) of the jet bundle τn,
is the jet extension of a meromorphic function u ∈ M(T ), i.e., s = jn

u .

Problem 19.11. Prove that the Cartan distribution itself is nonintegrable in the
sense of Theorem 2.9.
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20. Irregular singularities and the Stokes phenomenon 351

Problem 19.12. Prove that a linear equation of order n with two regular singu-
larities at t = 0 and t = ∞ is an Euler equation, i.e., it has the form

Lu = 0, L = Dn + a1D
n−1 + · · ·+ an−1D + an, aj ∈ C, D = t ∂

∂t .

Find the complete factorization of the Euler equation into composition of first order
Fuchsian operators.

Problem 19.13. Prove that for a regular linear equation with m singular points
on a compact Riemann surface T , the sum of all characteristic exponents is equal
to (m−χ)n(n− 1)/2, where χ = deg T∗T is the Euler characteristic (the degree of
the cotangent bundle).

Exercise 19.14. Let D = t ∂
∂t be the Euler operator and u is the “operator of

multiplication by tλ”, λ ∈ C. Prove that the conjugated operator u−1Du is again
a first order with meromorphic coefficients. Compute it.

Exercise 19.15. Let u be the operator of multiplication by a germ c(t− t0)λh(t),
h ∈ O(C, t0), h(t0) 6= 0. Prove that there exists a holomorphic vector field D ∈
D(C, t0) with a simple (hyperbolic) singular point, such that u−1Du = D + λ
(cf. with the previous exercise).

Problem 19.16. Show that for an arbitrary Fuchsian operator L of order n with
singularities at the points t1, . . . , tm ∈ P and arbitrary collection of the complex
numbers λ1, . . . , λm such that

∑
λj = 0, one can find another Fuchsian operator L′

with the same singular points, such that the characteristic exponents α1,j , . . . , αn,j

at each singular point tj are shifted by λj : α′i,j = αi,j + λj for all i, j.

Problem 19.17. Find explicitly the hypergeometric equation (19.30) and the cor-
responding characteristic exponents for each component of the system (19.34).

20. Irregular singularities and the Stokes phenomenon

Unlike the Fuchsian singularities which can always be reduced to a simple
formal normal form by means of a convergent gauge transform, irregular
singularities have the formal classification considerably more involved and
the normalizing transformations as a rule diverge.

20A. One-dimensional irregular singular points. Irregular singulari-
ties of scalar (one-dimensional) linear equations admit complete investiga-
tion. Consider the equation

tmẋ = a(t)x, m > 2, a(t) = λ + a1t + a2t
2 + · · · ∈ O(C, 0). (20.1)

Its nontrivial solution is given by the explicit formula

x(t) = exp
∫

a(t)
tm

dt = exp[−t1−mλ(1 + o(1))]. (20.2)

The origin is an essential singularity of the function x(t) holomorphic in the
punctured neighborhood (C, 0)r {0}.
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Consider 2m−2 rays from the origin on the complex plane C, described
by the condition

Re(λ/tm−1) = 0. (20.3)
These rays subdivide the neighborhood (C, 0) into sectors of equal opening
π/(m− 1).

Definition 20.1. An open sector bounded by two rays (20.3) is called the
sector of jump (resp., sector of fall), if the real part of the ratio Re(λ/tm−1)
is negative (resp., positive) in the interior of this sector.

In each proper subsector of these sectors the solution x(t) of (20.2)
grows exponentially fast (in the jump sectors) and is flat at t = 0 (in the fall
sectors). This explains the terminology, as follows from the formula (20.2).

Holomorphic classification of one-dimensional systems is very simple.
Clearly, the order m is invariant; the following assertion shows that the
(m−1)-jet of the coefficient a(t) is a complete invariant of the classification,
both formal and holomorphic.

Proposition 20.2. Two meromorphic one-dimensional “linear systems”
(equations) of the form (20.1) with the holomorphic coefficients a(t), a′(t) ∈
O(C, 0), are holomorphically or formally gauge equivalent if and only the
difference a(t)−a′(t) is m-flat at the origin. In particular, any such equation
is equivalent to a unique polynomial equation

tmẋ = p(t), p ∈ C[t], deg p 6 m− 1, p(0) = λ. (20.4)

Proof. Any conjugacy x 7→ h(t)x between these equations must satisfy the
condition ḣ/h = (a− a′)/tm so h is holomorphic and invertible at the origin
if and only if the right hand side is holomorphic at the origin. ¤

20B. Birkhoff standard form. A general (matrix) linear system of any
dimension near a non-Fuchsian singular point can be reduced to a polynomial
normal form, if the monodromy of the singular point is diagonalizable.

Consider a linear system of the form

tmẊ = A(t)X, A(t) ∈ Mat(n, O(C, 0)), A(0) = A0, (20.5)

with the leading matrix coefficient A0 ∈ Mat(n,C). Recall that the integer
number m− 1 is the Poincaré rank of the singularity.

Theorem 20.3 (Birkhoff, 1913). If the monodromy operator M of a sys-
tem (20.5) is diagonal(izable), then this system is holomorphically gauge
equivalent to a polynomial system

tmẊ = A′0 + tA′1 + t2A2 + · · ·+ tm−1A′m−1, A′i ∈ Mat(n,C). (20.6)
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20. Irregular singularities and the Stokes phenomenon 353

Proof. Let Λ be a diagonal matrix logarithm satisfying the condition
exp 2πiΛ = M . Then any fundamental matrix solution has the form
X(t) = F (t) tΛ, where F is a matrix function, single-valued and holomorphi-
cally invertible in the punctured neighborhood of the origin but eventually
having an essential singularity at t = 0.

The function F considered as a Birkhoff–Grothendieck cocycle, is bi-
holomorphically equivalent to a standard cocycle tD

′
inscribed in a covering

U0 = {|t| < r0}, U1 = {|t| > r1}, Ui ⊂ P,
with sufficiently small values 0 < r1 < r0 ¿ 1. In other words, there exist a
diagonal integer matrix D′ and two holomorphic invertible matrix functions
H ′

0, H
′
1 such that

F (t) = H ′
0(t) tD

′
H ′

1(t), H ′
i ∈ GL(n,Ui), i = 0, 1, D′ = diag{d1, . . . , dn},

Using the Permutation Lemma 16.36, we can find a monopole (ma-
trix polynomial with constant nonzero determinant) Π such that tD

′
H ′

1 =
ΠH1t

D with H1 ∈ GL(n,U1) still holomorphic at infinity and D a diagonal
matrix obtained by permutation of entries from the diagonal matrix D′. The
matrix H ′

0Π is holomorphic and invertible in U0. Substituting, we obtain
the representation6

F = H0H1 tD, Hi ∈ GL(n,Ui), i = 0, 1. (20.7)

In fact, the function H1 and its inverse are holomorphic in Pr{0}, i.e., both
are entire functions of t−1; its extension to the punctured neighborhood of
the origin is given by rereading (20.7), H1 = H−1

0 F t−D.
Since the diagonal matrices Λ and D commute, the solution X of the

irregular system can be represented as X(t) = H0 ·H1 tΛ
′
, Λ′ = D + Λ.

After the gauge transform X 7→ X ′ = H−1
0 X holomorphic at the origin,

the logarithmic derivative

Ω′ = dX ′ · (X ′)−1 = dH1 ·H−1
1 + t−1 H1Λ

′H−1
1

can be extended on the whole Riemann sphere P. This extension will have
a simple pole at infinity and no other singularities except for t = 0.

The origin t = 0 is a pole of order m for Ω′. Indeed, it was a pole of order
m for Ω = dX ·X−1; since Ω′ and Ω are locally holomorphically conjugate
at the origin by construction, this assertion is valid also for Ω′.

Thus the holomorphic gauge transform Ω′ of the initial irregular system
is a rational matrix 1-form on P with poles of order m at the origin and 1
at infinity. Thus the matrix coefficient A′(t) of Ω′ = A′ dt must be a matrix

6Sometimes the factorization (20.7) itself is called the Birkhoff factorization of the matrix
function F holomorphic in the annulus; see [FM98].
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polynomial of degree m in t−1 without the free term (so that Ω′ has at most
a simple pole at infinity), exactly as was asserted. ¤

We wish to stress that Theorem 20.3 is a global statement, closely related
to Theorem 18.6. If the monodromy is not diagonalizable, then the assertion
is in general false [Gan59]. However, for irreducible irregular singularities
the polynomial standard form still exists, as was shown in [Bol94]. In fact,
this result is closely related to the Bolibruch–Kostov Theorem 18.14.

Recall that a meromorphic connexion (or a linear system) is reducible, if
there exists an invariant holomorphic subbundle. Local reducibility means
that the invariant subbundles exist locally near a singular point. After rec-
tification of the corresponding subbundles by a suitable holomorphic gauge
transform, a locally reducible system can always be brought into block
upper-triangular form. A connexion (resp., linear system) is locally irre-
ducible if it admits no nontrivial invariant holomorphic subbundles.

A regular (in particular, Fuchsian) singularity is always locally reducible:
the monodromy operator M always has at least one invariant subspace in
each dimension, and by Proposition 18.8, each such subspace spans an in-
variant subbundle. However, for irregular singularities Proposition 18.8 in
general fails and there exist locally irreducible singularities (though this ir-
reducibility is very difficult to check).

Theorem 20.4 (A. Bolibruch, [Bol94]). A locally irreducible irregular sin-
gularity is holomorphically equivalent to a polynomial system (20.6).

The proof of this assertion reproduces the proof of Theorem 18.14 with
minimal modifications. The key argument is that a locally irreducible con-
nexion on a holomorphic bundle over P is always globally irreducible.

Proof. We construct an abstract bundle πN over P with a meromorphic connexion ∇N

on it, which has an irregular singular point at t = 0, biholomorphically equivalent to the
given singularity Ω0 = t−m(A0 + A1t + · · · ) dt, and a Fuchsian singularity at t = ∞ with
eigenvalues “well apart”. Here N = diag{ν1, · · · , νn} is a diagonal n × n-matrix with
sufficiently fast ascending sequence of integer numbers ν1 ¿ ν2 ¿ · · · ¿ νn: for our
purposes it is sufficient to guarantee that νi+1 − νi > (m− 1)(n− 1).

To construct this bundle, we assume that the holonomy operator M is upper-
triangular and has an upper-triangular matrix logarithm A = 1

2πi
ln M . Then for any

choice of the matrix N the logarithmic derivative Ω∞ = dY ·Y −1, where Y (t) = tNtA, has
a Fuchsian singularity at infinity (cf. with (18.8)).

Exactly as in the proof of Theorem 18.14, the two forms Ω0 on (C1, 0) and Ω∞ on
Pr{0}, considered as connexion forms, define a holomorphic bundle πN and a meromorphic
connexion ∇N on it, with only two singularities, one of them Fuchsian. The total order of
poles of ∇N is equal to m + 1.

If the singularity at the origin is irreducible, then the connexion ∇N is globally ir-
reducible, hence the splitting type D = diag{d1, . . . , dn} of the bundle πN is constrained
by the inequality |di − dj | 6 (m − 1)(n − 1) (Problem 18.12, a slightly modified version
of Theorem 18.12). Trivializing this bundle and making a suitable monopole transform
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Π, we obtain (again exactly as in the proof of Theorem 18.14) a meromorphic connexion
on the trivial bundle with an irregular singularity at t = 0 and a regular singularity with

the fundamental solution X(t) = G(t) tD′tNtA = G(t) tD′+NtA. In this expression the
matrix function G ∈ GL(n, O(P,∞)) is holomorphically invertible at infinity, and D′ is a
diagonal matrix obtained from D by permutation of the diagonal entries. Because of the
large gaps between the numbers νj , the entries of the diagonal matrix D′ + N are still in
the ascending order, hence the logarithmic derivative dX · X−1 is Fuchsian. Thus after
the trivialization and the monopole gauge transform we obtain a rational matrix 1-form
Ω′ on P with a pole of order m at the origin and a simple pole at infinity. This gives the
polynomial normal form (20.6). ¤

Remark 20.5. The “polynomial normal form” (20.6) is in general nonin-
tegrable. Moreover, it is nonlocal: each matrix coefficient A′k of the normal
form depends on the entire series

∑
Akt

k in (20.5). Thus its effectiveness in
applications is rather limited.

20C. Resonances and formal diagonalization. The first step in the
“genuine” classification of general irregular singularities is the formal classi-
fication similar to that described in §16C for Fuchsian systems with m = 1.
Exactly as above, the linear system

tmẋ = A(t)x, A(t) ∈ Mat(n, O(C, 0)), (20.8)

associated with the matrix equation (20.5), can be reduced to a holomor-
phic vector field in (Cn+1, 0) corresponding to the “nonlinear” system of
differential equations{

ẋ = A0x + tA1x + · · · ,

ṫ = tm,

x ∈ (Cn, 0),

t ∈ (C, 0).
(20.9)

The spectrum of linearization of the system (20.9) at the singular point
(0, 0) consists of the zero value λ0 = 0 (since m > 2) and the eigenvalues
λ1, . . . , λn ∈ C of the leading matrix coefficient A0 ∈ Mat(n,C) (repetitions
allowed).

Applying the Poincaré–Dulac technique to the nonlinear system (20.9),
we can eliminate from its Taylor expansion all nonresonant terms. Exactly
as in the case with Fuchsian systems in §16C, only occurrences of cross-
resonances λi = λj + kλ0 corresponding to the vector-monomials tkxj

∂
∂xi

will matter. As λ0 = 0, this motivates the following definition.

Definition 20.6. The system (20.5) is said to be nonresonant at the origin,
if all eigenvalues λ1, . . . , λn of the leading matrix coefficient A0 are pairwise
different.

Theorem 20.7. A non-Fuchsian system (20.5) at a nonresonant singular
point t = 0 is formally gauge equivalent to a diagonal polynomial system of
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degree m,
tmẋ = Λ(t)x, Λ(t) = diag{p1(t), . . . , pn(t)},

pi ∈ C[t], deg pi = m, Λ(0) = diag{λ1, . . . , λn}. (20.10)

Proof. The same (literally) arguments that proved Theorem 16.15 in §16C,
prove also that only resonant monomials of the form cijkt

k xj
∂

∂xi
should be

kept in the expansion (20.9), all others being removable. Elimination of the
resonant monomials of degree k > m can be achieved by Proposition 20.2
and the remark after it. ¤

As follows from the analysis of the scalar case in §20A, a system in
the formal normal form (20.10) is integrable: there are diagonal matrix
polynomial B(t−1) = B0t

1−m + B1t
2−m + · · · + Bm−2t

−1 and a constant
diagonal matrix C, such that a fundamental matrix solution of (20.5) has
the form X(t) = tC expB(t−1).

Remark 20.8. Note that the formal series that conjugate irregular singu-
larities may diverge. Indeed, the nonresonant irregular system

t2
d

dt

(
y
z

)
=

(
1 −1
0 t

)(
y
z

)
, (20.11)

with a separating second variable can be reduced to the Euler equation
(7.11) (Example 7.10). The Euler equation has a formal Taylor solution
which diverges. Clearly, this would be impossible were the normalizing
series convergent.

20D. Formal simplification in the resonant case. The direct proof of the formal
diagonalization Theorem 20.7 looks as follows. The formal gauge transformation X 7→
X ′ = HX defined by a formal matrix series

H = E +
X
k>0

tkHk ∈ GL(n,C[[t]])

conjugates two systems (formal or convergent)

tmẊ = A(t)X,

A(t) = A0 +
X
k>0

tkAk,
and

tmẊ ′ = A′(t)X ′,

A′(t) = A0 +
X
k>0

tkA′k,

with the same principal part A(0) = A′(0) = A0, if and only if H is a formal solution to
the following matrix differential equation,

tmḢ = A′(t)H −HA(t). (20.12)

Termwise, this equation is equivalent to the sequence of matrix equations involving the
coefficients Ak, A′k of the expansions for A(t) and A′(t) respectively,

0 = (A′0Hk −HkA0) + (A′k −Ak)

+
X

i,j>0, i+j<k

(A′iHj −HiAj)−
(

kHk+1−m, k > m− 1,

0, k < m− 1.

(20.13)
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20. Irregular singularities and the Stokes phenomenon 357

These equations can be rewritten in the form

[A0, Hk] + A′k = matrix polynomial in {A′j , Hj , 0 < j < k}.

By Lemma 4.11, the image of the operator adA0 : B 7→ [A0, B] is a linear subspace
in Mat(n,C) orthogonal (in the sense of some Hermitian structure) to the subspace of all
matrices commuting with the conjugate matrix A∗0. Thus the equations (20.13) are always
solvable for suitable matrices Hk and A′k such that [A∗0, Ak] = 0.

If A0 is nonresonant, it can be diagonalized, A0 = Λ = diag{λ1, . . . , λn}, so that
Ker adΛ∗ consists of diagonal matrices only. Thus a nonresonant irregular singularity
is formally diagonalizable. Slightly more generally, if A0 is block diagonal with each
block having only one eigenvalue different for different blocks, then the complementary
subspace can be chosen as matrices having the same block diagonal structure. This proves
the following generalization of Theorem 20.7.

Theorem 20.9. By a formal gauge transformation one can reduce an irregular system to
the block-diagonal form with each block having the leading matrix with a single eigenvalue.

Example 20.10. Assume that the leading matrix A0 is a single Jordan block of size n
with the eigenvalue λ0, A0 = λ0E + J . For an arbitrary matrix B commutation with J∗

means that shifts of the columns of B to the left and shift of its rows downward produce
the same result (in both cases the null column or row is added). Thus for any element
Bij the elements next to the right and one row above it coincide, the elements of the first
row and the last column being all zeros. Thus [B, J∗] = 0, if and only if all elements on
each secondary diagonal (parallel to the principal diagonal) are equal among themselves
and equal to zero in the upper-right half (so that B is lower triangular).

Thus an irregular singularity with the leading matrix coefficient A0 = λ0 + J can be
brought to the form (20.8) in which

A(t) =

0BBB@
λ0 1

b1(t) λ0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bn−2(t) · · · b1(t) λ0 1
bn−1(t) bn−2(t) · · · b1(t) λ0

1CCCA .

In fact, one can further simplify the obtained normal form and get rid of all entries ex-
cept those in the last row; see [Arn83, §30]. As a result, by a formal gauge transformation
the system is reduced to the companion form modulo a scalar matrix,

A(t) = λ0E +

0BBB@
0 1

0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 1
an(t) an−1(t) · · · a2(t) a1(t)

1CCCA (20.14)

with formal series ai ∈ C[[t]]. The eigenvalues of the matrix A(t) are of the form λ0+λi(t),
where λ1(t), . . . , λn(t) are the roots of the characteristic equation

λn = a1(t)λ
n−1 + · · ·+ an−1(t)λ + an(t).

Since λ1(0) = · · · = λn(0) = 0 by assumption, we see that the formal series ai ∈ C[[t]] are
all without the free terms.

Remark 20.11. If f(t) = exp(mλ0/tm−1) is a solution of the equation ḟ = −λ0t
−mf ,

then the gauge transformation X 7→ f(t)X brings the system (20.14) to the true compan-
ion form (without the diagonal term λ0E). Being scalar, this transformation commutes
with any other gauge equivalence, formal or convergent.
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20E. Shearing transformations and ramified formal normal form. Further sim-
plification of the system is possible only if we extend the class of formal gauge transfor-
mations, allowing for ramified formal transformations which are formal series in fractional
powers of t. It was E. Fabry who realized (1885) the necessity of passing to fractional
powers.

Example 20.12 (continuation of Example 20.10). Consider again the case of a system
whose leading matrix is a maximal size Jordan block. By Remark 20.11, without loss of
generality we may assume that λ0 = 0. Assume that r ∈ Q is a positive rational number,
and consider the gauge transformation

H(t) = diag
n

1, t−r, t−2r, . . . , t(1−n)r
o

. (20.15)

This transformation takes the system (20.5) with the matrix A(t) as in (20.14), into that
with the matrix 0BBB@

0 tr

0 tr

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 tr

t(1−n)ran t(2−n)ran−1 · · · t−ra2 a1

1CCCA− tm−1R,

where R = diag{0, r, 2r, . . . , (n− 1)r} is the diagonal matrix. The orders of zeros νk ∈ N
of the formal series ak(t) were all positive, since ak(0) = 0. Choose r so that the orders
of all terms a′k(t) = t−krak(t) are still nonnegative but the smallest of them is zero,
r = mink νk/k. The denominator of r is no greater than n.

After the conjugacy by H the matrix of the system will take the form

Ẋ = [t−m+rA′(t) + t−1R]X, r > 0, (20.16)

where A′(t) is a companion matrix similar to (20.14) but with the entries a′k(t) ∈ C[[t1/q]],
k = 1, . . . , n, now being formal series in fractional powers of t (and without the diagonal
term λ0). The leading (matrix) coefficient A′(0) of A′(t) is the companion matrix con-
taining the complex numbers a′n(0), . . . , a′1(0) as the last row. By the choice of r, not all
of them are simultaneously zero, yet their sum is zero, since tr A′(0) = a′1(0) = a1(0) = 0.
Therefore if after the shearing transformation the system remains non-Fuchsian (i.e., if
r < m− 1), at least some of the leading eigenvalues must be nonzero.

Somewhat more elaborate computations allow us to prove similar statement also in the
case where the leading matrix coefficient A0 has several Jordan blocks with the common
eigenvalue.

Notice now that the construction described in §20D, applies without any changes to
the ramified formal series in fractional powers of t (i.e., when the indices i, j, k range over
an arithmetic progression with rational noninteger difference). Applying Theorem 20.7 in
these extended settings, we see that the system (20.16) can now be formally split into two
subsystems.

By iteration of these two steps (splitting the system and subsequent shearing trans-
formation) sufficiently many times, one can prove the following result.

Theorem 20.13 (Hukuhara (1942), Turritin (1955), Levelt (1975)). By a suitable formal
ramified gauge transformation an irregular singularity can be reduced to the diagonal form

A(t) = t−r1P1 + t−r2P2 + · · ·+ t−rkPk + t−1C,

where r1 > r2 > · · · > rk > 1 are rational numbers with the denominators not exceeding
n! and P1, . . . , Pk ∈ Mat(n,C) are diagonal matrices commuting with C.

We will not give the proof in full details; see [Var96] and the references therein.
Instead, we focus on the more transparent nonresonant case and study the problems of
holomorphic rather than formal classification.
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20. Irregular singularities and the Stokes phenomenon 359

20F. Holomorphic sectorial normalization. Even in the nonresonant
case there is a wide gap between formal and analytic classification. In this
section we explain the geometric obstructions for convergence of formal nor-
malizing transformations.

Definition 20.14. A separation ray7 corresponding to a fixed value of m
and a pair of complex numbers λ 6= λ′ ∈ C is any of the 2(m − 1) rays
defined by the condition

Re[(λ− λ′)/tm−1] = 0. (20.17)

The following property is characteristic for separation rays, being an im-
mediate consequence of the explicit formula (20.2). Consider two solutions
x(t), x′(t) of two scalar systems (20.1) with the same order m and the holo-
morphic coefficients a(t), a′(t). Denote λ = a(0), λ′ = a′(0). Recall that a
function defined and holomorphic in a sector with the vertex at the origin is
said to be flat , if it decreases faster than any power of the distance to this
point, and the same is true for all its derivatives. A reciprocal 1/f of a flat
nonvanishing function is called vertical .

Proposition 20.15. If R = ρ · R+, |ρ| = 1, is not a separation ray for the
pair λ, λ′, then out of the two reciprocal ratios x(t)/x′(t) and x′(t)/x(t) one
after restriction on R is flat and the other is vertical, depending on whether
(λ− λ′)/ρm−1 is respectively negative or positive. ¤

Everywhere here and below we always assume that any sector is bounded
by two straight rays coming from the vertex (usually the origin); the angle
between these rays is the opening of the sector. If Ĥ ∈ GL(n,C[[t]]) is
a formal power series, we say that a holomorphic matrix function H ∈
GL(n, O(S)) extends this series, if Ĥ is the asymptotic series for H in S,
that is, the difference between H(t) and any truncation ĤN (t) ∈ Mat(n,C[t])
of Ĥ, the matrix polynomial of degree N , decreases faster than tN ,

‖H(t)− ĤN (t)‖ = o(|t|N ) as t → 0, t ∈ S, ∀N ∈ N.

Theorem 20.16 (sectorial normalization theorem, Y. Sibuya [Sib62]). As-
sume that the leading matrix A0 of the linear system (20.5) is nonresonant
(i.e., has pairwise different eigenvalues λ1, . . . , λn).

If S ⊂ (C, 0) is an arbitrary sector not containing two separation
rays for any pair of the eigenvalues λi, λj, then any formal gauge trans-
formation Ĥ(t) ∈ GL(n,C[[t]]) conjugating (20.5) with its polynomial di-
agonal normal form (20.10), can be extended to a holomorphic conjugacy
HS(t) ∈ GL(n,O(S)) between these systems in S.

7The union of two separating rays in opposite directions is called a Stokes line in some
sources.
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360 III. Linear systems

The proof of this theorem is moved to the appendix; see §20J below. It
differs both from the author’s proof in [Sib90] and from that in [Was87].

20G. Sectorial automorphisms and Stokes matrices. If the sector is
sufficiently wide, then the normalizing transform is necessarily unique. This
can be seen by studying automorphisms of the system in the diagonal normal
form. We will show that such systems admit no nontrivial automorphisms
over such sectors.

More specifically, assume that H ′(t),H ′′(t) are two sectorial automor-
phisms conjugating an irregular singularity (20.5) with its diagonal for-
mal normal form (20.10) in some sector S ⊂ (C, 0). Then the “super-
positional ratio”, the sectorial gauge transform with the matrix function
H(t) = H ′′(t) ·H ′−1(t), is an automorphism of the diagonal system (20.10).

Such automorphisms are most easily described by their action on a suit-
ably chosen fundamental solution. In our case the diagonal system (20.10)
admits a distinguished set of solutions which are themselves diagonal.

We fix a diagonal fundamental solution W (t) = diag{w1(t), . . . , wn(t)}
for (20.10). Then any holomorphic sectorial automorphism H(t) of the diag-
onal normal form, H ∈ GL(n, O(S, 0)), is uniquely determined by a constant
matrix C ∈ GL(n,C) such that

H(t)W (t) = W (t)C. (20.18)

This matrix will be referred to as the Stokes matrix of the sectorial automor-
phism H(·). This matrix depends on the choice of the diagonal fundamental
solution W , yet because of the special growth pattern of solutions it can be
rather accurately described.

Lemma 20.17. Suppose that none of the two rays bounding a sector S is
a separation ray for the system (20.10) in the formal normal form, and the
eigenvalues of the leading matrix Λ0 are ordered so that Reλ1 < · · · < Reλn.

Then the Stokes matrix C ∈ GL(n,C) of any sectorial automorphism
H ∈ GL(n,O(S, 0)) which is 0-tangent to the identity, H(t) = E + o(1),
possesses the following properties:

(1) For any pair i 6= j of indices, one of the matrix elements cij , cji

must be zero, in particular,
(2) if S ⊃ R+, then C − E is a nilpotent upper-triangular matrix.
(3) If S contains a separation ray for the pair λi 6= λj then both cij =

cji = 0, in particular,
(4) if S contains one separation ray for each pair of eigenvalues, then

necessarily C = E.
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20. Irregular singularities and the Stokes phenomenon 361

Proof. All assertions immediately follow by inspection of the asymptotic
behavior of the sectorial automorphism written in terms of the Stokes ma-
trix,

H(t) = W (t)CW−1(t) = ‖hij(t)‖, hij(t) = cij wi(t)/wj(t),

and the observation in Proposition 20.15.
Indeed, if the ratio wi(t)/wj(t) along some ray in S is vertical, the cor-

responding coefficient cij must necessarily be zero. This proves the first two
assertions.

To prove the remaining assertions, note that the two reciprocal ratios
wi/wj and wj/wi have reciprocal asymptotical behavior along any two rays
sufficiently close but separated by the separation ray for the eigenvalues λi

and λj . By the preceding arguments, in this case both cij and cji must be
absent. ¤

Proposition 20.18 (rigidity). If a sector S has an opening bigger than
π/(m−1), then the sectorial normalization HS described in Theorem 20.16,
is unique.

Proof. If there were two sectorial normalizations H ′,H ′′ with the same
asymptotic series Ĥ, then their matrix ratio H = H ′′H ′−1 must be a sector-
ial automorphism of the formal normal form (20.10), tangent to the identity
(i.e., of the form id+flat function). Since all separation rays for each pair
of eigenvalues are separated by the angle π/(m−1), the sector S of opening
bigger than π/(m− 1) must contain at least one such ray for each pair. By
the last assertion of Lemma 20.17, the corresponding Stokes matrix must be
identity, which means that the ratio itself is identity. ¤

20H. Stokes phenomenon. Holomorphic classification of irregular
singularities. Consider a linear system (20.5) of Poincaré rank m − 1 at
the nonresonant non-Fuchsian singular point t = 0, and let (20.10) be its
formal normal form.

As before, we can assume without loss of generality that the leading
matrix has eigenvalues ordered so that

Reλ1 < · · · < Reλn, (20.19)

which means that neither the positive semiaxis R+ nor its rotated copies
ρk R+, k = 1, . . . , 2(m− 1), where ρ = exp πi

m−1 , are separation rays for any
two eigenvalues λi 6= λj .

The open sector S∗ bounded by the rays R+ and ρR+ of opening π/(m−
1) contains exactly one separation ray for each pair, none of them on the
boundary. Thus one can enlarge slightly the opening of this sector to become
2δ + π/(m − 1) so that it still contains exactly one separation ray for each
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Separating rays

S2

S1

Figure III.3. Standard covering and separation rays in the simplest
case m = 2

pair. Denote this enlarged sector by S1 = {−δ < Arg t < π/(m−1)+δ}, and
let S2, . . . , S2(m−1) be its rotated copies, Sk = ρk−1S1. These sectors form a
covering of the punctured neighborhood of the origin; the intersections are
narrow flaps Sj,j+1 = {|Arg t − jπ/(m − 1)| < δ} of opening 2δ > 0 each.
This collection of sectors will be referred to as the standard covering of the
punctured neighborhood of the origin.

By Theorem 20.16, over each sector Sk there exists a holomorphic gauge
conjugacy Hk(t) ∈ GL(n, O(Sk)) between the initial system (20.5) and its
formal normal form (20.10). This conjugacy is unique by Proposition 20.18.
The collection {Hk} of these sectorial normalizing maps is called the nor-
malizing cochain inscribed in the standard covering {Sk}.

Since all maps forming the normalizing cochain have the same common
asymptotic series, the matrix ratios Fij = HiH

−1
j = F−1

ji defined on the
nonempty intersections Si ∩ Sj , are sectorial automorphisms of the formal
normal form (20.10). Clearly, the intersections Si ∩ Sj are nonvoid if and
only if j = i + 1 cyclically modulo 2(m − 1); they are thin sectors around
the rotated copies ρj R+ of the real axis.

Let {Hi} be the (uniquely defined) normalizing cochain inscribed in the
standard covering. Choose a diagonal fundamental matrix solution W (t);
since in general the normal form has a nontrivial monodromy, the solution
W (t) is multivalued. To avoid this, we slit the neighborhood along the ray
{Arg t = π/2(m− 1)} entirely belonging to the sector S1 and disjoint with
all overlapping sectors Sij = Si∩Sj , |i− j| = 1, and consider a fundamental
solution in the slit domain. Such a solution is defined uniquely modulo a
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20. Irregular singularities and the Stokes phenomenon 363

diagonal transform

W (t) 7→ DW (t) = W (t)D, D = diag{α1, . . . , αn}, (20.20)

and by construction it is holomorphic in all flaps Sij .

Definition 20.19. The Stokes collection of a linear system at a nonres-
onant irregular singular point is the collection of Stokes matrices {Cj},
j = 1, . . . , 2(m− 1) of the sectorial automorphisms Fij = HiH

−1
j , i + 1 = j,

corresponding to a diagonal solution W (t) of the formal normal form.

Proposition 20.20. The matrices Cj from the Stokes collection are unipo-
tent.

Proof. If S is a sector containing the positive semiaxis and the eigenvalues
of Λ0 are ordered as in (20.19), the assertion follows from the second assertion
of Lemma 20.17. The general case can be brought to the former specific case
by suitable rotation of the t-plane and re-enumeration of the eigenvalues. ¤

By Proposition 20.18, the Stokes collection is uniquely defined, as soon
as the diagonal fundamental solution W (t) is fixed. Replacing the diagonal
solution W (t) by another solution DW (t) = W (t)D transforms the Stokes
matrices by the simultaneous diagonal conjugacy

Cj 7→ C ′
j = DCjD

−1,

D = diag{α1, . . . , αn},
∀j = 1, . . . , 2(m− 1). (20.21)

The Stokes collections {C1, . . . , C2m−2} and {C1, . . . , C2m−2} related by the
transformation (20.21), are called equivalent Stokes collections. Note that
the trivial collection C1 = · · · = C2m−2 = E is equivalent only to itself.

Theorem 20.21 (classification theorem for nonresonant irregular singular-
ities). Any two nonresonant irregular linear systems with a common formal
normal form are locally holomorphically gauge equivalent if and only if their
Stokes collections are equivalent in the sense (20.21).

In particular, a linear system is holomorphically equivalent to its formal
normal form, if and only if the Stokes collection is trivial.

Proof. Consider two systems with the same formal normal form. Without
loss of generality we may assume that a common standard covering is chosen,
and the uniquely defined normalizing cochains are denoted by {Hj} and
{H ′

j} respectively.
Let G be a holomorphic conjugacy between these systems. Together with

the cochain {H ′
j}, the cochain {HjG} clearly is also a normalizing cochain

for the second system. By the uniqueness (Proposition 20.18), H ′
j = HjG

and hence H ′
i(H

′
j)
−1 = DHiH

−1
j D−1 for all |i− j| = 1. Coincidence of the
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transition cocycles means that the corresponding Stokes collections (apriori
defined with respect to two different fundamental solutions W and W ′ =
DW ) are equivalent.

In the inverse direction this argument also works. If two Stokes collec-
tions are equivalent, then by choosing another diagonal fundamental solution
we can guarantee that the corresponding Stokes operators simply coincide.
Then the matrix quotients Gj = H ′

jH
−1
j and Gi = H ′

iH
−1
i coincide on the

nonvoid intersections (when |i − j| = 1) and hence together define a ma-
trix function G holomorphically invertible outside the origin. This function
has an asymptotic series equal to the matrix ratio of two formal normal-
izing gauge transforms Ĥ ′Ĥ−1 for the two systems, hence extends at the
origin. ¤

20I. Realization theorem. Proposition 20.20 describes the necessary
property of Stokes operators associated with the given order m and a collec-
tion of eigenvalues λ1, . . . , λn. It turns out that this is a unique requirement.

Theorem 20.22 (Birkhoff, 1909). Any collection of unipotent upper-
triangular matrices {Ci} meeting the restrictions from Proposition 20.20,
can be realized as the Stokes collection of a nonresonant irregular singular-
ity with a preassigned formal normal form (20.10).

Sketch of the proof. Consider the diagonal formal normal form (20.10), the standard
covering Sj and the collection of holomorphic invertible matrix functions

Fj,j+1(t) = W (t)CjW
−1(t) = F−1

j+1,j(t), j = 1, . . . , 2(m− 1),

defined in the corresponding nonempty intersections Sij = Si ∩Sj , |i− j| = 1. Here W (t)
is a diagonal fundamental solution of the formal normal form, holomorphic in the small
neighborhood of the origin (C, 0) slit along the ray {Arg t = π/2(m− 1)} ⊂ S1 as before.
By our assumptions, the constant matrices Cj are related to the eigenvalues λj in such a
way that the differences Fij(t)− E are flat in the thin sectors Sij .

It can be shown that the cocycle F = {Fij} is solvable by a holomorphic cochain
H = {Hj} of holomorphic invertible matrix functions so that FijHj = Hi for |i− j| = 1.
This means that the sectorial solutions Xj(t) = H−1

j (t)W (t) = Xi(t)Cj satisfy linear
systems with the coefficient matrices

Aj(t) = tm d
dt

(H−1
j )Hj + H−1

j (t)Λ(t)Hj(t)

coinciding on the intersections, Ai(t) = Aj(t) for t ∈ Si∩Sj . The resulting matrix function
A(t), defined in the punctured neighborhood of the origin, is bounded hence holomorphic

and by construction the system tmẊ = A(t)X is holomorphically equivalent to the formal

normal form tmẆ = Λ(t)W .

Clearly, the Stokes collection of the constructed system coincides with the prescribed
data {Cj}.

Geometrically this construction consists of patching together linear systems defined
over different sectors Sj , using the gauge maps Fij , |i−j| = 1, for identification. The result
will be a linear system defined on a holomorphic vector bundle over the punctured neigh-
borhood (C, 0)r {0}. Such a bundle is always holomorphically trivial, as any bundle over
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a noncompact Riemann surface [For91, §30]. The delicate circumstance is to verify that
the linear system which appears after trivialization of this bundle, will have an irregular
singularity of the prescribed formal type. The solvability of the “asymptotically trivial”
cocycle {Fij} by a holomorphic cochain {Hi} guarantees this automatically. Details can
be found in [BV89]. ¤

As a corollary we conclude that there exist non-Fuchsian systems for
which the formal diagonalizing series diverge. Moreover, in some sense this
divergence is characteristic for the majority of non-Fuchsian singularities:
Theorems 20.21 and 20.22 imply that classes of holomorphic gauge equiva-
lence are parameterized by (m− 1)n(n− 1) complex parameters (entries of
the Stokes collections).

Appendix: Demonstration of Sibuya theorem

In this section we prove the Sectorial Normalization Theorem 20.16. This
theorem can be reduced to an analytic claim asserting existence of flat so-
lutions for a nonhomogeneous system of linear equations in a sector.

Throughout this appendix we fix a nonresonant linear system (20.5), its
diagonal formal normal form (20.10) with Λ(0) = diag{λ1, . . . , λn}, λi 6= λj ,
and a formal transformation Ĥ ∈ GL(n,C[[t]]) conjugating the two. Given
a sector S, we can then speak about sectorial conjugacy (or conjugacies)
extending Ĥ in this sector.

20J. Normalization in “acute” sectors. First we show that the prob-
lem of constructing holomorphic sectorial normalization conjugating an ir-
regular singularity with its diagonal formal normal form, can be solved in any
sufficiently “acute” sector, namely, if the opening of this sector is less than
π/(m−1). Enlarging this sector to wider sectors Sj of opening π/(m−1)+2δ
forming the standard covering, is achieved relatively simply in §20M.

By the Borel–Ritt theorem [Was87, §9.2] (see also Problem 20.2), in
any sector S there exists an analytic matrix function F (t) whose asymptotic
series in S is the prescribed normalizing series Ĥ. Conjugating the system
(20.5) by F , we obtain a new system of the form tmẊ = A′(t)X with
the matrix A′(t) holomorphic in S and having the same asymptotic series
at the origin as the Taylor series Λ(t) of the formal normal form tmẊ =
Λ(t)X. Thus to construct the sectorial conjugacy between the system and
its initial normal form, it is sufficient to remove by a suitable sectorial gauge
transformation the flat nondiagonal part B(t) from the system

tmẊ = (Λ(t) + B(t))X, B(t) = ‖bij(t)‖,
bij ∈ O(S), bii ≡ 0, bij flat in S,

S = {α < Arg t < β, |t| < r}, |β − α| = π/(m− 1)− 2δ.

(20.22)
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The diagonal entries of B can be assumed absent by Proposition 20.2. The
positive parameters 1 À δ > 0 and 0 < r ¿ 1 characterizing the sector S,
can be assumed as small as necessary.

A conjugacy H(t) between (20.22) and (20.10), holomorphic in the sector
S with the identical asymptotic series, satisfies the differential equation

tmḢ = ΛH −H(Λ + B) = [Λ,H]−HB. (20.23)

The flat difference Y (t) = H(t)− E satisfies the equation

Ẏ = [Λ, Y ]− (E + Y )B, t ∈ S, B(·) flat in S. (20.24)

Denote by y = (y1, . . . , yk) ∈ Ck, k = n(n− 1)/2, the collection of all
off-diagonal entries of the matrix Y . The system (20.24) then takes the form

tmẏ(t) = [D + G(t)]y(t) + g(t), t ∈ S, (20.25)

where D is a diagonal matrix corresponding to the commutator with the
leading term Λ0 = diag{λ1, . . . , λn} of the formal normal form Λ(t),

D : Y 7→ DY = [Λ0, Y ].

Since the system was assumed nonresonant, all eigenvalues of D are nonzero,

D = diag{µ1, . . . , µk}, µi 6= 0, i = 1, . . . , k, k = n(n− 1)/2. (20.26)

The term G(t) corresponds to the commutator with the nonleading terms
and the multiplication by the flat off-diagonal terms from the matrix B,

Y 7→ GY = [Λ(t)− Λ0, Y ] + Y B(t).

In our assumptions G(t) tends to zero as t → 0. The nonhomogeneity g(t)
consists of the off-diagonal terms of the matrix B(t) and is also flat at the
origin.

It is convenient to simplify the system further to reduce the Poincaré
rank to the minimum and place the singular point at infinity so that the
leading part would be a system with constant coefficients easy for explicit
integration.

Changing the independent variable from t ∈ S ⊂ (C, 0) to z = 1/tm−1 ∈
(P,∞) transforms the 1-form t−m dt to (1 − m) dz. This transformation
brings the system (20.25) to the form dy/dz = (1−m)[D + G(z1/(1−m))] +
(1 − m)g(z1/(1−m)) defined in a sector S′ with the vertex at infinity and
the opening strictly less than π. Rotating the z-plane if necessary, we can
always assume that S′ = {|z| > r, |Arg z| < π

2 − δ}, where δ > 0 is a small
positive parameter.
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Appendix: Demonstration of Sibuya theorem 367

Returning to the previous notations, we can rewrite the system (20.25)
with respect to the new variable z as follows:

d
dzy = [D + G(z)]y + g(z), y ∈ Ck,

z ∈ S′ = {|z| > r, |Arg z| < π
2 − δ},

G(z) = o(1), g(z) = o(z−N ) for any N ∈ N, as z −→
S′

∞,

D = diag{µ1, . . . , µk}, µi 6= 0.

(20.27)

Theorem 20.23. The system (20.27) admits a flat solution holomorphic in
the sector S′.

Corollary 20.24. The system (20.24) admits holomorphic flat solution Y ∈
O(S) in any “acute” sector S of opening less than π/(m− 1).

The key idea of the proof of this theorem is to treat the system (20.27)
as a perturbation of the linear diagonal equation

dy

dz
= Dy, z ∈ S′, D = diag{µ1, . . . , µk}.

Since the latter system is immediately integrable, we can explicitly describe
the resolvent operator S for the corresponding nonhomogeneous equation,

dy

dz
= Dy + h ⇐⇒ y = Sh,

by the method of variation of constants. The resolvent S turns out to
be a bounded linear integral operator for a suitable choice of the paths of
integration, as explained in §20K. Using the resolvent S, the initial equation
(20.27) can be rewritten as a fixed point equation,

y = S[Gy + g],

with the operator y 7→ Gy = Gy + g so strongly contracting that the com-
position SG is a contracting operator on a suitable Banach space.

Now we proceed with a detailed exposition.

20K. Core example. Consider first the particular one-dimensional case
of the system (20.27),

d
dzy = µy + g(z), 0 6= µ ∈ C, y ∈ C1, z ∈ S′. (20.28)

with a flat nonhomogeneity g(z) ∈ O(S′) and absent linear nonautonomous
term, i.e., G ≡ 0. We are looking for a solution flat in the sector S′.

The solution of this system is given by the explicit formula obtained by
variation of constants method (see Remark 15.6): for an arbitrary choice of
the base point b ∈ S′,

y(z) = eµz

(
y(b) +

∫ z

b
e−µζg(ζ) dζ

)
= eµzy(b) +

∫ z

b
eµ(z−ζ)g(ζ) dζ. (20.29)
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The upper limit of integration is the variable point z. The lower limit b ∈ S′

and the respective boundary condition y(b) have to be chosen so that the
solution (20.29) would be flat in S′.

Two cases have to be treated separately, depending on the relative po-
sition of 0 6= µ ∈ C and S′, namely,

(1) Re µa > 0 for some a ∈ S′, that is, the solution of the homogeneous
equation is unbounded in S′; this happens when S′ overlaps with
some sector of jump (in the sense of §20A), and

(2) Re µz < 0 for all z ∈ S′, that is, the solution of the homogeneous
equation decays exponentially fast in S′ (i.e., when S′ belongs to a
fall sector).

The intermediate case where Reµz = 0 along one of the boundary rays of
S′, will not be discussed, as we will not need it. We will refer to the sector
of the first type as a mixed sector with the growth direction a ∈ C, while
calling the second case the sector of fall as before.

In the mixed sector we choose the base point at infinity in the growth
direction, b = +∞ · a. More precisely, we consider the ray Rz = z + R+a =
{ζ = z + sa : s ∈ R+} (with the orientation inherited from R+) and the
integral operator S+ : f 7→ S+f ,

S+f(z) = −
∫

Rz

eµ(z−ζ)f(ζ) dζ

= −a ·
∫ +∞

0
e−s·µaf(z + sa) ds, s ∈ R+.

(20.30)

This integral converges since both the function e−sµa and f(z +sa) decrease
very fast as s → +∞. Note that since the sector S′ was assumed acute,
we can always delete a bounded subset so that the remaining infinite set is
convex. For convex domains the construction is always well defined.

In the sector of fall we choose the base point b = r on the “exterior
circumference” of the sector S′, and fix the initial condition y(b) = 0. Then
the solution y(·) is given by the integral operator S− along the segment
[r, z] = −[z, r] = {z− sa : 0 6 s 6 |z− r|}, where a = a(z) = (z− r)/|z− r|,

S−f(z) = −
∫

[z,r]
eµ(z−ζ)f(ζ) dζ

= −a ·
∫ |z−r|

0
es·µaf(z − sa) ds, a(z) =

z − r

|z − r| .
(20.31)

There is no question of convergence, since the segment is always finite.

Definition 20.25. Given the sector S′ and a nonzero complex number µ
such that Reµz 6= 0 on the boundary of S′, we denote by S = Sµ,S′ the
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appropriate integral operator,

Sµ,S′ =

{
S+, if Re µa > 0 for some a ∈ S′,
S−, if Re µz/|z| 6 δ0 < 0 for all z ∈ S′.

(20.32)

Denote O(S′;N) the space of functions holomorphic in the sector S′ and
decreasing as fast as O(|z|−N ) for a nonnegative number N > 0. This space
can be equipped with the weighted sup-like norm

‖f‖N = ‖f‖S′;N = sup
z∈S′

|z|N |f(z)|. (20.33)

Lemma 20.26. The operator Sµ,S′ is bounded as a linear operator acting
on the subspace O(S′; 0).

Moreover, it remains bounded when considered as an operator on the
space O(S′; N).

Proof. We fix the sector S′ and treat separately the two possibilities of S′

being mixed sector or fall sector, depending on the choice of µ. First we
consider the case N = 0 corresponding to the usual sup-norm.

If S′ is the mixed sector and ‖f‖ = 1, that is, |f(z)| 6 1, then |S+f(z)| 6
|a| ∫∞0 e−cs ds = |a|/c, c = Re µa > 0.

If S′ is the sector of fall, then |S−f(z)| 6 |a| ∫ |z−r|
0 ecs ds 6 1/|c|, where

c = c(z) = Reµa(z). If z belongs to the translate r + S′ of the sector S′,
then a(z) = (z − r)/|z − r| of modulus 1 belongs to S′, hence by the second
assumption (20.32) we have |c(z)| > δ0 > 0 bounded from below. This
proves that S−f is bounded in r + S′.

Moreover, one can replace S′ by another sector S′′ ⊃ S′ of slightly
bigger opening but still a fall sector; the above arguments would prove then
that S−f is bounded in r + S′′. It remains to notice that the difference
S′ r (r + S′′) is bounded, its diameter depending only on S′, S′′ and r, so
the integral (20.31) is bounded there as well. Thus we have proved the
boundedness of S− with respect to the usual sup-norm ‖ · ‖0 on S′.

To prove the boundedness with respect to the “weighted sup-norms”
‖ · ‖N , assume that ‖f‖N 6 1, i.e., |f(z)| 6 |z|−N , and consider again both
possibilities for S′.

Let S′ be a mixed sector. Since S′ is acute and z, a ∈ S′, we have
|z + sa| > c′ |z| for some constant c′ > 0 depending only on S′ and all
s ∈ R+, by obvious geometric considerations. Substituting this inequality
into the integral (20.30), we majorize S+f in S′ by |c′z|−N ·/|c|. This proves
the boundedness of S+.

To see why S− is bounded in r + S′′ with respect to this norm (where
S′′ is chosen as in the case N = 0), we split the segment of integration [r, z]
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in (20.31) into two equal parts. On the initial part ζ ∈ [r, 1
2(r + z)] the

exponential factor eµ(z−ζ) is exponentially small, since |z − ζ| > 1
2 |z|. On

the distant part ζ ∈ [12(z + r), z] we have the inequality |ζ| > 1
2 |z| and hence

by our assumption on f , |f(ζ)| 6 2−N |z|−N , so that the full integral S−f(z)
is bounded by 2−N |z|−N/|c(z)|. Exactly as in the case N = 0, this implies
that S− is bounded in the ‖ · ‖N -norm. ¤

Remark 20.27. In all these constructions the bound for the norm ‖S±‖S′;N
may depend on N and the opening of the sector S′ but does not depend on
the “size” (the parameter r) of the sector. This can be verified independently
by the rescaling arguments.

20L. Integral equation and demonstration of Theorem 20.23. If
instead of the simple equation (20.28) we would have a slightly more general
form

d
dzy = [µ + G(z)]y + g(z), (20.34)

then the method of variation of constants, instead of giving an explicit so-
lution, would reduce (20.34) to an integral equation.

After the substitution y(z) = eµzy′(z) (20.34) is transformed to the
equation d

dzy′(z) = e−µz[G(z)y(z) + g(z)], which after taking primitive and
multiplication by eµz yields

y(z) = eµzy(b) +
∫ z

b
eµ(z−ζ)[G(z)y(z) + g(z)] dz.

Again the base point b can be chosen freely, and this freedom can be again
used to ensure the flatness of solutions. As before, we conclude that

y = S[Gy + g], S = Sµ,S′ , (20.35)

if it exists, satisfies the differential equation (20.34).
A multidimensional generalization of this example for the k-dimensional

system (20.27) is straightforward. Denote by S the diagonal integral opera-
tor defined on vector functions bounded in the sector S′, as follows:

S(y1, . . . , yk) = (S1y1, . . . ,Skyk), Si = Sµi,S′ , i = 1, . . . , k. (20.36)

This operator, a Cartesian product of integral operators of the form (20.32),
depends on the eigenvalues of the diagonal matrix D = diag{µ1, . . . , µk},
with the path of integration being in general different for each component.

In complete analogy with (20.35), solution of the system (20.27) can be
constructed by solving the integral equation

y = S[Gy + g], S = diag{S1, . . . ,Sk}. (20.37)

The diagonal integral operator S is bounded by Lemma 20.26, if the
boundary rays of S′ are not exceptional for any µi, that is, not separation
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rays for the initial system (20.5). We show that the composition occurring
in the right hand side of (20.37) is a contraction, if the sector S′ = {|z| >
r, |Arg z| < π − δ} is sufficiently small, i.e., r is sufficiently large.

Proposition 20.28. In the assumptions of Theorem 20.23 the operator

y 7→ Gy = Gy + g

is Lipschitz in the sense of any norm ‖·‖S′;N on the space of vector functions
holomorphic in S′r = S′ ∩ {|z| > r},

‖Gy −Gy′‖S′r;N < ρ ‖y − y′‖S′r;N , ρ = ρ(r) > 0.

The Lipschitz constant ρ(r) tends to zero as r → +∞.

Proof. The Lipschitz constant ρ = ρ(r), actually independent of N , can be
chosen as ρ(r) = supz{|G(z)| : z ∈ S′r}. Indeed,

‖Gy−Gy′‖S′r;N 6 sup
z∈S′r

|z|−N |G(z)| · |y(z)−y′(z)| 6 sup
z∈S′r

|G(z)| ·‖y−y′‖S′r,N .

By assumption, G(z) tends to zero as z → ∞ in S′, hence ρ(r) → 0+ as
r → +∞. ¤

Proof of Theorem 20.23. Our goal already has been reduced to showing
that the integral equation (20.37) admits a solution flat in the sector S′.
Without loss of generality we may assume that the rays bounding S′ are not
exceptional (otherwise one can increase slightly the opening while keeping
the sector acute).

Let N > 0 be an arbitrary order of decay. As soon as r is sufficiently
large, r > r(N), the Lipschitz constant ρ(r) of the operator G becomes
smaller than the bound for the norm of the operator S with respect to any
given N (recall that ‖S‖N does not depend on r; see Remark 20.27). In
the corresponding S′r = S′ ∩ {|z| > r(N)} the composition S ·G will be
contracting in the ‖ · ‖N -norm. Hence the fixed point-type integral equation
(20.37) possesses a unique solution, a vector function with each component
belonging to the space O(S′N , N). Any such solution can in fact be extended
to a function holomorphic in the entire sector S′ by virtue of the differen-
tial equation (20.27) nonsingular in S′. By the uniqueness, any two such
extensions necessarily coincide with each other on the intersection of their
domains. Together they yield a vector function y(z) holomorphic in S′ and
decreasing faster than |z|−N for any N as |z| → ∞. In other words, the
constructed solution y(z) is flat as required. ¤
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20M. Sector enlargement and the proof of Sibuya Theorem 20.16.
Let S be an “acute” sector of opening π/(m−1)−2δ as in (20.22). Consider
its rotations S± = e±2iδS: the union of the three sectors S ∪ S+ ∪ S− is a
sector of opening π/(m−1)+2δ. By assumption, each sector S± may contain
only those separation rays, that already were contained in S (and perhaps
not all of them).

Since S, S± are all “acute”, by Corollary 20.24 there exist normalizing
cochains H, H± conjugating the initial system with its formal normal form.
Therefore for suitable Stokes matrices C± (not to be confused with the
Stokes collection of the initial system),

H(t) = H±(t)WC±W−1(t) on the intersections S± ∩ S, (20.38)

where W (t) is a fixed diagonal solution of the formal normal form. But
since the flaps S± r S contain no separation rays, the difference E −
W (t)C±W−1(t) remains flat not only on the intersections S± ∩ S, but also
on the sectors S±. In other words, the right hand side of (20.38) extends
the same series Ĥ and provides an analytic continuation of H on the larger
sector S ∪ S±.

Exercises and Problems for §20.

Problem 20.1. Let J ∈ Mat(n,C) be an upper-triangular standard nilpotent
Jordan block of maximal size, and adJ the linear operator of commutation with J .
Prove that the linear subspace of matrices having zeros in all places except for the
last row, is transversal (complementary) to the image of adJ .

Problem 20.2 (Demonstration of the Borel–Ritt theorem after [Was87]). Let
ϕ(c, β; t) = 1−exp(−ct−β), 0 < β < 1, c > 0, be a function holomorphic in a sector
S of opening less than 2π. For an arbitrary formal series F̂ =

∑∞
k=1 aktk consider

the series F =
∑

ak 6=0 akϕ(|ak|−1, β; t) tk.

(a) Prove that |1− exp z| < |z| if Re z < 0. (b) Prove that for some β ∈ (0, 1)
depending on S, the function −t−β has negative real part in S. (c) Prove that the
series F is majorized by the series

∑
ak 6=0 |t|k−β in the sector S. (d) Prove that

the series F uniformly converges in S. (e) Prove that the asymptotic series for F

coincides with F̂ . (f) Prove the Borel–Ritt theorem.
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Chapter IV

Functional moduli of
analytic classification
of resonant germs and
their applications

21. Nonlinear Stokes phenomenon for parabolic and
resonant germs of holomorphic self-maps

21A. Introduction and preliminaries. The relationship between formal
and analytic classification of local holomorphic objects (germs of holomor-
phic vector fields at a singular point or germs of holomorphic self-maps at a
fixed point) can be very delicate, as was already noted in Chapter I. While
in some cases these two classifications coincide (either by the Poincaré The-
orem 5.5 or by some of the more advanced results described in §5E), in
the situation dangerously close to the resonance the normalizing series may
diverge (cf. with Theorem 5.32 and Remark 5.33).

Conformal germs Diff(C, 0) constitute probably the simplest class of ob-
jects for which these phenomena can be observed. Generic germs with multi-
plicator µ = exp 2πiλ off the unit circle, λ /∈ R, are analytically linearizable,
and the same is true if the number λ is real but irrational and does not ad-
mit too accurate applications by rational numbers. On the other hand, if λ
is “almost rational” (violates the Brjuno condition given in Theorem 5.23),
the germ is almost never linearizable.

373
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374 IV. Functional moduli and applications

The analytic classification of conformal germs violating the Brjuno con-
dition is not known. Yet if instead of being “almost rational” the number λ
is genuine rational, the corresponding Siegel resonant case is simpler in this
respect. For resonant germs one can construct a complete analytic classifi-
cation “on top” of the formal classification. This classification is especially
simple in the “maximally resonant case” (λ = 0, i.e., µ = 1) of parabolic
germs Diff1(C, 0). The general resonant case λ = m/n can be reduced to
the parabolic case by studying a suitable iterational power f◦n ∈ Diff1(C, 0)
(◦n means n times iterated composition).

The Ecalle–Voronin modulus of analytic classification mf was discovered
independently by J. Ecalle, B. Malgrange and S. Voronin in 1981. This
modulus allows us to give answers to a number of natural questions about
a parabolic germ f ∈ Diff1(C, 0), among them the following:

analytic classification: when two resonant germs are analytically
equivalent?

embedding in the flow: when a given parabolic germ may be rep-
resented as the time one shift along a holomorphic vector field?

root extraction: for what parabolic germs f and natural numbers
q ∈ N the equation g◦q = f , involving the qth iteration, admits a
convergent parabolic solution g?

The answers to these questions are given in this section. In particular, it
will be shown that analytic equivalence of a parabolic germ to its formal
normal form described in §4I, is an exceptionally rare event.

Recall that the set of parabolic germs Diff1(C, 0) is filtered by the order
of tangency with the identity: we denote Ap = {f ∈ Diff1(C, 0) : f(z) =
z +czp+1 + · · · , c 6= 0}; cf. with (6.3). The index p is a topological invariant
of the germ and can be seen on the “phase portrait”, the structure of orbits
of action of the cyclic pseudogroup {f◦Z} ⊆ Diff1(C, 0).

Example 21.1. Consider the vector field F (z) = z2 ∂
∂z and its time one

map f = exp F ∈ Diff1(C, 0). The field F is constant, ∂
∂t in the rectify-

ing coordinate t = −1/z. In the initial coordinate z the real trajectories
{exp tF (a), t ∈ R}, are circles.

Let U be a small circle U = {|z| < ε}. Its image in the chart t is a large
circle U ′ = {|t| > 1/ε}. The orbits of the map f in the rectifying chart t are
parts of arithmetic progressions of the form a′+Z that are disjoint with U ′.
If | Im a′| is sufficiently large, then these orbits are bi-infinite, otherwise the
orbit through a′ is infinite only in one direction (forward or backward).

Behavior of the orbits of the pseudogroup {f◦Z} in the initial chart z is
shown on Fig. IV.1 and form two Fatou petals. In a similar way the orbits
of the germ f = expF , F (z) = zp+1 ∂

∂z , form 2p different petals.
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Sj

Sj+1

z

f(z)

Figure IV.1. Fatou petals for the parabolic map with p = 3. Iterates
of a map belong to the real flow curves only if the map is embeddable,
otherwise the picture illustrates only the topology of iterations

Topological classification of parabolic germs is very simple.

Theorem 21.2 (C. Camacho, P. Sad, 1982; A. Shcherbakov, 1982). Any
parabolic germ from the class Ap is topologically equivalent to the time one
map fp,0 = expFp,0 of the standard vector field Fp,0 = zp+1 ∂

∂z .

We will neither prove nor use this theorem.

21B. Sectorial normalization theorem. By Theorem 4.26, any germ
from Ap is formally equivalent to the time one flow map

fp,λ = expFp,λ, Fp,λ =
zp+1

1 + λzp
· ∂

∂z
, (21.1)

of the standard vector field Fp,λ for some complex value λ. The correspond-
ing formal series Ĥ conjugating the germ f with the embeddable model
fp,λ is in general nonunique and may be divergent. However, with each
such series Ĥ one can associate a geometric object, functional map-cochain,
similar to what was constructed in a different context by J.-P. Ramis and
Y. Sibuya; see §20F, §20G. Functional map-cochains constitute a new class
of local objects in complex analysis.

Construction of the normalizing map-cochains begins with the observa-
tion, due to L. Leau (1897), that parabolic germs can be holomorphically
embedded into a flow albeit in domains smaller than the full neighborhood
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of a fixed point. The corresponding result is in many aspects parallel to the
Sibuya Theorem 20.16.

Fix an arbitrary parabolic germ f ∈ Ap,λ. Without loss of generality,
making a linear transformation, we may and will always assume that the
principal part of f is pre-normalized to the form

fp,λ(z) = z + zp+1 + · · · , (21.2)

corresponding to the case a = 1 in (6.3).

Definition 21.3. Let p ∈ N be an integer number. A nice p-covering of a
punctured neighborhood of the origin is the collection of 2p sectors of the
form

Sj = {z : |Arg z − πj/p| < α, |z| < r}, j = 1, . . . , 2p, (21.3)

where the angle α, π/2p < α < π/p, and the radius r > 0 are two real
parameters that are usually specified by the context.

Remark 21.4. The definition of nice p-covering is formally independent of any germ.
In practice, it is a covering in which the normalizing cochain (see Definition 21.9 and
Theorem 21.12) of a conformal germ f ∈ Ap,λ will be inscribed, under the tacit assumption
that the germ is normalized as in (21.2). Without this condition the nice p-covering for
an arbitrary germ f(z) = z + azp+1 + · · · , a 6= 0, is obtained from the nice p-covering as
it is described in Definition 21.3, by the appropriate rotation.

Any sector of a nice p-covering contains more than half of any of the two
subsequent petals of the field Fp,λ; see Fig. IV.1 for p = 3. The characteristic
property of these sectors is as follows: (a) every sector contains orbits of fp,λ

infinite in exactly one direction (infinite forward orbits for even j, infinite
backward orbits for odd j), and (b) none of the sectors contains bi-infinite
orbits of f .

Theorem 21.5 (sectorial normalization theorem). For any parabolic germ
f ∈ Ap,λ normalized by the condition (21.2), any formal series Ĥ tangent
to identity, which transforms f to the formal normal form fp,λ, and any
nice p-covering S = {S1, . . . , S2p} there exists a holomorphic cochain H =
{H1, . . . , H2p} subordinated to the covering S, such that :

(1) Hj conjugates f with its formal normal form fp,λ in Sj, and

(2) the formal series Ĥ is a common asymptotic series for each func-
tion Hj in the respective sector Sj for all j = 1, . . . , 2p.

The holomorphic cochain H satisfying both these conditions, is unique.
If the germ f analytically depends on auxiliary parameters ε ∈ (Cn, 0)

while remaining in the same formal equivalence class, then the cochain H

also analytically depends on these parameters.
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t t+1 standard
shift

sector invariant 
by shift

S1

r
~

Figure IV.2. Sector S1 in the t-plane. The sector is forward invariant
by the standard shift. Its mirror image S0 = −S1 is backward invariant

It is convenient to prove the sectorial normalization theorem in the chart
rectifying the standard vector field Fp,λ; see (21.1). This chart t = t(z) can
be found by integration of the differential equation

dt

dz
=

1 + λzp

zp+1
, t(z) = tp,λ(z) = − 1

pzp
+ λ ln z. (21.4)

The field Fp,λ in the chart t is constant, ∂
∂t , hence the standard map fp,λ

becomes the standard shift t 7→ t + 1. The images of the sectors Sj of the
nice covering can also be easily described: for j even the map z 7→ tp,λ(z)
transforms Sj to a domain which contains a sector with the vertex at infinity,

S0 = {t : |t| > r̃, |Arg t− π| < β} (21.5)

for some β, π
2 < β < pα and r̃ = r̃(β, r) À 1. For j odd the image of Sj

contains the sector S1 = −S0; see Fig. IV.2.
All the way around, the properly chosen branch of the inverse map

z = zp,λ(t) transforms the sector S0 (resp., S1) into a domain on the z-
plane, that contains a sector S′j described by (21.3) with the parameters α,
π/2p < α < β/p, and r > 0 sufficiently small.

The “distortion” introduced by the rectifying chart t, is in some sense
bounded. The following technical result provides some estimates that will
be used in the proof.

Proposition 21.6. If u : Sj → Sj, is a map of the sector Sj into itself with
the asymptotic behavior u(z) = z + O(|z|N+1), then in the chart t = tp,λ(z)
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the map ũ = tp,λ ◦ u ◦ t−1
p,λ has the asymptotic behavior

ũ(t) = t + O(|t|−m+1) as t →∞, m = N/p, (21.6)

as t remains in S0 or S1 respectively. Conversely, a holomorphic map ũ
defined in one of the sectors S0,1 and satisfying there the asymptotical con-
dition (21.6), in the z-chart differs from identity by an (N + 1)-flat term as
above.

Proof of the proposition. The map z 7→ t = tp,λ(z) from Sj to S0,1

(which stands for S0 or S1 depending on the parity of j) as in (21.4) can
be represented as the composition of three maps: pure fractional power,
homothety and the map tangent to identity at infinity,

z 7→ w = z−p 7→ v = −1
pw 7→ t = v − λ

p ln(−pv). (21.7)

The fractional power z 7→ w = z−p conjugates the automorphism z 7→
u(z) = z + O

(|z|N+1) = z(1 + O(|z|N )
)

of Sj with the automorphism of
the form w 7→ w

(
1 + O(|w|−N/p)

)−p = w
(
1 + O(|w|−N/p)

)
of S0,1. The

homothetic conjugacy (linear rescaling) w 7→ v = −1
pw does not change the

structure of the asymptotic behavior of any map u.
It remains to verify that conjugation by the ramified transformation

v 7→ t = v + c ln(−pv) = v
(
1 + c ln v

v + c′
v

)
, c, c′ ∈ C, preserves the order

of tangency r between any automorphism v 7→ v + O(|v|r) of S0,1 with
the identity, regardless of the choice of the branch of logarithm. This last
remaining assertion follows from the fact that the terms | ln v|/|v| and 1/|v|
tend to zero as |v| → ∞ in the sector S0,1. The details are left to the
reader. ¤

Proof of the Theorem 21.5. Without loss of generality we may assume
that f differs from its formal model fp,λ by terms of arbitrarily high order
N . This can always be achieved by preliminary normalization of a finite jet
of f by a suitable polynomial transformation.

0. In the rectifying chart t the problem reduces to constructing a holo-
morphic conjugacy H between the germ f̃ : t → t+1+R(t) and the standard
shift T : t → t+1, say, in the sector S1. This conjugacy satisfies the identity

H ◦ f̃ = T ◦H, T : t 7→ t + 1. (21.8)

Substituting H : t → t + h(t), we obtain from (21.8) the following Abel
equation for the holomorphic function h:

h = R + h ◦ f̃ . (21.9)

The series

h =
∞∑

n=0

R ◦ f̃◦n, (21.10)
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21. Stokes phenomenon for parabolic and resonant germs 379

if it converges uniformly, would obviously give a holomorphic solution to the
Abel equation (21.9). Note that this series makes sense, since the sector S1

is f̃ -invariant, so all iterates are well defined.
1. We will prove that the series (21.10) converges in a sector S1 for a

suitable choice of β and r̃, if the flatness order m in (21.6) is sufficiently
large. Indeed, for a sufficiently large r̃ we have Re f̃(t) > Re t + 1

2 , so that
the iterates f̃◦n(a) of any point a ∈ S1 with |a| > r̃, remain in the sector
{t : Arg(t− a) < π/4} and go to infinity fast enough: their absolute values
are bounded below by an arithmetic progression with the difference 1

2 .

By Proposition 21.6 applied to the map u = f ◦f−1
p,λ : z 7→ z +O(|z|N+1),

we conclude that f̃ ◦ T−1(t) = f̃(t) − 1 differs from the identity by the
term R(t) = O(t−m+1), m = N/p. If 1 − m < −2 (by (21.6), this occurs
if N > 3p), then the series (21.10) converges uniformly and its sum h(t) is
decreasing asymptotically as h(t) = O(t−m+2) as t →∞. Thus an analytic
solution to the Abel equation is constructed in the sector S1er = S1∩{|t| > r̃}
for a sufficiently large r̃.

Yet if a holomorphic solution of the equation (21.9) is defined in a “small”
sector S1er with arbitrarily large r̃, it can in fact be extended by iterations of
f̃ using the equation (21.9) in the entire domain obtained by saturation of
S1er by orbits of the pseudogroup {f̃◦Z} which is a much bigger sector (which
corresponds to a smaller value r̃).

Returning back to the initial chart z, we obtain a conjugacy Hj = H
(N)
j

between f and its normal form fp,λ defined in the sectors Sj of the given
nice p-covering with the asymptotic behavior H

(N)
j (z) − Ĥ(z) = O(zN/p).

Still the entire asymptotic series for different H
(N)
j may yet be different.

2. We prove that the normalization is uniquely determined by its
asymptotic polynomial (truncation of the asymptotic series) of order p + 1.
Indeed, if there are two holomorphic normalizations H,H ′ whose difference
is (p + 1)-flat in the sector S, then the compositional ratio G = H ′ ◦ H−1

is an automorphism of the normal form fp,λ. In the rectifying chart t(z)
the holomorphic map G̃ is defined in the sector, say, S1, commutes with
the standard shift t 7→ t + 1. The difference between G̃ and identity, the
holomorphic function g(t) = G̃(t)− t is 1-periodic and bounded by Proposi-
tion 21.6. The sector S1 contains a vertical strip of width 1 parallel to the
imaginary axis: being bounded in this strip, g extends by 1-periodicity to a
bounded function on C. By the maximum principle, g must be a constant.
The condition G̃(t) − t = o(1) in S1 implies that g ≡ 0, hence G̃ = id and
G = id. The uniqueness is proved.
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From this uniqueness it follows automatically that if the natural number
N chosen at the beginning of the proof, is large enough, N > 3p, then the
cochain H(N) constructed on Step 1 of the proof, is in fact independent of
N and hence asymptotic to the series Ĥ.

4. To prove analytic dependence on parameters, consider an analytic
family fε ∈ Ap,λ depending holomorphically on the parameter ε ∈ Ck. Then
all terms of the series (21.10) are holomorphic both in t and ε. Since the
series converges uniformly, its sum h = h(t, ε) is holomorphic in ε. Therefore
the cochain Hε = {H1,ε, . . . , H2p,ε} depends analytically on the parameter
ε. The proof of sectorial normalization theorem is complete. ¤

Remark 21.7. If two sectorial normalizations H,H ′ are not constrained by
the common asymptotic polynomial, then they differ by the flow map of the
standard field Fp,λ.

Indeed, in this case the compositional ratio G = H ′ ◦ H−1 commutes
with fp,λ. If the asymptotic series for G − id starts with terms of order q,
then by Proposition 6.11 the commutator is nontrivial (differs from identity
by nonzero terms of order p + q) unless q = p + 1. In the latter case the
difference g(t) = G̃(t)− t between the ratio and the identity in the rectifying
chart is a 1-periodic bounded function, i.e., a constant: G̃(t) = t + s, s ∈ C.
Thus G̃ is the flow map of the standard constant field ∂

∂t in the rectifying
coordinate, hence G itself is the flow map of the field Fp,λ.

On the overlapping of sectors of the nice p-covering the maps Hj in
general differ from each other, though the difference

Hj,j+1 = Hj(z)−Hj+1(z) on Sj,j+1 = Sj ∩ Sj+1 (21.11)

is flat (decreases faster than any finite power of z as z → 0), since all these
maps have a common asymptotic Taylor series. In fact, the decay rate is
exponential, as the following proposition shows. Besides, it is more nat-
ural for the reasons to be explained below, to estimate not the “additive
coboundary” (21.11), but rather the “compositional coboundary”, the dif-
ference between Hα ◦H−1

β and the identity.

Proposition 21.8. For any cochain H constructed in Theorem 21.5, the
compositional ratios Rαβ = Hα ◦ H−1

β defined on slightly diminished non-
empty intersection sectors Sαβ = Sα ∩ Sβ, satisfy the inequalities

|Rαβ(z)− z| < e−c|z|−p

, z ∈ Sαβ . (21.12)

for some positive constant c > 0.

Proof. Each map Rαβ by construction is an automorphism of the standard
germ fp,λ. In the rectifying chart t = tp,λ the standard germ is the standard
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21. Stokes phenomenon for parabolic and resonant germs 381

shift, thus the difference rαβ = Rαβ − id between Rαβ and the identity is
a one-periodic function. The overlapping between two consecutive sectors
of a nice covering Sp in the rectifying chart is a sector with the vertex
at infinity, bisected by the imaginary axis (if p = 1, then the intersection
consists of two such sectors, each to be treated separately). By periodicity,
rαβ can be extended on an upper (resp., lower) sufficiently remote half-plane
{± Im t À 1} as a function that has zero limit as ± Im t → ∞ (since rαβ is
flat). All this guarantees that rαβ admits a converging Fourier expansion,

rαβ(t) =
∑

k

cke
2πikt,

{
k ∈ N in the upper half-plane,
k ∈ −N in the lower half-plane.

(21.13)

The expansion (21.13) yields an exponential bound |Rαβ(t)− t| < ce−2π| Im t|

in the rectifying chart, which becomes the exponential bound (21.12) in the
initial chart z. ¤

21C. Functional cochains, normalizing cochains. Motivated by the
Sectorial Normalization Theorem 21.5, we introduce a new class of objects
that are holomorphic “almost maps”.

Definition 21.9. A functional cochain of type p is a holomorphic (scalar)
cochain F = {F1, . . . , F2p} inscribed in a nice p-covering S = {S1, . . . , S2p},
such that all the functions forming this cochain have a common asymptotic
Taylor series F̂ =

∑∞
1 ajz

j . The differences of the consecutive components
are exponentially small in their common domain of definition:

|Fj(z)− Fj+1(z)| < e−c|z|−p
in Sj ∩ Sj+1.

The series F̂ will be referred to as the Taylor series of the functional cochain
F. The tuple {Fj−Fj+1, j = 1, ..., 2p} will be called the additive coboundary
of a functional cochain.

Definition 21.10. A map-cochain of type p is a functional cochain of the
same type with nonzero linear term of the Taylor decomposition: a1 6= 0.
The compositional coboundary (or simply coboundary) of a map-cochain
F = {F1, . . . , F2p} inscribed in a nice p-covering Sp, is the holomorphic
cocycle

δF = H, H = {Hαβ}, Hαβ = Fα ◦ F−1
β on Sα ∩ Sβ. (21.14)

An arbitrary holomorphic self-map f ∈ Ap,λ defines a functional cochain
F = {f |Sj , j = 1, . . . , 2p} with trivial (identical) coboundary. Conversely, a
functional cochain with trivial coboundary defines a holomorphic self-map
of the punctured neighborhood of the origin, which extends holomorphically
at the origin by the removable singularity theorem.
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382 IV. Functional moduli and applications

We wish to stress that the functional cochains are to be treated as single
entities rather than collections of separate functions because of the very
stringent conditions on the corresponding coboundary (which measures the
difference between the cochain and an “ordinary” function).

In particular, map-cochains form a group by sectorial composition: if
F and G are two such cochains inscribed in the same nice p-covering, then
their composition is the functional cochain

F ◦ G = {F1 ◦G1, . . . , F2p ◦G2p},
inscribed in a nice covering with eventually smaller opening α of the sectors
and smaller radius r. The inverse cochain F−1 can be defined in a similar
way.

Remark 21.11. To avoid reservations of this sort, it is very convenient to
work with germs of cochains of the same type. The construction repeats
the standard definition of germs with minor modifications.

Consider two different nice p-coverings S′
p and S′′

p defined by the re-
spective parameters (α′, r′) and (α′′, r′′) as in Definition 21.3. We will say
that two functional cochains H′ and H′′, inscribed in the respective cover-
ings, are equivalent, if there exists a third covering Sp with the parameters
r < min(r′, r′′) and π/2p < α < min(α′, α′′), such that the components H ′

j

and H ′′
j restricted on the sectors of this covering, coincide. The equivalence

class of cochains is naturally called the germ of a functional cochain of the
type p, and each of the cochains is naturally called the representative of this
germ.

After the notion of germ of a cochain is introduced, we may immediately
verify that for any two germs G,H of map-cochains tangent to the identity,
their composition G ◦ H and the inverse H−1 are well defined as germs of
the composition of suitable representatives (Problem 21.2).

Such a localization transforms the map-cochains of the same type, tan-
gent to the identity, into a group with the well-defined operation of compo-
sition. This group, which will be denoted D̃iff

p

1(C, 0), is an extension of the
group Diff1(C, 0).

Yet in the future we will usually ignore (unless it may lead to confusion)
both in notation and in argumentation the difference between cochains and
their germs in the same way as it is often conveniently ignored when dealing
with the usual maps, functions and their germs.

The coboundary of a map-cochain in some sense measures, the extent to
which this “almost map” is different from a usual holomorphic map. We will
show in §21D that the analytic classification modulus for parabolic germs
is (modulo a minor modification) the coboundary of a normalizing cochain.
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21. Stokes phenomenon for parabolic and resonant germs 383

In the language of map-cochains, the sectorial normalization theorem
together with the asymptotic estimate given in Proposition 21.8, can be
reformulated as follows.

Theorem 21.12. Any parabolic germ f ∈ Ap,λ ⊂ Diff(C, 0) pre-normalized
by the condition (21.2), is conjugated in the group D̃iff

p

1(C, 0) of map-
cochains to its formal normal form fp,λ by a suitable holomorphic map-
cochain H ∈ D̃iff

p

1(C, 0),

H ◦ f = fp,λ ◦H, H ∈ D̃iff
p

1(C, 0). (21.15)

The map-cochain H conjugating the germ with its normal form, is de-
fined uniquely modulo the flow map of the standard vector field Fp,λ, i.e.,
any two cochains H, H′ satisfying (21.15), satisfy also the identity

H′ = g ◦H, g = exp sFp,λ ∈ Diff(C, 0), s ∈ C. (21.16)

The coboundary R = δH of the map-cochain H differs from identity by
exponentially small terms as in (21.12).

If f depends analytically on some auxiliary parameters ε ∈ (C, 0) within
the same formal class Ap,λ, then the map-cochain H also can be chosen
analytically depending on ε. ¤

Definition 21.13. A map-cochain H ∈ D̃iff
p

1(C, 0) which conjugates a holo-
morphic germ f ∈ Ap,λ with its formal normal form as described in Theo-
rem 21.12, is called a normalizing cochain1.

The problem of analytic classification of parabolic germs can now be
reformulated as the problem on the structure of the group D̃iff

p

1(C, 0) of
map-cochains, in particular, in description of all normalizing map-cochains.
A germ is analytically equivalent to its formal normal form if and only if its
normalizing cochain belongs to the subgroup Diff1(C, 0) $ D̃iff

p

1(C, 0). More
generally, two germs f, f ′ ∈ Ap,λ are analytically equivalent if and only if
the compositional ratio of the corresponding normalizing cochains H′ ◦H−1

is a “regular” (i.e., belonging to the subgroup Diff1(C, 0)) holomorphism
of the standard map fp,λ. Development of these ideas naturally leads to
the construction of Ecalle–Voronin modulus in the same way as the Stokes
operators appear from the Sectorial Normalization Theorem 20.16.

21D. Ecalle–Voronin modulus and analytic classification of para-
bolic germs. Let f ∈ Ap,λ be a parabolic germ normalized by the condition
(21.2), and H = {H1, . . . , H2p} a normalizing cochain transforming f to its

1Most assertions concerning normalizing cochains, remain valid for all map-cochains which
conjugate two “regular” germs f, f ′ ∈ Diff(C, 0) from the same formal equivalence class.
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384 IV. Functional moduli and applications

formal normal form. This cochain is defined uniquely modulo the composi-
tion with the flow map g = exp sFp,λ, s ∈ C.

Consider the coboundary Φ = δH of the normalizing cochain: be-
cause of the special structure of the nice covering, the individual functions
constituting this cocycle are more naturally numbered by the single index
j = 1, . . . , 2p cyclic modulo 2p rather than a pair of indices α, β ∈ {1, . . . , 2p}
with |α− β| = 1.

The components Φ1, ...,Φ2p constituting the coboundary Φ = δH, are
defined in the sectors

Sj,j+1 = Σj =
{

z : |z| < r,
∣∣∣Arg z − 2j−1

2p π
∣∣∣ < β

}
, j = 1, . . . , 2p, (21.17)

for r > 0 and β sufficiently small. By Proposition 21.8, the components Φj

are exponentially flat in the sectors Σj ,

|Φj(z)− z| 6 e−c|z|−p

, z ∈ Σj , (21.18)

and commute with the normal form fp,λ = expFp,λ in these sectors,

Φj ◦ fp,λ = fp,λ ◦ Φj . (21.19)

The action (21.16) of the complex flow expCFp,λ on normalizing cochains
induces the corresponding action on their respective coboundaries: if Φ =
δH and Φ′ = δH′, then

Φ ◦ g = g ◦Φ′, i.e., Φj ◦ g = g ◦ Φ′j ,
g = exp sFp,λ, j = 1, . . . , 2p.

(21.20)

Denote by M ◦
p,λ ⊆ δD̃iff

p

1(C, 0) the space of cocycles Φ = (Φ1, . . . ,Φ2p)
defined in the sectors (21.17) with some r, β > 0, and satisfying the con-
ditions (21.18)–(21.19), and let M p,λ be the quotient of this space by the
action (21.20) of the complex flow of the standard field.

The space M ◦
p,λ is a complex Banach space. This circumstance allows us

to define continuous or analytic dependence of elements from the quotient
on additional parameters if the latter are present: a parametric family of
equivalence classes (elements from M p,λ) is said to depend analytically on
the parameters, if it can be represented by an analytic parametric family of
elements from M ◦

p,λ.

Definition 21.14. The Ecalle–Voronin modulus of a parabolic germ f ∈
Ap,λ is the equivalence class mf ∈ M p,λ of the coboundary δHf of any
normalizing cochain Hf for f with respect to the equivalence (21.20).
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21. Stokes phenomenon for parabolic and resonant germs 385

This definition is parallel to the definition of the Stokes operators con-
structed in §20G as matrix cocycle consisting of automorphisms of the di-
agonal normal form, defined on the common domain of two sectorial nor-
malization maps.

The principal result of this section is the following theorem which gives
a complete description of classes of analytically equivalent parabolic germs.

Theorem 21.15 (Analytic classification theorem for parabolic germs).
1. (Invariant) Every parabolic germ f ∈ Ap,λ is associated with a unique

equivalence class mf ∈ M p,λ, the same for all analytically equivalent germs.
2. (Equimodality vs. equivalence) Conversely, two formally equivalent

parabolic germs with the same invariant m ∈ M p,λ, are analytically equiva-
lent.

3. (Realization) Each equivalence class m ∈ M p,λ, can be realized as the
invariant of some parabolic germ f ∈ Ap,λ.

4. (Analytic dependence on parameters) If the germ f analytically de-
pends on finitely many complex parameters ε ∈ (Ck, 0) while remaining in
the same class of formal equivalence, then the invariant mf also depends
analytically on ε.

The easy three-quarters of the proof of Theorem 21.15.

1. Invariance. Let f and f ′ be analytically equivalent germs from the
same class Ap,λ, conjugated by an analytic conjugacy h, so that f ′ = h−1 ◦
f ◦ h. Let H be some normalizing cochain for f . Then H′ = h−1 ◦ H

is a normalizing cochain for f ′. Coboundaries of these cochains coincide,
therefore mf = mf ′ .

2. Equimodality and equivalence. Let f, f ′ ∈ Ap,λ be two germs with
mf = mf ′ . Then there exist two normalizing cochains, H for f and H′ for
f ′, whose coboundaries are equivalent in the sense of (21.20): there exists
s ∈ C such that

δH = g ◦ δH′ ◦ g−1, g = exp sFp,λ.

The cochain F = g ◦ H′ is normalizing for f ′ together with H′, and the
coboundaries of H and F coincide.

The equality δH = δF is equivalent to the equality δ(H◦F−1) = id. The
latter means that the cochain h = H ◦ F−1 with the components Hj ◦ F−1

j

has trivial coboundary and hence is a well-defined map from Diff1(C, 0). By
construction, h conjugates f and f ′ with each other in each sector Sj , hence
in some full neighborhood of the origin.
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3. Realization. The proof of this assertion is postponed until §21F; it is
the only assertion of the theorem that does not follow immediately from the
construction of the Ecalle–Voronin modulus.

4. Analytic dependence. Obviously, the coboundary of a map-cochain an-
alytically depending on parameters as in Theorem 21.12, is also analytically
depending on these parameters. ¤

21E. Almost complex structures and quasiconformal mappings.
The last assertion on realization requires a new idea. Consider an arbi-
trary collection m ∈ M p,λ, represented by a cocycle Φ. Starting from this
collection, we will construct an abstract holomorphic curve S and an auto-
morphism F : (S, a) → (S, a) in such a way that if S were a punctured neigh-
borhood of the origin, the Ecalle–Voronin modulus for F would necessarily
be m. The most difficult part of this proof is to determine the conformal
type of S; it is achieved below using the quasiconformal mappings technique
in §21F. As a result, we construct a germ f and a normalizing cochain H

which solves the equation δH = Φ, i.e., prove the “nonlinear solvability” of
any cocycle Φ, satisfying the conditions (21.18)–(21.19).

The problem of resolving a nonlinear δ-equation is rather similar to re-
solving the linear ∂̄-equation of Poincaré in the class of C∞-smooth functions
of one complex variable. The central role in the solution of the δ-equation
plays an analytic notion of almost complex structure and quasiconformal
maps.
21E1. What remains on a complex manifold when the atlas on it is lost?
One of the possible answers may be the following. A complex manifold Mn

becomes a real manifold M := M2n = RMn of real dimension 2n. What
remains is the orientation and the complex structure on the tangent (or,
equivalently, cotangent) bundle.

A complex structure on an R-linear space L is an operator I : L → L
such that I2 = −E (here E is the identity operator). Such an operator
allows us to interpret L as a linear space over C with the action

(λ + iµ) · v = λv + µ Iv, λ, µ ∈ R, v ∈ L. (21.21)

One can easily verify that the dimension of the space L must be even.
dimR L = 2n, and the complex dimension of the space thus obtained, is
dimC L = n.

An almost complex structure on a smooth real even-dimensional manifold
M = M2n is a smooth family of operators I = {I(p) : p ∈ M},

I(p) : TpM → TpM such that I2(p) = −E.
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The operator I = I(p) interpreted as multiplication by the imaginary unit i
(root of −1), provides a linear complex structure on the tangent space TpM
at every point p ∈ M , making these spaces n-dimensional over C.

Using the C-action (21.21) on the tangent spaces TpM , one can split each
respective complexified cotangent space CT∗

pM = TpM ⊗R C (the space of
C-valued R-linear functionals on TpM) into the direct sums of two com-
plementary spaces of 1-forms, “complex linear” and “complex anti-linear”
forms. We denote these subspaces by L1,0

p and L0,1
p respectively:

ωp(λ · ξ) =

{
λωp(ξ), if ωp ∈ L1,0

p ,

λ̄ωp(ξ), if ωp ∈ L0,1
p ,

∀ξ ∈ TpM, λ ∈ C.

There are three natural requirements for these subspaces: first, L1,0
p

should be “complex conjugate” to L0,1
p , i.e., if the linear functional ω|TpM

belongs to L1,0
p , then ω̄ should belong to L0,1

p and vice versa. Second, at
every point these two subspaces should be complementary (transversal) to
each other in CT∗

pM . Finally, we need to retain the natural orientation: for
any basis ω(1), . . . , ω(n) of the subspace L1,0

p over C, the map

TpM → Cn, ξ 7→ (ω(1)
p (ξ), . . . , ω(n)

p (ξ)),

should be orientation-preserving.
To summarize, an almost complex structure on M2n is a subbundle

L = L1,0 ⊂ CT∗M of the complexified cotangent bundle CT∗M , such that
the above three requirements are satisfied.
21E2. Integrability of almost complex structure.

Definition 21.16. A function f : M → C on a manifold M2n with an
almost complex structure defined by a subbundle L1,0 is called holomorphic
with respect to this structure, if its differential df belongs to the subbundle
at each point.

An almost complex structure is integrable, if there exists an atlas of
charts Uα → Cn,

⋃
α Uα = M , such that every component of each chart is

holomorphic with respect to the almost complex structure.

We discuss first the integrability conditions for the case n = 1. The
higher dimension case n > 1 is treated in the next section.

For n = 1, in a complex chart z ∈ C any subbundle L1,0 is spanned by
a single form ω = a dz + b dz̄. The assumption on preserving the orienta-
tion implies that |a| > |b|, hence a 6= 0. Since ω makes sense only up to
proportionality, we can without loss of assume that the 1-form defining an
arbitrary almost complex structure on C or its subdomain, is

ω = dz + µdz̄, |µ(z)| < 1. (21.22)
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388 IV. Functional moduli and applications

It will be referred to as the µ-complex structure.
The sufficient condition for integrability of the µ-complex structure in

dimension one is rather weak.

Theorem 21.17 (L. Ahlfors–L. Bers, [AB60]). A µ-complex structure on
the domain Ω ⊂ C is integrable if µ = µ(z) is an L∞-measurable function
with the norm

‖µ‖L∞(Ω) < 1. (21.23)

In the most general case of measurable functions the differential of a
function in Definition 21.16 should be understood in Sobolev sense. We will
need only a smooth version of the Ahlfors–Bers integrability theorem.

Theorem 21.18 (A. Newlander–L. Nirenberg, [NN57]). Any µ-complex
structure with a C∞-smooth function µ : Ω → C satisfying the integrability
condition (21.23), is integrable: there exists an infinitely smooth chart Ω →
C that is holomorphic in sense of this structure.

By Definition 21.16, a nonzero smooth function f : Ω → C holomorphic
in sense of the µ-complex structure, must have its differential proportional
to ω = dz + µdz̄ and hence satisfy the partial differential equation

∂f

∂z̄
= µ(z) · ∂f

∂z
, (21.24)

called the Beltrami equation. Any smooth solution f of the Beltrami equat-
ion (21.24) is a µ-holomorphic function and vice versa.

The analytic reformulation of the Newlander–Nirenberg theorem pro-
vides a sufficient condition for smooth solvability of the Beltrami equation
(21.24).

Corollary 21.19. The Beltrami equation (21.24) with a C∞-smooth func-
tion µ satisfying the integrability condition |µ(z)| < 1 everywhere in U ,
admits a C∞-smooth solution.

Remark 21.20. For future applications we will need the integrability conditions for
almost complex structures in higher dimensions. Note that the differential of any form
of type (1, 0) on a complex manifold is the sum of forms of the types (2, 0) and (1, 1).
Denote the spaces of such forms by L2,0 and L1,1 respectively. Then we have the following
identities:

dL1,0 ⊂ L2,0 ⊕ L1,1 (21.25)

L2,0 = L1,0 ∧ L1,0, (21.26)

L1,1 = L1,0 ∧ L0,1, (21.27)

L0,1 = L1,0. (21.28)

The condition (21.23) is necessary for the integrability of an almost complex structure
L = L1,0 for L2,0 and L1,1 defined by (21.26)–(21.28). A sufficient condition for the
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21. Stokes phenomenon for parabolic and resonant germs 389

integrability of finitely smooth almost complex structures is provided by the following
theorem.

Theorem 21.21 (Newlander–Nirenberg theorem in the smooth category). An almost
complex structure that satisfies conditions (21.25)–(21.28) in C2 and is C2n+2-smooth,
is Cn-smoothly integrable: there exists a Cn-smooth chart G0 : (C2, 0) → C2 that is
holomorphic with respect to this structure. ¤

Now we turn back to the case of dimension one. We will need some
simple properties of the Beltrami equation.

Proposition 21.22.

1. Let f be a solution to the Beltrami equation (21.24) and ϕ a holo-
morphic function defined on the range of f . Then g = ϕ ◦ f is a solution of
the same Beltrami equation.

2. Let f and g be two solutions to the Beltrami equation (21.24), and
df(p) 6= 0. Then there exists a holomorphic function ϕ such that g = φ ◦ f
near p.

Proof. The first assertion is obvious, since dg = ψ df , where ψ is the deriv-
ative of ϕ, and therefore dg is proportional to ω together with df .

To prove the second assumption, note that f is a local chart near p.
Proportionality of df and dg means that the differential dg is C-linear in this
chart. Hence the composition ϕ = g ◦ f−1 has a complex linear differential
and is holomorphic near f(p). ¤

21F. Realization theorem for Ecalle–Voronin moduli. We will now
prove the last remaining assertion of the Classification Theorem 21.15.

Theorem 21.23. Every equivalence class m ∈ M p,λ may be realized as an
Ecalle–Voronin modulus for some parabolic germ from the class Ap,λ

Proof. The proof follows the idea outlined at the beginning of §21E.
Consider a representative of the class m, the cocycle Φ = (Φ1, ...,Φ2p)

with the properties (21.18)–(21.19).
First, we will construct an abstract complex one-dimensional mani-

fold (curve) using sectors of a nice covering as charts and the components
Φ1, . . . ,Φ2p of the tuple Φ as transition functions. The property (21.19)
allows us to define a holomorphic map F of this curve into itself. Then we
show that S is conformally equivalent to a punctured neighborhood of the
origin (C, 0)r{0}. This immediately implies that F can be holomorphically
extended to the deleted point and is holomorphically equivalent to a germ
f : (C, 0) → (C, 0). Finally, we verify that f is formally equivalent to the
standard map fp,λ as in (21.1). The fact that the Ecalle–Voronin modulus of
f (or F , what is the same) coincides with the class m ∈ M p,λ represented by
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390 IV. Functional moduli and applications

the cochain Φ, is a tautology: it follows immediately from the construction
of F .
21F1. Construction of an abstract manifold with an automorphism. Con-
sider the disjoint union S′ =

⊔2p
j=1 Sj , where Sj ⊂ C are the sectors of a nice

covering (21.3), and identify the points zj ∈ Sj with zj+1 = Φj(zj) ∈ Sj+1,
where zj : Sj → C is the natural coordinate z|Sj inherited from C. The quo-
tient space is an abstract complex 1-dimensional manifold (complex curve)
S which is diffeomorphic to a punctured disk.

The standard map fp,λ induces a map of S into itself. More precisely,
consider somewhat smaller sectors S′j ⊂ Sj such that the standard map fp,λ

maps S′j into Sj , and such that their union still covers a small punctured
neighborhood of the origin. Let S′ ⊂ S be the image of the disjoint union⊔2p

j=1 S′j after projection to the quotient space. Since all transition maps
Φj used to construct the manifold S, commute with the standard map fp,λ

by (21.19), the map F : S′ → S, defined in each “chart” zj by the formula
F (zj) = fp,λ(zj), is a well-defined map between the quotient spaces S′ ⊆ S
and S itself. Slightly abusing the language, we will say that F is a conformal
automorphism of S.
21F2. Identification of the curve S. A holomorphic curve S diffeomorphic
to a punctured neighborhood of the origin, is not necessarily conformally
equivalent to it: apriori, S is biholomorphically equivalent to one of the
annuli {r < |z| < R} with 0 6 r < R 6 +∞. The realization theorem will
be proved if we show that S is biholomorphic to a neighborhood (C, 0) with
the deleted point 0 (which corresponds to the case r = 0, R = 1).

We construct first a C∞-smooth (smooth, for simplicity) embedding of
S into (C, 0). To do this, consider the covering of S by the sectors S′j (more
precisely, by their images in the quotient space by the action of Φ). As
before, denote by zj : S′j → C the local charts, and let {ψj}2p

j=0 be a partition
of unity subordinated to this covering: we assume that all derivatives of ψj

grow no faster than some negative powers of |zj | as |zj | → 0 in the sectors.
Define the map

H : S → Cr {0}, H(z) =
2p∑

j=0

ψjzj .

By construction, the map H is C∞-smooth.
The inverse map H−1 : (C, 0) r {0} → S is represented not by a single

function, but rather by a tuple of coordinate functions zj◦H−1. But since the
transitions from a chart zj to zj+1 are holomorphic, the Beltrami coefficient
µ(z) = ∂z̄H

−1(z)/∂zH
−1(z) is well defined by Proposition 21.22.
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21. Stokes phenomenon for parabolic and resonant germs 391

We prove that this coefficient, which is a smooth function everywhere
outside the origin, extends as a smooth function on the entire neighborhood
(C, 0), flat at the origin. Indeed, since all functions zj differ from each
other by flat terms on the intersections of the consecutive sectors S′j , the
asymptotic Taylor series of H in powers of zj , z̄j coincides in fact with zj

(i.e., does not contain nonlinear terms, in particular, no powers involving
z̄j).

Therefore all compositions zj ◦H−1 differ from each other by flat terms
also, and by construction the asymptotic series at the origin for each of them
is identity. Therefore the partial derivatives of zj ◦H−1 have the form

∂(zj ◦H−1)
∂z

= 1 + o(zN ),
∂(zj ◦H−1)

∂z̄
= o(zN )

for any natural N .
Hence, the function µ(z) defined in the punctured neighborhood of the

origin, extends smoothly at the origin as a flat function µ : U → C, where
U = H(S) ∪ {0} ⊂ (C, 0).

Consider an arbitrary solution G : U → C of the Beltrami equation with
the same Beltrami coefficient µ, normalized by the condition G(0) = 0: its
existence is guaranteed by Corollary 21.19 from the Newlander–Nirenberg
integrability theorem. By the second assertion of Proposition 21.22, the
composition h = G ◦H : S → (C, 0) is a holomorphic map between the two
holomorphic curves, S and (C, 0) r {0}. Moreover, it is a diffeomorphism,
hence a biholomorphic equivalence. This completes identification of the
surface S: it is biholomorphically equivalent to a punctured neighborhood
of the origin.

The “abstract” map F is by construction biholomorphically equivalent
to the self-map f = h ◦ F ◦ h−1 of a punctured neighborhood of the origin.
By the removable singularity theorem, the map f holomorphically extends
to the origin. As a result, we conclude that after one-point completion of
the curve S, the automorphism F is locally holomorphically equivalent to a
holomorphic germ f ∈ Diff(C, 0).
21F3. Formal and analytic type of the germ f . All functions zj ◦H−1 differ
from identity by flat functions. Besides, the map G is formally holomorphic
(its Taylor series Ĝ does not contain powers of z̄), since G is a solution of
the Beltrami equation with the flat function µ. The map h−1 conjugates
f with fp,λ in sectors that contain no images of the intersections of sectors
S′j . Hence, the formal series ĥ−1 conjugates formal series for f with that for
fp,λ. This proves that f is formally equivalent to fp,λ.
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392 IV. Functional moduli and applications

The maps Hj = zj ◦ h−1, defined in the images h(S′j) of the sectors S′j ,
form a normalizing cochain for f , as they conjugate f with fp,λ in these
sectors. The proof of the Realization Theorem 21.23 is complete. ¤

Corollary 21.24. Any cocycle Φ satisfying the conditions (21.18)–(21.19),
is a coboundary of a normalizing cochain, Φ = δH ∈ D̃iff

p

1(C, 0). ¤

21G. Fourier representation for the Ecalle–Voronin moduli. The
sectorial gauge automorphisms Fj,j+1(t) = Hj+1(t) ·H−1(t) of of the diag-
onal normal form for an irregular linear singularity, as they are introduced
in Definition 20.19, are in fact coboundaries of the corresponding sectorial
normalizing cochains. These automorphisms are conveniently represent by
constant Stokes matrices (20.18).

In the same way the coboundary of a normalizing cochain admits a
concise description in the chart that rectifies the vector field Fp,λ. In general,
this chart is not univalent. We discuss in detail the particular case (p, λ) =
(1, 0), where the rectifying chart has a simple form

t = t1,0(z) = 1/z. (21.29)

The general case will be treated later.
As explained in the proof of Proposition 21.8, the cocycle Φ = δH in

the rectifying chart t consists of functions commuting with the standard
shift t 7→ t + 1, that is, the differences ϕj(t) = Φj(t) − t are 1-periodic
exponentially flat at infinity and defined initially in two sectors S±.

Such functions can be expanded in the converging Fourier series, without
the free terms, converging in the respective upper and lower half-planes
Im t À 1 and Im t ¿ −1:

ϕ1(t) =
∑

k>0

cke
2πikt, ϕ2(t) =

∑

k<0

cke
2πikt. (21.30)

Replacing the cocycle Φ by another cocycle equivalent to it in the sense
(21.20), results in the argument shift of the functions ϕ1, ϕ2. More precisely,
two tuples (ϕ1, ϕ2) and (ϕ′1, ϕ

′
2) correspond to equivalent cocycles, if there

exists the shift t 7→ t + s, s ∈ C, which simultaneously conjugates the maps
id+ϕj with id +ϕ′j for j = 1, 2. This happens if and only if the respective
Fourier coefficients {ck} and {c′k} from (21.30), are related by the identities

ck = c′ke
2πiks, ∀k ∈ Z, k 6= 0. (21.31)

The Analytic classification Theorem 21.15 in the Fourier representation
implies the following corollary. Denote by M F◦

1,0 the linear space of pairs of
series of the form (21.13), converging respectively in the upper and lower
half-plane Im t > C, (resp., Im t < −C), for a constant C depending on
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21. Stokes phenomenon for parabolic and resonant germs 393

the series. Each pair from the space M F
1,0 can be aggregated into a bi-

infinite string of the complex Fourier coefficients {ck}+∞
−∞, with c0 = 0, and

conversely, any bi-infinite string corresponding to a pair of converging series,
represents an element from M F◦

1,0. Denote the quotient space of M F◦
1,0 by the

equivalence relationship (21.31) by M F
1,0.

Corollary 21.25. The modulus M 1,0 of analytic equivalence of parabolic
germs from the class A1,0 can be identified with the quotient space M F

1,0. ¤

A similar description for arbitrary (p, λ) looks as follows: in the rectifying chart
t = tp,λ(z) given by (21.4), the components Φj of the cocycle δH can be shown to take
the form of converging Fourier series

Φj(t) = t +

+∞X
±k=1

cj,ke2πikt, j = 1, . . . , 2p− 1,

Φ2p(t) = t + 2πiλ +

+∞X
k=1

c2p,ke2πikt.

(21.32)

The sign depends on the parity of j (plus for even j, minus for j odd), as well as the do-
mains of convergence (upper or lower half-planes). On the collection M F◦

p,λ of all Fourier
coefficients one has to introduce an equivalence relation similar to (21.31), and the cor-
responding quotient space M F

p,λ could be identified with the space of the Ecalle–Voronin
moduli M p,λ for all parabolic germs from the class Ap,λ.

21H. Directional derivative of the Ecalle–Voronin modulus. Like
the Stokes operators constructed in §20G, the Ecalle–Voronin modulus can-
not be computed in terms of any finite order jet of a parabolic germ. Indeed,
any jet of parabolic germ of order greater than 2p+1 admits two holomorphi-
cally nonequivalent representatives, yet all these representatives are formally
equivalent. Thus the Ecalle–Voronin modulus depends on the entire “tail”
of the Taylor series of a parabolic germ. In this section we will explicitly
compute the first variation of the correspondence

Ap,λ → M F
p,λ, f 7→ mf , (p, λ) = (1, 0),

at the “point” corresponding to the standard (embeddable) formal normal
form fp,λ = expFp,λ. The result will be given in terms of the Borel transform
of the germ f ; the germ of this transform depends on the entire Taylor series
of f .

To simplify the exposition, we compute this first variation (the Gateaux
derivative) only in the case (p, λ) = (1, 0), where the rectifying map is single-
valued. Consider an analytic family of parabolic germs f̃ε(t), which from
the very beginning is written in the rectifying chart t,

f̃ε(t) = t + 1 + εR(t), R(t) =
∞∑

k=0

akt
−(k+1). (21.33)
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394 IV. Functional moduli and applications

The Ecalle–Voronin modulus m(ε) of f̃ε depends analytically on ε by the
last assertion of the Analytic Classification Theorem 21.15. Consider the
corresponding Fourier representation of this modulus, a pair of converging
Fourier series

ϕj(t, ε) =
∞∑

±k=1

ck(ε) e2πikt,

(the sign plus corresponds to ϕ1, minus to ϕ2); see (21.13). Since f̃ = f̃0

coincides with its formal normal form f1,0 = expF1,0, by definition we have
m(0) = 0, and therefore

m(ε) = εm1 + O(ε2), m1 =
∂m(ε)

∂ε

∣∣∣∣
ε=0

∼= (ψ1(t), ψ2(t)) ∈ M F◦
1,0,

ψj =
∞∑

±k=1

bke
2πikt, j = 1, 2.

(21.34)
The Fourier coefficients bk ∈ C, k ∈ Z, k 6= 0, of the pair (ψ1, ψ2) are
the derivatives at ε = 0 of the coefficients ck(ε). These derivatives can be
explicitly computed from the Taylor coefficients of the series R in terms of
the Borel transform.

Let a(t) =
∑∞

k=0 ak t−(k+1) be a converging Laurent series holomorphic
in some neighborhood of t = ∞. Starting from this series, one can produce
two functions of a new variable ζ, both analytic at ζ = 0, as follows:

A1(ζ) =
∞∑

k=0

ak

k!
ζk, A2(ζ) = − 1

2πi

∮

Γ
a(t)etζ dt, (21.35)

where Γ is a sufficiently large circle centered at the origin.

Proposition 21.26. The germs of two functions A1(z) and A2(z) at the
origin coincide.

Proof. Consider the Laurent series for the function a(t) eζt at t = ∞:
the coefficient before t−1 (the residue of the 1-form a(t)eζtdt) is obtained
by the termwise multiplication of the convergent Laurent series for a(t) =∑∞

k=0 ak/tk+1 and for eζt =
∑∞

k=0 ζktk/k! respectively. One can instantly
see that it is equal to A1(ζ). The integral Cauchy formula gives the contour
integral representation for the same residue. ¤

Definition 21.27. The Borel transform of a converging Laurent series
a(t) =

∑∞
k=0 ak t−(k+1) defined near infinity, is the germ Ba(ζ) defined by

any of the two equivalent representations (21.35).
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21. Stokes phenomenon for parabolic and resonant germs 395

Consider the analytic family of parabolic germs (21.33) from the class
A1,0 and denote by m(ε) ∈ M F

1,0 its Ecalle–Voronin modulus in the Fourier
representation.

Theorem 21.28 (Tangential Ecalle–Voronin modulus). The Gateaux deriv-
ative (21.34) of the Ecalle–Voronin modulus m(ε) ∈ M F

1,0 has the Fourier
coefficients

bk = −2πi(BR)(−2πik), k ∈ Z, k 6= 0. (21.36)

Proof. We start with the explicit formula (21.10) for the normalizing
cochain, as found in the proof of the Sectorial Normalization Theorem 21.5.

H̃1(t, ε) = t + ε

+∞∑

n=0

R ◦ f̃◦nε (t), H̃2(t, ε) = t− ε

−∞∑

n=−1

R ◦ f̃◦nε (t).

Computing the first variation of these functions in ε at ε = 0, when f̃◦n(t)
becomes t + n, we conclude that

∂H̃1

∂ε

∣∣∣∣∣
ε=0

=
+∞∑

n=0

R(t + n),
∂H̃1

∂ε

∣∣∣∣∣
ε=0

= −
−∞∑

n=−1

R(t + n),

the derivatives being well defined and holomorphic in S0 and S1 respectively.
From these formulas we have for the transition functions Φ̃1 = H̃2 ◦ H̃−1

1 in
S+ and Φ̃2 = H̃1 ◦ H̃−2

2 in S− respectively the formulas

Φ̃1(t, ε) = t−ε
+∞∑

n=−∞
R(t+n)+O(ε2), Φ̃2(t, ε) = t+ε

+∞∑
n=−∞

R(t+n)+O(ε2),

and finally

ψ1 = −
+∞∑
−∞

R(t + n), t ∈ S+,

ψ2 =
+∞∑
−∞

R(t + n), t ∈ S−.

The assertion of the theorem now follows from a purely analytic state-
ment expressing the above sums in terms of the Borel transform of R(t).

Lemma 21.29. Let R(t) be a function holomorphic at infinity and having
zero residue there, and ψ(t) =

∑+∞
n=−∞R(t + n). Then the kth Fourier

coefficient bk of ψ(t) =
∑

bk e2πikt is −2πi(BR)(−2πik).
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Proof. If k > 0, then for some large β > 0 we have

bk =
∫ iβ+1

iβ
ψ(t) e−2πikt dt =

∫ iβ+∞

iβ−∞
R(t) e−2πikt dt

=
∮

Γ
R(t) e−2πikt dt = −2πi(BR)(−2πikt).

The proof for k < 0 is completely analogous: one should take β < 0 with a
sufficiently large absolute value. ¤

This computation completes the proof of Theorem 21.28. ¤

Using the “linear approximation” of the Ecalle–Voronin modulus, one
can almost explicitly construct examples of formally equivalent but analyt-
ically nonequivalent parabolic germs.

Corollary 21.30. Consider two analytic families of parabolic maps in the
t-chart, f̃j(t, ε) = t + 1 + εRj(t), j = 1, 2 with Rj being polynomials in t−1

of different degrees. Then for all ε ∈ C with the eventual exception of a
discrete set, f̃1,ε is not analytically equivalent to f̃2,ε. In particular, f̃1,ε is
not equivalent to f̃2,ε for all sufficiently small values of ε 6= 0.

Proof. In the opposite case the two analytic families should consist of an-
alytically equivalent germs for all values of ε ∈ C, hence the tangents of
the corresponding derivatives should be equivalent in the sense that their
Fourier coefficients must satisfy (21.13).

But the Borel transforms of the two polynomials of different degrees
in t−1 are two polynomials of different degrees in ζ. This contradicts the
assumption that they differ by a geometric progression, as should have been
under the condition (21.13). ¤

21I. Applications: embedding, root extraction and computation
of centralizer. The Ecalle–Voronin modulus constitutes a convenient tool
for the solution of the problems listed at the beginning of this section.
21I1. Embedding in a flow. When a parabolic germ may be embedded into a
flow, i.e., be represented as the flow map of an analytic field? The complete
answer is given by the following result.

Theorem 21.31. A parabolic germ is embeddable if and only if its Ecalle–
Voronin modulus is trivial, i.e., the coboundary of any normalizing cochain
is identity, δH = {id}.
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21. Stokes phenomenon for parabolic and resonant germs 397

Proof. The standard germ fp,λ is embeddable and triviality of the modulus
mf means analytic equivalence of f to the embeddable germ, i.e., embed-
dability. Conversely, any two embeddable germs from the same formal equiv-
alence class are analytically equivalent to each other, since all holomorphic
vector fields of the form zp+1 + λz2p+1 + · · · on (C, 0) are holomorphically
equivalent to each other (Theorem 5.25). ¤

21I2. Centralizer and root. The centralizer of a germ f is the (subgroup)
Zf ⊂ Diff(C, 0) of all germs of conformal maps that commute with f . In gen-
eral, the centralizer contains nonparabolic germs; see §6B3 below. We will
refer by the name parabolic centralizer to the intersection Zf ∩ Diff1(C, 0),
the collection of all parabolic germs in Zf .

Obviously, the germ itself together with all its iterates {f◦Z} (both pos-
itive and negative), belongs to its parabolic centralizer. Moreover, if the
equation

g◦q = f, g ∈ Ap,λ, (21.37)
admits a solution in the group Diff1(C, 0), then we say that g is a root of
order q ∈ N. The root is maximal, if q > 1 is the largest natural number for
which the solution still exists. Note that the maximal root may not always
exist, but if it exists, the entire group of fractional iterates {f◦q−1Z} = {g◦Z}
also belongs to the parabolic centralizer of f .

It appears that the parabolic centralizer of f in fact coincides with the
group of fractional iterates of f except for the case where the germ f is
embeddable: in this case there is obviously no maximal root.

Theorem 21.32.

1. For any nonembeddable parabolic germ its parabolic centralizer con-
sists of its fractional iterates.

2. For all parabolic germs except for a set of infinite codimension, the
maximal root is of order 1, i.e., the equation (21.37) has no parabolic solu-
tions other than q = 1, g = f .

3. For an embeddable parabolic germ f = expF , F ∈ D(C, 0), its para-
bolic centralizer consists of all flow maps {f◦C} = {exp sF : s ∈ C}.
Proof. On the formal level the structure of the (parabolic) centralizer of a
parabolic germ is completely described in §6B2. In particular, the parabolic
centralizer of a parabolic pre-normalized germ (21.2) also has the same form
(21.2) with the same p.

Consider two parabolic commuting germs f and f ′, and let H =
{H1, . . . , H2p} be a normalizing cochain which conjugates f with the for-
mal normal form fp,λ = exp Fp,λ in D̃iff

p

1(C, 0). Then G = H ◦ f ′ is another
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normalizing cochain for f . Indeed,

fp,λ ◦ G = fp,λ ◦H ◦ f ′ = H ◦ f ◦ f ′ = H ◦ f ′ ◦ f = G ◦ f.

By the uniqueness assertion of Theorem 21.12, the two normalizing cochains
differ by a flow map of the vector field Fp,λ: there exists g = exp sFp,λ, s ∈ C,
such that G = g ◦H. By construction of H′, this means that

H ◦ f ′ = G = g ◦H,

that is, H also conjugates the second germ f ′ with a flow map g = exp sFp,λ.
Therefore the compositional coboundary Φ = δH is an automorphism of the
flow map g:

Φj ◦ g = g ◦ Φj , g = exp sFp,λ, s ∈ C. (21.38)

In the rectifying chart t the respective components Φj(t) commute with
the shift t 7→ t+s in addition to commutation with the standard shift t 7→ t+
1. This means that the differences ϕj(t) = Φj(t)− t are holomorphic double
periodic functions of the complex argument t. There are two possibilities.

Embeddable case. If the lattice Z + sZ ⊂ C has rank 2, then the only
possibility for ϕj to be simultaneously holomorphic and “truly” double-
periodic is to be constant. This means that Φ is equivalent to the trivial
cochain and the germ f is in fact analytically equivalent to an embeddable
germ. The same is true if s ∈ RrQ: then the closure Z+ sZ is the line R,
and by the uniqueness theorem ϕj = const.

Nonembeddable case. If the germ f is nonembeddable, then ϕj should
have a minimal period which divides simultaneously both 1 and s: this
means that it should be of the form 1/q with q ∈ N and s = r/q with
r ∈ Z. A 1/q-periodic function ϕj must have all Fourier coefficients cj

vanishing unless q divides j. If q > 1, this would mean an infinite number
of independent conditions imposed on ϕj , i.e., ultimately, on the Ecalle–
Voronin modulus mf .

It remains to notice that if ϕj has period 1/q, q ∈ N, then the compo-
nents Φj commute with the flow map exp 1/qFp,λ which is a root of order
q from the normal form fp,λ. This commutativity implies that the compo-
sition h = H−1 ◦ exp(1/qFp,λ) ◦H has trivial coboundary and is, therefore,
a holomorphic germ, h ∈ Diff(C, 0). By construction, both f and f ′ are
iterates of h: f = h◦q, f ′ = h◦r. Hence the parabolic centralizer consists of
fractional iterates f◦ r/q. ¤

The proof of the above theorem gives in fact an explicit criterion of
existence of the root of order q > 1 of a parabolic germ.

Corollary 21.33. A parabolic germ f ∈ Ap,λ admits extraction of a root of
order q ∈ N, if and only if all components ϕj(t) = Φj(t)− t are 1/q-periodic,
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or, equivalently, when the coboundary Φ = δH commutes with the flow map
exp(1/qFp,λ). The root is given by the formula h = H−1 ◦ exp(1/qFp,λ) ◦H

which is well defined under these assumptions. ¤

In the Fourier representation, the corollary implies that a parabolic root
of order q > 1 can be extracted from a parabolic germ f if and only if all
Fourier coefficients of the modulus mf ∈ M F

p,λ with numbers not divisible
by q, vanish. Clearly, this condition is of codimension infinity for any q > 1.

21J. Resonant germs. Holomorphic classification of resonant germs with
multiplicator exp 2πiλ, λ ∈ Q a root of unity, can be reduced to the analytic
classification of parabolic germs after passing to iterates. The classification
can be regarded as an equivariant version of the Ecalle–Voronin modulus.
21J1. Formal normal forms. Let f be a resonant germ with the multiplier
α = αm,n = e2πim/n, with m and n mutually prime. Then its iterate g = f◦n

is a parabolic germ. The formal normal form for g is the series ĝ = expFp,λ

for some natural p and complex λ. We claim that p is necessarily divisible
by n. Indeed, the resonant normal form for f involves only terms of powers
divisible by n, f̂ = αz(1 +

∑∞
1 akz

nk) by Theorem 4.21. The iterate also
has the same structure, hence he number p, which determines the degree of
the first nonlinear term in the series above, is divisible by n, i.e., p = nk for
some k.

Denote by Am,n,k,λ the set of all resonant germs f with the multiplier
αm,n = e2πim/n such that f◦n ∈ Ap,λ with p = kn. Fix m, n, k, λ and
consider the map

f∗ = αm,n · fp,λ = e2πim/n expFkn,λ ∈ Am,n,k,λ. (21.39)

Note that multiplication by αm,n commutes with the normal form fp,λ, hence
with f∗. Note also that all three commute with the flow map exp sFp,λ =
exp sFp,λ for any s ∈ C.
21J2. Normalizing cochain for f◦n. We will show that f∗ is the formal nor-
mal form for f : the proof will be derived as a consequence of a more im-
portant fact. Let H be an arbitrary normalizing cochain for the parabolic
germ g = f◦n ∈ Akn,λ.

Lemma 21.34. The cochain H conjugates the resonant germ f with the
germ f∗.

Proof. Consider the cochain G = α−1H ◦ f ∈ D̃iff
p

1(C, 0), where α = αm,n

and p = nk are as above. It is another normalizing cochain for g = f◦n.
Indeed, it is a cochain inscribed into the same nice cover, and its asymptotic
series α−1 ◦ Ĥ ◦ f̂ (here Ĥ is a formal Taylor series for H) has the identical
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linear term. Finally, G conjugates g with fp,λ in each sector. Indeed, f
commutes with g, and the linear map α−1 commutes with fp,λ. Hence,

G ◦ g ◦ G−1 = α−1 ◦H ◦ f ◦ g ◦ f−1 ◦H−1 ◦ α

= α−1 ◦H ◦ g ◦H−1 ◦ α = α−1 ◦ fp,λ ◦ α = fp,λ.

Therefore, G is another normalizing cochain for g. By the uniqueness of the
normalizing cochain for parabolic germs, G = (exp sFp,λ)◦H for some s ∈ C.
Let us prove that s = 1/n.

Two previous equalities for G imply that

α−1 ◦H ◦ f = (exp sFp,λ) ◦H, hence H ◦ f◦n = (expnsFp,λ) ◦H,

since α−n = 1. On the other hand, by definition H is known to conjugate
f◦n with fp,λ = exp Fp,λ. Therefore sn = 1 and finally H ◦ f ◦ H−1 =
α ◦ (exp 1/n Fp,λ) = f∗, as was asserted. ¤

21J3. Functional moduli for resonant germs. As in the case of parabolic
germs, normalizing cochains for f◦n form an equivalence class with the equiv-
alence relation (21.20). Coboundaries of these cochains form an equivalence
class with respect to relation (21.31) imposed on their Fourier coefficients.
This class is the Ecalle–Voronin modulus of the germ g = f◦n. It appears
that the same class is the functional modulus of f for the analytic classi-
fication of germs of the class Am,n,k,λ (the class of formal equivalence of
m : n-resonant germs whose nth iterate is in the formal class Ank,λ).

Yet not all coboundaries of normalizing cochains from the space M ◦
nk,λ

appear as moduli of analytic classification for the resonant germs from class
Am,n,k,λ. To be a modulus of a germ of this class, the coboundary must
satisfy additional very stringent restrictions.

Lemma 21.35. If Φ is the coboundary of a normalizing cochain H for the
parabolic germ g = f◦n, and f∗ is the formal normal form (21.39), then Φ
and f∗ commute:

f∗ ◦Φ = Φ ◦ f∗. (21.40)

Proof. The proof is standard: the components of the cochain H conjugate
f with f∗. Hence the component Φj = Hj+1 ◦H−1

j conjugates f∗ with itself
in the appropriate sectors. ¤

21J4. Analytic classification of resonant germs. Holomorphic invariants of
parabolic iterates are obviously holomorphic invariants of the resonant
“roots”. To construct a complete classification, it is necessary to verify that
nonequivalent resonant germs cannot produce equivalent parabolic iterates.
Besides, one has to describe all constraints imposed on the Ecalle–Voronin
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21. Stokes phenomenon for parabolic and resonant germs 401

moduli from M p,λ by the fact that the parabolic germs are iterates of reso-
nant germs. Lemma 21.35 specifies one such constraint. The central result
of this section claims that besides (21.40), there are no other constraints.

Theorem 21.36. For every resonant germ f ∈ Am,n,k,λ the Ecalle–Voronin
modulus mg = mf◦n of its iterate g = f◦n, a cochain Φ = (Φ1, . . . ,Φ2p) ∈
M p,λ, p = nk, defined uniquely modulo the equivalence relationship (21.20),
satisfies the following properties.

1. (Invariance) If two germs from the class Am,n,k,λ are analytically
equivalent, then their moduli coincide.

2. (Equimodality and equivalence) Conversely, two germs from Am,n,k,λ

with the same moduli, are analytically equivalent.
3. (Realization) Any tuple Φ ∈ M ◦

kn,λ satisfying (21.40) may be realized
as a modulus for some germ f ∈ Am,n,k,λ.

4. (Analytic dependence on parameters) If a family of germs fε ∈
Am,n,k,λ depends analytically on a parameter ε, then the modulus of ana-
lytic equivalence also depends analytically on ε.

Proof. This theorem can be derived from Theorem 21.15 which gives ana-
lytic classification of parabolic germs, by straightforward arguments.

1. If f and g are analytically equivalent, then so are f◦n and g◦n. State-
ment 1 of Theorem 21.15 completes the proof of invariance.

2. If two coboundaries Φ,Ψ ∈ M ◦
p,λ are equivalent, then the respec-

tive normalizing cochains H for f◦n and G for g◦n differ by a flow map
of the vector field Fp,λ, and after replacing G by another map-cochain
G′ = (exp sFp,λ) ◦ G they will have coinciding coboundaries and the com-
position G′ ◦H−1 has trivial coboundary and hence can be identified with a
holomorphic self-map h ∈ Diff(C, 0).

The cochain H conjugates f with f∗, the cochain G′ conjugates g with
f∗. Therefore the holomorphic map h = G′ ◦H−1 conjugates f and g.

3. Any cocycle Φ ∈ M ◦
p,λ representing an arbitrary Ecalle–Voronin

modulus m ∈ M p,λ, can be realized as the coboundary δH of a cochain H

normalizing the parabolic germ g ∈ Ap,λ (Corollary 21.24). Let f be the
cochain defined by the composition

f = H−1 ◦ f∗ ◦H−1, i.e., f |Sj = H−1
j+km ◦ f∗ ◦Hj , (21.41)

where the enumeration is cyclic modulo 2p as usual, p = nk. Apriori f is only
a map-cochain, but the assumption (21.40) implies that in fact it is a well-
defined conformal germ with the resonant multiplicator α = αm,n. Indeed,
componentwise the identity (21.40) has the form Φj+km = f∗ ◦Φj ◦ (f∗)−1.
On the intersection Sj ∩ Sj+1 of two different sectors two expressions for f
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coincide:

f |Sj+1 = H−1
j+km+1 ◦ f∗ ◦Hj+1 = H−1

j+km ◦ Φ−1
j+km ◦ f∗ ◦ Φj ◦Hj

= H−1
j+km ◦ f∗ ◦Hj = f |Sj .

By construction, Φ represents the Ecalle–Voronin modulus for f◦n, as re-
quired.

4. Analytic dependence on parameters follows immediately from the
corresponding assertion of Theorem 21.15. ¤

From this theorem one can derive explicitly the description of Ecalle–
Voronin moduli for resonant germs from the formal class Am,n,k,λ: the mod-
ulus consists of holomorphic cochains Φ = (Φ1, . . . , Φ2k) commuting with
f∗ and the linear map α simultaneously.

Exercises and Problems for §21.

Problem 21.1. Prove that sums and products of sectorial cochains of the same
type are sectorial cochains again (the operations here are taken componentwise).

Problem 21.2. Prove that germs of functional map-cochains as they are intro-
duced in Remark 21.11, indeed form the group denoted by D̃iff

p

1(C, 0).

Problem 21.3. Let H ∈ D̃iff
p

1(C, 0) be a normalizing map-cochain (i.e., H conju-
gates two holomorphic germs from Diff1(C, 0)). Assume that one of the sectorial
components of H is identity. Prove that H is identity itself.

Hint. Two germs conjugated by H, must coincide.

In the Problems 21.4–21.9 it is required to describe topologically the space of
orbits U/f of a cyclic pseudogroup of holomorphic maps {fZ}, defined on a domain
U . Two points x, y ∈ U are called f -related, if f(x) = y, and this partial relation
is maximally extended by symmetry and transitivity. The quotient space may be
very pathological, for instance, non-Hausdorff, or even not a topological space (e.g.,
the quotient of the unit disk D by an irrational rotation z 7→ e2πiλz, λ /∈ Q).

Problem 21.4. Prove that the space of orbits C/f of the shift f(t) = t + 1
on the complex line C is a holomorphic curve equivalent to the punctured plane
C∗ = Cr {0}.

Describe the spaces of orbits C+/f and iC+/f , where C+ = {Re t > 0} (the
map f remains the same).

Problem 21.5. Describe the quotient spaces of C r 100D = {|t| > 100} by the
shift. Describe the quotient of the unit disk D by the flow map f = exp F1,0;
cf. (21.1).

Problem 21.6. Describe the space of orbits (C+, 0)/f , where f(z) = z + z2 + · · ·
is a parabolic germ. Can one replace C+ by the sector {|Arg z| < 3

4π} without
changing the answer?
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Problem 21.7. Prove that the space of orbits in Problem 21.6 is quasiconformally
equivalent to the punctured plane C∗.

Problem 21.8. Using Theorem 21.18, prove that a parabolic germ f ∈ Ap,λ is
holomorphically equivalent to its formal normal form expFp,λ in sectors around the
positive and the negative real semiaxes.

This is an alternative proof of the Sectorial Normalization Theorem 21.5.

Problem 21.9. Prove that the space of orbits (C∗, 0)/f of a parabolic germ in a
punctured neighborhood of the origin is a topological quotient of the disjoint union
(C∗1tC∗2)/(ϕ+tϕ−) by two conformal germs ϕ+ : (C∗1, 0) → (C∗2, 0), ϕ− : (C∗1,∞) →
(C∗2,∞) (the points of the first punctured plane are identified with their images in
the second plane).

Prove that this is a non-Hausdorff topological space equipped nevertheless with
an atlas of holomorphic charts. Express the Ecalle–Voronin modulus of f in terms
of the germs ϕ±.

Problem 21.10. Describe the Ecalle–Voronin modulus of a germ from the class
A2 which commutes with the involution σ : z 7→ −z.

The same question about a germ f of class A1 which is conjugated by σ to its
inverse f−1.

Problem 21.11. Let f, g ∈ Diff1(C, 0) be two parabolic germs related by the
square map z 7→ z2, i.e., g(z) =

√
f(z2). How are the formal classes of f, g related?

Their Ecalle–Voronin moduli?

Problem 21.12. Assume that the Cartesian map (z, w) 7→ (
f(z), g(w)

)
with two

parabolic components f, g ∈ Diff1(C, 0), admits a holomorphic nonsingular invari-
ant curve through the origin on (C2, 0). What can be said about the formal types
of f, g and their Ecalle–Voronin moduli?

Problem 21.13. Prove that for any combination of the natural parameters p, q ∈ N
a generic Cartesian map (f, g) as in Problem 21.12 with f ∈ Ap, g ∈ Aq, is not
embeddable in a holomorphic flow.

Problem 21.14. Let γ be the germ of a smooth (nonsingular) real analytic curve
on the complex plane (C, 0). Prove that there is a conformal germ h rectifying γ
(mapping it to the real axis).

Reflection in γ is an anti-holomorphic map which is conjugated by h with the
symmetry z 7→ z̄ in the real axis. Prove that this reflection does not depend on the
choice of h.

Problem 21.15. Let γ± ⊂ (C, 0) be germs at zero of two smooth real analytic
curves which have a simple (quadratic) tangency between themselves. Find neces-
sary and sufficient conditions for existence of a third germ of real analytic curve at
zero (“mirror”) γ0, also tangent to the same direction, such that the reflection in
γ0 permutes γ+ and γ−.

Hint. Reduce this question to a root extraction problem.

Problem 21.16. Prove that any antiholomorphic germ (C, 0) → (C, 0) is a sym-
metry with respect to some real analytic curve.
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Problem 21.17. Let g and h be two symmetries from Problem 21.15, and f = gh.
Prove that any of these symmetries conjugates f with its inverse. Conversely, if
f is a holomorphic germ, and g is a symmetry with respect to an analytic curve
passing through zero that conjugates f with its inverse, then f is a product of two
symmetries.

Problem 21.18. Consider two pairs of germs of real analytic curves at zero from
Problem 21.15. Prove that these two pairs are holomorphically equivalent (that
is, one pair may be transformed into another by a holomorphic coordinate change)
if and only if the product of the symmetries corresponding to the first pair is
holomorphically equivalent to the product corresponding to the second pair.

Problem 21.19. A cuspidal curve on the complex 2-plane (C2, 0) is the image of
a holomorphic map t 7→ (

z(t), w(t)
)

with two generic components z(t) = t2 + · · · ,
w(t) = t2 + · · · . Cartesian maps introduced in Problem 21.12, naturally act on
cuspidal curves.

Describe analytic classification of generic cuspidal curves by the Cartesian ac-
tion.

Hint. Reduce the problem to Problem 21.10.

22. Complex saddles and saddle-nodes

In this section we describe orbital analytic classification of resonant complex
saddles and saddle-nodes. Together with the analytic normal forms from
Chapter I, this almost completes analytic classification of all elementary
planar singularities. The only type of elementary singularities, for which
the classification is not known, is that of Cremer saddles. Thus the term
“elementary” receives the second justification: besides being “elementary
atoms” into which all isolated singularities can be blown up, as explained in
§8, the elementary singularities indeed have “simple” nature.

22A. Complex saddles revisited. A singular point of a complex planar
vector field is a complex saddle provided that the ratio of its eigenvalues
is real negative2, λ1/λ2 = −λ ∈ −R+. The main problem that we deal
with in this section is orbital analytic classification of complex saddles or,
what is the same, analytic classification of the corresponding singular folia-
tions. The results of this section later will be applied to nonlocal problems.
The Realization Theorem 22.9 is the core in the solution of the nonlinear
Riemann-Hilbert problem in §23. Some technical results developed in this
section are crucial for the proof of the Nonaccumulation theorem in §24.

Any complex saddle has two smooth holomorphic separatrices by the
Hadamard–Perron Theorem 7.1. The holonomy (monodromy) map associ-
ated with a loop on a separatrix making one turn around the singular point

2From this point of view centers with two eigenvalues ±iω, ω > 0, are complex saddles. This
understanding was clear already to H. Dulac.
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22. Complex saddles and saddle-nodes 405

is elliptic, i.e., tangent to the linear rotation w 7→ νw, with the multiplicator
ν = exp 2πiλ on the unit circle3.

Somewhat unexpectedly, the inverse statement is also true: analytic
equivalence of monodromy maps of two saddles with the same linear parts
implies their orbital analytic equivalence (Theorem 22.7). Moreover, any
elliptic germ of a conformal mapping may be realized as the monodromy
map of a complex saddle. This reduces orbital analytic classification of
complex saddles to the analytic classification of germs of conformal maps in
dimension one. In the resonant case this classification was constructed in
§21. Nonresonant elliptic germs automatically belong to the Siegel domain;
known results on their linearizability are briefly listed in §5E.

Remark 22.1. To avoid trivial disclaimers when passing from saddles to their mon-
odromy, we consider complex saddles with marked separatrices. This means that we al-
ways work in local complex coordinates (z, w) chosen in such a way that the separatrices
belong to the coordinate axes, and the monodromy map of a saddle always corresponds
to the small loop on the z-axis. By this convention the monodromy map is obviously
an invariant of the orbital analytic classification: two holomorphically orbitally equiva-
lent marked saddles have analytically conjugate monodromy maps. Otherwise one could
consider a holomorphism swapping the role of coordinate axes.

22B. Saddles and their monodromy: formal normal forms. Formal
normal forms for saddles were described in Proposition 4.29; see Table I.1.
Recall that for a nonresonant saddle the formal orbital normal form is linear:

F0 = z
∂

∂z
− λw

∂

∂w
. (22.1)

The monodromy transformation of this linear field is also linear,

f0(w) = νw, ν = e−2πiλ. (22.2)

For a resonant saddle, the orbital formal normal form is either linear as in
(22.2), or rational:

F0 = z
∂

∂z
+ w(−λ + q(u))

∂

∂w
, q =

up+1

1 + αup
,

u = zmwn,

λ = m
n .

(22.3)

where m, n, p are positive integers, α ∈ C. Denote by Bm,n,p,α the class
of all complex saddles with the same formal normal form (22.3). Denote
by F0 the singular holomorphic foliation defined by the vector field F0 in
the normal form (22.1) or (22.3). Recall that in §21J1 we introduced the
notation An,m,p,λ for the class of conformal germs with the multiplicator
exp 2πim/n whose nth iteration is formally equivalent to the time one of
the flow (21.1) with some p ∈ N and λ ∈ C.

3Here parabolic germs with ν = 1 are considered as a particular case of elliptic germs.
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Lemma 22.2.

1. Monodromy transformation of a nonresonant or formally orbitally
linearizable resonant germ of a foliation (22.1), is formally equivalent to the
rotation (22.2).

2. Monodromy transformation for a foliation from the class Bm,n,p,α is
a conformal germ of the formal type A−m,n,p,β with β = α/2πi.

The proof of this lemma goes beyond a mere integration of the normal
form which would be quite elementary (Remark 4.30). Indeed, the difference
between two vector fields with the common N -jet at the origin, may still
be not small on the loop along which the holonomy operator is considered.
Thus the two monodromy operators might differ in all terms, no matter how
large N is. To compute the jet of a high order of the monodromy map, one
has to ensure that the vector field differs from its normal form by a field
sufficiently flat on the separatrix.

22C. Normalization on the separatrix cross. We prove in this sec-
tion that a saddle germ of holomorphic vector field can be brought to its
normal form on the level of any finite order jets on both separatrices. The
corresponding result was already known to H. Dulac [Dul23].

Lemma 22.3. Any germ of a saddle vector field can be analytically trans-
formed to a form that differs from the formal normal form (22.1) or (22.3)
respectively, by the field that vanishes on the coordinate cross together with
any preassigned number of derivatives.

In other words, for any N ∈ N a saddle resonant germ F ∈ D(C2, 0) is
orbitally analytically equivalent to the germ

F = F0 + zNwNR
∂

∂w
, R ∈ O(C2, 0), (22.4)

where R is the germ of a function holomorphic at the origin (depending on
the order N) and F0 ∈ D(C2, 0) is the formal normal form.

Proof. Note that rectification of the two separatrices of the germ of a
(marked) saddle brings this germ to the form

z(λ1 + g1(z, w))
∂

∂z
+ w(λ2 + g2(z, w))

∂

∂w
, g1(0, 0) = g2(0, 0) = 0,

where λ1, λ2 ∈ C are nonzero eigenvalues. Replacing this field by an orbitally
equivalent one,

F = z ∂
∂z + w

(−λ + h(z, w)
)

∂
∂w

= F0 + R0
∂

∂w , R0(z, w) = wf(z) + O(w2),
(22.5)
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which corresponds to N = 0 in (22.4). We will only consider vector fields
whose z-component is z ∂

∂z .
We will prove by induction that for any N by an analytic coordinate

change, R0 may be replaced by zNwNRN with RN holomorphic at the ori-
gin in C2. Only the resonant case with λ = m

n will be considered; the
nonresonant case λ /∈ Q+ is simpler and treated in exactly the same way.

Note that the germ R can be assumed as flat at the origin, as neces-
sary, since all nonresonant terms of order 6 M can be removed from F by
polynomial transformations of the Poincaré–Dulac algorithm.

Assume by induction that in (22.5) the term R is already divisible by
wl and is M -flat at the origin for M = N(m + n + 2):

R = wlf(z) + O(wl+1), R(z, w) = o(|z|+ |w|)M , M = N(m + n + 2).

For l = 1 this coincides with (22.5). We want to achieve divisibility by wl+1

after a suitable transformation

id+h : (z, w) 7→ (z, w + wlg(z)), g ∈ O(C1, 0), h(z, w) = (0, wlg(z)).

Denote

F̃ =
(

E +
∂h(z, w)
∂(z, w)

)
F ◦ (id+h)−1

the transformed vector field. To achieve the normalization of jets of order
l + 1 so that F̃ = F0 + O(wl+1), we have to meet the condition

∂h

∂z

(
z

−λw

)
+

(
0

λh + R

)
= O(wl+1).

Given the explicit form of id +h, this translates into the following functional
equation on g

z
dg

dz
− λ(l − 1)g + f = 0.

This linear ordinary differential equation may be solved explicitly. Substi-
tuting a Taylor series for f =

∑
k fkz

k, we immediately determine the Taylor
series for g =

∑
k gkz

k,

gk =
fk

λ(l − 1)− k
. (22.6)

Some of the denominators in (22.6) may vanish for a rational λ = m
n . But

all such cases correspond to small k = m
n (l − 1) < mN , while the flatness

assumption implies that f is flat of order at least M − N at the origin. If
M = N(n + m + 2), all the coefficients fk, for k < mN are zeros. Thus
zero denominators never occur in (22.5) for nonzero numerators fk, and
the formula makes sense. The series

∑∞
k=mN gkz

k converges together with∑∞
k=mN fkz

k as the denominators in (22.6) tend to infinity.
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408 IV. Functional moduli and applications

In a completely similar way, iterating the coordinate changes of the
form (z, w) 7→ ((z, w)+ zlg(w)), one may transform the field F0 +R ∂

∂w with
R = R(z, w) divisible by wNzl, to a field of the same form with l replaced
by l + 1. Note that at every step the germ g is N -flat at the origin. Hence
normalization along the w-axis does not affect previously achieved normal
form structure along the z-axis.

At the end the difference between the field F and its formal normal form
is divisible by zNwN as required. ¤

22D. Proximity of leaves of complex saddles and their normal
forms. In this subsection we prove estimates on divergence of solutions
that are a key tool in the study of complex saddles.

The Gronwall inequality (Lemma 15.5) can be easily modified for non-
linear differential equations. Consider two nonautonomous systems of dif-
ferential equations of the form

dwi

dt
= Fi(t, wi), i = 1, 2, wi ∈ C, t ∈ [0, T ], (22.7)

on the finite segment of the real time [0, T ], and let w1(t), w2(t) be two
solutions with the common initial condition w1(0) = w2(0), which belong to
some domain D ⊂ [0, T ] × C of the Cartesian product, such that for each
t ∈ [0, T ] the intersection D ∩ {t} ×C is a convex set. We want to establish
a quantitative degree of proximity between these solutions, assuming that
the right hand sides are close to each other.

Lemma 22.4 (Nonlinear Gronwall inequality). Assume that in the domain
D ⊂ [0, T ]× C the complex functions F1,2(t, w) satisfy the inequalities

|F1(t, w)− F2(t, w)| 6 C, |Fi(t, w)− Fi(t, w′)| 6 L |w − w′|. (22.8)

Then
|w1(t)− w2(t)| 6 CT eLT , ∀t ∈ [0, T ]. (22.9)

Proof. Differentiating the difference δ(t) = |w1(t)− w2(t)|, we obtain
d
dtδ(t) 6 | d

dtw1(t)− d
dtw2(t)|

= |F1(t, w1(t))− F2(t, w2(t))|
6 |F1(t, w1(t))− F1(t, w2(t))|+ |F1(t, w2(t))− F2(t, w2(t)|
6 L |w1(t)− w2(t)|+ C = Lδ(t) + C.

Comparing this means that the function δ(t) does not exceed the solution
of the nonhomogeneous linear differential equation

d
dty(t) = Ly(t) + C, y(0) = 0.

The last equation can be immediately integrated, yielding the bound δ(t) 6
Ct eLt for all t ∈ [0, t]. ¤
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22. Complex saddles and saddle-nodes 409

Corollary 22.5. Any finite order N -jet of a holonomy map ∆ along a leaf
L of a holomorphic foliation F, defined by a holomorphic vector field F , is
completely determined by the N -jet of the field F on the leaf L.

Proof. The assertion of the corollary means that if two foliations F1, F2

defined by holomorphic vector fields F1, F2, have a common leaf L and their
difference is N -flat on L, then the difference between the respective holo-
nomy operators ∆1, ∆2 (associated with the same path γ ⊂ L and the same
cross-sections at the endpoints of the path) is N -flat.

Restricting the vector fields on a tubular neighborhood of the path γ and
choosing convenient local coordinates, we obtain two complex differential
equations on the product [0, 1] × (C, 0) with Fi(t, 0) ≡ 0 and |F1(t, w) −
F2(t, w)| < |w|N . Two trajectories of the two fields starting at the same
point (0, w) with |w| = r, will both remain in the cylinder D = {|w| < reLt},
where L is the common Lipschitz constant of the two fields.

Thus we can apply the inequality (22.9) with T = 1 C = eLNrN and
conclude that |∆1(w)−∆2(w)| < C ′|w|N , where C ′ is a constant depending
on L, N . Thus the difference between the holonomy maps is N -flat. ¤

Now the proof of Lemma 22.2 becomes an easy exercise.

Proof of Lemma 22.2. By direct computation we can verify that for the
field F0 in the rational formal normal form (22.3) the monodromy operator
is a germ from the corresponding resonant class. Indeed, consider the mul-
tivalued function v = zλw, λ = m/n (the root of the resonant monomial).
Evolution of this function by virtue of the system is governed by the quotient
equation v̇ = q(vn) with the rational function q the same as in (22.3). Thus
after continuation over the loop z = e2πit, t ∈ [0, 1], the initial value of v will
change to exp 2πiFpn,α, where Fpn,α is the vector field in the rational nor-
mal form (21.1) on the complex line and exp 2πiF denotes the flow map for
the complex time 2πi. On the other hand, because of the multivaluedness,
the function v itself after continuation along the loop will be multiplied by
a constant ν (the corresponding root of unity ν = e2πim/n) which must be
factored out. Thus the monodromy operator in the chart w = v|z=1 takes
the form

f(w) = ν−1 exp 2πiFpn,α, Fpn,α = wpn+1(1 + αwpn)−1 ∂
∂w . (22.10)

After the linear rescaling w 7→ Cw with C = (2πi)−1/n the monodromy takes
the form e2πin/m expFpn,β with β = α/2πi (we distinguish the exponent of
a number from the flow of the vector field in this combined notation). This
coincides with the definition of the class A−m,n,p,β.

To show that formally orbitally equivalent saddle vector fields have for-
mally equivalent monodromies, we fix an arbitrary N and reduce the field
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410 IV. Functional moduli and applications

to its formal normal form modulo the difference which is N -flat on the sep-
aratrix {w = 0}, using Lemma 22.3.

By Corollary 22.5, the N -jet of a holonomy map along a leaf L of a holo-
morphic foliation is completely determined by the N -jet of the vector field
generating this foliation. Therefore the N -jet of the monodromy coincides
with the N -jet of the formal normal form, which was computed above. Since
N is arbitrary, the coincidence holds on the level of formal series also. ¤

For trajectories defined on the infinite interval, the bound (22.9) is usu-
ally meaningless because of the exponential growth of the right hand side.
In such a situation rather than measuring the divergence between any two
particular trajectories, we will measure the difference from identity for a
homeomorphism which sends solutions of one equation to those of the other.
The subtle difference in the construction translates into a different type of
boundary conditions. The accurate construction goes as follows.

Consider the saddle vector field F0 ∈ D(C2, 0) in the rational normal
form (22.3) and another field F1 which differs from F0 by the difference
N -flat on the coordinate cross as in (22.4). The corresponding ordinary
differential equations written in the logarithmic chart t = − ln z, take the
form

dwi

dt
= Fi(t, wi), Fi(t, w) = λw(1 + e−ptwp + · · · ),

|F0(t, w)− F1(t, w)| 6 e−NtwN i = 0, 1, p ∈ N.
(22.11)

We will consider these equations on the cylinder D = {t ∈ R+, |w| < 1}.
We expect that the conjugacy H : D → D, (s, r) 7→ (s,H(s, r)) between

these equations, which preserves the t-coordinate and is identical on the slice
s = 0, is small, more precisely, that the function H remains bounded on D
and the difference H(s, r) − r tends to zero sufficiently fast as N is large
enough.

This is an assertion on proximity between two trajectories, w0(t) and
w1(t), which both depend on two parameters (r, s), |r| < 1 and s > 0
through the boundary conditions

w0(0) = w1(0), w0(s) = r, so that H(r, s) = w1(s). (22.12)

Lemma 22.6 (Proximity lemma). The component H(s, r) of the map con-
jugating the two equations (22.11), satisfies the estimates

|H(s, r)− r| 6 e−Ns/2, uniformly over s > 1, |r| < 1/2. (22.13)

Proof. We will change the dependent variables in the equations (22.11),
substituting

ui = wie
−λt, i = 0, 1,
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22. Complex saddles and saddle-nodes 411

which essentially corresponds to replacing the initial vector fields in (C2, 0)
by the respective quotient equations with the “skew resonance monomial”
u = zλw. The advantage is that solutions of the quotient equations are
“almost constant” and can be easily controlled.

More accurately, we obtain from (22.11) two complex differential equat-
ions on the real line,

dui

dt
= Gi(t, ui), |Gi(t, u)| 6 u2,

∣∣∣∣
∂Gi

∂u
(t, u)

∣∣∣∣ 6 |u|,

|G0(t, u)−G1(t, u)| 6 uNe−tN , i = 0, 1,

(22.14)

(to simplify computations, we normalized all constants to 1 which is always
possible by rescaling, and consider the worst case p = 2).

Consider the point (s, r) with |r| = 1
2 (again we consider only one “worst”

point). The corresponding trajectory u0(t) of the first equation in (22.14)
is determined by the boundary condition |u0(s)| < 1

2e−s. We first observe,
integrating this equation in the reverse time, that |u0(0)| < 3

4e−s. Indeed,
the speed of evolution in the chart 1/u is bounded by 1, thus

|u0(0)| < (2es − s)−1 6 3
4e−s.

For the same reason the trajectory u1(t) with the same initial condition
u1(0) = u0(t), |u1(0)| < 3

4e−s, will satisfy the inequality |u1(s)| < e−s.
Thus both trajectories u0, u1 belong to the exponentially thin cylinder

Ds = {|u| < e−s, 0 6 t 6 s}. The Lipschitz constant of the right hand sides
in this equation do not exceed Ls = e−s < 1 in Ds, and the difference be-
tween the right hand sides does not exceed Cs = e−Ns. Substituting this into
the Gronwall inequality (22.9), we conclude that the solutions u0(t), u1(t)
at the last moment t = s are very close,

|u0(s)− u1(s)| 6 se−Nses, hence |w0(s)− w1(s)| 6 se(1+λ)s−Ns < eNs/2.

Thus for all sufficiently large N , s the uniform bound (22.13) is proved. ¤

22E. Monodromy as the modulus of analytic classification. Now
we have all the necessary tools to prove that the monodromy is a modulus
of analytic classification of complex saddles in the following precise sense.

Theorem 22.7. Suppose that two germs of complex saddle vector fields have
the same linear part (22.1) and their monodromy maps corresponding to the
z-axis are analytically equivalent.

Then the germs of these vector fields are orbitally analytically equivalent.

Proof. First we prove that the vector fields are formally orbitally equivalent.
By Lemma 22.2, the formal class of the monodromy determines almost

uniquely the formal class of the saddle. The only uncertainty is in restoring
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412 IV. Functional moduli and applications

the characteristic ratio m/n from the elliptic multiplicator ν = exp 2πim/n.
In general this is impossible, and the ratio m/n can be restored only mod-
ulo an integer term, yet in the assumptions of the theorem the linear part
is explicitly specified. The other formal invariants of the map (the order
of the first nonlinear terms p or their absence, and the formal invariant
β) determine uniquely the corresponding formal invariants of the resonant
saddle.

Second, we show that two saddles with analytically conjugated mon-
odromies are themselves holomorphically orbitally equivalent by a map that
keeps the marked separatrices into each other. The construction of the con-
jugacy is rather straightforward: we extend the holomorphism between the
cross-sections, which conjugates the holonomy maps, to a biholomorphism
between the foliations, defined on the complement to the second (unmarked)
separatrices. This extension is possible, since by Lemma 11.14 saturation of
the cross-section by leaves of the saddle foliation fills the entire complement.
This extension is well defined since the two holonomy maps are conjugated.

Finally we show that the constructed biholomorphic conjugacy between
complements to the unmarked separatrices, extends holomorphically on
these separatrices as well by the removable singularity theorem. The es-
timates required to apply this theorem, are derived from the Proximity
lemma 22.6.

To construct the conjugacy, we assume that the two vector fields are al-
ready brought by a biholomorphic transformation to the form (22.4) which
differs from the formal normal form (22.3) by terms N -flat on the separa-
trix cross, and the monodromy of the separatrices simply coincide in the
respective charts. The conjugacy will preserve the first coordinate.

The corresponding differential equation can be rewritten with respect to
the variable t = − ln z, but now we consider the complex value of t in the
right half-plane C+ = {Re t > 0}. The corresponding differential equations
have the form (22.11) with the only difference that the bounds take a slightly
different form,

|F0(t)− F1(t)| 6 e−N Re twN , t ∈ C+. (22.15)

The conjugacy H : C+ × D → C+ × D, (s, r) 7→ (s,H(s, r)) will be
constructed exactly as in the Proximity lemma, namely, we consider the
solution w0(t) of the first equation, defined by the initial (more precisely,
terminal4) condition w(s) = r, and the solution w1(t) of the second equation
with the same initial condition w1(0) = w0(0), and let H(s, r) = w1(s) as in
(22.12). This conjugacy by construction sends solutions of the first equation
to solutions of the second equation and is holomorphic.

4The difference is more of a psychological than mathematical nature.
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22. Complex saddles and saddle-nodes 413

The function H(s, r) is 2πi-periodic in s, H(s+2πi, r) ≡ H(s, r). Indeed,
both differential equations are 2πi-periodic in t. Thus if one replaces the
condition w0(0) = w1(0) by the condition

w0(2πi) = w1(2πi) (22.16)

in the choice of the two solutions w0, w1, the result will certainly be the
same. Yet the conditions w0(0) = w1(0) and (22.16) are equivalent, since
the monodromy of the two equations coincide.

Because of this periodicity, the function H descends as a well-defined
function H(z, w), holomorphic in the punctured disk {0 < |z| < 1}. From
the Proximity Lemma 22.6, we have |H(z, w)−w| 6 |z|N/2 as z → 0, thus if
N > 3, the corresponding conjugacy extends holomorphically by the identity
map on the deleted separatrix {z = 0}×D. This completes the proof of the
theorem. ¤

22F. Orbital analytic classification of resonant saddles. By a mod-
ulus of orbital analytic classification of a marked saddle resonant germ of
planar vector field, we mean the Ecalle–Voronin modulus of analytic clas-
sification of the (resonant conformal) monodromy map associated with the
marked separatrix. This modulus is described by the Classification The-
orem 21.36: the corresponding classification space is a subspace of M ◦

np,λ

satisfying the additional relation (21.40).
As an immediate consequence of Theorem 22.7, we obtain the statements

1, 2 and 4 of the following result that gives complete classification of resonant
saddles.

Theorem 22.8 (Analytic classification theorem for parabolic germs).
1. (Invariant) If two germs of saddle resonant vector fields F and F ′ with

the same linear part (22.1) are orbitally analytically conjugate by a trans-
formation that preserves the coordinate axes, then their moduli coincide.

2. (Equimodality vs. equivalence) Conversely, two saddle resonant germs
F and F ′ from B−m,n,p,β with the same modulus are orbitally analytically
equivalent.

3. (Realization) Any tuple Φ ∈ M 0
p,λ that satisfies (21.40) may be real-

ized as the modulus for some saddle resonant germ v ∈ B−m,n,p,β.
4. (Analytic dependence on parameters) If a family of germs Fε from

the same formal B−m,n,k,β class depends analytically on a parameter ε, then
the modulus of orbital analytic equivalence also depends analytically on ε.

To prove Theorem 22.8 completely, we need to show that any resonant
conformal germ can be realized as the monodromy map of a resonant saddle
with a preassigned linear part compatible with the monodromy.
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414 IV. Functional moduli and applications

Theorem 22.9. For any conformal elliptic germ f : z 7→ e2πiϕz + O(z2),
ϕ ∈ R and any λ < 0 such that λ = ϕ mod Z, there exist a saddle germ
of a planar vector field with the linear part (22.1) whose monodromy map
coincides with f .

Theorem 22.9 in the resonant case was proved by Martinet-Ramis
[MR83], and in the general case by J.-C. Yoccoz and R. Perez-Marco
[PMY94]. The proof presented below goes back to [EISV93].

22G. Realization of monodromy: proof of Theorem 22.9.

22G1. Main idea and preparations. The proof is based on the idea which is
crucial for the study of nonlinear Stokes phenomena. The foliation with the
assigned monodromy is constructed as an abstract complex manifold M not
embedded in any complex linear space. The construction is similar to the
construction of a suspension of a self-map (Theorem 2.31; see §2F) in which
the principal features of the construction are already present.

The manifold M is topologically equivalent to a product of a punctured
disc and another disc, yet the foliation on it is given not by one vector field in
(C2, 0) but rather by several analytic vector fields defined in different charts
on M . The main part of the proof is to identify M as a neighborhood of
the origin in C2 with a w-axis deleted, and the foliation as a phase portrait
of some germ (22.17).

As the first step of this construction, we need some preparation.
Let f be the a conformal elliptic germ. Denote by f0 its formal normal

form (22.2) or (22.10). Without loss of generality we may assume that f
has the form

f = (id +h) ◦ f0, h(w) = o(wN ), (22.17)
for as large N as necessary.

As follows from Lemma 22.2, the formal normal form of the monodromy
map and the linear part of the complex saddle determine uniquely the formal
normal form of this saddle. Let F0 be the corresponding formal normal form
(22.1) or (22.3) of the vector field F that we are attempting to construct.
We will construct F by a surgery on the corresponding foliation F0 defined
by F0: the phase space will be slit along the set (R+, 0)× (C, 0) and sealed
back in such a way that the monodromy will coincide with the preassigned
germ f instead of f0.
22G2. Construction of an abstract holomorphic foliation with the preas-
signed monodromy. Let us introduce the following notations:

(1) Dz = {|z| < 1}, Dw = {|w| < 1} the open unit disks on the
corresponding axes,
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22. Complex saddles and saddle-nodes 415

(2) K0 = Dz r {0} the punctured disk, K̃0 the universal cover of K0

with the coordinates z̃ = (r, ϕ) ∈ R+ × R;

(3) K̃ ⊂ K̃0 the domain on the universal cover,

K̃ = {z̃ ∈ K̃0 : z̃ = reiϕ, r 6 1, −π
4 < ϕ < 2π + π

4 },
(4) M0 = K0 × Dw the unit bidisk without the w-axis,

(5) M̃ = K̃ × Dw the corresponding domain in the covering space,

(6) Π : K̃ → K0 the natural projection onto the z-axis; we also use Π

to denote the projection Π : M̃ → M0,

(7) S0 = {z ∈ K0 : |Arg z| < π
4 }. The preimage Π−1(S0) ⊂ K̃ consists

of two connected components

S = {z̃ ∈ K̃ : −π
4 < ϕ < +π

4 },
S′ = {z̃ ∈ K̃ : 2π − π

4 < ϕ < 2π + π
4 }.

Let F0 be the foliation on M0 determined by the vector field F0 (in
the form (22.1) or (22.3) respectively; the latter form is determined by the
linear part and the normal form (22.3) of the monodromy transformation f
as explained in Lemma 22.2).

Let F̃ and F̃ be the pullback of F0, and F0 on M̃ respectively. For z̃ ∈ S
denote z̃′ ∈ S′ the point with the same projection on K0: Π(z̃) = Π(z̃′).

We will now construct the sealing map

Φ : S′ × Dw → S × C
with the following properties:

(1) Φ preserves the first coordinate, i.e., Φ(z̃, w) =
(
z̃′, Φz(w)

)
(the

notation is consistent since z = Π(z̃) = Π(z̃′));

(2) Φ respects the vector field F̃ and the foliation F̃, bringing leaves to
leaves.

The first property of the sealing map Φ allows us to define the quotient
space M = M̃/Φ by identifying points of S′×Dw with their images (“sealing
the two flaps”) so that the quotient space is naturally equipped with the
projection on the punctured disk K0. The second property means that the
field F̃ and the foliation F̃ defined by it, correctly define a vector field F and
the respective foliation F on M . The leaves of this foliation project without
critical points on the base K0 (i.e., are transversal to all lines {z = const}),
and hence the loop γ generating the fundamental group of K0 defines the
holonomy map for the quotient foliation F on M (for the cross-section
{z = 1}), referred to as the monodromy map.

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



416 IV. Functional moduli and applications

Our immediate goal is to construct the sealing map Φ so that the mon-
odromy of the foliation F coincides with the preassigned germ f .

In order to achieve the Property (2), we extend this map along the leaves
of the foliation F̃. More precisely, for an arbitrary point z̃′ ∈ S′ choose a
simple arc γz connecting z = Π(z̃′) with 1 in the sector S0 = {|ϕ| < π

4 }. The
holonomy map Pz : {z}×Dw → {1}×Dw along the leaves of the foliation F̃0

over the curve γz is covered by two holonomy maps P̃z : {z̃}×Dw → {1}×Dw

and P̃ ′
z : {z̃′} × Dw → {1′} × Dw for the pullback foliation F̃. Since the

sectors S, S′ are simply connected, this map is well defined (independent of
the choice of the arc γz with the same endpoints) for |w| sufficiently small.

Define the extension of Φ on S′ × Dw by the formula

Φ(z̃′, w) = (z̃,Φz(w)), Φz(w) = P̃−1
z ◦ (id+h) ◦ P̃ ′

z(w). (22.18)

We will prove later that this map is indeed well defined in the domain
S′ × {|w| 6 r} and biholomorphic on its image for r > 0 small enough.

Remark 22.10. In fact by the above arguments the sealing map Φ may be
extended to a larger domain

Ω = S1 × {|w| 6 r}, S1 = {z̃ = reiϕ ∈ K̃ : π < ϕ < 2π + π
4 }.

By construction, the sealing map Φ respects the foliation F̃. Denote by
M the quotient space M̃/Φ (the points of M̃ are identified if and only if
one is the Φ-image of the other). Since Φ∗F̃ = F̃ , the vector field F̃ defines
a quotient vector on M denoted by F . The corresponding foliation will be
denoted F. Note that Φ(z̃′, 0) = (z̃, 0), hence the leaf {w = 0} ⊆ M̃ projects
into a separatrix of the foliation F.

It is easy to see that the monodromy of F along the loop coincides with
f ; cf. with Theorem 2.31. Indeed, the monodromy of the foliation F̃ on M̃

is f0, hence the lift of the curve z = e2πit, t ∈ [0, 1], on the leaf of F̃ in M̃
passing through (1, w), ends at (1′, f0(w)). The identification map Φ brings
the latter point to

(
1, (id +h) ◦ f0(w)

)
= (1, f(w)) by (22.17).

The construction of M and F is over, and it remains to identify them. In
fact, we will identify not the manifold M itself, but its smaller open subset.
Let M̃ρ ⊂ M̃ be the preimage of the bidisk {|z| 6 ρ, |w| < ρ} ⊆ C2 on M̃
and denote Mρ its natural projection onto the quotient space M . We will
prove that for ρ > 0 sufficiently small, Mρ is biholomorphically equivalent
to a neighborhood of the origin without the axis (C2, 0) r {w = 0}, while
the vector field F in this biholomorphic chart extends on the deleted axis
to a holomorphic saddle vector field on (C2, 0) from the preassigned formal
class. This requires some technical estimates.

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



22. Complex saddles and saddle-nodes 417

22G3. Asymptotic properties of the sealing map Φ. In this subsection we
prove that for sufficiently large N in (22.17) the map Φ tends to identity
together with some derivatives as z → 0.

Proposition 22.11. If the function h in (22.17) is N -flat at w = 0, then
the sealing map (22.18) admits the asymptotic estimate

|Φz(w)− w| = O(|z|λ(N−2)) as z → 0. (22.19)

uniformly over |w| < 1
2 .

Corollary 22.12. For any natural k the number N in (22.17) may be so
chosen that Φz(w)− w would tend to zero as z → 0 together with its deriv-
atives of order 6 k uniformly in the disk |w| < 1

2 .

Proof of the corollary. It follows from Proposition 22.11 and the Cauchy
estimates. ¤

Proof of Proposition 22.11. The estimates are essentially the same in
both the resonant and nonresonant cases, the latter being more transparent.
In this case the germ F0 is linear, and the holonomy map is linear as well,

Pz(w) = α(z)w, α(z) = z−λ.

Denote by α the map w 7→ αw. Then, by (22.18),

Φz = α(z) ◦ (id+h) ◦ α−1(z),

and therefore by (22.17)

Φz = id+O(zλ(N−1))

In the resonant case,
1
2 |z−λw| < |Pz(w)| < 2|z−λw|

for all sufficiently small z, w. Hence by (22.17)–(22.18),

P−1
z ◦ (id+h) ◦ Pz = P−1

z ◦ (Pz + h ◦ Pz) = id+O(zλ(N−2))

(we simplified the notation in (22.18) ignoring the difference between the
points of the z-plane and its universal covering). ¤

22G4. Identification of the manifold M . We will now construct a diffeomor-
phism between G and a neighborhood of the origin in C2 without the w-axis.
This nonanalytic diffeomorphism nevertheless carries the complex structure
on M into an almost complex structure on its image. The asymptotic es-
timates of the previous subsection allow us to extend this almost complex
structure on the removed axis, obtaining an almost complex structure full
neighborhood of the origin. By the Newlander–Nirenberg theorem, this com-
plex structure is integrable and M turns out biholomorphically equivalent
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to a neighborhood of the origin in C2 without the axis. This will complete
identification of M .

The diffeomorphism G is constructed via a smooth map G̃ : M̃ → C2

respecting the sealing map Φ,

G̃|S′×Dw = G̃ ◦ Φ|S×Dw . (22.20)

Then the quotient map G : M̃/Φ → C2 will be well defined.
The property (22.20) is achieved by the standard smooth interpolation.

Let χ be a smooth real nonnegative cutoff function of one variable ϕ ∈
(−π

4 , 2π+ π
4 ), equal to zero on (−π

4 , +π] and one on [2π− π
4 , 2π+ π

4 ). Denote
χ̃(z̃) = χ(ϕ) for z̃ = reiϕ ∈ K̃ and define

G̃(z̃, w) =
(
z̃, w + χ̃(z̃)Φz(w)

)
. (22.21)

This definition is correct, since in the part of M̃ where Φz is undefined, the
cutoff function χ̃ is identically zero (cf. with Remark 22.10).

Consider the pullback of the complex structure on M by the map H =
G−1. This is an almost complex structure defined by the pullback of the
“(1, 0)-subbundle” (forms of type (1, 0) of the complexified cotangent bundle
on M), as described in §21E.

The (1, 0)-subbundle on M is spanned by two Φ-invariant (1, 0)-forms
on M̃ ,

ζ1 = dz̃, ζ2 = dw + χ̃(z̃) d(Φz(w)− w).
The form dΦz(w) is holomorphic on its domain; the factor χ̃(z̃) is zero
outside this domain. Hence, both forms are of type (1, 0) on the whole of
M̃ . The form ζ2 has two representations over Π−1(S0)× Dw,

ζ2 =

{
ζ0
2 = dw, on S × Dw,

ζ1
2 = dΦz(w) on S′ × Dw.

This implies the required Φ-invariance, since ζ1
2 = Φ∗ζ0

2 . Denote by ζ∗2 the
form induced by ζ2 on the quotient space M .

The almost complex structure on M0 induced by the map G : M → M0

is defined by the two forms,

ω1 = dz, ω2 = H∗ζ∗2 , H = G−1. (22.22)

Proposition 22.13. If the number N in (22.17) is sufficiently large, then
ω2 and dw have the same 4-jet : ω2 − dw → 0 as z → 0 together with its
derivatives of orders 6 4.

Proof. By (22.21),

G̃(z̃, w)− (z̃, w) = χ̃(z̃)(Φz(w)− w).
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The function χ̃ depends on Arg z̃ only. Hence, for any multi-index k with
|k| < 4 the kth derivative of χ̃ grows no faster than r−4 as r = |z̃| → 0.
On the other hand, for N in (22.17) large enough, all the derivatives of
Φz(w)−w of order less than 5 tend to zero faster than r5 as r → 0. Hence,
all the derivatives of the product χ̃(z̃)(Φz(w)−w) of order less than 5 tend
to zero as r → 0. ¤
Proposition 22.14. For any sufficiently small ρ the domain Mρ is biholo-
morphically equivalent to a neighborhood of the origin in C2 without the
w-axis.

Proof. Note that the closure of M0 is a closure of an open domain U ⊂ C2;
topologically, M0 is diffeomorphic to U without the axis. We can continue
the almost complex structure generated by ω1, ω2 to U by postulating that
ω2 = dw on the w-axis. This extended almost complex structure is inte-
grable. Indeed, the almost complex structure (22.22) is integrable on M0

because it is induced from a true complex structure on M . Let L1,0 be the
span of the forms ω1, ω2 Then the integrability condition (21.23) holds on
M0. By continuity, it remains valid after the extension on U . Hence by
the Newlander–Nirenberg Theorem 21.18, there exists a C1 smooth chart
G0 : M0,ρ → C2 for a sufficiently small ρ, which is holomorphic in the sense
of the almost complex structure (22.22). Without loss of generality we may
assume that this chart preserves the z-coordinate and is tangent to identity
at the origin.

The composition map G1 = G0◦G : Mρ → C2 between complex analytic
manifolds is (truly) biholomorphic. This map identifies manifold Mρ with
an open subset of C2 without the w-axis. ¤

22G5. Identification of the singular foliation F. Let us prove that the vector
field F∗ obtained from the field F on Mρ by the holomorphic transformation
G1, may be extended as a saddle vector field with the orbital normal form
F0. To that end, it is sufficient only to prove that F∗ and F0 have the same
linear parts is appropriate coordinates: since F and F0 have the same (i.e.,
analytically conjugate) monodromy, by Lemma 22.2 this will be sufficient to
guarantee that the fields are from the same formal class.

Since the first component of G0 is identically z, the first component of
F∗ is z ∂

∂z . The second component is bounded and holomorphic outside the
w-axis. By the theorem on removable singularity, it may be holomorphically
extended to this axis.

The field F∗ is obtained by transferring the field F0 from M̃ first on Mρ

by passing to the quotient and then on Mρ,0 by the map G0. Since both
maps are tangent to identity by construction, the linear parts of F0 and F∗
coincide. This proves that F∗ is formally equivalent to F0 as requested.
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The proof of the Realization Theorem 22.9 is therefore complete. ¤

22H. Complex saddle-nodes: preparation. The only two remaining
classes of elementary singularities of complex holomorphic foliations, not
yet considered from the point of view of analytic classification, are Cremer
saddles (formally but not analytically linearizable saddles) and degenerate
elementary singularities with one zero and one nonzero eigenvalue of the
linearization at the singular point. While not much can be said about the
former type, the latter admits complete analytic classification very similar to
that of resonant saddles. This classification was achieved by J. Martinet and
J.-P. Ramis. In order to shorten the terminology, we will abbreviate the term
degenerate elementary singularity to (complex) saddle-node; cf. with §9.

By the Poincaré–Dulac theorem, a saddle-node is formally orbitally
equivalent to the integrable normal form

zr+1

1 + azr
· ∂

∂z
− w

∂

∂w
; (22.23)

see Table I.1. We will show that the normalizing series transforming saddle-
nodes to their formal normal forms, usually diverge. In order to make the
subsequent exposition maximally transparent, we will consider only the for-
mal class corresponding to r = 1 and a = 0. The class of saddle-nodes with
such formal invariants will be denoted E0,1.

The normal form (22.23) has two separatrices (the coordinate axes).
However, by Theorem 7.8, only one separatrix is always a smooth holomor-
phic curve. The Euler Example 7.10 shows that the formal series for the
invariant curve tangent to the eigenvector with zero eigenvalue (the center
manifold), may indeed be diverging.

Yet, as in the case of parabolic germs, there always exists a biholomor-
phism conjugating the saddle node with its formal normal form in the sectors
of special form.

Lemma 22.15. A complex saddle-node from the formal equivalence class
E1,0 is analytically equivalent to the foliation generated by the holomorphic
vector field

z2 ∂
∂z −

(
w − zNf(z, w)

)
∂

∂w . (22.24)

Instead of the proof. This statement can be considered as a normalization along the
holomorphic invariant manifold (curve) in complete analogy with Lemma 22.3. The proof
is achieved by minor modification of the proof of that lemma, details are left to the
reader. ¤

22I. Sectorial normalization. Let S± be two sectors of the complex
plane,

S+ = {|Arg z − π
2 | < α}, π

2 < α < π, S− = −S+. (22.25)
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22. Complex saddles and saddle-nodes 421

Each of these sectors is symmetric by the imaginary axis and has opening
greater than π. These two sectors overlap by the two sectors symmetric
by the real axis. They will play different roles and hence have different
names. The fall sector S↓ is the component of the intersection containing the
negative semiaxis, while the sector of jump S↑ is the component containing
the positive semiaxis:

S↑ = {|Arg z| < α− π
2 }, S↓ = {|Arg z − π| < α− π

2 }. (22.26)

The names correspond to the behavior of solutions w = ce−1/x, c ∈ C, of
the formal normal form dw

dz = − w
z2 .

The following result is due to M. Hukuhara, T. Kimura and T. Matuda
(1961).

Theorem 22.16 (sectorial normalization theorem [HKM61]). The saddle-
node foliation generated by the vector field (22.24), is biholomorphically
equivalent to the standard foliation generated by its formal normal form
(22.23) in each of the two cylinders S± × D, where D = {|w| < 1}.

The conjugating biholomorphisms can be chosen preserving the z-
coordinate and continuously extendable by the identity on the w-axis {z = 0}.

As before, on the overlapping of the two cylindrical domains S̃↓ = S↓ ×
D and S̃↑ = S↑ × D two sectorial normalizations need not coincide. The
“disagreement”, an automorphism of the standard foliation, is the modulus
of analytic equivalence, called the Martinet–Ramis modulus.

The construction is based on the (easy) investigation of properties of the
normal form. This normal form for saddle-nodes for the class E1,0 becomes
even more transparent in the chart t = 1/z (in the general case one has to
use the rectifying chart for the z-component of the formal normal form).
The corresponding differential equation takes the form

dw
dt = w, t−1 ∈ S±. (22.27)

Note that the sectors S± after the inversion simply exchange their (indis-
tinguishable) roles. We will keep the notation S↑, S↓ for the sectors of jump
and fall also in the t-plane.

Definition 22.17. We shall say that a biholomorphic map H is a distin-
guished automorphism of the standard saddle-node (22.27) over a connected
simply connected domain U ⊆ C containing infinity in its closure, ∞ ∈ U , if
H maps the cylindric domain U × 1

2D into U ×D, preserves the t-coordinate
and extends continuously at infinity by the identical map of 1

2D into itself,

H(t, w) =
(
t,H(t, w)

)
, t ∈ U, |w| < 1

2 , lim
t→∞H(t, ·) = id . (22.28)
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Each distinguished automorphism H of the equation (22.27), preserving
the t-coordinate is completely determined by the self-map ϕa = H(a, ·) of
any fixed cross-section τa = {t = a} into itself, obtained by the restriction
of H. Indeed, the restriction of H on any other cross-section τb is obtained
by the linear conjugacy,

ϕb = λ ◦ ϕa ◦ λ−1, λ : C→ C, w 7→ λw, λ = eb−a. (22.29)

The following proposition describes the distinguished automorphisms of
the standard saddle-node (22.27) over three types of sectors.

Proposition 22.18.

1. The only distinguished automorphism over the sector of fall S↓ is
generated by the shift, ϕa(w) = w + ca, c ∈ C.

2. All distinguished automorphisms over the sector of jump S↑ are par-
abolic maps fixing the origin, H(t, w) = w + O(w2).

3. The only distinguished automorphism over any of the sectors S± is
the identity H(t, ·) = id.

Proof. If H is a distinguished automorphism over a given sector S, then for
any choice of the point b ∈ S the linear conjugacy ϕb from (22.29) must be
a holomorphic germ with a certain limit as b tends to infinity in the sector.
Expanding ϕa in the Taylor series, we see that after the linear conjugacy
(22.29) the kth Taylor coefficient of ϕa is multiplied by λ1−k:

ϕa(w) = c0 + c1w + c2w
2 + · · · 7−→ λc0 + c1w + λ−1 c2w

2 + · · · = ϕb(w).

1. If S = S↓ is a sector of fall, then the value λ = λb takes arbitrarily
small values, thus multiplication by λ1−k forces all nonaffine (e.g., with k >
2) coefficients of ϕb to grow to infinity as |λb| → 0, unless they are identically
zero. This is compatible with existence of the limit as b → ∞ in S only if
the germ ϕa is affine (i.e., all higher coefficients vanish), ϕa = c0,a + c1,aw.

Since all maps ϕa are linear conjugate, the constant c1,a is the same and
does not depend on a, i.e., c1,a = c1. The condition that ϕa tends to the
identity as a →∞ means that c1 = 1, i.e., that ϕa is a shift: fa(w) = w+ca.

2. If S = S↑ is the sector of jump, then the multiplier λb = eb−a takes
arbitrarily large values as b tends to infinity in S. Thus the free term of
ϕb, corresponding to k = 0, will grow to infinity unless it is identically zero.
Thus ϕa(w) = c1,aw + O(w2). The condition that ϕa tends to the identity
as a →∞ means that c1,a = 1, i.e., that ϕa(w) = w + O(w2) is a parabolic
germ.

3. The last assertion follows from the two previous claims, since each
sector S± contains both a sector of jump and a sector of fall. ¤
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Remark 22.19. If in the definition of the distinguished automorphism the
condition that limϕa = id as a →∞ is relaxed to the assumption that the
limit exists, then the distinguished automorphisms over the sector of fall will
have affine restrictions ϕa(w) = Cw+ca, while over the sectors S± they will
necessarily be linear automorphisms ϕa(w) = Cw.

Note also that replacing a point a by any other point a′ results in a
linear conjugacy of the self-map ϕa by a linear transformation.

22J. Martinet–Ramis modulus and holomorphic classification of
the saddle-nodes. Now everything is ready to describe the holomorphic
classification of complex saddle-nodes. Consider the space MR◦

1,0
∼= C ×

Diff1(C, 0) of pairs (ϕ,ψ): the first element of each pair is a shift, ϕ(w) =
w+c, the second a parabolic germ ψ(w) = w+O(w2). Two such pairs will be
called equivalent , if there exists a linear transform w 7→ Cw, simultaneously
conjugating both components of these pairs. The Martinet–Ramis modulus
is the equivalence class of pairs from MR◦

1,0. The space of equivalence classes
will be denoted by MR1,0.

The sectorial normalization theorem allows us to assign to each saddle-
node from the formal class E1,0 an element of the space MR1,0 as the quo-
tient of the two sectorial normalizations. Let H = (H+, H−) be the normal-
izing cochain, the pair of maps realizing the sectorial normalization in the
cylinders S̃± = S±×D. The coboundary δH = H+◦H−1

− is an automorphism
of the normal form defined in the union S̃↑ ∪ S̃↓ of cylinders over the sectors
S↑ and S↓. Without loss of generality we may assume that this automor-
phism is distinguished. By Proposition 22.18, the cocycle Φ = δH = (ϕ,ψ)
can be identified with an element from the space MR◦

1,0. Using the different
cross-sections and/or a different normalizing chart results in replacing the
pair (ϕ,ψ) by an equivalent pair (ϕ′, ψ′), that is, by the same modulus from
MR1,0.

Thus we constructed the Martinet–Ramis correspondence

E1,0 → MR1,0, F 7→ δHF, (22.30)

which associates with each saddle-node from the formal class E1,0, the equiv-
alence class of coboundary of its normalizing cochain HF, i.e., the Martinet–
Ramis modulus. The components of this modulus play different roles and
will be separately referred to as the shift component and the parabolic com-
ponent of the Martinet–Ramis modulus.

Theorem 22.20 (Analytic classification theorem for saddle-nodes).
1. (Invariant). The Martinet–Ramis moduli of holomorphically equiva-

lent saddle-node foliations coincide.
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2. (Equimodality and equivalence). Conversely, two formally equiva-
lent saddle-nodes with the same Martinet–Ramis modulus, are analytically
equivalent.

3. (Realization). Any element from the space MR1,0 is the Martinet–
Ramis modulus of a suitable saddle-node from the formal class E1,0.

Martinet–Ramis modulus depends analytically on parameters under rea-
sonable assumptions, but we will not discuss the proof here.

Idea of the proof. The first two assertions of the theorem are fairly stan-
dard and their proof coincides almost literally with that of the parallel state-
ments from Theorems 21.15 and 22.8.

The third statement is proved using the surgery, i.e., patching together
two pieces of the same standard foliation (22.23) defined on two cylinders
S̃±, using the given pair (ϕ,ψ) for constructing the transition maps over
the sectors S↑, S↓. These maps are constructed to preserve the standard
foliation. The result of this surgery (the quotient space of the disjoint union
by the transition maps) is an abstract complex 2-dimensional manifold with
a foliation on it. To identify this manifold as the bidisk and the formal type
of the foliation as the class E1,0, the technique of quasiconformal maps is
used in a way similar to that in the proof of Theorem 22.8. ¤

22K. Application of the Martinet–Ramis moduli: existence of
center manifold and topological classification. Topological classifica-
tion of saddle-nodes is much more subtle than the topological classification
of parabolic self-maps and saddles. The reason is the (non)existence of the
center manifold that cannot be determined by any finite order jet of the
foliation at the singular point.

Proposition 22.21. A saddle-node has a holomorphic center manifold if
and only if the shift component of the Martinet–Ramis modulus is trivial
(the identity).

In this case the holonomy of the center manifold coincides with the par-
abolic component of the modulus.

Proof. The center manifold in both sectorial normalizing charts has the
form w = 0 (all other leaves are escaping the neighborhood over the sector
of jump). The leaf w = 0 is always automatically preserved by the parabolic
component of the modulus, thus two local representations correspond to a
single leaf if and only if ϕ(0) = 0. The second assertion is trivial, since
solutions of the normal form are single-valued over the sectors S±. ¤
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22. Complex saddles and saddle-nodes 425

If a saddle-node has an analytic center manifold, then the topological
invariant of the corresponding holonomy (the natural number p; see The-
orem 21.2) is obviously a topological invariant of the singular foliation. It
turns out that there are no other topological invariants.

Theorem 22.22 (P. Elizarov [Eli88]). All saddle-nodes without analytic
center manifold from the formal class E1,0, are topologically equivalent.

Two saddle-nodes from this formal class, both having analytic central
manifolds, are topologically equivalent if and only if the corresponding holo-
nomy germs are topologically equivalent.

General saddle-nodes from the formal class Ep,λ can also be studied using
this technique; see [Eli88, Sad87]. In this case the theory is more involved,
yet at the end a complete classification (both analytic and, based on it,
topological) is available.

22L. Concerning the sectorial normalization theorem. The sectorial
normalization Theorem 22.16 is very similar to the Sibuya Theorem 20.16.
We will explain only the basic ideas of the proof of this theorem, which can
be found in the original book [HKM61] and in [ŻoÃl06, §9.59].

The sectorial transformation which preserves the z-coordinate and trans-
forms the equation in the preliminary normal form (22.24) to the normal
form (22.23) can be obtained as a solution to certain integral equation. The
integral operator associated with this equation is the composition of a resol-
vent for the linear differential equation, and an operator of argument shift.

This equation is easier to write with respect to the new independent
variable t = 1/z. In this case we have the following two differential equat-
ions:

dw

dt
= w + t−Nf(t, w),

dy

dt
= y; (22.31)

and look for a transformation conjugating them, under the form

(t, y) 7→ (t, w), w = y + h(t, y), (22.32)

where h is a function holomorphic over the sector t ∈ S+, |t| > R À 1,
|y| < 1.

Construction of the conjugacy consists of two steps: first, we show that
there exists a piece of the center manifold over the sector S+ which can be
rectified to become the z-axis. This allows us to assume that the function f
vanishes identically on w = 0. In the second step we construct the conjugacy
between the two systems (22.31) assuming that f(t, 0) ≡ 0.

1. In the first step we look for a solution of the first (nonlinear) equation
(22.31). Denote by S′ the resolvent (linear integral operator) which maps
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a function g(t), t ∈ S+, into the unique solution r = r(t) of the differential
equation

dr

dt
= r + g(t), r(t) → 0, as Re t → +∞.

The explicit expression for the resolvent S′ follows from the method of vari-
ation of constants,

S′g(t) =
∫

γ′(t)
et−τg(τ) dτ,

and it is defined for all functions g bounded in S+, if the path of integration
γ′(t) is chosen as a horizontal ray Im τ = const connecting t +∞ with t for
all points t with Im t À 1. For other points a vertical segment is added, as
shown on Fig. IV.3.

Let G′ be the operator that takes the function r(t) into the function
t−Nf

(
t, r(t)

)
. Using this operator, we can describe the solution of the equat-

ion (22.31), corresponding to the central manifold (i.e., which tends to zero
as |t| → ∞, t ∈ S+, as the fixed point of the composition,

r = (S′ ◦G′) r.

One can easily verify, that the operator G′ is strongly contracting in the
same sense as in Lemma 5.14, while S′ is bounded on the space of holo-
morphic functions decreasing at infinity, if N is sufficiently large. Thus the
composition is contracting and has a unique fixed point, corresponding to
a solution. Without loss of generality, we may assume that this solution
coincides with the axis w = 0.

2. To conjugate the two differential equations (22.31), the function
h(t, y) from (22.32) must satisfy the first order partial differential equat-
ion,

Lh = h + t−Nf
(
t, y + h(t, y)

)
, Lh =

(
∂h

∂t
+ y

∂h

∂y

)
. (22.33)

The left hand side of this equation is the Lie derivative Lh of the unknown
function along the vector field corresponding to the formal normal form
dy
dt = y.

Again we consider this nonlinear equation as the perturbation of the
linear nonhomogeneous equation. More precisely, we will define the resol-
vent operator S such that for any function g(t, y), analytic in S+ × D and
decreasing as |t| → ∞, the function Sg is the solution u(t, y) of the equation

Lu = u + g, g = g(t, y), t ∈ S+, |y| < 1. (22.34)

To define the operator S, we use the method of characteristics. The homoge-
neous equation Lu = u immediately admits the solution u(t, y) = v(t, y) et.
The function v(t, y) satisfies then the simplest equation Lv = e−tg, which
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Figure IV.3. Paths of integration γ′(t′), t′ ∈ S+, for construction of
the center manifold and γ(t) for the sectorial normalization

can be solved by the taking the primitive of the function g along the trajec-
tories τ 7→ (τ, eτ ) of the standard field.

We define the solution to (22.34) by the integral

u = Sg, u(t, y) =
∫

γ(t)
et−τ g(τ, yeτ ) dτ. (22.35)

However, the path of integration γ(t) cannot be chosen as before, since yeτ

should remain bounded along this path (otherwise the value of the function
g will not be defined). On the other hand, if Re τ tends to −∞ along the
path, the exponential factor in the integral is growing to infinity, thus we
should restrict the class of functions g. Assume that the function g vanishes
identically on y = 0 and satisfies the inequality |g(t, y)| < C|y| |t|−2 in
S+ × D. Then the integral (22.35) converges absolutely, provided that the
path of integration is chosen as t − R+ for |t| À 1, and a vertical segment
added for the remaining values of t as shown on Fig. IV.3.

Now the rest of the proof is rather standard. We define the operator of
argument shift

G : u(t, y) 7→ t−Nf
(
t, y + u(t, y)

)
, (22.36)

and look for the solution of the partial differential equation (22.33) in the
form of a fixed point for the integral operator,

h = (S ◦G)h, h = h(t, y), t ∈ S+, |y| < 1. (22.37)

The composition in the right hand side is a well-defined operator on all func-
tions h such that h(t, 0) ≡ 0, which decrease faster than |t|−2 as |t| → ∞,
t ∈ S+. Easy estimates similar to those from the proof of Sibuya Theo-
rem 20.16, show that this operator is contracting and hence admits a holo-
morphic solution h = h(t, y) over the sector S+. This solution gives sectorial
normalization in Theorem 22.16. ¤
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Exercises and Problems for §22.

Exercise 22.1. Describe the Ecalle–Voronin modulus for the monodromy of a
resonant saddle analytically equivalent to its formal normal form (22.3).

Exercise 22.2. Prove that two resonant complex saddle foliations are topolog-
ically equivalent, if they have the same linear parts and topologically conjugate
monodromies.

Exercise 22.3. Let F ∈ D(Cn+1, 0) be the germ of a vector field whose lineariza-
tion matrix A has n eigenvalues in the left half-plane Re λ < 0 and one eigenvalue
λ = 1 in the right half-plane (“saddle of index 1”). Prove that the correspond-
ing singular foliation has a one-dimensional “positive” separatrix S tangent to the
eigenvector with the positive eigenvalue, and compute the linearized holonomy as-
sociated with a small loop on S in terms of the block structure of A. Prove that
the corresponding self-map belongs to the Poincaré domain.

Problem 22.4. For any holomorphic map f ∈ Diff(Cn, 0) of Poincaré type, con-
struct a saddle of index 1 as in the previous exercise, which has the holonomy
coinciding with f .

Problem 22.5. Assume that two saddles of index 1 have the same linear parts
and analytically equivalent holonomy maps along the “positive” separatrices, are
analytically equivalent as singular foliations.

Problem 22.6. Prove that a topologically linearizable resonant saddle (singular
foliation on (C2, 0) topologically equivalent to the foliation defined by its linear
part), is holomorphically linearizable.

Problem 22.7. Prove that the holonomy map associated with a holomorphic in-
variant curve of a saddle-node (tangent to the eigenvector with nonzero eigenvalue),
is a parabolic germ.

Problem 22.8. Describe the formal type of the holonomy in Problem 22.7 via the
formal normal form of the saddle-node.

Problem 22.9. Write a detailed proof of Lemma 22.15.

Problem 22.10. Prove that a saddle-node of the formal type E1,0 is analytically
equivalent to its formal normal form if and only if the Martinet–Ramis modulus is
trivial, (ϕ,ψ) = (id, id).

Problem 22.11. Describe the Ecalle–Voronin modulus of the holonomy of a
saddle-node, as it was introduced in Problem 22.7, in terms of the Martinet–Ramis
modulus of the saddle-node.

23. Nonlinear Riemann–Hilbert problem

The nonlinear Riemann–Hilbert problem is a natural analog of its linear
counterpart considered in detail in §18. Analytically the problem consists
of reconstruction of a nonlinear differential equation from its monodromy
data. We restate it in a geometric language.
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23. Nonlinear Riemann–Hilbert problem 429

23A. Statement of the problem. Consider a holomorphic one-dimen-
sional singular foliation F on a complex analytic manifold Mn+1 of any
dimension n + 1 greater than or equal to 2, near a separatrix S ⊂ M (a
compact invariant holomorphic curve carrying one or more singular points
of F). The holonomy group of this foliation is a finitely generated subgroup
H = HF in the group of germs of automorphisms Diff(Cn, 0) of a generic
cross-section to S. The general form of the Riemann–Hilbert problem is the
inverse problem of constructing the foliation F starting from the separatrix
S, the manifold M and the finitely generated subgroup H ⊂ Diff(Cn, 0)
subject to certain restrictions on the types of singular points.

In our considerations the separatrix will always be the Riemann sphere
P, though the ambient manifold can vary; cf. with §23D.

The (linear) Riemann–Hilbert problem considered in §18, corresponds
to the case where M = P × Cn is the trivial holomorphic vector bundle
over S = P and H is a linear subgroup of GL(n,C). The singular points
of the corresponding differential equation were required to be of Fuchsian
type. We introduce now a nonlinear analog of this type. Recall that (by
definition) the foliation F near each singularity is locally defined by the
germ of a holomorphic vector field v having an isolated singular point. The
vanishing order κa(F, S) of F along S was introduced in Definition 14.25.

Definition 23.1. A singular point a ∈ S is called nonlinear Fuchsian, if
the vanishing order of F along S is equal to 1, i.e., if the restriction v|S has
a simple singular point at a.

Since S is smooth, this condition means that the linearization of the
vector field at this point is a linear operator A = v∗,a having a nonzero
eigenvalue associated with the eigenvector tangent to S at a. Without loss
of generality we can assume that the eigenvalue in question is equal to 1.
Then in the local coordinates (t, x), in which the separatrix coincides with
the t-axis, the vector field v generating F, takes the form

ṫ = t + · · · , ẋ = Ax + · · · ,

where the dots denote nonlinear terms of order 2 and higher; cf. with the
formula (16.4) describing linear Fuchsian systems.

Definition 23.2. A foliation is said to be of the class NF (“nonlinear Fuch-
sian”) along a separatrix S, if all its singular points on S are nonlinear
Fuchsian.

In the most simple settings, the manifold M is just a Cartesian product
P×(Cn, 0), a thin cylinder over P. Denote by γ0, . . . , γm the loops generating
the fundamental group of the leaf Pr{a0, . . . , am}, where aj are preassigned
singular points (the product γ0 ◦ · · · ◦ γm is trivial). If F is a foliation on M

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT
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with the leaf Pr{a0, . . . , am}, then it defines the collection of the holonomy
operators ∆γj ,F ∈ Diff(C, 0) associated with the loops γj .

Nonlinear Riemann–Hilbert problem (Cartesian version). Given a
collection of several holomorphic germs g0, . . . , gm ∈ Diff(Cn, 0) such that
their composition is identity, g0 ◦ g1 ◦ · · · ◦ gm = id, construct a holomorphic
foliation F of the class NF on M = P × (Cn, 0) with nonlinear Fuchsian
singularities only at the points aj and the preassigned holonomy operators
∆γj ,F = gj, j = 0, . . . , m.

If F is the foliation solving the Riemann–Hilbert problem, its lineariza-
tion along the separatrix is a meromorphic connexion on the trivial n-
dimensional vector bundle over P, whose monodromy operators associated
with the loops γj will be linearizations Mj of the nonlinear germs gj . There-
fore, the corresponding linear Riemann–Hilbert problem would be solvable.
This observation yields an obvious necessary condition for the solvability
of the Nonlinear Riemann–Hilbert problem, solvability of the corresponding
linear problem.

The natural question arises: whether this necessary condition is also
sufficient? in other words, are there essentially nonlinear obstructions for
solvability of the nonlinear Riemann–Hilbert problem? We show below that
even in the most simple case n = 1, when any linear problem is trivially
solvable, there exist nonlinear obstructions.

23B. One-dimensional case: the example. In the linear one-dimen-
sional case the holonomy group is commutative generated by m + 1 linear
maps x 7→ νjx, j = 0, . . . , m, such that

ν0ν1 · · · νm = 1. (23.1)

A meromorphic connexion defined by the differential equation

dx = ωx, ω =
m∑

j=0

λj
dt

t− aj
, (23.2)

with the meromorphic form ω having simple poles at the points a0, . . . , am

has the preassigned monodromy group, if

exp 2πiλj = νj , j = 0, 1, . . . , m. (23.3)

The point at infinity must be nonsingular, which translates into the condi-
tion

λ0 + · · ·+ λm = 0. (23.4)
The linear Riemann–Hilbert problem would be solved, if a collection of
residues {λ0, . . . , λm} meeting the conditions (23.3)–(23.4) can be con-
structed for the given collection of multipliers {ν0, . . . , νm}. Clearly, (23.1)
is a necessary condition for solvability of the system (23.3)–(23.4). Yet it is

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



23. Nonlinear Riemann–Hilbert problem 431

also sufficient. Indeed, if ν0 · · · νm = 1, then λ0 + · · ·+ λm = k ∈ Z for any
choice of the logarithms (solutions of (23.3)). But one can always replace
λ0 by λ0 − k to ensure that (23.4) holds.

However, when passing from a linear context to the nonlinear one, we
may loose the freedom of choosing the additive integer term k of the residue
arbitrarily. If g is a conformal germ with a multiplicator ν, g(x) = νx+ · · · ,
then it can be realized as a holonomy operator of a nonlinear Fuchsian sin-
gular point with the ratio of eigenvalues λ only if exp 2πiλ = ν. If |ν| = 1
and ν is nonresonant (not a root of unity), then the residue λ must be real
irrational. The case λ > 0 corresponds to a singular point of the Poincaré
type (cf. §5A), hence the corresponding monodromy germ g should neces-
sarily be analytically linearizable by Poincaré Linearization Theorem 5.5.
Thus a germ g which is not analytically linearizable, can be realized as a
monodromy map of only a nonlinear saddle corresponding to λ < 0. This
inequality, if it holds for every singularity, is an obstruction to the condition
(23.4).

In more details, the above argument shows that the group generated by
nonresonant analytically nonlinearizable germs g0, . . . , gm cannot be realized
as the holonomy group of a holomorphic foliation; if this were possible, then
the sum of all residues of the linearization of the vector field would be strictly
negative, contradicting (23.4). Such examples can occur already for m = 2
(i.e., with three singular points). In the following section a general neces-
sary and sufficient condition for solvability of the one-dimensional Nonlinear
Riemann–Hilbert problem is given.

23C. Local Riemann–Hilbert problem. Since a hyperbolic conformal
germ is always analytically linearizable, we consider only nonhyperbolic
germs with the multiplicators on the unit circle. Such multiplicators have
the form ν = exp 2πiλ with λ real; the germ is resonant if and only if λ ∈ Q.
It is convenient to introduce the normalized logarithm of numbers on the
unit circle, choosing the branch as follows:

|ν| = 1, ln− ν = λ ⇐⇒ exp 2πiλ = ν, −1 6 λ < 0. (23.5)

A nonresonant conformal germ is always formally linearizable, but may
be not analytically linearizable. Such “pathological” germs will be referred
to as Cremer germs (the term “Cremer point” being common in holomor-
phic dynamics [Mil99]). Their existence (and even abundance for certain
irrational values of λ) can be proved by the methods described in §5G.

A resonant germ may be formally linearizable, but in this case an appro-
priate iterational power of the germ is a formally linearizable map tangent
to identity, i.e., the identity map itself. In such a case the formal conjugacy
is in fact analytic and the initial germ (a root of identity) is analytically
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linearizable. Resonant nonlinearizable germs were discussed in detail in §22.
By Theorem 22.9, any such germ can be realized as the monodromy map
of a holomorphic separatrix for a nonlinear resonant saddle with a negative
ratio of eigenvalues λ ∈ −Q+. Yet some resonant germs can also be realized
as monodromies of a nonlinear resonant node; see Table I.1,{

ẋ = nx + ayn,

ẏ = y.
(23.6)

with a positive ratio of eigenvalues 1 : n. Such a node, always analyti-
cally equivalent to its formal normal form (23.6), has a unique holomorphic
smooth separatrix through the origin. We will refer to germs that can be
realized as monodromies of resonant nodes as Dulac germs. Clearly, a nec-
essary condition for being a Dulac germ is ν = exp 2πi/n for some n > 2.

Remark 23.3. The property of being a Dulac germ cannot be determined
by any finite order jet, yet their existence is obvious.

This classification is designed to make the following inequalities true.

Lemma 23.4. 1. If a nonhyperbolic analytically nonlinearizable germ with
multiplicator ν on the unit circle is realized as the monodromy map of a
nonlinear Fuchsian singular foliation with the ratio of eigenvalues λ ∈ R,
then

λ 6
{

ln− ν + 1, for Dulac germs,
ln− ν otherwise.

(23.7)

2. Conversely, any nonhyperbolic analytically nonlinearizable conformal
germ can be realized as the monodromy of a nonlinear Fuchsian singular
foliation with the ratio of eigenvalues satisfying the inequality (23.7).

Proof. If a Dulac germ is realized as the monodromy map of a resonant node
(23.6), then the corresponding ratio of eigenvalues is 1

n and the multiplicator
ν = exp 2πi/n. By definition of ln−, the branch of the normalized logarithm
should be chosen so that ln ν = −1 + 1

n and we have the equality λ =
ln− ν +1. If the germ (Dulac or Cremer) is realized as the monodromy map
of a nonlinear resonant saddle, then ln− ν is the maximal value for the ratio
of eigenvalues that is still negative; choosing any bigger value would mean
that the singularity is a node rather than a saddle.

The second assertion of the lemma follows immediately from Theo-
rem 22.9. ¤

Lemma 23.4 immediately implies the necessity assertion of the follow-
ing theorem giving a complete solution of the Nonlinear Riemann–Hilbert
problem in the one-dimensional case.
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23. Nonlinear Riemann–Hilbert problem 433

Theorem 23.5. A collection of conformal germs g0, . . . , gm ∈ Diff(C1, 0)
satisfying the condition g0 ◦ · · · ◦ gm = id can be realized as generators of the
holonomy group of a foliation of the class NF on the trivial bundle P×(C1, 0)
if and only if one of the following two conditions hold :

(1) at least one germ gj is linearizable, or
(2) the collection contains k Dulac germs, and

k +
m∑

0

ln− νj > 0, νj =
dgj

dx
(0). (23.8)

Indeed, if the linearization of the foliation F realizing the prescribed ho-
lonomy group is described by the linear equation (23.2), and all singularities
are nonlinearizable, then Lemma 23.4 applies to all of them. Combining the
equality (23.4) with the inequalities (23.7), we obtain the inequality

0 =
m∑

0

λj 6
∑

Dulac

(1 + ln− νj) +
∑

other

ln− νj = k +
∑

all

ln− νj .

In the next subsection we derive the global sufficiency assertion of Theo-
rem 23.5 from local sufficiency assertions of Lemma 23.4.

23D. Sufficiency of the solvability conditions. The proof of the suf-
ficiency part of Theorem 23.5 is organized along the same lines as in §22:
we construct a singular holomorphic foliation on an abstract holomorphic
2-manifold M , which realizes the specified holonomy group, and then iden-
tify M as a neighborhood of the Riemann sphere P × {0} in the Cartesian
product P× (C1, 0).

In the first step we construct a nonsingular foliation on the open neigh-
borhood M ′ of the holed sphere U obtained by deleting from P small disjoint
disks D′

0, . . . , D
′
m around the singular points a0, . . . , am of the singular locus

Σ ⊂ P. The holed sphere U itself will be the leaf L0 of this foliation, and
the holonomy group of it will coincide with H (note that the fundamental
groups of U and PrΣ coincide). The construction, the “simultaneous sus-
pension” of several holomorphic self-maps, is organized along the same lines
as the suspension of a single self-map in Theorem 2.31.

In the second step we seal the holes in M ′ with the cylinders Dj×(C1, 0)
carrying singular foliations Fj , in such a way that their separatrices Dj×{0}
will be sealing the holes in the leaf L0; here Dj c D′

j are slightly bigger disks
sealing the holes on U . The singular foliations Fj of the class NF, constructed
in the second assertion of Lemma 23.4, have the preassigned monodromy
maps associated with these separatrices. The freedom of choice of the ratios
λj of the corresponding eigenvalues is constrained by the inequalities (23.7).
In the assumptions of the theorem one can use the remaining freedom to
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guarantee that
∑

j λj is zero. As a result, we obtain a singular foliation F

defined on an abstract 2-dimensional manifold M , which is of class NF with
respect to the leaf L ∼= P carrying only singularities of the class NF at the
specified points.

The sealing step can be implemented preserving the “horizontal coor-
dinate in the direction of L”, so that leaves of the singular patches Fj are
graphs of solutions of suitable ordinary differential equations, except for the
vertical separatrices through the singular points.

Thus together we obtain an abstract manifold M with a singular foliation
F on it, a “horizontal” separatrix L ∼= P of this foliation, carrying all non-
linear Fuchsian singularities of F, and a holomorphic projection π : M → L
of constant rank 1, which is transversal to the foliation over all nonsingular
points.

Consider the normal bundle of the embedded curve L, i.e., by defini-
tion, the quotient bundle TM/TL over P. The linearization of the 1-form
determining F yields a meromorphic connexion on the normal bundle with
Fuchsian singularities at the points aj only; the residues of this connexion
are the ratios λj . The degree of this bundle is equal to the sum of all ratios∑

j λj by Theorem 17.33. In our construction this sum is equal to zero, that
is, the normal bundle of L in M is trivial, TM/TL ∼= P× C1, as explained
in §17D.

At the final stage of the proof we use the Savel′ev–Grauert Theorem 23.6
to show that if the normal bundle is trivial, then the manifold M itself is
biholomorphically equivalent to the cylinder P× (C1, 0) as requested.

We pass on to the detailed exposition. Let Û be the universal covering
over U . This is a Riemann surface whose points are pairs (t, γ), where t
is a point in U and ρ is the homotopy class of a path connecting t with
a fixed base point a∗ ∈ U . The fundamental group π1(U, a∗) naturally
acts on the universal covering: a loop γ ∈ π1(U, a∗) sends (t, ρ) to (t, ρ ◦
γ). The automorphisms of Û defined in such a way are called covering
transformations or deck transformations; see [For91].

Any representation H : π1(U, a∗) → Diff(C1, 0) of the fundamental group
of U by conformal germs defines the action of the fundamental group
π1(U, a∗) on the Cartesian product M̂ = Û × (C1, 0): a loop γ acts by
the transformation Gγ as follows:

Gγ : (t, ρ, z) 7→ (t, ρ ◦ γ, g−1(z)), g = H(γ) ∈ Diff(C1, 0). (23.9)

The quotient space M̂ = Û × (C1, 0)/G (the space of orbits of this action)
is a holomorphic 2-manifold equipped with the natural projection π̂ on U .
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The Cartesian product Û × (C1, 0) carries the trivial holomorphic (non-
singular) foliation by the curves {z = const}. These curves are locally pre-
served by the action (23.9) and hence the quotient space M ′ gets equipped
with a well-defined foliation F′. Since all germs H(γ) fix the origin, U ×{0}
is a well-defined embedded curve in M ′ which is a leaf L of the foliation FM .
By construction, the holonomy of F′ associated with the leaf L, coincides
with the group H. The projection π̂ : M̂ → U factors through the natural
projection π′ : M ′ → U which makes M ′ into a one-dimensional (nonlinear)
bundle over the holed sphere U .

In the next step we seal the holes by bidisks Dj×(C1, 0), j = 0, 1, . . . , m,
where Dj ⊃ D′

j are slightly bigger (but still disjoint) disks around the deleted
singularities. On each such bidisk we consider a holomorphic foliation Fj

with a unique nonlinear Fuchsian singular point, whose holonomy map re-
alizes the preassigned conformal germ gj .

It is important that under the assumption (23.8) the foliations Fj can be
chosen so that the corresponding ratios of eigenvalues λj satisfy the equality
(23.4). Indeed, under this condition the natural number l = −∑m

0 ln− νj

does not exceed the number k of Dulac germs in the given collection
{g0, . . . , gm}. We choose any l Dulac germs and realize them as holonomy
maps of resonant nodes (this is possible by the definition of Dulac germs),
while all other germs will be realized as holonomy maps of saddles (resonant
or nonresonant) with the ratios of eigenvalues λj exactly equal to the re-
spective normalized logarithms ln− νj . Finally, if one of the germs, say, g0 is
holomorphically linearizable, then one can always realize it as the holonomy
group of a linear singularity F0 with the ratio of eigenvalues λ0 such that
(23.4) holds no matter what the other ratios were.

Formally, the sealing of the holes in M ′ is organized in a way resem-
bling the construction of suspension (Theorem 2.31). Denote by πj : Dj ×
(C1, 0) → Dm the projections parallel to the second Cartesian components.
Consider the disjoint union

M ′ tD0 × (C1, 0) t · · · tDm × (C1, 0) (23.10)

with the following identification of points. The intersection
(
Dj × (C1, 0)

)∩
M is biholomorphically equivalent to the cylinder over the annulus Kj =
Dj ∩ (P r D′

j). Take any two cross-sections π′−1(t, 0) and π−1
j (t, 0) to Fj

and F′ respectively at the same point (t, 0), t ∈ Kj , and identify these cross-
sections in an arbitrary (holomorphically invertible) way. This identification
can be uniquely extended along the leaves of the foliations by analytic con-
tinuation, conjugating at the same time π′ with πj . Since the germs of the
holonomy maps associated with the middle circle loop of Kj for both F′ and
Fj are equal to the same germ gj (by construction), the identification of
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points on the transversals extends to identification (biholomorphic maps) of
cylinders π′−1(Kj) with π−1

j (Kj) sending leaves to leaves.
As a result of sealing the holes, we obtain the quotient foliation F on the

quotient space M of the disjoint union (23.10) by the equivalence relation
obtained via the above identification of points. The space M inherits the
natural structure of a holomorphic (nonlinear) bundle over L ∼= P: the
projections π′ and π1, . . . , πm together define a well-defined holomorphic
projection π : M → L. The holonomy group of this foliation by construction
coincides with the group generated by the specified germs gj . What remains
is to show that the surface M itself is biholomorphically equivalent to the
trivial cylinder P× (C1, 0).

The holomorphic curve L ∼= P is regularly embedded into the surface
M . Consider its normal bundle, a linear holomorphic vector bundle over
L whose fibers are the quotient spaces TaM/TaL of complex dimension
1. The holomorphic type of any line bundle is completely determined by
its degree; see §17D. In particular, a line bundle of degree 0 is trivial, i.e.,
biholomorphically equivalent to the cylinder L×C. By Theorem 17.33, this
degree is equal to the sum of residues of any meromorphic connexion on this
bundle.

Linearization of the foliation F along the curve L yields, as explained
in §14B, such a meromorphic connexion. In any local chart this connexion
is defined by a meromorphic differential 1-form with poles at the singular
points aj ∈ Σ; cf. with (23.2). The corresponding residues are the ratios λj

of eigenvalues of nonlinear Fuchsian singularities of F. By construction of
the foliation F, the sum of residues is equal to zero, hence the normal bundle
of L in M has degree 0.

The assertion of the theorem now follows from the following theorem
due to H. Grauert (1962, for negative degree) and V. Savel′ev (1982, for
zero degree).

Theorem 23.6 (H. Grauert [Gra62], V. I. Savel′ev[Sav82]). If the normal
bundle of an embedded Riemann sphere P ∼= L ⊂ M has a nonpositive degree,
then a small neighborhood of L in M is biholomorphically equivalent to the
neighborhood of the null section in the normal bundle.

Indeed, a zero degree line bundle is trivial, hence M near L is locally
biholomorphically equivalent to the cylinder, as required. The proof of The-
orem 23.5 is complete. ¤

Appendix I. Nonlinear Riemann–Hilbert problem on the excep-
tional divisor. In the formulation of the nonlinear Riemann–Hilbert prob-
lem as stated in §23A, choosing the manifold M to be a Cartesian product
of the separatrix and the (poly)disk is not the only natural one.
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Recall (cf. with §11C) that any germ of a vector field of order m which
has a nondicritical blow-up, has a naturally defined vanishing holonomy
group (the holonomy of the exceptional divisor after a simple blow-up),
which for a generic germ of order m is generated by exactly m+1 conformal
germs; see p. 122. In this appendix we give necessary and sufficient condi-
tions for a subgroup of Diff(C1, 0) of conformal germs to be realizable as the
vanishing holonomy.

Denote by Nm the class of (germs of singular holomorphic) foliations
generated by holomorphic vector fields F = (pm + · · · ) ∂

∂x + (qm + . . . ) ∂
∂y

of order m such that the homogeneous polynomial hm+1 = ypm − xqm is
square-free.

Theorem 23.7. A collection of conformal germs g0, . . . , gm ∈ Diff(C1, 0)
satisfying the condition g0 ◦ · · · ◦ gm = id can be realized as generators of the
vanishing holonomy group of a foliation of the class Nm, if and only if one
of the two conditions hold :

(1) at least one germ gj is linearizable, or
(2) the collection contains k Dulac germs, and

k +
m∑

0

ln− νj > −1, νj =
dgj

dx
(0). (23.11)

Proof. After a simple blow-up σ : (M,E) → (C2, 0) a foliation from the class
Nm on (C2, 0) becomes a holomorphic singular foliation on the complex
Möbius band M near the exceptional divisor E (cf. with Definition 8.11).
The exceptional divisor is a separatrix of this foliation, and all singularities
are nonlinear Fuchsian by Proposition 8.18. The sum of residues of the
connexion linearizing any foliation having E as the separatrix, is equal to
−1, as explained in Theorem 14.7.

Exactly the same arguments that prove Theorem 23.5, show that the
assumptions of the theorem are necessary and sufficient for existence of a
singular holomorphic foliation on a neighborhood of zero section of the line
bundle of degree −1 over P with the specified holonomy. By the Grauert
Theorem 23.6, any such bundle is locally biholomorphically equivalent to
the bundle (M,E) → E.

The blow-up projection σ : (M,E) → (C2, 0) carries the constructed holo-
morphic foliation to a holomorphic foliation on the punctured neighborhood
of the origin in C2. By the removable singularity theorem, such a foliation
holomorphically extends to the origin and necessarily is of the class Nm. ¤

Appendix II. Demonstration of the Savel′ev theorem. We give here
the proof of the Savel′ev theorem in the particular form we need. Let
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π : M → P be a holomorphic one-dimensional bundle (holomorphic pro-
jection of constant rank one) over the embedded Riemann sphere P ↪→ M .
This nonline bundle can be linearized: the linear fiber over a point t ∈ P is
the tangent space to the fiber π−1(t), i.e., the kernel Ker dπ ⊂ TtM . Be-
cause of the condition on the rank of π, this kernel is always transversal to
the tangent subspace to P; this allows us to identify the above bundle with
the normal bundle N = TM/TP of the embedded curve P ↪→ M .

Theorem 23.8. Assume that the normal bundle N of an embedded pro-
jective line P ↪→ M has degree 0 and hence is trivial. Then the bundle
π : M → P itself is locally holomorphically trivial, i.e., there exist a biholo-
morphism between a neighborhood of P in M and a cylinder P×(C1, 0) which
conjugates π with the Cartesian projection on P.

Proof. Consider the covering of the Riemann sphere P by two open circular
disks U± intersecting by an annulus K ⊂ P; we will work in the affine chart
such that K = {1

2 < |t| < 3
2}.

By the Y.-T. Siu theorem [Siu77, Corollary 2], we may assume that the
bundle π is trivialized over these disks5. In other words, each of the open sets
π−1(U±) can be equipped with the local coordinates (t, x±) ∈ U± × (C1±, 0)
such that the π is the projection parallel to the respective x±-coordinate on
the t±-axis.

The transition function between the two charts respects the map π de-
fined globally, hence must have the form

(t, x−) 7→ (t, x+), x+ = F (t, x−) = x− + f(t, x−). (23.12)

The linearization ϕ(t) = ∂F
∂x (t, 0) = 1 + ∂f

∂x (t, 0) defines a scalar Birkhoff-
Grothendieck cocycle ϕ : U+ ∩ U− → C r {0} and determines the linear
(1-dimensional) normal bundle N , as explained above. By assumption of
the theorem, this bundle is trivial, ϕ = ϕ+/ϕ− for appropriate holomorphic
functions ϕ± nonvanishing in U± respectively. Replacing the coordinate
functions x+, x− by ϕ+(t)x+ and ϕ−(t)x− respectively, one may guarantee
that the function f(t, x) has no linear terms in its Taylor expansion in x,

f(t, x) = q(t)x2 + · · · , t ∈ K = U+ ∩ U−. (23.13)

The problem of trivialization of the bundle π : M → P globally over the
union of the charts U+ ∪U− reduces to finding two new holomorphic charts
which would agree over the intersection π−1(U−) ∩ π−1(U+). Denoting this
(common) chart by x, we are hereby looking for the holomorphic functions
x± = x + h±(t, x) satisfying (23.12). This latter condition is a functional
equation

x + h−(t, x) + f
(
t, x + h−(x)

)
= x + h+(t, x), (23.14)

5In fact, the Siu theorem holds in any dimension for any embedded Stein manifold.
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which has to be solved with respect to the pair of functions h±(t, x), holo-
morphic in U± × (C1, 0) respectively.

Note the similarity between the equation (23.14) and (5.6) that arises in
the proof of the Poincaré theorem on analytic linearization. Not surprisingly,
the method of the proof is similar.

Consider first the homological equation obtained by “linearization” (ig-
noring the argument shift) of (23.14). Omitting the (common after such
“linearization”) arguments, we obtain the linear functional equation

h− − h+ = f. (23.15)

This equation can be instantly solved by expanding f in the (convergent)
Laurent series and taking h− as the sum of its Taylor part and H+ as the
sum of all negative powers of t. The operator

L : f 7→ h = (h−, h+) (23.16)

is bounded (this can also be seen from the Cauchy representation; see Prob-
lem 23.1).

Consider now the operator of argument shift

S = Sf : h 7→ f ◦ (id+h−), (23.17)

defined on pairs of holomorphic functions and taking values in functions
holomorphic in K × (C1, 0). More specifically, we introduce the scale of
Banach spaces B±ρ , B0

ρ of functions holomorphic on U± × {|x| 6 ρ} and
K × {|x| 6 ρ} respectively, equipped with the maximum modulus norm.
Then the operator of argument shift Sf is strongly contracting in the sense
of Definition 5.13. Indeed, since the function f = f(t, x) has no constant
and linear terms in x for all t, the arguments of Lemma 5.14 apply almost
verbatim: ‖Sf (0)‖ρ = ‖f‖ρ = O(ρ2), and similarly ‖Sf (h) − Sf (h′)‖ρ 6
O(ρ)‖h− h′‖ρ if ‖h‖ρ, ‖h′‖ρ 6 ρ.

The functional equation (23.14) can be rewritten as the equation for the
fixed point h = (h+, h−) of the composition operator L ◦ Sf ,

h = L ◦ Sf (h), h ∈ B+
ρ ×B−ρ . (23.18)

The composition of a bounded operator L with a strongly contracting op-
erator Sf is contracting for all sufficiently small ρ > 0. By the fixed point
theorem, the equation (23.18) (and together with it (23.14)) has a unique
holomorphic solution. This completes the proof of Savel′ev’s theorem. ¤
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Exercises and Problems for §23.

Problem 23.1. Let K = {1/2 < |z| < 3/2} be the annulus, and P± the integral
Cauchy operators,

(P+f)(z) =
1

2πi

∮

|z|=3/2

f(ζ) dζ

ζ − z
, (P−f)(z) = − 1

2πi

∮

|z|=1/2

f(ζ) dζ

ζ − z
,

representing a function f ∈ A(K) as a difference of two functions h± = P±f ,
holomorphic and bounded in the disks {|z| < 3/2} and {|z| > 1/2} on the Riemann
sphere P. Denote by ‖f‖ = maxζ∈K |f(ζ)| the supremum-norm.

Prove that |P+f(z)| 6 3‖f‖ if |z| 6 1 and |P−f(z)| 6 3‖f‖ if |z| > 1.
Prove that |P+f(z)| 6 ‖f‖+ 3‖f‖ = 4‖f‖ for |z| > 1. Prove that the norm of

the operator P+ is no greater than 4.

Problem 23.2. Assume that a foliation of the class NF on the Cartesian prod-
uct P × (C, 0) with the coordinates (z, w) has all vertical separatrices {z = aj},
a1, . . . , an ∈ P, and the point at infinity is nonsingular.

Prove that this foliation can be defined by an ordinary differential equation

dw

dz
=

n∑

j=1

fj(w)
z − aj

,
n∑

j=1

fj(w) ≡ 0, (23.19)

with holomorphic germs f1, . . . , fn ∈ O(C, 0).

Exercise 23.3. Prove that for n > 4 not all foliations from the class NF on the
Cartesian cylinder P× (C, 0) can be brought into the form (23.19). What happens
for n 6 3?

Problem 23.4. Prove that in the assumptions of Theorem 23.5 the holonomy
group can be constructed in the class of foliations described in Problem 23.2.

Problem 23.5. Prove that Dulac germs are holomorphically embeddable.

The following series (Problems 23.6–23.13) distilled from the beautiful paper
[Lor06], proves existence of the converging normal form for cuspidal singularities;
see p. 72.

Problem 23.6. Prove that a cuspidal vector field with the linearization w ∂
∂z can be

analytically transformed to the preliminary normal form F0 = f(z, w) ∂
∂z +g(z, w) ∂

∂w
with f(0, 0) = g(0, 0) = 0 and f(0, w) = w in a sufficiently small bidisk (C, 0)×D0,
D0 = {|w| < r} ⊂ P.

Problem 23.7. Consider the vector field F1 = w ∂
∂z on the bidisk (C, 0) × D1,

D1 = {|w| > r/2} ⊂ P. Prove that the restriction of the two fields F0, F1 on
the cylinder over the annulus (C, 0) × K, K = D0 ∩ D1, are biholomorphically
equivalent by a conjugacy H(z, w) that fixes the points of the annulus {z = 0},
H(0, w) = (0, w).

Problem 23.8. Let M̃ =
(
(C, 0) × D0

) t (
(C, 0) × D1

)
be the disjoint union of

the two bidisks and M = M̃/H is the quotient space by the map H constructed
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w-axis

w=∞

z-axis

Singularity
of F

F

foliation
nonsingular

L ∼ P

Figure IV.4. Foliation with a cuspidal singularity and a pole, obtained
by “globalization”

in Problem 23.7. Prove that the manifold M carries a meromorphic vector field
F (coming from the fields F0, F1 in the respective charts (C, 0)×Di) and hence a
singular holomorphic foliation F. Prove that the foliation F has a unique singular
point on the embedded projective line L ∼= P which appears from the union of the
two disks

({0} ×D0

) ∪ ({0} ×D1

)
; cf. Fig. IV.4.

Problem 23.9. Using the field F , construct a meromorphic section of the normal
bundle NL = TM/TL of the embedded curve L. Prove that this section has one
simple zero at w = 0 and one simple pole at w = ∞.

Problem 23.10. Prove that the normal bundle N of the embedding L in M is
trivial. Prove, using Savel′ev’s Theorem 23.6, that there exists a neighborhood of
L in M , biholomorphically equivalent to the Cartesian product (C, 0)× P.
Problem 23.11. Show that the tangency curve S between F and the foliation
{z = const} is a smooth holomorphic curve transversal to L.

Find a biholomorphism bringing S to the line {w = 0} and the polar locus of
F to {w = ∞}.
Problem 23.12. In the coordinates (z, w) ∈ (C, 0) × P the vector field F has all
coefficients rational in w. Prove that, in fact,

F = f(z)w ∂
∂z +

(
g0(z) + wg1(z)

)
∂

∂w (23.20)

with three holomorphic germs f, g0, g1 ∈ O(C, 0), f(0) 6= 0.

Problem 23.13. Find the transformation (z, w) 7→ (
h1(z), w+h2(z)

)
which brings

the field (23.20) into the normal form which appears in Table I.1.
Hint. First bring the function f to f ≡ 1 by changing only the z-coordinate.
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24. Nonaccumulation theorem for hyperbolic polycycles

[What can be said about ] the maximal number of and position of
Poincaré’s boundary cycles (cycles limites) for a differential equation

of the first order and degree of the form dy
dx

= Y
X

, where X and Y are
rational integral functions of nth degree in x and y?

D. Hilbert, 1901, reprinted from [Hil00]

This second part of Hilbert’s sixteenth problem appears to be one of
the most elusive in his famous list [Hil00], second only to the Riemann ζ-
function Conjecture. In the introductory subsection §24A based on [Ily02],
we briefly describe the current status of this problem.

The body of the section is devoted to investigation of limit cycles of
analytic vector fields6. The central result of this section, Theorem 24.24 on
finiteness of limit cycles of analytic vector fields having only nondegenerate
singular points, was proved by Yu. Ilyashenko in [Ily84].

24A. Legends and truth on the limit cycles. As most problems from
the Hilbert’s list, the sixteenth problem is formulated very broadly and can
be made precise in a variety of ways.
24A1. Various flavors of Hilbert’s sixteenth. By different placement of quan-
tifiers the Hilbert’s question can be transformed into three problems in in-
creasing order of strength as follows.

Problem I. Is it true that a planar polynomial vector field may have only
finitely many limit cycles?

Problem II. Can the number of limit cycles be bounded by a constant de-
pending only on the degree n of the vector field?

Assuming the affirmative answer to Problem II, denote by H(n) the
Hilbert number , the conjectural bound for the number of limit cycles that a
polynomial vector field of degree n may exhibit. Linear vector fields have no
limit cycles, hence H(1) = 0. Finiteness of H(2) is already an open problem.

Problem III. Give an upper bound for H(n).

Only Problem I is solved now. The affirmative answer was proved inde-
pendently in [Ily91] and [Eca92].

To separate analytic and algebraic aspects of the Hilbert problem, we
will consider the following two questions concerning real analytic rather than
polynomial vector fields.

6Recall that the limit cycle of a vector field is an isolated compact leaf of the real foliation
defined by the vector on the real plane, real 2-sphere or the projective plane RP 2; cf. with
Definition 9.11
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24. Nonaccumulation theorem for hyperbolic polycycles 443

Problem IV. Is it true that a real analytic vector field on the 2-sphere S2

has only a finite number of limit cycles?

The “purely analytic” counterpart of Problem II has the following form.

Problem V. Given a parametric family of real analytic vector fields on the
2-sphere, analytically depending on finitely many parameters varying over a
compact subset in the parameter space, is it true that the number of limit
cycles in this family is uniformly bounded?

An affirmative answer in Problem V implies solutions of the Problems I,
II and IV, since polynomial vector fields can be extended as real analytic
foliations of the 2-sphere, and constitute a finite-parametric family para-
meterized by the coefficients of the vector fields varying over the projective
space (see §25A for detailed explanations). In fact, it is the solution of
Problem IV that is achieved in [Eca92] and [Ily91]. In other words, the
known individual finiteness of limit cycles for polynomial vector fields has
analytic rather than algebraic nature.

Clearly, all these questions reformulated literally for C∞-smooth rather
than real analytic vector fields, have negative answers; see §9F. Yet some-
what surprisingly there are meaningful questions which are reasonable
“smooth analogs” of the above analytic problems. The following formu-
lation is an implicit conjecture that the exotic smooth vector fields with
infinitely many limit cycles constitute a subset of infinite codimension in
the total space of C∞-smooth vector fields on the sphere.

Problem VI (Hilbert–Arnold problem). Given a generic n-parametric fam-
ily of C∞-smooth vector fields on the 2-sphere, smoothly depending on para-
meters varying over a compact subset in the parameter space, is it true that
the number of limit cycles in this family is uniformly bounded?

A restricted version of this problem (under the additional assumption on
the types of singular points that are allowed to occur in the family) is solved
in [IY95]. We wish to stress that this formulation is unrelated (neither
implies nor is implied by) to any of the algebraic/analytic Problems I to V.
24A2. Historical sketch. As is typical for most of the problems from
Hilbert’s list, the sixteenth problem lies on the crossroads of many different
directions and served as a motivation for many developments. Yet its own
history is rather dramatic: several times it was believed to be proved only
to later discover gaps.

Before Hilbert, Henri Poincaré considered polynomial vector fields in the
plane, in the framework of his geometric theory of differential equations. He
introduced the notion of limit cycle and proved that a planar polynomial
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vector field without saddle connexions has only a finite number of limit
cycles.

In 1923, Dulac [Dul23] claimed a solution of Problem I in full generality.
In the mid-fifties of the twentieth century, Petrovskii and Landis published a
solution to Problem III [PL55, PL57]. They claimed that H(n) is bounded
by a certain polynomial of degree 3 in n, and H(2) = 3. In the early sixties
a severe error in the arguments by Petrovskii and Landis was revealed by
S. Novikov and Yu. Ilyashenko. Later quadratic vector fields with 4 limit
cycles were explicitly constructed in [CW79, Shi80b].

In 1981, a ruinous gap was found in Dulac’s solution of Problem I
(cf. [Ily85]): Dulac was operating with asymptotic series as if they were
convergent. Thus after eighty years of intense efforts our knowledge on
Hilbert’s sixteenth problem was still almost the same as at the time when
the problem was formulated.
24A3. Some recent progress on the Hilbert’s sixteenth problem. The princi-
pal achievement is the general theorem solving Problems I and IV.

Theorem 24.1 (Individual finiteness theorem, [Ily91, Eca92] ). A poly-
nomial vector field in the plane has only a finite number of limit cycles. The
same is true for analytic vector fields on the 2-sphere.

After some preliminary work described in §24B–§24D, the Finiteness
Theorem 24.1 follows from the Nonaccumulation Theorem 24.23 formulated
below. It is the Nonaccumulation theorem that is the most difficult result,
whose proof occupies hundreds of pages. We will not discuss it, though the
analytic normal forms for parabolic singularities and saddle resonant vector
fields obtained in §21–§22 play the key role in this analysis. Ecalle’s theory
of resurgent functions is presented in [Eca85, Eca92].

The infinitesimal Hilbert’s sixteenth problem deals with limit cycles that
appear by perturbation of Hamiltonian vector fields that do not have limit
cycles at all. Its main tool is investigation of Abelian integrals considered
as analytic multivalued functions of complex parameters. These questions
are discussed in detail in §26 below.

Bifurcation theory is intimately related to Hilbert’s sixteenth. Indeed,
the function “number of limit cycles of the equation” has points of disconti-
nuity corresponding to equations whose perturbations generate limit cycles
via bifurcations. Limit cycles may bifurcate from separatrix polygons, also
known as polycycles (defined in §24C). The cyclicity of a polycycle in a fam-
ily of equations is the maximal number of limit cycles that may bifurcate
from the polycycle in this family, very much like cyclicity of singular point
introduced in §12A, p. 201. Using the notion of cyclicity, one can formulate
the Hilbert-type problems in the language of bifurcations theory.
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Problem VII. Is it true that a polycycle occurring in a finite parameter
family of planar analytic vector fields has only finite cyclicity?

Problem VIII. Is it true that a polycycle occurring in a generic k-
parameter family of smooth planar vector fields may generate only a finite
number of limit cycles, with an upper bound depending on k only? (This
latter quantity is denoted by B(k).)

The affirmative answer in Problem VII would imply a solution of Prob-
lem II and existence of the Hilbert number H(n) for any finite n (without
giving the slightest idea of how this number can be computed). The af-
firmative answer in Problem VIII would lead to an instant solution of the
Hilbert-Arnold Problem VI. These implications are proved by using simple
compactness arguments due to R. Roussarie [Rou98]. Both Problems VII
and VIII remain unsolved, yet the latter seems to be easier than the former,
in light of the recent achievements.

More precisely, denote by E(k) the maximal cyclicity of a polycycle
that can occur in a generic k-parameter family of smooth vector fields,
under the additional assumption that all singular points on this polycycle
are elementary.

Theorem 24.2 (Ilyashenko and Yakovenko [IY95]). For any k, the number
E(k) is finite and bounded from above by an elementary function of k.

As a corollary, one can immediately conclude that the Hilbert–Arnold
problem has the affirmative answer if restricted on the smooth vector fields
having only elementary singularities on the 2-sphere.

The proof of Theorem 24.2 is constructive and yields an algorithmic
expression for the upper bound. Further elaborating this construction,
V. Kaloshin in [Kal03] obtained a simple explicit upper bound,

E(k) 6 225k2
. (24.1)

The Kaloshin bound is apparently very much excessive, yet it is one of the
first Hilbert-type numbers (bounds pertinent to the number of limit cycles)
obtained during the hundred years of quest.

In the rest of this section we illustrate the power of the analytic normal
forms theory and prove the Individual Finiteness Theorem 24.1 under the
additional assumption that all singular points of the vector field and nonde-
generate saddles. To present the complete proof, we have to go back to the
early times of the geometric theory of differential equations.

24B. Poincaré–Bendixson theory revisited. One of the highlights of
the geometric theory of real planar vector fields is the Poincaré–Bendixson
theorem. It describes the limit behavior of phase trajectories of vector fields
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without singular points in domains on the 2-sphere using purely topologi-
cal arguments. In the next three subsections we apply similar methods to
describe limit sets of aperiodic trajectories for spherical vector fields with
singularities and the accumulation sets for their periodic trajectories.

Here and below we consider smooth real vector fields on the sphere and
their trajectories parameterized by real values of the time. Since the sphere
is compact, any such trajectory can be extended for all values of the time
t ∈ R. Let v ∈ D(S2) be a vector field and ϕ : R→ S2 its trajectory.

Definition 24.3. An ω-limit set of a trajectory ϕ is the set of all points y ∈
R2 which are limits of sequences of points ϕ(tn) corresponding to sequences
of time tn →∞. An α-limit set of a trajectory ϕ(t) is the ω-limit set of the
trajectory ϕ(−t), i.e., after the time reversal.

We will denote these limits by ω(ϕ) and α(ϕ) respectively.

Remark 24.4. The definition of an ω- (resp., α-) limit set can be modified
for noncomplete vector fields or for fields defined in noninvariant domains.
It is sufficient to require that ϕ be defined for all sufficiently large positive
(resp., negative) values of time.

One can give an alternative description for ω(ϕ). For any T > 0 denote
by ϕT the restriction of the phase curve on the semi-interval [T, +∞). This
is a forward invariant set whose closure ϕT ⊂ S2 is also forward invariant
(forward invariance is invariance by the real flow maps Φt = exp tv of the
field v ∈ D(S2) for nonnegative times t ∈ R+). These sets form a family
of nested connected compacts on the sphere, whose intersection, as one can
easily see, coincides with ω(ϕ):

∅ 6= ω(ϕ) =
⋂

T>0

ϕT b S2. (24.2)

From the description (24.2) one can easily derive the following properties
of limit sets on the sphere.

Proposition 24.5. The ω-limit set of a trajectory of the spherical vector
field is a closed connected set invariant by both positive and negative flow of
the field. ¤

Remark 24.6. The same definitions can be given for a vector field on the
plane R2, but in this case the sets ϕT can be unbounded, ϕT noncompact
and, as a result, the ω-limit set can be empty or nonconnected.

Example 24.7. The phase portraits sketched on Fig. IV.5 show that ω-
limits of trajectories on the sphere can be singular points, cycles (periodic
orbits) or more complicated objects which consist of several singular points

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



24. Nonaccumulation theorem for hyperbolic polycycles 447

nonisolated
singular points

(d)
(c)(b)
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(a)
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number of 
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monodromic

(f)

(h)

not monodromic
without the loop
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node

(g)

Figure IV.5. Zoo of limit periodic sets. (a) Isolated singular point.
(b) Periodic orbit. (c) Separatrix loop. (d) Curve of nonisolated singular
points. (e) Monodromic polycycle. (f) Singular point with infinitely
many homoclinic trajectories. (g) Part of a polycycle is a polycycle but
not monodromic. (h) Oriented but not monodromic saddle-node loop

 Trap

Figure IV.6. Bendixson trap

together with several orbits which are bi-asymptotic to these singular points
as t → ±∞.

In order to describe ω-limit sets, we introduce a simple but powerful
construction designed by Bendixson.

Definition 24.8. A Bendixson trap for a vector field v on the sphere is a
closed oriented piecewise-smooth curve which consists of two smooth parts:

(1) a piece of nonperiodic phase trajectory γ oriented by the field and
thus defining the orientation of the trap, and

(2) a smooth arc τ transversal to the field at all its points.
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By the Jordan theorem, any Bendixson trap divides the sphere into two
connected domains, one of them invariant by the flow of v in the forward
time (it will be referred to as interior to justify the term “trap”), the other
(“exterior”) invariant in the reverse time. Note that the orientation of the
trap can be opposite to the orientation of the boundary of the interior part.

Lemma 24.9. No point on the transversal arc of a Bendixson trap can
belong to an ω-limit set of any trajectory.

In particular, the invariant arc of the trap cannot be an ω-limit set.

Proof of the lemma. Any orbit starting on the transversal arc enters the
interior domain either immediately, or at worst after traversing the invariant
arc of the trap, and never leaves it since that moment. In particular, it can
never return to a sufficiently small neighborhood of the arc τ . ¤

As an immediate consequence, we can prove that a trajectory accumu-
lates to its ω-limit set from one side only.

Proposition 24.10. If γ = ω(f) contains a nonsingular point a and
τ : (R1, 0) → S2 is a cross-section to γ at a, then all intersections of ϕ
with τ occur only on one side of the cross-section.

Proof. If ϕ intersects τ at two points p and q on two different sides of τ ,
then the closed line formed by the arc ϕ|qp of ϕ from p to q and the arc τ |pq of
τ from q to p is a trap. The point a ∈ τ |pq is hence a point of a limit set which
lies on the transversal arc of a trap, in contradiction with Lemma 24.9. ¤

The following result constitutes the most familiar part of the Poincaré–
Bendixson theory.

Theorem 24.11 (H. Poincaré, 1886, I. Bendixson, 1901). An ω-limit set
which does not contain singular points of the field, is necessarily a periodic
orbit.

Proof. Let γ = ω(ϕ) be the limit set and a ∈ γ a nonsingular point on it.
Consider a cross-section τ to γ at a as in Proposition 24.10. The trajectory ϕ
crosses τ infinitely many times. Consider the positive orbit ψ ⊆ γ starting
at a. It must intersect τ some time in the future. Indeed, otherwise the
closure ψ(t)|[1,+∞) would be a compact subset of the sphere disjoint from
τ , and since the orbit ϕ must remain in a neighborhood of this compact, it
would be unable to cross τ infinitely many times.

Hence ψ crosses τ again. If this intersection occurs at a point b different
from a, then the closed curve formed by ψ|ba and τ |ab would be a trap in
contradiction with Lemma 24.9.
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The only remaining possibility is that ψ crosses τ at the same point
a ∈ τ ∩ ψ. Then ψ and hence γ is a periodic orbit of v. ¤

In the presence of singular points the limit sets can be more complicated,
as mentioned in Example 24.7. Still these limit sets admit a rather simple
description.

A trajectory ϕ of a vector field is called bi-asymptotic to two points a, b
if {a} = α(ϕ), {b} = ω(ϕ). Clearly, in such a case both a and b must be
singular points; the case a = b is not excluded.

Theorem 24.12. Any limit set of a vector field on the sphere consists of
singular points and entire trajectories of the field, bi-asymptotic to some of
these singular points.

To prove this theorem, we reformulate it in the language of iterated
limit sets. Being invariant, an ω-limit set of any orbit ϕ consists of entire
trajectories of the field. This allows us to iterate the construction of limit
sets.

Definition 24.13. The iterated limit set ω2(ϕ) is the union of ω-limit sets
of all trajectories forming ω(ϕ).

If γ is a singular or periodic orbit, then ω(γ) = ω2(γ) = γ. The set ω2(ϕ)
is also closed and invariant by the flow, but may well be nonconnected.

In the same way higher iterated ω-limit sets can be defined inductively
as unions of limit sets of all trajectories forming a previous iteration. By
construction, they constitute a sequence of nested compacts. Yet it turns
out that on the plane this generalization does not lead to anything new. The
core statement of the Poincaré–Bendixson theory asserts that the iterated ω-
limit sets on the sphere in fact stabilize from the second step. The following
statement has no analogs for vector fields on higher-dimensional manifolds.

Lemma 24.14. For any vector field with isolated singular points on the
sphere, the ω2-limit of any trajectory is either a periodic orbit, or a collection
of singular points.

Proof. Suppose that Γ = ω2(ϕ) contains a nonsingular point a of the field,
and let τ be a cross-section to Γ at a. This means that some invariant
trajectory γ from ω(ϕ) must cross τ infinitely many times. But the contour
formed by an arc of γ between two subsequent crossings and a segment of
the cross-section will be a Bendixson trap unless γ is periodic. This would
contradict Lemma 24.9. ¤

Proof of Theorem 24.12. By Lemma 24.14, both α- and ω-limit sets of
any nonconstant trajectory γ ⊆ ω(ϕ) are singular points. ¤
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We conclude this section by an example showing that on surfaces other
than the sphere (with its simple topological properties), Theorem 24.12 fails
completely.

Example 24.15. The constant vector field dy/dx = α, α ∈ R on the 2-
torus T2 = (R mod Z)2 has all trajectories periodic for α ∈ Q. However, if
α /∈ Q is irrational, the ω-limit of any orbit coincides with the entire torus
T2.

24C. Polycycles, monodromy, correspondence maps. Without fur-
ther assumptions on the vector field it is difficult to describe more precisely
possible limit sets of trajectories on the sphere.

From this moment on we will assume that all vector fields satisfy the
following two finiteness assumptions:

(1) the field has only isolated singular points on the sphere, and
(2) each singular point has only finitely many hyperbolic sectors

(cf. Definition 9.2).

These assumptions are automatically satisfied for real analytic vector fields.
By Theorem 24.12, in these assumptions the ω-limit set Γ of any tra-

jectory ϕ is a planar (more accurately, spherical) finite graph consisting
of finitely many vertices (singular points) connected by edges (trajectories
bi-asymptotic to these vertices).

This graph is co-oriented: by Proposition 24.10, every edge γ ⊂ Γ has
a “positive” side, from which the trajectory ϕ accumulates to Γ , and the
“negative” side. Therefore among the connected components of S2rΓ (faces
of the spherical graph) there is a distinguished component Ω containing ϕ;
see Fig. IV.7. Each connected component C of the boundary ∂Ω ⊆ Γ is
an “almost circle”, i.e., the image of the circle S1 = R/Z by a continuous
map ι : S1 → C bijective except finitely many points that are mapped into
singular points of v. Since the curve ϕ cannot (again by Jordan theorem)
approach any point from ∂Ω r Γ , we conclude that ∂Ω = Γ and hence ∂Ω
must be connected, ∂Ω = C. In other words, Γ = ω(ϕ) which is not a
singular point or a cycle, is a closed continuous curve bounding a spherical
domain, whose self-intersections can occur only at singularities. Such an
object is called a polycycle.

Definition 24.16. A polycycle of a vector field is a finite oriented spherical
graph Γ such that:

(1) topologically Γ is a continuous image of the circle S1,
(2) vertices of Γ are at the singular points of the field,
(3) edges of Γ are infinite trajectories of the field.
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Figure IV.7. The continuous “almost one-to-one” image of the circle
Γ bounding the connected domain Ω

Note that among the singular points (also cyclically enumerated) repe-
titions are allowed whereas the edges are all distinct.

Let τ+ : (R1
+, 0) r {0} → (S2, a) be a semi-section, the restriction of a

cross-section τ at a nonsingular point a ∈ Γ , on the “positive” open semi-
interval (i.e., such that ϕ ∩ τ+ is nonvoid).

Proposition 24.17. There is a well-defined first return map (also called
monodromy map) ∆Γ : τ+ → τ+ such that for any point p ∈ τ+ the orbit of
v starting at p, intersects τ+ for the first time again at ∆Γ (p).

Proof. Consider the infinite sequence of points x1, x2, . . . , which are sub-
sequent intersections of the trajectory ϕ with the semi-section τ+; this se-
quence converges to the base point a of the semi-section.

Consider the trap T formed by the arc of ϕ from x1 to x2 and a piece
of τ+ between these points. The trajectory ϕ starting from the point x2

entirely belongs to the annulus T r Ω, where Ω is the spherical domain
containing ϕ. Without loss of generality we may assume that this annulus
contains no singular points of the field other than belonging to the polycycle
(recall that singularities of v are isolated).
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Figure IV.8. Correspondence maps

Consider the strip Π formed by two arcs ϕ′ = ϕ|x2
x1

and ϕ′′ = ϕ|x3
x2

of
the trajectory ϕ and two segments τ ′ = τ+|x2

x1
and τ ′′ = τ+|x3

x2
on the cross-

section. We claim that any other trajectory ψ starting on τ ′, crosses τ ′′ at
some time in the future.

Indeed, ψ cannot cross the arcs ϕ′, ϕ′′ as they are phase curves of the
field. If ψ does not cross τ ′′, then its ω-limit must be nonvoid. Since
Π does not contain singular points, the ω-limit set must be a cycle by
the Poincaré–Bendixson Theorem 24.11. But by the Poincaré–Hopf index
theorem, each cycle must contain a singular point in its interior, leading
again to the contradiction.

Therefore the first return map ∆Γ is well defined on τ ′ and takes values
on τ ′′. For the same reasons ∆Γ is well defined on any segment τ+|xn+1

xn ⊂
τ+. Since these segments together cover the entire semi-section τ+, the
proposition is proved. ¤

Remark 24.18 (terminological). Note that the first return map ∆Γ con-
structed in the proof of Proposition 24.17, possesses the following property:
for all points p ∈ τ+ sufficiently close to a, the orbit connecting p with ∆Γ (p)
remains in an arbitrarily small neighborhood of the polycycle. This condi-
tion excludes some polycycles, e.g., those sketched on Fig. IV.5 (g), (h),
from being limit sets of trajectories. In the future we will call a polycycle
Γ monodromic, if it admits the first return map along orbits that remain in
an arbitrarily small neighborhood of Γ .

Consider a singular point a ∈ Γ on a monodromic polycycle Γ , and
let γ+, γ− ⊆ Γ be two trajectories such that ω(γ+) = a = α(γ−) (the
loop case where γ+ = γ− is not excluded). Let τ± be two semi-sections
to the curves γ± at two points a± respectively, from the “positive” side of
each of them. The same arguments as in the proof of Proposition 24.17
show that each trajectory starting on τ+ sufficiently close to a+, crosses
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24. Nonaccumulation theorem for hyperbolic polycycles 453

also τ− somewhere near a−. This allows us to define the correspondence
map ∆a : τ+ → τ− associated with the singular point a ∈ Γ . This map,
in general, not analytically extendable to the point a+, remains continuous
after setting ∆a(a+) = a−. By this construction, ∆a is defined modulo
the freedom in choosing the cross-sections τ±, i.e., modulo a conjugacy by
analytic germs h± ∈ Diff(R1, 0) from left and right, h− ◦∆a ◦ h+.

We will summarize the results of this section as follows.

Theorem 24.19. Assume that a smooth vector field on the sphere has only
isolated singular points, each of them having at most finitely many hyperbolic
sectors.

Then an ω-limit set of any orbit of this field is either a singular point,
or a cycle (periodic orbit) or a finite monodromic polycycle Γ .

In the latter case the first return map of this polycycle ∆Γ is well defined
on any semi-section τ+ to Γ at a nonsingular point of the latter, and expands
as a finite composition of the form

∆Γ = hn ◦∆an ◦ hn−1 ◦∆an−1 ◦ · · · ◦ h1 ◦∆a1 ◦ h0. (24.3)

Here ∆ai are correspondence maps associated with the singular points ai ∈
Γ , and hi are some real analytic maps. ¤

24D. Accumulation of limit cycles. Recall (see Definition 9.11) that a
limit cycle is an isolated periodic trajectory of a vector field.

As the first step towards the solution of Problem I (finiteness problem
for limit cycles) we will describe possible accumulation sets for limit cycles
of smooth vector fields. Such fields may indeed have an infinite number of
limit cycles, but these cycles must accumulate to a monodromic polycycle.
To make this statement precise, we need the notion of the Hausdorff distance.

Definition 24.20. Let A,B be two subsets of a metric space M . The
Hausdorff distance between them is the nonnegative number

dist(A,B) = max[sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)], (24.4)

where dist(x, Y ) = infy∈Y dist(x, y) is the distance between a point x and
any subset Y ⊂ M .

One can easily verify (see [BBI01, Chapter 7]) that the Hausdorff dis-
tance satisfies the triangle inequality and defines a metric on the space of
closed subsets: if A,B are closed and dist(A,B) = 0, then A = B.

A sequence of subsets A1, A2, . . . , An, · · · ⊆ M converges in the sense of
Hausdorff distance to a limit A, if every point of a ∈ A is the limit of a
sequence of points a1, a2, . . . such that ai ∈ Ai. An alternative description
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of the limit is similar to (24.2)

A =
∞⋂

n=1

∞⋃

i=n

Ai;

see [BBI01, Exercise 7.3.4]. The following result is elementary but very
useful.

Theorem 24.21 (W. Blaschke). If the metric space M is compact, then the
space of compact subsets of M equipped with the Hausdorff distance is also
compact.

Proof. See [BBI01], Theorem 7.3.8. ¤

Theorem 24.22. Assume that a smooth vector field on the sphere S2 has
only isolated singular points, each of them having at most finitely many
hyperbolic sectors.

If this field has infinitely many limit cycles, then there exists an infinite
sequence of these cycles {γi}∞i=1 ⊂ S2 converging in the sense of the Haus-
dorff distance to a singular point, a cycle (periodic orbit) or a monodromic
polycycle Γ .

In the latter case if ∆Γ : τ+ → τ+ is the monodromy map of the polycycle,
then the intersection points pi = γi ∩ τ+ are isolated fixed points for ∆Γ

accumulating to the base point of the semi-section τ+.

Proof. By Blaschke Theorem 24.21, an infinite number of limit cycles on
the compact 2-sphere must contain an infinite sequence of cycles that accu-
mulates in the sense of the Hausdorff distance to a compact subset Γ ⊆ S2.
We show that if Γ contains a nonsingular point of v, then Γ is either a cycle
or a monodromic polycycle.

To do this, one can modify slightly the arguments leading to the proof
of Theorem 24.19. Yet we can reduce Theorem 24.22 to Theorem 24.19
directly, using a plug as on Fig. IV.9.

Let a ∈ Γ be a nonsingular point. Consider two close semi-sections
τ+, τ ′+ at the points a 6= a′ to the trajectory γ passing through a, and
denote by pi, p

′
i the corresponding intersection points between the cycles γi

with these cross-sections.
Consider the narrow strip Π (“plug”) bounded by γ|a′a and the two semi-

sections τ+, τ ′+ (the outer bound can be chosen rather arbitrarily). Let w be
a C∞-smooth vector field which coincides with v everywhere outside of Π
and on the boundary τ+ ∪ τ ′+ ∪ γ|a′a of the latter, such that its orbits which
begin at pi pass through Π and end at p′i+1.
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Figure IV.9. The plug: modification of a vector field in a small strip
Π between two semi-sections

Then all cycles γi of the initial field v belong to the single trajectory ψ
of the field w. Obviously, the ω-limit set of ψ coincides with the Hausdorff
limit set Γ for the sequence of the limit cycles γi. By Theorem 24.19, the
former is a cycle or a monodromic polycycle. ¤

Finiteness Theorem 24.1 for limit cycles of planar and spherical ana-
lytic vector fields follows now from a purely analytic local property of the
monodromy map of polycycles of such fields.

Theorem 24.23 (General finiteness theorem, Yu. Ilyashenko [Ily91],
J. Écalle [Eca92]). The monodromy map of a polycycle of an analytic vector
field in the plane cannot have an infinite number of isolated fixed points.

We will prove here this theorem under a simplifying assumption that
the polycycle is hyperbolic, i.e., it carries only nondegenerate saddles at the
vertexes. This implies the following theorem which is the main result of this
section.

Theorem 24.24 (Easy finiteness theorem). A real analytic vector field on
the 2-sphere, having only nondegenerate singular points, may have only fi-
nitely many limit cycles.

The proof is based on investigation of the individual correspondence
maps for analytic hyperbolic saddles and their compositions with holomor-
phic germs.

24E. Almost regular germs and monodromy of hyperbolic poly-
cycles. Developing the ideas of Dulac [Dul23], we introduce a class of
germs with two competing properties. On one hand, this class is large
enough as to include monodromy transformations of hyperbolic polycycles
∆Γ : (R1

+, 0) → (R1
+), z 7→ ∆Γ (z), which are in general not analytic at z = 0.
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On the other hand, this class is so close to the class of analytic functions that
germs of this class are uniquely determined by their asymptotic expansions.

In this section we will mostly work in the logarithmic chart ζ = − ln z:
in this chart the interval z ∈ (0, ε) becomes a neighborhood of infinity,
ζ ∈ (1

ε ,+∞).

Definition 24.25. A standard (quadratic) domain ΩC is the image of the
right half-plane C+ = {Re ζ > 0} by the map

ϕC : ζ 7→ ζ + C
√

1 + ζ, C > 0. (24.5)

The constant C is a parameter determining the “size” of the standard do-
main ΩC .

Definition 24.26. An exponential series, or Dulac series, is the formal
series

S = αζ + β +
∞∑

j=1

pj(ζ) exp(−νjζ), α, β ∈ R, pj ∈ R[ζ], (24.6)

in which

α > 0, 0 < ν1 < ν2 < · · · < νn < · · · , lim νj = +∞.

No assumptions on convergence of the series (24.6) is made.
A function f defined in some standard domain ΩC is said to admit an

expansion in the Dulac series (24.6) (to be expandable, for short), if for any
order ν > 0 there exists a partial sum Sν of this series, such that

|f(ζ)− Sν(ζ)| = o
(
exp(−νζ)

)
as |ζ| → ∞ in ΩC . (24.7)

Definition 24.27. The germ of a real analytic map f : (R1
+, 0) → (R1

+, 0) is
called almost regular , if in the logarithmic chart the germ − ln f(exp

(−ζ)
)

has a representative that can be extended as a biholomorphic map between
two standard domains and expanded in a Dulac exponential series there.

Remark 24.28. Apriori in the Definition 24.27 one can allow dependence of the Dulac
series on the order ν to which it approximates the almost regular germ f . Yet the asymp-
totic series (24.6), if it exists, is unique, and this is proved exactly like the uniqueness of
the Taylor asymptotic series. Assume that for any ν there exists a Dulac polynomial Sν(ζ)
(a finite sum of the form (24.6) with positive exponents νj not exceeding ν) such that the
difference f − Sν is decreasing as o

�
exp(−νζ)

�
. Then all polynomials Sν are necessarily

truncations of a single Dulac series S as in (24.6) which is an asymptotic series for the
function f . Indeed, if ν′ > ν, then Sν is a truncation of Sν . Otherwise their difference
cannot be decreasing as o

�
exp(−ν′ζ)

�
as ζ →∞ in ΩC .

The condition of almost regularity is weaker than analyticity at the point
z = 0. Indeed, any converging Taylor series f(z) = a1z + a2z

2 + · · · in the
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24. Nonaccumulation theorem for hyperbolic polycycles 457

logarithmic chart becomes a uniformly convergent Dulac series

− ln f(ζ) = ln a1 + ζ + ln
(
1 + a2

a1
exp(−ζ) + a3

a1
exp(−2ζ) + · · · )

= ζ + β + (Dulac series without affine part).

Yet the following property means that in some respects almost regular
germs are similar to analytic germs which were called regular in the old-
fashioned language of the nineteenth century (this explains the choice of the
term “almost regular”).

Theorem 24.29. An almost regular germ is uniquely determined by its
asymptotic Dulac series: two almost regular germs with the same series
coincide identically in their common domain.

In other words, not only the Dulac asymptotic series is uniquely defined
by an almost regular germ as Remark 24.28 notes, but the germ itself is
completely determined by its series.

It turns out that the class of almost regular germs is large enough for
our purposes.

Theorem 24.30. The germ of the monodromy map of a hyperbolic polycycle
is almost regular.

The Nonaccumulation Theorem 24.24 is an almost direct consequence
of these two theorems, as the following argument shows.

Proof of Theorem 24.24. Suppose that limit cycles accumulate to a hy-
perbolic polycycle Γ . Then the monodromy map ∆ = ∆Γ : (R1

+, 0) → (R1
+)

has an infinite number of isolated fixed points accumulating to z = 0, as
explained in §24D.

By Theorem 24.30, in the logarithmic chart ζ = − ln z the monodromy
map f(ζ) = − ln∆(exp−ζ) admits an exponential asymptotic series S of
the form (24.6) and has infinitely many real fixed points accumulating to
ζ = +∞. We claim, following Dulac [Dul23], that this series is in fact an
identity, S = ζ.

Indeed, consider the difference S − ζ which also admits the exponential
series (24.6). If this difference is nonzero, then its leading term is either affine
(α − 1)ζ + β, or exponential p1(ζ) exp(−ν1ζ). In both cases the difference
between the monodromy map f(ζ) itself and the identity ζ has the form
g(ζ)(1+o(1)), where g(ζ) is a real analytic function on R+ with only finitely
many (real) zeros, which contradicts the assumption that these zeros are
accumulating to infinity. Hence the series S must be identical, S = ζ.

Thus the asymptotic series S of the map f is identity. On the other
hand, ∆ is almost regular by Theorem 24.30. Theorem 24.29 implies that
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in this case the map f itself is identity, f(ζ) ≡ ζ, and hence ∆(z) ≡ z. Thus
∆ cannot have isolated fixed points at all. The contradiction proves the
Nonaccumulation Theorem 24.24. ¤

Remark 24.31. In [Dul23] Dulac tacitly assumed that the monodromy
map with the identical Dulac series, is itself identity, circumventing The-
orem 24.29. However, this assertion is wrong in absence of hyperbolicity
of the polycycle. In [Ily84] one can find an example of a (nonhyperbolic)
polycycle whose monodromy differs from identity by a flat (decaying faster
than any exponential of ζ) nonzero function.

The rest of this section is devoted to the proof of the two key facts:
Theorem 24.29 is proved in §24G, while the proof of Theorem 24.30 is post-
poned until subsection §24H. In order to carry out the proofs, we need some
elementary properties of almost regular maps.

24F. Elementary properties of almost regular maps. The class of
almost regular germs is rather natural. As was already noted, it contains
all germs regular at z = 0.

Example 24.32. The power map z 7→ czλ for λ > 0 is almost regular.
Indeed, in the logarithmic chart this map becomes affine, ζ 7→ λζ + β,
β = − ln c. The corresponding Dulac series is finite, and it remains only
to verify that it maps any standard domain into another standard domain.
One can easily verify that the image of the standard domain ΩC belongs to
the standard domain ΩC′ if C ′ = α1/2C + C0 for C0 sufficiently large.

Rather expectedly, the class of almost regular germs is closed by com-
position.

Lemma 24.33. Composition of two almost-regular germs is again an almost
regular germ.

Proof. It is convenient to treat separately the affine germs of the form
ζ 7→ αζ + β, α > 0, β ∈ C, and the parabolic almost regular germs whose
Dulac series starts with the identical term,

S = ζ +
∑

ν>0

pν(ζ) exp(−νζ). (24.8)

Let us check that if f(ζ) is a function holomorphic in a standard domain
ΩC and admits there an estimate |f(ζ) − ζ| < exp(−εζ) for some ε > 0,
then the image of ΩC by f contains a standard domain ΩC′ for C ′ suffi-
ciently large. Indeed, the exponential small “perturbation” cannot change
the asymptotic behavior of the curve

Re ζ = C | Im ζ|2 + O(1), Im ζ → ±∞ (24.9)

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



24. Nonaccumulation theorem for hyperbolic polycycles 459

which is the boundary ∂ΩC . Preservation of the class of standard domains
under action of affine maps is discussed in Example 24.32.

Thus composition of almost regular germs is defined (after analytic con-
tinuation) in some standard domain and takes it into another standard do-
main. It remains to verify the existence of an asymptotic Dulac expansion
for a composition of two almost regular maps.

Note that if R =
∑

ν>0 pν(ζ) exp(−νζ) is a Dulac series without the
affine part (with only positive exponents), then all its powers R2, R3, . . .
and any product exp(−µζ)R, µ > 0, are also of the same form. Therefore
the formal exponent

exp(−µR) = 1 +
∑

k>0

(−µR)k/k!

is also a well-defined Dulac series. The direct substitution now shows im-
mediately that the composition of two parabolic series

(ζ + R′) ◦ (ζ + R) = (ζ + R) +
∑

µ>0

pµ(ζ + R) exp(−µζ) exp(−µR) = ζ + R′′

is a parabolic Dulac series.
It remains only to notice that composition of a parabolic Dulac series

with an affine map a : ζ 7→ αζ +β (in any order) is obviously a Dulac series,
and moreover, parabolic germs constitute a normal subgroup: if f(ζ) = ζ+R
is a parabolic germ, then a−1 ◦ f ◦ a is again a parabolic germ. ¤

Remark 24.34. Since the maps holomorphic at infinity are automatically
almost regular, the definition of the almost regular maps does not depend
on the coordinate chart: by Lemma 24.33, the composition g−1 ◦ f ◦ g is
again a map defined in a standard domain and asymptotic to a Dulac series
there.

24G. Phragmén–Lindelöf principle for almost regular germs. In
this subsection we prove Theorem 24.29. It is a purely analytic fact closely
related to the enhanced version of the maximum modulus principle known
as the Phragmen–Lindelöf principle.

Recall that the maximum modulus principle asserts that a function f =
f(z) holomorphic in a (bounded) domain z ∈ D and continuous on the
boundary achieves the maximal value of its modulus |f(z)| somewhere on
the boundary ∂D. If the continuity assumption fails at a single point of the
boundary, the function may well be unbounded.

Example 24.35. The function f(z) = exp(1/z) is holomorphic in the disk
|z − 1| < 1 and continuous on its boundary except the single point {z = 0}.
Yet this function is unbounded in D, despite the fact that its modulus is
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constant on the boundary ∂Dr{1}. The latter fact becomes obvious in the
conformal chart ζ = 1/z which transforms the function f into the exponent
exp ζ and the domain into the half-plane Re ζ > 1/2. The restriction of f
on the boundary has constant modulus m = exp 1

2 .

This example illustrates the phenomenon that lies at the core of the
Phragmén–Lindelöf principle: the maximum modulus principle may fail if
the boundary of the domain contains a point a near which f is unbounded,
but only if the growth of f when approaching such a point is sufficiently
fast; the “critical threshold” for the growth rate depends on the geometry
of the boundary ∂D near a.

For our applications it is sufficient to consider only domains on the Rie-
mann sphere, bounded by two circular arcs. In a suitable chart they become
sectors with the vertex at the origin with an opening angle 2π/α, symmetric
with respect to the real ray R1

+ ⊂ C.

Theorem 24.36 (Phragmén–Lindelöf, 1908). Assume that a function f(z)
is holomorphic in the sector Sα = {z : |Arg z| < π

2α} for some α > 1 and is
continuous and bounded on the boundary of this sector,

|f(z)| 6 M for all z such that Arg z = ± π
2α . (24.10)

If the growth of f admits a uniform apriori bound

|f(z)| = O(exp |z|β), |z| → ∞, z ∈ Sα, (24.11)

for some β < α, then in fact f is bounded in Sα by the same constant,
|f(z)| 6 M for all z ∈ Sα.

Proof. Consider, following [Tit39, §5.6], the auxiliary function g(z) =
exp(−εzγ) · f(z) with an arbitrary small positive ε > 0 and some γ be-
tween α and β. We have

|g(z)| = exp
(−ε|z|γ · cos(γ Arg z)

) |f(z)|.
Since γ < α, we have cos(πγ

2α ) > 0 and hence

|g(z)| 6 M ∀z ∈ ∂Sα = {Arg z = ± π
2α}.

On the circular arcs {|z| = r} ∩ Sα by the growth assumption on f we have
the estimates

|g(z)| 6 exp
(−εrγ cos γπ

2α

) · |f(z)| 6 C exp
(
rβ − εrγ cos γπ

2α

)
.

As γ > β and ε > 0, the latter expression tends to zero as r →∞, hence the
maximum modulus principle applied to the bounded sector Sα ∩ {|z| < r}
for all sufficiently large r yields the inequality |g(z)| 6 M there. Since r can
be arbitrarily large, |g(z)| 6 M everywhere in Sα.
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24. Nonaccumulation theorem for hyperbolic polycycles 461

The last inequality, transformed to the form |f(z)| 6 M exp(ε|z|γ), for
any finite z ∈ Sα admits passing to the limit as ε → 0+, yielding the
inequality |f(z)| 6 M in Sα. ¤

To apply this result to the half-plane C+ corresponding to α = 1, we
would have to require that f grows subexponentially as |z| → ∞. Yet this
growth condition can be relaxed if f is controlled along the real axis.

Lemma 24.37. Let f be a function holomorphic in the half-plane C+ and
continuous and bounded on the imaginary axis iR = ∂C+. Assume that
f grows at most exponentially in C+, i.e., |f(z)| 6 C exp(µ|z|) for some
µ > 0.

Then under this apriori growth assumption:

(1) if f is bounded on the real axis R+ ⊂ C+, then f is bounded every-
where in C+ and the maximum of its absolute value is achieved
somewhere on the boundary ;

(2) if f decreases faster than any exponent along the real axis {z > 0},
|f(z)| 6 Cρ exp(−ρz) for any large ρ > 0, then f is identically zero,
f ≡ 0.

Moreover, these assumptions hold if the half-plane C+ is replaced by the
standard domain ΩC .

Proof. By Theorem 24.36 applied with α = 2, β = 1 to each of the quarter-
planes C+ ∩ {± Im z > 0}, we conclude that f is bounded in each of them,
proving thus the first assertion of the lemma.

To prove the second assertion, consider the family of functions fε(z) =
f(z) exp(z/ε) for arbitrarily small ε > 0. Any such function still has expo-
nential growth in C+. Since the exponent has modulus equal to 1 on iR for
any ε > 0, the maximum absolute value M achieved by fε on the boundary,
does not depend on ε. Finally, if f decreases faster than any exponent along
R+, so does each fε. Applying the first assertion of the lemma to fε, we
arrive at the inequality |fε(z)| 6 M for all z ∈ C+ and all ε > 0. Rewriting
this inequality in the form |f(z)| 6 M | exp(−z/ε)| and passing to the limit
as ε → 0+, we conclude that f(z) must vanish identically in C+.

Finally, if f satisfies the assumptions of the lemma in a standard domain
ΩC , then f ◦ ϕC obviously satisfies the same assumptions in C+, where
ϕC : C+ → ΩC is the map (24.5) occurring in the definition of the standard
domain. ¤

Proof of Theorem 24.29. Theorem 24.29 is an immediate corollary to
Lemma 24.37.
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462 IV. Functional moduli and applications

If two almost regular germs g and h have the same asymptotic expan-
sions (24.6), then their difference germ g−h has zero asymptotic expansion.
Let f be a representative of this difference. By Definition 24.27, it can
be holomorphically extended to some standard domain ΩC , and grows no
faster than a linear function there. On the other hand, f decays at infinity
faster than any exponential, since its asymptotic series is identically zero.
By Lemma 24.37, f ≡ 0, hence, g ≡ h. ¤

24H. Correspondence map of a hyperbolic saddle. The proof of The-
orem 24.30 rests upon the following result.

Theorem 24.38. The correspondence map of a hyperbolic saddle is almost
regular.

To prove this theorem, we first note that the correspondence map of
a hyperbolic saddle in the formal normal form (22.3) is almost regular;
moreover, in this case the corresponding Dulac series is convergent.

If the normal form is linear, then the correspondence map is a pure
power, w = czλ, which becomes affine ζ 7→ λζ + ln c, in the logarithmic
charts. Thus only a nonlinear normal form should be studied.

Consider the saddle vector field in the formal normal form, defined by
the ordinary differential equations{

ẇ = −λw(1 + q(u)),

ż = z,

u(z, w) = zmwn,

λ = m
n ,

q(u) =
up+1

1 + αup
. (24.12)

Let τ+ and τ− be the cross-sections {w = 1} and {z = 1} to the vector field
(24.12) with the charts z and w on them respectively. The correspondence
map ∆: τ+ → τ− is well defined for z > 0 and takes positive values.

Proposition 24.39. The correspondence map ∆ between the cross-sections
τ+ and τ− for the vector field (24.12) in the formal normal form, is almost
regular.

Moreover, the corresponding Dulac series in this case is convergent:
there exists a real analytic function G ∈ O(R2, 0) such that

− ln∆(ζ) = λζ + G
(
exp(−mζ), ζ exp(−mζ)

)
, ζ = − ln z. (24.13)

Proof. The assertion follows from integrability of the vector field (24.12)
which allows us to compare the value of the resonant monomial on the
intersections (z, 1) and (1, w) of an arbitrary integral trajectory of (24.12)
with the cross-sections τ±. One has to prove that the solution of the initial
value problem for the quotient differential equation

du

dt
= −nλ

up+2

1 + αup
, u(0) = zm,
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u u
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Figure IV.10. Integration of the quotient equation via blow-down

evaluated at the moment t = − ln z, is (after extracting of the mth order
root) an almost regular function w(z) of z. The proof can be achieved
by explicit integration and investigation of the resulting algebraic relation
between z, ln z and w.

Yet one can avoid intermediate calculations applying the following geo-
metric construction (a particular nonparametric case of [IY91, Lemma 11]).
The quotient equation can be coupled with the trivial equation ṫ = 1, re-
sulting in a vector field in the positive quadrant of the (t, u)-plane,{

u̇ = u[−nλ q(u)],

ṫ = 1,
t, u > 0. (24.14)

Suppose that a trajectory γ of the initial field (24.12) crosses τ+ at the point
(1, z) corresponding some value u0 = zm. Then the travel time necessary to
reach τ− is equal to − ln z = − 1

m lnu0.

Consider on the (t, u)-plane the curve τ = {t = − 1
m ln u}; the value u

at the moment of intersection between γ and τ− is the u-coordinate of the
intersection of the respective trajectory of (24.14) with τ (Fig. IV.10).

The system (24.14) admits a simple blow-down of the t-axis: after pass-
ing to the coordinates u and v = tu, we obtain

u̇ = u
(−nλ q(u)

)
, v̇ = u + v

(−nλ q(u)
)

= u

(
1− nλ

vup

1 + αup

)
(24.15)

(we use the fact that q(u) is divisible by u). After division by u we obtain
a nonsingular vector field V in a neighborhood of the origin on the (u, v)-
plane, tangent to the v-axis. The curve τ blows down to the curve σ defined
by the equation v = − 1

mu ln u which tends to the origin as u → 0+.
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The vector field V , being transversal to the u-axis and tangent to the
v-axis, admits a real analytic first integral Φ(u, v) = uF (u, v), F (0, 0) = 1,
uniquely defined by the Cauchy boundary data Φ(u, 0) ≡ u. From the above
description of the correspondence map, we conclude that the u-value u1 at
the moment when the trajectory crosses the exit section τ−, is equal to the
value of Φ restricted on σ, i.e., u1 = u0F (u0,− 1

mu0 ln u0).

Returning to the coordinates z = u
1/m
0 and w = u

1/n
1 , we conclude that

the correspondence map for the saddle in the formal normal form can be
expressed as

w = [zmF (zm,−zm ln z)]1/n

= zλG(zm, zm ln z),

G ∈ O(R2, 0),

G(0, 0) = 1,
(24.16)

where the function G = F 1/n is real analytic in its two variables since
F (0, 0) = 1.

In the logarithmic chart ζ = − ln z the correspondence map − ln w de-
fined by the expressions (24.16) becomes a convergent Dulac series. ¤

For a saddle not in the formal normal form, we can no longer claim
that the correspondence map is represented by a convergent Dulac series;
for instance, this is impossible for formally linearizable but analytically non-
linearizable saddles (for more examples see [Tri90]). Nevertheless, we will
show that this map extends analytically into sufficiently large domain in the
logarithmic chart and admits an asymptotic Dulac series there.

Lemma 24.40. The correspondence map of a saddle in the logarithmic
chart extends to a standard domain ΩC for a sufficiently large C > 0.

Proof. The meromorphic nonlinear differential equation
dw

dz
= −λ

w

z
· (1 + Ψ(z, w)), z, w ∈ C, (24.17)

in the logarithmic chart takes the form
dw

dζ
= −λw(1 + ψ(w, ζ)). (24.18)

The function ψ holomorphic in the product C+×{|w| < 1} can without loss
of generality be assumed uniformly arbitrarily small there, in particular, it
is sufficient if |ψ| < λ/2.

Consider the function W (ζ, η) of two complex variables, which is initially
only locally defined near the diagonal {ζ = η} as the solution of the equation
(24.18) with the initial condition W (η, η) = 1.

An oriented path γ = γ(η) in the ζ-half-plane C+, connecting the point
ζ = η with the point ζ = 0 will be called admissible, if W ( · , η) can be
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Figure IV.11. Analytic continuation of saddle correspondence map

analytically continued along this path from its initial value W (η, η) = 1,
and this continuation satisfies the restriction

∣∣W ( · , η)|γ
∣∣ 6 1 along this

path.
If γ is an admissible path, then it defines the germ at ζ = η of some

branch ∆(η) = W (0, η) of the complexified correspondence map; here the
right hand side is obtained by the above continuation along γ.

If η+ ∈ R+ is a point on the real axis, then the path γ(η+) = [η+, 0]
(the real segment) is admissible, since W (·, η+) is increasing on the real axis.
The function ∆(η+) : R+ → R+ obtained by continuation along these paths
defines the real branch of the correspondence map.

In order to obtain the analytic continuation of this real branch to a
point η ∈ C+, one should find an admissible path γ(η) = γ0 which can be
continuously deformed within a family of admissible paths γs, s ∈ [0, 1], into
a real segment [0, η′] = γ1.

Let η = % + iϕ be a point in the half-plane C+. We claim that the
path γ(η) which consists of the segment of length % from η to the point
iϕ ∈ iR = ∂C+, and the segment of length |ϕ| on imaginary axis, continuing
the path to the origin, is admissible provided that η belongs to some standard
domain ΩC .

Indeed, for points % + iϕ inside the standard domain ΩC , we have the
asymptotic representation |ϕ| = (%/C)1/2 + O(1) as % → +∞. Along the
first segment of the corresponding path γ = γ(% + iϕ) the modulus of W
decreases exponentially from 1 to a small value not exceeding exp(−λ%/2)
if |ψ| < 1

2 , since Re(λ + ψ(z, w)) > λ/2 along this path.
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466 IV. Functional moduli and applications

The Cauchy operator F iϕ of analytic continuation (flow) along the ver-
tical segment can be represented in the form

F iϕ = F iθ ◦∆nk
z , 0 6 θ < 2πn, k ∈ N,

where ∆z(w) = (exp 2πim
n )w + O(w2) ∈ Diff(C, 0) is the holonomy (mon-

odromy) operator associated with the standard loop z = exp 2πit, t ∈ [0, 1],
on the z-axis. The linear part of ∆z is a rational rotation, so that the nth
iterate ∆n

z (w) = w + O(w2) ∈ Diff1(C, 0) is parabolic (tangent to the iden-
tity). Because of the inequality between |ϕ| and % implied by the condition
% + iϕ ∈ ΩC , we have an upper bound k = O

(
(%/C)1/2

)
.

Let L be the maximal Lipschitz constant of the flow map F iθ over 0 6
θ 6 2πn on the disk {|w| 6 1}. Clearly, L < +∞.

The growth of iterates of ∆nk
z (w) of the parabolic germ ∆n

z as k →∞ can
be estimated comparing the growth of the cascade of iterates σa : r 7→ r+ar2

with the growth of solutions of the auxiliary differential equation ṙ = br2 on
the time interval t ∈ [0, k] (here a, b are real parameters). Indeed, since ∆n

z is
parabolic, |∆n(z)−z| < a|z|2, thus the absolute value of the iterates ∆kn

z (z)
does not exceed σk

a(r), r = |z|. The flow σ′b = exp br2 ∂
∂r of the auxiliary

equation can also be immediately computed: σ′b(r) = r + br2/(1− br). Thus
for each a > 0 one can find b > 0 such that the flow majorizes the cascade,
σk

a < σ′b
k for all k on a sufficiently small interval r < ε.

The flow of this equation with the initial condition r(0) = |W (iϕ, η)| 6
exp(−λ%/2) at the moment k = O

(
(%/C)1/2

)
does not exceed the reciprocal∣∣exp(λ%/2)−O(%/C)1/2

∣∣−1 (the auxiliary flow is constant in the chart 1/w).
Thus we conclude that along the path γ(η) the function W ( · , η) is bounded
in the absolute value by L

∣∣exp(λ%/2)−O(%/C)1/2
∣∣−1 which is less than 1 if

% > C (as is the case if η ∈ ΩC) and C is sufficiently large.
The path γ(η), η = %+ iϕ, can be deformed to a segment of the real axis

as follows: its endpoint ηs = % + iϕ(1 − s) moves parallel to the imaginary
axis towards % ∈ R, and γ(ηs) as before consists of a horizontal segment of
the same length ρ and contracting vertical segments of length (1−s)|ϕ|. All
estimates remain the same during this deformation, hence the paths γ(ηs)
are admissible for all s ∈ [0, 1]. ¤

Proof of Theorem 24.38. After the existence of analytic continuation of
the saddle correspondence map into a standard domain is proved, the Prox-
imity lemma 22.6 together with Proposition 24.39 allow us to prove that this
map admits an asymptotic expansion in the Dulac series. This will complete
the proof of Theorem 24.38.
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24. Nonaccumulation theorem for hyperbolic polycycles 467

Consider an arbitrary saddle vector field F . By Proposition 24.39, with-
out loss of generality we may assume that the coordinates are chosen that
F differs from its formal normal form F0 by N -flat terms as in (22.4).

We compare the correspondence maps ∆ and ∆0 for the two saddle fields,
F and F0 respectively. Both maps are defined in some standard domain ΩC ,
and the correspondence map ∆0 for F0 is represented as a convergent Dulac
series there.

By the Proximity Lemma 22.6, the correspondence map ∆ for F differs
from ∆0 in ΩC by the term that decays sufficiently fast to infinity,

∆(ζ)−∆0(ζ) = O(exp(−Nζ/2)) as |ζ| → ∞, ζ ∈ ΩC .

This means that the Dulac series ∆0 approximates ∆ with an accuracy
corresponding to ν = N/2 in (24.7). Since N can be arbitrary, this (together
with Remark 24.28) proves that the correspondence map for any saddle
vector field is almost regular.

The assertion of Theorem 24.30 follows immediately from Lemma 24.33,
as a composition of almost regular germs is almost regular. ¤

Exercises and Problems for §24.

Exercise 24.1. What step of the proof of the Poincaré–Bendixson fails when at-
tempting to literally reproduce it for the 2-torus?

Problem 24.2. Let H(x+iy) = y2−x2+y4 be a polynomial on the plane R2 ∼= C1.
Plot the phase portrait of the vector field ż = ieiH(z) (∂H

∂x + i∂H
∂y ) (in the complex

notation).

Exercise 24.3. Modify the previous example to construct explicitly a polynomial
vector field with an ω-limit set which carries any number of singular points on it.

Problem 24.4. Prove that sums and products of almost regular germs are almost
regular.

Problem 24.5. Give an example of a saddle, for which the correspondence map
has a divergent Dulac series.

Problem 24.6. Prove, using the Phragmen–Lindelöf theorem, that if one of the
sectorial components of a normalizing map-cochain (Definition 21.9) is identical,
then all other components are also identical (cf. with Problem 21.3).
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Chapter V

Global properties of
complex polynomial
foliations

The last chapter focuses on the global properties of singular holomorphic
foliations on the complex projective plane P2. Any such foliation is nec-
essarily algebraic. This algebraicity plays the central role when discussing
properties of algebraic leaves of the foliation (existence, apriori bounds on
their degree, integrability) in §25.

Integrable, in particular, Hamiltonian foliations form a very special class,
yet this class is very important for applications. Besides, though real folia-
tions from this class cannot have limit cycles (all periodic trajectories occur
in continuous families and are nonisolated), these cycles can be created by
small perturbation of integrable systems. Location of these newborn cycles
is determined by zeros of certain Abelian integrals, which are transcendental
functions of the parameters. Investigation of properties of these functions is
the central subject of §26, in which algebraic and transcendental methods
work hand in hand.

The last two sections of the book deal with topology of linear foliations
in Cn and generic properties of planar polynomial foliations in P2. The tools
used in these two sections, are completely transcendental.

In §27 we study linear foliations in higher dimensions and show that
their topology is radically different in the Poincaré and in the Siegel cases.
While the Poincaré case corresponds to structurally stable foliations (their
topology is not affected by small perturbations), in the Siegel case foliations

469
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470 V. Global properties of complex polynomial foliations

have continuous moduli of topological classification. This can be seen as
yet another manifestation of rigidity : a foliation topologically equivalent to
the given one and sufficiently close to it, is in fact conjugated to the given
foliation by a very special, almost linear homeomorphism.

Unlike the real foliations that are severely constrained by the topology
of the real 2-sphere, planar complex foliations generically exhibit rather
complicated behavior, in particular, they have countably many “complex
limit cycles”, their leaves are everywhere dense. Besides, generic foliations
do not admit nontrivial deformations preserving topology, again displaying
the same rigidity phenomenon similar to the one discussed in the linear case.
All these phenomena are studied in §28.

25. Algebraic leaves of polynomial foliations on the complex
projective plane P2

Any singular foliation defined by a polynomial 1-form on the complex plane
C2, can be extended as a singular foliation on the complex projective plane
P2. Conversely, any singular foliation on the complex projective plane with
a finite number of singular points may be obtained in this way.

In this section we discuss the notion of degree of a polynomial folia-
tion on P2 and two natural classes of “foliations of the given degree”. The
generic foliations from these two classes have similar though not coinciding
properties.

Then we switch to the study of algebraic leaves of polynomial folia-
tions, focusing on determination of their degrees: the problem goes back to
Poincaré. Its recent solution is the central result of the section. After that
we show that generically polynomial foliations have no algebraic leaves. On
the other hand, abundance of algebraic leaves implies integrability.

25A. Extension of polynomial foliations on P2 and the projective
degree. The affine plane C2 with coordinates (x, y) can be associated with
points of the projective plane P2 with homogeneous coordinates [x : y :
1]. The complement P2 r C2 ∼= P consisting of points with homogeneous
coordinates [x : y : 0], is the projective line at infinity denoted by I. A
foliation defined by the Pfaffian equation {ω = 0} with a polynomial 1-
form ω, can be naturally extended as a holomorphic foliation with isolated
singularities on the whole P2.
25A1. Extension on the infinite line. Consider a polynomial 1-form

ω = p(x, y) dx + q(x, y) dy, p, q ∈ C[x, y], max(deg p, deg q) = r, (25.1)

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



25. Algebraic leaves on P2 471

and let F be the foliation of C2 defined by the Pfaffian equation ω = 0.
As usual, we assume that gcd(p, q) = 1, i.e., that all singularities of ω are
isolated.

To study the foliation F in a neighborhood of I, we pass to the coordi-
nates u = 1/x, v = y/x, and consider a neighborhood of the line {u = 0} = I.
In these coordinates ω becomes meromorphic,

ω = −p

(
1
u

,
v

u

)
du

u2
+ q

(
1
u

,
v

u

)
u dv − v du

u2

= − 1
ur+2

(
pr(1, v) + vqr(1, v)

)
du

+
1

ur+1

[−(
pr−1(1, v) + vqr−1(1, v)

)
du + qr(1, v) dv

]

+
1
ur

[· · · ] + · · ·

(25.2)

(grouped are the Laurent terms of different degrees, while pk, qk, k = 0, . . . , r
denote the homogeneous components of the polynomials p, q respectively).
Depending on various possible relationships between different homogeneous
components of the form ω, one can have a pole of orders r + 2 or less on
{u = 0}. More precisely, we have the following alternative, depending on
the homogeneous polynomial

hr+1(x, y) = x pr(x, y) + y qr(x, y) ∈ C[x : y] (25.3)

depending on the principal homogeneous component of the coefficients of ω.
Nondicritical case. If the homogeneous polynomial hr+1 does not vanish
identically, then the order of pole of ω on the infinite line I is exactly r + 2.
Multiplying ω by ur+2 we obtain a polynomial 1-form ω′ of degree r + 1
defining the same foliation F in the coordinates (u, v),

ω′ =
(
hr+1(1, v) + O(u)

)
du + u

(
qr(1, v) + O(u)

)
dv. (25.4)

The following facts can be immediately verified by direct inspection.

(i) The polynomial Pfaffian equation {ω′ = 0} of degree r + 1 has iso-
lated singularities on I at the points ai = [xi : yi : 0] corresponding
to the roots of the homogeneous polynomial hr+1.

(ii) The infinite line I = {u = 0} is a separatrix of the foliation F

extended on P2.
(iii) The linearization of the equation {ω′ = 0} along the infinite line

(as described in §14C) yields the linear equation

du = θu, θ = − qr(1, v)
hr+1(1, v)

dv. (25.5)
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472 V. Global properties of complex polynomial foliations

This equation defines a meromorphic connexion on a line bundle
over I with singularities at the points ai. The residues of the con-
nexion form θ at these points are the characteristic numbers

λi = −qr(1, vi)
sr(vi)

, sr(v) =
∂hr+1(1, v)

∂v
, vi = yi/xi. (25.6)

(iv) The sum of all residues
∑r+1

i=1 λi does not depend on the foliation
F (Theorem 17.33). One can easily check that

λ1 + · · ·+ λr+1 = 1, λi = resai θ. (25.7)

This shows that the embedding I ↪→ P2 is different from the embed-
ding E ↪→ M (cf. with (10.11)): the normal bundle in the former
case has degree +1.

(v) Any meromorphic 1-form θ with r + 1 simple poles and arbitrary
residues λi constrained by the single condition (25.7) can be ob-
tained as the connection form induced on the infinite line I by an
appropriate polynomial 1-form ω of degree r.

Dicritical case. If hr+1 ≡ 0, then the order of the pole of ω on I is no
more than r + 1, and the foliation F in the coordinates (u, v) is defined by
a polynomial 1-form ω′ of degree 6 r,

ω′ = −(
pr−1(1, v) + vqr−1(1, v)

)
du + qr(1, v) dv + uω′′,

ω′′ holomorphic on {u = 0}. (25.8)

In fact, the degree of ω′ must be exactly equal to r; otherwise the uni-
variate polynomial qr(1, v) in (25.8) must vanish identically. Together with
the condition hr+1(1, v) = pr(1, v) + vqr(1, v) ≡ 0 this would imply that
pr(1, v) ≡ 0 as well, which is impossible. As a result, we have the following
characterization of the dicritical case:

(vi) the polynomial Pfaffian equation {ω′ = 0} of degree exactly r may
have isolated singularities on the infinite line I, yet

(vii) the infinite line itself is never a separatrix of the foliation F ex-
tended on P2.

The same conclusions obviously hold for the third affine chart on P2

corresponding to the variables w = x/y, z = 1/y.
25A2. Projective degree. Classes Ar and Br. The above computations show
that passage from one affine chart on C2 to another may change the degree
of a polynomial field (resp., form) defining the foliation. This fact prompts
for several definitions of the degree of a polynomial foliation on P2. Note
that the projective plane without any line P1 ∼= ` ⊂ P2 admits an affine
chart for which ` plays the role of the infinite line I.
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25. Algebraic leaves on P2 473

Definition 25.1. The class Ar consists of all foliations of P2 which in a
fixed affine neighborhood C2 ⊂ P2 r `, are defined by polynomial forms
ω ∈ Λ1[x, y] of degree 6 r with isolated singularities.

Clearly, the class Ar = Ar(`) is defined independently of the choice of the
affine chart on the affine neighborhood C2, but is not invariant by projective
transformations of P2. However, since any two lines in P2 can be superposed
by a projective transformation, for any other choice of the “infinite line”
`′ ⊂ P2 the corresponding class Ar(`′) will be naturally isomorphic to Ar(`).

For the fixed affine chart, the class Ar can be identified with the complex
projective space of all polynomial vector fields (resp., polynomial 1-forms) of
degree 6 r: two fields (forms) which differ by a constant multiplier, define
the same foliation. This observation allows us to discuss generic properties
of foliations from the class Ar. For instance, a generic foliation from the
class Ar is nondicritical and hence has an invariant leaf at infinity.

On the other hand, one can attempt to give an invariant definition of
projective degree via homogeneous coordinates in C3.

Consider the space C3r{0} equipped with the homogeneous coordinates
[X : Y : Z], and the Euler vector field

V = X ∂
∂X + Y ∂

∂Y + Z ∂
∂Z (25.9)

on it. For any homogeneous 1-form Ω of degree r

Ω = A(X, Y, Z) dX + B(X, Y, Z) dY + C(X,Y, Z) dZ,

A,B,C homogeneous, deg A = deg B = deg C = r,
(25.10)

consider the distribution of 2-planes (Pfaffian equation) {Ω = 0}.
The canonical projection π : C3 r {0} → P2 along the lines tangent to

trajectories of V , correctly defines a 1-dimensional distribution (the line
field) on P2 if and only if Ω vanishes on V identically, i.e., when

Ω(V ) = XA + Y B + ZC ≡ 0. (25.11)

Under this condition one can define the quotient distribution on P2 = C3 r
{0}/Cr{0} which in any affine chart will be defined by a suitable polynomial
1-form.

Definition 25.2. A polynomial foliation F on P2 has the projective degree r,
if in the homogeneous coordinates [X : Y : Z] it is defined by a homogeneous
1-form Ω of degree r as in (25.10) satisfying the identity (25.11), and the
coefficients A, B,C of the form have no common factor.

Remark 25.3. If the coefficients A,B, C have a common polynomial factor
(necessarily homogeneous) f , i.e., A = fA′, B = fB′, C = fC ′, then the
foliation F has projective degree 6 r − deg f : obviously, the homogeneous
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474 V. Global properties of complex polynomial foliations

form Ω′ = f−1Ω also satisfies the identity (25.11). Thus the equality deg Ω =
r without excluding the reducible cases defines a polynomial foliation of the
projective degree 6 r.

Example 25.4. The affine chart x = X/Z, y = Y/Z on P2 can be identified
with the affine subspace C2 ∼= Π = {Z = 1} ⊂ C3 r {0}. In this chart the
distribution obtained by the projection π can be described by the Pfaffian
equation ω = 0, where the form ω is the restriction of Ω on the plane Π,

ω = Ω|{Z=1} = A(x, y, 1) dx + B(x, y, 1) dy. (25.12)

It is a polynomial 1-form of degree 6 r.
Conversely, any distribution of lines defined by a polynomial form ω =

p(x, y) dx + q(x, y) dy ∈ Λ1[x, y] of degree r can be “lifted” to a (singular)
distribution of 2-planes on C3, containing the Euler field, if the coefficients
of the polynomial 1-form Ω = A dX + B dY + C dZ of degree 6 r + 1 are
chosen as follows:

A(X, Y, Z) = Zr+1 p(X/Z, Y/Z),

B(X, Y, Z) = Zr+1 q(X/Z, Y/Z),

C(X, Y, Z) = −Z−1
(
X A(X,Y, Z) + Y B(X, Y, Z)

)
.

(25.13)

Note that in general Ω cannot be constructed in the class of homogeneous
forms of degree 6 r, since the coefficient C may not be polynomial in the
latter case.

However, if the homogeneous polynomial xpr(x, y) + yqr(x, y) ∈ C[x : y]
vanishes identically (i.e., in the dicritical case), the coefficients of the form
Ω of degree r + 1 restored as in (25.13), will all be divisible by Z and hence
the foliation can be defined by a homogeneous 1-form Ω′ = Z−1Ω of degree
r vanishing on the Euler field. The restriction of Ω′ on Π still coincides with
ω.

Definition 25.5. The class Br is the collection of foliations of the projective
degree 6 r on P2.

Similarly to the class Ar, the class Br can be identified with a suitable
projective space of homogeneous 1-forms Ω as in (25.10), constrained by
the linear equalities (25.11) and considered modulo a constant multiplier.
This circumstance allows us to introduce on Br a Lebesgue measure and
study generic properties of polynomial foliations, that hold for all F except
a subset of Br of zero measure. Besides, one can describe properties valid
for Zariski open subsets of Br.

The class Br is invariant by projective transformations. As follows from
Example 25.4, it can be described as the class of foliations defined by 1-forms
of degree 6 r in any affine chart.
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25. Algebraic leaves on P2 475

Proposition 25.6.
Br =

⋂

`⊂P2

Ar(`). ¤

Example 25.7. There are no foliations of projective degree 0: a form
α dX+β dY +γ dZ vanishes on the Euler field V if and only if α = β = γ = 0.

Any foliation of projective degree 1 in an affine chart containing a sin-
gularity at (x0, y0), is given by the 1-form

(x− x0) dy − (y − y0) dx = 0. (25.14)

If the singularity lies on the infinite line I, then the form is constant, ω =
α dx + β dy.

All other linear vector fields define (after extension on P2) polynomial
foliations of projective degree 21.

From the definitions of the two classes of polynomial foliations it follows
that for each fixed affine chart we have the following proper inclusions,

∅ = B0 ⊂ A0 ⊂ · · · ⊂ Br ⊂ Ar ⊂ Br+1 ⊂ · · · . (25.15)

The difference between the classes Ar and Br is largely about existence of
the invariant line at infinity.

Proposition 25.8.

1. The difference Ar r Br consists of all foliations from Ar tangent to
the infinite line ` = I (i.e., nondicritical at infinity).

2. The difference Br+1rAr consists of all foliations from Br+1 transver-
sal to the infinite line ` = I almost everywhere. ¤

Thus a generic foliation from Ar has an invariant line at infinity, while
a generic foliation from Br has no invariant lines at all. Later we will prove
a stronger statement: a generic foliation form Ar has no algebraic leaves
besides the infinite line, whereas a generic foliation from Br has no invariant
algebraic leaves at all. The former claim was proved by I. G. Petrovskĭı and
E. M. Landis in 1955 (see [PL55] and the appendix to this section), and
can be modified to prove the latter claim as well. Yet we give a different,
more transparent demonstration for the class Br; see Theorem 25.18.

1This creates some awkwardness, since linearity is firmly associated with the first degree
polynomials. To avoid it, in some sources, e.g., in [CLN91], the degree of a polynomial foliation
on P2 is defined as r − 1, where r is the projective degree introduced above.
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476 V. Global properties of complex polynomial foliations

25A3. Degree and tangency between foliations and lines. Recall that the
degree of a projective curve can be defined as the number of intersections
with a generic line. In a similar way the projective degree of a polynomial
foliation F can be described by the total order of contacts between this
foliation and a noninvariant line ` ⊂ P2.

The tangency order between F and ` at a nonsingular point a /∈ Σ =
Sing(F) is the tangency order between the leaf La of F passing through
a, and the line `. The formula (8.38) generalizes this definition for the
case where a ∈ Σ but ` is not a separatrix: one has to take the 2-form
ω∧dl = f(x, y) dx∧dy, where {l = 0} is a linear local equation of the line `,
and compute the order of zero at the point a of the coefficient f(x, y) of this
2-form after restriction on the line `. (An equivalent definition can be given
in terms of the Lie derivative of l along a vector field defining the foliation.)

This order will be denoted by τa(`,F). The total tangency order between
` and F is by definition the sum

τ(`,F) =
∑

a∈`

τa(`,F). (25.16)

Proposition 25.9. The total tangency order between a foliation F ∈ Br

and a noninvariant line ` ⊂ P2 is equal to r − 1.

Proof. Choose an affine coordinate system in which ` is the axis {y = 0}
and the infinite line is also not invariant. In the corresponding coordinates
the form ω = p dx+q dy defining F has degree r, and the number of contacts
between F and ` is the number of roots (counted with multiplicities) of the
univariate polynomial p(x, 0) ∈ C[x].

We claim that this polynomial has degree r − 1 and not r. Indeed ω
is dicritical at infinity since I is not invariant by the choice of the affine
coordinates. Hence xpr(x, y) + yqr(x, y) ≡ 0, where pr, qr as usual denote
the homogeneous terms of p, q respectively. Restricting this identity on
{y = 0}, we conclude that xpr(x, 0) ≡ 0, i.e., pr(x, 0) ≡ 0. Thus the
polynomial p(x, 0) has no terms of order r.

One can easily verify by direct inspection of the formulas (25.2) that if
the point ` ∩ I is not a point of contact between F and `, then deg p(x, 0) is
exactly r − 1. ¤

Since the total order of contact does not depend on the choice of the
line `, it can be chosen for the geometric definition of the projective degree
of polynomial foliations on P2; cf. with [CLN91].
25A4. Ubiquity of polynomial foliations. Computations of §25A show that
any singular foliation of C2 generated by a polynomial vector field, can be
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25. Algebraic leaves on P2 477

extended as a singular foliation of the projective plane. The inverse is also
true, as the following theorem shows.

Theorem 25.10. Any singular foliation on P2 in any affine chart is gen-
erated by a suitable polynomial vector field or 1-form.

Recall that by Definition 2.24, the singular locus of a foliation must be
an analytic set of codimension > 2, i.e., a finite point set of P2.

Proof of the theorem. The proof is a straightforward application of the
Chow theorem [Mum76] asserting that any analytic subset of a projective
variety is algebraic.

Consider the tangent bundle TP2 and its projectivization P3 = PTP2:
by definition, it is the quotient space of all pairs (a, v), 0 6= v ∈ TaP2, by
the equivalence relation (a, v) ∼ (a′, v′) if and only if a = a′ and v′ = λv for
some λ 6= 0.

The singular foliation F on P2 with the singular locus Σ defines a map
s : P2 r Σ → P3 associating with each nonsingular point the direction of
the line through it, tangent to F. The image s(P2 rΣ) belongs to a closed
analytic subset of P3. Indeed, near a singular point a ∈ Σ the foliation is
spanned by a vector field F (x) by Theorem 2.22. The graph of s is locally
defined then by a single analytic equation. In the local chart x = (x1, x2)
on P2 and the homogeneous coordinates [v1 : v2] on the fiber, this equation
takes the form

v1F2(x1, x2)− v2F1(x1, x2) = 0,
where F1,2(x1, x2) are the coordinates of the vector field F in the local chart.

Thus the closure of the graph S = s(P2 rΣ) is an analytic subset of
the projective manifold P3. By the Chow theorem, the submanifold S is
itself algebraic. The map s and the projection π : P3 → P2 restricted on the
graph of s, are mutually inverse, defined on Zariski open subsets and hence
are birational isomorphisms.

The assertion of the theorem is in fact valid for any foliation on a pro-
jective algebraic variety [Ily72b]. ¤

Because of Theorem 25.10, the classes of singular holomorphic foliations
on P2 and foliations defined by polynomial forms/fields, coincide. For brevity
we will speak about polynomial foliations (on P2).

25B. Algebraic leaves and Poincaré problem: a synopsis. The
global analog of a complex separatrix of a holomorphic foliation F (as it
was introduced in Definition 2.27) is a compact analytic (hence algebraic)
curve C ⊂ P2 which is tangent to F at all nonsingular points of C and F.
Any such curve can be defined in the homogeneous coordinates [X : Y : Z]
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478 V. Global properties of complex polynomial foliations

on C3 by a homogeneous polynomial f(X,Y, Z) of some degree m. We
will always assume (unless explicitly stated otherwise) that f is square-free
(reduced), i.e., is the product of pairwise different irreducible factors.

Assume that Ω is a homogeneous 1-form on C3 of degree r defining the
foliation in the homogeneous coordinates [X : Y : Z]. Then the algebraic
curve C ⊂ P2 defined by the square-free equation {f = 0} of degree m is
invariant by F, if Ω and df are collinear on C, i.e., if

Ω ∧ df = f · Φ, (25.17)

where Φ is a homogeneous 2-form in C3 of degree r−1, called a cofactor form
associated with the polynomial f which is sometimes called “invariant fac-
tor”. Conversely, any nonzero homogeneous solution to this equation, even
if not square-free, corresponds to an invariant algebraic curve C (cf. with
Lemma 25.28 below).

The central theme of this section is two-fold:

• scarcity of polynomial foliations having algebraic leaves, and
• explicit upper bounds for the degree of algebraic leaves in terms of

the (projective) degree of the foliation.

The second question was first raised by H. Poincaré in 1891 and since then
is usually referred to as the Poincaré problem. The important results in
this direction, which we formulate and prove in this section, were obtained
recently by D. Cerveau, A. Lins Neto, C. Camacho, P. Sad and M. Carnicer.

The global Poincaré problem has a local analog that was discussed in
§14G. Rather surprisingly, the solution of the global problem heavily uses
the solution of the local one.

Example 25.11. A foliation F ∈ B2 defined by the 1-form x dy−λy dx for
λ irrational has only three algebraic leaves of degree 1: two coordinate axes
and the infinite line I.

On the contrary, if λ = p/q is a nonzero rational number, then the
foliation has all other leaves also algebraic, yq − cxp = 0, c 6= 0. If λ is
positive rational different from an integer or inverse integer, these leaves
have a singularity at the origin. If λ or 1/λ is an integer number, all leaves
are smooth in C2. However, the singularity of the leaves in this case re-
appears at infinity.

Example 25.12. Let f(X,Y, Z) be a homogeneous polynomial of degree r
in three variables. The differential df is a homogeneous form in C3 but it
does not vanish on the Euler field V as is required to define a foliation of the
projective plane; cf. with (25.11). The analog of a “Hamiltonian” foliation
on P2 is the foliation of projective degree r defined by the rational 1-form
Ω = df

f − r dl
l , where l = l(X, Y, Z) is an arbitrary linear form. Choosing
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25. Algebraic leaves on P2 479

an affine chart in which {l = 0} is the infinite line I, we see that in this
affine chart the foliation is defined by the polynomial form df . All its leaves
Lα = {f − αlr = 0} are algebraic of degree r, except for the “infinite” line
L∞ = {l = 0}.

Thus we see that for the Hamiltonian foliation of projective degree r, any
finite union of the algebraic curves Lα and/or L∞ is a (reducible) algebraic
curve. However, if we demand that the invariant curve have only transversal
self-intersections, then any such curve must necessarily be of the form Lα ∪
L∞ and hence its degree cannot exceed r + 1. Degree of an irreducible
algebraic curve of a Hamiltonian foliation is no greater than r.

Example 25.13. A generalization of the previous example is the Darboux-
ian foliation defined by the form Ω =

∑k
i=1 λi

dfi

fi
, where fi(X, Y, Z) are

homogeneous mutually prime polynomials of degrees ri and λi are complex
numbers such that

∑
λiri = 0. Such a foliation always has a reducible alge-

braic separatrix C =
⋃

i{fi = 0}; existence of other algebraic leaves depends
on the arithmetical properties of the tuple [λ1 : · · · : λk] ∈ Pk−1.

Example 25.11 suggests that without some restrictions either on the
foliation or on the properties of the leaf one cannot expect any bound on
the degree of the leaf in terms of the degree of the foliation. The additional
conditions may have a rather simple form.

Theorem 25.14 (D. Cerveau and A. Lins Neto, 1991, [CLN91]). Let F ∈
Br be a polynomial foliation of projective degree r on P2 and C ⊂ P2 an
algebraic separatrix of degree m for F.

If the curve C is smooth or has at worst transversal self-intersection
points, then m 6 r + 1.

In fact, in [CLN91] a stronger result is proved. If a foliation of the
projective degree r has an algebraic separatrix C of degree r+1 with normal
crossings, then C is necessarily reducible and the foliation must be of a very
special type: in homogeneous coordinates it is defined by a logarithmic form
Ω =

∑
i λi

dfi
fi

, where fi ∈ C[X,Y, Z] are homogeneous polynomials of degree
ri ∈ N, λi ∈ C and

∑
λiri = 0. In particular, if C is irreducible then

m = deg(C) 6 r. We will prove later in §25E a slightly weaker result.

Theorem 25.15. A smooth projective curve C = {f(X, Y, Z) = 0} ⊂ P2

can be invariant for a foliation F ∈ Br only if deg C 6 r.
If C is smooth and the equality deg C = r is achieved, then the foliation

F is Hamiltonian (defined by a rational 1-form df
f −r dl

l , where l = l(X, Y, Z)
is a linear form) and C is a part of the reducible separatrix C ∪ {l = 0} of
degree r + 1.
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480 V. Global properties of complex polynomial foliations

The smoothness assumption can be replaced by the irreducibility as-
sumption (Problem 25.9).

To avoid apriori assumptions on the curve, one may impose certain as-
sumptions on the foliation itself. For instance, if all singularities are irra-
tional saddles, then any invariant algebraic curve must have only normal
crossings, since there are only two smooth separatrices through each singu-
larity, which are transversal to each other (at nonsingular points all invariant
curves are smooth). However, this assumption is way too restrictive and can
be considerably relaxed.

The strongest known result in this direction is the following theorem.

Theorem 25.16 (M. Carnicer [Car94]). If a foliation F ∈ Br of projec-
tive degree r has no generalized dicritical singularities, then any algebraic
separatrix of this foliation has degree m 6 r + 1.

Remark 25.17. In fact, for the inequality deg C 6 r + 1 to hold it is
sufficient to require that there are no generalized dicritical singularities only
on the separatrix C itself. Yet without knowing C this relaxed condition
makes no sense.

Assumptions of Theorem 25.16 hold for a generic foliation: it sufficient
to require, e.g., that the foliation has no singularities with the ratio of eigen-
values equal to 1. Yet in fact a generic foliation from the class Br for r > 2
has no algebraic leaves at all.

Theorem 25.18. A generic foliation from the class Br has no algebraic
leaves.

More precisely, there is an open dense semialgebraic subset in Br, which
corresponds to holomorphic foliations without algebraic leaves.

Remark 25.19. A generic real foliation (defined by real polynomial forms)
also does not have algebraic leaves (neither real nor complex). Yet in this
case the notion of genericity is weaker: we can assert only that the excep-
tional foliations have Lebesgue measure zero.

The proof of scarcity of foliations with algebraic leaves is implicit : it is
rather difficult to construct explicitly examples of foliations without alge-
braic leaves. One such example is given by the following theorem.

Theorem 25.20 (J.-P. Jouanolou, 1979; see also [CLN91]). For any n > 2,
the foliation on P2 defined by the 1-form

(xn − yn+1) dx− (1− xyn) dy (25.18)

has no algebraic invariant curves.
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25. Algebraic leaves on P2 481

In this section we arbitrarily switch between the terms “algebraic leaves”,
“algebraic separatrices” and “algebraic invariant curves”. This is justified
by the following result.

Theorem 25.21. Any projective curve invariant by a polynomial foliation
on P2, carries at least one singularity of this foliation.

Demonstration of all these theorems occupies the sections §25C–§25E.
The two Theorems 25.14 and 25.16 share essentially the same proof exposed
in §25C. The supplementary ingredient for the stronger Theorem 25.16 is
the local inequality established in Theorem 14.28 which was derived in §14G
from Theorem 14.20. The latter theorem in turn can be considered as a
solution of some local version of the Poincaré problem.

25C. Global analysis and upper bounds for degrees of algebraic
invariant curves. In this subsection we prove Theorems 25.14 and 25.16.

The proof is based on the following observation. Consider a compact
Riemann surface and a meromorphic vector field on it. If the surface is
nonsingular, then the number of zeros of the field minus the number of its
poles, both counted with multiplicities, is equal to the Euler characteristic
of the surface, and does not depend on the field. This follows from the
Poincaré–Hopf theorem applied to Riemann surfaces. The idea is to ap-
ply this theorem to two vector fields defined on an algebraic leaf C of a
polynomial foliation, and compare the results.
25C1. Outline of the proof. To construct these vector fields we need to
choose a special affine chart on P2. This chart is characterized by the condi-
tion that the corresponding infinite line I ⊂ P2 should intersect the algebraic
leaf C transversally. Then the number of intersection points is equal to the
degree of the leaf m = deg C. Besides, we assume that the infinite line itself
is not a separatrix of F. In this chart, the foliation is defined by a polyno-
mial vector field denoted by F of degree r equal to the projective degree of
the foliation F. The field F is tangent to C. Denote by F the restriction of
F on C, a meromorphic vector field with poles only at infinity I ∩ C.

Let f ∈ C[x, y] be the minimal polynomial of the curve C in the chosen
affine chart: by definition, f is square-free and C r I = {f = 0}. Let
H =

(∂f
∂y ,−∂f

∂x

)
be the corresponding Hamiltonian vector field. This field

obviously is tangent to C. Denote by H be the restriction of H on C.
Let PF , ZF , PH , ZH be the numbers of poles and zeros of F and H

respectively, all counted with multiplicities. Then

PF − ZF = PH − ZH = −χ(C), (25.19)

where χ(C) is the Euler characteristic (the equality makes sense when C is
a smooth curve).
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482 V. Global properties of complex polynomial foliations

The order of poles is easy to calculate exactly for H and estimate from
above for F : below we prove that

PH = m(m− 3), PF 6 m(r − 2). (25.20)

The parallel result for F̃ and H̃ is the same, since the poles of both F and
H occur at the smooth points of C which are not desingularized by ϕ.

The main statement to prove is the inequality

ZH 6 ZF , (25.21)

and its generalization for the case of nonsmooth curves. The proof is elemen-
tary when C is smooth or has only simple self-intersections, and requires an
involved proof using desingularization in the general case of arbitrary sin-
gularities on C.

In all cases (25.19) together with (25.21) implies PH 6 PF . Substituting
the values (25.20) we obtain the inequality m 6 r + 1 asserted in the two
theorems.
25C2. Multiplicities of the poles. We now pass to the detailed proofs, start-
ing with the bounds on the number of poles (25.20).

Recall that we consider a projective curve C of degree m intersecting
a line ` ⊂ P2 transversally, and choose once and for all an affine chart for
which ` serves as the infinite line I.

Proposition 25.22. 1. For any polynomial vector field F = a ∂
∂x + b ∂

∂y of
degree r on C2, tangent to the curve C, its restriction on C is a meromorphic
vector field having poles of order not greater than r−2 at each infinite point
a ∈ C ∩ I.

2. If H is the restriction on C of the Hamiltonian vector field H =
∂f
∂x

∂
∂y − ∂f

∂y
∂
∂x of degree m − 1, where f is the minimal polynomial equation

of C, then all these poles have order exactly equal to m− 1− 2 = m− 3.

Proposition 25.22 immediately implies the (in)equalities (25.20) for the
case where C is a smooth or nodal curve nonsingular at infinity, since each
such curve has exactly m smooth branches at infinity.

Proof of the Proposition 25.22. 1. Denote the principal homogeneous
components of the field F by ar and br respectively. Since C crosses transver-
sally the infinite line, the reciprocal u = 1/x can be used as a local coordinate
on each branch of C (after a linear change of coordinates x, y if necessary).
Direct computation yields u̇ = −u2a(1/u, v/u) = u2−r[ar(1, v) + O(u)],
which means that the order of the pole of F on each of the m branches
of C near ` does not exceed r − 2.
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2. By our choice of the affine chart, the principal homogeneous part fm

of the polynomial f is square-free (all linear factors are distinct). We claim
that in this case the order of pole on each branch of C is exactly equal to
m− 3.

Indeed, if f = fm were homogeneous, this can be established by direct
calculation. Denote fm =

∏m
j=1(y−αjx), αi 6= αj , then for the x-component

of H we have ẋ = −∑m
j=1

∏
i6=j(y − αix), and the restriction of the right

hand side on every line y = αjx is equal to cjx
m−1, cj =

∏
i6=j(αj −αi) 6= 0.

Therefore u̇ = −cj u3−m and the order of the pole is exactly m − 3. The
presence of lower degree components in the expansion f = fm + fm−1 + · · ·
cannot change this order. ¤

Proposition 25.23. Smooth points of an affine curve are noncritical for
the minimal polynomial of this curve.

Corollary 25.24. The Hamiltonian vector field H =
(∂f

∂y ,−∂f
∂x

)
restricted

on the curve C = {f = 0} is nonvanishing at all smooth points of C. ¤

Proof of the proposition. If C is smooth at a and defined by a reduced
polynomial equation {f = 0}, then df does not vanish on C. Indeed, by the
smoothness assumption, the germ of C at each its point a can be defined
by a holomorphic equation {ϕa = 0} with dϕa nonvanishing at a. The germ
of f at a is divisible by ϕa, f = ψaϕa. The germ of the curve {ψa = 0}
can be neither different from the germ of C (this would mean that C has
at least two different local branches, which would imply nonsmoothness of
C), nor coincide with it. The latter assumption implies that df ≡ 0 near
a on C, hence, all over C. This contradicts to the minimality of f . The
only remaining possibility is ψa(a) 6= 0, hence df(a) = ψa(a) dϕa(a) 6= 0 as
asserted. ¤

25C3. Demonstration of Theorem 25.14, smooth case. Let the curve C with
the two meromorphic fields F and H on it be as above. If C is smooth,
then by Proposition 25.23 the field H has no zeros on C. Hence, 0 =
ZH 6 ZF (the latter number is a nonnegative by definition). On the other
hand, Proposition 25.22 implies the relations (25.20). Substituting them
into (25.19), we prove the theorem in the smooth case.
25C4. Demonstration of Theorem 25.14 for curves with normal crossings.
The same arguments can be applied to nodal curves (curves with nodal sin-
gularities, i.e., normal self-intersections), if zeros on each smooth branch
through the nodal point are counted separately. Formally this can be
achieved by normalization of the curve (blowing up all its singular points):
by Problem 25.1, the result of such a blow-up will be a nonsingular (even-
tually reducible) smooth analytic curve C̃ on a 2-dimensional surface.
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484 V. Global properties of complex polynomial foliations

As before, we consider the vector fields F and H on the curve. The total
number of poles of each field remains the same as it was in the smooth case,
the difference concerns zeros.

At each normal crossing a ∈ C the Hamiltonian function f has a Morse
(nondegenerate) critical point by Problem 25.2, hence the Hamiltonian vec-
tor field has a simple zero after restriction on each smooth branch of C.
Thus we have the total number of zeros ZF = 2|Σ|, where Σ is the nodal
(singular) locus of the curve C.

The field F also must vanish at a with multiplicity > 1 after restriction
on each branch of C, so that ZF > 2|Σ| = ZH . The proof of Theorem 25.14
is achieved exactly as in the smooth case, if we notice that for both fields
the difference ZH −PH = ZF −PF = χ(C̃) is the Euler characteristic of the
normalized curve C̃. ¤
25C5. Demonstration of Theorem 25.16. To prove the most general result,
we need a suitable generalization of the inequality (25.21) for singular curves.
The treatment of the nodal case in §25C4 suggests that one has to deal
separately with each locally irreducible branch γ of the curve C. The cor-
responding local inequality (14.29) was already prepared in §14J

Definition 25.25. A global desingularization of a projective curve C with
the singular locus Σ is a holomorphic map ϕ : C̃ → C such that:

• C̃ is a smooth compact holomorphic curve,
• ϕ is one-to-one over the smooth part C rΣ, and
• considered as an embedding into P2, the map ϕ is holomorphic.

Theorem 25.26. The global desingularization exists.

Proof. We will construct eC in an abstract way using the local uniformization Theo-
rem 2.26; see [Chi89, §6]. Let γi : Ui → P2 be finitely many maps as in (2.8) defined
on open disks Ui ⊂ C such that their union covers the entire curve C. Without loss of
generality one may assume that the disks are so small that the differentials dγi vanish
only at the centers of some disks that are mapped to singular points of C.

Consider the disjoint union
F

Ui and the obvious equivalence relationship, such that
points in different disks are identified if and only if their images represent the same point

on C. The quotient space is an abstract (smooth) holomorphic curve, denoted by eC, and

the maps γi together define a well-defined map ϕ : eC → C which is biholomorphic and
invertible outside the singular locus Σ ⊂ C. ¤

Since the global desingularization is one-to-one outside a discrete set, the
vector field F which is tangent to C can be pulled back as a meromorphic
vector field F̃ = ϕ−1∗ (F|C) on C̃. As before, the poles of F̃ and F = F|C are
“the same”: the multiplicity of F̃ at a pole a ∈ C̃ is equal to the multiplicity
of F at ϕ(a) ∈ C∪I. The same obviously holds for H = H|C and its pullback
H̃ on C̃.
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25. Algebraic leaves on P2 485

As for the zeros, for any locally irreducible branch γ ⊆ C through a
singular point a ∈ Σ, the orders of zero of F̃ and H̃ at ã ∈ ϕ−1(a) by
construction coincide with the vanishing orders of the foliations F and H

along γ at a (see Definition 14.25).
In the assumptions of Theorem 25.16 we can apply Theorem 14.28 and

conclude that the vanishing order of H̃ at any point from Σ̃ = ϕ−1(Σ) is
less or equal to that of F̃ . Adding these inequalities together, we obtain the
inequality Z eF > Z eH .

It remains to notice that though the curve C̃ may be reducible and not
connected, the equality Z eF − P eF = Z eH − P eH = χ(C̃) remains true if the
right hand side is understood as the sum of the Euler characteristics of all
smooth components. The end of the proof of Theorem 25.16 is standard,
exactly as in §25C3–§25C4. ¤

25D. Scarcity of algebraic leaves for foliations of the class Br. As
a corollary to Theorem 25.14, one can obtain the following result.

Theorem 25.27. If all singular points of a foliation F from the class Br

on P2 are hyperbolic and the ratios of the two eigenvalues at each point are
nonreal, then such a foliation has no algebraic separatrices of degree greater
than r + 1.

Proof. An invariant curve of a foliation is smooth as long as it does not
pass through singularities. Every hyperbolic singularity with the nonreal
ratio of eigenvalues is analytically linearizable by the Poincaré Theorem 5.5
and hence admits exactly two analytic invariant curves (local separatrices)
which intersect transversally.

Thus any algebraic invariant curve of a foliation satisfying the assump-
tions of the theorem, must be smooth or have at worst normal crossings. By
Theorem 25.14, such a curve may have degree at most r + 1. ¤

In fact, generic foliations from the class Br do not have algebraic invari-
ant curves at all. The proof is based on the following observation.

Lemma 25.28. For any combination of natural numbers r > 2 and m > 1
the foliations F ∈ Br having invariant algebraic separatrices of degree 6 m,
constitute an algebraic (projective) subvariety in the projective space Br.

Proof. Consider the complex linear space of homogeneous 1-forms Ω of
degree r in the homogeneous coordinates [X : Y : Z] ∈ C3r{0} constrained
by the condition Ω(V ) = 0 (see (25.11)): the space Br is the projectivization
of this linear space. If the algebraic curve given by the reduced (square-free)
homogeneous equation {f = 0}, f ∈ C[X : Y : Z], deg f = m, is a separatrix
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486 V. Global properties of complex polynomial foliations

of the foliation F ∈ Br defined by the Pfaffian equation Ω = 0, then for some
homogeneous 2-form Φ on C3 we have

Ω ∧ df = f Φ. (25.22)

Conversely2, any homogeneous polynomial solution (f, Φ) ∈ Lf × LΦ of
(25.22) corresponds to an invariant algebraic curve C of F, though the degree
of this curve may be smaller than m, if f is not square-free; if f =

∏
j f

νj

j

with νj > 1,
∑

νj = m, then C is defined by the equation
∏

fj = 0.
We claim that the subspace of homogeneous forms Ω of degree r (vanish-

ing on the Euler field) for which the equation (25.22) is solvable, constitutes
an algebraic subvariety of the corresponding projective space Br. The proof
is achieved using proper projections of algebraic sets. We will need two
well-known facts on projections of projective algebraic varieties.

Recall that for any linear subspace Lk in the complex space Cp the projection
πL : Cp → Cp−k parallel to L can be defined as follows: choose any complementary sub-
space M ∼= Cp−k transversal to L and let πL be the Cartesian projection L ⊕M → M .
The projection πL is defined modulo a composition: if M is replaced by another com-
plementary subspace with the same properties, then πL is replaced by a map h ◦ πL,
h ∈ GL(n− k,C).

For a projective space Pp its projection along a projective subspace L = Lk ⊂ Pp is
an algebraic map πL : Pp r L → Pp−k−1 defined as follows.

Consider the linear space Cp+1 which is the homogeneous model for Pp, and the linear
subspace L′ which is a homogeneous model for L. Choose a complementary subspace
M ′ ∼= Cp−k and the Cartesian projection ρ : Cp+1 → Cp−k. For any point a ∈ Pp r L the
line Ca ⊂ Cp+1 is disjoint with L′ (except for the origin) and its image ρ(Ca) is a nontrivial

(i.e., not reducible to one point) line in Cp−k. This allows us to pass to projectivizations
and construct the map πL : PprL → Pp−k−1 which sends the point a into the equivalence
class represented by the line ρ(Ca). This map is called projection with center L. It is

defined modulo a projective automorphism of the target space Cp−k−1.

After recalling this basic construction, we can formulate the following
fundamental properties of projections of algebraic sets.

Proposition 25.29. 1. If X ⊂ Cn × Pp is an algebraic variety, then its
projection on Cn parallel to Pp is an algebraic variety in Cn.

2. If X ⊂ Pp is an algebraic variety and Lk ⊂ Pp is a projective k-
dimensional subspace disjoint with X, then the projection πL(X) of X on
Pp−k−1 with the center on L, is an algebraic variety.

References for the proposition. Both results follow from the classical elimination the-
ory and algebraically reflect the compactness of the projective space Pm. The first assertion
appears under the name of the Principal Theorem of Elimination Theory in [Mum76,
§2B, (2.24)].

The assertion that the projective image of X is closed if X is disjoint with L, is known
as M. Noether’s lemma on normalization [Mum76, Corollary 2.29].

2This converse assertion fails in the nonhomogeneous settings: if ω is a polynomial Pfaffian
1-form on C2 and f ∈ C[x, y] a nonzero polynomial such that ω∧df = fΦ for some 2-form Φ, then
the solution f = const, Φ = 0 does not correspond to a foliation having an invariant curve.
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25. Algebraic leaves on P2 487

The analytic counterpart of these results is the Remmert theorem on proper projec-
tions of analytic sets [GR65, Ch. V, § C, Theorem 5]. ¤

Consider the linear spaces L1 = {Ω: deg Ω = r, Ω(V ) = 0} of homoge-
neous 1-forms on C3, L2 = {f ∈ C[X : Y : Z] : deg f = m} of homogeneous
polynomials and L3 = {Φ ∈ Λ2[X : Y : Z]} of the corresponding homo-
geneous cofactors (the degree of the cofactor is completely determined by
r,m). Denote by P (Li) the corresponding projectivizations, the quotient
spaces by the complex multiplicative action,

P (Lj) =
Lj r {0}

/
Cr {0}, j = 1, 2, 3.

The equation (25.22) determines an algebraic variety in L1 × L2 × L3.
Together with f it is also satisfied by λf , λ 6= 0, thus the variety in fact sits
in L1 × P (L2)× L3. Denote it by Q.

By Proposition 25.29, the projection of Q parallel to the middle term
in L1 × P (L2) × L3 produces an algebraic variety Q′ in the space L1 × L3.
The projection Q′ is a cone; together with (Ω, Φ) the equation (25.22) is also
satisfied by the pair (λΩ, λΦ) for any λ 6= 0. The projectivization Q′′ of Q′

is an algebraic subset of the projective space P (L1 × L3).
The linear subspace L3

∼= {Ω = 0} × L3 in L1 × L3 corresponds to
a projective subspace P (L3) ⊂ P (L1 × L3) disjoint with Q′′; indeed, if
Ω ≡ 0, then the equation (25.22) cannot be satisfied unless either Φ or f is
identically zero.

The projection of P (L1 × L3) with the center P (L3) takes Q′′ into an
algebraic set Q′′′ ⊂ P (L1) by the second assertion of Proposition 25.29. This
variety is precisely the projectivization of the cone of homogeneous 1-forms,
for which the equation (25.22) admits a nontrivial solution. ¤

Proof of Theorem 25.18. An algebraic subset of a projective space has
either measure zero or coincides with the whole space. To exclude the latter
possibility, it suffices to construct a single example of a polynomial folia-
tion without algebraic separatrices. Thus the Jouanolou example (Theo-
rem 25.20) implies that for any finite m, the foliations from the class Br

which have algebraic invariant curve of degree 6 m, constitute a proper
algebraic subvariety Xr

m in the projective space Br. The countable union⋃
m>0 Xr

m has zero measure, hence its complement, corresponding to folia-
tions without algebraic leaves, has full measure. The argument works for
both complex and real algebraic foliations alike.

One can refine the assertion on genericity for complex foliations. In-
deed, the finite union

⋃r+1
m=0 Xr

m is a closed proper algebraic subset, whose
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488 V. Global properties of complex polynomial foliations

complement B′r is open in Br; foliations from the class B′r may have only
algebraic solutions of degree > r + 2.

Consider the open dense subset B′′
r ⊂ B′r of foliations which have only

nondegenerate singular points with nonreal characteristic ratios. These ex-
tra conditions define a semialgebraic, open and dense subset Ur in Br, so
that B′′r is also open dense and semialgebraic. By Theorem 25.27, foliations
from the class B′′r cannot have algebraic leaves of degree > r + 2. Hence the
entire open dense subset B′′r consists of polynomial foliations that cannot
have algebraic leaves at all.

Note that the subset Ur excludes the real foliations, thus the assertion on
generic absence of algebraic leaves in this case is weaker than in the complex
case (Remark 25.19). ¤

25E. Smooth invariant curves. Unlike Theorem 25.14, the stronger re-
sult claimed by Theorem 25.15 is proved using more analytic tools. We
follow the exposition in [CLN91] with some modification.

Lemma 25.30 (Division lemma). If a smooth projective curve C defined
by the square-free homogeneous equation {f(X, Y, Z) = 0} of degree m is a
separatrix of a polynomial foliation of the projective degree r defined by a
homogeneous 1-form Ω on C3, then there exist a homogeneous polynomial
g(X,Y, Z) ∈ C[X, Y, Z] and a homogeneous 1-form µ ∈ Λ1[C3] such that

Ω = g df + fµ, deg g = r −m + 1, deg µ = r −m. (25.23)

Proof. The equation (25.23) in any dimension is locally solvable near any
smooth point of an analytic hypersurface {f = 0}. Indeed, one can always
choose a holomorphic coordinate system so that the hypersurface takes the
form C = {x1 = 0} ⊂ (Cn, 0). A 1-form tangent to C admits a local
representation

∑n
1 ai(x) dxi with the analytic coefficients a2(x), . . . , an(x)

vanishing on C and hence divisible by x1.
Consider the cone K = {f = 0} r {0} in C3 r {0} which is a smooth

hypersurface (the origin is deleted). Because of this smoothness, near each
point K one may choose a covering of a punctured neighborhood of the
origin in C3 by, say, small polydisks Uα so that in each polydisk

Ω = gα df + f µα on Uα.

On the intersections Uα∩β = Uα∩Uβ we have (gα− gβ) df + f(µα−µβ) = 0,
that is, the analytic functions gα − gβ are divisible by f :

gα − gβ = f hαβ, hαβ ∈ O(Uαβ).

The holomorphic cochain hαβ is a cocycle: hαβ +hβγ +hγα = 0 on all triple
intersections Uαβγ .
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25. Algebraic leaves on P2 489

Solvability of this cocycle constitutes the assertion of H. Cartan’s the-
orem on triviality of the cohomology H1(C3 r {0},O) [Car38]. Applying
this theorem, we conclude that there exists a holomorphic cocycle {hα} such
that hαβ = hα−hβ. Substituting this into the definition of hαβ, we conclude
that

gα + hαf = gβ + hβf on Uαβ,

i.e., the functions gα + hαf together define a global function g holomorphic
on C3 r {0}. Similarly,

µα − hα df = µβ − hβ df on Uαβ ,

which allows us to construct a 1-form µ holomorphic on C3 r {0}. By the
removable singularity theorem, both g and µ extend holomorphically at the
origin. Together g and µ solve the equation (25.23).

Apriori, g and µ can be nonhomogeneous, since the decomposition
(25.23) is generally nonunique. However, since f and df are homogeneous of
degrees m and m− 1 respectively, one can choose the homogeneous compo-
nents of the constructed g and µ of degrees r−m+1 and r−m respectively:
they would constitute a homogeneous solution for (25.23). ¤

Remark 25.31. The Division Lemma 25.30 is projective (i.e., deals with homogeneous
forms and polynomials in three variables). It admits an affine analog concerning nonhomo-
geneous forms and polynomials in two variables. The proof of this affine division lemma
has a similar structure, globalization of local representations, but unlike its projective
counterpart, the globalization is achieved using the Max Noether “AF + BG theorem”
rather than the Cartan theorem. At the end we explain how the affine result can be used
to prove the projective one, this providing an alternative demonstration of Lemma 25.30.

Lemma 25.32 (Affine division lemma). If a smooth affine curve C = {f = 0} ⊂ C2,
f ∈ C[x, y] of degree m, is transversal to infinity I and invariant for a foliation defined by
a polynomial 1-form ω of degree r, dicritical at infinity, then

ω = g df + fµ, (25.24)

where g ∈ C[x, y] is a polynomial of degree r−m + 1 and µ a polynomial 1-form of degree
r −m.

Sketch of demonstration. Since C is invariant, ω ∧ df is a 2-form that vanishes on C,
hence one can write ω ∧ df = fg dx ∧ dy, where h ∈ C[x, y] is a polynomial coefficient.
Since df does not vanish on C, the polynomial h must vanish at all critical points of f ,
defined by the algebraic equations {a ∈ C2 : df(a) = 0}. Moreover, the germ of h at each

critical point a belongs to the ideal



∂f
∂x

, ∂f
∂y

�
generated by the partial derivatives of f in the

corresponding local ring O(C2, a) of holomorphic germs. After some technical work one
can derive from the Max Noether theorem [GH78, Chapter 5,§3] that h globally belongs to
the ideal generated in C[x, y] by the partial derivatives of f , in other words, that the 2-form
h dx∧dy is divisible by df , h dx∧dy = df∧µ, where µ is a polynomial 1-form. This identity
implies that (ω − fµ) ∧ df ≡ 0. Since df has only isolated singularities, the last condition
means that ω − fµ is divisible by df , ω − fµ = g df for some polynomial g ∈ C[x, y]. An
accurate analysis shows that the degrees of g and µ are indeed as asserted. ¤
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490 V. Global properties of complex polynomial foliations

Lemma 25.30 can in turn be derived from its affine counterpart, Lemma 25.32, as
follows. Consider the affine hyperplane Π = {Z = 1} ⊂ C3 and restrict on it the homoge-
neous 1-form Ω and the homogeneous polynomial f , denoting these restrictions by ω and
ϕ respectively. Without loss of generality we may assume that ϕ is transversal to infinity
and ω is dicritical at infinity. By Lemma 25.32, the form ω can be represented as follows,
ω = ψ dϕ + ϕσ, where ψ ∈ C[x, y] and σ = α dx + β dy ∈ Λ1[x, y] are a polynomial of
degree r −m + 1 and polynomial 1-form of degree r −m respectively.

Any polynomial of degree k in two variables considered as a function on Π ⊂ C3

can be extended as a homogeneous polynomial of three variables of the same degree.
Extending this way the polynomial ψ(x, y) and the coefficients α(x, y), β(x, y), we ob-
tain the polynomial g and two of the three coefficients of the form µ = a(X, Y, Z) dX +
b(X, Y, Z) dY + c(X, Y, Z) dZ. The remaining coefficient c ∈ C[X, Y, Z] must be chosen so
that the Euler identity in C3 holds: evaluating both parts of (25.23) on the Euler vector
field V transversal to Π, we obtain the equation

0 = mg + µ(V ), g = g(X, Y, Z), µ(E) = Xa + Y b + Zc.

This equation allows us to restore c(X, Y, Z) only as a rational homogeneous function.
Yet an accurate analysis shows that in fact c is a homogeneous polynomial of degree r−m
if (a) the form ω is dicritical at infinity and (b) the polynomial ϕ = f |Π is transversal to
infinity. Both conditions can be achieved by a suitable choice of homogeneous coordinates
in C3, as was already mentioned. An interested reader will easily restore the omitted
computations.

Proof of Theorems 25.15 and 25.21. Theorem 25.15 is an immediate
corollary of the Division Lemma 25.30. Indeed, assume that a smooth alge-
braic curve of degree m given by its homogeneous equation C = {f = 0} is
a separatrix of the foliation defined by a homogeneous form Ω of degree r.
Then by Lemma 25.30 we have a representation (25.23).

By definition, Ω vanishes on the Euler field V and f is homogeneous of
degree m. Evaluating (25.23) on the Euler field and using the Euler identity,
we conclude with the identity

mg + µ(V ) ≡ 0. (25.25)

Thus the form µ cannot vanish identically; indeed, in such a case we
would have g ≡ 0 and hence by (25.23) Ω ≡ 0 in contradiction with our
assumptions.

Therefore we have an inequality between the degrees r = deg Ω =
deg(fµ) = m + deg µ > m.

If r = m, then deg µ = 0, i.e., µ = const, and deg g = 1, i.e., dg is also a
constant 1-form, dg(V ) ≡ g. From this and (25.25) we conclude that µ(V ) =
−mdg(V ), and since both forms µ and −mdg are constant and take the
same values of V , they coincide identically: µ = −mdg. Substituting this
to (25.23), we obtain the representation Ω = g df −mf dg = gm−1 d(f/gm)
meaning that Ω is a differential of a rational function.
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25. Algebraic leaves on P2 491

In other words, a foliation having a smooth algebraic separatrix of max-
imal possible degree, must be Hamiltonian; cf. with Example 25.12. This
completes the proof of Theorem 25.15.

To prove Theorem 25.21, note that the polynomial g must be of degree
at least 1, i.e., nonconstant. The points of C where g vanishes, are singular
for F. Hence a smooth projective curve necessarily carries a singularity of
F. If C is itself singular, then the singularity of C must be a singularity
of F by the very definition of foliation. The proof of Theorem 25.21 is also
complete. ¤

25F. Jouanolou example. Now we have all the necessary tools to prove
Theorem 25.20 and show that the foliation (25.18) has no algebraic leaves on
the projective plane. One of the reasons is a very high degree of symmetry
of this foliation.

The main idea behind the proof is rather simple. Suppose a foliation
of degree n has a maximal number of singular points, ≈ n2 by the Bézout
theorem, all of them complex saddles, and symmetries of the field act tran-
sitively (cyclically) on these points. An invariant curve, if it exists, must
pass through one of these points, hence by symmetry through all of them.
This means that the curve is either smooth, or nodal (has only the normal
crossings) and its degree is explicitly bounded by Theorem 25.14. Yet a
nodal curve of a relatively low degree m ≈ n cannot have so many (≈ n2)
self-intersections by the Plücker formula.

This leaves the only possibility that an algebraic leaf C = {f = 0} of de-
gree m is necessarily smooth, then m 6 n and by the Division Lemma 25.30,
these singular points occur only at the intersections of C with the auxiliary
polynomial g from (25.23) of degree n −m. The number of roots of a sys-
tem of two algebraic equations f = 0 and g = 0 of degrees m and n − m
respectively is no greater than ≈ n2/2, which is again less than the initial
estimate ≈ n2. The contradiction shows that there are no algebraic leaves.

The accurate argument goes as follows.

Proof of Jouanolou Theorem 25.20. Consider the foliation F of the
projective degree n + 1 on P2 which in the affine chart (x, y) is defined
by the form

ω = (xn − yn+1) dx− (1− xyn) dy. (25.26)
This foliation is very symmetric: for any ε which is a root of unity of degree
ν = n2 + n + 1 the transformation

σ : (x, y) 7→ (εx, εn+1y)

preserves F, since σ∗ω = εn+1ω.
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492 V. Global properties of complex polynomial foliations

The foliation (25.26) has ν singular points a1, . . . , aν belonging to the
σ-orbit of the obvious singularity a1 = {x = y = 1}. One can immedi-
ately verify that all these singularities are hyperbolic and there are no other
singularities of F on P2.

Because of σ-equivariance, any algebraic separatrix of σ, if it exists, is
part of a larger σ-invariant separatrix C defined by some square-free polyno-
mial f ∈ C[x, y]. We claim that C must be smooth and carry all ν singular
points of F.

Indeed, if C is nonsmooth, then it must have only normal crossings (also
called nodal points), since all singularities of F are hyperbolic. If deg C = m,
then the number s of such points is related to the genus g of the curve by
the Plücker formula [Mir95, Proposition 2.6],

g = 1
2m(m− 1)− s. (25.27)

Since the genus g is always nonnegative, we obtain the inequality s 6
1
2m(m− 1).

On the other hand, since C has only normal crossings, m 6 n + 2 by
Theorem 25.14. Combining this with the Plücker inequality, we conclude
that s 6 1

2(n + 2)(n + 1). This number is strictly less than ν = n2 + n + 1
for n > 1, which means that the self-intersections are impossible and C is
smooth.

For the smooth projective curve C = {f(X, Y, Z) = 0}, a stronger asser-
tion concerning the degree holds. By Theorem 25.15,

m = deg C 6 n + 1. (25.28)

On the other hand, by Lemma 25.30, the homogeneous form Ω which rep-
resents the foliation (25.26) in the homogeneous coordinates in C3, can be
divided by df , i.e., Ω = g df + f µ, where g, µ are the homogeneous function
and the homogeneous form as in (25.23) with deg g = n + 2−m. Since C is
smooth, df does not vanish on {f = 0} (cf. Proposition 25.23). Hence the
singularities of F on C may occur only at the points where the coefficient g
vanishes.

By Theorem 25.21, there is at least one singularity of F on C. But
because of the σ-invariance, all ν singularities of F also lie on C. Note that
they do not belong to one line for n > 0, therefore m = deg C should be
greater or equal to 2.

But this contradicts to the Bézout theorem. Indeed, the singularities are
given by solutions of the system {f = 0, g = 0} of two algebraic equations
of degree m and n+2−m respectively; their number is therefore no greater
than m(n + 2 −m) 6 (n + 1)(n + 2 −m) 6 (n + 1)n < ν by (25.28). The
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resulting contradiction shows that the Jouanolou foliation (25.26) has no
algebraic separatrices for n > 2. ¤

25G. Darboux integrability. So far we discussed the question of exis-
tence and the maximal degree of algebraic separatrices of a polynomial foli-
ation. The natural question would be to ask about their number. Of course,
there are trivial situations when all leaves of the foliation are algebraic, e.g.,
in the Hamiltonian case; see Example 25.12. To exclude such situations,
one may ask about the number of isolated algebraic leaves. Note that in
the complex projective space the notions of compactness and algebraicity
coincide, therefore the question may be formulated as follows: how many
isolated compact complex invariant curves may have a holomorphic singu-
lar foliation of degree r on P2? Despite the apparent similarity between
this question and Hilbert’s sixteenth problem (about limit cycles which are
isolated compact leaves of the real polynomial foliation on RP 2; cf. with
§24A)), the “complex” version is by far more simple. The answer is given
by the Darboux integrability theory. This theory implies that a polynomial
foliation having too many algebraic leaves, is necessarily integrable.
25G1. Classical Darboux approach. We begin the exposition in the simplest
settings. Consider a polynomial vector field F ∈ D[x, y] of degree r on the
affine plane C2, and its invariant algebraic curve C = {f = 0} ⊂ C2 of
degree m, as usual, defined by a square-free polynomial f ∈ C[x, y]. The
invariance condition (25.17) written in terms of the Lie derivative Ff , takes
the form

Ff = fg, f, g ∈ C[x, y], deg f = m, deg g 6 r − 1, (25.29)

where g is the polynomial cofactor associated with the polynomial “invariant
factor” f . Note that the degree of the cofactor does not exceed r − 1 no
matter what the degree of the invariant factor was. This observation lies at
the heart of the Darboux theory.

Theorem 25.33. If a planar polynomial vector field F ∈ D[C2] of degree
r has n > 1

2r(r + 1) + 1 different irreducible invariant curves C1, . . . , Cn,
then it admits a (multivalued) first integral of the form Φ = fλ1

1 · · · fλn
n ,

where fj ∈ C[x, y], j = 1, . . . , n, are irreducible polynomials determining the
respective curves Cj and λj ∈ C the complex exponents, not all equal to zero.

Proof. The dimension of the linear space of all polynomials in two vari-
ables x, y of degree 6 r − 1 is 1

2r(r + 1). Thus if the field F has as many
invariant factors f1, . . . , fn as is assumed in the theorem, Ffj = fjgj , then
the corresponding cofactors g1, . . . , gn must necessarily be linearly depen-
dent: there exist complex numbers λ1, . . . , λn, not all equal to zero, such
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494 V. Global properties of complex polynomial foliations

that λ1g1 + · · · + λngn = 0. Direct computation shows that the noncon-
stant multivalued function Φ is the first integral of F for any choice of the
branches:

FΦ = Φ ·
n∑

j=1

λj
Ffj

fj
= Φ ·

n∑

j=1

λjgj ≡ 0.

The proof is complete. ¤

This theorem is the first in a chain of results linking integrability with
the presence of many invariant algebraic curves. For instance, one extra al-
gebraic invariant curve implies that the first integral can be chosen rational.

Theorem 25.34 (J.-P. Jouanolou, 1979). If a polynomial vector field F of
degree r has 1

2r(r + 1) + 2 algebraic irreducible invariant curves, then it has
a rational first integral.

Proof. By Theorem 25.33, the field F admits a number of multivalued
integrals in the form of products of complex powers of the polynomials
f1, . . . , fn+1. Choose two such integrals Φ,Φ′ which are different in the
sense that, say, the first does not involve the power of fn+1 while the second
does not involve the power of fn.

The two closed 1-forms ω = dΦ/Φ and ω′ = dΦ′/Φ′ are rational :each
of them is a linear combination of the logarithmic derivatives df1/f1, . . . ,
dfn+1/fn+1. Since both Φ and Φ′ are first integrals of the same foliation
generated by the field F , the forms ω and ω′ are proportional at each point
of P2, i.e., differ by a rational factor h ∈ M(x, y). The ratio h is obviously
nonconstant (otherwise the integrals would involve the powers of the same
terms).

We claim that h is the first integral of the field F . Indeed, differentiating
the identity ω′ = hω and using the fact that both ω, ω′ are exact, we conclude
that 0 = dh ∧ ω, i.e., all three forms dh, ω and ω′ are proportional.

Thus h is a rational first integral, Fh = 0, as required. ¤

Corollary 25.35. A foliation defined by a polynomial vector field of degree
r, may have at most 1

2r(r + 1) + 1 isolated compact invariant curves.

Proof. Otherwise the foliation would admit a rational first integral, hence
all leaves would be algebraic and none of them can be isolated. ¤

Another application of Theorem 25.34 is the following finiteness result.

Corollary 25.36. For any polynomial foliation F on P2, the degree of its ir-
reducible algebraic separatrices is uniformly bounded by a constant depending
only on F.
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25. Algebraic leaves on P2 495

Proof. If this degree is unbounded, then the number of different irreducible
separatrices is infinite. By Theorem 25.34, the foliation has a rational first
integral. The degree of this integral is an upper bound for the degrees of all
algebraic leaves of F, contrary to the assumption. ¤

Remark 25.37. Sometimes it is more natural to describe polynomial folia-
tions by their Pfaffian equations {ω = 0}, ω ∈ Λ1[C2] and treat the cofactors
of an invariant curve C = {f = 0}, f ∈ C[x, y], as a 2-form Θ such that

ω ∧ df = f Θ, Θ ∈ Λ2[C2]. (25.30)

25G2. Generalized Darboux integrability. The above exposition relies on
some very explicit and particular form of integrability. We will present
a more general approach, partially based on [CL00].

Definition 25.38. A polynomial foliation F of the projective plane P2 is
Darboux integrable, if it is generated by a closed meromorphic (rational)
1-form ω on P2.

By this definition, a Darboux integrable foliation admits an analytic first
integral which is a multivalued function on P2 ramified over an algebraic
curve Σ ⊂ P2 (algebraic subvariety of positive codimension).

The definition of integrability established in Theorem 25.33 is in-
deed a particular case of the general Definition 25.38. This follows from
Lemma 11.27 giving the explicit description of exact rational 1-forms on P2.
In fact, the same arguments that prove the local Lemma 11.27, prove its
global counterpart.

Lemma 25.39. If Σ ⊆ P2 is an algebraic curve whose irreducible com-
ponents are given in an affine chart by irreducible polynomial equations
{fi = 0} ⊂ C2, fi ∈ C[x, y], then any rational closed 1-form with the polar
locus on Σ is cohomologous to a linear combination of logarithmic deriva-
tives,

ω =
n∑

j=1

λj
dfj

fj
+ d

(
g

f0

)
, f0, f1, . . . , fn, g ∈ C[x, y], λj ∈ C, (25.31)

where f0 is a polynomial nonvanishing off Σ. ¤

Corollary 25.40. Any Darboux integrable foliation admits a multivalued
“first integral” of the form Φ = exp(g/f0) ·

∏n
1 f

λj

j . ¤

Now we can give an invariant definition of the invariant differentials,
generalizing the notion of invariant curves. Consider a polynomial vector
field F of degree r on C2 and the foliation F on P2 generated by this field.
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496 V. Global properties of complex polynomial foliations

Definition 25.41. An invariant differential for the vector field F is a closed
rational 1-form α on P2, with the pole of order 6 1 on the infinite line, such
that the rational function h = α(F ) has no singularities in the affine plane
C2, i.e., is a polynomial. This polynomial is called the cofactor associated
with the invariant differential α:

α(F ) = h ∈ C[x, y], dα = 0. (25.32)

The invariant differential is simple, if it has only first order poles in the affine
part C2 ⊂ P2, otherwise it is called multiple3.

The invariant differentials for a given field F obviously form a complex
linear space DF ⊆ Λ1[C2]. The corresponding cofactors form a subspace in
the space of all polynomials CF ⊆ C[x, y].

Example 25.42. 1. A nonzero polynomial closed 1-form α is exact and
cannot have a pole of order 6 1 on the infinite line unless being identically
zero. Therefore each invariant differential α for a polynomial vector field F
should be a rational form with the nonvoid polar locus C = Cα ⊂ C2 which
is an algebraic curve.

2. As follows from Lemma 11.27, any simple invariant differential is a
linear combination of logarithmic differentials,

α =
n∑

j=1

λj
dfj

fj
, (25.33)

for some irreducible polynomials fj and complex numbers λj . Conversely, if
(25.33) is an invariant differential with a cofactor h, then each logarithmic
derivative dfj/fj also is a invariant differential with some cofactor hj , and
each algebraic curve Cj = {fj = 0} is an invariant algebraic curve for F .

This observation gives a complete description of all simple invariant
differentials which are in one-to-one correspondence with algebraic invariant
curves of the field F .

3. The multiple invariant factors correspond to divisors with nontrivial
multiplicities (greater than 1). Indeed, by the same Lemma 11.27, α is the
sum of a simple Darboux part and the exact rational form d(g/f0) which
has poles of order > 2 on the polar locus {f0 = 0} ⊆ ⋃n

j=1{fj = 0}. More
precisely, if f0 has a pole of some order k > 1 on an irreducible curve C,
then the form α has a pole of order k + 1 there. If the exact term d(g/f0)
is present, then at least on one of the irreducible curves Cj the invariant
differential α has a pole of order > 2.

3We do not discuss here the question of multiplicity which is to be assigned to multiple
invariant differentials. This question is addressed in [CLP07], we only mention here that this
multiplicity does not coincide with the order of pole of the corresponding invariant differential.
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25. Algebraic leaves on P2 497

Remark 25.43. As with divisors, the multiple invariant differentials can be
understood as limits of one or several confluent simple invariant differentials.
Indeed, if α = df/f and β = dg/g are two simple invariant differentials
corresponding to two close polynomials, g/f = 1 + εw, where w ∈ C(x, y) is
a rational function and ε a small parameter, then the linear space spanned
by these two simple invariant differentials coincides with the linear spaces
spanned, say, by df/f and dw/(1 + εw); the limit position of this space is
spanned by the simple invariant differential df/f and the exact 1-form dw
(which has a pole of order > 2).

The cornerstone of the Darboux method remains the same as in the
classical context.

Theorem 25.44. If the linear map

iF : DF → CF , α
iF7−→ α(F ) (25.34)

from the space of invariant differentials DF for the field F to the space CF of
polynomial cofactors has a nontrivial kernel, then F is Darboux integrable.

Proof. Any nonzero closed rational form α such that α(F ) = 0, generates
the same foliation as the field F itself. ¤

To apply the (obvious) Theorem 25.44, one has to produce an upper
bound for the dimension of the space of the cofactors and construct suffi-
ciently many linearly independent invariant differentials. It turns out that
the first task can be implemented without any explicit knowledge of the
field.

Apriori, the definition of a cofactor h ∈ C[x, y] does not impose any
restriction on its degree. Yet it turns out that this degree is automatically
no greater than r−1, where r = deg F is the affine degree of the polynomial
field F .

Proposition 25.45. If F ∈ D[C2] is a polynomial vector field on C2 and α
is an invariant differential for F with the cofactor h = α(F ), then

deg α(F ) 6 deg F − 1. (25.35)

Proof. The inequality is obvious for the simple invariant differentials: if
α = df/f with f ∈ C[x, y] and α(F ) = h is a polynomial, then Ff = fh.

For multiple invariant differentials one can assume without loss of gen-
erality that α is exact, α = d(g/f0). For the form α to have a pole of order
6 1 on the infinite line (as required by the definition of the invariant differ-
ential), the rational primitive g/f0 should have no pole on the infinite line,
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498 V. Global properties of complex polynomial foliations

which is possible only if deg g 6 deg f0. The assumption that d(g/f0) = h
has a polynomial cofactor, means that

f0 (Fg)− g (Ff0) = hf2
0 ,

which is possible only if deg h 6 deg f0 + deg F + deg g − 1 − 2 deg f0 =
deg F − 1 + deg g − deg f0 6 deg F − 1. ¤

This proposition implies that

dimCDF 6 1
2r(r + 1), where r = deg F. (25.36)

Corollary 25.46 (Generalized Darboux theorem). If a polynomial vector
field of degree r has 1

2r(r+1)+1 linearly independent invariant differentials,
then it is Darboux integrable.

Corollary 25.47 (Generalized Jouanolou theorem). If a polynomial vector
field of degree r has 1

2r(r+1)+2 linearly independent invariant differentials,
then it has a rational first integral.

Proof of both Corollaries. The dimension of polynomials of degree 6
r − 1 in two variables is 1

2r(r + 1), so any given 1
2r(r + 1) + 1 cofactors are

linearly dependent and Theorem 25.44 applies. If there is an extra invariant
differential independent from the first one, then there can be constructed two
nonproportional closed rational 1-forms ω, ω′ tangent to the same foliation
F. Their ratio is a nonconstant rational first integral in the same way as in
Theorem 25.34. ¤

These results generalize the results by J. Llibre and C. Christopher
[CL00] for the case where the field admits invariant differentials4 of multi-
plicity higher than 2.

Moreover, one can further improve the two Corollaries, if the polynomial
vector field possesses invariant differentials “not passing” through singular
points of F , i.e., not containing points of Sing F in their singular loci. In-
deed, in this case any cofactor must vanish at these points: this vanishing
condition is a linear constraint that further reduces the dimension of the
target space CF of the map (25.34).

In particular, assume that a polynomial vector field F of degree r has n
invariant differentials, none of which contains some given l singular points
of F in the polar locus. If these l points are in general position (so that the
subspace of polynomials of degree 6 r − 1 vanishing at all these points has
codimension l), and n+l 6 1

2r(r+1), then the field F is Darboux integrable;
occurrence of yet another independent invariant differential with the same
properties implies that F admits a rational first integral; cf. with [CL00].

4In [CL00] the authors explicitly require that the exponential factor has the cofactor of
degree 6 r − 1, where r is the degree of the vector field F .
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Algebraic leaves in the class Ar 499

Appendix: Foliations with invariant lines and algebraic
leaves of foliations from the class Ar

One of the principal results of this section is that generic polynomial folia-
tions from the class Br on P2 have no compact separatrices (such separatrices
would automatically be algebraic) for r > 2. This makes application of the
tools related to holonomy groups, very problematic. However, if we change
the point of view and consider all foliations given in a fixed affine chart
by polynomial 1-forms of a given degree r, then generically such foliations
possess the invariant line at infinity which is a unique algebraic separatrix
with (generically) rather reach fundamental group. This paves the way to
rigidity theorems of §28. On the other hand, many properties of the class
Ar are parallel to those of the class Br.

From now on we fix a line ` in P2 and any affine chart (x, y) on C2 = P2r`
for which this line is the infinite line denoted by I.

Recall (cf. Definition 25.1) that the class Ar has the natural structure of
a (complex) projective space PN of dimension N = (r + 1)(r + 2) − 1 with
the homogeneous coordinates being coefficients of the polynomial 1-form ω.
This again allows us to speak about generic properties of foliations from this
class.

Example 25.48. A generic foliation F ∈ Ar has an invariant line I carrying
exactly r + 1 hyperbolic singular points.

Indeed, the sufficient condition for having an invariant line at infinity is
described by Proposition 25.8. If ω = p dx+q dy is the Pfaffian form defining
the foliation, this condition takes the form xpr(x, y) + yqr(x, y) 6≡ 0, where
pr dx+qr dy is the principal homogeneous part of degree r of p, q respectively.
The singularities on I correspond to roots of the homogeneous polynomial
hr+1 = xpr + yqr which are generically all distinct.

The ratios of eigenvalues of linearization (characteristic numbers) at each
such point are given by the expressions (25.6), and are all nonzero if the
homogeneous polynomials pr, qr have no common roots.

Definition 25.49. Denote by A′
r ⊂ Ar the class of all foliations having

invariant line I at infinity and exactly r + 1 distinct hyperbolic singularities
on it. This class constitutes a Zariski open subset in the complex (linear or
projective) space Ar.

We can prove now another assertion illustrating scarcity of algebraic
leaves of polynomial foliations. The following theorem is a direct counterpart
of Theorem 25.27.
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500 V. Global properties of complex polynomial foliations

Theorem 25.50. If all r + 1 exponents at infinity of a foliation F ∈ A′
r

are nonreal, then this foliation has no algebraic leaves of degree greater than
r + 1.

Proof. Near each singular point on I, the foliation is linearizable by the
Poincaré Theorem 5.5 and hence there exists a local biholomorphism be-
tween F and a foliation (v − vj)du − λju dv = 0. The only local leaves
of the latter which can belong to an algebraic leaf of the initial foliation,
are two invariant curves (separatrices), one of which is a part of the line I
and the other is transversal to it. All other local leaves have logarithmic
ramification.

Thus an algebraic invariant curve of F, if it exists, must intersect the
infinite line I transversally at some of the r + 1 singular points at infinity.
Yet an algebraic curve of degree d in P2 intersects any line, in particular, I,
at exactly d points counted with their multiplicity. Thus d 6 r + 1. ¤

Remark 25.51. The arguments proving Theorem 25.50, also show that
for the foliations satisfying the assumptions of this theorem, the principal
homogeneous part of the polynomial equation defining an algebraic leaf of
degree 6 r + 1, if such a leaf exists, must be a product of linear factors
corresponding to lines passing through singular points on I. The multiplicity
of any such factor must not exceed 1 so that the intersection of the leaf with
I remains transversal.

The assumptions of Theorem 25.50 on the exponents at infinity can
be relaxed to cover generic real foliations from the class A′R

r , if we require
that exponents at infinity are not rational, λj ∈ C r Q. In these relaxed
assumptions each singularity on the infinite line still has a unique smooth
separatrix transversal to I.

Theorem 25.50 places an apriori upper bound for the degree of algebraic
leaves of a generic foliation from the class A′

r. We explain now an algorithm
allowing to determine all algebraic leaves of degrees 6 s for an arbitrary
foliation from the class A′

r and any given s.
It will be convenient to assume that the foliation F ∈ A′

r is defined by a
polynomial vector field F ∈ D[C2], represented as the sum of homogeneous
terms of degrees from 0 to r, F = Fr + Fr−1 + · · · + F1 + F0. Assume
that f = fs + fs−1 + · · · + f0 is the polynomial equation of an algebraic
leaf (separatrix), also represented as the sum of homogeneous components
of degree 6 s (we do not assume that s 6 r + 1). Then there exists a
polynomial cofactor g = gr−1 + gr−2 + · · ·+ g1 + g0 ∈ C[x, y], such that

Ff = fg (25.37)
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Algebraic leaves in the class Ar 501

(the left hand side is the derivation of f along the field F ; cf. with §1G).
Collecting the homogeneous terms from two sides, we arrive at the system
of equations

Frfs = fsgr−1, (25.38)

Frfs−1 = fs−1gr−1 + fsgr−2 − Fr−1fs, (25.39)

Frfs−2 = fs−2gr−1 + fs−1gr−2 + fsgr−3 − Fr−2fs − Fr−1fs−1, (25.40)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frf1 = f1gr−1 + f2gr−2 + · · · − Fr−1f2 − Fr−2f3 − · · · (25.41)

This system can be explicitly solved.
The identity (25.38) is bilinear with respect to the unknown homoge-

neous polynomials fs, gr−1. It admits solutions of any degree s.

Lemma 25.52. If the foliation F belongs to the class A′
r, then every solution

fs of (25.38) has the form

fs =
r+1∏

j=1

l
νj

j , νj ∈ Z+,
∑

j

νj = s, (25.42)

where lj ∈ C[x, y] are linear homogeneous polynomials defining the lines
`j ⊂ C2 passing through the origin and the infinite singular points Sj of F.
The corresponding cofactor gr−1 is uniquely defined by the choice of fs.

Remark 25.53. For foliations of the class Br, Fr = ar−1(x, y)V , where V
is the Euler field and ar−1 ∈ C[x, y], hence any homogeneous polynomial fs

satisfies the equation (25.38) gr−1 = sar−1.

The remaining equations have a “triangular” structure which allows us
to solve them inductively starting from any solution fs, gr−1 of the equation
(25.38). Solvability of these equations can be described as follows.

Lemma 25.54. If fs is a square-free solution of (25.38), i.e., if νj 6 1 for
all j = 1, . . . , r + 1, then in the assumptions of Lemma 25.52 the system of
equations (25.39)–(25.40) is generically not solvable.

More precisely, in the space of all polynomial vector fields F of the given
degree r > 2 with the fixed principal part Fr, the fields which admit polyno-
mial integrals starting with fs, constitute a proper algebraic subvariety.

Proof of both lemmas. All assertions are verified by the direct compu-
tations in the homogeneous coordinates x and v = y/x; because of the
homogeneity, the variables separate. In doing this it is convenient to view
the left hand sides of the equations as the ratios of the appropriate 2-forms
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502 V. Global properties of complex polynomial foliations

ωr∧dfj

dx∧dy , j = s, s− 1, . . . , 1, which in turn are equal to the ratios

xr+j−1[(pr(1, v) + vqr(1, v)) dx + xqr(1, v) dv] ∧ (j fj(1, v) dx + x
dfj(1,v)

dv dv)
x dx ∧ dv

= xr+j−1
(
hr+1(1, v)dfj(1,v)

dv − jfj(1, v)qr(1, v)
)

, hr+1 = pr + vqr.

After passing to the new coordinates the system of the equations (25.38)–
(25.40) takes the form

hr+1
d
dvfs − sqrfs = fsgr−1, (25.43)

hr+1
d
dvfs−1 − (s− 1)qrfs−1 = fs−1gr−1 + fsgr−2 + wr+s, (25.44)

hr+1
d
dvfs−2 − (s− 2)qrfs−2 = fs−2gr−1 + fsgr−3 + wr+s−1, (25.45)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hr+1
d
dvf1 − qrf1 = f1gr−1 + fsgr−s−2 + wr (25.46)

where all polynomials depend only on the single variable v and we abbre-
viated hr+1(1, v), qr(1, v), fj(1, v) and gj(1, v) to hj+1(v), qr(v), fj(v) and
gj(v) respectively. The terms denoted by wj stand for polynomials of de-
gree 6 j in v, which are linear combinations of the polynomials fi and gk

and their derivatives occurring in the preceding lines of the system. This
triangular structure allows us to solve the system with respect to the homo-
geneous components fj , gj , starting from the first equation (25.43).

The equation (25.43) implies that the roots v1, . . . , vr+1 of polynomial
hr+1(v) (corresponding to the singularities S1, . . . , Sr+1 on the infinite line)
should cancel the poles of the logarithmic derivative d

dvfs/fs of the principal
term fs. Since the latter is the sum of simple fractions, this means that all
roots of fs should be among the set {v1, . . . , vr+1}, i.e., fs(v) =

∑r+1
j=1 νj/(v−

vj) with νj > 0,
∑

j νj = s. Conversely, any polynomial of the form (25.42)
yields a solution to (25.43).

The remaining equations are linear with respect to the polynomials fs−j

and gr−j−1 respectively, assuming that all higher order homogeneous com-
ponents of both the integral f and the cofactor g are already known. We
show that the solution of those equations reduces to solving interpolation
problems for univariate polynomials. In the square-free case when s 6 r +1
and fs is a product of pairwise different linear factors, we show that the
second equation (25.44) is generically solvable whereas the third equation
(25.45) is not solvable.

Indeed, evaluating (25.44) at any root vk of fs which must also be the
root of hr+1, we conclude with the equations

ckfs−1(vk)+wr+s(vk) = 0, where ck = (s−1)qr(vk)+gr−1(vk), k = 1, . . . , s.
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These equations uniquely prescribe the values fs−1 at vk provided that ck 6=
0 which generically holds true. The problem of recovering the polynomial
fs−1 of degree s − 1 is hereby reduced to the s-point interpolation. The
latter problem is always solvable, and the initial equation (25.44) can be
used now to determine uniquely the polynomial gr−2.

The same arguments literally apply also to the subsequent equations
starting from (25.45), yet the interpolation problem to be solved would re-
quire restoring a polynomial fj of degree j < s−1, by its arbitrarily assigned
values at s distinct points. Generically this problem is not solvable unless
a certain polynomial relation between coefficients of the system holds. This
condition can be explicitly stated as the requirement that the rank of the
extended matrix of the nonhomogeneous system is equal to the rank of the
matrix of the homogeneous system. ¤

Remark 25.55. The case where fs is not square-free, is treated by similar
arguments involving interpolation with derivatives.

Combining Theorem 25.50 with Lemma 25.54, we arrive at the direct
analog of Theorem 25.18 for foliations of the class Ar.

Theorem 25.56 ([PL55]). A generic polynomial foliation from the class
Ar has no algebraic leaves besides the infinite line I.

Proof. First, it is sufficient to consider only polynomials from the Zariski
open subset A′

r. The assumptions of Theorem 25.50 select a full-measure
subset in the space of foliations A′

r for which the algebraic leaf, if it ex-
ists, must have degree s 6 r + 1 and the principal homogeneous part fs

of the corresponding polynomial must be square-free by Remark 25.51. By
Lemma 25.54, outside a proper algebraic subset the corresponding system
(25.37) is not solvable except for the trivial solution f = c, g = 0 and hence
has no algebraic leaves of any degree s 6 r + 1. ¤

Remark 25.57. The proof of Theorem 25.56 is based on the exposition
in [Pet96], where a number of gaps from the first publication [PL55] was
sealed.

In fact, one can compute directly the dimension of the space of polyno-
mial foliations having only invariant curves of degree 6 r + 1 with normal
self-intersections, as explained in [BL88]. This allows us to avoid explicit
computations proving Lemmas 25.52 and 25.54.

Exercises and Problems for §25.

Problem 25.1. Let σ : (M,E) → (C2, 0) be the standard blow-up and C ⊂ (C2, 0)
the germ of an analytic curve having normal crossing at the origin.
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504 V. Global properties of complex polynomial foliations

Prove that the blow-up C̃ consists of two smooth analytic connected compo-
nents, and σ is a biholomorphic equivalence between each component and a smooth
branch of C.

Problem 25.2. Simple self-intersections of an affine planar algebraic curve are
nondegenerate (Morse) critical points for the minimal polynomial of this curve.

Prove that the corresponding Hamiltonian vector field H restricted on the
curve, has a simple zero on each smooth component of a normal self-intersection.

Exercise 25.3. Give a direct proof of the equality (25.7) for the sum of exponents
at infinity for foliations of the class Ar.

Exercise 25.4. Give a direct proof of the assertion (v) from §25A1, p. 472, i.e.,
prove that any collection of complex numbers constrained by the equality (25.7),
can be realized as exponents at infinity of a suitable foliation from the class Ar.

Exercise 25.5. Compute explicitly the effective dimensions of the classes Ar and
Br (dimensions of the projective spaces in which these classes naturally reside as
open dense subsets).

Exercise 25.6. Give a complete proof of Proposition 25.8.

Problem 25.7. Prove that any singular foliation by analytic curves in CPn in any
affine chart may be represented by a suitable polynomial vector field.

Problem 25.8. Compute the total tangency order between a foliation of the class
Mr and a smooth projective curve of degree m.

Problem 25.9. Prove that degree of an irreducible separatrix of a foliation of the
class Br without generalized dicritical singularities does not exceed r.

Hint. Use Theorem 14.20.

Problem 25.10. A function R is said to be an integrating factor for a polynomial
Pfaffian equation {ω = 0}, ω ∈ Λ1[C2], if Rω is closed, d(Rω) ≡ 0.

Assume that a polynomial foliation {ω = 0} admits several invariant curves
Ci = {fi = 0} such that the corresponding cofactor forms Θi (see Remark 25.37)
generate a subspace containing the differential dω, so that dω =

∑
i λiΘi for some

λi ∈ C. Prove that the equation admits a Darbouxian integrating factor of the form
R =

∏
i fλi

i .

Exercise 25.11. Assume that the cofactor 2-forms Θ1, . . . , Θm of a Pfaffian equat-
ion {ω = 0} together with the differential dω are linearly dependent in Λ2[C2].
Prove that the foliation either admits a Darbouxian integral or a Darbouxian inte-
grating factor.

Problem 25.12. Prove that polynomial integrable foliations of codimension 1 on
Pn admit a uniform upper bound for the number of algebraic leaves, unless they
have a Darbouxian integral. More precisely, show that for each combination of
n, r ∈ N there exists a bound N ∈ N such that any integrable polynomial foliation
{ω = 0} of degree r on Pn either has at most N different irreducible algebraic
leaves, or admits a Darbouxian first integral, i.e., ω ∧ ω′ = 0, where ω′ =

∑
λi

dfi

fi
,

fi homogeneous polynomials in n + 1 variables.
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Exercise 25.13. Prove that a quadratic planar vector field with three invariant
lines in general position admits a Darbouxian first integral.

Exercise 25.14. Prove that the bounds in Theorems 25.16 and 25.15 are sharp:
there exist foliations from the class Br which have algebraic invariant curve of
degree r + 1 and smooth algebraic curve of degree r.

26. Perturbations of Hamiltonian vector fields and zeros of
Abelian integrals

Limit cycles are very difficult to track in general. The problem can be
considerably simplified by localization in the phase space and/or parameters.
For instance, restricting the domain in the phase plane to a neighborhood
of an elliptic singular point allows us to track small amplitude limit cycles,
as explained in §12. Another possibility implicitly explored in §24, is the
study of limit cycles near separatrix polygons (polycycles).

One of the most powerful methods of analysis in general is localization in
the parameter space: starting from an object with known simple properties,
investigate what happens after small perturbation. In application to the
study of vector fields, appearance and disappearance of limit cycles goes by
the name of bifurcation.

In this section we consider bifurcations of limit cycles from nonisolated
periodic orbits. The number and location of these cycles in the most im-
portant cases is determined by zeros of a special class of functions, Abelian
integrals. Recall that Abelian integrals are integrals of rational 1-forms over
cycles on algebraic curves, and if considered as functions of the parameters
(coefficients of polynomials defining the curves), they are transcendental
functions of several complex variables.

We study the algebraic and topological structure of Abelian integrals,
proving several fundamental results that are widely used but not yet avail-
able in a complete and elementary exposition. The central algebraic result
is description of the module of Abelian integrals over the ring of polynomi-
als and explicit computation of the basis of this module. The topological
study allows us to compute the monodromy group of continuous branches
of Abelian integrals. Finally we bring together the two theories and derive
a Picard–Fuchs system of linear ordinary differential equations for Abelian
integrals, establish the type of its singularities and almost irreducibility of
its monodromy. This opens the way to apply the “linear” tools developed
in Chapter III to investigation of bifurcations of nonlinear systems (though
this way remains unexplored in the book5).

5For further developments in this direction see the publications [IY96, NY99, NY01,
NY03, NY04, Yak05, Yak06]. An alternative approach can be found in [GI06, GI07].
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506 V. Global properties of complex polynomial foliations

26A. Poincaré–Pontryagin criterion and generalizations. If γ is a
closed (periodic) nonisolated orbit of a real analytic vector field F , then
it must be an identical cycle by Theorem 9.12: some sufficiently narrow
annulus-like neighborhood U of γ is entirely filled by closed orbits of F .
In this case F is analytically integrable in U : there exists a real analytic
function f : U → R without critical points, such that Ff = 0 (Problem 26.1).
The Pfaffian equation for the foliation takes the form {df = 0}.

Let ε ∈ (R1, 0) be a small real parameter and f a real analytic function
without critical points as above. Consider a real analytic perturbation of
the initial integrable foliation {df = 0}, written in the Pfaffian form as

df + εω = 0, ω ∈ Λ1(U), ε ∈ (R1, 0), (26.1)

where ω ∈ Λ1(U) is a real analytic 1-form. Denote by

∆ = ∆γ : (R1, 0)× (R1, 0) → (R1, 0), (z, ε) 7→ ∆(z, ε),

the holonomy map of the cycle γ considered as a function of the parameter ε.
Since all elements of the construction are real analytic, ∆ can be expanded
in the converging series,

∆(z, ε) = z + εI1(z) + · · ·+ εkIk(z) + · · · , (26.2)

where Ik(z) are real analytic functions defined in some common neighbor-
hood of the origin z = 0. Since the case ε = 0 corresponds to the integrable
system, the term I0 is absent in (26.2).

The first not identically zero function in the sequence I1, I2, . . . , plays a
special role.

Proposition 26.1. Assume that the first nonzero function Ik(z) for some
k > 1 has n isolated zeros (counted with their multiplicities) in the closed
interval {|z| 6 ρ}. Then there exists a small positive value r > 0 such that
the foliation (26.1) in {|z| < ρ} ⊂ U has no more than n limit cycles for all
|ε| < r.

Proof. Limit cycles correspond to the roots of the equation ∆(z, ε)−z = 0.
In the assumptions of the proposition the left hand side is divisible by εk:
∆(z, ε) − z = εkI ′(z, ε). The number of isolated roots of the real analytic
function I ′(z, ε) = Ik(z) + εIk+1(z) + · · · for all sufficiently small ε does not
exceed the total number of roots of its limit Ik(z) = limε→0 I ′(z). ¤

Remark 26.2. The number of geometrically distinct zeros of the first
nonzero function Ik can provide also a lower bound for the number of limit
cycles, if the former are all of an odd multiplicity (e.g., all simple). If the
first nonzero function Ik has a real root of an odd order, then the Poincaré
function has at least one real root which is a limit cycle (this obviously
follows from the intermediate value theorem). Other roots in general may
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26. Abelian integrals 507

be complex and do not correspond to limit cycles. For roots of Ik of an
even order all roots of the displacement function may escape to the nonreal
domain and do not manifest themselves as limit cycles.

The analytic expression of the first variation for the perturbation (26.1)
is very simple.

Theorem 26.3 (Poincaré [Poi90], Pontryagin [Pon34]).

I1(z) = −
∮

{f=z}
ω. (26.3)

If the integral (26.3) is not identically zero, it may have only finitely
many zeros on the cross-section τ . By Proposition 26.1, this number is an
upper bound for the number of limit cycles of the perturbed foliation (26.1)
for all sufficiently small values of the parameter ε.

Proof. Denote by γz,ε the arc of an integral curve of the perturbed foliation
between the point with the coordinate z on the cross-section τ and the next
intersection with τ . By the choice of the chart z = f |τ and the definition of
the displacement,

∆(z, ε)− z =
∫

γz,ε

df = −ε

∫

γz,ε

ω.

The last equality holds since df + εω vanishes identically on γz,ε for any
z. As ε → 0, the arc γz,ε tends uniformly in the C1-sense to the closed
curve γz,0 = {f = z}. Hence the integral

∫
γz,ε

ω converges to the integral in
(26.3). ¤

26B. Higher variations of the holonomy. If the Poincaré integral
(26.3) vanishes identically, the higher variations Ik, k = 2, 3, . . . should
be computed until either a not identically vanishing variation is found, or
for some reason it becomes clear that the family (26.1) entirely consists of
integrable foliations for all small values of ε.

We describe an analytic procedure expressing the first nonzero function
Ik(z) as an integral of a certain analytic 1-form ωk along the level ovals
{f = z} ⊂ U . To describe this procedure, we need the following simple
analytic observation.

Consider a domain U ⊂ R2 and a real analytic function f : U → R
without critical points in it.

Definition 26.4. A real analytic 1-form α ∈ Λ1(U) is relatively exact with
respect to the integrable foliation F = {df = 0} in a domain U , if

α = h df + dg, h, g ∈ O(U), (26.4)

with two functions g, h real analytic in U .
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508 V. Global properties of complex polynomial foliations

The integral of a relatively exact form α along any closed oval on any
level curve {f = z} ⊂ U is obviously zero:

∀ oval δ ⊆ {f = z}
∮

δ
α = 0. (26.5)

The inverse assertion (and especially the complexification thereof) is
considerably more delicate. It holds true only under some additional topo-
logical assumptions; see §26D below. The simplest case, however, is rather
easy.

Lemma 26.5. If U is the topological annulus formed by ovals of the level
curves {f = z} transversal to a global cross-section τ and a form α ∈ Λ1(U)
satisfies the condition (26.5), then α is relatively exact in U .

Proof. For any x ∈ U denote by γ(x) an oriented arc of the level curve
passing through x between x and the point of its intersection with τ . This
arc is defined modulo an integer multiple of the loop (oval) δ = {f = z},
z = f(x), yet because of the condition (26.5), the integral g(x) =

∫
γ(x) α is

a well-defined analytic function in U . By construction, the forms α and dg
take the same values on each vector tangent to any level curve {f = z} ⊂ U ,
i.e., the difference α− dg at each point is proportional to df . Since df never
vanishes in U , the proportionality coefficient is a real analytic function:
α− dg = h df for some h ∈ O(U). ¤

Remark 26.6. The representation (26.4) is not unique. One can replace
g(x) by g(x) + u(f(x)) with an arbitrary function u.

To compute the first function Ii which does not vanish identically, we
construct inductively, using the representation (26.4), the sequence of real
analytic 1-forms ω1, ω2, · · · ∈ Λ1(U) as follows.

1◦. (Base of induction). ω1 = ω is the perturbation form from (26.1).
2◦. (Induction step). If the forms ω1, . . . , ωj are already constructed

and turned out to be relatively exact, then by Lemma 26.5, ωj =
hj df + dgj . In this case we define

ωj+1 = −hj ω. (26.6)

Theorem 26.7. If ωk, k > 2, is the first not relatively exact 1-form in the
sequence ω1, . . . , ωk−1, ωk constructed inductively by (26.6), then

Ik(z) = −
∮

{f=z}
ωk. (26.7)

This theorem generalizes the Poincaré–Pontryagin Theorem 26.3. The
algorithm of inductive construction of the forms ωk, sometimes referred to
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26. Abelian integrals 509

as the Françoise algorithm, was independently suggested in [Yak95] and
[Fra96], but probably was known much earlier.

Proof. Denote by U ′ the annulus U slit along the cross-section τ . This
is a simply connected domain (curvilinear rectangle) foliated by the level
curves of the function f , transversal to the two sides (denoted by τ− and
τ+). Denote Fε the foliation defined by the Pfaffian equation (26.1) in U ′.

1. Let u = u(x, ε) = uε(x) be the first integral of the foliation Fε in U ′,

(df + εω) ∧ duε ≡ 0, (26.8)

which for ε = 0 coincides with f and analytically depends on the parameter
ε; such an integral exists because the topology of the foliation Fε in the slit
annulus U ′ is trivial. (This integral is not uniquely defined for ε 6= 0.)

Denote by zε = uε|τ+ the restriction of uε on the “terminal” side τ+ of the
cross-section τ . Being a small analytic perturbation of the chart z = u0|τ , zε

is also an analytic chart on τ . Then the restriction of the same solution uε

on the “initial” side uε|τ− is the numeric value of the holonomy map ∆(·, ε)
related to the chart zε. Indeed, since uε is constant along integral curves,
for points on τ− it yields the value of the chart zε at the moment of the next
hit.

In other words, the displacement function ∆(zε, ε) − zε related to the
chart zε, is given by the difference uε|τ−−uε|τ+ of the first integral uε. Since
level curves of f in U ′ are oriented in the direction from τ− to τ+, it is more
natural to compute the negative of this expression, the difference

uε

∣∣∣∣
τ+

τ−
= −(

∆(zε, ε)− zε

)
. (26.9)

2. The convenience of expressing the displacement function in terms of
solutions of the partial differential equation (26.8) stems from the linearity
of the latter. In particular, one can look for its solution in terms of the
converging series,

uε = f + εu1 + ε2u2 + · · · , (26.10)
where uk are real analytic functions in the slit annulus U ′. Substituting this
series into the equation (26.8), we obtain the following system of equations
on the respective components.

ω ∧ df + df ∧ du1 = 0,

ω ∧ du1 + df ∧ du2 = 0,

. . . . . . . . . . . . . . . . . . .

ω ∧ duk−1 + df ∧ duk = 0.

(26.11)
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510 V. Global properties of complex polynomial foliations

By assumption, the forms ω1, . . . , ωk−1 are all relatively closed, hence they
admit representations

ωj = hj df + dgj , j = 1, . . . , k − 1.

We claim that the functions uj = gj satisfy the first k − 1 equations of
system (26.11). Indeed, direct substitution yields for all j = 1, . . . , k − 2

ω ∧ duj + df ∧ duj+1 = ω ∧ (ωj − hj df) + df ∧ (ωj+1 − hj+1 df)

= −hjω ∧ df + df ∧ ωj+1 = df ∧ (ωj+1 + hjω) = 0.

The fact that the first k − 1 components of the solution (26.10) are
well-defined functions in the nonslit annulus U means that their contribu-
tion to the difference (26.9) is zero, uk

∣∣τ+
τ−
≡ 0, and all Melnikov functions

I1, . . . , Ik−1 are vanishing identically.
3. The kth equation of the system (26.11) can be used to determine the

component uk. The same computation as above reduces this equation to
the form

0 = ω ∧ (−hk−1 df) + df ∧ duk = df ∧ (duk + hk−1ω)

= df ∧ (duk − ωk).

This means that the 1-form duk −ωk vanishes on all level curves f = const,
i.e., that uk can be restored as the primitive along these curves,

uk(x) =
∫ x

τ−
ωk,

where the path of integration is the arc γ(x) of the level curve, connecting
an appropriate point on the slit τ− with the variable point x ∈ U ′. The
difference (increment) of uk from τ− to τ+ is then equal to the integral
along the entire oval,

uk(zε)
∣∣∣∣
τ+

τ−
=

∮

{f=zε}
ωk.

From (26.9) we conclude that

∆(zε, ε)− zε = −εkuk(zε)
∣∣∣∣
τ+

τ−
+ O(εk+1) = −εk

∮

{f=zε}
ωk + O(εk+1).

As ε → 0, the chart zε converges uniformly to the chart z = f |τ , and we
obtain the assertion of the theorem. ¤

Remark 26.8. The functions hk playing the key role in the inductive con-
struction, can also be restored as integrals of appropriate forms. Indeed,
they satisfy the equations dωk = dhk ∧ df and hence can be restored as the
primitives

hk(·) =
∫ •dωk

df
(26.12)
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along the level curves of f (the form dωk
df is the Gelfand–Leray derivative of

ω; see §26G below). If hk is any solution of the equation dωk = dhk ∧ df ,
then the form ωk − hk df is closed and, under the condition that periods
of ωk are all zero, is exact in U , since its integral over the oval f = const
generating the homology group of U , is zero.

The representation (26.12) allows us to write down all forms ωk as it-
erated integrals along the level curves of f . The details can be found in
[Gav05].

Note also that the above approach can be almost literally applied to a
perturbation more general than (26.1),

df + εθ1 + ε2θ2 + · · · = 0, θ1, θ2, · · · ∈ Λ1(U). (26.13)

The system (26.11) becomes nonhomogeneous but still retains the triangular
form allowing for an explicit solution.

26C. Infinitesimal Hilbert’s sixteenth problem. Proposition 26.1 and
Theorems 26.3 and 26.7 indicate that in order to bound the number of limit
cycles which appear by polynomial perturbation Fε = {θ + εω = 0} of a
polynomial integrable foliation F0 = {θ = 0} on RP 2, it is necessary to
estimate the number of zeros of integrals of the rational 1-form ω over the
nonisolated ovals of the unperturbed foliation F0. The problem of finding
an explicit upper bound for this number in terms of the degrees of θ and
ω is referred to by numerous names: infinitesimal Hilbert problem, relaxed
Hilbert problem, Hilbert–Arnold problem, tangential Hilbert problem, etc.
In the above formulation the problem appeared between the lines in [Ily69]
and since then repeatedly mentioned by Arnold in his seminar; see [Arn04].

However, when the initial foliation is defined by a closed rational 1-form
θ, the first integral f can be nonalgebraic (cf. with §25G1). Limit cycles can
also be born from separatrix polygons of F0 rather than from ovals, in which
case an additional analysis is required (Proposition 26.1 does not apply
in this case). Finally, the problem which turns out to be transcendentally
difficult, is to determine how many identically zero Melnikov functions should
be computed before one can guarantee that the perturbation in fact preserves
the integrability. Even in the most simple case where the foliation is by
circles, f(x, y) = x2 + y2, so that all integrals Ik are in fact polynomial
functions of z, this question is open (the so-called Poincaré problem). All
these difficulties force us to concentrate on the first really nontrivial case of
Abelian integrals which appear as follows.

Consider the important class of Hamiltonian foliations defined by exact
polynomial form df with a real polynomial f ∈ R[x, y] of some degree deg f =
n+1. If the perturbation form ω in (26.1) is also polynomial, then we arrive
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512 V. Global properties of complex polynomial foliations

at the following restricted formulation of a problem continuing the series of
Hilbert-type problems from §24A.

Problem IX (infinitesimal version of Hilbert’s sixteenth problem). Find an
upper bound for the number of isolated zeros of the integral I(z) =

∮
{f=z} ω

of a polynomial 1-form ω over the algebraic ovals {f = z} in terms of the
degrees deg df and deg ω.

Since all other settings are practically unexplored, we will refer to this
restricted formulation as the infinitesimal Hilbert problem.

Definition 26.9. A (complete) Abelian integral is the integral
∮
δ ω of a

rational 1-form ω over an oval of an algebraic curve δ ⊆ {f = 0}. This
integral depends on the coefficients of the form ω ∈ Λ1[x, y] and of the
polynomial f ∈ R[x, y] as the parameters.

In most cases we will fix the form ω and all coefficients of f except for the
free term, and consider the corresponding Abelian integral as the function
of only one parameter,

If,ω(z) =
∮

{f=z}
ω. (26.14)

The infinitesimal Hilbert problem as it appears above, is the problem on
the maximal possible number of real isolated zeros of the Abelian integral
(26.14).

Note that the function If,ω(z) is in general multivalued, since the real
level curve of f may consist of several ovals (besides noncompact compo-
nents). However, any compact real oval δ ⊆ {f = z0} can be continuously
deformed to a uniquely defined compact oval on all sufficiently close level
curves {f = z}, z ∈ (R, z0). This allows us to define unambiguously contin-
uous real branches of the Abelian integral (26.14). Simple arguments show
that each continuous branch is real analytic in the interior of its domain
(Problem 26.3).

26D. Relative cohomology and integrals: algebraic vs. analytic.
The global algebraic nature of the infinitesimal Hilbert problem justifies
introduction of a special algebraic language of relative cohomology. This
language is parallel to the de Rham cohomology which describes the differ-
ence between closed and exact differential forms; see [War83].
26D1. Relative de Rham complex and its cohomology. The condition (26.5)
can be interpreted in cohomological terms as follows. Consider the de Rham
complex6

0 −→ Λ0(U) d−→ Λ1(U) d−→ Λ2(U) d−→ 0 (26.15)

6In general, an algebraic complex is a chain of modules A0
d→ A1

d→ A2
d→ A3 · · · with a

derivation d whose square d ◦ d is zero.
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formed by the modules Λk = Λk(U) of real analytic k-forms in the domain
U and the exterior derivative d (we deal only with the 2-dimensional do-
main U , but all constructions can be instantly generalized for an arbitrary
dimension). The exterior derivative d takes the submodule df ∧ Λk−1 ⊆ Λk

into df ∧ Λk ⊆ Λk+1, which means that d descends to an operator (also
denoted by d) between the modules of relative k-forms, the quotient mod-
ules Λk

f (U) = Λk(U)/df ∧Λk−1(U). Passing to the quotients transforms the
de Rham complex (26.15) into the relative de Rham complex

0 −→ Λ0(U) d−→ Λ1
f (U) d−→ Λ2

f (U) d−→ 0. (26.16)

The cohomology of this complex, the quotients Ker d/ Im d, is called the
relative cohomology Hk

f (U), k = 0, 1, . . . , n (to make the term precise, one
has to specify the ring of functions—polynomial, real analytic, smooth, etc.;
see below).

The zero relative cohomology module H0
f (U) = {g ∈ O(U) : dg = h df}

can be identified with functions constant along the level curves of f . If f
has no critical points in U , any 2-form is divisible by df . To prove that, it
is sufficient to construct just one area form (nonvanishing 2-form) divisible
by df ; any other 2-form will then be proportional to it hence also divisible
by df . If θ : U → R mod 2π is the cyclic variable (“polar angle”) along the
ovals f = const, then the required area form is df ∧ dθ. Thus in the absence
of critical points of f , Λ2

f (U) = 0 and hence H2
f (U) = 0.

The only dimension when the relative cohomology is nontrivial, is 1.
The definition of relative exactness was given earlier (Definition 26.4). On
the other hand, since Λ2

f (U) = 0, any 1-form is relatively closed. In terms
of the relative cohomology, Lemma 26.5 asserts that the period map

H1
f (U) → H0

f (U), α 7→ g(x) =
∮

γ3x
α

(the integral is taken over the oval f = const passing through the point x),
is an isomorphism.

Remark 26.10. The notion of relative cohomology can be defined for any
closed (not necessarily exact) form θ ∈ Λ1 as the cohomology of the com-
plex Λk

θ(U) = Λk(U)/θ ∧ Λk−1(U). However, in this case the analysis is
considerably more subtle; see [BC93].

The construction of relative cohomology depends on the base ring, from
which the function f and the coefficients of the form α are taken. Thus
far we were dealing with real analytic forms and functions in an annulus.
However, when dealing with Abelian integrals, it is natural to assume that
the base ring is R[x, y] or C[x, y], and all forms are also polynomial.
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Figure V.1. Three continuous families of ovals

The straightforward generalization of Lemma 26.5 for polynomial rather
than real analytic 1-forms fails. The integral of a polynomial 1-form ω over a
continuous family of ovals on the level curves of a polynomial f may vanish
identically, yet the form ω may not admit the representation (26.4) with
polynomial g and h.

Example 26.11. Consider the symmetric polynomial f(x, y) = y2−x2+x4.
The real level curves {f = z} are empty for z < −1

2 , carry two “small” ovals
for z ∈ (−1

2 , 0) and only one “large” oval for z > 0; see Fig. V.1. The large
ovals are all symmetric with respect to both axes, while the “small” ovals
are symmetric only in the y-axis.

Integral of the 1-form ω = x2 dy over the family of “large” ovals vanishes
identically, since the integrals over the two parts in the half-planes {x > 0}
and {x < 0} mutually cancel each other.

Yet the form ω cannot be represented under the form (26.4) with polyno-
mial g and h; if this were the case, then the integral of ω over any of the two
families of “small” cycles would also vanish identically. Yet dω = −2x dx∧dy
keeps constant sign in each half-plane {±x > 0}, hence the integral over each
of these two families is nonzero.

The explanation of this phenomenon lies in the fact that after analytic
continuation Abelian integrals become multivalued functions ramified over a
certain finite set. One branch can be identical zero, while others not. How-
ever, if all complex branches vanish identically, the validity of the assertion
is restored, as asserts Theorem 26.13 below.
26D2. Analytic relative cohomology. To achieve a proper complexification
of Abelian integrals, consider the real polynomial f ∈ C[x, y] as a complex
function f : C2 → C, and denote by Lz = f−1(z) ⊂ C2 the complex affine
level curves. These curves taken together form the (singular holomorphic)
Hamiltonian foliation F = {df = 0} on P2.
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26. Abelian integrals 515

The projective compactification of the leaves Lz ∈ P2 may be singular
or not; singular curves correspond to isolated values of z from some critical
locus Σ ⊂ C.

Any polynomial 1-form ω restricted on a nonsingular curve Lz is a closed
form (for reasons of dimension) with the poles at infinity. The restriction
ω|Lz ∈ Λ1(Lz) on Lz is exact, if and only if the integral of ω along any cycle
δ on Lz is zero.

Definition 26.12. A rational 1-form is analytically relatively exact with
respect to an integrable (Hamiltonian) foliation F = {df = 0} on P2 with
f ∈ C[x, y], if the integral of ω along any cycle δ ∈ H1(L,Z) on any leaf
L ∈ F is zero,

∀L ∈ F, ∀δ ∈ H1(L,Z),
∮

δ
α = 0. (26.17)

Clearly, any form that is algebraically relatively exact, i.e., representable
under the form

ω = h df + dg, h, g ∈ C[x, y], (26.18)
(cf. with Definition 26.4), is also analytically relatively exact with respect to
the Hamiltonian foliation F = {df = 0}. The inverse statement, a genuine
algebraic counterpart of Lemma 26.5, is the following theorem.

Theorem 26.13 (Yu. Ilyashenko [Ily69], L. Gavrilov [Gav98]). Assume
that the polynomial f ∈ C[x, y] satisfies the following two conditions:

(1) all affine level curves Lz = f−1(z) ⊂ C2 are connected, and
(2) all critical points of f in C2 are isolated.

Then a polynomial 1-form ω is algebraically relatively exact with respect
to the Hamiltonian foliation F = {f = 0} if and only if it is analytically
relatively exact with respect to it.

In other words, for Hamiltonian foliations satisfying the assumptions
of the theorem, any 1-form with zero periods on all leaves is representable
under the form (26.18).

Proof. In one direction the theorem is trivial. To prove the other direction,
denote by n the degree of f . Without loss of generality we may assume that
the polynomial f restricted to the y-axis Y = {x = 0} has the same degree
n (this can always be achieved by a suitable affine change of variables x, y).

Each level curve Lz intersects Y by the same number of points
p1(z), . . . , pn(z) (every point is counted as many times as the multiplicity
of the root of f(0, y) − z). For a point (x, y) ∈ C2 let γj(x, y) be a path
connecting this point with the jth point pj(z) on the intersection of the level
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516 V. Global properties of complex polynomial foliations

curve Lz, z = f(x, y), passing through it, with Y . Existence of such paths
follows from the first assumption of the theorem.

The paths γ1(x, y), . . . , γn(x, y) are defined only modulo elements from
H1(Lz,Z), but if the restriction ω|Lz is exact, then the integrals

∫
γj(x,y) ω

are uniquely defined. The function

g(x, y) =
1
n

n∑

j=1

∫

γj(x,y)
ω (26.19)

is correctly defined on the complement to the union of critical level curves
S = f−1(Σ) ⊂ C2, since it does not depend on the (noninvariant) way of
enumeration of the points pj(z) and the freedom in the choice of the paths
γj(x, y). Moreover, it is holomorphic on C2 r S′, where S′ is the union of
singular level curves S and the level curves tangent to the axis Y . Indeed, in
this case one can choose the paths γj(x, y) analytically depending on (x, y),
say, as lifts on the level curves of some paths on the x-plane, connecting the
origin x = 0 with the variable point x while avoiding the critical points of
the projection (x, y) 7→ x restricted on Lz.

The function g(x, y) remains bounded near the algebraic set S′ ⊂ C2 of
codimension 1; therefore, it extends analytically on S′ as an entire function.
Moreover, as (x, y) tends to infinity, both the length of the paths and the
integrand in (26.19) grow at most polynomially in |x| + |y|, therefore the
averaged primitive given by this expression, is a polynomial : g ∈ C[x, y].

The polynomial 1-form ω − dg by construction vanishes on all vectors
tangent to the level curves. Since the form df does the same, we conclude
that ω − dg = h df , where h is a meromorphic function on C2 defined on
the complement to the set of critical points where df vanishes. If this set
is zero-dimensional (of codimension 2 in C2), as follows from the second
assumption of the theorem, then h necessarily extends analytically to these
points and hence is a polynomial, h ∈ C[x, y]. The required representation
is constructed. ¤
26D3. Bonnet theory. Assumptions of Theorem 26.13 are rather nonrestrictive: the first
is guaranteed automatically, if the Hamiltonian foliation F has only simple (in some sense)
singularities on the infinite line, while the second assumption holds true for any square-
free polynomial. If one of these assumptions is violated, the analytic relative exactness
may not imply the algebraic one. Theorem 26.13 is in fact the particular case of a more
general assertion concerning the relative cohomology.

Definition 26.14. The Bonnet set Bs(f) of a polynomial f ∈ C[x, y] is the set of values
z such that the affine level curve Lz = f−1(z) ⊂ C2 is either nonconnected or carries a
nonisolated critical point of f .

In the assumptions of Theorem 26.13, the Bonnet set is empty.

Theorem 26.15 (P. Bonnet, 1999 [Bon99, BD00]). Assume that the Bonnet set of a
polynomial f is finite.
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26. Abelian integrals 517

Then for any polynomial 1-form which is exact on each level curve Lz, there exist
a pair of polynomials g, h ∈ C[x, y] and a polynomial b ∈ C[z], nonvanishing outside the
Bonnet set Bs(f), such that

(b ◦ f) ω = h df + dg. (26.20)

Proof. For any z ∈ C r Bs(f) the form ω|Lz is exact. Since Lz is assumed connected,
there exist a polynomial gz(x, y) such that ω − dgz vanishes on all vectors tangent to Lz.
This means that

ω − dgz = (f − z)ξz + u d(f − z) = (f − z)θz, θz ∈ Λ1[x, y]

(we integrated by parts). The polynomial forms θz are defined for all values z ∈ C r
Σ (uncountably many of them), whereas the number of different monomial 1-forms is
countable. Therefore there must exist a linear dependence between the forms θz, involving
only finitely many of them:

mX
j=1

λjθzj = 0, for some z1, . . . , zm ∈ CrΣ. (26.21)

The identity (26.21) can be rewritten as follows:

ω ·
mX

j=1

λj

f − zj
=

mX
j=1

λj dgj

f − zj
,

or, after getting rid of the denominators,

B0(f) ω =
X

j

Bj(f) dgj , B0, B1, . . . , Bm ∈ C[z],

with the appropriate polynomials B0, . . . , Bm ∈ C[z]. Integrating by parts the right hand
side, we obtain the required identity,

B0(f) ω = dg + h df, g =

mX
j=1

Bj(f)gj , h = −
mX

j=1

gj
dBj

dz
(f).

Apriori, the roots of B0 may be arbitrary. We will show now that all of them except
for those from the Bonnet set, can be eliminated by an appropriate division. Indeed,
assume that z /∈ Bs(f) and consider the representation

(f − z)α = h df + dg, h, g ∈ C[x, y] (26.22)

for an arbitrary polynomial form α ∈ Λ1[x, y]. This representation implies that the poly-
nomial g is locally constant along Lz, as its differential vanishes on the tangent vector to
Lz at any smooth point of the latter. Since z /∈ Bs(f), Lz is connected and therefore g
is globally constant on Lz; without loss of generality we may assume that g|Lz = 0. But
the primary decomposition of f − z in C[x, y] contains no multiple factors (otherwise Lz

would carry nonisolated critical points of f). Therefore vanishing of g on Lz implies that
g is divisible by f − z, g = (f − z) · g′. Substituting this into (26.22), we conclude that

(f − z)α = (f − z)dg′ + [h + g′] df. (26.23)

Since df is nonvanishing at all noncritical points of Lz, the coefficient h + g′ must vanish
on Lz and, hence, as before, it must be divisible by f − z: h+g′ = (f − z)h′. Substituting
it into (26.23), we see that the factor f − z can be cancelled out from all three terms of
it, yielding a new representation α = dg′ + h′ df with g′, h′ ∈ C[x, y].

Applying inductively this division procedure to the form α = B0(f) ω, we eliminate all
roots of the polynomial B0 except for those that belong to the Bonnet set. At the end we
arrive at the representation (26.20) with the product b(x, y) =

Q
ζk∈Bs(f)(f(x, y)− ζk)mk

in the left hand side. ¤
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518 V. Global properties of complex polynomial foliations

26D4. Polynomials transversal to infinity. The condition of connectedness
of affine level curves Lz = f−1(z) is intimately related to the behavior of
the polynomial f “at infinity”. There is a simple sufficient condition on
the principal homogeneous terms of f , guaranteeing certain regularity of f
at infinity, in particular, entailing that all curves Lz are connected. This
condition will repeatedly appear in the future.

Definition 26.16. A polynomial f ∈ C[x, y] of degree n + 1 > 2 is called
transversal to infinity, if one of the two equivalent conditions holds:

(1) its principal homogeneous part factors out as the product of n + 1
pairwise different linear forms;

(2) its principal homogeneous part has an isolated critical point of mul-
tiplicity n2 at the origin.

The term “transversality” is explained by the following proposition,
which is proved by an elementary computation in the affine chart cover-
ing the infinite line.

Proposition 26.17. If f satisfies any of the two above conditions, then
the projective compactification Lz of any level curve Lz = f−1(z) intersects
transversally the infinite line I ⊂ P2. ¤

Corollary 26.18. If f is transversal to infinity, then all affine level curves
Lz = f−1(z) ⊂ C2 are connected.

Proof. Consider the irreducible decomposition of Lz =
⊔

j Cj . Any irre-
ducible component Cj ∈ P2 is always connected, and any two irreducible
components in P2 necessarily intersect (by the number of points equal to
the product of their degrees, if counted with multiplicities; see [Mum76,
§5B]). The intersection points of different components are necessarily sin-
gular and hence cannot lie on the infinite line by Proposition 26.17. Thus
any two components intersect somewhere at the finite (affine) part C2 ⊂ P2,
which means that the affine level curves curves are all connected. ¤

26E. Brieskorn lattice and Petrov modules. Theorem 26.13 allows
us to describe algebraically the space of Abelian integrals as multivalued
functions. They constitute a module over the ring C[z]. The basis of this
module will be computed in this section.

Let f ∈ C[x, y] be a polynomial.

Definition 26.19. The Brieskorn lattice is the quotient space

Bf =
Λ2

df ∧ dΛ0
, Λ1,2 = Λ1,2[x, y]. (26.24)
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26. Abelian integrals 519

The Petrov module is the quotient space

Pf =
Λ1

df · Λ0 + dΛ0
, Λ0 ∼= C[x, y] (26.25)

of all polynomial 1-forms modulo the subspace of algebraically relatively
exact forms. In the assumptions of Theorem 26.13, the Petrov module can
be identified with the space of Abelian integrals.

Both Bf and Pf can be considered as C[f ]-modules: the generator f of
the ring C[f ] acts on equivalence classes of forms as the multiplication by
the polynomial f(x, y) ∈ C[x, y]. Definition of this action is correct, since

f df ∧ dg = df ∧ d(fg), f · (h df + dg) = (fh− g) df + d(fg).

The exterior derivative d is a linear bijection d : Pf → Bf but not a C[f ]-
module homomorphism.

In this subsection we explicitly construct the bases for these modules
(actually, we will be mostly interested in Pf )for polynomials f transversal
to infinity.

Let f be a polynomial of degree n + 1 transversal to infinity, with the
principal homogeneous part fn+1. The quotient space

Qdfn+1 =
Λ2

dfn+1 ∧ Λ1
∼= C[x, y]〈∂fn+1

∂x , ∂f
∂y

〉 (26.26)

is a finite-dimensional complex algebra (cf. with Definition 8.22).
The (complex) dimension of the quotient (26.26) is equal to n2. Indeed,

both partial derivatives ∂fn+1/∂x and ∂fn+1/∂y are homogeneous polyno-
mials and factor as products of exactly n linear forms each. No linear factor
of ∂f/∂x can occur in ∂f/∂y, otherwise the singularity of fn+1 will be non-
isolated. By Proposition 8.25 the dimension of the quotient algebra is n2.

Let ω1, . . . , ωm, m = n2, be any homogeneous monomial 1-forms whose
differentials dω1, . . . , dωm generate the basis of Qdfn+1 . We will show that
these differentials also generate the full quotient algebra Qdf = Λ2/df ∧ Λ1

over C and the Brieskorn lattice Bf over C[f ], while the forms themselves
generate the Petrov module Pf . This result has several different demon-
strations (see, e.g., [KP06] which treats the multidimensional case as well).
We follow the exposition in [Yak02] which has an advantage of being purely
algebraic and effective.

Proposition 26.20. Assume that the polynomial f = fn+1+· · · is transver-
sal to infinity.

Then any collection of 2-forms dωj, j = 1, . . . , n2, which generates the
quotient Qdfn+1 = Λ2/dfn+1 ∧ Λ1 over C, generates also the quotient Qdf =
Λ2/df ∧ Λ1.
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520 V. Global properties of complex polynomial foliations

Proof. By the choice of the forms dωj , any 2-form µ ∈ Λ2 can be “divided
with remainder” by dfn+1 as follows:

µ =
m∑

1

cj dωj + dfn+1 ∧ η, η ∈ Λ1

with the “incomplete ratio” η. Substitute in this equality fn+1 = f − ϕ,
where ϕ is the collection of all nonprincipal terms of f , deg ϕ 6 n. Then µ =∑m

1 cj dωj +df∧η−µ′, where µ′ = ϕ∧η is a 2-form of degree strictly smaller
than deg µ. The division process can therefore be continued inductively until
the “incomplete ratio” disappears. ¤

Theorem 26.21. Let f = fn+1+· · · ∈ C[x, y] be a polynomial of degree n+1
transversal to infinity and dω1, . . . , dωm, a collection of m = n2 monomial
2-forms generating the quotient algebra Qdfn+1 = Λ2/dfn+1 ∧ Λ1.

Then any 1-form ω ∈ Λ1 can be represented as follows:

ω =
m∑

j=1

(pj ◦ f) ωj + h df + dg (26.27)

with some polynomials g, h ∈ C[x, y] and the univariate polynomials
p1, . . . , pm ∈ C[z]. The degrees of the coefficients pj satisfy the equalities

(n + 1) degz pj + deg ωj = deg ω, j = 1, . . . , m. (26.28)

Corollary 26.22. In the assumptions of the Theorem 26.21, the forms
ω1, . . . , ωm generate the Petrov module Pf over C[f ]. ¤

We begin the proof with the following lemma which may be considered
as an analog of the Euler identity in the Brieskorn lattice. Let fn+1 be an
arbitrary homogeneous polynomial of degree n + 1.

Lemma 26.23. Any polynomial 2-form divisible by dfn+1, has a primitive
divisible by fn+1 in the Brieskorn lattice Bfn+1.

In other words, for any 1-form η ∈ Λ1 there exists ω ∈ Λ1 and such that

dfn+1 ∧ η = d(fn+1 ω) mod dfn+1 ∧ dΛ0. (26.29)

Proof of the lemma. By the Euler identity, we have fn+1 = 1
n+1 iV dfn+1,

where V = x ∂
∂x+y ∂

∂y is the Euler field and iV : Λk → Λk−1 the antiderivation
substituting V as the first argument of a differential k-form.

Since any 3-form on the 2-plane vanishes, dfn+1 ∧ µ = 0 for any 2-form
µ. Applying the antiderivation iV , we conclude from this and the Euler
formula above, that for any 2-form µ,

0 = iV (dfn+1 ∧ µ) = (iV dfn+1) ∧ µ− dfn+1 ∧ (iV µ)

= (n + 1)fn+1µ− dfn+1 ∧ (iV µ).
(26.30)
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26. Abelian integrals 521

Using (26.30), the equation (26.29) with respect to the unknown 1-form
ω can be transformed as follows,

dfn+1 ∧ η = dfn+1 ∧ ω + 1
n+1 dfn+1 ∧ (iV dω) + dfn+1 ∧ dξ.

The latter is an equation to be solved now with respect to ω and ξ. It will
be obviously satisfied if

η = 1
n+1 iV dω + ω + dξ,

or, after applying the derivation d to both sides,

dη = 1
n+1 d(iV µ) + µ, µ = dω,

(the derivation results in an equivalent condition since any closed polynomial
form on C2 is exact).

To show that the last equation is always solvable with respect to µ for
any 2-form dη, we transform it for the last time using the homotopy formula
LV = diV + iV d [Arn97] and the fact that dµ = 0 (as a 3-form on the
2-plane). Finally the equation (26.29) is reduced to the equation

dη =
(

1
n+1 LV + id

)
µ, µ = dω, (26.31)

where LV is the Lie derivative acting on 2-forms. Since V is the Euler field,
each monomial 2-form xpyq dx∧dy is an eigenvector for LV with the positive
eigenvalue p + q + 2. Thus 1

n+1LV + id is a diagonalizable operator with
positive eigenvalues on the space of polynomial forms of any degree. Such
an operator is invertible, which yields a solution to (26.31) and ultimately
to (26.29). ¤

Remark 26.24. A similar argument shows that a 2-form divisible by dfn+1

is also divisible by fn+1 in the Brieskorn lattice (i.e., modulo dfn+1 ∧ dΛ0);
see [Yak02].

Proof of Theorem 26.21. The proof imitates demonstration of Proposi-
tion 26.20. By assumption, the forms dω1, . . . , dωm form a basis of the quo-
tient algebra Qdfn+1 associated with the principal homogeneous part fn+1 of
the polynomial f . This means that the 2-form dω ∈ Λ2[C2] can be uniquely
represented as

dω =
m∑

j=1

cj dωj + dfn+1 ∧ η, (26.32)

where η ∈ Λ1[C2] is a polynomial 1-form.
By Lemma 26.23, the “incomplete ratio” dfn+1 ∧ η can be rewritten as

d(fn+1ω
′)+dfn+1∧dg for some polynomial g ∈ Λ0. Passing to the primitives,
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522 V. Global properties of complex polynomial foliations

we conclude that

ω −
m∑

j=1

cjωj = fn+1ω
′ − g dfn+1 + dh.

Substitute fn+1 by f − ϕ, where ϕ ∈ C[x, y] is the collection of all nonprin-
cipal terms of f , deg ϕ 6 n. After collecting terms, we obtain the equality
ω−∑m

j=1 cjωj = fω′− g df + dh−ω′′, ω′′ = ϕω′− g dϕ. In other words, we
have

ω −
∑

cjωj = fω′ − ω′′

in the C[f ]-module Pf ; cf. with (26.25). The degrees of both 1-forms ω′, ω′′

are strictly less than that of ω, therefore the process can be continued by
induction, resulting at the end in the representation (26.28).

The assertion on the degrees follows directly from inspection of this
division algorithm. ¤

Remark 26.25. A similar argument shows that any 2-form µ ∈ Λ2[C2] can
be represented as the sum

∑m
j=1(qj ◦ f) dωj mod df ∧ dΛ0. Moreover, both

assertions admit natural generalizations for polynomials f ∈ C[x1, . . . , xk],
k > 2, whose principal quasihomogeneous part has an isolated critical point
at the origin. Details can be found in [Yak02].

26F. Polynomials as topological bundles. In this section we study the
analytic continuation of Abelian integrals as multivalued functions of one
complex variable. The ramification locus of any Abelian integral and its
monodromy are completely determined by the Hamiltonian f . In what
follows we denote by Σ the set of critical values of f ,

Σ =
{
z ∈ C : ∃(x, y) ∈ C2, ∂f

∂x = ∂f
∂y = f − z = 0 at (x, y)

}
. (26.33)

Theorem 26.26. If a polynomial f ∈ C[x, y] is transversal to infinity, then
the map f : C2 → C defines a topological bundle over the set of all noncritical
values CrΣ.

In other words, for any a ∈ C r Σ there exists a small neighborhood
U 3 a in CrΣ such that the full preimage f−1(U) is homeomorphic to the
Cartesian product f−1(a)×U and f restricted on this preimage is topolog-
ically conjugate by this homeomorphism to the projection of f−1(a)×U on
the second term.

This result obviously follows from the general Theorem 26.27 below.
Consider the complex affine space P of all bivariate polynomials of degree
n + 1 with the fixed principal square-free homogeneous part fn+1 (all such
polynomials are by definition transversal to infinity). The dimension of this
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26. Abelian integrals 523

space is r = (n + 2)(n + 3)/2, P ∼= Cr, and it can be identified with the
space of nonprincipal coefficients λij in the expansion

Φ(λ;x, y) = fn+1(x, y) +
∑

06i+j6n

λijx
iyj . (26.34)

In the product space P ×C2 fibered over P consider the algebraic hypersur-
face X = {Φ(λ, x, y) = 0} and its fiberwise compactification X ⊂ P × P2.
Denote by π : X → P the natural projection P × P2 → P restricted on
the surface X. The preimages π−1(λ) ⊂ {λ} × P2 are projectively com-
pactified zero level curves of the polynomial Φλ(x, y) = Φ(λ, x, y) ∈ C[x, y].
The preimages by the projection π : X → P run over all level curves of all
polynomials with the fixed principal homogeneous part.

Let Σ ⊂ P be the set of all parameters λ for which the affine curve
{Φλ(x, y) = 0} ⊂ C2 is singular (nonsmooth). By definition (compare with
(26.33)),

Σ =
{
λ ∈ P : ∃(x, y) ∈ C2 : ∂Φ

∂x = ∂Φ
∂y = Φ = 0 at (λ, x, y)

}
. (26.35)

Theorem 26.27. If the principal homogeneous part fn+1 is square-free,
then the projection π : X → P and its restriction on the affine part X ⊂ X
are topologically locally trivial bundles over the complement P rΣ.

Proof. 1. For any point a = (λ, x, y) ∈ X over λ /∈ Σ the complex tangent
space TaX at this point projects surjectively onto the tangent space TλP ∼=
P ∼= Cr at the point λ = π(a).

For points in the affine part X ⊂ X this follows from the fact that one
of the partial derivatives ∂Φ/∂x or ∂Φ/∂y is nonvanishing at a ∈ X by the
assumption λ /∈ Σ.

For points at infinity the above surjectivity assertion holds regardless
of the choice of λ, since in the suitable coordinates v = 1/x, u = y/x the
equation of X takes the form {Ψ = 0}, where Ψ(λ;u, v) = fn+1(1, u) +
vg1(λ;u, v). Since fn+1(1, u) has n + 1 distinct simple roots, the derivative
∂Ψ/∂u does not vanish on the infinite line v = 0 for all λ.

2. Let F1, . . . , F2r be commuting vector fields on the base P , spanning
the tangent bundle TP (e.g., the fields ∂/∂λij and

√−1 ∂/∂λij for all i, j).
The above surjectivity means that the preimage π−1(U) ⊂ U × P2, where
U ⊂ P rΣ is a sufficiently small open set disjoint with Σ, can be covered
by a union of open sets Uα ⊂ X such that in each neighborhood there
exist 2r real analytic vector fields F k,α tangent to X and π-related with Fk

for all k; see Fig. V.2. Moreover, the fields F k,α can be assumed tangent
to the intersection of X with the infinite line in each fiber. Indeed, since
∂Ψ/∂u 6= 0, the v-component of such a lift (in the chart v = 1/x, u = y/x
as above) can be chosen arbitrarily, in particular, zero.
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Figure V.2. Topological trivialization of the map

3. Since π is proper (all preimages of points are compact projective
curves), one may assume that the covering is finite. Let {ψα > 0} be a
partition of unity subordinated to the covering Uα. Then the vector fields
F k =

∑
α ψα F k,α are also π-related with Fk and tangent to X. Since Fk

commute, the commutators [F k, F j ] are tangent to the fibers π−1(λ). By a
standard modification, one can make the fields F k also commuting in TX
by adding appropriate vector fields tangent to the fibers; see [War83].

4. Shifts along the commuting vector fields F k realize homeomorphisms
between all fibers π−1(λ), λ ∈ U , and trivialize the map π : X → P . ¤

Corollary 26.28. In the assumptions of Theorem 26.26, any cycle δ(z∗) ∈
H1(Lz∗ ,Z) can be continued along any path γ : [0, 1] → C r Σ, γ(0) = z∗,
avoiding critical values of f . The result is defined uniquely as a cycle in
the homology group and does not change when γ is replaced by a homotopy
equivalent path. ¤

This corollary allows us to consider the effect of continuous deformations
of affine level curves Lz as z goes along closed loops in the z-plane avoiding
the critical set Σ. With any such closed loop γ (beginning and ending at a
certain fixed regular base point z∗ /∈ Σ), the topological monodromy operator

∆γ : H1(Lz∗ ,Z) → H1(Lz∗ ,Z), (26.36)
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26. Abelian integrals 525

can be associated: together these operators constitute the representation
of the fundamental group π1(C r Σ, t∗) (as usual, the choice of the base
point is not important). We will show that in general the operators ∆γ

are nontrivial : after continuation along closed paths the cycles on the level
curves in general do not return to their initial positions.

We conclude this analysis with the following basic result.

Theorem 26.29 (analytic continuation of Abelian integrals). If f is a poly-
nomial transversal to infinity, then for any polynomial 1-form ω and any cy-
cle δ ∈ H1(Lz∗ ,Z), the Abelian integral

∮
δ ω can be extended as an analytic

multivalued function along any path avoiding the critical values of f .

Proof. The restriction of any polynomial 1-form on Lz is closed (holomor-
phic), hence its integral is the same for all homotopic loops. By Theo-
rem 26.26, for any fixed z∗ /∈ Σ one can choose a representative of the cycle
δ(z) continuously depending on z in a sufficiently small neighborhood of z∗
in such a way that its projection, say, on the x-plane parallel to the y-axis
is the same curve denoted by D. Then one can choose an analytic branch
y = y(x, z) of solution of the equation f(x, y) = z over D. The integral of any
form along δ(z) can be reduced to an integral over D of an analytic 1-form
depending analytically on z. The rest follows from the standard theorem on
(complex) differentiability of integrals depending on parameters. ¤
Remark 26.30. Without some assumptions “on infinity” the assertion of
Theorem 26.26 and all its corollaries fails. In general there may exist regular
values of f such that the preimages f−1(z) change their topological type at
these points, exhibiting singularities on the infinite line I. Such values are
called atypical values of the polynomial f , but they also always form a finite
subset of C (empty when f is transversal to infinity).

Theorem 26.31. If f is a polynomial of degree n+1 transversal to infinity,
then the rank of the first homology of any nonsingular fiber is equal to n2.

Proof. Consider first the case where the polynomial f is homogeneous and
coincides with its principal part fn+1. For such a polynomial the affine level
curves are Lz are all affine equivalent to any one of them, say, to L1. The
surface L1 is a compact Riemann surface of some genus g with n+2 deleted
points. The genus g can be computed by the Riemann–Hurwitz formula
[For91]. The projection (x, y) 7→ x restricted on L1 defines the ramified
covering L1 → P1 of multiplicity m = n + 1. The ramification points of
the covering are defined by the equation ∂f

∂y = 0 which is a homogeneous
polynomial equation of degree n. The system of equations f(x, y) = 1,
∂f
∂y (x, y) = 0 has therefore n(n + 1) solutions, none of them at infinity and

all simple. Indeed, the polynomial ∂f
∂y factors as the product of n linear
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terms corresponding to distinct lines on the (x, y)-plane. Restriction of the
homogeneous polynomial f on each line is a homogeneous polynomial of
degree n+1 in one variable (the local parameter along the line), which must
be nonzero since in the opposite case f would have a multiple linear factor.
All roots of the equation ctn+1 = 1, c 6= 0, are simple and distinct, hence
each of n lines contributes exactly n+1 simple solutions to the system f = 1,
∂f
∂y = 0.

Each simple solution of the system f = 1, ∂f
∂y = 0 corresponds to a

ramification point of index kj = 2. By the Riemann–Hurwitz formula the
total genus is

g = 1−m +
∑

j

kj − 1
2

= −n +
1
2
n(n + 1) = 1

2n(n− 1). (26.37)

The first homology group of each fiber Lz is generated by 2g canonical
loops forming the basis of the homology of the projective compactification
Lz and any n out of n + 1 small loops around the deleted points at infinity
(the sum of all n + 1 small loops is homologous to zero). Any closed loop
on Lz is homologous to a linear combination of these cycles with integral
coefficients (since H1(Lz,Z) is the free group generated by the canonical
loops). Ultimately we have

rankH1(Lz,Z) = 2g + n = n(n− 1) + n = n2.

This proves the assertion on the genus of curves when f is a homogeneous
polynomial.

If f is not homogeneous and f−fn+1 6= 0, the level curves Lz = {f = z}
for large values of z are perturbations of the level curves L̃z = {fn+1 = z}.
Since the latter are nonsingular for z 6= 0, by the implicit function theorem
Lz and L̃z are diffeomorphic for sufficiently large values of z. But all curves
Lz with z /∈ Σ are diffeomorphic to each other, therefore the rank of any
homology group is the same everywhere, rankH1(Lz,Z) = rankH1(L̃1,Z) =
n2. ¤

26G. Gelfand–Leray derivative. The derivative of an Abelian integral
is again an Abelian integral. More precisely, we have the following rule of
derivation of Abelian integrals.

Theorem 26.32. Let ω and η be two rational 1-forms such that

dω = df ∧ η, (26.38)
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and δ(z) ∈ H1(Lz,Z), z /∈ Σ, a continuous family of cycles on noncritical
level curves of f , not passing through poles of neither ω nor η. Then

d

dz

∮

δ(z)
ω =

∮

δ(z)
η. (26.39)

Proof. Consider the real 2-dimensional cylindrical surface M2 in C2, para-
meterized by real parameters s ∈ R mod Z and t ∈ [0, ε] so that each circle
{t = const} parameterizes the cycle δ(z + t) on the level surface Lz+t. Such
a surface exists for sufficiently small ε > 0, since the foliation {df = 0} has
trivial holonomy along the loop δ(z).

The boundary of M consists of two cycles, −δ(z) and δ(z + ε), hence by
the Stokes theorem,∮

δ(z+ε)
ω −

∮

δ(z)
ω =

∫∫

M
dω =

∫∫

M
df ∧ η. (26.40)

The form df vanishes on all cycles δ(z + t), so that the double integral in
(26.40) reduces to the iterated integral∫ ε

0
dt ·

∮

δ(z+t)
η.

Dividing both parts of the equality by ε and passing to the limit as ε → 0,
we conclude with the formula (26.39): the convergence follows from the
assumptions on the cycle δ(z). ¤
Example 26.33. Let f(x, y) = x2 + y2 and δ(z) for z > 0 be the real circle
oriented counterclockwise. Then the Abelian integral

∮
δ(z) ω of the 1-form

ω = y dx is equal to −πz (the area of the circle). The equation (26.38) is
satisfied by the meromorphic 1-form η = 1

2
dx
y . This form has poles on the

real cycles δ(z), but the restriction of η on all level curves Lz is holomorphic
(η|Lz has removable singularity at the points with y = 0). Hence the cycles
δ(z) can be moved off the polar locus of η without changing the integrals,
while permitting application of Theorem 26.32. The integral of η along the
cycles is identically equal to −π. This example allows us to recall the order
of terms in the wedge product (26.38).

The Gelfand–Leray derivative of a polynomial 1-form is only rational
on C2 and nonunique. However, its restriction on the nonsingular affine
level curves Lz = {f = z} is a uniquely defined holomorphic 1-form from
Λ1(Lz). Indeed, the derivative is defined uniquely modulo a rational 1-form
on C2 having zero restriction on the fibers (the only solutions of the equation
η∧df = 0). On the other hand, locally near a point a ∈ Lz at which ∂f

∂y 6= 0,
the Gelfand–Leray derivative of a form ω with dω = A(x, y) dx ∧ dy can be
obtained by restriction on Lz of the holomorphic form η = − A(x,y)

∂f
∂y

(x,y)
dx.
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The Gelfand–Leray derivative is often denoted by dω
df : while this notation

is ambiguous if used for a rational form in C2, the ambiguity disappears after
restriction on the level curves.

Remark 26.34. If dω = A(x, y) dx ∧ dy has a polynomial coefficient
A ∈ C[x, y] of degree m and f is of degree n + 1 transversal to infinity,
then the Gelfand–Leray derivative dω

df restricted on the level curves Lz has a
pole of order 6 m−n+2 at each of the n+1 points at infinity. Indeed, the
partial derivative ∂f

∂y restricted on each analytic branch of the curve {f = z},
has a pole of order exactly n and no smaller. This follows from computations
with principal homogeneous terms: arguments similar to those proving The-
orem 26.31, show that the leading coefficient of the partial derivative cannot
vanish. Thus the derivative η has the form O(xm−n) dx, at infinity, i.e., the
pole of order 6 m− n + 2 in the local chart u = 1/x.

In particular, if ω = P dx+Qdy with deg P, Q 6 n, and f is transversal
to infinity of degree n + 1, then the order of the pole of dω

df is at most 1, i.e.,
all poles at infinity are simple.

26H. Picard–Fuchs system and its properties. Consider a polynomial
f ∈ C[x, y] of degree n+1, transversal to infinity, and let ω = (ω1, . . . , ωm),
m = n2, be the tuple of monomial 1-forms generating the Petrov module
Pf as in Theorem 26.21.

Theorem 26.35. For any continuous family of cycles δ(z) on the level
curves, the column vector X = X(z) of the periods

∮
δ(z) ωj, j = 1, . . . , m,

satisfies the following system of linear ordinary differential equations,

(zE −A) · dX

dz
= (B0 + zB1) ·X. (26.41)

Here A,B0, B1 are constant m×m-matrices.

Proof. Consider the 2-forms f dωj ∈ Λ2, for all j = 1, . . . , m. Each of them
can be “divided with remainder” by df : by Proposition 26.20 there exist
polynomial 1-forms ηj of degrees deg ηj 6 deg ωj such that

f dωj = df ∧ ηj +
m∑

k=1

ajk dωk (26.42)

with some complex numbers ajk ∈ C forming an m ×m-matrix A. These
identities can be rewritten under the form

d(fωj −
∑

k

ajkωk) = df ∧ (ηj + ωj). (26.43)
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The 1-forms ηj can be in turn expanded using Theorem 26.21, as

ηj =
m∑

k=1

(bjk ◦ f) · ωk mod dΛ0 + Λ0 df, (26.44)

with some univariate polynomials bjk(z) which have to be composed with f .
Since deg ηj 6 2n < 2(n + 1), the degrees of these polynomials by (26.28)
cannot exceed 1. Together these polynomials can be arranged into a linear
matrix polynomial B(z) = ‖bjk(z)‖m

j,k=1 = B0 + zB1.

Note that the f restricted on δ(z) is identically equal to z. Therefore
applying Theorem 26.32, we conclude that

d

dz
(zX(z)−A ·X(z)) = (E + B0 + zB1) ·X(z). (26.45)

Since A is constant, the relationship (26.45) is equivalent to (26.41). ¤

Many properties of the matrices A,B0, B1 can be seen from their explicit
construction in the proof of Theorem 26.35.

Corollary 26.36. If f has only nondegenerate critical points, then A is a
diagonalizable matrix whose spectrum consists of the corresponding critical
values of f .

Proof. By construction, A is the matrix of multiplication by f in the quo-
tient algebra Λ2/df ∧ Λ1 ∼= Qdf . If f has only nondegenerate critical points
(as usual, being transversal to infinity), then the quotient algebra is isomor-
phic to the algebra of functions on m distinct points forming the critical
locus of f in C2 and the spectrum of A consists of the critical values of f ,
counted with their multiplicities if some critical values at distinct critical
points coincide. ¤

This in turn implies the following conclusion.

Corollary 26.37. If f is a Morse polynomial transversal to infinity, then
the linear system (26.41) has only Fuchsian singularities at the critical values
of the polynomial f .

Proof. In the assumptions of the corollary, the determinant det(zE − A)
has only simple roots at the critical values of f , hence the inverse matrix
(zE −A)−1 has simple poles there. ¤

Remark 26.38. In a similar way the matrix coefficients of the decomposi-
tion B0, B1 can be described. In particular, their norms can be, if necessary,
estimated from above in terms of the relative magnitude of principal and
nonprincipal homogeneous coefficients of f .

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



530 V. Global properties of complex polynomial foliations

Remark 26.39. The singular point of the system (26.41) at infinity is in
general non-Fuchsian (though obviously always regular); see [Nov02]. How-
ever, if instead of m = n2 forms dωj generating the algebra Qf we take all
ν = n(2n − 1) monomial 2-forms of degree 6 2n, then in the first division
(26.42) one can achieve deg ηj 6 deg ωj 6 2n and hence one can always
represent dηj as a linear combination of the forms dωk with constant com-
plex coefficients. This will produce a redundant system of linear differential
equations satisfied by the vector of periods X ′(z) of all ν 1-forms in the
hypergeometric form,

(zE −A′)
d

dz
X ′(z) = B′X ′(z), A′, B′ ∈ Mat(ν,C). (26.46)

Such a system always has a Fuchsian singular point at infinity. For details
see [NY01].

26I. Vanishing cycles and Picard–Lefschetz formulas. In this section
we compute the monodromy operators (26.36) associated with a particular
case where the loop γ is a small path encircling just one Morse critical value
of the polynomial f .

As z tends to a nondegenerate critical value a ∈ Σ of f , among all cycles
on the curve Lz one can distinguish a certain cycle δa(z) ∈ H1(Lz,Z) called
the vanishing cycle. This cycle is defined uniquely modulo orientation (i.e.,
up to multiplication by −1 in the group H1(Lz,Z)).

To describe the vanishing cycle accurately, assume that the critical value
of the polynomial f is a = 0 and the corresponding nondegenerate critical
point is at the origin. Without loss of generality we may further assume
that f(x, y) = x2 − y2 + · · · . All this can be achieved by affine changes of
the variables x, y and z.

Consider the parallel projection on the x-plane parallel to the y-axis,
restricted on different level curves Lz. These restrictions have critical points
depending on z, when the derivative ∂f

∂y vanishes on Lz: near all other points
the curve Lz locally biholomorphically covers the x-plane.

Out of those critical points, there are exactly two points near the origin,
defined by the equations

x2 − y2 + · · · = z, 2y + · · · = 0

(as usual, the dots denote higher order terms). Resolving these equations, we
conclude that Lz can be locally described as the Riemann surface covering
the x-plane (C, 0) with ramification at the two near the origin, x±(z) =
±√z + · · ·, the ramification having order 2. The loop on the x-plane, which
encircles these points, can be lifted to a cycle δ0(z) on the level curve Lz for
all z 6= 0 sufficiently close to zero; see Fig. V.3.
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x
+

L
z

x

δ0(z)

Figure V.3. Vanishing cycle at a Morse singularity

Definition 26.40. The cycle δ0(z) ∈ H1(Lz,Z) defined by this construction
for all z 6= 0 sufficiently close to the critical value z0 = 0, is called the
vanishing cycle (more precisely, the cycle vanishing at the critical value z0).

Remark 26.41. The vanishing cycle (modulo orientation and the free ho-
motopy deformation on Lz) can be characterized by the following purely
topological property: as z → 0, the cycle δ0(z) can be represented by a con-
tinuous family of loops on Lz of length that tends to zero. This description
explains the terminology.

Now we can describe the monodromy operator for a small loop encircling
a Morse critical value. Suppose that the regular value z varies along the small
circular loop γ around the origin, z(t) = ρe2πit, 0 < ρ ¿ 1, parameterized
by the real variable t ∈ [0, 1]. Then the two points x±(z(t)) also rotate along
two curves approximating two half-circles x±(t) = ±√ρeπit(1+ o(1)) and at
the end exchange their places; see Fig. V.4.

Looking at this figure, one can construct a continuous isotopy of the
plane, which is identical outside the disk of radius, say, 3

√
ρ and a rotation

by π on the disk of radius 2
√

ρ. This isotopy of the plane lifts as an isotopy
of the fiber Lρ on itself, identical outside a small disk centered at the critical
point, called the Dehn twist .

The action of the Dehn twist on the vanishing cycle δ0(ρ) itself is trivial:
the cycle “rotates” along itself. However, if δ′(ρ) is another cycle which
intersects the vanishing cycle, then on the level of homology the Dehn twist
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Before After

x
+

x
+

δ
0

δ
0

δ′

δ
′

δ
′

Figure V.4. Vanishing cycles and monodromy around a Morse singularity

acts by adding to δ′(ρ) the vanishing cycle δ0(ρ) with the sign ± depending
on the intersection index δ0 · δ′ between δ0 and δ′. If δ′ is a simple curve,
this is instantly clear from Fig. V.4; for cycles having multiple intersections
with δ0 one has to use the additivity of the intersection index to prove the
following result, called the Picard–Lefschetz formula:

∆γδ = δ + (δ · δ0) δ0. (26.47)

Remark 26.42. The formal construction of the Dehn twist and the proof of
Picard–Lefschetz formulas can be found in numerous sources, among them
[AGV88, Pha67, DFN85]. In the local context, where only the inter-
section of the level curves with a small ball around the critical point are
considered, one should exercise a certain care distinguishing between the
absolute and relative (modulo the boundary) homology; see [AGV88, §1].

As an immediate corollary from the Picard–Lefschetz formulas, we ob-
tain the following. Choose any basis δ = {δ1, . . . , δm} in the homology
H1(La,Z) for some regular value a ∈ C r Σ, considered as a row vector.
Then analytic continuation ∆γ along any loop γ ∈ π1(C r Σ, a) is repre-
sented by a matrix Mγ as follows:

∆γδ = δ ·Mγ , Mγ ∈ Mat(m,Z). (26.48)

Proposition 26.43. All monodromy matrices Mγ defined above, are uni-
modular, detMγ = 1.
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Proof. If γ is a small loop around a Morse critical value, then the equality
detMγ = 1 follows immediately from (26.47) (the vanishing cycle δ0 can
always be chosen as the first element in the row δ).

An arbitrary loop is a product of several small loops as above. ¤

26J. Period matrices. Let f be a polynomial of degree n + 1 transversal
to infinity, and ω = (ω1, . . . , ωm), m = n2, an arbitrary tuple of polynomial
1-forms. With this tuple, considered as a column vector, and any choice of a
locally constant basis δ(z) = (δ1(z), . . . , δm(z)) in the homology of the level
curves Lz, z ∈ CrΣ, one can associate the period matrix

X(z) = ω ⊗ δ(z) =




∮
δ1(z)

ω1 . . .
∮

δm(z)

ω1

...
. . .

...∮
δ1(z)

ωm . . .
∮

δm(z)

ωm




(26.49)

which is an analytic multivalued matrix-function ramified over the locus Σ.
As follows from (26.48), the analytic continuation of the period matrix

results in the right multiplication by the monodromy matrices Mγ ,

∆γX(z) = X(z) ·Mγ . (26.50)

Proposition 26.44. If f is a polynomial transversal to infinity, then the
determinant detX(z) of any period matrix, regardless of the choice of the
forms ω, is a polynomial in z with zeros at the points of Σ.

Proof. Together with Theorem 26.26, Proposition 26.43 implies that the
determinant detX(z) is a single-valued function on C r Σ. As z tends to
infinity, the integrals occurring as the entries of X(z) grow no faster than
polynomially in |z| in any sector. This implies that detX(z) is a polynomial.
As z tends to a point a ∈ Σ, at least one cycle (a linear combination of the
basis δ(z)) vanishes, hence the determinant tends to zero. ¤

From Proposition 26.44 it follows that (in the standing assumption
that f is a Morse polynomial transversal to infinity) the determinant of
any period matrix is divisible by the discriminant polynomial Df (z) =∏

zj∈Σ(z − zj). The natural question is whether this description is pre-
cise, i.e., whether there are additional points at which the determinant of
periods vanish. The answer is given by the following result.

Theorem 26.45. Assume that the polynomial f = fn+1+· · · of degree n+1
is transversal to infinity and the tuple of 1-forms ω = (ω1, . . . , ωm) satisfies
the assumptions of Theorem 26.21 (their differentials generate the quotient

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



534 V. Global properties of complex polynomial foliations

algebra Qdfn+1 = Λ2/dfn+1 ∧ Λ1). Then

detX(z) = c(ω)Df (z), Df (z) =
∏

zj∈Σ

(z − zj), c(ω) 6= 0. (26.51)

Proof. By the de Rham theorem [War83], for any basis of the homology
of an arbitrary level curve La, a /∈ Σ, there exist m forms on La such that
the respective period matrix is nondegenerate. These m forms on La are
restrictions of some tuple of polynomial 1-forms Ω1, . . . , Ωm ∈ Λ1[C2].

By Theorem 26.21, there exists a polynomial m × m-matrix P (z) of
coefficients of expansion of Ωj in the basis ω of the module Pf , such that

Y (z) = P (z)X(z), Y (z) =




∮
δ1(z)

Ω1 . . .
∮

δm(z)

Ω1

...
. . .

...∮
δ1(z)

Ωm . . .
∮

δm(z)

Ωm




. (26.52)

The matrix Y (a) is nondegenerate by construction, therefore X(a) must
also be nondegenerate. We conclude that the determinant detX(z) is a
polynomial without roots outside Σ. Such a polynomial can be only of the
form (26.51). ¤
Remark 26.46. In most expositions, Theorem 26.45 together with the Proposition 26.44,
established by analytical and topological arguments, is the starting point of the construc-
tion of a basis for the module of Abelian integrals.

The usual strategy of proving the formula (26.51) is to compute the sectorial growth
rate of all entries of the matrix X(z) and show that det X(z) = O(|z|n) as |z| → ∞. This
shows that det X(z) is a polynomial with roots at all n points of the critical locus Σ,
which leaves the only possibility det X(z) = c Df (z), where c = c(ω) ∈ C is a constant.
However, the accurate proof that c 6= 0 requires some effort; see [Nov02] where all details
are explicitly supplied. The explicit value of c(ω) was recently obtained by A. Glutsyuk
[Glu06]. For earlier results; see [Var89].

Staring from Theorem 26.45, one can derive (using the Cramer rule for finding the
indeterminate coefficients), that the integral of any polynomial form Ω over any cycle δ(z)
is a polynomial combination of integrals of the basic forms ω1, . . . , ωm over this cycle, the
coefficients being independent of the choice of the cycle,I

δ(z)

Ω =

mX
j=1

pj(z)

I
δ(z)

ωj .

By Theorem 26.13, the 1-form Ω−P(pj ◦f) ωj ∈ Λ1 is algebraically relative cohomologous
to zero. This gives an alternative (analytic) proof of Theorem 26.21. For details see
[Gav98, Nov02].

We choose an alternative strategy based on Theorem 26.21, since it is algorithmic
and provides explicit bounds for the operator of decomposition of any polynomial 1-form
in the elements of the basis for Pf .
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26K. Monodromy of Abelian integrals. Monodromy of the Picard–
Fuchs system (26.41) is a linear representation of the fundamental group
π1(C r Σ, a) by automorphisms of solutions of the system. It turns out
that the easiest way to study this representation is via topology of the map
f : C2 → C.
26K1. Completeness of the system of vanishing cycles. A generic (Morse)
polynomial of degree n + 1 transversal to infinity, has n2 critical points and
hence every nonsingular level curve carries exactly n2 (topological contin-
uations) of vanishing cycles. On the other hand, the homology group of a
generic leaf Lz also is of rank n2 over Z, as shown in Theorem 26.31. The
two numbers are equal, and this equality is not accidental.

Theorem 26.47. Vanishing cycles generate the first homology group of any
fiber Lz = {f = z} ⊂ C2 of a Morse polynomial transversal to infinity.

Clarification and references. The precise meaning of this theorem is as
follows. For a fixed regular value a ∈ C rΣ of f consider simple paths αj ,
j = 1, . . . , m, connecting a with each of the critical values a1, . . . , am of f ,
m = n2. Each vanishing cycle δj ∈ H1(Lz,Z) is well defined for all z ∈
(C, aj) and can be uniquely continued along α−1

j to a cycle δj ∈ H1(La,Z).
Besides, each path αj defines a loop γj ∈ π1(C r Σ, a) which corresponds
to going along αj , encircling aj by a sufficiently small positive circular loop
and returning back along the same path α−1

j (i.e., inverting the direction).
The collection of paths {α1, . . . , αm} is called proper, if the simple loops
γ1, . . . , γm generate the fundamental group π1(CrΣ, a).

Theorem 26.47 asserts that for any polynomial f and any regular value a
one can always construct a proper system of paths α1, . . . , αm such that the
corresponding continuations of vanishing cycles δ1(a), . . . , δm(a) generate
the entire homology H1(La,Z).

This assertion can be derived from the corresponding local result, Theo-
rem 1 from [AGV88, Chapter I, §2]. Alternatively, one can use the results
by A. B. Zhizhchenko [Žiž61]. A very good exposition of these things is
given in the recent paper [MMJR97, Sect. 4]: Theorem 26.47 is an imme-
diate corollary to the Theorem 4.4 of the latter paper. ¤

26K2. Transitivity of the monodromy on vanishing cycles. The global struc-
ture of the topological monodromy group is characterized by the following
property.

Theorem 26.48. The monodromy group acts transitively on the collection
of all vanishing cycles: for any two such cycles δ1, δ2 ∈ La, a /∈ Σ, there
exists a loop γ ∈ π1(CrΣ, a) such that ∆γδ1 = ±δ2.
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536 V. Global properties of complex polynomial foliations

Proof. Assertion of this theorem follows from the fact that the discriminant
variety Σ, introduced in (26.35), is irreducible and hence its smooth part,
parameterizing in a certain sense all vanishing cycles of all polynomials with
a fixed principal homogeneous part, is connected. We follow the exposition
in [Pus97]; see also [AGV88, Theorem 4, Chapter I, §3].

Let f ∈ C[x, y] be a Morse polynomial transversal to infinity, and
a1, a2 ∈ Σ the critical values, ai = f(xi, yi), corresponding to the two cycles
δi vanishing at the two critical points Ci = (xi, yi) ∈ C2, i = 1, 2. Theo-
rem 26.48 will be proved, if we find a path γ12 connecting a1 with a2 and
avoiding Σ everywhere else, such that the parallel transport (continuation)
of δ1(z), z ∈ (C, a1)rΣ, along this path coincides with δ2(z), z ∈ (C, a2)rΣ,
modulo orientation of the latter.

We will show first that there exists a continuous deformation of the
(singular) zero level curve La1 = {f − a1 = 0} onto the other singular level
curve La2 = {f − a2 = 0}, which sends the respective (uniquely defined)
critical points into each other, if one is allowed to change continuously all
nonprincipal coefficients of the polynomial f rather than only its free term.

To that end, consider the universal deformation Φ(λ;x, y) = fn+1 +∑
06i+j6n λijx

iyj as in (26.34) and the discriminant variety Σ introduced in
(26.35). Let Σ◦ ⊂ Σ be the set of parameters λ ∈ P ∼= Cr such that the zero
level curve of the polynomial fλ = Φ(λ; ·, ·) carries only one nondegenerate
critical point. This is the principal stratum of the algebraic variety Σ, a
relatively open subset with a complement which is an algebraic variety of
lower dimension.

Lemma 26.49.

1. All points of Σ◦ are smooth on Σ.
2. The set Σ◦ is connected.

Proof of the lemma. To prove the first assertion, consider the polynomial
Φ′ = Φ−λ00 which in fact depends only on the parameters λij with i+j > 0.
By the implicit function theorem, Morse critical points are stable: if λ ∈ Σ◦

and C∗ ∈ C2 is the corresponding Morse critical point of Φ′|λ, then for
any sufficiently close combination of the parameters λ′ = {λij , i + j > 0},
the polynomial f ′λ′ = Φ′(λ′, ·, ·) has a nearby Morse critical point C(λ′)
analytically depending on λ′. The critical value s(λ′) of f ′λ′ at this point
will also depend analytically on λ′, which means that Σ◦ is the graph of an
analytic function, (λ′,−s(λ′)) ∈ Σ◦.

To prove connectedness of Σ◦, note that Σ is the image of the surface

S = {(λ, x, y) ∈ Cr × C2 : ∂Φ/∂x = ∂Φ/∂y = Φ = 0} (26.53)
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26. Abelian integrals 537

by the projection (λ, x, y) 7→ λ. The part S′ of S given by the inequality
{det

(
∂2Φ/∂(x, y)

) 6= 0}, by the first assertion of the lemma, parameterizes
smooth points of Σ, including self-intersections of several smooth compo-
nents.

The projection π : (λ, x, y) 7→ (x, y) restricted on S is a holomorphic
affine subbundle of the trivial bundle π : (λ, x, y) 7→ (x, y). Indeed, the
equations (26.53) for any fixed (x, y) are affine with respect to λ and define
an affine subspace in P . The local triviality follows from the fact that any
translation in the (x, y) plane corresponds to an affine transformation of the
parameters λ: the nonprincipal coefficients of the polynomial Φ(λ;x+a, y+b)
for any (a, b) ∈ C2 are affine functions of λ.

The degeneracy condition det
(
∂2f/∂(x, y)2

)
= 0 as well as the occur-

rence of another critical point determine a proper complex affine subbundle
in S. This properness guarantees that the complementary set

S◦ =
{
(λ, x, y) ∈ S : det

(
∂2f/∂(x, y)2

) 6= 0, ∀(x′, y′) ∈ C2, (λ, x′, y′) /∈ S
}

which parameterizes Σ◦, is connected. The lemma is proved. ¤

We return to the proof of Theorem 26.48. Let a1,a2 ∈ Σ ⊂ Cr be
the points corresponding to the nonprincipal coefficients of the polynomials
f−a1 and f−a2 respectively, where f = fn+1+ · · · is the initial polynomial.
By Lemma 26.49, these points appear at the intersection of the smooth part
Σ◦ with the complex line ` = {λ′ = const}.

Since Σ◦ is connected, the points a1 and a2 can be connected by a path
γ12 parameterized by t ∈ [1, 2]. Since Σ◦ is a smooth hypersurface, this
path can be deformed to a path that avoids Σ everywhere except for the
endpoints, but remains sufficiently close to Σ so that the vanishing cycle
on all the level curves Lt = Lγ12(t) ⊆ C2 is uniquely determined. The cor-
responding deformation of zero level curves of the polynomial Φ(γ12(t), ·, ·)
carries the unique vanishing cycle δ1 on {Φ(a1, ·, ·) = 0} onto the unique
vanishing cycle δ2 on {Φ(a1, ·, ·) = 0}.

During this deformation all nonprincipal coefficients of the polynomial
are changed, not just the free term. However, by the global Zariski theorem,
the path γ12 ⊂ Cr rΣ with the endpoints on the line ` can be deformed
(by a homotopy with the fixed endpoints) to a path γ12 entirely belonging
to ` rΣ = ` r Σ. In this deformation only the free term of f is changed,
hence the corresponding deformation coincides with the monodromy action
described in Corollary 26.28. The proof of Theorem 26.48 is complete. ¤

26K3. Almost irreducibility of the monodromy. The transitivity established
in Theorem 26.48, allows us to prove that the topological monodromy group
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538 V. Global properties of complex polynomial foliations

is almost irreducible in the following precise sense. Consider the first homol-
ogy G = H1(La,Z) of a generic level curve La, a /∈ Σ. This is a Z-module
equipped with an antisymmetric intersection form G2 3 (δ, δ′) 7→ δ · δ′ ∈ Z.
Since La is n + 1 times punctured Riemann surface of some genus g, the
module G is generated by 2g canonical cycles `j , `

′
j , j = 1, . . . , g and any n

“small loops” s1, . . . , sn around n+1 punctures at infinity. The intersection
form in this basis looks very simple:

`i · `′j =

{
1, i = j,

0, i 6= j,
sk ·G = 0. (26.54)

Any loop γ ∈ π1(CrΣ, a) in the base defines a topological monodromy
operator ∆γ : G → G which is Z-linear and preserves the intersection form.
Together the operators determine Z-linear representation γ 7→ ∆γ of the
fundamental group by automorphisms of the module G. If S ⊆ G is a sub-
module invariant by all monodromy operators, the quotient representation
by automorphisms of the quotient module G/S is well defined by the action

∆̃γ(δ mod S) = (∆γδ) mod S, ∀(δ mod S) ∈ G/S.

Theorem 26.50. For a polynomial f of degree n+1 transversal to infinity,
the submodule S ⊂ G = H1(La,Z) generated by the “small loops” s1, . . . , sn

is invariant and each monodromy operator ∆γ acts identically on it.

The action of the topological monodromy γ 7→ ∆̃γ ∈ Aut(G/S) on the
quotient Z-module G/S is irreducible, i.e., has no nontrivial invariant sub-
modules.

Proof. The first assertion follows from the Picard–Lefschetz formulas
(26.47) and the structure of the intersection form (26.54): the “small loops”
sk have zero intersection index with any vanishing cycle.

To prove the second assertion, consider an arbitrary invariant submodule
G′ 6= 0 mod S in G/S. By factoring out all “small loops” the quotient
G/S inherits the intersection form which is nondegenerate: if a cycle δ is
orthogonal to all G (i.e., has zero intersection index with all loops `j , `

′
j for

all j = 1, . . . , g), then δ itself is zero modulo S.
We first claim that G′ contains one of the vanishing cycles modS. In-

deed, an element δ /∈ S cannot be orthogonal to all vanishing cycles: since
the latter generate the entire G, this would contradict to the nondegeneracy
of the intersection form on G/S. If the intersection index δ · δi 6= 0, then to-
gether with δ the submodule G′ also contains the element δ + cδi with c 6= 0
because of the invariance and the Picard–Lefschetz formula (26.47). Then
δi ∈ G′ mod S. But because of the transitivity of the action of the topo-
logical monodromy (Theorem 26.48), G′ contains all other vanishing cycles.
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26. Abelian integrals 539

This means that G′ = G mod S, that is, a nonzero invariant submodule nec-
essarily coincides with the entire module G. This proves the irreducibility
of the quotient action. ¤

Since the topological monodromy acts on the period matrix X(z) by
right multiplications as in (26.50), it coincides with the monodromy of the
corresponding Picard–Fuchs system (26.41), and we obtain a rather impor-
tant property of the latter system.

Corollary 26.51. The monodromy group of the Picard–Fuchs system
(26.41) is almost irreducible: it has an n-dimensional subspace on which
all monodromy operators are identical, while the quotient representation
γ 7→ ∆̃γ is irreducible. ¤

26K4. Gauss–Manin connexion. The first homology H1(La,Z) and cohomology H1(La,C)
of a generic fiber La = f−1(a) ∈ F are a lattice (Z-module) and a complex space of the
rank (resp., complex dimension) equal to n2. To achieve uniformity, we consider the linear
spaces H1(La,C) = H1(La,Z) ⊗ C of formal combinations of cycles with complex coeffi-
cients. Then we obtain two families of complex spaces of the same dimension, indexed by
nonsingular values a /∈ Σ.

Each of these families is a holomorphic vector bundle over the set of regular values
X = C r Σ, equipped with meromorphic connexions. To see this, consider first the
homology bundle: because of the local topological triviality (Theorem 26.26), we can
choose any basis in the homology of a nonsingular fiber and then carry it continuously to all
nearby regular fibers. This gives local trivialization of the homology bundle H1(·,C) → X
and a locally flat connexion ∇◦ on it: sections horizontal in the sense of this connexion
are continuous sections of the projection H1(·,Z) → X.

To define local trivializations of the cohomology bundle H1(·,C) → X, note that any
polynomial 1-form ω ∈ Λ1[C2] defines a section [ω] : X → H1( · ,C): for any point z ∈ X,
the value [ω](z) is the cohomology class of the form ω restricted on the leaf Lz ⊂ C2. For
any n2 = m 1-forms ω1, . . . , ωm, whose restrictions on a given nonsingular fiber La are
cohomologically independent, the independence also persists on all nearby fibers Lz for all
z ∈ (X, a). The corresponding sections [ω1], . . . , [ωm], clearly locally holomorphic, furnish
a local trivialization of the cohomology bundle H1(·,C) → X.

Integration (α, δ) 7→ H
δ
α is a natural pairing (duality) between the two line bundles

over X = C r Σ. This duality allows us to carry different structures from one bundle to
the other. In particular, there is a natural connexion ∇◦ on the cohomology bundle, dual
to the ∇◦ on the homology bundle. This connexion, called the Gauss–Manin connexion,
is uniquely determined the identity

d(α, δ) = (α,∇◦δ) + (∇◦α, δ) ∀α : X → H1(·,C), δ : X → H1(·,C)

valid for any two sections α and δ of the homology and cohomology bundles respectively.
Choosing a basis of horizontal sections δ1(z), . . . , δm(z) with ∇◦δj = 0, we see that for
the sections [ω1], · · · , [ωm] their covariant derivatives are expansions of the differential of
the period matrix (ωi, δj(z)) in the periods of the forms ωj themselves. In other words,
the Picard–Fuchs system of linear equations (26.41) in this geometric language is nothing
more than the matrix form of the Gauss–Manin connexion with respect to the chosen
trivialization of the cohomology bundle.

Note that though the form ω is “constant” (does not explicitly depend on z), its
restriction on Lz is not constant in the sense of the Gauss–Manin connexion, i.e., the
section [ω] is not horizontal.
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540 V. Global properties of complex polynomial foliations

26L. Real branches of Abelian integrals and lower bounds for the
number of limit cycles. Now we can return to the Example 26.11 and
show that this type of behavior of Abelian integrals is impossible if f is a
Morse polynomial transversal to infinity.

Theorem 26.52 (Yu. Ilyashenko [Ily69], I. Khovanskaya (Pushkar′)
[Pus97]). Let f ∈ R[x, y] be a real polynomial transversal to infinity whose
complexification is a Morse function, and γ(t) a continuous family of real
ovals on the level curves of f .

If ω is an arbitrary polynomial 1-form with identically zero integral over
γ(t), then ω is relatively exact (can be represented as in (26.18)). If deg ω <
deg df , then ω is exact, ω = dg, g ∈ R[x, y].

To prove this result, we need the following topological lemma.

Lemma 26.53. Any nonsingular real oval on the level curve of a real Morse
polynomial, either is itself the continuation of a vanishing cycle, or has a
nonzero intersection index with at least one vanishing cycle.

Proof. Any real oval γ ⊂ R2 belongs to a topological annulus on the plane
filled by real ovals of level curves. The inner boundary of this annulus cannot
be empty. If the inner boundary is a critical point of f , then γ itself is a
vanishing cycle. Otherwise the inner boundary is a singular oval carrying
a (Morse) critical point of f which is a saddle. The cycle vanishing at this
saddle is purely imaginary and intersects γ with the index ±1. ¤

Proof of the Theorem 26.52. Suppose that I(t) =
∮
γ(t) ω ≡ 0. By the

Picard–Lefschetz formula (26.47) and Lemma 26.53, for at least one vanish-
ing cycle δ1(z) the integral I1(z) =

∮
δ1(z) ω is also vanishing identically. But

then by Theorem 26.48, the integral of ω over any vanishing cycle of f is
identically zero. Since vanishing cycles generate the homology group of any
fiber (Theorem 26.47), this means that the 1-form ω is relatively closed.

Application of Theorem 26.13, whose assumptions are automatically sat-
isfied if f is a Morse polynomial transversal to infinity, shows then that ω is
(algebraically) relatively exact: ω = h df + dg with some polynomials h, g.
Symmetrizing this identity (adding it with its complex conjugate), we can
assume without loss of generality that both h, g are real.

To prove the second assertion of the theorem, note that the polynomial
“primitive” g obtained by the integral (26.19) of a form of degree deg ω <
deg df grows no faster than o(|x|+ |y|)n+1 (as follows from direct estimates)
and hence is a polynomial form of degree not exceeding n. The difference
ω − dg is a polynomial 1-form divisible by the form df of a higher degree.
This means that h = 0 and ω is exact, ω = dg. ¤
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Remark 26.54. The second assertion of Theorem 26.52 can be proved
using a more direct argument as in [Pus97]. Consider the Gelfand–Leray
derivative dω

df of the form ω. By Remark 26.34, this derivative has poles of
order at most 1 at infinity. If the integral of ω along any cycle on Lz is zero,
then the residues at these points are all zeros. Since the poles are simple,
absence of the residues means that the derivative dω

df is in fact holomorphic at
these points and its primitive on each compactified fiber Lz, is a holomorphic
function, which is necessarily a constant. Hence the derivative dω

df is itself
zero restricted on each fiber, and thus dω = 0.

As an application of Theorem 26.52, we construct a polynomial foliation
of the plane from the class An having 1

2(n + 1)(n− 2) limit cycles.

Theorem 26.55 (Yu. Ilyashenko, [Ily69], I. Khovanskaya (Pushkar′),
[Pus97]). If f ∈ R[x, y] is a Morse polynomial of degree n + 1 transver-
sal to infinity, then for any N = 1

2(n + 1)(n− 2) real ovals of the integrable
foliation {df = 0} on R2 one can construct a form

ω = P (x, y) dx + Q(x, y) dy, P, Q ∈ R[x, y], deg P, Q 6 n, (26.55)

such that the perturbation {df + εω = 0} (cf. with (26.1)) produces at least
N limit cycles which converge to the specified ovals as ε → 0.

Proof. Consider the linear space of all polynomial 1-forms ω of the specified
degree: the dimension of this space is n(n + 1). The exact forms constitute
a subspace of dimension 1

2(n + 2)(n + 1) − 1 in it. The quotient space has
dimension n(n + 1)− 1

2(n + 2)(n + 1) + 1 which is exactly equal to N + 1.
For any choice of N real ovals δi ⊆ {f = ci}, i = 1, . . . , N , the condition∮

δi
ω = 0 constitutes a linear restriction on the form ω. As soon as the

number of restrictions is less than the dimension of the (quotient) space,
there exists at least one form, by construction not exact, whose integral is
zero along all the specified ovals.

By Theorem 26.52, all these zeros are isolated. Indeed, otherwise the
integral must have a real branch which is identically zero, which is possible
only if the form is exact.

If all these zeros are simple, then by Remark 26.2, the corresponding
perturbation will produce at least N limit cycles.

If some of the zeros are of even orders, then the corresponding limit cycles
can “escape” into the nonreal domain. In this case the perturbation form
should be produced in the following way. Assume without loss of generality
that all ovals δ1, . . . , δN are oriented positively so that the form ω0 = y dx
has negative integral over each such oval. Let k+ denote the number of
ovals such that the corresponding real branch of the integral

∮
ω has a local
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Figure V.5. Construction of the perturbation with the specified num-
ber of simple roots

minimum there, and by k− the number of ovals yielding the local maximum
(recall that in any case the roots are isolated). The total number k+ +k− is
equal to the number of different ovals where the integral I(z) =

∮
δ(z) ω has

a local extremum. The remaining N − (k+ + k−) ovals correspond to the
roots where I changes its sign. If k+ > k−, consider the form ω+ εω0, where
1 À ε > 0 is an auxiliary parameter: the corresponding integral is obtained
by subtracting a small everywhere positive quantity I0(z) =

∮
δ(z) ω0 from

the function I(z).
In particular, each of the k+ local minima of I will produce at least two

odd order roots, roots at the local maxima will disappear, and every odd
order root from the remaining N − (k+ + k−) will produce at least one odd
order root again if ε is sufficiently small; see Fig. V.5. Since k+ > k−, the
total order of odd order roots that appear after this small variation of the
form ωε = ω + εy dx of the corresponding integral I(z) + εI0(z) will have at
least N − (k+ + k−) + 2k+ > N odd order roots. The same Remark 26.2
shows now that the number of limit cycles in this degenerate case will be
again no less than N . ¤

Remark 26.56. The lower bound for the number of zeros of Abelian in-
tegrals (and the respective limit cycles) is not sharp. N. F. Otrokov con-
structed in [Otr54] examples with a larger number of limit cycles. However
all of them encircle a unique singular point of the foliation, whereas Theo-
rem 26.55 allows to place them much more freely.
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The principal term of both the Otrokov’s lower bound and the bound
achieved in Theorem 26.55 is of the same form 1

2n2 + O(n). However, for
special rather symmetric polynomials f of degree n + 1 one can construct
Abelian integrals of forms of degree n having more zeros. For instance,
there are known examples with as many as n2 − 1 isolated real zeros for
n = 2, . . . , 10.

Exercises and Problems for §26.

Problem 26.1. Prove that a real foliation is really analytically integrable near an
identical cycle.

Exercise 26.2. Why Proposition 26.1 does not apply to a neighborhood of a
critical level curve {f = 0}, carrying a critical point?

Problem 26.3. Prove that a continuous branch of any real Abelian integral (over
a continuous family of compact ovals of f) is real analytic on any interval free from
real critical values of the polynomial f .

Problem 26.4. Let γ be a real oval of a cubic ultra-Morse polynomial. Prove that
for any ε there exists a quadratic vector field with a limit cycle of multiplicity 2
whose Hausdorff distance from γ is smaller than ε.

Problem 26.5. Prove that for any r there exists a real polynomial vector field
from the class Ar with a limit cycle of multiplicity 1

2 (r + 1)(r − 2).

Problem 26.6. Prove that the Bonnet set of any polynomial is an algebraic subset
in C. Give an example of a polynomial f ∈ C[x, y] with an infinite Bonnet set
Bs(f) = C.

Problem 26.7. Prove Proposition 26.17.

Exercise 26.8. Find atypical values of the polynomial f(x, y) = xy(xy − 1).

Problem 26.9. Prove that for polynomials not transversal to infinity, the period
matrix remains single-valued and has at worst poles at the atypical values.

Problem 26.10. Prove that for a polynomial f = fn+1+· · · transversal to infinity,
the level curves f = z and fn+1 = z are homeomorphic for all sufficiently large |z|
(cf. with the end of the proof of Theorem 26.31).

Problem 26.11. Consider a compact Riemann surface C and a noncontractible
simple loop γ on it. Because of the noncontractibility, the difference C r γ is con-
nected and has a boundary which is homeomorphic to two disjoint circles. Sealing
the two holes by topological disks results in a new surface C̃ = C/γ called pinching
of C along γ.

Compare the Euler characteristic of C and C/γ.

Problem 26.12. If f is a complex polynomial transversal to infinity with only non-
degenerate critical points (some of the critical values can coincide), then any critical
level curve can be obtained from a nearby nonsingular level curve by pinching along
the corresponding vanishing cycles. Prove this statement.
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Problem 26.13. Prove the Plücker formula (25.27), using Problems 26.11
and 26.12.

Problem 26.14. For any collection of cycles c1, . . . , cm on a Riemann surface their
intersection graph is a graph with m vertices which are connected by an edge if and
only if the corresponding intersection index ci · cj is nonzero.

Prove that for any polynomial transversal to infinity, one can construct a ba-
sis of vanishing cycles (as in the Clarification to Theorem 26.47) such that the
corresponding intersection graph is connected.

Hint. Consider a small perturbation of the degenerate polynomial f =
∏n+1

j=1 lj
with generic affine polynomials of degree 1.

Problem 26.15. Prove that for any polynomial and any proper system of paths
the intersection graph constructed in Problem 26.14 is always connected.

Problem 26.16. Derive from the Problems 26.14 and 26.15 the assertion on tran-
sitivity of action (Theorem 26.48).

The Problems 26.17–26.22 together give an upper bound for the multiplicity of
an isolated zero of an Abelian integral. This result was obtained by P. Mardešić
[Mar91].

Problem 26.17. Let f be a Morse polynomial of degree n + 1 transversal to
infinity, and ω ∈ Λ1[C2] a polynomial form of degree n. Consider the integrals
Jk(z) =

∮
δk(z)

ω, where δ1(z), . . . , δm(z) are vanishing cycles constructed as in The-
orem 26.47. Let W (z) be a Wronski determinant of the functions J1, . . . , Jm.

Prove that W (z) is a rational function of z and describe its polar locus.

Problem 26.18. Prove that W ≡ 0 if and only if ω is closed.
Hint.: Use the Problem 26.15 and exactness theorem.

Problem 26.19. Estimate from above the order of a pole of W at any critical
point of the ultra-Morse polynomial.

Problem 26.20. Prove that the integral Jk in Problem 26.17 has an algebraic
singular point at infinity: a branch point of order equal either to r + 1, or to a
divisor of r + 1.

Problem 26.21. Give an upper bound for the order of the pole of W at infinity.

Problem 26.22. Give an upper bound for the multiplicity of an isolated zero of
any of the integrals Jk(z).

Problem 26.23. Consider a real ultra-Morse polynomial H with a compact com-
ponent Γ of a critical level that contains a critical point A and is not a singleton.
Prove that this component is an eight shaped figure. Let the corresponding critical
value be zero, and a level curve {H = ε} has a smooth component Γε such that
Γ lies inside Γε for any small positive ε. Then the level curve {H = −ε} has two
components for the same ε, denoted by Γ 1

−ε and Γ 2
−ε, one contained in one loop

of Γ , another in another one. Let δε ⊂ {H = ε} be a vanishing cycle close to
A. Consider a loop Γ−ε ⊆ L−ε = {H = −ε} obtained from Γε by continuation
over a half-circle of radius ε centered at zero in the set of noncritical values of
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H. Find the expression of the corresponding element [Γ−ε] ∈ H1(L−ε,Z) through
[Γ 1
−ε], [Γ

2
−ε], [δ−ε].

Problem 26.24. Prove that for any r there exists a real polynomial vector field
from the class Ar with a limit cycle of multiplicity 1

2 (r + 1)(r − 2).

Problem 26.25. Modifying the proof of Theorem 26.35, write explicitly the
Picard–Fuchs system for the cubic polynomial f(x, y) = 1

2 (x2 + y2) − x3

3 and the
two forms ω1 = y dx and ω2 = xy dx.

Problem 26.26. Let f(x, y) = y2 + xn+1 + pn(x) be a hyperelliptic polynomial.
Prove that the forms y dx, xy dx, . . . , xn−1y dx form a basis of the corresponding
Petrov module Pf . Modifying the proof of Theorem 26.35, write explicitly the
Picard–Fuchs system for the corresponding hyperelliptic integrals.

27. Topological classification of complex linear foliations

The famous Grobman–Hartman theorem [Gro62, Har82] asserts that any
real vector field whose linearization matrix is hyperbolic (i.e., has no eigen-
values with zero real part), is topologically orbitally equivalent to its lin-
earization. An elementary analysis shows that two hyperbolic linear real
vector fields are orbitally topologically conjugated if and only if they have
the same number of eigenvalues to both sides of the imaginary axis.

This section describes the complex counterparts of these results. From
the real point of view a holomorphic 1-dimensional singular foliation on
(Cn, 0) by phase curves of a holomorphic vector field is a 2-dimensional
real analytic foliation on (R2n, 0). If the singularity at the origin is in the
Poincaré domain, this foliation induces a nonsingular real 1-dimensional
foliation (trace) on all small (2n− 1)-dimensional spheres S2n−1

ε = {|x1|2 +
· · · + |xn|2 = ε > 0}. Under the complex hyperbolicity-type conditions
excluding resonances, the trace is generically structurally stable. Poincaré
resonances manifest themselves via bifurcations of this trace foliation.

On the contrary, if the singularity is in the Siegel domain, the corre-
sponding foliations exhibit rigidity : two foliations are topologically equiva-
lent if and only if there is a rather special conjugacy between them which
is completely determined by n complex numbers. This rigidity implies that
there are continuous invariants (moduli) of topological classification.

27A. Trace of the foliation on the small sphere. Consider the real
sphere of radius ε > 0,

Sr = {r2(x) = ε} ⊆ Cn, r2(x) = |x|2 =
n∑

1

xix̄i. (27.1)

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



546 V. Global properties of complex polynomial foliations

The differential of the (nonholomorphic) function r2 : Cn → R is a complex-
valued 1-form, dr2 = x dx̄ + x̄ dx, which on the complex vector field F (x) =
(v1(x), . . . , vn(x)) takes the value

dr2 · v(x) =
n∑

i=1

xi v̄i + x̄i vi = 2 Re
(∑

xiv̄i

) ∈ R.

If F (x) = Λx is a linear diagonal vector field with the eigenvalues
λ1, . . . , λn ∈ C, then

dr2 · F = 2 Re
∑

λi|xi|2.
The following observation due to V. Arnold [Arn69] gives a topological

characterization of the Poincaré type holomorphic foliations.

Proposition 27.1. All complex phase curves of the diagonal linear vector
field Λx of Poincaré type in Cn are transversal as 2-dimensional embedded
surfaces, to all spheres Sε, ε > 0.

Proof. The tangent space to any trajectory considered as a real 2-
dimensional surface in R2n = Cn, is spanned over R by the vectors v(x) = Λx
and v′(x) = iΛx. To prove the transversality, it is sufficient to verify that
the 1-form dr2 cannot vanish on both vectors simultaneously for x 6= 0.

If the spectrum belongs to the Poincaré domain, then without loss of
generality we may assume that

Reλi < 0, i = 1, . . . , n. (27.2)

Indeed, replacing the field Λx by the orbitally equivalent field αΛx, |α| = 1,
preserves all holomorphic phase curves but rotates the spectrum of Λ as a
whole.

Under the assumption (27.2) the expression

dr2 · F = s(x) =
∑

λi|xi|2 ∈ C (27.3)

is in the left half-plane, moreover,

Re s(x) 6 δ |x|2 < 0, δ > 0. (27.4)

This implies the required transversality. ¤

Remark 27.2. Transversality is an open condition: sufficiently small per-
turbations of the vector field leave it transversal to the compact sphere.

In particular, if F (x) = Λx + w(x) is a nonlinear vector field, then the
rescaling x 7→ εx conjugates its restriction on the ε-sphere S2n−1

ε with the
restriction of the field Fε(x) = Λx + ε−1w(εx) on the unit sphere S2n−1

1 .
But since the nonlinear part w(x) is at least of second order, the field Fε is
ε-uniformly close on the unit sphere to the linear field F0(x) = Λx. Thus we
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27. Topological classification of complex linear foliations 547

conclude that the nonlinear vector field F is transversal to all sufficiently
small spheres S2n−1

ε .

Definition 27.3. Let F = {Lα} be a foliation on a manifold M . The trace
of the foliation on a submanifold N ⊂ M is the partition of N into connected
components of intersection of the leaves Lα with N , F|N = {Lα ∩N}.

In general, the trace of a foliation need not itself be a foliation; the
intersections Lα ∩ N can be nonsmooth in general. Even in the analytic
context one cannot exclude the appearance of singularities.

Corollary 27.4. The trace of the holomorphic foliation F induced by a
linear vector field of Poincaré type on any sphere S2n−1

ε is a smooth (actually,
real analytic) nonsingular real 1-dimensional foliation F′ = F|Sε.

Proof. By the implicit function theorem, intersection of each leaf with the
sphere is a smooth curve. ¤

Moreover, for singularities of Poincaré type the trace of the foliation
on a (sufficiently small) sphere determines completely the foliation up to
the topological equivalence, even if the vector field spanning the foliation is
nonlinear.

Definition 27.5. A (topological) cone over a set K ⊂ Cn r {0} is the set
{K = {rx : 0 6 r 6 1, x ∈ K} ⊆ Cn. If F′ is a foliation on the sphere
S2n−1

1 ⊂ Cn, then the cone over the foliation {F′ is the foliation of Cnr {0}
whose leaves are the cones over the leaves of F′.

Theorem 27.6. A singular foliation F on (Cn, 0), generated by a vector
field of Poincaré type, is topologically equivalent to the cone over its trace
F′ε = F|S2n−1

ε
on any sufficiently small sphere.

Proof. Under the normalizing assumption (27.2) the real flow of the vector
field Λx, the one-parametric subgroup of linear maps {Φt = exp tΛ : t ∈ R} is
locally contracting: orbits Φt(x), x ∈ S2n−1

1 of all points uniformly converge
to the origin as t → +∞. This follows again from (27.4): if ε is so small
that |w(x)| < δ

2 |x| for |x| < ε, we have |Φt(x)| < exp(−δt/4) |x| for all t > 0.
The real flow Φt is tangent to the foliation F. Thus the map h of the

small ε-ball {|x| 6 ε} into itself, defined by the formulas

h(rx) = Φ− ln r(x), 0 < r 6 1, x ∈ S2n−1
ε , h(0) = 0,

is a homeomorphism conjugating {(F|Sε) with F. ¤

In particular, Theorem 27.6 implies that all foliations F′ε are topologi-
cally equivalent to each other. Yet without the additional assumptions they
may be nonequivalent to the foliation F′0 which is the trace of the linear
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548 V. Global properties of complex polynomial foliations

foliation F0 on (any) sphere. This additional assumption is called complex
hyperbolicity.

27B. Structural stability of the trace of hyperbolic foliation.

Definition 27.7. A holomorphic germ of a vector field ẋ = Ax + · · · in
(Cn, 0) is complex hyperbolic (or just hyperbolic7 if this does not lead to
confusion), if no two eigenvalues λi, λj of the linearization matrix A differ
by a real factor,

λi/λj /∈ R for all i 6= j. (27.5)
In particular, A must be nondegenerate and diagonalizable.

Under the additional assumption of complex hyperbolicity we can com-
pletely describe the trace of the linear diagonal foliation and show that it is
structurally stable: any C1-small perturbation produces a foliation that is
topologically equivalent to the initial one.

Everywhere below in this section F is a singular foliation of Cn by
phase curves of the complex hyperbolic vector field Λx with the eigenvalues
λ1, . . . , λn of the diagonal matrix Λ in the Poincaré domain and, if neces-
sary, normalized by the condition (27.2). We denote by F′ its restriction on
S2n−1

1 .
The first immediate consequence of complex hyperbolicity is the fact

that the only multiply-connected leaves of the foliation F by complex phase
curves of a diagonal linear system, are its separatrices.

Proposition 27.8. The only multiply-connected leaves of a foliation gener-
ated by complex hyperbolic linear system ẋ = Ax in Cn are its separatrices
which are lines spanned by the eigenvectors of A. All other leaves of F are
simply connected.

Proof. Without loss of generality we may assume that A is diagonal, A =
Λ = diag{λ1, . . . , λn}. The application

t 7→ x(t) =
(
c1 exp(λ1t), . . . , cn exp(λnt)

)
= Φt(c), c ∈ Cn, (27.6)

parameterizes the phase curve passing through a point c ∈ Cn. This para-
metrization is not injective, if exp tλj = 1 for some t and all j corresponding
to nonzero coordinates of the point c. If there is only one such coordinate,
then the noninjectivity is indeed possible if t = 0 mod Tj , where Tj is the
corresponding period. If a has at least two nonzero coordinates j and k, then
the simultaneous occurrence t = 0 mod Tj and t = 0 mod Tk is impossible:
it would mean that the ratio Tj/Tk is rational hence real. ¤

7In order to distinguish this from the real hyperbolicity of self-maps, introduced in Defini-
tion 7.2. The reasons why two seemingly different notions are called by similar names, are clarified
by Proposition 27.10 below.
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27. Topological classification of complex linear foliations 549

Assume that in addition to the normalizing condition (27.2), the enu-
meration of the eigenvalues λ1, . . . , λn is chosen in the increasing order of
their arguments in the interval [0, 2π),

Arg λ1 < Arg λ2 < · · · < Arg λn−1 < Arg λn (27.7)

(this is possible since by the hyperbolicity assumption λj/λk /∈ R, so all
values of the arguments are distinct).

Since the coordinate axes are leaves of F, the big circles Ci = {xj =
0, j 6= i, |xi| = 1} are leaves of F′. We show that all other leaves are
bi-asymptotic to these circles.

Proposition 27.9. If Λ is hyperbolic, then the limit set γ r γ of any leaf
γ ∈ F′ different from Cj, is the union of two big circles Cj ∪ Ck, j 6= k.

Proof. Any leaf Lc of the “large” foliation F passing through a point c ∈ Cn

is parameterized by the map (27.6). The intersection γc = Lc ∩ S2n−1
1 is

defined by the equation

|c1|2 exp 2 Re(λ1t) + · · ·+ |cn|2 exp 2 Re(λnt) = 1. (27.8)

As follows from the transversality property, this is a smooth curve para-
meterized by a smooth curve γ̃c on the t-plane, defined by the equation
(27.8).

The curve γ̃c apriori may have compact and noncompact components.
But any compact component must bound a compact set in C ∼= Lc so that
the function |x(t)| has critical points inside. Such critical points correspond
to nontransversal intersections that are forbidden by Proposition 27.1.

Thus γc may consist of only noncompact components (eventually, sev-
eral) along which |t| tends to infinity. But as |t| → ∞, the growth rate of
each exponential term exp

(
2Re(λjt)

)
is determined by the angular behavior

of t. In particular, since all exponentials in (27.8) should be bounded (unless
the corresponding coefficients cj vanish), we have the necessary condition
that all limit directions lim{t/|t| : t ∈ γ̃c, |t| → +∞} must be within the
sector Sc =

⋂
j : cj 6=0{Reλjt 6 0}. However, if t tends to infinity (asymptot-

ically) in the interior of this sector, then all exponents will tend to zero in
violation of (27.8).

Thus if Lc is not a separatrix (i.e., more than one coefficient cj is
nonzero), the curve γ̃c must be bi-asymptotic to the two boundary rays
of the sector Sc. This in turn means that the corresponding trajectory γc is
bi-asymptotic to the two cycles Cj 6= Ck. ¤

Behavior of leaves near each cycle Cj is determined by the iterations
of the corresponding holonomy map of the foliation F′ which can be easily
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550 V. Global properties of complex polynomial foliations

expressed in terms of the holonomy of the corresponding complex separatrix
Cej , ej = (0, . . . , 1

j
, . . . , 0) ∈ Cn, of the initial holomorphic foliation F.

Consider the circular leaf Cj ⊂ S2n−1
1 of the foliation F′ with the orienta-

tion induced by the counterclockwise (positive) direction of going around the
origin in the jth coordinate axis. Then for any (smooth) (2n−2)-dimensional
cross-section τ ′j : (R2n−2, 0) → (S2n−1

1 , ej) transversal to the trace foliation
F′ at the point ej ∈ Cj , one can define the first return map (holonomy)
hj = ∆Cj : (τ ′j , 0) → (τ ′j , 0).

Proposition 27.10. The holonomy hj ∈ Diff(R2n−2, 0) of each cycle Cj

is differentiably conjugate to the diagonal linear map Λj ∈ Diff(Cn−1, 0)
hyperbolic in the sense of Definition 7.2: its eigenvalues {2πiλk/λj}, k 6= j
are all off the unit circle.

Proof. Since the sphere S2n−1
1 is transversal to the foliation F, any smooth

(nonholomorphic) cross-section τ ′j : (R2n−2, 0) → (Sn−1
1 , ej) transversal to

the trace foliation F′ at the point ej ∈ Cj inside S2n−1
1 , will also be transver-

sal to the complex separatrix of F lying on the jth coordinate axis.
The holonomy maps for the foliation F associated with the two cross-

sections, τ ′j and the “standard” cross-section τj : (Cn−1, 0) → (Cn, ej), are
smoothly conjugate, in fact, the conjugacy is real analytic as a germ between
(R2n−2, 0) and (Cn−1, 0). The holonomy for the “standard” cross-section was
already computed; see Example 2.28. ¤

Proposition 27.11. The unstable (resp., stable) manifold of the cycle Cj

is the sphere Sj−1
1 = {xj+1 = · · · = xn = 0} ∩ S2n−1

1 (resp., the sphere
Sn−j−1

1 = {x1 = · · · = xj−1 = 0} ∩ S2n−1
1 ).

Proof. The corresponding complex coordinate planes Cj−1 and Cn−j−1 in
Cn are invariant by the foliation F and the computations of the preceding
proof show that the restriction of the first return map on the correspond-
ing spheres (in intersection with the cross-section τ ′j) has only eigenvalues
exp 2πiλk/λj . All these numbers are of modulus less than one (resp., greater
than one). Since the stable (unstable) manifolds are uniquely defined, this
proves the proposition. ¤

The properties of the foliation F′ established by these three propositions,
imply its structural stability : any sufficiently close foliation is topologically
equivalent to F′.

Theorem 27.12 (J. Guckenheimer, 1972 [Guc72]). Assume that the diag-
onal matrix Λ is complex hyperbolic and in the Poincaré domain.
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27. Topological classification of complex linear foliations 551

Then the holomorphic vector field F (x) = Λx + w(x) is topologically
orbitally linearizable, i.e., the holomorphic singular foliation of (Cn, 0) by
complex phase curves of the holomorphic vector field is locally topologically
equivalent to the foliation defined by the linear vector field F0(x) = Λx.

Moreover, any sufficiently close vector field is locally topologically or-
bitally equivalent to F .

Proof. Consider the rescaling Fε(x) = ε−1F (εx), the corresponding fo-
liation Fε in the ball {|x| < 1} and its trace F′ε on the unit sphere
S2n−1

1 = ε−1S2n−1
1 .

By Theorem 27.6, both foliations Fε and F0 are topological cones over
their traces F′ε and F′0. The assertion of the theorem will follow from the
topological equivalence of the latter two foliations on S2n−1

1 .
By the Palis–Smale theorem [PS70a], a vector field on the compact

manifold is structurally stable (i.e., its phase portrait is topologically or-
bitally equivalent to that of any sufficiently Ck-close vector field) if it meets
the following Morse–Smale conditions:

(1) its singular points and limit cycles are hyperbolic (i.e., all eigen-
values of the linearization at any singular point have nonzero real
parts, and all multiplicators of any limit cycle have modulus differ-
ent from 1);

(2) its orbits can accumulate only to singular points or limit cycles;
(3) all stable and unstable invariant manifolds of singular points and

limit cycles (which exist by the hyperbolicity assumption) intersect
transversally.

All these conditions for the foliation F′0 are verified in Propositions 27.10,
27.9 and 27.11 respectively. Therefore the foliation F′0 is structurally stable
and hence topologically equivalent to F′ε for all small ε.

Returning to the initial nonlinear vector field F = F1, we conclude that
it is topologically orbitally equivalent to its linearization in all sufficiently
small balls {|x| < ε}. ¤

Corollary 27.13. Any two linear complex hyperbolic vector fields of
Poincaré type in Cn generate globally topologically equivalent singular fo-
liations.

Any two nonlinear holomorphic vector fields in (Cn, 0), whose lineariza-
tions are complex hyperbolic vector fields of Poincaré type, generate locally
topologically equivalent singular holomorphic foliations.

Proof. Since topological equivalence is transitive, by Theorem 27.12 the
second assertion of the corollary follows from the first one.
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552 V. Global properties of complex polynomial foliations

To prove the assertion on linear systems, note that any two complex
hyperbolic matrices in the Poincaré domain can be continuously deformed
into each other within this class. Indeed, any such matrix can be first diago-
nalized and all its eigenvalues brought into the open left half-plane. Then all
absolute values of these eigenvalues can be made equal to 1 without chang-
ing their arguments; this will affect neither hyperbolicity nor the Poincaré
property. Finally, the arguments of the eigenvalues can be assigned any
positions, say, at equal angles between π/2 and −π/2. In this normal form
the two diagonal matrices of the same size differ only by reordering of the
coordinate axes. ¤

27C. Resonances in the Poincaré domain. Without complex hyper-
bolicity the foliation traced by a linear system on the unit sphere is still
nonsingular, but may have nontrivial recurrence. Indeed, in this case the
first return map for one of the cycles will have a multiplicator exp 2πiλ1/λ2

which has modulus 1. The corresponding foliation F′ on the sphere will
then have a family of invariant 2-tori foliated by periodic or quasiperiodic
orbits, depending on whether the ratio λ1/λ2 6= 1 is rational or not. Since
both rational and irrational numbers are dense, two nonhyperbolic linear
systems in the Poincaré domain can be arbitrarily close to each other but
topologically nonequivalent.

Generically, occurrence of multiple eigenvalues leads to the linearization
matrix with a nontrivial Jordan normal form. Consider for simplicity the
case n = 2, where such a form is necessarily a block of size 2. Then the cor-
responding foliation has only one complex separatrix. The same arguments
as were used in the proof of Proposition 27.10 show that this separatrix
leaves the trace in the form of a cycle on the sphere S3 whose first return
map is conjugate to the complex holonomy of the separatrix.

Somewhat surprisingly and in contrast with the previously discussed
diagonal cases, the holonomy map of this separatrix is essentially nonlinear :
it cannot be linearized by a suitable choice of the cross-section (or, what is
the same, a chart on it), as explained in Example 2.30. The computation
below for the case where n = 1 shows that the holonomy has a fixed point
of multiplicity exactly equal to 2 and thus a small perturbation will produce
two close fixed points corresponding to two cycles of the trace foliation.

Occurrence of nonlinearities affects the situation in a similar way when
(Poincaré) resonances occur, as was observed in [Arn69]. Consider the
simplest Poincaré resonance in C2 and compute the holonomy map.

Proposition 27.14. Consider a planar resonant singularity of the Poincaré
type in the formal normal form

ẋ = nx + a yn, ẏ = y, a ∈ C, n > 1. (27.9)
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27. Topological classification of complex linear foliations 553

Then the holonomy ∆ of the unique separatrix y = 0, computed for the
standard cross-section τ = {x = 1}, is tangent to a rotation by the rational
angle 2π/n and its nth iteration has an isolated fixed point of multiplicity
n + 1 at the origin.

Proof. The system (27.9) is integrable: its general solution is y(t) = C exp t,
x = (C ′ + aCnt) exp nt, with arbitrary constants C,C ′ ∈ C. The initial
condition (x(0), y(0)) = (1, s) ∈ τ yields for the corresponding solution the
formula

x(t) = (1 + asn t) exp nt, y(t) = s exp t.

For s = 0 the x-component of the solution (separatrix) is 2π/n-periodic.
For small s ∈ (C, 0), the solution with this initial condition crosses again the
section τ at the moments tk(s) = 2πik/n+ δk(s), δk(s) = o(1), k = 1, 2, . . . ,
where δk(s) is the complex root of the equation

1+asn(2πik/n+δk(s)) = exp
(−nδk(s)

)
= 1−nδk(s)+ · · · , lim

s→0
δk(s) = 0.

This equation can be resolved with respect to δk(s) defining the latter as
an analytic function of s by the implicit function theorem. Computing the
Taylor terms, we see immediately that

δk(s) = −2πika

n2
sn + · · · , tk(s) =

2πik

n
+ δ(s).

The iterated power of the holonomy map ∆k is therefore

∆k(s) = s exp tk(s) = λk s exp δ(s) = λks(1− kA sn + · · · ),
λ = exp 2πi

n , A = 2πia
n2 6= 0.

The nth iterated power of ∆ is tangent to the identity and has an isolated
fixed point of multiplicity exactly n + 1. ¤

Corollary 27.15. The resonant node corresponding to the resonance (1 : n),
n > 2, can be analytically linearized if and only if it can be topologically
linearized in the complex domain.

Proof. Consider the trace of the foliation on the unit sphere. The first
return map is a topological invariant of the foliation. For the nonlinear
Jordan node (27.9) with a 6= 0 the holonomy map is nontrivial (its nth
power has an isolated fixed point), whereas the holonomy map for the linear
node is linear and its nth power identical. ¤

Note that in the real domain all nodes are topologically equivalent to
each other.
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554 V. Global properties of complex polynomial foliations

Remark 27.16. The resonant conformal germ ∆ ∈ Diff1(C, 0) has a fixed
point at the origin and its nth iteration ∆n is tangent to identity with order
n + 1.

Hence the iterated power ∆̃n of any sufficiently close conformal germ ∆̃
will have n + 1 fixed points near the origin. One of these points is a fixed
point for ∆̃ by the implicit function theorem. The remaining n points form
a tuple of n-periodic points that are positioned approximately at vertices of
a regular n-gon and permuted by ∆̃ cyclically.

In terms of the traces of the foliations, this means that a vector field
obtained by a sufficiently small perturbation of the nonlinearizable resonant
node, produces a foliation on S3

1 which has two cycles close to each other
and linked with the index n > 2. All other leaves of the foliation are bi-
asymptotic to these cycles. This gives the complete topological description
for the bifurcation of complex topological type for passing through a Poincaré
resonance. The assertion remains true also for the Jordan node (linear or
not) with the ratio of eigenvalues equal to 1.

27D. Topological classification of linear complex flows in the Siegel
domain. As opposite to the Poincaré case, the topological classification of
holomorphic foliations generated by Siegel-type linear flows involves a num-
ber of continuous invariants. This means that in general an arbitrary small
variation of the linear system results in a topologically different holomorphic
foliation. This is a manifestation of the phenomenon known as rigidity .

Consider a hyperbolic linear vector field ẋ = Ax of Siegel type in
Cn, i.e., assume that the origin belongs to the convex hull of the eigen-
values λ1, . . . , λn of A; see §5A. The complex hyperbolicity in the sense
of Definition 27.7 implies that the matrix A can be assumed diagonal,
A = Λ = diag{λ1, . . . , λn}, and the origin is necessarily in the interior
of the convex hull conv{λ1, . . . , λn} ⊆ C. In particular, hyperbolic Siegel
systems exist only when n > 3.

Hyperbolicity means that the invariant axes (diagonalizing coordinates)
of the linear vector field can be ordered to meet the following condition:

ẋ = Λx, x ∈ Cn, Λ = diag{λ1, . . . , λn}, n > 3,

Imλj+1/λj < 0, j = 1, . . . , n, 0 ∈ conv{λ1, . . . , λn}. (27.10)

Here and everywhere below the enumeration of coordinates is cyclical mod-
ulo n, so that the assumption (27.10) includes the condition Imλn/λ1 < 0
as well. Denote by Φt = exp tΛ : Cn → Cn the complex flow of the linear
system ẋ = Λx and F the (singular) holomorphic foliation by phase curves
of this flow:

F = {Lx}x6=0, Lx = {Φt(x) : t ∈ C}.
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27. Topological classification of complex linear foliations 555

Definition 27.17. The (complex) periods of the linear system (27.10) are
the complex numbers Tj = 2πi/λj ∈ C, j = 1, . . . , n.

For a hyperbolic system, the ratios of periods are never real.

Definition 27.18. Two tuples of complex numbers T = (T1, . . . , Tn), and
T ′ = (T ′1, . . . , T

′
n) are called affine equivalent, if after an eventual rearrange-

ment, one of the following two equivalent conditions holds:

(1) The exists an R-linear map M : C→ C such that MTj = T ′j for all
j = 1, . . . , n,

(2) The rank of the (4× n)-matrix V whose columns are real 4-tuples
vj = (Re Tj , ImTj ,Re T ′j , ImT ′j) ∈ R4, is equal to 2.

The equivalence of the two conditions is immediate. If the rank of the
matrix V is equal to 2 and the nonzero 2× 2-minor occurs in the first two
columns v1, v2, then any other column vj , j > 2, can be represented as a
real combination αv1 + βv2, so that Tj = αT1 + βT2 and T ′j = αT ′1 + βT ′2
with the same α, β ∈ R. If M is an R-linear map taking T1 and T2 to T ′1
and T ′2, then it will automatically map all other complex numbers (planar
vectors) T3, . . . , Tn into T ′3, . . . , T

′
n respectively: MTj = M(αT1 + βT2) =

αT ′1 + βT ′2 = T ′j .

Conversely, if the there exists a map M mapping Tj into T ′j , then the
last two rows of V are linear combinations of the first two rows, so that the
rank of V is 6 2. The equality occurs under the hyperbolicity assumption.

Theorem 27.19 (N. Ladis [Lad77], C. Camacho–N. H. Kuiper–J. Palis
[CKP76, CKP78], Yu. Ilyashenko [Ily77]). Assume that the singular holo-
morphic foliations F, F′ generated by two hyperbolic linear systems of Siegel
type are topologically equivalent.

Then the collections of the complex periods T = (T1, . . . , Tn) and T ′ =
(T ′1, . . . , T

′
n) of the corresponding linear systems are affine equivalent : there

exists an affine map M : C→ C such that MTj = T ′j for all j = 1, . . . , n.

The proof of this theorem begins in §27E and occupies the rest of §27.
The inverse statement is straightforward.

Theorem 27.20. If two collections of periods for two diagonal linear sys-
tems are affine equivalent, the corresponding holomorphic singular foliations
on Cn are topologically equivalent.

Proof. Without loss of generality we may assume that the R-linear map M : C→ C tak-

ing the collection {λ−1
1 , . . . , λ−1

n } into {λ′1−1
, . . . , λ′n

−1}, is orientation-preserving. Oth-
erwise replace one of the foliations by its image by the total conjugacy (x1, . . . , xn) 7→
(x̄1, . . . , x̄n): the latter is generated by the linear system with the eigenvalues {λ̄1, . . . , λ̄n}
(note that the map λ 7→ λ̄ reverts the orientation).
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556 V. Global properties of complex polynomial foliations

Consider, following Proposition 6.46, the map hγ : C → C, x 7→ x |x|γ , γ ∈ C, ex-
tended as hγ(0) = 0 at the origin. If Re γ > −1, it is a homeomorphism of the complex
plane into itself, since

��|x|γ�� = |x|Re γ and therefore |hγ(x)| = |x|1+Re γ .

We are looking for a diagonal homeomorphism H of the form H(x) =
�
hγ1(x1), . . . ,

hγn(xn)
�

which would conjugate two linear holomorphic foliations with the diagonal ma-

trices Λ = diag{λ1, . . . , λn} and Λ′ = diag{λ′1, . . . , λ′n} as follows:

H ◦ exp tΛ = exp t′Λ′ ◦H, t′ = t′(t), (27.11)

where t 7→ t′(t) is a suitable R-affine map, and γ1, . . . , γn are appropriate complex para-
meters with Re γj > −1.

Since all maps H, Λ, Λ′ are diagonal, the condition (27.11) consists of n independent
“scalar” conditions,

hγj (z exp tλj) = hγj (z) exp t′λ′j , j = 1, . . . , n, (27.12)

which must hold identically for all z ∈ C and t; the affine map t 7→ t′ must be the same
for all j. Substituting the explicit formula for hγj , we obtain after cancellation of z |z|γj

the conditions
exp[λjt + γj Re(λjt)] = exp t′λ′j ,

which will all be satisfied once we solve the system of linear equations

λ′j
−1

[λjt + γj Re(λjt)] = t′, j = 1, . . . , n. (27.13)

Notice that any R-affine map has the form t 7→ t′ = at + bt̄ with uniquely determined
complex numbers a, b ∈ C. This map is orientation-preserving if and only if |a| > |b|.
Substituting these formulas into the equations (27.13), we obtain the system of equations

1
2
λ′j
−1

λj(2 + γj) = a, 1
2
λ′j
−1

λ̄jγj = b, j = 1, . . . , n.

The necessary and sufficient condition of solvability of these equations is obtained by
elimination of the variables γj as follows. First we transform the equations to the form

2 + γj = 2aλ′jλ
−1
j , γj = 2bλ′j λ̄

−1
j . (27.14)

Subtracting one equation from the other yields the identities 1 = λ′j(aλ−1
j − bλ̄−1

j ) which
in turn can be rewritten under the form

λ′j
−1

= aλ−1
j − bλ̄−1

j , j = 1, . . . , n. (27.15)

This solvability condition means affine equivalence of periods of the two systems in the
sense of Definition 27.18: the inverse eigenvalues are simultaneously conjugated by the
R-affine map M : w 7→ aw − bw̄.

Conversely, if there exist complex a, b satisfying all identities (27.15), then one can
resolve simultaneously all equations (27.14):

γj = 2b
λ′j
λ̄j

= 2a
λ′j
λj
− 2 = λ′j(aλ−1

j + bλ̄−1
j )− 1 =

aλ−1
j + bλ̄−1

j

aλ−1
j − bλ̄−1

j

− 1, (27.16)

(the last transformation uses (27.15)). The corresponding conjugacy Hγ =
�
hγ1(x1), . . . ,

hγn(xn)
�

satisfies (27.11). It remains to verify that H is a homeomorphism, i.e., Re γj >
−1.

The direct computation yields

Re γj + 1 = Re
aλ−1

j + bλ̄−1
j

aλ−1
j − bλ̄−1

j

=
|λj |−1|2(|a|2 − |b|2)
|aλ−1

j − bλ̄−1
j |2
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27. Topological classification of complex linear foliations 557

(it is sufficient and easier to compute for |λj | = 1). This expression is positive if the R-
linear map M is orientation-preserving; indeed, in this case |a| > |b|, and hence Re γj > −1
as required. ¤

Note that the sufficiency of affine equivalence of periods for topological
equivalence of foliations is independent of whether the system is in the Siegel
domain or not.

27E. Complex transition time and topology of linear hyperbolic
maps in C2. In this section we begin the proof of topological rigidity of
linear systems in the Siegel domain (Theorem 27.19)

As follows from Proposition 27.8, all nontrivial (other than separatrices)
solutions of the system (27.10) are simply connected. Therefore for each
leaf L ∈ F of the foliation, other than one of the separatrices, the complex
function

t(x, y) = t ⇐⇒ Φt(x) = y, x, y ∈ L (27.17)
is correctly defined on pairs of points of that leaf. We will refer to t(x, y)
as the (complex) transition time from x to y. This function is holomorphic:
indeed, |∂Φt(x)/∂t| 6= 0 on the leaf, so the implicit function theorem applies.

The transition time satisfies the obvious cocycle identity : for any n
points on the same leaf,

t(x1, x2) + · · ·+ t(xn−1, xn) + t(xn, x1) = 0, x1, . . . , xn ∈ L. (27.18)

The transition time depends continuously on the leaf unless it grows to
infinity. More accurately, if xm, ym are two sequences of points on simply
connected leaves Lm that converge to the limits x = limxm, y = lim ym,
then the transition times t(xm, ym) converge to a finite limit provided that
x and y belong to the same simply connected leaf L:

x, y ∈ L 6= Sj =⇒ lim
m→∞ t(xm, ym) = t(x, y).

Indeed, in this case there exists a curve γ ⊂ L connecting x with y. Trivi-
alizing the foliation near this curve, we see that xm can be connected by a
close curve γm with ym on Lm.

On the contrary, each separatrix Sj is a multiply-connected domain and
the flow Φt restricted on Sj , is Tj-periodic, Φt+Tj ≡ Φt for any t ∈ C (whence
the term “period”).

Consider the case n = 3 and denote by τj the standard cross-section
{xj = 1} ∼= C2 to the separatrix Sj = Cej , j = 1, 2, 3, equipped with the
coordinates (xj−1, xj+1) (recall that the enumeration of coordinates is cycli-
cal). Denote by ∆j the corresponding holonomy map along the separatrix :
because of the periodicity and the choice of the cross-sections,

∆j = ΦTj
∣∣
τj

, j = 1, 2, 3.
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558 V. Global properties of complex polynomial foliations

The operators ∆j are linear diagonal with the eigenvalues exp 2πi
λj±1

λj
.

Given the assumption (27.10), we have

| exp(2πiλj−1/λj)| < 1 < | exp(2πiλj+1/λj)|.
This is the (real) hyperbolicity condition from Definition 7.2

Denote by W±
j the corresponding stable and unstable subspaces in τj :

∆j is contracting on W−
j and expanding on W+

j for all j = 1, 2, 3; see
Fig. V.6.

This hyperbolic structure immediately implies the following lemma.

Lemma 27.21. If P = (1, 0, p) ∈ W−
1 , P ′ = (1, p′, 0) ∈ W+

1 are two points,
pp′ 6= 0, then one can find two converging sequences of points Pm → P and
P ′

m → P ′ in the cross-section τ1 such that ∆m
1 (Pm) = P ′

m. The number m
of iterates grows to infinity.

Proof. If µ and ν are the contracting and expanding eigenvalues of ∆1,
|µ| < 1 < |ν|, then the points

Pm = (1, ν−mp′, p), P ′
m = (1, p′, µmp),

obviously meet all requirements. ¤

Before proceeding with the formal proof of this theorem, we briefly dis-
cuss the differences which occur between the Poincaré and Siegel hyperbolic
cases as seen on the trace left by a linear foliation F on the unit sphere
S2n−1 ⊂ Cn. We will deal with the simplest case n = 3.

First, the transversality of F to S5 = {|x1|2 + |x2|2 + |x3|2 = 1} no
longer holds: if (ρ, T ) = 0 and ρ ∈ R3

+, then on the 3-torus T3 = {|xj | =
ρj} the leaves are tangent to the sphere. However, the coordinate axes
(separatrices) are transversal to S5 and leave their traces on this sphere as the
cycles C1, C2, C3 ⊂ S5. These cycles are hyperbolic, and their corresponding
invariant manifolds are 3-spheres S±j ∼= S3 for each j = 1, 2, 3: S+

j = S5 ∩
{xj−1 = 0}, S−j = S5 ∩ {xj+1 = 0}.

Here the similarity ends. First, the invariant manifolds do not intersect
transversally. Quite contrary, S+

j coincides with S−j+1 and all trajectories
inside this 3-sphere are bi-asymptotic to Cj and Cj+1. Behavior of the trace
foliation F on this sphere is of Poincaré type.

All other trajectories on S5 r {x1x2x3 = 0}, i.e., outside of the union
of all invariant manifolds, are closed. Indeed, if λ1, λ2, λ3 form a triangle,
then at least one of the absolute values | expλjt| tends to infinity as |t| → ∞
along any ray. By (27.8), the trace of any leaf L ∈ F on S5 is compact
(periodic). In particular, there are singular points of F|S5 .
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L31

e1 e2
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1
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W+1

W+2

W−2

e3

Figure V.6. Demonstration of Theorem 27.19: construction of the se-
quences P±m , Q±m, R±m

Thus we see that the trace of the foliation has singularities and nontrivial
recurrence on the sphere S5.

27F. Main construction. The proof of Theorem 27.19 for n = 3 is based
on construction of a sequence of leaves Lm of the foliation F that accumulate
to all three complex separatrices simultaneously as m →∞. It is the relative
portions of time spent near each separatrix, which constitute the continuous
invariant underlying Theorem 27.19. The traces of these leaves on the unit
sphere S5 will be very long but closed curves, that “spend most of their
length” near the separatrix cycles Cj .

Assume that n = 3 and the three eigenvalues λ1, λ2, λ3 form a triangle
on the complex plane, containing the origin in the interior. Then their
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560 V. Global properties of complex polynomial foliations

respective periods T = (T1, T2, T3) also form the triangle with the same
property.

There exists a unique positive vector ρ = (ρ1, ρ2, ρ3) ∈ R3
+, such that

0 = (ρ, T ) = ρ1T1 + ρ2T2 + ρ3T3, |ρ| = 1. (27.19)

Approximating the positive numbers ρi > 0 (27.19) by rational numbers
as in the proof of Proposition 5.2, we can construct a sequence of natural
vectors km = (k1,m, k2,m, k3,m) ∈ N3 such that

(km, T ) → 0,
km

|km| → ρ as m →∞. (27.20)

In the hyperbolic Siegel case |km| → +∞ implies km,j → +∞ for all j =
1, 2, 3.

Choose two arbitrary points P± ∈ W±
1 on the invariant subspaces in

the cross-section τ1 and let P±
m , m = 1, 2, . . . , be two sequences of points

satisfying the condition

t(P−
m , P+

m) = km,1, lim
m→∞P±

m = P±.

Existence of such a sequence is asserted by Lemma 27.21.
The leaf L12 ∈ F passing through P+ belongs to the invariant plane

x3 = 0 and intersects (transversally) the cross-section τ2 at some point Q−

belonging to the ∆2-invariant subspace W−
2 . By transversality arguments

and continuity of the transition time along the leaf L12, all nearby leaves
Lm passing through P+

m , cross τ2 at some points Q−
m that converge to Q−

so that the transition time between P+
m and Q−

m has a limit as m → +∞,
denoted by T12:

lim
m→∞ t(P+

m , Q−
m) = t(P+, Q−) = T12.

In the same way we can construct a sequence of points R+
m ∈ τ3 converging

to R+ ∈ W+
3 such that P−, R+ belong to the same leaf of F denoted by L31,

and t(R+
m, P−

m) has a limit,

lim
m→∞ t(R+

m, P−
m) = t(R+, P−) = T31.

Now we construct two remaining sequences, R−
m ∈ τ3 and Q+

m ∈ τ2, as
follows:

R+
m = ∆km,3

3 (R−
m), Q+

m = ∆km,2

2 (Q−
m)

(more accurately, R−
m should be defined starting from R+

m that were already
constructed, iterating the inverse of the holonomy map, R−

m = ∆−km,3

3 (R+
m)).
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27. Topological classification of complex linear foliations 561

In contrast with the previous steps of the construction, convergence of
the sequences R−

m, Q+
m to some limits R−, Q+ that belong to the respec-

tive subspaces W−
3 ,W+

2 requires verification. Computation of the following
lemma is a central step of the entire construction.

Lemma 27.22. In the above settings, the sequences of points R−
m and Q+

m

converge,

lim
m→∞R−

m = R− ∈ W−
3 , lim

m→∞Q+
m = Q+ ∈ W+

2 .

The limit points Q+ and R− belong to the same leaf L23 ∈ F, and the
transition time t(Q+, R−) = T23 satisfies the cocyclic identity

T12 + T23 + T31 = 0. (27.21)

Proof. The proof of convergence is nearly identical for the two sequences.
By construction, Q+

m ∈ τ2, so the second coordinate is identically 1 along
this sequence. Next, since the first coordinate is contracting by iterations
of ∆2 and km,2 → ∞, from the definition Q+

m = ∆km,2(Q−
m) it follows that

the first coordinate of the points Q+
m tends to zero. It remains to show only

that the third coordinate has nonzero limit.
By construction of the points and taking into account the condition

(27.20), we have

t(P−
m , Q+

m) = km,1T1 + t(P+
m , Q−

m) + km,2T2 = −km,3T3 + T12 + o(1).

Since the third coordinate x3(t) = x3(0) expλ3t is T3-periodic along any
solution x(t) = (x1(t), x2(t), x3(t)), we conclude that the third coordinate
tends to the nonzero limit equal to [expλ3T12]p, where p is the third coor-
dinate of the point P− = (1, 0, p).

The proof of the second limit is completely similar. For exactly the
same reasons, the only coordinate whose convergence requires a proof, is the
second coordinate x2 that is T2-periodic on leaves of F. By construction, we
have

t(P+
m , R−

m) = −km,1T1 − T31 − km,3T3 + o(1) = km,2T2 − T31 + o(1),

and the limit exists: x2(R−
m) → [exp(−λ2T31)] p′, where p′ is the second

coordinate of the point P+ = (1, p′, 0).
It remains to show that the points R− and Q+ belong to the same leaf

of F. This again follows from the same computation:

t(Q+
m, R−

m) = (km,T )− (T12 + T31) + o(1).

By uniform continuity of the flow Φt(x) in x for all bounded values of t, the
points R− and Q+ belong to the same leaf of F. The identity (27.21) follows
from (27.20). ¤
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562 V. Global properties of complex polynomial foliations

Remark 27.23. The construction depends on the initial choice of the two
points P± as the parameters. A simple inspection shows that if these points
are chosen sufficiently close to e1, then the points Q± and R± will be arbi-
trarily close to e2 and e3 respectively.

27G. Topological functoriality of the main construction and the
proof of Theorem 27.19. Consider two complex hyperbolic linear flows
of Siegel type in C3 and denote the corresponding holomorphic singular
foliations by F and F′ respectively. Let T = (T1, T2, T3) and T ′ = (T ′1, T

′
2, T

′
3)

be the corresponding periods.
Assume that H : C3 → C3 is a homeomorphism conjugating the folia-

tions. By Proposition 27.8 the complex separatrices are uniquely character-
ized by being multiply-connected, hence H must map coordinate axes into
coordinate axes. Without loss of generality we may assume that H(ej) = ej ,
where ej , j = 1, 2, 3, are the three unit vectors in C3.

The construction described in §27F associates with the three positive
real numbers ρ = (ρ1, ρ2, ρ3) satisfying the condition (27.19), a sequence of
leaves Lm ∈ Fm that accumulate to the union of three separatrices S1, S2, S3

and the three “heteroclinic” leaves L12, L23, L31. More precisely, each leaf
Lm carries six points P±

m , Q±
m, R±

m each converging as m → ∞ to the re-
spective limits P±, Q±, R±, in such a way that the transition times are as
follows (see Fig. V.7),

t(P−
m , P+

m) = km,1T1,

t(Q−
m, Q+

m) = km,2T2,

t(R−
m, R+

m) = km,3T3,

t(P+
m , Q−

m) = t(P+, Q−) + o(1),

t(Q+
m, R−

m) = t(Q+, R−) + o(1),

t(R+
m, P−

m) = t(R+, P−) + o(1).

(27.22)

Denote by L′m the images of the leaves L′m = H(Lm). Let τ ′j , j = 1, 2, 3
be three standard cross-sections to the separatrices S′j of the second foliation
F′. (Note that τ ′j coincide with τj if we identify the phase spaces of the
two foliations F,F′). The homeomorphism H in general does not map the
cross-sections τj to τ ′j , but in any case the images H(τ ′j) are “topologically
transversal” to the separatrices S′j : each nearby local leaf of F′ in a small
neighborhood of ej intersects H(τj) only once. This allows us to define the
local holonomy correspondences hj : (H(τj), ej) → (τ ′j , ej) between the two
cross-sections, at least in sufficiently small neighborhoods of the points ej .
They are local homeomorphisms.

Consider the following six points on the leaves L′m,

P̃±
m = h1 ◦H(P±

m) ∈ τ ′1,

Q̃±
m = h2 ◦H(Q±

m) ∈ τ ′2,

R̃±
m = h3 ◦H(R±

m) ∈ τ ′3.

(27.23)
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27. Topological classification of complex linear foliations 563

All these sequences are converging, since hj ◦ H : τj → τ ′j are homeomor-
phisms and the preimages were converging by construction. Denote by
P̃±, Q̃±, R̃± their respective limits.

Let t′(·, ·) be the transition time function defined on pairs of points on
the same leaf of the second foliation F′ via the flow of the vector field ẋ = Λ′x
generating F′.

Lemma 27.24.

t′(P̃−
m , P̃+

m) = km,1T
′
1,

t′(Q̃−
m, Q̃+

m) = km,2T
′
2,

t′(R̃−
m, R̃+

m) = km,3T
′
3,

t′(P̃+
m , Q̃−

m) = t′(P̃+, Q̃−) + o(1),

t′(Q̃+
m, R̃−

m) = t′(Q̃+, R̃−) + o(1),

t′(R̃+
m, P̃−

m) = t′(R̃+, P̃−) + o(1).

(27.24)

Proof. The three left equalities follow from the fact that hj ◦H conjugates
the holonomy ∆j of the foliation F on the cross-section τj , with the holonomy
∆′

j of the foliation F′ on the cross-section τ ′j . To obtain P+
m from P−

m , one
has to iterate km,1 times the map ∆1, therefore P̃+

m = (∆′
j)

km,2(P̃−
m). Since

t′(x,∆′
j(x)) = T ′1, we conclude that t′(P̃−

m , P̃+
m) = km,1T

′
1. The other three

equalities are completely similar.
To prove the remaining three limits, we note that the limit points, say,

P̃+ and Q̃− belong to the same leaf L′12 = H(L12), again by continuity of H.
Therefore t′(P̃+, Q̃−) is the finite limit of t′(P̃+

m , Q̃−
m) as m →∞. The other

two transition times t′(Q̃+
m, R̃−

m), t′(R̃+
m, P̃−

m) have finite limits in exactly the
same way. ¤

Proof of Theorem 27.19 for n = 3. The cocycle identity

t′(P̃−
m , P̃+

m) + t′(P̃+
m , Q̃−

m) + t′(Q̃−
m, Q̃+

m) + t′(Q̃+
m, R̃−

m)

+ t′(R̃−
m, R̃+

m) + t′(R̃+
m, P̃−

m) = 0

together with (27.24) implies that

(km, T ′) = O(1), as m →∞.

Dividing this identity by |km| → ∞ yields in the limit the equality

(ρ, T ′) = 0, ρ = (ρ1, ρ2, ρ3) ∈ R+
3 .

In other words, the positive vector ρ ∈ R3
+ satisfying the condition (ρ, T ) =

0, satisfies also the condition (ρ, T ′) = 0.
Thus the system of four linear equations (over R), equivalent to the two

complex equalities,
(ρ, T ) = 0, (ρ, T ′) = 0, (27.25)
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Figure V.7. Demonstration of Theorem 27.19: topological functoriality

has a nontrivial solution. This means that the rank of its coefficient matrix
is 2. By Definition 27.18 (2), the two collections of periods T and T ′ are
affine equivalent. ¤

Remark 27.25. The three-dimensional construction used in the above
proof, in fact implies some multidimensional corollaries. Consider two linear
hyperbolic Siegel-type systems in Cn, n > 3, with the complex periods T
and T ′ respectively, which are topologically orbitally equivalent (i.e., the
corresponding foliations F and F′ are topologically equivalent). By Propo-
sition 27.8, without loss of generality (changing the enumeration of coordi-
nates if necessary) we may assume that the conjugating homeomorphism H
sends the complex separatrices Sj (the coordinate axes) to the separatrices
S′j for all j = 1, . . . , n.

Assume that the first three eigenvalues λ1, λ2, λ3 ∈ C of the first system
already form a triangle containing the origin strictly inside. Then the re-
spective triplets of periods (T1, T2, T3) and (T ′1, T

′
2, T

′
3) are affine equivalent

in the sense of Definition 27.18.
Indeed, the coordinate plane C3 spanned by the first three coordinates

in Cn, is invariant by the complex flow of the first system hence, the con-
struction of the leaves Lm ⊂ C3 can be carried out without any changes.
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27. Topological classification of complex linear foliations 565

On the other hand, the three-dimensional proof of Theorem 27.19 does not
use the fact that the images L′m = H(Lm) belong to any coordinate sub-
space invariant for the second system: the only fact required for the proof is
accumulation of the leaves L′m to the three complex separatrices S′1, S

′
2, S

′
3

of the second system. The conclusion on affine equivalence of the respective
periods obviously holds in this case.

One may be tempted to prove Theorem 27.19 for n > 3 by studying
all 3-dimensional (invariant) coordinate planes the restriction on which is of
Siegel type, based on the above Remark. However, the accurate proof goes
along slightly different lines.

First we make some simple topological observations. It was already
noted that the coordinate axes of a diagonal hyperbolic linear system are
topologically distinguished from other leaves. On the other hand, not every
(invariant) coordinate subspace is topologically distinguished: homeomor-
phisms conjugating two Siegel foliations may not map them into the corre-
sponding subspaces of other foliations. Yet some coordinate subspaces are
topologically distinguished.

If λ1, . . . , λn ∈ C is a point set, its element is called a corner point if it
can be separated from the rest of the set by a real line.

Lemma 27.26. Assume that two diagonal hyperbolic linear systems in the
same space Cn are topologically conjugated by a homeomorphism H preserv-
ing the coordinate axes (separatrices).

If λn is a corner point of the spectrum of the first system, then H maps
the coordinate hyperplane Cn−1 = {xn = 0} ⊂ Cn into itself.

Proof. The coordinate hyperplane {xn = 0} is distinguished by the follow-
ing topological description: all leaves not belonging to this plane, accumulate
to nonsingular points on the complex separatrix Sn = Cen. By our assump-
tion on the enumeration of the coordinates, the separatrices Sn and S′n are
H-related, hence their “complementary” hyperplanes are also H-related. ¤

Proof of Theorem 27.19 for any n > 3. The proof goes by induction in
n. The basis at n = 3 is already established.

Consider a hyperbolic Siegel-type linear system in Cn+1 with the spec-
trum λ1, . . . , λn+1 containing the origin strictly inside its convex hull. As
before, we can assume without loss of generality that the system is diagonal,
so any coordinate subspace of any (complex) dimension between 1 and n is
invariant.

Assume that the enumeration of the axes is so chosen that 0 is inside the
convex hull conv(λ1, . . . , λn), while the last remaining eigenvalue λn+1 is a
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566 V. Global properties of complex polynomial foliations

corner point. Elementary geometric considerations show that this is always
possible.

By Lemma 27.26, the invariant hyperplane {xn+1 = 0} ⊂ Cn+1 is topo-
logically invariant: any homeomorphism H between F and another such
foliation F′ defined by a diagonal hyperbolic linear system, necessarily con-
jugates the restrictions of these foliations on the respective hyperplanes
{xn+1 = 0} and {x′n+1 = 0}.

By the inductive assumption, the truncated collections of the periods
(T1, . . . , Tn) and (T ′1, . . . , T

′
n) are affine equivalent: there exists an R-linear

map M of C into itself, taking one collection into the other.
To show that this map takes the last period Tn+1 into T ′n+1, notice

that for elementary reasons at least one of the triangles conv(λn+1, λj , λk),
1 6 j 6= k 6 n, also contains the origin in its interior (the union of these
triangles contains the convex hull of all n+1 eigenvalues). By Remark 27.25,
the triplets (Tn+1, Tj , Tk) and (T ′n+1, T

′
j , T

′
k) are affine equivalent by an R-

linear map M ′ : C→ C. But since Tj/Tk /∈ R, there exists only one R-linear
map M = M ′ that takes (Tj , Tk) into (T ′j , T

′
k), which therefore automatically

maps the complete collection T into T ′. ¤
27H. Further results: topological equivalence of linear Siegel-type foliations
with Jordan blocks. If the matrix A of Siegel type is nondiagonalizable and “otherwise”
hyperbolic (i.e., if the ratio of any two eigenvalues is nonreal unless they are equal and
occur in the same Jordan block), then the topological classification of the corresponding
holomorphic foliations is even more rigid, as was discovered by L. Ortiz Bobadilla [OB96].

As before, the key result is low-dimensional. Consider the class of linear systems in C4

whose matrices have one (2 × 2)-block with the eigenvalue λ1, and two other eigenvalues
λ2, λ3 are such that the triangle λ1, λ2, λ3 contains the origin in the interior.

Two foliations F and F′ generated by systems of this class, are topologically equivalent
if the two corresponding tuples of eigenvalues are proportional over C, i.e., if

λ = cλ′, λ = (λ1, λ2, λ3), λ′ = (λ′1, λ
′
2, λ

′
3), 0 6= c ∈ C. (27.26)

The topological equivalence H in this case can be made linear, of the form x 7→ Cx.
Indeed, from the proportionality of the eigenvalues (27.26) and identical Jordan structure
it follows that one can find a linear transformation such that the matrices A and CA′C−1

would differ only by the scalar multiple c. But the leaves of two foliations F and F′ defined
by the proportional matrices, simply coincide.

It turns out that this is the only case where foliations of the considered class are topo-
logically equivalent. In other words, the following result asserts the maximal topological
rigidity of Siegel type foliations having Jordan blocks.

Theorem 27.27 (see [OB96]). Two holomorphic foliations generated by Siegel-type linear
vector fields in C4 having one Jordan block and hyperbolic otherwise, are topologically
equivalent if and only if their eigenvalues are proportional over C, in which case they are
linear equivalent.

Returning to the (truly) hyperbolic hence diagonalizable case, one may ask whether
the study of holomorphic foliations generated by nonlinear vector fields, brings any new
phenomena. In a surprising way, the answer is negative, as was established by M. Chaperon
[Cha86] who proved the following complex analog of the Grobman–Hartman theorem.
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28. Generic properties of polynomial foliations 567

Theorem 27.28 (M. Chaperon [Cha86]). If the spectrum of a matrix A is hyperbolic
and Siegel-type, then the singular holomorphic foliation by solutions of any nonlinear holo-
morphic vector field ẋ = A(x) + · · · , is topologically linearizable (topologically equivalent
to the foliation F′ by solutions of the linearized field ẋ = Ax).

The complete proofs of these results go beyond the scope of this book, though all the
main tools required for the proof of, say, Theorem 27.27, were already described in this
section.

28. Global properties of generic polynomial foliations of the
complex projective plane P2

In this section, largely based on the article [Ily78], we consider polynomial
singular holomorphic foliations on P2 having an invariant line, and their
generic properties. These properties are in a stark contrast with the prop-
erties of real polynomial foliations on RP 2. After describing the precise
meaning of the word “generic”, we will prove the following results, reduced
for clarity into a table (Table V.1).

Complex holomorphic foliations
from the class Ar, r > 2

Real polynomial foliations on
the Poincaré sphere

Leaves of a generic foliation are
everywhere dense in P2 (except for
the invariant line)

Leaves of a generic foliation can
accumulate only to limit cycles
and singular points

Foliations generically have infinite
number of “complex limit cycles”
(defined later)

Foliations generically have only fi-
nitely many limit cycles

Generic foliations are rigid (do
not admit nontrivial homeomor-
phisms conjugating them with nearby
foliations)

Generic foliations are structurally
stable (all nearby foliations have
the same topological type)

Table V.1. Comparison between generic properties of complex holo-
morphic foliations of P2 and real foliations of the 2-sphere.

The principal genericity assumption behind these results is existence of
a separatrix with sufficiently rich holonomy group. This separatrix is the
invariant line at infinity, which occurs generically in the class Ar. Investi-
gation of the holonomy group, a finitely generated subgroup of Diff(C, 0)
and dynamics of its orbits, is the main tool in establishing the properties
summarized in Table V.1.
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568 V. Global properties of complex polynomial foliations

Recently a parallel theory was developed for generic singular analytic
(nonpolynomial) foliations on C2 [Fir06, GK06].

28A. Foliations of the class A′
r: holonomy at infinity. In Defini-

tion 25.49 we have introduced the class (denoted by A′
r) of polynomial fo-

liations on P2 tangent to the infinite line I ⊂ P2 and having exactly r + 1
singular points on I. This class constitutes a Zariski open subset of the cor-
responding projective space Ar of foliations which in the fixed affine neigh-
borhood C2 ⊂ P2 are defined by a polynomial vector field or a polynomial
1-form of degree 6 r and isolated singularities.

Choose two nonsingular points on I and consider an affine chart C ⊂ I
in which these points correspond to the origin and infinity respectively. The
fundamental group of the punctured infinite leaf I r Σ, Σ = Sing(F), for
foliations from the class A′

r is generated by a system of r+1 canonical loops
γi around the singular points zi (Definition 18.1). With each loop γi ⊆ IrΣ
in the standard way the holomorphic holonomy germ ∆i = ∆γi ∈ Diff(C, 0)
is associated.

Definition 28.1. The holonomy group at infinity, or simply the holonomy
group of a foliation F ∈ A′

r is the subgroup G ⊆ Diff(C, 0) generated by the
germs ∆0, . . . ,∆r.

This group is obviously an invariant of the foliation in the following
sense.

Proposition 28.2. If two polynomial foliations F, F′ ∈ Ar are conjugated
by a homeomorphism, diffeomorphism or biholomorphism H : P2 → P2 pre-
serving the infinite line I, than the corresponding holonomy groups G,G′ are
conjugated in the following sense.

There exist two collections of generators f0, . . . , fr ∈ G, f ′0, . . . , f
′
r ∈ G′

of these two groups and a homeomorphism (resp., diffeomorphism, biholo-
morphism) h : (C, 0) → (C, 0) such that

fi ◦ h = h ◦ f ′i , i = 0, . . . , r.

Proof. Let γ1, . . . , γn be any collection of loops generating the fundamental
group π1(I r Sing F, a), and fj = ∆γj the corresponding holonomy germs.
Then the images γ′j = H(γj) are the loops generating the fundamental group
π1(I r Sing F′, a′), a′ = H(a). Denote by h the restriction of H on a cross-
section τa to I at a: h can be considered as a homeomorphism between
two analytic cross-sections τa and τa′ , a′ = H(a) (the image H(τa) can be
homeomorphically identified with τa′ by projection along local leaves of F′).
Then the homeomorphism h conjugates fj with the corresponding holonomy
germs f ′j = ∆′

γ′j
. ¤
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28. Generic properties of polynomial foliations 569

Remark 28.3. One set of generators (say, for the group G) can be chosen
as the holonomy operators of the canonical loops (see Definition 18.1), fi =
∆i. However, the generators f ′i of the second group in this case will be
holonomy germs corresponding to the loops γ′j = H(γi) which in general do
not form a canonical system and even are not isotopic to a canonical system.
This observation will play an important role in the discussion of rigidity of
foliations.

Remark 28.4. By Theorem 25.56, a generic foliation from the class Ar has
a single topologically uniquely defined algebraic separatrix, hence for most
pairs of foliations the additional assumption that H preserves the infinite
line, may be dropped.

Example 28.5 (Homogeneous vector fields on the plane). Assume that
the 1-form ω = p dx + q dy defining the foliation F in affine coordinates,
is homogeneous: both p(x, y) and q(x, y) are homogeneous polynomials of
degree r in (x, y).

Then from the computations (25.2) it follows that in the coordinates
u = 1/x, z = y/x the foliation is defined by a rational 1-form ω′ with
separated variables,

ω′ =
du

u
−R(z) dz, R(z) =

r∑

0

λi

z − zi
∈ C(z), (28.1)

with a rational function R(z) having simple poles exactly at the singularities
z0, . . . , zr of Σ ∩ I. The complex numbers λ0, . . . , λr are the characteristic
exponents, cf. with (25.6).

The Pfaffian differential equation ω′ = 0 is linear with respect to the
variable u and can be hence explicitly integrated: in particular, the mon-
odromy (holonomy) operator corresponding to the path γi, is a linear map
∆i : u 7→ µiu, where µi = exp 2πiλi, i = 0, . . . , r.

Thus the whole holonomy group for a homogeneous foliation is a sub-
group of the commutative (multiplicative) group C∗ of linear invertible maps
C→ C.

This description allows us to describe behavior of leaves of a generic
homogeneous foliation: by Example 6.39 all noninfinite leaves of a generic
homogeneous foliation are dense in C2.

Example 28.6. The holonomy group of a generic Hamiltonian foliation
F ∈ Ar is generated by commuting cyclical elements of order r + 1, since
this foliation has a meromorphic first integral u−(r+1)

(
hr(v) + O(u)

)
near

the infinite line I = {u = 0} (Exercise 11.11).
Thus all points are cycles for the holonomy (pseudo)group as they were

defined in Definition 6.32, but none of them is a limit cycle.
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570 V. Global properties of complex polynomial foliations

The holonomy group of a homogeneous foliation from Example 28.5 is
linear, hence commutative, and consequently all points are cycles. The same
assertion applies to Darboux integrable foliations discussed in §25G.

In §6D–§6I we established the properties of density, countable number
of limit cycles and rigidity for finitely generated groups of conformal germs.
This section deals with translating these properties into the parallel proper-
ties of polynomial foliations as they appear in Table V.1, using the holonomy
at infinity. Yet this translation is by no means trivial.

Theorems from this section are proved under different but repeating
genericity assumptions. For the reader’s convenience we label them by
mnemonic labels explained in the footnotes.

28B. Density of leaves for polynomial foliations. The density of or-
bits of the holonomy (pseudo)group is the easiest to translate into the density
of leaves of a foliation. Recall that the characteristic number (or charac-
teristic exponent) of a singular point is the ratio of the eigenvalues of its
linearization; it is well defined as an element of C∗ modulo passing to the
reciprocal.

Theorem 28.7. Assume that a foliation F from the class A′
r satisfies the

following two conditions8:

(H) F has only complex hyperbolic singularities on the infinite line (the
characteristic numbers are nonreal), and

(D) the holonomy group meets the density condition (6.17).

Then each leaf of F is either algebraic or dense in P2.

Since a generic foliation from the class Ar satisfies all assumptions of
this theorem and in addition has no algebraic leaves by Theorem 25.56, we
immediately have the following corollary.

Corollary 28.8. A generic foliation from Ar has all leaves dense in C2.

The proof of Theorem 28.7 is based on the fact that any leaf of a poly-
nomial foliation on P2 must have points accumulating to infinity. Then one
can derive the density of leaves near infinity from the density of orbits of
the holonomy pseudogroup.

Lemma 28.9. Any leaf L of an arbitrary polynomial foliation on P2 must
accumulate to the infinite line: L ∩ I 6= ∅.

Proof of the lemma. The leaf L of a foliation defined by the Pfaffian
equation p(x, y) dx + q(x, y) dy = 0 in the affine plane can be represented

8(H) stands for hyperbolicity, (D) for density.
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28. Generic properties of polynomial foliations 571

as the graph of a multivalued function y = ϕ(x) which has ramification
points only when intersecting an algebraic curve {q(x, y) = 0}. These inter-
sections and their projections on the x-plane (ramification points) form at
most countable sets, hence there exists a ray R = {x = x0 + tv : t ∈ R+},
v ∈ C∗ free from the ramification points and projections of singularities of
F.

The function ϕ(x) can be continued analytically along the ray R.
Consider the maximal interval [x0, x0 + t0v) on which this continuation
is possible. From the local rectification theorem it follows that either
limt→t−0

ϕ(x0 + tv) = ∞, or t0 = +∞ itself. In both cases the leaf L accu-
mulates to some point on the infinite line. ¤

In the assumptions of Theorem 28.7 we can describe the intersection
L ∩ I.
Lemma 28.10. If all singular points of the foliation F on the infinite line
are complex hyperbolic, then each leaf of F is either algebraic, or contains
the entire infinite line in its closure, I ⊂ L.

Proof. If L ∩ I contains a nonsingular point a of the infinite line, then it
contains the entire line as well. Indeed, let b ∈ I r Sing(F) be any other
nonsingular point. Choose any two cross-sections τa, τb to I respectively. By
assumption, the intersections between L and τa contain an infinite sequence
converging to a. The holonomy map ∆a,b along an arbitrary path in I r
Sing(F) connecting a with b maps these points into an infinite sequence
converging to b. By construction, all points of this sequence belong to L.

The only other remaining possibility is that the intersection L∩I consists
of only singular points of F. We show that in this case the leaf L is (a part
of) an algebraic curve.

First, we note that in the assumptions of the theorem, all singular points
a0, . . . , ar ∈ Sing(F)∩ I on the infinite line are linearizable complex saddles.
Each saddle has exactly two local separatrices, one of them on the infinite
line, another, denoted by Si, is transversal to it. We claim that locally near
each point ai the leaf L must coincide with the separatrix Si. Indeed, all
other local leaves of the linear foliation intersect a close cross-section to the
second local separatrix belonging to I. Yet the orbit of the corresponding
intersection point by the linear holonomy map z 7→ (exp 2πiλ)z (associated
with a small loop around ai on I) accumulates to the infinite line (recall
that by our assumptions λ /∈ R, hence the holonomy map is hyperbolic).
But this accumulation contradicts the choice of L. Thus the leaf L locally
coincides with Si.
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572 V. Global properties of complex polynomial foliations

Consider an affine chart (x, y) on C2 ⊂ P2 chosen so that the vertical
direction is nonsingular for F (the point [0 : 1 : 0] ∈ I at infinity is non-
singular). In this chart the separatrices Si are graphs of analytic functions
y = ϕi(x) which are well defined, holomorphic and growing no faster than
linear, |ϕi(x)| = O(|x|) for |x| sufficiently large. Since L is the leaf of a
foliation F hence a holomorphic nonvertical curve, the total number of in-
tersections between L and any vertical line `c = {x = c}, counted with their
multiplicities, remains locally the same for all lines not passing through fi-
nite singularities of F. This allows us to continue the symmetric functions
σ1(x) = ϕ0(x) + · · · + ϕr(x), . . . , σr+1(x) = ϕ0(x) · · ·ϕr(x) of the intersec-
tion set L ∩ `x = {ϕ0(x), . . . , ϕr(x)} as well-defined functions, holomorphic
and bounded outside the finite set of x-coordinates of the singularities of F.
By construction, σj(x) grows no faster than O(|x|j) as |x| → ∞. Therefore
the expression

∏r
j=0

(
y − ϕj(x)

)
is in fact a polynomial of degree 6 r + 1 in

x, y, and L is an algebraic curve of degree 6 r + 1. ¤

Proof of Theorem 28.7. We prove that in the assumptions of the theo-
rem the closure of any nonalgebraic leaf L contains an arbitrary finite point
a ∈ C2 (for points on the infinite line the inclusion a ∈ L follows from
Lemma 28.10).

By Corollary 25.35, if a foliation F has a nonalgebraic leaf L, then almost
all leaves of F are in fact nonalgebraic. Hence through a point a′ arbitrarily
close to a passes a nonalgebraic leaf L′ that accumulates to one (hence to
all) nonsingular points of the infinite line in the same way that the initial
nonalgebraic leaf L does (Lemma 28.10).

By Corollary 6.40, under the density assumption (6.17) the closures of L
and L′ both contain some common neighborhood of the infinite line. Thus
the leaf L′ intersects the closure L and therefore a′ ∈ L. Since a′ can be
chosen arbitrarily close to a, we conclude that a ∈ L as well. ¤

28C. Infinite number of complex limit cycles. In this subsection we
derive from Theorem 6.41 (on abundance of limit cycles for the holonomy
pseudogroup) the assertion on abundance of complex limit cycles for generic
polynomial foliations. Theorem 6.41 implies that leaves of a generic foliation
from the class Ar carry an infinite number of closed loops (“real cycles”).
The problem is to show that these cycles are homologically independent even
if they accidentally happen to belong to the same leaf; cf. with Remark 6.42.

Definition 28.11. A complex cycle of a holomorphic foliation F is a free
homotopy class [γ] of real cycles (oriented closed loops) representing a loop
γ on a leaf L.

A complex limit cycle is a free homotopy class of a complex cycle with
a nonidentical associated holonomy map ∆γ .
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28. Generic properties of polynomial foliations 573

This definition obviously matches that of a complex limit cycle for a
pseudogroup (Definition 6.32). On the other hand, it obviously extends
the definition of a (real) limit cycle for real analytic vector fields (Defini-
tion 9.11). Note that the limit cycles cannot be contractible on the respective
leaves, otherwise their holonomy must be trivial (see also Problem 28.1).

Since a leaf of a holomorphic foliation can carry many (even infinitely
many) nonhomotopic closed loops, we will impose a stronger condition to
distinguish between “truly different” complex limit cycles.

Definition 28.12. A collection of complex limit cycles γ1, . . . , γk, . . . of a
foliation F is called homologically independent, if for any leaf L the cycles
that belong to this leaf are homologically independent on L, i.e., no non-
trivial integer combination

∑
γk⊆L

ckγk, ck ∈ Z, is homologous to zero on L.

The main result of this subsection asserts that generically a polynomial
foliation from the class Ar on P2 has infinitely many homologically indepen-
dent complex limit cycles.

Consider a foliation from the class A′
r and its linearization along the

infinite line, which in the suitable coordinates (z, w) is defined by the linear
equation; cf. with (28.1).

dw

w
=

r∑

k=0

λk dz

z − zk
. (28.2)

Choose a nonsingular point (the origin in the chart chosen as in §28A) and
the loops γ0, . . . , γr on the z-plane, which begin and end at this point while
encircling the respective singularity zk. With each such loop we associate
the complex number

Ik =
1

e−4πiλk − 1

∫

γk

dz

w2
, k = 1, . . . , r, (28.3)

where the integral is computed using the branch of the multivalued function
w = w(z) obtained by continuation along z ∈ µk of the solution of (28.2)
with the initial value w(0) = 1.

Theorem 28.13. Assume that a foliation F from the class A′
r satisfies the

following two conditions9,

(NC) the holonomy group at infinity G is noncommutative, and
(D) G meets the density condition (6.17).

If in these assumptions the integrals (28.3) satisfy the inequalities Ij 6=
±Ik for all j 6= k, then the foliation F has infinitely many homologically
independent complex limit cycles.

9(NC) stands for noncommutativity.
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574 V. Global properties of complex polynomial foliations

Proof. Theorem 6.41 immediately implies existence of infinitely many limit
cycles, so it remains only to show that one can choose infinitely many of these
cycles that would be homologically independent; cf. with Remark 6.42.

More precisely, consider the holonomy pseudogroup Γ of the foliation
F, associated with the cross-section at the point {z = 0}. This group is
generated by the maps f±k = (∆±1

k , Uk, γ
±1
k ), k = 0, . . . , r, where ∆k are the

holonomy maps along the loops γk and Uk coincide with a fixed small disk
Dε = {|w| < ε}. The whole pseudogroup consists of the triples (fα, Uα, γα),
where γα ∈ π1(I r Σ, 0) is a closed loop on the infinite leaf of F, fα is the
holonomy map associated with the loop γα and Uα the natural domain of fα

such that for any point w ∈ Uα the lift of the path γ on the leaf of F passing
through (0, w) remains in the specified tubular ε-neighborhood of infinity.

By Theorem 6.41 for an arbitrary small ρ > 0 there exists a point wρ with
|wρ| < ρ and an element fρ ∈ Γ of the pseudogroup, such that fρ(wρ) = wρ.
By construction, this means that the lift of the corresponding loop γρ on
the leaf Lρ passing through the point (0, wρ), is a closed loop `ρ on this leaf.
Choosing a sequence of positive values ρm converging to zero sufficiently
fast, we can guarantee that the cycles `ρm are pairwise disjoint.

We need to show that the freedom in constructing the maps fρ ∈ Γ can
be used to guarantee that the cycles `ρ are homologically independent. This
will be achieved by choosing these maps so that the integrals of the rational
1-form ω = dz/w2 along the cycles `ρ tend to infinity.

Recall that the elements fρ in the proof of Theorem 6.41 were con-
structed as follows. First, a hyperbolic generator, say, f1 = f , was chosen;
without loss of generality it can be assumed to be contracting with the
multiplicator ν, |ν| < 1. Second, another expanding hyperbolic genera-
tor, say, f2 = g, with the multiplicator µ, |µ| > 1 is chosen so that the
multiplicative subgroup 〈ν, µ〉 ⊂ C∗ is dense. Finally, a third element h,
essentially nonlinear (in the linearizing chart for f) tangent to the identity
is selected. Then for any w′ρ 6= 0 arbitrarily close to the origin the coefficient
cρ = h(w′ρ)/w′ρ ≈ 1 of the linear map w 7→ cρw, is approximated by ratios
µjνk, k, j → +∞, and the element fρ is constructed under the form of the
composition

fρ,j,k,n = h−1f−ngjfn+k, as j, k, n → +∞, µjνk → cρ ≈ 1. (28.4)

This composition has an isolated fixed point wρ near w′ρ: |wρ| < ρ, and
wρ tends to w′ρ in the limit as j, k, n tend to infinity. Clearly, since all
contracting maps are collected first, this composition is well defined in the
pseudogroup.
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28. Generic properties of polynomial foliations 575

Let `ρ,j,k,n be the lift of the loop associated with the composition (28.4),
on the leaf of the foliation F passing through the point wρ. We claim that in
the assumptions of the theorem, integrals of the form ω over `ρ,j,k,n diverge10.

Lemma 28.14.
lim

ρ→0+, j,k,n→∞

∮

`ρ,j,k,l

dz

w2
= ∞. (28.5)

Assuming that the limit (28.5) is indeed equal to infinity, we can always
choose from the family of cycles {`ρ,j,k,l} an infinite sequence of homologi-
cally independent cycles. Indeed, without loss of generality we may assume
that the cycles are pairwise disjoint (considering a sufficiently fast decreasing
sequence of the values ρm → 0+) and without self-intersections. Such cycles,
if belonging to the same leaf, can be homologically dependent if and only
if the coefficients of this dependence are ±1, i.e., if they bound a domain
on the leaf, eventually after changing their orientation. Yet under (28.5) we
can construct an infinite sequence of cycles {`ρm} such that the integral of
the form ω along each cycle is greater than the sum of absolute values of
integrals over all preceding cycles,

∣∣∣∣
∮

`ρm

ω

∣∣∣∣ >
m−1∑

s=1

∣∣∣∣
∮

`ρs

ω

∣∣∣∣, for all m = 2, 3, . . . .

Clearly, this implies that the cycles `ρm cannot be homologically dependent
on the same fiber with the coefficients ±1. The proof of Theorem 28.13 is
complete modulo Lemma 28.14. ¤
Sketch of the proof of Lemma 28.14. Together with the initial foliation F consider
its linearization F′ described by the Pfaffian equation (28.2). Because of the linearity, F′

is invariant by the linear maps (z, w) 7→ (z, cw), c ∈ C∗. Note also that the form ω is
homogeneous. This implies that if α is an arc (closed or not) on a leaf of F′, then its image
by the above map, denoted by cα, is again an arc on the other leaf, and

R
cα

ω = c−2
R

α
ω.

Denote by `′j,k,n the lifts of the loops associated with the compositions (28.4) from
the separatrix I to the leaves of the linear foliation F′ passing through the same point
(0, 1). Let α, β be two arcs through the point (0, 1) which are lifts of the loops γ1, γ2 ∈
π1(I rΣ, 0); the holonomy maps of the foliation F′ associated with these two loops, are
both linear, w 7→ νw and w 7→ µw respectively.

Because of the linearity, the loop `′j,k,n, except for its final part γ corresponding to

the map h−1, consists of arcs homothetic to α and β with different coefficients. Denote
A =

R
α

ω, B =
R

β
ω, C =

R
γ

ω. Then by homogeneity the overall integral modulo a

10Note that in the initial affine coordinates on the plane ω takes the form 1
2
(x dy− y dx), so

that if the foliation is real and the cycle `ρ,j,k,n were real, then the integral of the form ω would
be the area bounded by this cycle. As the cycles are converging to the infinite line, clearly this
area tends to infinity.

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



576 V. Global properties of complex polynomial foliations

constant term can be expressed as several partial sums of geometric progressions,Z
`′
j,k,n

ω = A(1 + ν−2 + ν−4 + · · ·+ ν−2(n+k))

+ ν−2(n+k)B(1 + µ−2 + µ−4 + · · ·+ µ−2j)

− ν−2(n+k)µ−2jA(1 + ν2 + · · ·+ ν2n) + C.

(28.6)

Note that |ν| < 1 < |µ| and νkµj ≈ 1, so that the geometric progression in the first line in
(28.6) is diverging, whereas the progressions from the second and the third lines converge
as j, n, k → ∞. Computing the leading terms of the above sums, we conclude that the
integral above grows to infinity asymptotically as

ν−2(n+k+1)

ν−2 − 1
A + ν−2(n+k) 1

1− µ−2
B = ν−2(n+k)

�
A

1− ν−2
+

B

1− µ−2

�
.

The expression in the square brackets is the difference of the respective integrals Ik from
(28.3) and hence is nonzero by the assumptions of the theorem. Thus the limit of the
integral in (28.6) is infinite. If instead of the loops `′j,k,n we lift on the leaves of the linear

foliation F′ the loop wρ`′j,k,n, then the above result will be further multiplied by w−2
ρ

which is greater or equal to ρ−2 in the absolute value.

The integrals above were computed along arcs on the leaves of the linearized foliation
F′ which admits homothetic symmetries. Yet one can show that also for the initial foliation
F, whose linearization is F′, the above computation yields the principal term of the integralH

`ρ,j,k,n
ω ∼=

H
wρ`′

j,k,n
ω. Divergence of this principal term proves the lemma. We omit the

detailed error estimates caused by the nonlinearity of F; cf. [SRO98]. ¤

Remark 28.15. The paper [SRO98] contains the detailed proof of a
stronger result: the infinite number of homologically independent complex
limit cycles exists for all polynomial foliations from the class Ar except for a
nowhere dense real analytic subset of (real) codimension > 2. The assump-
tions imposed on the foliations, are nonsolvability of the holonomy group
and absence of certain identities between the integrals of the type (28.3).

28D. Deformational rigidity of polynomial foliations. The remain-
ing part of this section deals with the rigidity phenomenon for polynomial
foliations.
28D1. Deformations and triviality. Speaking loosely, rigidity means that
both the analytic and even the affine type of the foliation is completely
determined by its topological type, at least in some small neighborhood of
the corresponding point in the space Ar. (Two foliations are affine equiv-
alent if one of them can be transformed into the other by an affine map
A : C2 → C2.) This happens when the topology (associated with qualita-
tive dynamic properties of foliations) is rich enough to distinguish any two
different foliations.

Definition 28.16. A polynomial foliation F from the class Ar is ideally
rigid , if there exists a neighborhood U of F in Ar such that any other
foliation F′ ∈ U topologically equivalent to F is affine equivalent to F.
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28. Generic properties of polynomial foliations 577

Unfortunately, the ideal rigidity is practically unknown property, at least
for polynomial foliations. In reality we have to operate with relaxed notions
of rigidity, which require some additional properties of the homeomorphism
which realizes the topological equivalence between F and F′.

Probably, the weakest form of rigidity is the deformational rigidity which
means that any continuous deformation preserving the topology of the given
foliation F0, entirely consists of foliations affine equivalent to F0. The accu-
rate definitions follow.

Definition 28.17. A deformation of a foliation F ∈ Ar is the germ of a
nonconstant analytic map (Cp, 0) → (Ar,F), t 7→ Ft.

A deformation {Ft}t∈(Cp,0) is topologically trivial, if there exists a contin-
uous family of homeomorphisms {Ht} ⊂ Homeo(P2), deforming the identical
homeomorphism H0 = id, such that for all t ∈ (Cp, 0) the homeomorphism
Ht conjugates the foliation Ft with F0.

The analytic deformation {Ft} is holomorphically trivial if there exists
an analytic family of biholomorphisms {Ht}t∈(Cp,0), H0 = id, of P2 onto
itself conjugating Ft with F0.

In fact, a generic foliation admits very few holomorphically trivial de-
formations.

Lemma 28.18. A holomorphically trivial deformation of a foliation from
the class Ar without algebraic leaves other than the infinite line consists of
affine equivalent foliations: there exists an analytic family of affine maps
{At : C2 → C2}t∈(Cp,0) such that At conjugates Ft with F0.

Proof. Assume first that the deformation is one-parametric, i.e., p = 1,
and consider the velocity vector field d

dtHt of the holomorphic family of
biholomorphisms Ht. This is a well-defined holomorphic vector field Vt on
P2 for all values of t ∈ (Cp, 0). Since the infinite line I is the unique algebraic
leaf of each Ft, the field Vt is tangent to the infinite line.

But the only polynomial vector fields that extend holomorphically at
the infinite line, are affine vector fields of degree 6 1. Indeed, a vector
field P (x, y) ∂

∂x + Q(x, y) ∂
∂y in the coordinates u = 1/x, v = y/x, takes

the form −u2P (u−1, vu−1) ∂
∂u + u

(
Q(u−1, vu−1)− v P (u−1, vu−1)

)
∂
∂v which

is holomorphic on the infinite line {u = 0} and tangent to it if and only if
deg P, deg Q 6 1.

By a suitable translation one can make the vector field Vt linear; in these
coordinates Ht is also linear.

The multiparametric case is reduced to the single parameter case by
restricting the deformation on all possible lines through the origin in the
parameter space (Cp, 0). ¤
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578 V. Global properties of complex polynomial foliations

Definition 28.19. A foliation F ∈ Ar is called deformationally rigid , if any
topologically trivial analytic deformation {Ft} of F = F0 is holomorphically
trivial and hence consists of foliations affine equivalent to F.

As the first step in the investigation of rigidity, we prove that a generic
foliation F ∈ Ar is deformationally rigid.

Theorem 28.20. Assume that a foliation F = F0 from the class Ar satisfies
the following assumptions.

(T) F has no algebraic leaves except for the infinite line,
(H+) the foliation F has only hyperbolic singularities with nonreal char-

acteristic numbers,11

(D) the holonomy group G of the infinite leaf satisfies the density con-
dition (6.17),

(NC) the group G is noncommutative.

Then F0 is deformationally rigid.

The proof of this theorem is given in §28D4: it requires appropriate tools
which will be introduced in the intermediate subsections.
28D2. Transversal holomorphy. To prove Theorem 28.20, we introduce the
notion of transversal holomorphy. Recall that any topological equivalence H
conjugating two (singular) foliations F and F′, maps plaques of F near any
nonsingular point a /∈ Sing(F) into plaques of F′ near a′ = H(a) /∈ Sing(F′)
(cf. with Definition 2.5). Therefore for any two cross-sections (holomorphic
arcs transversal to the foliation) τ, τ ′ at the points a and a′ = H(a) respec-
tively, there exists a unique germ, denoted by Ht

a : (τ, a) → (τ ′, a′), such
that H sends a leaf of F passing through a point z ∈ (τ, a) to the leaf of F′

passing through the point z′ = Ht
a (z) ∈ (τ ′, a′). We will refer to the germ

Ht
a as the normal component of the homeomorphism H at the point a.

Definition 28.21. The homeomorphism H conjugating two singular folia-
tions F,F′ is transversally holomorphic, if for any nonsingular point a the
normal component Ht

a : (τ, a) → (τ ′, a′) of H is holomorphic.

Clearly, this definition does not depend on the choice of the holomorphic
cross-sections. Note that a transversally holomorphic map restricted on each
leaf L ∈ F, in general, is only a homeomorphism between L and L′ = H(L) ∈
F′.

Definition 28.22. A topologically trivial deformation {Ft}, t ∈ (Cp, 0),
is called transversally holomorphic, if all trivializing homeomorphisms Ht

11The condition (H+) is a stronger version of the hyperbolicity condition (H) used earlier
and requires hyperbolicity of all (not just infinite) singular points.

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



28. Generic properties of polynomial foliations 579

are transversally holomorphic and the respective normal components Ht
t,a

depend analytically on t ∈ (Cp, 0) and a /∈ Sing(Ft).

For transversally holomorphic deformations, one can aggregate the in-
dividual foliations Ft into a single singular holomorphic foliation on the
product space P2 × (Cp, 0). This foliation, called the trail foliation and
denoted by T (F0), can always be easily constructed as a topological (sin-
gular) foliation in the sense of Definition 2.3. Proving that this foliation is
holomorphic is possible if the deformation is transversally holomorphic.

For each deformation {Ft} of holomorphic foliations on P2, not necessar-
ily topologically trivial, we can construct a singular one-dimensional (i.e.,
of complex codimension p + 1) holomorphic foliation (denoted by F ) of the
Cartesian product P2 × (Cp, 0). The leaves of this foliation are tangent to
the fibers of the Cartesian projection π : P2 × (Cp, 0) → (Cp, 0) (i.e., each
fiber is invariant by F ) and in each fiber π−1(t) coincide with the leaves
of the respective foliation Ft. If Ft = a(x, y, t) ∂

∂x + b(x, y, t) ∂
∂y ∈ D(C2)

are the polynomial vector fields defining the foliations Ft, then the field
F = Ft + 0 · ∂

∂t ∈ D
(
C2 × (Cp, 0)

)
is the holomorphic vector field defining

the foliation F .
Denote by Σ the singular locus of F : by definition, this is the union of

individual singular loci Σt = Sing Ft,

Σ =
⋃

t∈(Cp,0)

Σt × {t} ⊆ P2 × (Cp, 0), Σt = Sing(Ft) ⊂ P2. (28.7)

If the deformation {Ft} is topologically trivial and Ht : P2 → P2 is the
family of homeomorphisms conjugating Ft with F0 and preserving the infi-
nite line I, then one-dimensional leaves of the foliation F can be integrated
into the leaves of a single topological foliation of complex codimension 1 on
P2× (Cp, 0) outside the singular locus of Σ. Consider the trails of the leaves
of the foliation F0 by the deformation, that is, the sets of the form

T (L) =
⋃

t∈(Cp,0)

H−1
t (L)× {t}, L ∈ F0. (28.8)

The union
⋃

L∈F0
T (L) of all these trails forms a partition of the product

space. We show in an instant that this partition is in fact a topological
foliation of complex codimension 1. Indeed, the homeomorphism

H̃ : P2 × (Cp, 0) → P2 × (Cp, 0), (a, t) 7→ (Ht(a), t), (28.9)

transforms the cylinders C(L) = L × (Cp, 0), L ∈ F0, into the sets T (L).
Since the partition into the cylinders C(L) is a holomorphic singular foliation
of codimension 1 on the total space P2×(Cp, 0), and H̃ is a homeomorphism,
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580 V. Global properties of complex polynomial foliations

the sets (28.8) constitute a topological foliation on P2 × (Cp, 0). The trail
foliation T (F) is the topological foliation by trails of the leaves as in (28.8),

T (F) = {T (L) : L ∈ F0}. (28.10)

In general T (F) is not holomorphic (only topological), yet if the topo-
logical deformation {Ft} is transversally holomorphic, T (F) turns out to be
a singular holomorphic foliation of codimension 1.

Lemma 28.23. If a topologically trivial analytic deformation {Ft} is
transversally holomorphic, then the trail foliation T (F) of the product space
P2 × (Cp, 0)rΣ (28.8) is a holomorphic singular foliation of complex codi-
mension 1. The leaves of the trail foliation T (F) intersect transversally each
fiber {t = const} by the leaves of the corresponding foliation Ft.

Proof. The assertion is local and obvious in suitably chosen local coor-
dinates. Indeed, consider an arbitrary nonsingular point a /∈ Σ. By the
Rectification Theorem 1.18, the vector field F = Ft + 0 · ∂

∂t can be rectified
in some neighborhood U ⊂ P2× (Cp, 0), moreover, the rectifying biholomor-
phism can be chosen so that it preserves the t-coordinates.

In the corresponding local coordinates leaves of the foliation F are par-
allel lines {y = const, t = const}. If we choose the y-axis as the local
cross-section transversal to the lines, then from the transversal holomorphy
of the family we conclude that the Ht-image of the leaf passing through the
point y = b at t = 0, is the line {x = const} that passes through the point
y = Ht

t (b), where Ht
t is the normal component occurring in the definition

of the transversal holomorphy. If this component is a holomorphic func-
tion of t ∈ (Cp, 0) and b ∈ (C1, 0) in some initial chart, then the same is
true in the rectifying chart as well. Therefore the topological leaves T (L)
in the rectifying chart are cylinders over graphs of the corresponding holo-
morphic function y = ht(b), x ∈ (C1, 0), for different values of the point
b ∈ (C1, 0). These leaves are given by the level curves of one holomorphic
function ψ(x, y, t) = h−1

t (y) (in fact, independent of x). The transversality
assertion of the lemma follows from the fact that the leaves are graphs of
holomorphic functions of t. ¤

28D3. Deformational rigidity theorem: outline of the proof. The proof of
deformational rigidity of generic foliations can be split into two steps. First,
we show that generic foliations can be topologically conjugated only by
transversally holomorphic homeomorphisms.

Lemma 28.24. Assume that a foliation F = F0 from the class A′
r satisfies

the following conditions12:

12(T) stands for transcendence.
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28. Generic properties of polynomial foliations 581

(T) F has no algebraic leaves except for the infinite line,
(H) the infinite line I carries only hyperbolic singularities with nonreal

characteristic numbers,
(D) the holonomy group G of the infinite leaf satisfies the density con-

dition (6.17),
(NC) the group G is noncommutative.

Then any homeomorphism conjugating F with another foliation F′ ∈ Ar

is necessarily transversally holomorphic. Moreover, any topologically triv-
ial deformation of F is transversally holomorphic in the sense of Defini-
tion 28.22.

This lemma is proved below by deriving the transversal holomorphy
of H near the infinite line from Theorem 6.45, and then extending this
transversal holomorphy to all nonsingular points by using the density of
leaves (Theorem 28.7).

From the transversal holomorphy established in Lemma 28.24, by
Lemma 28.23 it follows that the trail foliation T (F) is holomorphic. Be-
ing a foliation of codimension 1, it is defined by a suitable 1-form Ω on
C2 × (Cp, 0), polynomial in (x, y)-coordinates and holomorphic in t.

The second step of the proof is deals with one-parametric transversally
holomorphic deformations (p = 1). We will show that the constant vector
field ∂

∂t on the base (C1, 0) can be lifted to a holomorphic vector field on the
product space P2× (C1, 0) tangent to the trail foliation T (F). Then the flow
maps of this field will holomorphically trivialize the deformation Ft. This
will prove the Deformational Rigidity theorem.
Remark 28.25. The construction of the lift is nontrivial despite the fact that the foliation
is transversal to the fibers {t = const}.

Indeed, any vector v tangent to the base at a point t, can be lifted to a vector tangent
to each leaf T (L) passing through a nonsingular point (a, t), thus producing a necessary
vector field on the product space. Yet this construction is essentially nonunique, since
one can add to the lift of v any multiple of the vector Ft(a) tangent to L. Thus lifting
a holomorphic vector field amounts to construction of a holomorphic section of some
affine bundle, which in general is possible only locally. To construct a global section of
this bundle is not always possible because of the global topological obstructions. These
obstructions can sometimes be shown to vanish (see [GM88, GM89]), yet not always.
In Remark 28.28 below we will give an example when there is an obstruction to such a
lift.

We will construct the lift in a different way, using the hyperbolicity assumption con-
cerning singularities of the foliations in the finite part C2 ⊂ P2.

The following assertion can be considered as a complex analog of the
“path method” widely used in the smooth classification theory; see §5F and
[IY91]. In order to stress independence of this lemma from the specific
choice of the foliations, we change slightly the notation.
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582 V. Global properties of complex polynomial foliations

Lemma 28.26. Consider the total space P2 × (C1, 0) with a holomorphic
singular foliation G of codimension 1 on it. Assume that G is transversal
to the fibers of the projection π : (a, t) 7→ t, and tangent to the “infinite
cylinder” I× (C1, 0).

If each singular foliation Gt = G|π−1(t) obtained by restriction of G on the
fiber {t = const}, has only hyperbolic singular points (with nonreal ratios of
eigenvalues) in the finite part, then all these foliations are affine equivalent :
there exists a holomorphic family of affine maps {At}t∈(C1,0) conjugating Gt

with G0 and analytically depending on the parameter t.

28D4. Demonstration of the Deformational Rigidity theorem. In this sub-
section we prove all results formulated in §28D1–§28D3.

Proof of Lemma 28.24. Because of the assumption (T), the infinite line I
is the unique algebraic leaf of both foliations; it is topologically distinguished
by the fact that its closure does not coincide with the whole plane P2. Hence
a homeomorphism H must map the infinite line into itself.

1◦. By virtue of Theorem 6.45, in the assumptions (D), (H), and (NC)
any topological conjugacy H : F → F′ is transversally holomorphic “near
infinity”. Indeed, the corresponding normal component Ht

a (τ, a) → (τ ′, a′)
conjugates the holonomy groups of the foliations F and F′ associated with
arbitrary holomorphic cross-sections τ and τ ′ at any nonsingular points a ∈ I
and a′ = H(a) and is therefore holomorphic. Moreover, if Ft is an analytic
deformation, then Ht

t,a depends analytically on a and t.
2◦. It remains to show that H is transversally holomorphic at any other

nonsingular point b /∈ I. By the Density Theorem 28.7, the leaf of F passing
through b must cross (transversally) the cross-section τ constructed above.
Choose an arbitrary holomorphic cross-section σ to F at b, denote σ′ = H(σ)
and consider two holonomy maps, ∆b,a : (σ, b) → (τ, a) and ∆′

b′,a′ : (σ′, b′) →
(τ ′, a′) for the foliations F,F′ respectively, along an arbitrary path γ and its
image γ′ = H(γ).

From the definition of the normal component and the holonomy map it
follows that

Ht
a ◦∆b,a = ∆′

b′,a′ ◦Ht
b : (σ, b) → (τ ′, b′). (28.11)

The holonomy maps ∆, ∆′ are holomorphic and depend holomorphically on
the end points a, b, a′, b′ ∈ P2 (and any additional parameters t ∈ (Cp, 0) if
they are present). Hence holomorphy of one of the normal components (in
our case Ht

a ) in all the variables implies holomorphy of the other normal
component and vice versa. ¤

Remark 28.27 (important). Lemma 28.24 can be relaxed as follows: Any
deformation Ft topologically trivial only in a neighborhood of the infinite line
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28. Generic properties of polynomial foliations 583

I, is transversally holomorphic there provided that F0 meets the assumptions
(H), (D) and (NC). The assumption (T) can be dropped in this case.

The first steps of the proof remain almost the same. The only change
required concerns transversal holomorphy of H at a point b /∈ I which be-
longs to the invariant manifold of a singular point ai ∈ Σ ⊂ I at infinity: in
this case the leaf of F, passing through b, does not intersect τ , and hence on
the second step of the proof one has to replace the holonomy along a leaf by
the Dulac map between two cross-sections to two different leaves as follows.

2◦alt. Let σ be the cross-section to the separatrix leaf S of F, and τ
another cross-section to I at a point a ∈ I sufficiently close to the singularity
ai ∈ Σ ∩ I. Denote by S′, σ′, τ ′ their images by H, the homeomorphism
conjugating F = F0 near I, with F′ = Ft: S′ is a uniquely defined separatrix
of F′ at a′i = H(ai).

By the hyperbolicity assumption (H), both F, F′ are holomorphically lin-
earizable near ai and a′i respectively. Consider the Dulac maps ∆: (σ, b) →
(τ, a) and ∆′ : (σ′, b′) → (τ ′, a′), the multivalued holonomy maps (∆ sends a
point z ∈ σ to the intersection of the leaf Lz ∈ F with τ , ∆′ does the same
for F′). For the linearized foliations, each map is (a branch of) the power
function w = zλ (resp., w′ = z′λ) with the same λ for a suitable choice of
the linearizing charts. Moreover, in these charts the normal component Ht

a

of H on a cross-section τa to I at a ∈ I, as before, is a linear map, z′ = cz.
Indeed, this is the only holomorphic map conjugating two linear rotations
z 7→ (exp 2πiλ) · z and z′ 7→ (exp 2πiλ′) · z′, with λ, λ′ /∈ R, possible only if
λ = λ′.

The normal component Ht
b (computed with respect to the linearizing

chart) satisfies the analog of the equation (28.11), namely,

∆ ◦Ht
a = Ht

b ◦∆′ : (σ, b) → (τ ′, b′). (28.12)

Altogether these arguments imply that Ht
b (z) = (czλ)1/λ = c1/λz is again

a linear map, which is obviously holomorphic. Thus the transversal holo-
morphy of H is established at all points of the neighborhood of I. Since the
normalizing charts depend analytically on F′, so does the normal component.

Proof of Lemma 28.26. 1◦. First we show that the foliation G can be
globally defined by a Pfaffian 1-form Ω = ωt + R dt, where ωt ∈ Λ1[C2]
are the given polynomial forms, ωt = Pt dx + Qt dy, defining the individual
foliations Gt, which depend analytically in t, and R ∈ C[x, y] ⊗ O(C1, 0) is
a holomorphic function in x, y, t which is a polynomial of degree 6 r + 1 in
(x, y) for every t ∈ (C1, 0).

Indeed, in a small neighborhood Ua of each nonsingular point a /∈ Σ =
Sing(G) the foliation G is defined by a holomorphic Pfaffian form Ωa =
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584 V. Global properties of complex polynomial foliations

pa dx+qa dy+ra dt with holomorphic coefficients. Since the 2-plane {Ωa = 0}
is transversal to the 2-plane {dt = 0} in the tangent bundle TaP2 × (C1, 0),
the wedge product pa dx ∧ dt + qa dx ∧ dt is nonsingular near a, hence the
restriction of pa dx + qa dy on π−1(t) is nonsingular in Ua ∩ π−1(t).

The form Ωa restricted on the fiber π−1(t) passing through a must vanish
on the leaves of Gt. Since the 1-forms ωt and Ωa|π−1(t) are both nonsingular
near a, they must be proportional: ϕa(pa dx+qa dy) = ωt for some invertible
factor ϕa ∈ O(C3, a). The form ϕaΩa is holomorphic and its restriction on
π−1(t) coincides with ωt.

The local forms ϕaΩa define the same foliation G outside the singular
locus Σ and their restrictions on the fibers π−1(t) coincide on pairwise in-
tersections of the neighborhoods Ua. Therefore together they aggregate in a
single holomorphic 1-form Ω = ωt + R(x, y, t) dt on the product space with
the deleted locus Σ. Since Σ has complex codimension 2, the function R
together with the form Ω extend onto it, thus defining a holomorphic 1-form
on the product C2 × (C1, 0).

The foliation G is holomorphic also near the “infinite cylinder” I×(C1, 0)
and tangent to it. In the coordinates u = x−1 and v = yx−1 the form Ω has
the structure u−(r+2)ω′t + R(u−1, vu−1) dt with some polynomial 1-form ω′t;
cf. with (25.4). In order for the “infinite cylinder” to be invariant for G, the
function R(u−1, vu−1) must have a pole of order 6 r+2 and still be divisible
by u after multiplication by ur+2. This is possible only if for every value of
t ∈ (C1, 0) the function R is a polynomial of degree 6 r + 1 in (x, y).

Note that the distribution Ω = 0 is integrable: its integral foliation is G.
By Frobenius Theorem 2.9, this means that Ω ∧ dΩ ≡ 0.

2◦. In the second step we prove that for any t the polynomial Rt =
R(·, ·, t) ∈ C[x, y] belongs to the ideal spanned by the components of the
form ωt.

Indeed, consider an arbitrary singular point b ∈ Σt of the form ωt and
assume that Rt does not vanish at this point. Then the form Ω is nonsingular
at b; being integrable, Ω admits a nontrivial local analytic first integral
u ∈ O

(
P2 × C1, b

)
. The restriction of u on the fiber π−1(t) is therefore an

analytic first integral ut ∈ O(P2, b) of the component ωt. Yet because of
the hyperbolicity of ωt at b, the foliation Ft does not admit nontrivial first
integrals. Indeed, the foliation Ft is locally holomorphically equivalent to
the foliation with the leaves w = czλ, λ /∈ Q, which are not relatively closed.
This foliation is not simple in the sense of Definition 11.20 and hence cannot
be integrable by Theorem 11.21.

The contradiction implies that Rt(b) = 0. Again, because of the hyper-
bolicity, the ideal generated by the coordinates of the form ωt in O(P2, b), is
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28. Generic properties of polynomial foliations 585

radical, so vanishing of Rt at b implies that the germ of Rt at each point b
of the intersection Σ ∩ π−1(t) belongs to the ideal generated by the germs
of the components of ωt in the local ring O(P2, b).

From the complex hyperbolicity of the singularities on the infinite line,
the principal homogeneous components of the coefficients of the form ωt have
no common roots (the polynomials qr(1, v) and hr+1(1, v) in (25.4) cannot
vanish simultaneously).

By the Max Noether theorem [GH78, Chapter 5, §3], this is sufficient
to guarantee that the polynomial Rt globally belongs to the ideal 〈Pt, Qt〉 ⊂
C[x, y], generated by the components of ωt = Pt dx + Qt dy: there exist
polynomials At, Bt ∈ C[x, y], deg At, Bt 6 1, analytically depending on t,
such that Rt = PtAt + QtBt.

3◦. The above computations show that the polynomial 1-form Ω defining
the foliation G, is representable under the form

Ω = ωt + R dt = Pt(x, y)
(
dx + At(x, y) dt

)
+ Qt(x, y)

(
dy + Bt(x, y) dt

)
.

This 1-form obviously vanishes on the vector field

Z = −At(x, y) ∂
∂x −Bt(x, y) ∂

∂y + 1 · ∂
∂t

which is transversal to the fibers {t = const} and extends as a holomorphic
vector field on the entire product space P2 × (C1, 0); cf. with Lemma 28.18.
The flow maps of the field Z preserve the foliation G and the fibers of the
bundle π : P2× (C1, 0) → (C1, 0), and are all affine. In other words, we con-
structed a collection of affine maps {At : π−1(t) → π−1(0)} which conjugate
the foliations Gt with G0. ¤

Proof of Theorem 28.20. Theorem 28.20 follows almost immediately
from the three lemmas. Indeed, by Lemma 28.24, a deformation {Ft} sat-
isfying the assumptions of the theorem, is transversally holomorphic. By
Lemma 28.23 the topological foliation T (F), aggregating the leaves of in-
dividual foliations Ft for different t ∈ (Cp, 0), is holomorphic. Restricting
this foliation to any complex line (C1, 0) ⊆ (Cp, 0) in the base, we can ap-
ply Lemma 28.26 requiring only the assumption (H) of the theorem, and
conclude that any foliation Ft is affine equivalent to F0. ¤

Remark 28.28. The assumption of complex hyperbolicity of singularities
in Lemma 28.26 cannot be completely dropped. Indeed, consider an analytic
deformation of the Hamiltonian foliation Gt = {dSt = 0}, where St =
St(x, y) is a generic deformation of the polynomial Hamiltonian transversal
to infinity. In this case the foliation G = {dS = 0}, S = S(x, y, t), satisfies all
assumptions of the lemma except that all its singular points are locally (even
globally) integrable saddles. The form Ω = dS defining G is polynomial, but
the coefficient Rt = ∂S/∂t does not necessarily vanish at the singular points,
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586 V. Global properties of complex polynomial foliations

hence construction of the vector field Z fails globally (though is still possible
locally). Note that in this case the deformation Gt is topologically trivial
(cf. with §26F) but in general is not affine trivial.

Obviously, the hyperbolicity assumption in Lemma 28.26 can be relaxed
to the local nonintegrability. If the foliation G0 is not locally analytically
integrable near any finite singularity, then all nearby foliations Gt are also
not analytically integrable, which is sufficient for the proof to work under
this relaxed assumption.

28E. Rigidity of polynomial foliations. To pass from the deformation
rigidity discussed in §28D to stronger forms of rigidity, an additional effort
is required. We explain first why the ideal rigidity is so difficult to establish.

Assume for simplicity that the foliation F ∈ Ar has only one algebraic
separatrix at infinity. Then for any other foliation F′ topologically equiv-
alent to F, the homeomorphism H : P2 → P2 conjugating these foliations,
necessarily preserves the infinite line I ⊂ P2 and maps the singular loci
ΣI = Sing(F) ∩ I and Σ′

I = Sing(F′) ∩ I at infinity into each other. The
problem is that in absence of extra information, the restriction homeomor-
phism HI : (I, ΣI) → (I, Σ′

I) can be very wild.
For instance, consider a group of self-homeomorphisms of an abstract

sphere P1 ∼= S2 with a marked finite set of r + 1 points. The infinite
braid group on r + 1 strains acts on all such homeomorphisms by isotopy.
Each such homeomorphism h induces an automorphism h♦ : π1(P1rS, a) →
π1(CP 1 r S, a) of the fundamental groups, which in a given basis of, say,
canonical loops (as they were introduced in §28A) may have arbitrarily
high combinatorial complexity (we define this complexity as the maximal
length of the word representing the loop h♦(γi), i = 1, . . . , r in the alphabet
γ1, . . . , γr generating the free group π1(P1 r S, a); see §28G1 below).

Yet without knowing the automorphism h♦, it is impossible to find out
how precisely the corresponding infinite holonomy groups are topologically
conjugated (cf. with Proposition 28.2). This incertitude devaluates our prin-
cipal tool, the holonomy of a foliation.

In order to set aside these difficulties, we introduce a relaxed notion of
rigidity as follows.

Definition 28.29. Let S = {a0, . . . , ar} ⊂ P1 be a finite set of r+1 distinct
points, D0, . . . , Dr a collection of r + 1 disjoint open disks covering the set
S and b /∈ D, D =

⋃
i Di a point outside these disks.

A homeomorphism h : P→ P is called homotopically trivial over PrD,
if h(b) = b, for each point ai its image h(ai) belongs to the same open disk,
h(ai) ∈ Di, and the images h(λj) of all the segments λj = [b, aj ] connecting
the base point b with each point aj ∈ S, are homotopic to the corresponding
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28. Generic properties of polynomial foliations 587

segments λj in the class of homotopy with the fixed endpoint b and free
endpoint ai,t ∈ Di restricted to the respective disk.

A homeomorphism is said to be homotopically trivial without specifying
the system of disks, if it is topologically trivial over some system of disks.

Intuitively a homeomorphism is homotopically trivial if it “preserves”
the system of canonical loops to the extent possible for nonlinear homeo-
morphisms. The homotopically trivial homeomorphisms can be rather far
from the identity, yet their action h♦ on the fundamental group is trivial.

Definition 28.30. A foliation F ∈ A′
r will be called reasonably rigid , if

there exists a neighborhood U of it in Ar such that any foliation F′ ∈ U
topologically equivalent to F, is affine equivalent to F provided that the
topological equivalence between F and F′ induces a homotopically trivial
homeomorphism of the infinite line I into itself.

In other words, reasonable rigidity of F does not exclude existence of
topologically equivalent while not affine equivalent to F foliations near F,
but asserts that the conjugating homeomorphism in such cases must be
rather “exotic”.

The principal result of this section can be formulated as follows.

Theorem 28.31. A generic foliation from the class A′
r is reasonably rigid.

The exact genericity assumptions are listed in Theorem 28.20 formulated
below. Later we will formulate some generalizations of this result.
28E1. Three varieties: an outline of the proof. For a given foliation F0 ∈ A′

r

we will introduce three subsets of Ar, which consist of (a) foliations topolog-
ically equivalent to F0, (b) foliations whose holonomy group is topologically
conjugate to that of F0 and (c) foliations affine equivalent to F0. The rigid-
ity theorem will follow from the fact that the germs of all three sets at the
point F0 ∈ A′

r coincide.
More precisely, for a foliation F0 ∈ Ar consider the singular locus at

infinity S0 = Sing F0 ∩ I. Since all singularities are distinct, there exists a
system of disjoint circular disks D0, . . . , Dr each covering only one of these
points. There exists an open neighborhood Ũ ⊂ Ar such that for any other
foliation F′ ∈ Ũ , the respective singular locus at infinity SF belongs to
the union of the disks D =

⋃
Dj and each disk Dj contains exactly one

singularity.
For all foliations from this “large” neighborhood, one can uniquely enu-

merate the singularities at infinity in a consistent way continuously depend-
ing on the foliation.
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588 V. Global properties of complex polynomial foliations

Denote by Topo(F0) the set of foliations from the neighborhood Ũ ⊂ Ar,
which are topologically conjugated to F0 by a homeomorphism H whose
restriction on the infinite line is homotopically trivial over complement to
the above system of open disks.

Denote by Isohol(F0) ⊆ Ũ the set of foliations F′ from the same neigh-
borhood, whose holonomy group at infinity is topologically conjugate to that
of F0. More precisely, F′ ∈ Isohol(F0) if and only if there exists a home-
omorphism conjugating the holonomy maps ∆j for a system of canonical
loops for F0, with the holonomy operators ∆′

j along “the same” loops for
the foliation F′ (the identification is possible since each disk Dj has only one
singularity for both F0 and F′).

Finally, denote by Aff(F0) ⊂ Ũ the set of all foliations from the “large”
neighborhood, which are affine equivalent to F0, under the assumption that
the affine conjugacy preserves the enumeration of singularities on the infinite
line.

Clearly, for an arbitrary foliation F0 ∈ A′
r,

Isohol(F0) ⊇ Topo(F0) ⊇ Aff(F0). (28.13)

This follows from Definition 28.29 and the enhanced form of Proposi-
tion 28.2. In principle, all inclusion can be strict. The foliation F0 is reason-
ably rigid in the sense of Definition 28.30 if and only if there exists a smaller
neighborhood U ⊂ Ũ of F0 such that the intersection of all three sets with
U coincide. In other words, F0 is reasonably rigid if and only if the germs
of these three sets at F0 coincide,

(Isohol(F0),F0) = (Topo(F0),F0) = (Aff(F0),F0).

Theorem 28.32. A foliation F0 ∈ Ar satisfying the assumptions of Theo-
rem 28.20, is reasonably rigid.

The proof of Theorem 28.32 is based on investigation of the largest set
Isohol(F0). First, we show that for a generic F0 the conditions of topo-
logical conjugacy of the holonomy groups is analytic, i.e., that the germ
(Isohol(F0),F0) is analytic.

On the second step we show that the analytic family Isohol(F0) para-
meterized by points of the space Ar, is topologically trivial near the infinite
line: for any point F ∈ Isohol(F0) sufficiently close to F0, there exists a
homeomorphism H∞

F : (P2, I) → (P2, I) conjugating F with F0 in this neigh-
borhood. Moreover, we construct this homeomorphism so that it is au-
tomatically transversally holomorphic. The construction is not completely
trivial and rests upon rigidity of the holonomy group and hyperbolicity of
the singularities of F on I.
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28. Generic properties of polynomial foliations 589

By the standard extension theorem for functions of several complex vari-
ables, the map H∞

F extends from a neighborhood of infinity to the whole
affine plane C2 as an analytic map. By analyticity, it remains a conjugacy
between F and F0 for all F ∈ Isohol(F0) sufficiently close to F0. Obviously,
F can be connected with F0 by a one-parametric family {Ft}, F1 = F, en-
tirely belonging to Isohol(F0). Lemma 28.18 guarantees that in this case F

and F0 are affine equivalent.
28E2. Demonstration of the reasonable rigidity theorem. We proceed with
detailed arguments now. In order to avoid exotic notations, we consider the
set of all foliations Ar as the parameter space and denote by Ft the foliation
corresponding to the variable point t ∈ Ar. The initial foliation is already
labelled as F0.

Lemma 28.33. If the holonomy group of the foliation F0 ∈ A′
r satisfies

the conditions (D) and (NC) of Theorem 28.20, then the germ of the set
Isohol(F0) ⊆ Ar at t = 0 is the germ of an analytic subvariety of Ar.

Proof. By definition, the two holonomy groups G0 and Gt of the foliations
F0 and Ft are conjugated by a homeomorphism ht which conjugates each
generator f0,j of G0 with the corresponding generator ft,j of Gt for all j =
0, 1, . . . , r, where the generators ft,j analytically depend on t.

By Theorem 6.45, in the assumptions of the lemma any homeomorphism
conjugating G0 with the group Gt = 〈ft,1, . . . , ft,n〉 ⊆ Diff(C1, 0) with the
prescribed action on the generators, must (after linear rescaling) be identical
in the two charts linearizing two hyperbolic generators of G0 and Gt respec-
tively. In the assumptions of the lemma these charts depend analytically on
t, so does the conjugating biholomorphism ht.

In other words, for any Ft ∈ Isohol(F0) there exists a holomorphic germ
ht : (C1, 0) → (C1, 0) analytically depending on t, such that ht◦f0,t = f0,1◦ht.
The two groups G and Gt are topologically conjugate if and only if ht also
conjugates all other generators ft,k with f0,k for all k = 1, . . . , n. The con-
ditions ht ◦ ft,k = f0,k ◦ ht with known ht impose infinitely many identities
between the Taylor coefficients of the germs ft,k which are all analytic func-
tions of finite-dimensional parameter t ∈ Ar. Since the ring of germs of
analytic functions is Noetherian, these infinitely many conditions together
define the germ of an analytic subset which coincides with Isohol(F0). ¤

As was already noted, in general the subset Topo(F0) may be a proper
subset of Isohol(F0). Yet in the assumptions of Theorem 28.20 we can
prove that Isohol(F0) can be considered as a topologically trivial family
(deformation) near the infinite line.
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590 V. Global properties of complex polynomial foliations

Lemma 28.34. Assume that the foliation F0 ∈ A′
r satisfies the assump-

tions (D), (NC) and (H). Then for any Ft ∈ Isohol(F0) sufficiently close
to F0 there exists a homeomorphism H∞

t : P2 → P2, H∞
0 = id, defined in

a neighborhood of the infinite line I in the projective plane, fixing this line,
continuously depending on t and conjugating the foliations Ft and F0 in the
respective neighborhoods.

Except for the relatively small effort necessary to extend the homeo-
morphisms to the neighborhood of singular points, the lemma claims that
near the algebraic leaf IrΣ, the only topological invariant of a holomorphic
foliation is its holonomy group.

Proof. We first construct explicitly the homeomorphism H∞
t away from

the singular points of Ft as follows.
1◦. Consider the canonical projection σ : C2 r {0} → I, (x, y) 7→ [x : y :

0]. This projection after restriction on a small tubular neighborhood V ⊂ P2

of I defines topological bundle with a fiber homeomorphic to the disk.
Denote by St = Σt ∩ I the collection of singular points of Ft on the

infinite line and consider the open set

V ′ = V ∩ σ−1
(
I rD

)
, D =

⋃

j

Dj , (28.14)

the tubular neighborhood of the infinite line with the deleted disks Dj which
contain the singular points of all foliations Ft ∈ Ũ . By construction, all
foliations Ft are nonsingular in V ′ and transversal to the fibers σ−1(a) if the
tubular neighborhood V was chosen sufficiently thin.

Denote by τ = σ−1(s0) ⊂ V ′ the cross-section to the infinite line at a
point s0 /∈ D which is nonsingular for the foliations Ft ∈ Ũ . Assume that
the homeomorphisms conjugating the holonomy groups of the foliations Ft

and F0, are all associated with the same cross-section, ht : (τ, s0) → (τ, s0).
The homeomorphisms H∞

t are completely determined in V ′ by the fol-
lowing conditions,

(1) all H∞
t map the cross-section τ into itself and their restriction on

τ coincides with ht, i.e., H∞
t |τ = ht,

(2) each H∞
t preserves all fibers σ−1(s) which belong to V ′, and

(3) H∞
t conjugate Ft with F0 in V ′.

Indeed, to construct the image of a point a ∈ V ′, consider an arbitrary path
γ connecting s = σ(a) with s0 = a0 in I rD. Consider the holonomy map
∆t : σ−1(s) → σ−1(s0) along γ, and define H∞

t = ∆−1
0 ◦ht◦∆t (corresponding

to the travel along the leaf of Ft over γ, action by ht and the backwards
travel along the leaf of F0 back to the same fiber σ−1(s)).
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28. Generic properties of polynomial foliations 591

Obviously, this construction uniquely defines the homeomorphism H∞
t

if ht conjugates the holonomy groups of the foliations Ft and F0; indeed, in
this case the result does not depend on the choice of the path γ.

This standard construction allows us to define H∞
t in a tubular neigh-

borhood of the infinite line outside preimages σ−1(D) of the disks covering
the singularities. Moreover, the resulting family is in fact biholomorphic
and analytically depends on t.

2◦. It remains to extend H∞
t onto the cylinders σ−1(Dj) around the

singular points. The problem is purely local: we consider a small bidisk
B = σ−1(Dj) with the foliations Ft having a unique hyperbolic singularity
in this bidisk at the point at analytically depending on t. The problem is
to extend the homeomorphism H∞

t constructed above, from the boundary
σ−1(∂Dj) on the interior of B.

Because of the hyperbolicity assumption, we may assume that the family
Ft is analytically linearized: for all small t it is given by the linear forms
x dy − λty dx = 0 in the unit bidisk {|x| < 1, |y| < 1}.

We further claim that in fact, λt is independent of t. Indeed, the ho-
lonomy map corresponding to the small loop around the singular point at

on I, remains holomorphically conjugate to that computed at t = 0. This
immediately implies that the multiplicator exp 2πiλt does not depend on t.
Since λt varies analytically together with t this is possible if and only if λt

(which is defined uniquely modZ) also does not depend on t. Denote by L

the linear foliation defined by the Pfaffian equation x dy − λy dx = 0.
After all these simplifications without loss of generality we may assume

that the problem of extending the foliation is as follows. We are given the
standard linear foliation L in the bidisk B = {|x| < 1 + ε, |y| < 1} and
a biholomorphism Ht = H∞

t analytically depending on t, defined in the
bicircular domain C = {ε < |x| < 1+ε, |y| < 1}, which is an automorphism
of the restriction L|C (this means that Ht permutes leaves of the linear
foliation L in C). The problem is to extend Ht onto the entire bidisk B
as an automorphism of L there so that it would remain a homeomorphism
continuously depending on t. Then the extension Ht would automatically
remain transversally holomorphic.

Consider the cross-section τ = {x = 1} at the point b = (1, 0), the circu-
lar loop γ ∈ π1(Cr{0}, b) on the x-plane around the origin, the correspond-
ing holonomy map ∆γ : y 7→ µy, µ = exp 2πiλ and the normal component
ht of Ht (cf. Definition 28.21), considered as a germ ht : (τ, b) → (τ, b). The
germ ht is holomorphic and commutes with the hyperbolic germ ∆γ , since
Ht is an automorphism of L restricted on C. Thus ht must necessarily be
linear itself (while still analytically depending on t) and by suitably choosing
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592 V. Global properties of complex polynomial foliations

Figure V.8. Extension of the transversally holomorphic homeomor-
phism to a neighborhood of a singular point on the infinite line

the charts y 7→ yt (analytically depending on t) one can assume that ht is
the identity, ht : y 7→ y, and independent of t.

The initial holomorphism Ht does not need to preserve the fibers {x =
const}, but in the new chart its normal component can be assumed identical.
Hence it can be described as the flow map along the linear vector field F
generating the foliation L,

Ht = exp
(
ψ · F )

, F = x ∂
∂x + λy ∂

∂y , (28.15)

for some variable complex time ψ = ψ(t, x, y). The time function ψ is
holomorphic outside the cylinder C.

Using a smooth partition of unity, we may extend the function ψ in-
side the bidisk so that it would be identically equal to zero in a suffi-
ciently small neighborhood of the y-axis. The corresponding flow map
(defined by the same formula (28.15) but now on the entire bidisk B) is
a C∞-diffeomorphism preserving the linear foliation L and extending Ht

as required. Repeating this construction for all singularities, we extend
H∞

t as a family of homeomorphisms, topologically trivializing the family
Isohol(F0). ¤

Remark 28.35. The homeomorphism Ht constructed in the proof of
Lemma 28.34, is essentially nonanalytic along the leaves. Indeed, Ht re-
stricted on the infinite line I ∼= P, is a homeomorphism of the Riemann
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28. Generic properties of polynomial foliations 593

sphere which maps the set St into S0. If these sets contain more than three
points, this would be in general impossible to achieve by a conformal map.

Proof of Theorem 28.32. Let F ∈ Isohol(F0) be a foliation sufficiently
close to F0 with the topologically conjugate holonomy group at infinity.
Because of the analyticity of the set Isohol(F0) established in Lemma 28.33,
either F0 is an isolated point of it and hence is automatically rigid, or (if
dimension of Isohol(F0) is greater than zero) we can always find an analytic
one-parameter deformation {Ft} connecting F0 with F = F1. For simplicity
we will assume that this deformation is parameterized by points of the unit
disk {|t| < 1}.

By Lemma 28.34, the deformation {Ft} is topologically trivial in a neigh-
borhood of the infinite line. By Lemma 28.24 and Remark 28.27 this defor-
mation is also transversally holomorphic (in fact, the transversal holomorphy
follows directly from the construction of the family of homeomorphisms H∞

t

conjugating Ft with F0 in the proof of Lemma 28.34).
This topological triviality together with the transversal holomorphy al-

low us to conclude that there exists a singular foliation T (F) defined on the
cylinder V × {|t| < 1} by the formulas (28.8), (28.10). Here, as in the proof
of Lemma 28.34, V ⊂ P2 is a tubular neighborhood of the infinite line and
{|t| < 1} ⊂ C is the parameter space of the deformation {Ft}.

We extend the foliation T (F) from the cylinder V × {|t| < 1} over V
to the cylinder P2 × {|t| < 1} over the entire projective plane P2 using the
standard arguments as follows. As was shown in the first step of the proof of
Lemma 28.26 (see p. 583), the foliation T (F) is defined in V ×{|t| < 1} by a
holomorphic 1-form ω = ωt +R dt, where ωt is the polynomial form defining
the foliation Ft, and R = R(x, y, t) is a function holomorphic in V ×{|t| < 1}
and having a pole of order not exceeding r+1 on the infinite line I for each t.
By the Hartogs–Poincaré theorem on erasing compact singularities [Sha92,
Theorem 3, §11], R(·, ·, t) can be extended to C2 as a polynomial in x, y of
degree 6 r + 1.

Thus the foliation T (F) gets extended on the cylinder P2×{|t| < 1}. By
Lemma 28.26, this means that the deformation is affine trivial. ¤
28F. Holonomy of a singular foliation is not a complete topological invariant.
The task of extension of a conjugacy between holonomy operators to a topological conju-
gacy between the respective singular foliations, which played the key role in the proof of
Rigidity Theorem 28.32 may be nontrivial even for the simplest cases of singularities.

For instance, consider two hyperbolic linear singular foliations F = {x dy−λy dx = 0}
and F′ = {x dy − λ′y dx = 0} in (C2, 0) with the characteristic ratios λ, λ′ /∈ R. The
hyperbolicity in two dimensions means that both singularities are in the Poincaré domain,
and the main result of §27B, Theorem 27.12 asserts that they are always topologically
equivalent regardless of the relationship between λ and λ′. In particular, the normal
component of the respective homeomorphism conjugates the linear holonomy operators
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594 V. Global properties of complex polynomial foliations

y 7→ 2πiλy and y 7→ 2πiλ′y associated with the standard loop x = exp 2πit, t ∈ [0, 1],
and the cross-section {x = 1} for these foliations. However, not every homeomorphism
conjugating the linear holonomy operators can be extended to a homeomorphism between
the foliations in the bidisk {|x| < 1, |y| < 1}.

Assume that A : C → C is an R-linear map such that A1 = 1 and Aλ = Aλ′ + m,
m ∈ Z as in Remark 6.49 (we drop the hat from notation to simplify it). Then the

homeomorphism h(y) = y |y|β covered by A, i.e., such that

h(exp 2πiy) = exp 2πiAy ∀y, h(0) = 0, (28.16)

conjugates the holonomy germs.

Proposition 28.36. The homeomorphism h between the holonomy operators does not
admit extension as a homeomorphism conjugating F with F′ in the neighborhoods of the
origin, unless m = 0.

Proof. Assume that such an extension is possible and denote it by H. Replacing H by
the composition exp(ψ(x, y)F ′)◦H, where ψ is a suitable smooth complex-valued function
and F ′ the linear vector field generating F′, without loss of generality we may assume that
H takes each fiber {x = const} over the unit circle {|x| = 1} into itself.

This additional assumption uniquely defines H on the (real three-dimensional) cylin-
der C = {t ∈ R/Z, |y| < 1}. Indeed, H must conjugate solutions of the linear systems

ẏ = 2πiλy and ẏ = 2πiλ′y, t ∈ [0, 1], (28.17)

describing the traces of the foliations F, F′ on the cylinder C: H(t, y) =
�
t,h(t, y)

�
,

h(0, ·) = h(2π, ·) = h. The function h(t, y) can be explicitly computed by solving the
equations (28.17):

h(t, y) = e2πitλ′ · h
�
e−2πitλy

�
, t ∈ [0, 1] (28.18)

(correctness of this definition follows from the choice of h).

Consider the circle γb = {y = b, t ∈ R/Z} for some value of b with 0 6= |b| < 1. This
is a closed curve in C which is not linked with the curve γ0 = {y = 0, t ∈ R/Z}. The
image H(γb) can be described as the t-parameterized curve eγb on the y-plane, covered (in
the sense of the exponential map z 7→ exp(2πiz)) by the t-parameterized line segment

t 7→ 1

2πi
lnh(t, b) = tλ′ +

1

2πi
ln h
�
e−2πitλ+2πiβ� = t(λ′ −Aλ) + Aβ, β =

ln b

2πi
,

by virtue of the identity (28.16) for any continuous choice of determination for the loga-
rithm. If the integer number m = λ′ − Aλ is nonzero, the curve eγb is m times winding
around the origin, hence the linking number between H(γb) and H(γ0) in the cylinder C
is m 6= 0 for b 6= 0.

Note that the traces of the foliations F, F′ on the 3-cylinder C and the unit 3-sphere
S3 = {|x|2 + |y|2 = 1} are diffeomorphic near γ0 ⊆ C ∩ S3 and any homeomorphism
conjugating F with F′ defines at the same time a conjugacy between the traces of F and
F′ on the sphere. Hence if the extension H of h onto the bidisk is possible, then there
would exist two unlinked curves in S3 whose images by a homeomorphism of the sphere
have nonzero linking number. This is impossible. ¤
Example 28.37 (Continuation of Example 28.5). As an application of this result we can
establish a rigidity theorem for homogeneous foliations. If two such foliations defined by
two homogeneous 1-forms of the same degree have dense (linear) holonomy groups and
are topologically equivalent, then their holonomy groups are topologically equivalent. By
Remark 6.49, there exists an R-linear map of C into itself, which conjugates the respective
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28. Generic properties of polynomial foliations 595

characteristic exponents λj and λ′j of the foliations modulo integers, bAλj = λ′j mod Z,
j = 1, . . . , r + 1. Applying Proposition 28.36, we can get rid of the eventual integer terms
and immediately derive the following more accurate result.

Theorem 28.38 (cf. with N. Ladis [Lad79]). If two homogeneous foliations of the same
degree with dense holonomy groups are topologically equivalent, then there exist an R-linear
map of C into itself, which maps 1 into 1 and the respective characteristic exponents λj

into λ′j for all j = 0, 1, . . . , r. ¤

In fact, the density assumption can be omitted, as well as the homogeneity condition.

Theorem 28.39 ([Ily78, Năı81]). If two polynomial foliations from the same class A′r
are topologically conjugated by a homeomorphism mapping the infinite line into itself,
then the respective characteristic exponents are conjugated by an R-linear map as in The-
orem 28.38.

The most difficult part of the proof in the nonhomogeneous case is covered by the
Năıshul Theorem 6.51.

28G. Further results on rigidity. Here we collect a few references to rigidity-type
results for foliations.

28G1. Stronger rigidity. One can further relax the condition of homotopic triviality on
the conjugating homeomorphism between foliations in Definition 28.29, thus arriving at
stronger and stronger forms of rigidity.

For instance, one can choose a finite bound N and consider only foliations F′ conju-
gated to the given foliation F0 ∈ A′r by a homeomorphism H of combinatorial complexity
not exceeding N on the infinite line. By definition, this means that the corresponding
automorphism h♦ : π1(I r S, a) → π1(I r S, a) of the fundamental group, maps all canon-
ical loops γ0, . . . , γr into loops represented by words of length not exceeding N . (The
combinatorial complexity of the homotopically trivial homeomorphism is 1.)

After the corresponding modification of the definitions the locus IsoholN (F0) will con-
sist of several (though finitely many) analytic components, and the corresponding locus
TopoN (F0) of foliations N -topologically conjugated to F0 (i.e., by a homeomorphism of
complexity 6 N) will no longer be connected. Yet a minor modification of the demon-
stration given in §28E allows us to prove that a sufficiently small neighborhood of a
generic foliation F from A′r contains only finitely many different types of foliations, N -
topologically equivalent but not topologically equivalent to F (Yu. Ilyashenko, 2006). The
conjecture, however, is that for a generic foliation one can drop completely all assump-
tions on the homeomorphism at the price of having only finitely many types of nontrivial
homeomorphisms.

Conjecture 28.40. A generic foliation from the class A′r is almost ideally rigid, i.e.,
in a sufficiently small neighborhood of F there is only finitely many different types of
topologically equivalent but not affine equivalent to each other foliations.

28G2. Weaker assumptions on the foliation. Other rigidity results for pseudogroups from
§6I can be translated into theorems on rigidity of foliations.

Theorem 28.41. There exists a real algebraic subset Σr ⊂ Ar and a nowhere dense
real analytic subset Σ′

r ⊂ Ar of real codimension at least 2, such that any foliation F ∈
Ar r (Σr ∪Σ′

r) has the following properties :

(1) each leaf of the foliation F is dense in C2,

(2) F is reasonably rigid,

(3) for r > 3, the foliation F has a countable number of homologically independent
complex limit cycles.
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596 V. Global properties of complex polynomial foliations

The first statement follows from [Shc82, Shc84]. The third statement was announced
in [Shc86] an proved in [SRO98]. The detailed proofs can be found in [Shc06].

The following conjecture was formulated in [Ily79b] for foliations by analytic curves
in higher dimension spaces as well as for generic foliation from class Br.

Conjecture 28.42. The majority (an open and dense subset of foliations from the class
Br) possess the three properties listed in Theorem 28.41 above.

The same is true for the majority of polynomial foliations on Pn, n > 3, defined by
polynomial vector fields in Cn.

This conjecture is still not proved. A weaker result that claims existence of an open
(though not dense) set with the density and rigidity properties was proved recently by
F. Loray and J. Rebelo [LR03].

28G3. Different classes of foliations. Theorem 28.20 (deformational rigidity of generic
foliations from the class Ar) was generalized by X. Gomez–Mont [GM88]. He proved
deformational rigidity for generic foliations having an algebraic separatrix (not necessarily
a line, as is the case for the class Ar).

Theorem 28.43. Any topologically trivial deformation (parameterized by a reduced an-
alytic space) of a generic homogeneous foliation in C3 having an algebraic separatrix, is
holomorphically trivial.

A topologically trivial transversally holomorphic deformation of a generic homoge-
neous foliation in Cn+1, n > 2, is holomorphically trivial.

Here by homogeneous foliation we mean a singular complex one-dimensional foliation
of Cn generated by a homogeneous polynomial vector field. The author’s proof is by
homological methods, yet it seems that Theorem 28.43 can be proved by the same type
of arguments that were used to prove Theorem 28.20 above. Moreover, we believe that
Theorem 28.43 may be further improved from deformational to (absolute) rigidity. Denote
by Br(C) the collection of foliations from the class Br having a fixed algebraic separatrix
C ⊂ P2. This class can be parameterized by a projective variety in the way similar to the
“unrestricted” classes Ar, Br.

Conjecture 28.44. A generic equation from the class Br(C) is rigid.

Exercises and Problems for §28.

Problem 28.1. Prove that any closed trajectory γ of a polynomial vector field
on the real plane R2 is noncontractible on its complexification L (the leaf of the
holomorphic foliation on P2).

Hint. Show that γ cannot be homologous to zero, i.e., cannot be the boundary
of a domain in L.

Problem 28.2. Find necessary and sufficient conditions for the closures of all
leaves defined by (28.1) in P × C to be compact Riemann surfaces. Prove that
under this condition an autonomous polynomial system corresponding to equation
(28.1) has at least one singular point of the Poincaré type.

Problem 28.3 (see [Lad79]). Find a topological classification of equations (28.1)
with dense leaves.

Problem 28.4. Find necessary and sufficient conditions for planar homogeneous
foliations to be dense in P2 (Example 28.5).

Problem 28.5. Give a complete proof of Theorem 28.38.
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Exercise 28.6. For any r construct a polynomial foliation of the projective degree
r such that the closures of almost all leaves have real dimension 3.

Problem 28.7. Prove that any small deformation of an ultra-Morse polynomial
results in a topologically trivial deformation of the corresponding foliation by the
level curves of the polynomial.

Problem 28.8. Consider a holomorphic family of ultra-Morse polynomials Ht with
the same (not depending on the parameter t) higher order terms. Prove that it is
transversally holomorphic in some neighborhood of infinity.

Problem 28.9. Give an example of a topologically trivial and transversally holo-
morphic deformation which is nevertheless not analytically trivial.

Exercise 28.10. Give an example of a homeomorphism h : P→ P which preserves
a given set S of r+1 points, r > 2, and has arbitrarily high combinatorial complexity
in the sense explained in §28G1.
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First aid

A. Crash course on functions of several complex variables

In this appendix we collect several facts about holomorphic functions of
several variables. They can be found in a number of sources, among which
we recommend the books [Hör00], [GH78], [GR65], [Sha92], [Chi89],
and more recently the textbooks [FG02] and especially [Ebe07].

A.1. Holomorphic functions of several variables. A complex function
f(z1, . . . , zn) defined on an open domain U of the complex n-space Cn is
holomorphic or analytic (these words will be used as complete synonyms) in
U , if the real and imaginary parts of the function are differentiable at every
point a ∈ U , and the differential dfa : TaU → C, is C-linear:

dfa(λξ) = λ · dfa(ξ) ∀ξ ∈ TaU ∼= Cn. (A.1)

This condition can be written in the form of a system of partial differential
equations called the Cauchy–Riemann equations,

∂

∂z̄j
f = 0, j = 1, . . . , n,

∂

∂z̄j
=

1
2

(
∂

∂xj
− 1

i

∂

∂yj

)
. (A.2)

Functions holomorphic in the domain U form a linear space which will be
denoted by O(U).

We will often use the space A(U) of functions holomorphic in U and
continuous on the closure U ; cf. with §1B. This space is equipped with the
norm

A(U) = O(U) ∩ C(U), ‖f‖U = max
z∈U

|f(z)| ∀f ∈ A(U). (A.3)

599
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A function of several variables is holomorphic if and only if it is holo-
morphic in each variable separately (Hartogs theorem).

A.2. Holomorphic maps and their inversion. A map f : U → Cm is
holomorphic, if all its components are holomorphic. Differentials of holo-
morphic maps are C-linear maps from TaU ∼= Cn to Tf(a)Cm ∼= Cm for all
a ∈ U . Since the composition of C-linear maps is again C-linear, composi-
tion of holomorphic maps is again a holomorphic map.

If the differential dfa of a holomorphic map f : U → Cn, U ⊆ Cn, is
invertible (as a C-linear map of Cn into itself), then the map is locally
invertible: there exists a holomorphic map g, defined in some neighborhood
of f(a), such that g ◦ f = id.

For holomorphic maps the implicit function theorem holds. If U ⊂
Cn+m and f : U → Cn is a holomorphic map, f = f(z, w), such that the
differential of f with respect to the first variable is invertible at some point
(a, b) ∈ U , then the system of equations f(z, w) = 0 determines z as a
holomorphic (vector) function of w in some neighborhood of b ∈ Cm, such
that f(z(w), w) ≡ 0. The condition of invertibility means that the matrix of
partial derivatives

(
∂fi/∂zj

)n

i,j=1
, has nonzero determinant at (a, b) ∈ Cn+m.

A.3. Cauchy formula and its consequences. Let Dr = Dr(a) be a
polydisk of polyradius r = (r1, . . . , rn), rj > 0,

Dr(a) = {(z1, . . . , zn) ∈ Cn : |zj − aj | < rj , j = 1, . . . , n},
and D◦

r its skeleton, the Cartesian product of the boundary circles,

D◦
r(a) = {(z1, . . . , zn) ∈ Cn : |zj − aj | = rj , j = 1, . . . , n}.

Note that the skeleton forms only a small fraction of the boundary ∂Dr.
Similarly to functions of one complex variable, a function holomorphic in

a polydisk Dr as above and continuous on its closure, can be obtained from
its values on the skeleton of the polydisk by the Cauchy integral formula,

f(a) =
1

(2πi)n

∫
· · ·

∫

D◦r (a)

dz1 ∧ · · · ∧ dzn

(z1 − a1) · · · (zn − an)
(A.4)

(the integral can be understood as an iterated integral).
The Cauchy integral formula implies numerous corollaries, the most im-

portant among them the possibility of expanding a holomorphic function in
a converging Taylor series.

We use the standard multi-index notation: for an integer vector α =
(α1, . . . , αn) ∈ Zn

+ we denote

α! = α1! · · ·αn!, zα = zα1
1 · · · zαn

n ,
∂α

∂zα
=

∂α1

∂zα1
· · · ∂αn

∂zαn
.
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A. Crash course on functions of several complex variables 601

In these notations the integral representation (A.4) implies the Cauchy in-
equalities ∣∣∣∣

∂α

∂zα
f(a)

∣∣∣∣ 6
‖f‖Dr(a)

α! rα
, ∀α ∈ Zn

+,

which in turn guarantee that the Taylor series for f converges on Dr(a), and
this convergence is uniform on any smaller polydisk centered at a,

∀z ∈ Dr(a), f(z) =
∞∑

|α|=0

cα(z − a)α, cα =
1
α!
· ∂αf

∂zα
(a).

A.4. Weierstrass compactness principle. Another consequence of the
Cauchy inequalities is the Weierstrass compactness principle. It asserts that
a sequence of holomorphic functions {fk}∞k=1 ⊆ O(U) uniformly convergent
on a bounded domain U ⊂ Cn (with compact closure), has a holomorphic
limit. This principle implies that the space A(U) = O(U)∩C(U) introduced
in (A.3), is a Banach (complete normed) space. This completeness plays a
central role throughout the book.

A.5. Germs of analytic functions. Germs of analytic functions at a
given point, say, at the origin 0 ∈ Cn, form a commutative algebra over
C, denoted by O(Cn, 0). This algebra is local : its unique maximal ideal
m ⊂ O(Cn, 0) consists of germs vanishing at the origin. Usually we ignore
the difference between germs and their representatives (defined in sufficiently
small domains) both in argumentation and in notations.

The ring of germs O(Cn, 0) is Noetherian: any ascending chain of ideals
in this ring eventually stabilizes. This implies that any ideal in this ring has
finite basis (Hilbert’s theorem).

Any germ can be factored as a product of finitely many irreducible germs;
the irreducible factors are defined uniquely modulo multiplication by units
(elements from O(Cn, 0) r m). A germ is square-free, if all its irreducible
factors are pairwise distinct (modulo units).

A.6. Analytic sets. A subset X ⊂ Cn is analytic if in a neighborhood of
each point a ∈ Cn it can be represented as common zero locus of several
functions analytic at a. By Hilbert’s theorem, the number of such functions
can always be assumed finite. Analytic sets are sometimes referred to as
analytic varieties; they are always closed.

A set is an analytic submanifold of codimension k 6 n, if near each
point a ∈ X it is a common zero locus of k functions holomorphic at a with
linearly independent (over C) differentials.

Analytic sets have rather regular structure even in the case where they
are not submanifolds of Cn. In particular, every analytic variety can be
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stratified , i.e., represented as (locally) finite union of strata Xk of different
dimensions, such that

(1) each stratum Xk is an analytic submanifold in Cn of certain dimen-
sion dk, and

(2) the closure of each stratum consists of itself and several strata of
lower dimensions.

One may in fact guarantee that the tangent planes to strata near the bound-
ary points have certain limit positions compatible with that of tangent planes
to the adjoining strata (Conditions A and B of Whitney). For most purposes
one can use the characteristic property formulated in terms of transversality:
any smooth map transversal to a stratum Xk at a point a ∈ Xk, is transver-
sal also to all strata of higher dimensions which have a at their closure, at
all points sufficiently close to a.

The principal stratum of highest dimension is called the regular part or
set of regular points of X and denoted Reg X.

The germ (X, a) of an analytic set X at a point a ∈ Cn is irreducible, if
it cannot be represented as the union of two germs of analytic sets X = X1∪
X2, such that Reg Xi $ Reg X. The germ of a hypersurface X = {f = 0}
generated by an irreducible germ f ∈ O(Cn, a), is irreducible. Regular parts
of irreducible sets are locally connected.

Any germ of an analytic hypersurface admits an irreducible decomposi-
tion into the union of uniquely defined irreducible components of codimen-
sion 1. This follows from an irreducible factorization of holomorphic germs;
see §A.5.

A.7. Uniformization. An analytic submanifold X of codimension k in Cn

admits local uniformization near each point a ∈ X: there exists a holomor-
phic map (Cn−k, 0) → (X, a) which is one-to-one.

Among singular analytic varieties, only analytic curves, varieties of com-
plex dimension 1 admit uniformization. Any irreducible germ of an analytic
curve (X, a) ⊂ (Cn, 0) can be parameterized by a holomorphic one-to-one
map.

A.8. Forced analytic continuation: erasing of singularities. For
some domains U ⊂ Cn, any function holomorphic in U , can be extended
as a function analytic in a larger domain. This phenomenon is peculiar for
holomorphic functions in more than one variable.

If U ⊆ Cn is an open domain and K b U its compact subset, then any
function analytic in U r K, extends on the whole of U . This means that
compact holes in the domain can be always erased (Poincaré–Hartogs).
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B. Elements of the theory of Riemann surfaces. 603

If (X, a) is the germ of an analytic variety of codimension 1 (hypersur-
face) and f is a locally bounded (i.e., bounded in some neighborhood of every
point) function holomorphic in the complement to X, then f can be extended
on X while remaining analytic. This can be proved by a straightforward ap-
plication of the Cauchy integral formula exactly in the one-dimensional case,
if X is a nonsingular hypersurface.

If X is the germ of analytic variety of codimension > 2, then the condi-
tion of local boundedness can be dropped: any function holomorphic in the
complement to X, can be extended on X while remaining holomorphic. For
instance, any isolated singular point of a holomorphic function on the plane
C2 can be erased.

A.9. Meromorphic functions. The ring of holomorphic germs has no
divisors of zero, hence admits extension to the field of fractions denoted by
M(Cn, a). A representative of a meromorphic germ f = g/h, g, h ∈ O(U),
is a holomorphic function on the complement to the zero locus {h = 0}
of the denominator, which can be extended as a holomorphic map to the
Riemann sphere P = C∪{∞} on the complement to the indeterminacy locus
{f = 0, g = 0} (common zeros of the numerator and denominator).

A meromorphic function in a domain U is a collection of local repre-
sentations fα = gα/hα in charts of an open covering U = {Uα} of U , such
that on the intersections Uαβ the equalities gαhβ − gβhα = 0 (this defini-
tion can be literally used for holomorphic manifolds). Under certain global
assumptions on U , there exists a single global representation f = g/h with
holomorphic g, h ∈ O(U). Meromorphic functions form a field denoted by
M(U).

A function meromorphic on U rY , a complement to an analytic variety
Y of codimension > 2, can be extended as a meromorphic function on U
(Lévi theorem).

A.10. Analyticity vs. algebraicity. An analytic subvariety of a complex
projective space Pn is an algebraic variety (Chow theorem). A meromorphic
function on Pn is rational, ratio of two homogeneous polynomials of the same
degree in the homogeneous coordinates on Pn.

B. Elements of the theory of Riemann surfaces.

B.1. Riemann surfaces and algebraic curves. A Riemann surface is a
complex manifold of dimension one. The principal examples are the complex
line C itself, open domains in C, the Riemann sphere P = C∪ {∞}, smooth
affine and projective algebraic curves.
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A map f : C → C ′ between two Riemann surfaces is holomorphic if it is
locally defined by a holomorphic function z′ = f(z) for any local holomorphic
charts z, z′ on C,C ′ respectively.

The zero locus C of a bivariate polynomial {P (x, y) = 0} ⊂ C2 is called
an affine algebraic curve. It may be nonsmooth, yet there always exists
a Riemann surface C̃ and a map ϕ : C̃ → C such that any smooth point
b ∈ C has a unique preimage a ∈ C̃ and the germ ϕa : (C̃, a) → (C, b) is
biholomorphic. The curve C̃ is called normalization of C.

Existence of normalization for any algebraic curve (normalization the-
orem) may be easily proved using the local uniformization theorem from
§A.7 and the irreducible decomposition theorem for curves from §A.6. For
curves with normal crossings see Problem 25.1.

The closure of an affine algebraic curve in the projective plane is called
the projective algebraic curve. Projective curves also admit normalization
which is a compact Riemann surface.

Conversely, any compact Riemann surface is algebraic. There are many
ways to formalize this statement. One of them is the following. For any
abstract compact Riemann surface S there exists a projective algebraic curve
C ⊂ P2 for which S is a normalization: S = C̃.

B.2. Genus and degree of an algebraic curve. For an affine algebraic
curve C, there exists a unique (modulo constant factor) polynomial of min-
imal degree whose locus is C, which is called the minimal polynomial of C
and of the projective closure of C. The degree of an affine (projective) curve
is the degree of this minimal polynomial.

The degree of a projective algebraic curve C ∈ P2 is equal to the number
of intersections between this curve and a generic line ` ⊂ P2.

The genus of a projective algebraic curve is the (topological) genus of
its normalization considered as a smooth 2-dimensional surface. The genus
of the affine algebraic curve is the genus of its projective closure.

If f : C → C ′ is a holomorphic map between two compact Riemann
surfaces, them it defines a ramified covering of C ′ over the set of critical
values of f . Near each critical value a ∈ C the map f has the form z 7→
zk = z′ for suitable choices of local charts z, z′ ∈ (C, 0) on C,C ′ and some
natural number k = ka > 1 (we set for convenience ka = 1 for a regular
point a ∈ C). If m is the number of sheets of this covering and g, g′ the
genuses of C and C ′ respectively, then these numbers are related by the
Riemann–Hurwitz formula

2(g − 1) = 2m(g′ − 1) +
∑

a∈C

(ka − 1). (B.1)
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For any affine curve C the Cartesian projection π : C2 → C, (z, w) 7→
z, restricted on C, extends to a holomorphic map between the projective
closure of C and the Riemann sphere P. If C is smooth, the number of
sheets m of this covering is equal to the degree of C. The genus of the
projective line is one. An easy computation of the total ramification index
yields the formula g = 1

2(m− 1)(m− 2) for the genus of a smooth algebraic
curve of degree m.

B.3. Meromorphic functions on Riemann surfaces. By the maxi-
mum modulus principle, there are no holomorphic maps from a compact
Riemann surface to C, hence there are no globally defined holomorphic func-
tions. A map f : C → P is called a meromorphic function on C. Locally
any meromorphic function can be represented by a ratio of two holomorphic
functions. For any point a ∈ C the order orda f ∈ Z is an integer number
equal to the order of zero or the negative order of pole of f at a. This order
is well defined independently of the choice of the local chart on (C, a) used
for its computation (we assign the value orda f = 0 if a is neither a root nor
the pole of f).

Meromorphic functions on the projective line P are rational (i.e., poly-
nomial in z and z−1 in the affine chart C ⊂ P). Holomorphic functions on an
affine algebraic curve that are meromorphic on its closure, are restrictions of
polynomials in two variables onto this curve. A meromorphic function on a
projective algebraic curve C ⊂ P2 is always the restriction of some rational
function P (x, y)/Q(x, y) onto this curve.

For any meromorphic function on a compact Riemann surface,

∀f ∈ M(C)
∑

a

orda f = 0. (B.2)

B.4. Holomorphic and meromorphic forms on Riemann surfaces.
A differential 1-form ω on a Riemann surface C is holomorphic (resp., mero-
morphic) if in any local chart z it has the form ωz = f(z) dz, where the
coefficient f is holomorphic (resp., meromorphic). Poles of the coefficient f
are called the poles of the form. The Cauchy-Riemann equation ∂z̄

∂=0 implies
that any holomorphic 1-form on a Riemann surface is closed, dω = 0. Hence
by the Stokes formula the integral of a holomorphic 1-form over a cycle on
a Riemann surface depends on the homology class of the cycle only.

In particular, the integral

resa ω =
1

2πi

∮

γ
ω (B.3)

of a meromorphic 1-form over any small loop around a point a ∈ C, does not
depend on the loop and is called the residue of the form at a (the residue is
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zero if ω is holomorphic at a). By the Stokes theorem, for any meromorphic
1-form ω, ∑

a∈C

resa ω = 0. (B.4)

Applied to the logarithmic derivative ω = f−1df of a meromorphic function
f ∈ M(C), this identity implies (B.2).

B.5. Uniformization. There are three examples of simply connected Rie-
mann surfaces that are not pairwise conformally equivalent: an open disc
D = {|z| < 1}, the complex line C and the Riemann sphere P. The Poincaré–
Kœbe uniformization theorem claims that these are the only possibilities:
any simply connected Riemann surface is biholomorphically equivalent either
to D, C or P. This implies, in particular, that any Riemann surface with a
cyclic fundamental group is conformally equivalent either to C∗ = {0 < |z|},
to an annulus {ε < |z| < 1}, ε > 0, or to a punctures disc {0 < |z| < 1}.
This trichotomy lies in the background of the study of parabolic germs in
Chapter IV.
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theory of second-order dynamic systems, Halsted Press (A division of John
Wiley & Sons), New York-Toronto, Ont., 1973. MR 50 #2619 144, 145, 149

[And62] A. F. Andreev, On Frommer’s method of studying a singular point of a first-
order differential equation, Vestnik Leningrad. Univ. 17 (1962), no. 1, 5–21.
MR 25 #5228 119

[And65a] , On the number of operations used in Frommer’s method for investiga-
tion of a singular point of a differential equation, Differencial′nye Uravnenija
1 (1965), 1155–1176. MR 32 #5972 119

[And65b] , Remarks on a paper of S. Lefschetz, Differencial′nye Uravnenija 1
(1965), 199–203. MR 33 #2865 119

[Arn69] V. I. Arnold, Remarks on singularities of finite codimension in complex dy-
namical systems, Functional Anal. Appl. 3 (1969), no. 1, 1–5. MR 41 #4573
217, 546, 552

609

Draft version downloaded on 20/11/2012 from http://www.wisdom.weizmann.ac.il/~yakov/thebook1.pdf

DRAFT



610 Bibliography

[Arn70a] , Algebraic unsolvability of the problem of Ljapunov stability and the
problem of the topological classification of the singular points of an analytic
system of differential equations, Funkcional. Anal. i Priložen. 4 (1970), no. 3,
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[MMJR97] P. Mardešić, L. Moser-Jauslin, and C. Rousseau, Darboux linearization and
isochronous centers with a rational first integral, J. Differential Equations 134
(1997), no. 2, 216–268. MR1432095 (98h:34061) 535
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[Pha67] F. Pham, Introduction à l’étude topologique des singularités de Landau,
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[Rou89] R. Roussarie, Cyclicité finie des lacets et des points cuspidaux, Nonlinearity 2
(1989), no. 1, 73–117. MR980858 (90m:58169) 200

[Rou98] , Bifurcation of planar vector fields and Hilbert’s sixteenth problem,
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[Šoš72] A. N. Šošităı̌svili, Bifurcations of topological type of singular points of vector
fields that depend on parameters, Funkcional. Anal. i Priložen. 6 (1972), no. 2,
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[SZ02] E. Stróżyna and H. ŻoÃla̧dek, The analytic and formal normal form for the
nilpotent singularity, J. Differential Equations 179 (2002), no. 2, 479–537.
MR1885678 (2003g:37091) 72

[Tak71] F. Takens, Partially hyperbolic fixed points, Topology 10 (1971), 133–147. MR
46 #6399 164

[Tak01] , Forced oscillations and bifurcations, Global analysis of dynamical sys-
tems, Inst. Phys., Bristol, 2001, Reprint from Comm. Math. Inst. Rijksuniv.
Utrecht, No. 3-1974, 1974, pp. 1–61. MR 2002i:37081 29, 39

[Tam92] I. Tamura, Topology of foliations: an introduction, Translations of Mathemat-
ical Monographs, vol. 97, American Mathematical Society, Providence, RI,
1992, Translated from the 1976 Japanese edition and with an afterword by
Kiki Hudson, With a foreword by Takashi Tsuboi. MR1151624 (93c:57021) 13

[Tit39] E. Titchmarsh, The theory of functions, Oxford University Press, 1939. 460

[Tre83] A. Treibich, Un résultat de Plemelj, Mathematics and physics (Paris,
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Astérisque (1995), no. 231, 3–88, Petits diviseurs en dimension 1. MR
96m:58214 72

[Yom99] Y. Yomdin, Global finiteness properties of analytic families and algebra of their
Taylor coefficients, The Arnoldfest (Toronto, ON, 1997), Amer. Math. Soc.,
Providence, RI, 1999, pp. 527–555. MR 1 733 591 203, 209
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Index

# the number of isolated points of an
analytic set, e.g., #M , 211

¦ the dot denotes differentiation in the
complex time, e.g., ẋ, Ẏ , etc., 2

A(U) = O(U) ∩ C(U) functions
holomorphic in U and continuous in
the closure, 2

Ap parabolic germs tangent to identity
with order p + 1, 83, 374

Ar foliations of degree 6 r in a fixed affine
chart, 473, 499

A′r foliations of degree r with invariant I
and r + 1 distinct singularities on it,
499

Am,n,k,λ Space of m : n-resonant germs in
Diff(C, 0), 399

Aut A automorphism of a commutative
algebra A, 12, 31

Br foliations of projective degree r, i.e.,
defined by polynomial vector fields of
degree 6 r in any affine chart on P2,
474

Bs Bonnet set, 516, 517, 543
C field (line, plane, . . . ) of complex

numbers, 599
C(K) functions continuous on a compact

K, 3, 601
D open unit disk on the complex plane

{|z| < 1}, 599
D(Cn, 0) germs of holomorphic vector fields

at the origin of Cn, 9
D(U) vector fields holomorphic in U , 9
D[[Cn, 0]] formal vector fields in Cn at the

origin, infinite jets of vector fields, 31
Der A derivation of a commutative algebra

A, 10, 31

Diff(Cn, 0) group of germs of holomorphic
self-maps with the operation of
composition, 12

Diff[[Cn, 0]] formal isomorphisms of Cn at
the origin, 32

Diff1(C, 0) germs of holomorphisms from
Diff(C, 0) tangent to identity, 82

E exceptional divisor on M, 114
E0,1 saddle-nodes formally equivalent to

the z2 dw + w dz = 0, 420
exp(tF ) time t flow of a vector field F , 35
I infinite line P2 r C2, 470
τn : Jn(T ) → T n-jet bundle, 342
κ0(F, γ) vanishing order of a singular

foliation F restricted on a separatrix γ,
246

Λ•(U) the exterior algebra of holomorphic
differential forms, 16

Λk(Cn, 0) germs of holomorphic k-forms at
the origin in Cn, 17

M complex Möbius band, 114
M(Cn, a) meromorphic germs at a ∈ Cn,

603
M(U) meromorphic functions in a domain

(on a manifold) U , 22
MR Martinet–Ramis modulus, 423, 424
M p,λ space of Ecalle–Voronin moduli, 384
M ◦

p,λ coboundaries of normalizing cochains

for parabolic germs, 384
M F

p,λ space of Ecalle–Voronin moduli in

the Fourier representation, 393

M F,◦
p,λ coboundaries of normalizing cochains

for parabolic germs in the Fourier
representation, 393

O(Cn, a) germs of functions holomorphic at
a point a ∈ Cn, 601
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624 Index

O(U) functions holomorphic in an open
domain U , 1, 599

P = P1 projective line, Riemann sphere S2,
599

P Picard operator, 3–7
Pk complex projective space, 599
Qf,g = O(C2, 0)/ 〈f, g〉 local algebra of two

germs f, g ∈ O(C2, 0), 125
R real numbers, 599
RP 2 real projective space, 599
Sk real k-dimensional sphere (smooth

manifold), 599
TM =

S
a TaM tangent space to a

manifold M , union of tangent spaces
TaM at all points a ∈ M , 235

τa(`, F) the order of contact between
foliation F and a noninvariant line ` at
a point a ∈ `, 476

Γ (π) meromorphic sections of a
holomorphic vector bundle π, 295

⊗M(T ) “meromorphization” of
holomorphic objects defined on a
holomorphic manifold T , 168

⊗O(λ), ⊗C[λ] “parameterization” of
different objects (vector fields,
self-maps, etc.) by extra parameters λ,
216

ξd holomorphic line bundle of degree d over
the Riemann sphere P, 292

m maximal ideal of germs or formal series,
vanishing at the origin, 30, 31, 123,
136, 139, 205

alternative, 165

Abelian integral, 512
affine equivalence, 576
algebraic decidability, 153, 154
almost complex structure, 386
almost regular germ, 456
asymptotic series, 359

Bautin depth, 203
Bautin ideal, 203, 205, 216

of elliptic family, 215
periodic, 206

Bautin index, 203
Bernstein classes, 214
Birkhoff factorization, 312, 353
Birkhoff–Grothendieck cocycle, 292, 305
blow-up, 115

blow-down, 115
of analytic curve, 118
of singular foliation, 119
simple, 117

Bonnet discriminant, 516
Bonnet set, 516

Brieskorn lattice, 518
Brjuno condition, 373
bundle

fiber of a bundle, 256
normal, 434
topological, 194
vector, 285

bundle map, 289

Camacho–Sad index, 234
canonical loops, 313, 314, 568, 569, 587,

588, 595
capacity, 76, 79
Cartan cocycle, 305
Cauchy–Riemann equations, 599
center, 147
center manifold, 420
centralizer

parabolic, 397
characteristic matrix, 273, 275
characteristic number (exponent), 472, 499,

569, 570, 578, 581, 595
coboundary

additive, 381
matrix, 287
mulitiplicative, 287

coboundaty
compositional, 381

cochain, 287, 288
normalizing, 383
vector, 295

cocycle
matrix cocycle, 287

cofactor, 229, 493, 500
Darboux cofactor, 496
invariant, 478

cohomology bundle, 539
combinatorial complexity

of a homeomorphism, 586
companion system, 332
complex Möbius band, 115
complex structure, 386
cone, 547
connexion, 236

meromorphic, 472
connexion form, 234, 299
connexions

F -related, 299
corner singularity, 149
covering

nice, 376
standard, 362

Cremer germ, 431
critical locus, 515, 522
cuspidal singularity, 56
cycle

of pseudogroup, 94
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cyclicity, 201, 444
complex, 211

decidability, 151, 154
decidable set, property, 161
deformation

of foliation, 577
deformational rigidity, 578
degree

of a foliation, 473, 475
of line bundle, 292, 436

Dehn twist, 531
density condition, 97
derivation, 10
derivation-division process, 211
determinant bundle, 291
dicritical

generaized dicritical singularity, 242
singularity, 121

dicritical singularity, 119
differential

invariant Darboux differential, 496
displacement function, 201
divisor, 123

exceptional, 115
preimage by a holomorphic map, 125

Dulac germ, 432
Dulac ideal, 215

Ecalle–Voronin modulus, 374, 384–386,
389, 392–395, 399–401, 413, 623

elementary singularity, 56, 112, 119, 404
elliptic germ, 405
elliptic singularity, 57

generalized, 166
equivalence

affine, 576
of Martinet–Ramis moduli, 423
of matrix cocycles, 288
of Stokes collections, 363
of vector bundles, 289

Euler field, 473
Euler system, 262
exterior algebra, 16

factor
invariant, 478

fiber, 256
fiber-valued form, 298
fibered map, 289
first integral, 180

primitive, 180
first return map, 451
fixed point, 3
flat function, 352, 359
focus, 147

weak, 173

foliation, 13
Darbouxian, 479
Hamiltonian, 478, 511
integrable, 25, 479
logarithmic, 196
reversible, 198

formal equivalence, 40
ramified, 358

formal flow, 34
formal map, 31
formal series, 29
functional cochain, 381
fundamental matrix solution, 258
fundamental system of solutions, 258

gauge equivalence, 261
formal, 265, 268
local, 265
meromorphic, 263

gauge map, 261
Gauss–Manin connexion, 539
generalized dicritical singularity, 242
generalized elliptic singularity, 165, 166
germ

almost regular, 456
elliptic, 405
hyperbolic, 70, 97
parabolic, 82, 374

global desingularization, 484

Hilbert number, 442
Hilbert’s sixteenth problem

infinitesimal, 512
holomorphic foliation

singular, 23
holomorphy

transversal, 578
holonomy

group, 19
map, 19
vanishing, 183

homological equation, 42
homology bundle, 539
hyperbolicity, 106

complex, 548
real, 106, 558

hyperelliptic polynomial, 545
hypergeometric equation, 349

index
of a separatrix, 234

infinitesimal Hilbert problem, 512
integrability

Darbouxian, 196
formal, 180
in quadratures, 59
meromorphic, 195
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of foliation, 180
integrable

foliation, vector field, 180
integrable germ, group, 90
integrable section, 344
integral of foliation, 180
integrating factor, 504
intersection

isolated, 129
multiplicity, 127

intersection graph, 544
intersection index, 129
invariant differential, 495
invariant factor, 493
irreducible germ, 602

jet bundle, 342
jet extension, 343

Kapteyn form, 225

leading matrix, 352, 355
leaf

local, 14
level of a conformal germ, 83
Liénard equation, 59
limit cycle, 148, 453

complex, 94
of holomorphic foliations, 572
of pseudogroup, 94

line bundle, 291
line field, 16
linear differential operator, 331–340, 345,

350
local algebra, 125
local irreducibility, 354
local leaf, 14
local ring, 30
local section, 294
locus

critical, 522
logarithmic form, 196
Lotka–Volterra system, 232
Lyapunov stability, 178

Möbius band, 115
majorant operator, 62–64
map-cochain, 381
matrix logarithm, 35
Max Noether theorem, 489, 585
metabelian group, 85
minimal polynomial, 481
moderate growth condition, 265
monic operator, 330
monoblock, 325
monodromic singularity, 147
monodromy data, 277

monodromy group, 260
monodromy map, 147
monodromy matrix, 260, 333
monopole, 281–284, 308, 309, 312, 318, 353,

355
multiplicity, 127

of singular point, 120

nice p-covering, 376
nilpotent singularity, 56
nodal point, 492
node

rational, 141, 242
nondicritical singularity, 119
normal bundle, 434
normal component, 578
normalization, 483
normalizing cochain, 362
null leaf, 257, 262

operator
irreducible, 332

orbit
of a pseudogroup, 94

orbital equivalence
holomorphic, 23
topological, 23

orbital symmetry, 86
order

of a function germ, 131
of curve, 243
of meromorphic section, 296
of singularity, 120, 243

parabolic germ, 82, 374
period matrix, 533
periods

for linear flow on Cn, 555
Petrov module, 519
phase portrait, 143
Picard–Lefschetz formula, 532
Picard–Vessiot extension, 335
plaque, 14
Poincaré domain, 61
Poincaré problem, 233, 242, 478
Poincaré rank, 263, 352
Poincaré–Dulac series, 215
Poincaré–Dulac–Levelt normal form, 270
Poincaré–Lyapunov theorem, 179
polycycle, 450

hyperbolic, 455
monodromic, 452

polydisk, 600
polyradius, 600
projective degree, 473
pseudogroup

finitely generated, 94
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quotient equation, 59, 217, 409, 463

radical (adj.), 203, 204, 223, 225, 231, 232
radical (n.), 203, 225, 231
ray

separation, 359
reduced equation, 478
regular part of analytic variety, 602
relative cohomology, 512
residue matrix, 263
residue of connexion, 300
resonance, 41

additive, 41
for irregular singularities, 355
Fuchsian systems, 269
multiplicative, 52

resonant monomial, 45, 57
resonant tuple, 41
Riemann–Hilbert problem, 312
rigidity, 92, 100, 554

deformational, 577, 578
ideal, 576, 577, 595
of conformal germs, 100, 104, 105
of foliations, 545, 554, 566, 569, 576
of Riemann surfaces, 100
reasonable, 587–589, 595

saddle
resonant, 57

saddle-node, 57
self-map, 60

saturation, 20, 185, 186
Sauvage cocycle, 307
Schröder–Kœnigs theorem, 70, 74
sealing map, 415
section

local, 300
of a bundle, 294

sector, 359
acute, 365
elliptic, parabolic, hyperbolic, 145
mixed, 368
of fall, 352, 368
of jump, 352, 368

sectorial decomposition, 146
sectorial description, 151
semi-monodromy, 167
semi-section, 451
semialgebraic set, 154
semianalytic set, 159
semiformal series, 50, 202
separatrix, 24, 119, 121, 233
series

formal, 29
semiformal, 50, 202

Siegel domain, 61
simple foliation, 191

singleton, 325
singularity

Fuchsian, 268
irreducible, 354
monodromic, 147
regular, 332

for linear system, 266
skeleton of a polydisk, 600
solution

formal, 34
solvable group, 85
splitting type, 304
square-free equation, 478
standard cocycle, 292
standard covering of P, 291
standard domain, 456
Stokes collection, 363

trivial, 363
Stokes line, 359
Stokes matrix, 360
stratification, 602
strongly contracting operator, 65
sufficient jet, 154

tangency order, 139
total, 476

tangency point, 119, 120, 122
tangency to identity, 31
tangent bundle, 286
tangent form, 121
Taylor series

of functional cochain, 381
topological orbital equivalence, 23
trace connexion, 303
trace of foliation, 547
trail

of a leaf, 579
trail foliation, 580
transition time, 557
transversal holomorphy, 578
trivialization of a map, 286

uniformization, 602
unipotent operator, 32, 363

vanishing cycle, 531
vanishing holonomy, 122, 437
vanishing order, 246
variation of constants, 259
vertical function, 359

weak focus, 173
weight

of a component of the exceptional
divisor, 244

Wronskian, 334
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