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Abstract

The problem of mapping triangular meshes into the plane is funda-
mental in geometric modeling, where planar deformations and sur-
face parameterizations are two prominent examples. Current meth-
ods for triangular mesh mappings cannot, in general, control the
worst case distortion of all triangles nor guarantee injectivity.
This paper introduces a constructive definition of generic convex
spaces of piecewise linear mappings with guarantees on the maxi-
mal conformal distortion, as-well as local and global injectivity of
their maps. It is shown how common geometric processing objec-
tive functionals can be restricted to these new spaces, rather than to
the entire space of piecewise linear mappings, to provide a bounded
distortion version of popular algorithms.
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1 Introduction
Triangular meshes are prevalent in image and geometry processing
and frequently used as piecewise linear representations of planar
domains Ω ⊂ R2 and surfaces S ⊂ R3. A common task is to
map or deform a triangular mesh into a different configuration in
the plane Ω′ ⊂ R2 with as little distortion as possible; two central
scenarios are: 1) planar mesh deformation Ω→ Ω′; and 2) surface
mesh parametrization S → Ω′.
Triangular meshes are mapped by Continuous Piecewise Linear
(CPL) mappingsFM constructed by assigning an affine map per tri-
angle and making sure the affine maps are continuous across edges.
A common distortion measure for a CPL map is conformal distor-
tion, intuitively defined as the change in aspect ratio of every trans-
formed triangle. Producing mappings of general triangular meshes
with bounded maximal conformal distortion is important in geomet-
ric processing/modeling, physical simulations and numerical anal-
ysis. Simply put, approximation properties, stability, convergence
and even visual quality of the maps are directly related to the worst
distorted face(s).
Commonly, algorithms for surface parametrization and planar de-
formations optimize some average (e.g., Lp) distortion measure
over the space of all CPL maps and therefore find it hard to avoid
high conformal distortions on a subset of triangles. For exam-
ple, Figure 1(b) shows a deformation of a (well-shaped) 2D mesh
(shown in (a)) with discrete harmonic mapping [Pinkall and Polth-
ier 1993; Eck et al. 1995]; the mapping suffers from high conformal
distortion and fold-overs due to the complexity of the domain (non-
convex, multiply-connected).
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(a) Lake superior mesh (b) harmonic

(c) BD-L1 stretch (d) BD-harmonic

Figure 1: Deformation of the multiply-connected Superior Lake
mesh by moving and scaling its center island and altering its shore-
line, see (a) where the deformation constraints are in red. Using
discrete harmonic maps, shown in (b), results in fold-overs and high
distortion (redness indicates conformal distortion, flipped triangles
are marked with yellow, highly-distorted ones in green). Optimizing
the same energy (Dirichlet) over the bounded distortion mapping
space is shown in (d), and produces a bounded conformal distor-
tion bijection at the cost of only a slight increase (+4%) in the min-
imal Dirichlet energy. (c) shows the result of bounded distortion
optimization of an alternative L1 stretch functional.

The main goal of this paper is to devise a generic tool for construct-
ing orientation preserving (i.e., no flips allowed) triangular mesh
mappings into the plane with bounds on the worst-case conformal
distortion. We denote this space of mappings FM

C ⊂ FM, where
C ≥ 1 is the desired upper bound on the maximal conformal distor-
tion. Unfortunately, FM

C is a rather complicated non-convex space,
and poses a challenge to work with. This paper suggests a simpli-
fied formulation of this space that allows easy characterization of
convex subspaces FM,�

C ⊂ FM
C that are conveniently formulated as

a set of linear inequalities and convex quadratic cones. The sub-
sets FM,�

C have one degree of freedom per face, set by fixing a
frame field (denoted by the symbol �) over the mesh. This frame
field restricts the general space of bounded distortion maps FM

C by
limiting the maximal rotation angle allowed. Nevertheless, as we
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will demonstrate, it is still large enough to be of interest. For ex-
ample, this space can be used in combination with known geomet-
ric processing functionals to build a “bounded distortion version”
of existing algorithms; Figure 1(d), for example, shows the result
of optimizing the Dirichlet energy (used to define the discrete har-
monic mapping in (b)) overFM,�

C . The resulting map has a uniform
bound on the conformal distortion of all triangles and is guaranteed
to be a bijection at the cost of increasing the Dirichlet energy by
merely 4%. (c) shows the result of optimizing a different func-
tional, namely L1 stretch, over FM,�

C . Although it has the same
guarantees as (d), the L1 nature of this functional tends to concen-
trate distortion and provides a different type of deformation.
Besides controlling the maximal conformal distortion, the mapping
space FM,�

C has other applications in geometry processing: 1) it
guarantees local and global bijectivity of CPL mappings (even for
non-convex and multiply-connected domains); 2) it can be aug-
mented to incorporate other distortion measures (e.g., area); 3) pro-
vide means to approximate extremal quasi-conformal maps (here
we provide numerical evidence and partial theoretical analysis); and
4) can be used for 2D mesh improvement.
The paper is organized as-follows: we review the relevant previous
work in Section 2, set some notation in Section 3, introduce the
bounded distortion mapping spaces in Section 4, discuss their bi-
jection properties in Section 5, review applications of the mapping
spaces in Section 6, discuss limitations in Section 7, and conclude
in Section 8.

2 Previous work

Low distortion planar deformations. Controlling distortion in
planar deformation/warping is a long standing research problem.
Smooth energies such as Biharmonic [Bookstein 1989; Jacobson
et al. 2011] can construct intuitive smooth deformations but in gen-
eral do not control distortion. As-Similar-As-Possible (ASAP) and
As-Rigid-As-Possible (ARAP) [Alexa et al. 2000; Igarashi et al.
2005; Schaefer et al. 2006] are two paradigms that require each
face of a mesh to be mapped, to the extent possible, by a similarity
or rigid-motion (respectively). The ARAP model was elaborated
in follow-up works [Sorkine and Alexa 2007; Chao et al. 2010;
Solomon et al. 2011]. Although ASAP and ARAP algorithms can
produce low distortion on average, no guarantee is provided on in-
dividual mesh faces. Conformal mappings [Lipman et al. 2008;
Weber and Gotsman 2010] can guarantee zero conformal distor-
tion at places the mapping is not singular, however conformal maps
have a small number of degrees of freedom and cannot be both bi-
jective and interpolate more than a handful of points (e.g., one to
three in simply connected domains). Quasi-Conformal (QC) map-
pings are mappings of bounded conformal distortion and can be
seen as a natural generalization of conformal mappings [Ahlfors
1966]. Due to their favorable properties, approximations of QC
maps were developed in numerical analysis literature [Gaidashev
and Khmelev 2008]. Recent works in graphics use them for 2D
mappings [Zeng and Gu 2011; Lipman et al. 2012], however, either
no explicit bound on conformal distortion of the faces can be given,
or the problem is solved in a particular sub-class of mappings (e.g.,
for four interpolation points). Lastly, a somewhat related recent pa-
per by Johnen et al. [2012] showed how to compute bounds on the
jacobian of curvilinear finite element taking boundary straight-line
elements to curved ones.

Surface parametrization. Due to its many applications in graph-
ics and related fields, surface parametrization is one of the most
researched geometry processing problems and, currently, a wide
spectrum of elegant and powerful algorithms for triangular mesh
parameterization is available [Floater and Hormann 2005; Sheffer

et al. 2006]. Conformal distortion is probably the most popular
distortion measure, although other objectives, such as As-Rigid-
As-Possible energy functionals have been suggested as well [Liu
et al. 2008]. Linear conformal methods try to minimize square de-
viation from satisfying the Cauchy-Riemann equations [Levy et al.
2002; Desbrun et al. 2002]. Non-linear methods usually either di-
rectly optimize distortion functionals [Maillot et al. 1993; Sander
et al. 2001; Hormann and Greiner 2000] or work in the space of ad-
missible metrics (angles/edge lengths) and conformally flatten the
surface [Sheffer et al. 2005; Kharevych et al. 2006; Jin et al. 2007;
Ben-chen et al. 2008; Springborn et al. 2008]. However, no bound
or control of the maximal conformal distortion is available. One
exception is [Sorkine et al. 2002] where a greedy optimizer flattens
faces until distortion threshold is met, however there is no control
over the number of seams or their location on the surface.

Global bijective mappings of triangular meshes. Bijectively
mapping a surface mesh or a planar mesh into another planar do-
main is in many senses an un-solved problem in geometry process-
ing and modeling. In the case of a convex target domain, Floater
[2003] showed a principled way to build such maps using convex
combination mappings, generalizing the classical result by Tutte
[1963]. Unfortunately, Floater’s construction does not extend to
non-convex target domains. Gortler et al. [2006] studied the condi-
tions under which convex combination mappings are injective when
the target domain is non-convex. A different partial solution in case
the source domain is planar as well, is compatible meshing of the
two domains [Aronov et al. 1993]. For example, Alexa et al. [2000]
constructed such compatible triangulation for defining a bijective
mapping between two domains in the plane. However, these meth-
ods do not provide a guarantee regarding the distortion of the map
computed, nor do they provide a collection of possible solutions to
choose from (e.g., to find a “smooth” solution). Furthermore, the
generalization to surface meshes embedded in R3 is not evident. In
this paper we show that the mapping spaces FM,�

C can be used to
tackle the global bijective mapping problem: we prove that as long
as the boundary of the source domain is mapped bijectively to a
simple1 polygonal curve, then any map φ ∈ FM,�

C is a global bijec-
tion between the source domain and the target domain bounded by
this curve. A generalization to multiply-connected domains is also
provided.

Meshing of planar domains is a well-studied problem in com-
putational geometry, and algorithms with guarantees on the shape
of the triangles are known [Bern and Eppstein 1995]. The prob-
lem of 2D meshing involves either Steiner point insertion [Ruppert
1995; Shewchuk 1996] or mesh improvement [Amenta et al. 1997].
We show that if the distortion measure of interest is the conformal
distortion of a mesh triangle w.r.t. a perfect equilateral, then the
mapping spaces FM,�

C can be used to improve meshes produced by
current meshing algorithms.

3 Notation

A triangular mesh M = (V,E,F) is an oriented piecewise lin-
ear 2-manifold that consists of a set of vertices V = {vi}, edges
E = {e`} and oriented faces (triangles) F = {fj}. In this paper we
will consider both meshes embedded in 3-space V ⊂ R3 and pla-
nar meshes V ⊂ R2. Since a triangular mesh is a piecewise linear
object consisting of triangles, the most natural mapping space of
a mesh is the (standard) Continuous Piecewise Linear (CPL) map-
pings, namely, each face fj is mapped with an affine map Aj and
the different affine maps agree on common edges and thus construct
a globally continuous map. We denote the collection of such map-
pings of M into the plane by FM.

1Simple polygon is a closed polygonal curve without self-intersections.



4 Bounded distortion mapping spaces

In this section we provide a simplified formulation to the bounded
distortion mapping spaces of triangular meshes and extract max-
imal convex subsets (maximal in this formulation) that form the
central tool of this paper. More specifically we: 1) study the space
of affine transformations AC(fj) taking a single face fj ∈ F into
the plane without flipping it or conformally distorting it by more
than a fixed constant C ≥ 1; 2) provide a characterization of the
maximal subspaces A�j

C (fj) ⊂ AC(fj) defined uniquely by set-
ting a frame �j in the face fj ; 3) collect A�j

C (fj) over all faces
fj ∈ F, and incorporate continuity constraints to define maximal
convex subspaces FM,�

C ⊂ FM
C of bounded distortion CPL map-

pings of the mesh M; and 4) discuss optimization over the mapping
spaces FM,�

C .

Affine transformations with bounded conformal distortion.
We consider a single face fj ∈ F and parameterize the possible
affine mapsAj : fj → R2 by selecting (arbitrarily for now) a local
coordinate frame �j :=

[
0j ,
{
ej1, e

j
2

}]
, where 0j is the origin and{

ej1, e
j
2

}
is a positively oriented orthonormal basis (see inset).

We write each point p ∈ fj in this frame p =

0j + ej1[p]1 + ej2[p]2, where [p] = ([p]1, [p]2)t

is the coordinate vector of p in the frame �j . An
affine map Aj : fj → R2 can now be written in
coordinates (using the standard basis in R2)

Aj(p) =

(
aj bj
cj dj

)(
[p]1
[p]2

)
+

(
tj,1
tj,2

)
= Aj [p] + Tj ,

(4.1)
where aj , bj , cj , dj , tj,1, tj,2 ∈ R and on the right hand side we
have used matrix notation where Aj=

(
aj bj
cj dj

)
, and Tj=

(
tj,1
tj,2

)
.

We define the spaceAC(fj) to contain affine transformsAj that are
orientation preserving (i.e., do not flip fj) with bounded conformal
distortion C ≥ 1, that is we ask that

D(Aj) ≤ C (4.2)
det(Aj) > 0, (4.3)

where Aj is the linear component of Aj , and D(Aj) = D(Aj) =
Γj/γj is the conformal distortion of the affine map Aj (Γj ≥ γj
are the larger and smaller singular values of Aj). The conformal
distortion D(Aj) measures the aspect ratio distortion caused by the
affine map Aj . Unfortunately, these conditions are non-linear and
non-convex. Our general plan is however to characterize the largest
effective convex piece of the space defined by these conditions. For
understanding which part should we cut, we first need to transform
the conditions (4.2),(4.3) into a “canonical” form. We do that next.
Taking the straightforward route and expressing conditions (4.2)-
(4.3) in terms of aj , bj , cj , dj appearing in eq. (4.1) leads to cum-
bersome expressions that are hard to make sense of and/or work
with. Instead we suggest to write Aj in a different way, motivated
by standard complex variables theory, that will considerably sim-
plify the task of bounding the conformal distortion. Let us write

Aj =

(
aj + cj dj − bj
dj + bj aj − cj

)
. (4.4)

Note that we still use four parameters aj , bj , cj , dj ∈ R to represent
Aj , and there is a unique way to write each real 2× 2 matrix in this
way. The affine map Aj can now be written as

Aj([p])=
(
aj −bj
bj aj

)(
[p]1
[p]2

)
+

(
cj dj
dj −cj

)(
[p]1
[p]2

)
+

(
tj,1
tj,2

)
, (4.5)

where the matrix
(
aj −bj
bj aj

)
is the similarity part ofAj and

(
cj dj
dj −cj

)
the anti-similarity part. In fact, the similarity part is the closest sim-
ilarity to Aj in the Frobenious norm, and a similar statement holds
for the anti-similarity part. As it happens, Aj can be written as
the sum of its closest similarity and anti-similarity transformations.
This leads to particularly simple expressions for the singular values
of Aj :

Γj =
√
a2j + b2j +

√
c2j + d2j ,

and

γj =
∣∣∣√a2j + b2j −

√
c2j + d2j

∣∣∣ .
It is more convenient to write these equations with complex num-
bers; we set αj = aj+i bj , and βj = cj+idj , δj = tj,1+i tj,2, and
write the coordinates of p as a complex number [p] = [p]1 + i [p]2,
this leads to an equivalent formulation of (4.5):

Aj([p]) = αj [p] + βj [p] + δj . (4.6)

The singular values are now

Γj = |αj |+ |βj | (4.7)
γj =

∣∣|αj | − |βj |∣∣, (4.8)

and the conformal distortion of Aj :

D(Aj) = D(Aj) =
Γj
γj

=

∣∣∣∣ |αj |+ |βj ||αj | − |βj |

∣∣∣∣ , (4.9)

where |αj | =
√
a2j + b2j and |βj | =

√
c2j + d2j . The condition that

Aj is orientation preserving is: detAj = a2j − c2j −
(
d2j − b2j

)
=

|αj |2 − |βj |2 > 0. Conditions (4.2)-(4.3) are now equivalent to:

|βj | ≤
C − 1

C + 1
|αj | (4.10)

|βj | < |αj | , (4.11)

where C ≥ 1 is the conformal distortion bound. Introducing a
new variable rj ∈ R we can further simplify these conditions by
separating αj and βj :

|βj | ≤ rj
C − 1

C + 1
(4.12)

|αj | ≥ rj (4.13)
rj > 0. (4.14)

This means that the set of triplets (αj , βj , rj) ∈ C×C×R that sat-
isfies the above inequalities parameterize the entire space AC(fj)
of orientation preserving affine maps with bounded conformal dis-
tortion C. The benefit in the above representation is: condition
(4.12) is a convex cone, while condition (4.13) is the complement
of an open convex cone. In a sense, the non-convex bounded con-
formal distortion and orientation preserving conditions (4.2)-(4.3)
are decomposed into their simplest convex (4.12), and non-convex
(4.13) parts.
We would now like to cut the maximal convex chunk out of the non-
convex space of affine maps defined by eqs. (4.12),(4.13),(4.14).
The problem is now reduced to dealing with a single and rather
simple non-convex condition (4.13): the largest convex piece we
can carve out of a domain that is the complement of a cone is (any)
half space supported on one of the cone’s rays. For reasons that
will be clear soon we make a particular choice that leads to the



following definition of the sub-space A�j
C (fj) ⊂ AC(fj):

|βj | ≤ rj
C − 1

C + 1
(4.15)

Re(αj) ≥ rj (4.16)
rj > 0, (4.17)

where Re(αj) = aj is the real part of
αj . The inset provides a visual interpre-
tation of the above inequalities: condi-
tion (4.15) requires βj to lay in the blue
cone (depicted with blue disk slices),
while condition (4.16) asks αj to lay in
the gray half-space (illustrated with gray
half-plane slices). For comparison, note
that the “full” bounded conformal distor-
tion conditions are different in that eq. (4.13) requires αj to lay
outside the yellow cone (depicted with yellow disks) which is more
general than (4.16), however unfortunately non-convex.

A�j
C (fj) is by construction convex and contains bounded distor-

tion, orientation preserving affine transformations. However, a nat-
ural question is: what mappings did we leave out when replacing
AC(fj) with A�j

C (fj)? and, why did we choose this particular
half-space? We address these questions next.

Properties of A�j
C (fj). The spaceA�j

C (fj) contains only a part
of the full space AC(fj) of bounded distortion affine transforms.
In order to understand what exactly we included in A�j

C (fj) we
provide the following proposition (proved in Appendix B):
Proposition 4.1. Set C ≥ 1. Then conditions (4.15),(4.16),(4.17)
characterize the collection of orientation preserving affine trans-
formations Aj(z) = αjz + βjz + δj with conformal distortion
c ≤ C under the following restriction on the similarity component
αj: |arg(αj)| ≤ cos−1

(
C+1
C−1

c−1
c+1

)
. (The anti-similarity part βj

and the translational part δj are not restricted in any way w.r.t. the
full space of bounded distortion affine space AC(fj).)
To clarify the meaning of this proposition, let us note that the
affine map Aj is applied to the coordinate vectors of the vertices
of face fj w.r.t. its local frame �j . That is, if we denote by j`,
` = 1, 2, 3 the (ordered) indices of the vertices of the face fj ,
then (vj1 , vj2 , vj3) are the vertices of face fj , and the affine map
Aj is applied to the planar triangle M ([vj1 ], [vj2 ], [vj3 ]) ⊂ R2,
where [vj` ] = [vj` ]1 + i [vj` ]2, ` = 1, 2, 3 are the coordinates of
the vertices in the frame �j . Proposition 4.1 provides a restric-
tion on the argument of the similarity component of the affine map,
arg(αj), which is roughly the rotation angle of the affine map.
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For example, if we consider a conformal distor-
tion bound of C = 5, then the space A�j

C (fj)
contains affine transforms Aj with rotations in
the range depicted in the inset, where c de-
notes the conformal distortion of Aj . In par-
ticular, an affine map Aj with conformal dis-
tortion c = 2 can have a rotational angle
arg(αj) ∈ [−60◦, 60◦]. Perfect similarities can have rotation an-
gles in [−90◦, 90◦]. It is clear now why we picked condition (4.16):
it is a maximal convex piece of (4.13) that contains symmetric rota-
tions around the identity.

Setting FM,�
C . So far we have defined a convex space of affine

transformations A�j
C (fj) per face fj ∈ M via eqs. (4.15)-(4.17).

The next step is to take the union of all these spaces over a mesh
∪fj∈FA

�j
C (fj) and constructFM,�

C ⊂ FM. The missing ingredient

is having the affine maps continuously agree across edges to achieve
continuity. We take care of that while setting up FM,�

C next.

The variables we use to define φ ∈ FM,�
C divide into two groups:

1) face variables, which include an affine map per triangle, are
{αj , βj , δj , rj}|F|j=1 where αj , βj , δj ∈ C, rj ∈ R and |F| is the
number of faces; and 2) vertex variables, which define the mapped
location in the plane of each vertex φ(vi) = ui, are {ui}|V|i=1, where
ui ∈ C, and |V| is the number of vertices.

We assume to have a frame field � = {�j}|F|j=1 containing a frame
per face. (We soon explain how to set the frame field �.) Then, to
define FM,�

C we take one copy of equations (4.15)-(4.17) for every
fj ∈ F, and add the following set of homogeneous linear equations
forcing continuity:

Aj([vj` ]) = uj` , fj ∈ F, ` = 1, 2, 3, (4.18)

where Aj is the affine map of face fj defined in eq. (4.6).
This is a set of 3|F| linear (complex) equations in the variables
{αj , βj , δj , rj , ui} and hence convex. Adding it to the previous set
of equations (4.15)-(4.17) maintain the convexity of the problem.
Geometrically, one can imagine these linear hyper-spaces cutting
through the different bounded distortion cones described before.
Our full representation is not very compact, but for certain cases
(described later) we can make it more efficient by making the
(standard) observation that {ui} sets all the degrees of freedom of
CPL map of a mesh and the variables αj , βj , δj can be expressed
uniquely as linear combinations of uj` to reduce the number of vari-
ables. Indeed, eq. (4.18) implies that for each face fj , we can write
αj , βj , δj as linear combinations of uj` , j = 1, .., |F|,` = 1, 2, 3: αj

βj
δj

 =

 [vj1 ] [vj1 ] 1

[vj2 ] [vj2 ] 1

[vj3 ] [vj3 ] 1

−1 uj1
uj2
uj3

 , (4.19)

where [vj` ] are the complex coordinates of vertices j` in the local
frame.

Adding positional constraints to the mapping space FM,�
C is

instrumental in making it useful for practical mapping problems.
Let us define the positional constraints on a subset of vertices
Vcon ⊂ V:

ui = ûi, vi ∈ Vcon, (4.20)

where ûi prescribe the constrained positions (anchors) in the plane.
Although we will not use it in this paper, we note that adding rota-
tional and/or scaling constraints for faces is also easy by prescribed
the values αj = α̂j (|α̂j | is the scaling , and arg(αj) the rotation)
for subset of faces Fcon ⊂ F.

Framing of M. To define the mapping space FM,�
C , we need to

set a frame field � = {�j} over the mesh M. Every local frame
�j defines an initial rigid embedding of the face fj ∈ F in the
plane. Any map φ ∈ FM,�

C is defined over these initial embed-
dings, mapping each embedded triangle M ([vj1 ], [vj2 ], [vj3 ]) to its
final position while “stitching” the triangulation consistently and
maintaining bounded conformal distortion C.
In the algorithms we develop in this paper we set the initial frame
field� = {�j} by one of three possible ways: 1) if M is planar, we
can take constant frames (e.g., {1, i }); 2) we can build a frame field
based on a gradient field of some potential scalar function; or 3) we
can choose a frame field based on an initial CPL map φ∗ : M→ R2

or a set of provided affine maps A∗j : fj → R2 per face.
Let us elaborate on the third option. In this case we have an initial
affine map A∗j per face fj (we do not care if it is part of a con-



sistent CPL mapping φ∗ or not). Proposition 4.1 indicates that the
only constrained parts of the affine maps Aj in the space FM,�

C
(compared to the full space of affine transforms with bounded con-
formal distortion) are the arguments of the similarity components
αj (rotation angles). Furthermore, in order to get maximal “flexi-
bility” over this initial transform we want to choose the frames �j
such that writing A∗j w.r.t. these frames will result in αj ∈ R+

(that is arg(αj) = 0). Practically, given an affine map A∗j ([p]) =

α∗j [p] + β∗j [p] + δ∗j w.r.t. the frame �∗j =
[
0
∗
j ,
{
e∗j1 , e

∗j
2

}]
in face

fj , we rotate the basis
{
e∗j1 , e

∗j
2

}
by θ = − arg(α∗j/

∣∣α∗j ∣∣) and set
the new frame of face fj to be

�j = ei θ�∗j =
[
0
∗
j ,
{
ei θe∗j1 , e

i θe∗j2
}]

. (4.21)

Optimization and implementation details. Equations
(4.15) are quadratic convex cones and can be directly en-
coded in Second-Order Cone Programming (SOCP) optimizers
such as MOSEK [Andersen and Andersen 1999]. Equations
(4.16),(4.17),(4.18),(4.20) are all linear equalities and inequalities
that are standard to encode. Later, in Section 6 we examine
different functionals and optimize over FM,�

C ; SOCP optimizers
can efficiently deal with linear objective functions which makes
them suitable to optimize L1 and L∞ functionals.
For efficient optimization of L2 functionals, it is useful to intro-
duce another convex space of CPL maps FM,�,∞

C ⊂ FM,�
C that is

defined by replacing the quadratic cones with the L∞ cones:

|βj |∞ ≤
rj√

2

C − 1

C + 1
, (4.22)

where |βj |∞ = max {|cj |, |dj |}. Optimizing an L2 functional
over FM,�,∞

C is a standard convex Quadratic Programming (QP)
(with linear equalities and inequalities) which can be solved effi-
ciently using interior point methods. We have used Matlab’s inte-
rior point algorithm for optimizing these problems. In this case it is
also possible to reduce the number of variables in the optimization
by using eq. (4.19), keeping only {ui}|V|i=1 as variables.

When using the more restricted space FM,�,∞
C we maintain our

conformal distortion and orientation preservation guarantees, how-
ever we have a somewhat smaller space to work with. The tradeoff
is explained in the following proposition proved in Appendix B:
Proposition 4.2. Using theL∞ cone condition (4.22) instead of the
quadratic cone (4.15) defines a mapping space FM,�,∞

C that satis-
fies FM,�

C′ ⊂ F
M,�,∞
C ⊂ FM,�

C , where C′ = (
√
2+1)C+(

√
2−1)

(
√
2−1)C+(

√
2+1)

.

Simply put, FM,�,∞
C is contained in FM,�

C and contains some
smaller space FM,�

C′ , C′ < C.
As final implementation detail, let us note that eq. (4.17) is numer-
ically set by the linear inequality rj ≥ σ, where σ > 0 is some
constant. In our implementation we chose it to be σ = 10−8, how-
ever if no positional constraints are provided, like is common for
free-boundary surface parametrization, then σ controls the global
scale (note that without positional constraints the equations defin-
ing FM,�

C ,FM,�,∞
C are scale invariant) and therefore we set it to

σ = 1 in these cases.

Resetting the frame-field and iterating. After optimization,
where a solution φ ∈ FM,�

C is found, eq. (4.21) can be used to reset
the frames�′ and re-optimize over the new space FM,�′

C . This will
allow rotations that were not allowed in the former space. This pro-
cedure can be iterated until convergence. Our experience indicates
that when using QP formulations, even when no feasible solution
φ ∈ FM,�

C is found with the current frame-field, it is often the case

that resetting the frame field using the intermediate output φ̃ from
the optimizer and resolving converges to finding a feasible solution.
If that is not the case, increasing the conformal distortion bound C
can also help to achieve a feasible solution. The reason is that in-
creasing the conformal distortion bound C allows a wider rotation
range in the convex subspace FM,�

C as Proposition 4.1 indicates.
In practice, we performed such iterations until encountering one
or two feasible iterations or alternatively exceeding some maximal
number of iterations. In Section 6 we discuss and demonstrate the
dependence of the final map φ on the initial frame field.

5 Bijectivity

Besides providing guarantees regarding conformal distor-
tion and orientation preservation, the convex mapping spaces
FM,�,∞
C ,FM,�

C can help us address an important problem of
geometry processing, namely building globally bijective mappings.
The results of this section actually apply to the bigger space of FM

C

for all C ≥ 1, that is to ∪C≥1FM
C , or differently put, to all orien-

tation preserving CPL mappings (satisfying (4.3)). Let us denote
this space by FM

+ . Since, in particular FM,�,∞
C ⊂ FM,�

C ⊂ FM
+

for all C ≥ 1, all subsequent results proved for FM
+ are also valid

for its convex subsets FM,�
C ,FM,�,∞

C and does not depend on any
particular choice of frames �.
We start with simply connected domains and later move to
multiply-connected ones. Given a triangular mesh M ⊂ Rd, d =
2, 3 that is topologically a disk and a one-to-one mapping of its
boundary polygon ∂M to a simple polygonal line P in the plane,
we would like to construct an injective map that takes the interior
of M onto the domain Ω, defined as the domain bounded by P .
The orientation preservation condition enforced on all faces for
mappings in FM

+ ensures that on the local face level we are away
from degeneracy and injective. However, with some effort, one can
prove a much stronger global bijection result, in case the boundary
conditions permit:
Theorem 5.1. An orientation preserving CPL mapping (i.e., in
FM

+ ) that maps the boundary of M bijectively to the boundary of
Ω is a bijection from M to Ω.
Two comments are in order. First, note that we do not require the
target domain Ω to be convex. Second, the positional constraints’
set can possibly contain extra conditions in interior points (in ad-
dition to the boundary constraints). This makes this method useful
for constructions of bijective deformations required in practical set-
tings like image deformation.

0P
1P

2P

3P

Theorem 5.1 can be generalized to
multiply-connected domains:
Theorem 5.2. Consider a multiply-
connected mesh M, with boundary
∂M = ∪L`=0P` (P0 is the outer bound-
ary, and P1, .., PL the simple polygonal
boundary of the holes, correctly oriented
w.r.t. M, see inset), and a homeomorphic,
multiply-connected target domain Ω ⊂ R2,
with boundary ∂Ω = ∪L`=0P

′
` . An orienta-

tion preserving CPL mapping (i.e., in FM
+ )

that maps the boundary of M bijectively to the boundary of Ω is a
bijection from M to Ω.
The proof requires several steps and we provide it in full in
Appendix A. Figures 1,10 show examples of mapping multiply-
connected domains bijectively using FM,�

C (or FM,�,∞
C ). We also

show that deforming with discrete harmonic mappings creates fold-
overs and extreme conformal distortion (even on these well-shaped
meshes).



6 Applications

We explored several applications of the bounded distortion map-
ping spaces FM,�

C ,FM,�,∞
C for triangular mesh mapping and re-

lated problems. A method for bounded distortion mesh mapping is
defined by:

1. A bounded distortion mapping space FM,�
C (or FM,�,∞

C ) de-
fined by setting a conformal distortion bound C ≥ 1, and a
frame field � = {�j}.

2. A functional E : FM → R+ that provides a score to PLC
maps.

3. Computing argminFM,�
C

E (or over FM,�,∞
C ).

4. (Optional) resetting the frame field (via eq. (4.21)) and iterat-
ing.

In this section we instantiate this framework to build specific algo-
rithms, analyze them, and compare to the state of the art.

6.1 Planar deformations

In the first application we build algorithms for bounded distortion
planar deformations. Our setting includes a mesh M of a planar do-
main Ω ⊂ R2, and a set of positional constraints. Our goal is to pro-
duce a bounded distortion deformation satisfying the constraints.

init_BD_LSCM: CD: 1.5152 <−> 1.0037 | mean CD:1.2542 | AD: 5.9089 <−> 0.17622

LSCM: CD: 3.6372 <−> 1.0142 | mean CD:1.1991 | AD: 3.2903 <−> −0.14363

1

2

3

(a) LSCM (b) (c) BD-LSCM (d)

Figure 2: Deformation of regular grids with Least-Squares Con-
formal Maps (LSCM) [Levy et al. 2002] (a),(b); and Bounded Dis-
tortion LSCM (BD-LSCM) (c),(d).

As-similar-as-possible (ASAP) planar deformations. Levy
et al. [2002] defined the Least Squares Conformal Maps (LSCM)
on triangular meshes via a simple and elegant quadratic func-
tional that measures the mean-square deviation from satisfying
the Cauchy-Riemann (CR) equations. In our notation, the CR
equations on every face are βj = 0 (since ∂zAj = βj on
face fj), and Levy integrates their squared norms |βj |2, namely
ELSCM(φ) =

∑
j |βj |

2 Area(fj). However, small |βj | does not

mean that the conformal distortion (of the corresponding face)
is low as |αj | can be small as-well; as eq. (4.9) implies, small
conformal distortion means that β has to be small w.r.t. α. For that
reason LSCM can introduce arbitrary large conformal distortion
and flipped triangles as Figure 2 (a),(b) demonstrate. It is possible
to make sure the conformal distortion of LSCM is bounded and
that no triangles are flipped by optimizing the LSCM energy over
FM,�,∞
C rather than the general space of CPL maps FM. We name

these restricted LSCM maps BD-LSCM (for Bounded Distortion).
Figure 2 (c),(d) show deformation results with BD-LSCM with the
conformal distortion bound set to C = 1.5. The blow-ups (b),(d)
show specific areas where the conformal distortion of LSCM is
high and alleviated by BD-LSCM. The initial frame field � for
FM,�,∞
C was extracted from the LSCM solution using eq. (4.21).

The color scheme (which is fixed for the rest of the paper, unless
otherwise specified) should be interpreted as follows: redness in-
dicates conformal distortion (dark red - high, gray - low), faces
with green boundary means conformal distortion greater than 25
(D(fj) > 25), blue boundary means conformal distortion greater
than 50, and yellow boundary indicates flipped (also with purple
interior) or degenerate triangles.

As-rigid-as-possible (ARAP) planar deformations. Similarly
to ASAP, we can optimize the ARAP energy [Igarashi et al. 2005;
Sorkine and Alexa 2007; Liu et al. 2008; Chao et al. 2010] over
FM,�,∞
C : given an initial deformation φ∗ : M→ R2, we construct

a frame field � over M using eq. (4.21). The ARAP energy is then
EARAP(φ) =

∑
j

[
|αj − 1|2 + |βj |2

]
Area(fj). Indeed, since the

affine transformsA∗j of φ∗, written in the frames �j , has α∗j ∈ R+

(we chose the frames that way), the above functional measures (for
each face) deviation (in Frobenius norm) from the rigid map derived
fromA∗j by projecting its similarity part (α∗j ) on the planar rotation
group (S1) and throwing away its anti-similarity component (β∗j );
this is actually the closest rotation to A∗j .

1

2.5

4

(a) (b) ARAP (c) BD-ARAP

Figure 3: As-Rigid-As-Possible (ARAP) deformation of a dino
model (shown in (a)) is shown in (b). The result of a Bounded
distortion version of ARAP is in (c). Note that the ARAP energy
actually decreased by a little more than 10% in (c) w.r.t. (b).

Figure 3(b) shows a deformation of a dino mesh (in (a)) by apply-
ing iterative ARAP algorithm similar to [Liu et al. 2008] (which
provides a similar result to the other ARAP algorithms). ARAP
deformations tend to concentrate distortion near constraints (espe-
cially interior ones), and flips and high conformal distortions are
not uncommon (see blow-ups in (b)). In (c) we show the result of
optimizing EARAP over FM,�,∞

C using the frame field � extracted
from the ARAP solution and setting C = 2. Note that the ARAP’s
high distortion spots and fold-overs that are now rectified. More
surprising is the fact that the ARAP energy actually decreased by a
little more than 10% in the BD-ARAP solution; this indicates that
the ARAP algorithm got stuck in a local minimum.



Biharmonic planar warping. The Biharmonic energy was
shown to be effective for creating smooth and intuitive warp-
ings [Bookstein 1989; Jacobson et al. 2011]. In contrast to the
ASAP and ARAP models, the Biharmonic warping is performed
coordinate-wise and therefore does not have any control (also not
on average) on the behavior of the differential and its distortion.
For that reason, it is useful to restrict the Biharmonic energy to the
bounded distortion spaces; for the Biharmonic energy, we adopt
the linear finite element discretization of Jacobson et al. [2011].
That is, let L be the cotangent Laplacian matrix of mesh M, and
M the diagonal mass matrix. We also denote the vector U =
(u1, u2, ...., u|V|)

t ∈ Cn. The Biharmonic energy is

Ebiharm(φ) = U>LM−1LU, (6.1)

where superscript > denotes the complex conjugate.

(a) BBW (b) BD-Biharm (c) BBW (d) BD-Biharm

Figure 4: Warping a square domain using Jacobson et al. [2011]
Bounded Biharmonic Weights (BBW) is shown in (a),(c). The
Bounded Distotion (BD) Biharmonic solution is in (b),(d).

Figure 4 shows warpings of a square domain by fixing the square’s
boundary and moving to the right one of the green points. In (a),(c)
the results of the Bounded Biharmonic Weights (BBW) method
[Jacobson et al. 2011] are shown, side by side with the Bounded-
Distortion Biharmonic (BD-Biharm) solution in (b),(d), computed
by optimizing (6.1) over FM,�,∞

C with C = 5. The frame field
� was initiated to be constant. Note that the BD-Biharmonic solu-
tion has better conformal distortion and avoids fold-overs. Lastly,
note that Theorem 5.1 guarantees that the BD-Biharmonic map is a
bijection of the square.

Dirichlet and stretch energy. Another popular convex quadratic
energy used frequently in geometric processing is the Dirichlet en-
ergy that give rise to the discrete harmonic mappings [Pinkall and
Polthier 1993; Eck et al. 1995; Floater and Hormann 2005]. Dis-
crete harmonic mappings do not come with any guarantees regard-
ing the conformal distortion they introduce, but for well shaped
meshes Floater [2003] proved that they are injective if mapped
to a convex domain. This is no longer true for non-convex tar-
get domains as shown in Figure 1(b). Optimizing the Dirich-
let energy over FM,�,∞

C guarantees both bounded conformal dis-
tortion and bijectivity even when mapping to non-convex and/or
multiply-connected domains, see (d) in Figure 1 where we used
C = 5 and set the initial frames from the discrete harmonic
map. The Dirichlet energy can be expressed in our notations as
EDIR(φ) =

∑
j

[
|αj |2 + |βj |2

]
Area(fj), and in this example

the energy increased by only 4% in the bounded distortion har-
monic map version. This is not surprising as the discrete har-
monic map is the global minimizer of the Dirichlet energy. Figure
1 (c) shows optimization of the L1 stretch energy Estretch1(φ) =

(a) ARAP (b) BD-ARAP

Figure 6: Parametrization of a metatarsal bone surface using Liu
et al. [2008] ARAP method is shown in (a). Optimizing the same en-
ergy over the space of bounded distortion mappings (BD-ARAP), is
shown in (b). BD-ARAP avoids the fold-overs and provides a guar-
antee on the maximal conformal distortion at the cost of slightly
raising the ARAP minimal energy by a little less than 1.5%.

∑
j ΓjArea(fj) =

∑
j [|αj |+ |βj |] Area(fj) ([Sander et al. 2001]

introduced the L∞ version of this energy) over the space FM,�
C (as

this is L1 energy). Note that the result has the same bounds as the
BD-Harmonic solution but, as typical with L1 norm minimizations
in image processing, tend to concentrate distortion.

6.2 Surface parametrization

The algorithms we used for planar warping are readily adapted for
surface parametrization. We now make the necessary adjustments
and compare to the relevant state-of-art.

Conformal parametrization. Similarly to ASAP planar defor-
mations, for conformal parameterizations we have optimized the
LSCM energy over FM,�,∞

C . The frame field � was initialized via
the gradient of a discrete harmonic-type function. Figure 5 com-
pares our result with both Angle Based Flattening (ABF++) [Shef-
fer et al. 2005] and Conformal Equivalence of Triangle Meshes
(CETM) [Springborn et al. 2008] on a collection of seven meshes.
We set the conformal bound to be C = 5 (except in two cases
where we had to increase it as no feasible solution was found).
The color scheme is as described before, the conformal distortion
color bars (for the left surface, and all the rest) are shown. For
every mesh we show in parenthesis the L1 (left) and maximum
(right, in bold) norms of its conformal distortion. (for L1 com-
putation we excluded degenerate triangles in ABF++ and CETM.)
BD-LSCM achieves significantly lower maximal conformal distor-
tion, and usually lower L1 distortion (for well-shaped meshes, like
the left-most tooth surface, the L1 is similar for all three meth-
ods). Note that a single LSCM parametrization result is shown in
the ABF++ row (fandisk) as ABF++ did not find a feasible solution.

As-rigid-as-possible parametrization can be performed by re-
peating the procedure we introduced above for ARAP planar de-
formations. Figure 6 shows a comparison of Liu et al. [2008]
ARAP parametrization with our result, achieved by optimization
of the ARAP energy over FM,�,∞

C . Areas of high conformal dis-
tortion and flipped triangles in the ARAP result are marked. The
BD-ARAP alleviates these issues, as before.

6.3 Controlling singular values/ area distortion

The bounded conformal distortion spaces FM,�
C ,FM,�,∞

C can be
further restricted to include also bounded area distortion guarantees.
More generally, we describe here a way to construct uniform lower
and upper bounds to the singular values of the affine maps over all
faces. That is, given constants 0 ≤ s ≤ S we want the singular



ABF++

abf++ −> max CD: 5380.8839  mean CD: 5.047 max CDil: 10.532

LSCM

(‖D‖1,‖D‖∞) (1.02 , 1.42) (3.37 , > 103) (2.9 , > 103) (3.3 , > 103) (5 , > 103) (2 , > 103) (1.46 , 59.3)

CETM 1

1.1

1.25

1

2.5

4

(‖D‖1,‖D‖∞) (1.02,6.4) (1.07 , > 103)(1.25 , > 103) (1.5 , > 103) (2.48 , > 103) (1.1 , > 103) (1.22 , > 103)

BD-LSCM
(‖D‖1,‖D‖∞) (1.02 , 1.17) (1.04 , 2.7) (1.1 , 6) (1.13 , 4.9) (1.47 , 14.1) (1.07 , 1.7) (1.21 , 2.0)

Figure 5: Parameterizations of seven surfaces (top row) cut to disk topology with Angle-Based Flattening (ABF++) [Sheffer et al. 2005],
Conformal Equivalence of Triangle Meshes (CETM) [Springborn et al. 2008], and Bounded Conformal Distortion LSCM (BD-LSCM) are
shown. We show the UV embeddings where faces are colored by their conformal distortion; colored edges indicate high conformal distortion
(green, blue, and yellow indicates high, very high and degenerate triangles, respectively), see text for detailed color scheme description. L1

and maximal conformal distortion (bold) are shown in parenthesis below each flattening. (> 103 indicates maximal conformal distortion
higher than 103.) Both ABF++ and CETM perform well in terms of average conformal distortion, however few faces often sustain large
conformal distortion. BD-LSCM has significantly lower bound on the maximal conformal distortion.

values γj ,Γj of all affine map Aj to satisfy

s ≤ γj ≤ Γj ≤ S. (6.2)

This can be achieved by adding the following two equations to
eqs. (4.15)-(4.17):

|αj | ≤ S − C − 1

C + 1
rj (6.3)

rj ≥ s
C + 1

2
. (6.4)

Note that the first constraint is again a quadratic cone (and hence
convex) and the second constraint is a simple linear inequality.
Therefore, these constraints carve out a convex piece out of the con-
vex spaces FM,�

C ,FM,�,∞
C . To see how (6.3),(6.4) imply eq. (6.2)

note that (4.7),(4.15) and (6.3) imply Γj = |αj | + |βj | ≤
C−1
C+1

rj + S − C−1
C+1

rj = S. On the other hand, combining
(4.8) with (4.15),(4.16),(4.17) and (6.4) gives γ = |αj | − |βj | ≥
rj
(

1− C−1
C+1

)
= rj

2
C+1

≥ s. Two restrictions on s, S are:

S/s ≥ C, S ≥ rj ≥ s for all j.
Figure 7(c) shows a deformation of a bird mesh (shown in (a)) us-
ing BD-LSCM (with C = 1.5) which does not punish scaling. In
(b) we optimized the LSCM energy on FM,�,∞

C with the addition
of eqs. (6.4),(6.3) where we set S = 1.25

√
C, and s = 1/S. (The

idea is that S/s = 1.252C which allows some freedom consid-
ering we restrict the conformal distortion to C.) The coloring in

0

0.2

(a) (b) (c)

Figure 7: Deformation of a bird mesh (a) with (in (b)) and without
(in (c)) the singular value bounds (6.3),(6.4). The coloring of each
triangle is by the “rigidness” of its transform (As-Rigid-As-Possible
energy) where redness indicates larger deviation from rigid trans-
form.

this image is by the ARAP energy, namely each face is colored by
(Γj − 1)2 + (γj − 1)2 which can be seen as the “rigidness” of
the map on the faces. Note that the strict control over the singular
values bounds the ARAP error per triangle.

6.4 Dependence on initial frame field

The main tools in this paper are the convex mapping spaces
FM,�
C ,FM,�,∞

C , and therefore it is useful to understand their de-



bcd −> max CD: 2.4128  mean CD: 1.1345 max CDil: 0.41397 bcd −> max CD: 2.4682  mean CD: 1.134 max CDil: 0.42333 bcd −> max CD: 4.7964  mean CD: 1.3217 max CDil: 0.65496

(a) (b) (c) (d) (e)

Figure 8: Dependence of the mapping on the initial frame field. (a)-(b) show 2D deformations of a dog mesh (bottom) using BD-LSCM
followed by BD-ARAP, with two initial random frame fields (the 1st vectors of the frames �j , ej1, are shown in black on the original model
in the bottom row). The resulting deformations are indistinguishable (top row). (c)-(e) show parameterizations of a cow model (bottom) with
BD-LSCM. In (c) the initial frame field is set by the gradient field of a discrete harmonic-type function (bottom). In (d) the initial frame field
of (c) is perturbed by random rotations of angles in the range (−0.4π, 0.4π) and produces similar parameterization to (c). In (e) the discrete
harmonic field is perturbed by random rotations in the range (−0.7π, 0.7π). In this case the algorithm did not find a feasible solution.

pendence on their unknown parameter, namely the frame field �.
On the theoretical side, Proposition 4.1 provides a characterization
of the restriction on the rotation angle w.r.t. the initial rigid embed-
ding of the faces defined by the frame-field. However, this analysis
does not cover the case in which we allow resetting the frame-field
and resolving (see the fourth step in the meta-algorithm description
in the beginning of this section). In this subsection we present ex-
perimental results demonstrating the affect of perturbing the initial
frame field on the optimized mappings.
When using planar deformations with positional constraints we
found that allowing several iterations (we used four feasible iter-
ations here) tend to lead to results independent of the initial frame
field. Figure 8 (a),(b) show two deformations with the same po-
sitional constraints and bound on conformal distortion (C = 2)
but with two randomly generated frame fields (depicted with black
lines on the bottom row). Note that the final deformations on the
top row are indistinguishable. However, in cases we did not in-
corporate positional constraints, such as free boundary parameter-
izations, we encountered stronger dependency on the initial frame
field. Figure 8 (c)-(e) show three parameterizations of a low poly-
gon count cow model where in (c) we used a discrete harmonic-type
potential function to define the frame field, in (d) we perturbed this
frame field by applying a random rotation in each face with angle
range in (−0.4π, 0.4π), and in (e) we randomly rotated in the range
(−0.7π, 0.7π). Note that while the parameterizations in (c) and (d)
are very similar, in (e) the optimizer could not find a feasible solu-
tion.

6.5 Optimal quasi-conformal mappings

A natural question is: what is the minimal conformal distortion C
for which the problem of mapping a mesh under some constraints is
feasible? Or simply, what is the optimal quasi-conformal mapping?
We will consider a version of this problem where we start with a
framed mesh M = (V,E,F,�) and a set of positional constraints
and we wish to solve:

C∗ = min
{
C | FM,�

C 6= ∅
}
. (6.5)

Algorithm 1: Optimal CPL quasi-conformal mapping.

Input: Framed Mesh M = (V,E,F,�),M ⊂ Rd, d = 2, 3,
Tolerance ε > 0,
Point (or other) constraints

Output: extremal CPL-QC map φ∗ ∈ FM,�
C∗

set C = C0 (e.g., 10), Cleft = 1, Cright =∞
while Cright − Cleft > ε do

Solve convex feasibility problem φ ∈ FM,�
C

if feasible then
set φ∗ = φ ∈ FM,�

C
forall faces fj// Field update
do

Update frame �j using φ∗, according to eq. (4.21)
Cright = C

else
Cleft = C

if Cright ==∞ then
C = 2Cleft

else
C = 1

2
(Cleft + Cright)

return φ∗

Then, any map φ∗ ∈ FM,�
C∗ would be optimal in that sense. In order

to solve (6.5) we will use a simple modification of the bisection
algorithm on the conformal bound C described in Algorithm 1. For
finding a feasible φ ∈ FM,�

C we use MOSEK conic-programming
[Andersen and Andersen 1999].
It is interesting to investigate the connection between the result-
ing map φ∗ from Algorithm 1 and the (classical) extremal Quasi-
Conformal (QC) mapping. Extremal QC mappings minimize the
maximal conformal distortion in a given class of QC mappings
and have fascinating mathematical theory and far reaching con-
sequences [Imayoshi and Taniguchi 1992]. In practice, extremal
QC map can simply be viewed as the most conformal solution to



a given mapping problem. The reason one would want to consider
extremal QC maps in computer graphics is that ”perfect” conformal
maps have only a small number of degrees of freedom and cannot
bijectively satisfy more than a few constraints simultaneously (see
Section 2). We are not aware of any algorithm approximating ex-
tremal QC maps (for more than four interpolation points or a quad
[Lipman et al. 2012]), and researchers have mainly focused on com-
puting a QC map, not necessarily the optimal one, which is already
a challenging problem [Gaidashev and Khmelev 2008; Zeng et al.
2009].
A first theoretical step is provided in the next theorem, describing a
certain feasibility result:
Theorem 6.1. Let Ω ⊂ C be a planar domain with polygonal
boundary. Let ψ ∈ W 2

∞(Ω) be a QC map with maximal con-
formal distortion D(ψ) = Cψ . We will also assume ψ has no
critical points in Ω, that is γψ(z) ≥ c > 0 (a.e. in Ω). Let
Mh = (Vh,Eh,Fh) be a non-degenerate triangular mesh2 sub-
dividing Ω with maximal face diameter of h > 0.
Then, there exists a CPL map φ+ ∈ FM defined over mesh M with
maximal conformal distortion D(φ+) = Cψ + O(h). In other
words, FM

Cψ+O(h) 6= ∅.
Intuitively, this theorem implies that if the extremal map ψ : Ω →
C is regular enough (belongs to the Sobolev space W 2

∞(Ω)), and
the mesh Mh of the domain Ω is fine enough, then there is CPL
map φ+ (which is simply the CPL interpolant of ψ over M) that
has conformal distortion O(h) away from the optimal conformal
distortion of ψ. This result implies that we can find a CPL map
with maximal conformal distortion O(h) close to optimal if we
could search globally in the entire space of bounded distortion CPL
maps, but we don’t know how (this is a non-convex space). Instead
we search in FM,�

C , and so we need to make sure our frame field �
is chosen close enough to ensure convergence. We cannot guarantee
that as we take our frame field from some initial guess (in this case
we extracted it from the discrete harmonic mapping). In a sense
we find optimal solution in a certain known proximity to our initial
guess (the proximity is understood from Proposition 4.1). This is
the reason we have in Algorithm 1 a field update stage.

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

Mesh size

L2  E
rr

or our approx.
LSCM

(a) (c) (d) (e)

0 0.1 0.2
1.5

2

3

4

Mesh size

M
ax

im
al

 C
on

f. 
D

is
t.

sampled
our approx.
LSCM
optimal

(b) (f) (g) (h)

Figure 9: Convergence of optimal QC to the extremal QC map. (a)
shows L2 convergence plot of the approximate map to the reference
map (red curve). The LSCM error is shown in purple. (b) shows
a plot of the maximal conformal distortion of the optimal smooth
map (blue), its sampled CPL version over the mesh (black), our
approximation (red), and LSCM (purple); (c-e) and (f-h) show two
different mesh resolution (from left to right): the sampled analytic
extremal QC map, our approximation, and LSCM.

However, in practical scenarios we have considered, evidence of
convergence to the extremal map was observed, as described next.

2A non-degenerate mesh has uniform bound on the faces’ chunkiness
parameter (see Definition 6.2.16 in [Brenner and Scott 2008])

Initial mesh (a) optimal QC (b)max D = 1.74

1

2

3

4

Deformation input (c) harmonic (d)max D = 267.25

Figure 10: Deformation of multiply-connected airfoil domain with
discrete harmonic map (c),(d) and optimal quasi-conformal map
(a),(b).

Figure 9 shows a convergence plot (a)(red curve) of the mappings
produce by Algorithm 1. Our approximations are computed over a
series of meshes of a square with decreasing mesh size and the L2

deviation from an analytical solution are shown. The analytical so-
lution (of deforming a square by moving two of its corners) is taken
from [Lipman et al. 2012] where a formula for extremal QC map-
pings is provided for the special case of interpolating four points
in the plane with certain (conformal-periodic) boundary conditions.
The boundary vertices in our approximation are constrained accord-
ing to the analytic solution (we simply set the relevant positional
constraints inFM,�

C ). For comparison we solve Least-Squares Con-
formal Maps with the same boundary conditions and show its L2

error curve as well (in purple). The rows (c)-(e) and (f)-(h) show
the results for two different mesh resolutions, where (c),(f) show
the analytic solution interpolated over the mesh, (d),(g) our approx-
imation resulted from Algorithm 1, and (e),(h) the LSCM result.
Note that both the plot and the meshes suggest convergence of our
approximation scheme. In (b) we show the maximal conformal
distortion as a function of the mesh size. The optimal solution’s
conformal distortion is constant (in blue), while the sampled (inter-
polated) optimal solution has linear convergence in the mesh size
(in black) as Theorem 6.1 implies. As expected (but not proved!)
our solution’s curve is bounded below the curve of the sampled (in-
terpolated) optimal solution and therefore has also empirical linear
convergence to the optimal distortion.
Although rather costly to compute (we discuss timing at the end of
this section) the optimal maps are of high quality (in terms of con-
formal distortion), and we believe that they will find their applica-
tions where the low distortion of the map is more important than the
speed of its computation. For example, Figure 10 (a),(b) show the
result of Algorithm 1 in computing a map between two multiply-
connected planar domains of an airfoil used for Finite-Element
analysis. (c),(d) show the discrete harmonic mapping which suf-
fers from fold-overs and high conformal distortion. The optimal
QC map has low (relative to the discrete harmonic map) maximal
conformal distortion (1.74) and it is guaranteed to be bijective (by
Theorem 5.2). In this case we used a constant frame field {1, i }
since the frame field of the discrete harmonic initial guess was very
distorted in some areas (here we used MOSEK rather than Matlab’s
QP for optimization).

6.6 2D mesh improvement

The goal of planar meshing algorithms is to produce triangulations
of polygonal domains with guarantees on the shape of the triangles.
Remeshing of 2D planar domain can be cast into planar mapping
problem as follows: given a mesh M of a planar domain Ω ⊂ R2,



we can think of it as an image under some map φ of a hypothetical
mesh M∗ with the same connectivity as M but perfect equilateral
faces. We don’t really care if M∗ can or cannot be embedded in a
specific Euclidean space; in fact, we take the Riemannian point of
view - we change the metric of M to define M∗, that is we choose
a frame field � on M such that representing each face fj in its lo-
cal frame gives an equilateral which is closest to the actual fj . We
compute such frames by simply fitting, in the least-squares sense,
equilateral to each face. Then, we use Algorithm 1 to find an op-
timal QC map φ∗ : M∗ → Ω with as small as possible conformal
distortion C∗. The image M̃ = φ∗(M∗) is our optimized mesh
where we know that each face was distorted by no more than C∗

from a perfect equilateral, and φ∗ is a bijection.
Two comments are: we set the boundary positional constraints by
requiring that φ∗(∂M∗) = ∂M (i.e., the boundary of the mesh M
is fixed). Second, we note that all the equations defining FM,�

C can
be applied to the hypothetical mesh M∗, nowhere did we require an
actual embedding to define FM,�

C .

2

2.5

3

max D = 3.67 max D = 8.42 max D = 2.90
(a) Triangle (b)Triangle+∆ smth. (c) this paper

Figure 11: 2D meshing of Greenland’s shoreline polygon:
Shewchuk’s Triangle [1996] result is shown in (a), applying further
Laplacian smoothing results in (b). In (c) we optimize the Trian-
gle’s mesh (in (a)) using the optimal QC algorithm 1.

1 2 3 4 5 6

0

50

100

150

200

Conformal distortion

# 
tri

an
gl

es

triangle
triangle+∆ smoothing
this paper

Figure 11 shows meshing of Green-
land’s shoreline polygon. We show
meshing using the Triangle software
[Shewchuk 1996] in (a), and the
Laplacian smoothing of the Trian-
gle’s mesh in (b). In (c), we show
our optimization applied to the mesh
created with Triangle. We color the
faces based on conformal distortion
w.r.t. an equilateral. Although the
Laplacian smoothing regularized the
mesh it increased the maximal con-
formal distortion; our optimization
regularized the mesh as well as reduced the maximal conformal
distortion to 2.9 (from 3.67 of the initial Triangle’s mesh in (a)).
The histogram of the individual faces’ conformal distortion for the
three results is shown in the inset. Note that the histogram of our
remeshing (in blue) ends slightly before hitting D = 3.

Timing. Most of our code is written in Matlab and is not opti-
mized for speed. We ran our experiments on a 3.4GHz PC pro-
cessor. For optimizing over FM,�

C (L1 Stretch, QC optimal, and
remeshing) we used external calls to MOSEK [Andersen and An-
dersen 1999], and for all the rest we had quadratic energies that
were optimized over FM,�,∞

C with Matlab’s Quadratic Program-

ming. Typical optimization times are: BD-ARAP (Figure 3) 1.1sec
for |V | = 301; BD-LSCM (Figure 5) 2.86sec for |V | = 1056,
and 37.6sec for |V | = 8600; BD-ARAP (Figure 6) 41sec for
|V | = 2530. In Figure 1, |V | = 2193 and MOSEK optimization of
theL1 Stretch took 8.2sec, while Matlab’s optimization of Dirichlet
took on this example 20.6sec. Optimal QC computation are more
expensive due to numerous applications of the optimization by Al-
gorithm 1: the map in Figure 10 took 17sec for |V | = 600, and the
mesh optimization in Figure 11 took 14sec for |V | = 1200.

7 Limitations

There are two main limitations to our technique. The first, and more
obvious one, is the computational complexity that stems from the
non-linear formulation of the bounded distortion mapping spaces.
The second is more theoretical: we did not address the question of
feasibility in its general form. Theorem 6.1 provides a first step in
this direction, but it still does not answer the question: what are the
conditions that assure that for a given mesh and a set of mapping
constraints there exists a solutionFM,�

C 6= ∅ (orFM,�,∞
C 6= ∅). For

example, in Figure 5 we could not find a feasible solution for the
dino mesh with C = 5, and needed to raise the bound to C = 15.
Answering this question will provide a better picture of how much
flexibility we have in mapping triangular meshes.

8 Conclusions and future work

This paper introduced convex mapping spaces for triangular meshes
with guarantees. Our focus was controlling worst-case confor-
mal distortion in various existing mapping algorithms. In addition
we examined applications to bijective mappings, extremal quasi-
conformal mappings, controlling the singular values, and planar
remeshing.
The bounded distortion mappings introduced in this paper satisfies
the continuous definition of quasi-conformal mappings (since QC
maps allow weaker differentiability than, say, standard conformal
mappings). This provides the opportunity of using the well devel-
oped continuous QC theory directly on meshes, a fact which opens
many future research directions. We also plan to search for more
applications in geometry processing for these spaces. One obvious
direction is to build bounded distortion intrinsic mappings between
two surfaces embedded in 3D, a core element in many shape anal-
ysis applications.
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Appendix A
In this appendix we prove Theorem 5.2 which is more general and
includes Theorem 5.1. We start with three Lemmas.

Lemma A.1. (local bijectivity) Any map φ ∈ FM
+ is bijective on

all its quads (a quad is the union of two adjacent faces sharing an
edge).

Proof. Let fj , fk ∈ F be two faces sharing an edge e` ∈ E. Since
their frames �j ,�k are positively oriented (i.e., consistent with
the orientation of the mesh) and orthonormal, they define a con-
gruent, positive oriented embedding of each of these faces in the
plane Mj=M ([vj1 ], [vj2 ], [vj3 ]) ,Mk=M ([vk1 ], [vk2 ], [vk3 ]) ⊂ R2

(respectively). The affine maps Aj ,Ak are, by definition of FM
+ ,

orientation preserving and coincide on the common edge e`. This
implies that Aj(Mj),Ak(Mk) lie on different sides of Aj(e`) =
Ak(e`).

Lemma A.2. (interior vertex) Any map φ ∈ FM
+ takes some neigh-

borhood of any interior vertex v ∈ V to a neighborhood of its image
φ(v).

Proof. Let v ∈ V be an interior vertex (i.e., not on the bound-
ary). Let e1, e2, ..., en be the ordered (by the orientation) edges
that touch v. The angle θk,k+1 between φ(ek) and φ(ek+1) is in
(0, π) (otherwise the map would be orientation reversing or degen-
erate). If we sum the angles then

∑n
`=1 θ`,`+1 = 2mπ by conti-

nuity of the map φ. Since all θk,k+1 > 0 we have m > 0 and so
m ∈ {1, 2, 3, ...} and so the lemma is proved.

Lemma A.3. (interior point) Any map φ ∈ FM
+ , takes some neigh-

borhood of any interior point p ∈ M◦ (superscript ∗◦ denotes the
interior of a set) to a neighborhood of its image φ(p).

Proof. The point p is either: 1) an interior vertex, 2) on an interior
edge but not a vertex, or 3) in the interior of a face. Lemma A.2
takes care of case (1). Lemma A.1 takes care of case (2) (we use
the fact that the inverse is a continuous map). Lastly, case (3) is
proved since by construction FM

+ is a non-degenerate affine map
over each face.

Proof. (of Theorem 5.2) Denote by w(w,P ′`) the winding num-
ber of P ′` w.r.t. the point w /∈ ∂Ω. Given a point w /∈ ∂Ω one
can count the number of pre-images of w, namely Cardφ−1(w) =
Card {p ∈ M | φ(p) = w}3 using a version of the discrete argu-
ment principle (see for example [Stephenson 2005], Lemma 11.3,
page 141). Indeed, letw be a point that does not intersect the image
under φ of any edge, that is w /∈ φ(E), where we denote here the

3CardA denotes the number of elements in the set A.

edge set E = ∪kek. Since each face is mapped with an orientation
preserving affine map, we have that

Card φ−1(w) =

|F|∑
j=1

w(w, ∂φ(fj)), (A.1)

where ∂φ(fj) denotes the oriented boundary curve of the image of
face fj . For every two neighboring faces φ(fj), φ(fj′) the winding
number integral cancels on their common edge, and therefore

|F|∑
j=1

w(w, ∂φ(fj)) =

L∑
`=0

w(w,P ′`). (A.2)

Combining eq. (A.1) and eq. (A.2) gives the discrete argument prin-
ciple:

Card φ−1(w) =

L∑
`=0

w(w,P ′`). (A.3)

We consider three cases: 1) w is in the unbounded component of
Ωc = C \Ω; 2) w is in one of the bounded components of Ωc (i.e.,
holes); and 3) w ∈ Ω◦. In the first case w(w, φ(P ′`)) = 0 for all `,
while in the second case w(w, φ(P ′0)) = 1 and there exists a unique
` ∈ {1, 2, .., L} such that w(w, φ(P ′`)) = −1. Using the discrete
argument principle eq. (A.3), for both cases, Card φ−1(w) = 0.
Similar reasoning shows that for the third case Card φ−1(w) = 1.
Next, we show that φ maps the interior of M to the interior of Ω.
Otherwise we have an interior point o ∈ M◦ mapped to the bound-
ary or the complement of the domain, φ(o) ∈ ∂Ω∪Ωc, and Lemma
A.3 indicates the existence of a neighborhood of φ(o) in the image
set φ(M). But, that contradicts the fact that for anyw ∈ Ωc \φ(E),
Card φ−1(w) = 0. So φ(M) ⊂ Ω. From the discrete argument
principle above we also got Ω \ φ(E) ⊂ φ(M), and taking the
closure of both sides we get Ω ⊂ φ(M). So φ(M) = Ω (onto).
To prove injectivity assume (distinct) p, p′ ∈ M such that φ(p) =
φ(p′). p, p′ cannot both belong to the boundary as the boundary is
mapped bijectively. Since we showed φ maps the interior of M to
interior of Ω, the only remaining option is that both p, p′ ∈ M◦.
If φ(p) = φ(p′) ∈ φ(E) we can use Lemma A.3 to perturb p, p′

a bit such that still φ(p) = φ(p′) but φ(p) /∈ φ(E). However we
already showed that any w ∈ Ω \ φ(E) has exactly one pre-image
in M, which leads to a contradiction.

Appendix B
We prove Proposition 4.1:
Proof. (of Proposition 4.1) Let A(z) = αz + βz + δ be an affine
map with conformal distortion 1 ≤ c ≤ C, then from eq. (4.9)
and orientation preserving property we get (by canceling |α| from
numerator and denominator)

∣∣ β
α

∣∣ ≤ c−1
c+1

. Now a simple calculation
shows

Re(α) = |α| cos(arg(α)) ≥ |α| C + 1

C − 1

c− 1

c+ 1
≥ |β| C + 1

C − 1
,

where we used |arg(αj)| ≤ cos−1
(
C+1
C−1

c−1
c+1

)
in the second in-

equality, and |β| ≤ c−1
c+1
|α| in the last inequality. Take r = Re(α)

and the proposition follows.

Lemma B.1. The L∞ cone |z|∞ ≤ R, where z ∈ C, is contained
in the quadratic cone |z| ≤

√
2R, and contains the quadratic code

|z| ≤ R.
Proof. This is basically the equivalence relations of the infinity and
2-norm: let z = x + i y, x, y ∈ R, then |z| =

√
x2 + y2 ≤

max {|x|, |y|}
√

2 = |z|∞
√

2, and |z|∞ ≤ |z|.

Proof. (of Proposition 4.2) This is a direct consequence of Lemma
B.1.


