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Preface

The study of random matrices, and in particular the propewti their eigenval-
ues, has emerged from the applications, first in data asadysl later as statisti-
cal models for heavy nuclei atoms. Thus, the field of randorrioes owes its
existence to applications. Over the years, however, itinecelear that models
related to random matrices play an important role in aregsioéd mathematics.
Moreover, the tools used in the study of random matrices daeraselves from
different and seemingly unrelated branches of mathematics

At this pointin time, the topic has evolved enough that thecwmer, especially
if coming from the field of probability theory, faces a forralile and somewhat
confusing task in trying to access the research literatdoethermore, the back-
ground expected of such a newcomer is diverse, and oftehessdupplemented
before a serious study of random matrices can begin.

We believe that many parts of the field of random matrices avedeveloped
enough to enable one to expose the basic ideas in a systandtamherent way.
Indeed, such a treatise, geared toward theoretical pBisitias existed for some
time, in the form of Mehta’s superb book [Meh91]. Our goal iritimg this book
has been to present a rigorous introduction to the basigyh#aandom matri-
ces, including free probability, that is sufficiently sefitained to be accessible to
graduate students in mathematics or related sciences, avieahastered probabil-
ity theory at the graduate level, but have not necessaréy legposed to advanced
notions of functional analysis, algebra or geometry. Altimgway, enough tech-
nigues are introduced that hopefully will allow readers ¢mtinue their journey
into the current research literature.

This project started as notes for a class on random matheésto of us (G. A.
and O. Z.) taught in the University of Minnesota in the fall®f03, and notes for
a course in the probability summer school in St. Flour taughiA. G. in the
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summer of 2006. The comments of participants in these ceuasel in particular
A. Bandyopadhyay, H. Dong, K. Hoffman-Credner, A. Klenke, 8anton and
P.M. Zamfir, were extremely useful. As these notes evolvedtaught from them
again at the University of Minnesota, the University of @ainia at Berkeley, the
Technion and Weizmann Institute, and received more mucteajgied feedback
from the participants in those courses. Finally, when egpanand refining these
course notes, we have profited from the comments and quesifomany col-
leagues. We would like to thank in particular G. Ben ArousBiane, P. Deift,
A. Dembo, P. Diaconis, U. Haagerup, V. Jones, M. KrishnaguPeres, R. Pin-
sky, G. Pisier, B. Rider, D. Shlyakhtenko, B. Solel, A. Sdkbw, R. Speicher, T.
Suidan, C. Tracy, B. Virag and D. Voiculescu for their sudiges, corrections,
and patience in answering our questions or explaining tisik to us. Of course,
any remaining mistakes and unclear passages are fully sponsibility.

MINNEAPOLIS, MINNESOTA GREG ANDERSON
LYON, FRANCE ALICE GUIONNET
REHOVOT, ISRAEL OFERZEITOUNI

APRIL 2009



1
Introduction

This book is concerned with random matrices. Given the utmgs role that
matrices play in mathematics and its application in thersx@e and engineering,
it seems natural that the evolution of probability theorywdoeventually pass
through random matrices. The reality, however, has beere mmmplicated (and
interesting). Indeed, the study of random matrices, anaitiqular the properties
of their eigenvalues, has emerged from the applicatiorst,ifirdata analysis (in
the early days of statistical sciences, going back to WigWeis28]), and later
as statistical models for heavy nuclei atoms, beginning trie seminal work of
Wigner [Wig55]. Still motivated by physical applicationst, the able hands of
Wigner, Dyson, Mehta and co-workers, a mathematical thebmhe spectrum
of random matrices began to emerge in the early 1960s, aksl \liith various
branches of mathematics, including classical analysisramdber theory, were
established. While much advance was initially achievedgishumerative combi-
natorics, gradually, sophisticated and varied mathemlatiols were introduced:
Fredholm determinants (in the 1960s), diffusion proces¢isethe 1960s), inte-
grable systems (in the 1980s and early 1990s), and the Rieidipert problem
(inthe 1990s) all made their appearance, as well as newsaolsas the theory of
free probability (in the 1990s). This wide array of tools,il@lattesting to the vi-
tality of the field, present however several formidable abl&s to the newcomer,
and even to the expert probabilist. Indeed, while much ofélsent research uses
sophisticated probabilistic tools, it builds on layers ofranon knowledge that, in
the aggregate, few people possess.

Our goal in this book is to present a rigorous introductioth®basic theory of
random matrices that would be sufficiently self containeldd@ccessible to grad-
uate students in mathematics or related sciences, who hasterad probability
theory at the graduate level, but have not necessarily bgarsed to advanced
notions of functional analysis, algebra or geometry. Witthsreaders in mind, we
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present some background material in the appendices, thieenand expert alike
can consult; most material in the appendices is broughtowtitiproof, although
the details of some specialized computations are provided.

Keeping in mind our stated emphasis on accessibility oveeggity, the book
is essentially divided in two parts. In Chapters 2 and 3, ves@nt a self contained
analysis of random matrices, quickly focusing on the Gaussinsembles and
culminating in the derivation of the gap probabilities atr@ldhe Tracy—Widom
law. These chapters can be read with very little backgroumuedge, and are
particularly suitable for an introductory study. In the eed part of the book,
Chapters 4 and 5, we use more advanced techniques, reqoidreg extensive
background, to emphasize and generalize certain aspette dheory, and to
introduce the theory dfee probability

So what is arandom matrix, and what questions are we abowittg? Through-
out, letF =R orF = C, and sep3 = 1 in the former case anfgéi= 2 in the latter. (In
Section 4.1, we will also consider the cd8e- H, the skew-field of quaternions,
see Appendix E for definitions and details.) Let M@t) denote the space of
-by -N matrices with entries if, and IeL%”N(B) denote the subset of self-adjoint
matrices (i.e., real symmetric 8 = 1 and Hermitian if8 = 2.) One can always
consider the sets Ma([F) andff,\,(m, B =1,2, as submanifolds of an appropriate
Euclidean space, and equip it with the induced topology 8odg]) sigma-field.

Recall that a probability space is a trigle, %, P) so thatZ is a sigma-algebra
of subsets 0of) andP is a probability measure (if2,.%). In that setting, @andom
matrix Xy is a measurable map fro(@,.#) to Maty (IF).

Our main object of interest are thegenvalueof random matrices. Recall
that the eigenvalues of a matrk € Maty (F) are the roots of the characteristic
polynomialPy(z) = detzly — H), with Iy the identity matrix. Therefore, on the
(open) set where the eigenvalues are all simple, they aretdnfianctions of the
entries ofXy (a more complete discussion can be found in Section 4.1).

We will be mostly concerned in this book with self-adjointtn@esH € %”N(B),
B = 1,2, in which case the eigenvalues are all real and can be arddreus,
for H € j‘f,\,(m, we letAy(H) < --- < An(H) be the eigenvalues dfi. A con-
sequence of the perturbation theory of normal matricesl(ee@ma A.4) is that
the eigenvalue$i;(H)} are continuous functions id (this also follows from the
Hoffman—Wielandt theorem, Theorem 2.1.19). In particufaXy is a random
matrix then the eigenvaluda;(Xy)} are random variables.

We present now a guided tour of the book. We begin by consigeni Chap-
ter 2Wigner matrices Those are symmetric (or Hermitian) matricgs whose
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entries are independent and identically distributed, pixfmr the symmetry con-
straints. Forx € R, let &« denote theDirac measure ax, i.e the unique proba-
bility measure satisfying fddx = f(x) for all continuous functions ofR. Let
Ly = N‘lziN:l Ox(xy) denote theempirical measureof the eigenvalues oKy.
Wigner's Theorem (Theorem 2.1.1) asserts that, under apjpte assumptions
on the law of the entried,y converges (with respect to the weak convergence of
measures) towards a deterministic probability measueesdmicircle law We
present in Chapter 2 several proofs of Wigner's Theorem. firkg in Section
2.1, involves a combinatorial machinery, that is also eitptbto yield central
limit theorems and estimates on the spectral radivgofAfter first introducing
in Section 2.3 some useful estimates on the deviation betteeempirical mea-
sure and its mean, we define in Section 2.48lieltjes transfornof measures and
use it to give another quick proof of Wigner’s theorem.

Having discussed techniques valid for entries distribatecbrding to general
laws, we turn attention to special situations involving iiddal symmetry. The
simplest of these concerns tBaussian ensemblgthe GOE and GUE, so named
because their law is invariant under conjugation by ortmadgdresp., unitary)
matrices. The latter extra symmetry is crucial in derivinection 2.5 an explicit
joint distribution for the eigenvalues (thus, effectivedylucing consideration from
a problem involving order oR? random variables, namely the matrix entries, to
ones involving onlyN variables). (The GSE, or Gaussian symplectic ensemble,
also shares this property and is discussed briefly.) A laeg&tions principle for
the empirical distribution, which leads to yet another prafdNigner's Theorem,
follows in Section 2.6.

The expression for the joint density of the eigenvalues én@aussian ensem-
bles is the starting point for obtainingcal information on the eigenvalues. This
is the topic of Chapter 3. The bulk of the chapter deals with@UE, because
in that situation the eigenvalues fornmdaterminantal processThis allows one
to effectively represent the probability that no eigeneslare present in a set
as aFredholm determinanta notion that is particularly amenable to asymptotic
analysis. Thus, after representing in Section 3.2 the phémisity for the GUE in
terms of a determinant involving appropriate orthogon&tpomials, theHermite
polynomials, we develop in Section 3.4 in an elementary wayesaspects of the
theory of Fredholm determinants. We then present in Se@&ibithe asymptotic
analysis required in order to study tgap probability at Q that is the probabil-
ity that no eigenvalue is present in an interval around thgirar Relevant tools,
such as the Laplace method, are developed along the wayoi$8ct repeats this
analysis for the edge of the spectrum, introducing alongatag the method of
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steepest descent. The link with integrable systems anBdhde\e equationss
established in Sections 3.6 and 3.8.

As mentioned before, the eigenvalues of the GUE are an exaoid deter-
minantal process. The other Gaussian ensembles (GOE andda$i6t fall into
this class, but they do enjoy a structure where certain pfedfreplace determi-
nants. This leads to a considerable more involved analysisdetails of which
are provided in Section 3.9.

Chapter 4 is a hodge-podge collection of general tools aswltee whose com-
mon feature is that they all require some new tools. We begBeiction 4.1 with
a re-derivation of the joint law of the eigenvalues of the &aan ensemble, in
a geometric framework based on Lie theory. We use this fraoriewo derive
the expressions for the joint distribution of eigenvalués\ishart matrices, as
well as random matrices from the various unitary groups,random projectors.
Section 4.2 studies in some depth determinantal proceissdsding their con-
struction, associated central limit theorems, convergema ergodic properties.
Section 4.3 studies what happens when in the GUE (or GOERélussian entries
are replaced by Brownian motions. The powerful tools oflsé&stic analysis can
then be brought to bear and lead to functional laws of largebers, central limit
theorems, and large deviations. Section 4.4 consists af-alepth treatment of
concentration techniques and their application to randatnioes; it is a general-
ization of the discussion in the short Section 2.3. Finatisection 4.5, we study
a family of tri-diagonal matrices, parametrized by a param®, whose distribu-
tion of eigenvalues coincides with that of members of the<smm ensembles for
B =1,2,4. The study of the maximal eigenvalue for this family is kakto the
spectrum of an appropriate random Schroedinger operator.

Chapter 5 is devoted tioee probability theorya probability theory for certain
noncommutative variables, equipped with a notion of indeleace called free
independence. Invented in the early 1990s, free probalfléory has become
a versatile tool in analyzing the law of non-commutativeypoimials in random
matrices, and of the limits of the empirical measure of eigéres of polynomials
in several random matrices. We develop the necessary fmelilas and defini-
tions in Section 5.2, introduce free independence in Se&i8, and discuss the
link with random matrices in Section 5.4. We conclude thepthiawith Section
5.5, that studies the convergence of the spectral radiusmtommutative poly-
nomials of random matrices.

Each chapter ends with bibliography notes. These are nohtmiede com-
prehensive, but rather guide the reader through the enariitetature and give
some hint of recent developments. Although we have triedpoasent accurately
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the historical development of the subject, we have necéssanitted important
references, misrepresented facts, or plainly erred. Celogjes to those authors
whose work we have thus unintentionally slighted.

Of course, we have barely scratched the surface of humanl&dge/concern-
ing random matrices. We mention now the most glaring ommssitogether with
references to some recent books that cover these topics.aVeenot discussed
the theory of the Riemann—Hilbert problem and its relatmimtegrable systems,
Painlevé equations, asymptotics of orthogonal polyntswiad random matrices.
The interested reader is referred to the books [FOIKNO6§i®O] and [DeG09]
for an in-depth treatment. We do not discuss the relatiowden asymptotics
of random matrices and combinatorial problems — a good sugnofahese ap-
pears in [BaDS08]. We barely discuss applications of randuatrices, and in
particular do not review the recent increase in applicatimnstatistics or com-
munication theory — for a nice introduction to the latter wéer to [TuV04]. We
have presented only a partial discussion of ensembles oiteathat possess ex-
plicit joint distribution of eigenvalues. For a more compldiscussion, including
also the case of non-Hermitian matrices that are not unitegyrefer the reader
to [For05]. Finally, we have not touched at the link betwesmdom matrices and
number theory; the interested reader should consult [Kpf@% taste of that
link. We further refer to the bibliography notes for addité reading, less glaring
omissions, and references.



2
Real and Complex Wigner matrices

2.1 Real Wigner matrices: traces, moments and combinatorg

We introduce in this section a basic model of random matridEsvhere do we
attempt to provide the weakest assumptions or sharped#tsrasailable. We point
out in the bibliographical notes (Section 2.7) some plachsre the interested
reader can find finer results.

Start with two independent families of i.i.d., zero meargltealued random
variables{Z; j }1<i<j and{Yi} 1<, such thaEZi2 =1 and, for all integerk > 1,

o= max(E|zl,2|k, E|Y1|k) < . (2.1.1)
Consider the (symmetrid) x N matrix Xy with entries
. Co Zi,j/\/N7 ifi<j,
XN(J7|)—XN(|7J)—{ N T (2.1.2)

We call such a matrix &igner matrix and if the random variableg j andY; are
Gaussian, we use the te@aussian Wigner matrixThe case of Gaussian Wigner
matrices in whicrEYl2 = 2 is of particular importance, and for reasons that will
become clearer in Chapter 3, such matrices (rescaledMyare referred to as
GOE (Gaussian Orthogonal Ensemble) matrices.

Let AN denote the (real) eigenvalues X%, with AN < AN < ... <AJl, and
define theempirical distributionof the eigenvalues as the (random) probability
measure ot defined by

1 N
LN == Ni;@‘i’\‘ .

Define the standard semicircle distribution as the profiglbliistributiono (x)dx
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on R with density
1
o(x) = ET\/4—x21M§2. (2.1.3)
The following theorem, contained in [Wig55], can be consédithe starting point

of Random Matrix Theory (RMT).

Theorem 2.1.1 (Wigner)For a Wigner matrix, the empirical measurg lcon-

verges weakly, in probability, to the standard semicirdiribution.

In greater detail, Theorem 2.1.1 asserts that for aayCy(R), and anye > 0,
’\Ilim P(|{Ln, f) — (o, )| > €) =0.

Remark 2.1.2The assumption (2.1.1) that < o for all k is not really needed.
See Theorem 2.1.21 in Section 2.1.5.

We will see many proofs of Wigner's Theorem 2.1.1. In thistee; we give
a direct combinatorics-based proof, mimicking the origemgument of Wigner.
Before doing so, however, we need to discuss some propeftibe semicircle
distribution.

2.1.1 The semicircle distribution, Catalan numbers, and &ypaths
Define the momentsy := (o, x¢). Recall the Catalan numbers

()

“=T5 T T koW

We now check that for all integeks
mpk =Cy, M1 =0. (2.1.4)
Indeedmyi 1 = 0 by symmetry, while

2 .92k rmr/2
Mo — / P (x)dx= 22 / sir(6) co2(0)d6
-2 m J-m2

.22k rm/2
22/ SIr*(6)d6 — (2Kk+ 1)my.

n /2
Hence,
2.22k /2 ok 4(2k—1)
ek = m(2k+2) /_n/zsmz (6)d6 = kg2 T2 (2.1.5)
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from which, together withng = 1, one concludes (2.1.4).

The Catalan numbers possess many combinatorial intetipretaTo introduce
a first one, say that an integer-valued sequ€®éo<n<, is a Bernoulli walkof
length? if S =0and|S;1— S| =1fort <¢—1. Of particular relevance here is
the fact thatCy counts the number ddyck pathsof length X, that is, the number
of nonnegative Bernoulli walks of lengtik2hat terminate at 0. Indeed, I8k
denote the number of such paths. A classical exercise in ic@ataoics is

Lemma 2.1.36, = C < 4%. Further, the generating functigh(z) := 1+ ¥, 7B
satisfies, fofz] < 1/4,

N 1-VI—4z

B(2) = 5 (2.1.6)

Proof of Lemma 2.1.3Let B¢ denote the number of Bernoulli walks,} of
length X that satisfySy = 0, and letBy denote the number of Bernoulli walks
{S} of length X that satisfySy = 0 andS < O for somet < 2k. Then, B« =
By — Bx. By reflection at the first hitting of 1, one sees tha equals the number
of Bernoulli walks{$,} of length X that satisfyS,x = —2. Hence,

BkZBk—§k=< Zkk)—< kz_kl ) = Cx.

Turning to the evaluation q%(z), considering the first return time to O of the
Bernoulliwalk{S,} gives the relation

k
Bc= 3 BejBj-1, k=1, (2.1.7)
=1
with the convention thgBy = 1. Because the number of Bernoulli walks of length

2k is bounded by % one has thag, < 4%, and hence the functioﬁ(z) is well
defined and analytic fde| < 1/4. But, substituting (2.1.7),

R 0 k © k
B2)—1=S Y B iBi-1=25 Y BB,
&7 Pebamr® g Bl
while
- o , w q
B(2)® = 2K BB = 2By By -
k,;=0 qZO/; ‘
Combining the last two equations, one sees that

B(2) = 1+28(22,
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from which (2.1.6) follows (using thaﬁ(O) =1 to choose the correct branch of
the square-root). O

We note in passing that expanding (2.1.6) in power seriesrima neighborhood
of zero, one gets (fde| < 1/4)

(2k—2)!
2Zk_l k' k=1)

Bz =~ ik, 2 ;zkck,

which provides an alternative proof of the fact tifat= Cx.

Another useful interpretation of the Catalan numbers is@GQaounts the num-
ber of rooted planar trees withedges. (A rooted planar tree is a planar graph
with no cycles, with one distinguished vertex, and with aicbaf ordering at
each vertex; the ordering defines a way to “explore” the s&@ting at the root.)

It is not hard to check that the Dyck paths of lengka®e in bijection with such
rooted planar trees. See the proof of Lemma 2.1.6 in Sectib@ for a formal
construction of this bijection.

We note in closing that a third interpretation of the Catalambers, particu-
larly useful in the context of Chapter 5, is that they couetribn-crossing parti-
tionsof the ordered seti := {1,2,...,k}.

Definition 2.1.4A partition of the set’7; :={1,2,...,k} is calledcrossingf there
exists a quadruplé, b, c,d) with 1 <a < b < ¢ < d <k such thag, c belong to
one part whileb,d belong to another part. A partition which is not crossing is a
non-crossing partition

Non-crossing partitions form a lattice with respect to refirent. A look at Fig-
ure 2.1.1 should explain the terminology “non-crossinghieuts the points

.,k on the circle, and connects each point with the next membés qfart
(in cyclic order) by an internal path. Then, the partitiomdm-crossing if this can
be achieved without arcs crossing each other.

Itis not hard to check th&ly is indeed the numbeg of non-crossing partitions
of J#. To see that, letr be a non-crossing partition of; and letj denote the
largest element connected to 1 (wijtk= 1 if the part containing 1 is the s¢t}).
Then, becauser is non-crossing, it induces non-crossing partitions onsiis
{1,...,i—1}and{j+1,...,k}. Thereforey = Zlle W—jVj-1. Withyy =1, and
comparing with (2.1.7), one sees tiffat= W

Exercise 2.1.5Prove that forz € C such thatz ¢ [—2,2], the Stieltjes transform
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Fig. 2.1.1. Non-crossing (leff1,4),(2,3),(5,6)) and crossing (right{1,5), (2, 3), (4,6))
partitions of the set#g.

S(z) of the semicircle law (see Definition 2.4.1) equals

_ 2 __
S2) :/Ai_zo(d)\) i Lt Z”ZZ 4

Hint: Either use the residue theorem, or rel&t® to the generating functioﬁ(z),
see Remark 2.4.2.

2.1.2 Proof #1 of Wigner's Theorem 2.1.1

Define the probability distributiohy = ELy by the relation(Ly, f) = E(Ly, )
for all f € Gy, and sem) := (L, X¥). Theorem 2.1.1 follows from the following
two lemmas.

Lemma 2.1.6For every ke N,

lim m) = m.

N—oo

Lemma 2.1.7For every ke N ande > 0,

; k . K _
’\IlanwP(‘(LN,x ) — (L. X >’ > s) ~0.
Indeed, assume that Lemmas 2.1.6 and 2.1.7 have been piivednclude the
proof of Theorem 2.1.1, one needs to check that for any balicadietinuous func-
tion f,

lim (Ln, f) = (o, f), in probability. (2.1.8)

N—oo
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Toward this end, note first that an application of the Chebyshequality yields
1 (L, X2
k k )
P(<LN, |X| 1\X\>B> > 5) < EE<LN7|X| 1\x\>B> < W
Hence, by Lemma 2.1.6,

(o,x%K) 4K
< —,
eBK  ~ gBK
where we used th&@ < 4. Thus, withB = 5, it follows, noting that the lefthand
side above is increasing ky

IimsupP((LN, X 1y~p) > 5) <

N—oo

lim supP ((LN, X Ly=p) > e) =0. (2.1.9)

N—oo

In particular, when proving (2.1.8), we may and will assuimat f is supported
on the interva[—5,5].

Fix next such arf andd > 0. By the Weierstrass approximation theorem, one
can find a polynomiaRs(x) = Zf‘:o cix' such that

sup [Qs(x) — f(x)| <

x:[x|<B

0| ™

Then,

P ) (0.0 > &) <P (11w Q) ~ (En.Qsll > 5 )

_ o o
+P<|<|—N,Q5> —(0,Qs)| > Z) +P<|<LNaQ51X>B> > Z)
= P+P+P;5.

By an application of Lemma 2.1.P; —N_.» 0. Lemma2.1.6 implies th& —N_«
0, while (2.1.9) implies thaP; —n_.. 0. This completes the proof of Theorem
2.1.1 (modulo Lemmas 2.1.6 and 2.1.7). O

2.1.3 Proof of Lemma 2.1.6 : Words and Graphs

The starting point of the proof of Lemma 2.1.6 is the follogridentity:

— 1

(L, X$) = NEtrX,‘f]

N
= 5 Y ETiN::% > T (2.1.10)
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where we use the notation= (iy, ..., ik).

The proof of Lemma 2.1.6 now proceeds by considering whioimgecontribute
to (2.1.10). Let us provide first an informal sketch that expd the emergence of
the Catalan numbers, followed by a formal proof. For the paepof this sketch,
assume that the variabl¥svanish, and that the law @ > is symmetric, so that
all odd moments vanish (and in particul(alfN,xk> = 0 fork odd).

A first step in the sketch (that is fully justified in the actpabof below) is to
check that the only terms in (2.1.10) that survive the passaghe limit involve
only second moments & j, because there are ordef/2t1 non-zero terms but
only at most ordeN¥/2 terms that involve moments higher than or equal to 4. One
then sees that

(L, x) = (1+O(N‘1))$ > TN e (21.11)
vp,3lj#p:
(ipsipt2)=(ij,ij+1) OF (ij41,i)
Considering the indej > 1 such that eithefij,ij 1) = (i2,i1) or (ij,ij+1) =
(i1,i2), and recalling thait # i, sinceYj, = 0, one obtains

12k N N

- | 2 _ (14 o1k 2.1.12
(Ln, X = (140O( ))N Jzziﬂlzzzl.irj,...,'z ( )

Ijﬁl’
Tj+25-l2k=1

(EXN(iz,ia)---xN(ij1,iz>xN<i1,i 2) - Xa(izei)
+E)<l\l(i2ai3)"'XN(ij—lvil)XN(iniHZ)'"xN(iZle)) :

Hence jf we could provethatE[(Ly — Ly, X€)]2 = O(N~2) and hence
E[(Ln, X (Ln, 3 172)] = (L, ¥ ) (e X 172) (14 O(NY)

we would obtain

<EN,x2k> — (1+O(N_1)) zo ((EN,XJ><EN,x2k_j_2>

2k—2

= (1+O(N™) 3 (Ln,X) (L, X1 72)
j; N N

=(1+ O(N*))§<EN,x2j><EN,x2<k—i—1>>, (2.1.13)
=
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where we have used that by inductidny, x%~2) is uniformly bounded and also
the fact that odd moments vanish. Further,

=,

EXu(i, )2 =Now 1=C;. (2.1.14)
1

™Mz

s

Thus, we conclude from (2.1.13) by induction tMEﬁ,x2k> converges to a limit
ax with ag = a; = 1, and further the family{ax} satisfies the recursiorex =
y%_;ajaj_1. Comparing with (2.1.7), we deduce thagt= C, as claimed.

We turn next to the actual proof. To handle the summation pressions like
(2.1.10), it is convenient to introduce some combinatamalchinery that will
serve us also in the sequel. We thus first digress and discassombinatorics
intervening in the evaluation of the sum in (2.1.10). Thithisn followed by the
actual proof of Lemma 2.1.6.

In the following definition, the reader may think of as a subset of the integers.

Definition 2.1.8 (¥-Words) Given a set¥, an.#-lettersis simply an element
of .. An .-word wis a finite sequence of lettess: - - s,, at least one letter long.
An .-word w is closedif its first and last letters are the same. Tw6-words
w1, Wy are calledequivalent denotedw; ~ W, if there is a bijection on? that
maps one into the other.

When.”” = {1,...,N} for some finiteN, we use the ternN-word. Otherwise, if
the set is clear from the context, we refer to ari-word simply as a word.

For any.”-wordw =s; - - - S, we use/(w) = k to denote the length ofi, and
define the weight wiv) as the number of distinct elements of thef&st ..., s},
and the support ofv, denoted supy, as the set of letters appearingvin To any
word w we may associate an undirected graph, witfwytvertices and/(w) — 1
edges, as follows.

Definition 2.1.9 (Graph associated to ans’-word) Given a wordw = & - -+ &,
we let Gy = (Vw, Ew) be the graph with set of verticaé4, = suppw and (undi-
rected) edgeBy = {{s,s+1},i = 1,...,k—1}. We define the set of self edges as
E; = {e€ Ey:e={u,u},ueVy} andthe set of connecting edgess= E \ E}.

The graphG,, is connected since the word defines a path connecting all the
vertices ofG,, which further starts and terminates at the same vertexifvbrd
is closed. Foe € Ey, we useNy' to denote the number of times this path traverses
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the edgee (in any direction). We note that equivalent words generagesame
graphsGy, (up to graph isomorphism) and the same passage-cbights

Coming back to the evaluation dTN, see (2.1.10), note that akytuple of
integers defines a closed wond; = iqio---ikiy of lengthk+ 1. We write wi =
wt(w; ), which is nothing but the number of distinct integers.iithen,

1 i W
™=—"T1E@Y) [1EM*). (2.1.15)
i NKk/2 eeI;L/i ) e’EELVi

In particular,fN =0 unlessNg' > 2 for all e € Ew, vlhich implies that wt<
k/2+ 1. Also, (2.1.15) shows thatif; ~ w;, thenT,N = TN. Further, ifN > t then
there are exactly

Crng:=N(N—1)(N=2)---(N—t+1)

N-words that are equivalent to a givilrword of weightt. We make the following
definition:

Wk denotes a set of representatives for equivalence classtssefl
t-wordsw of lengthk + 1 and weight with NY' > 2 for eache € E, .

(2.1.16)
One deduces from (2.1.10) and (2.1.15) that
. k/2]+1 Cn w w
(L, X<) = L E(Z%) [T E(Y/e). (2.1.17)
t; Nk/2+1 we;/k,[ee 3 L2 eelg\%, !

Note that the cardinality o is bounded by the number of closs@-words of
lengthk + 1 when the cardinality of” is t <k, that is,|#;| < tX <K Thus,
(2.1.17) and the finiteness of, see (2.1.1), imply that

im (Ln,X<) =0, if kis odd,

while, for k even,

lim (LX) = 7; E(Z%) QWE(YlNgV). (2.1.18)
N—o0 we k,k/2+le€ ‘(/;v ’ ec S

We have now motivated the following definition. Note thattfoe purpose of this
section, the case= 0 in definition 2.1.10 is not really needed. It is introduced i
this way here in anticipation of the analysis in Section@.1.

Definition 2.1.10A closed wordw of lengthk+ 1 > 1 is called a Wigner word if
eitherk =0 ork is even andv is equivalent to an element & /> 1.
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We next note that iftv € #j /2,1 thenGy, is a tree: indeedGy, is a connected
graph with|Vy| = k/2+ 1, hencdEy| > k/2, while the conditioNy’ > 2 for each
e Ey implies that|Ey| < k/2. Thus,|Ew| = V| — 1, implying thatG,, is a tree,
that is a connected graph with no loops. Further, the abopdiemthatE}, is
empty forw € #j /21, and thus,

A@m@mxk) = [Whx2+1l- (2.1.19)

We may now complete the

Proof of Lemma 2.1.6Let k be even. It is convenient to choose the set of rep-
resentatives/ k2,1 such that each wordl = v; - - v 1 in that set satisfies, for
i=1,...,k+1, the condition thafvy,...,v;} is an interval inZ beginning at 1.
(There is a unique choice of such representatives.) Eacheelen € # /2.1
determines a patia, Vo, ..., Vi, Vi1 = v1 Of lengthk on the treeG,,. We refer
to this path as the exploration process associatedwithet d(v,v') denote the
distance between vertices/ on the treeG,,, i.e. the length of the shortest path
on the tree beginning atand terminating a¥’. Settingx; = d(vi;1,v1), one sees
that each worav € #j i />,1 defines a Dyck patD(w) = (X1, Xz, ..., X) of length

k. Conversely, given a Dyck path= (xy,...,X), one may construct a word
w = T(x) € #x/2+1 by recursively constructing an increasing sequesge. . ,

wy = w of words, as follows. Puiv, = (1,2). Fori > 2, if X_1 = x_2+1, then

w; is obtained by adjoining on the right 8_4 the smallest positive integer not
appearing inw;_;. Otherwisew; is obtained by adjoining on the right of_; the
next to last letter ofv,_;. Note that for alli, Gy, is a tree (becausBy, is a tree
and, inductively, at stagie either a backtrack is added to the exploration process
on Gy,_, or a leaf is added t®,; ,). Furthermore, the distance @, between
first and last letters ofv; equalsx;_1, and thereforeD(w) = (xq,...,%). With
our choice of representatives(D(w)) = w, because each uptick in the Dyck path
D(w) starting at location — 2 corresponds to adjoinment on the rightvgf ; of

a new letter, which is uniquely determined by suwpp,, whereas each downtick
at locationi — 2 corresponds to the adjoinment of the next-to-last letiav;i ;.
This establishes a bijection between Dyck paths of lekgthd %>, 1. Lemma
2.1.3 then establishes that

[ Wkk2+1] = Ci2. (2.1.20)
This completes the proof of Lemma 2.1.6. O

From the proof of Lemma 2.1.6 we extract as a further benefibaff a fact
needed in Chapter 5. L&tbe an even positive integer and l& = {1,...,k}.
Recall the notion of non-crossing partition.gf, see Definition 2.1.4. We define
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1

Fig. 2.1.2. Coding of the wordr = 123242521 into a tree and a Dyck path of length 8.
Note that¢/(w) = 9 and wfw) = 5.

a pair partition of % to be a partition all of whose parts are two-element sets.
The fact we need is that the equivalence classes of Wignetsaafrlengthk + 1

and the non-crossing pair partitions .¢fi are in canonical bijective correspon-
dence. More precisely, we have the following result whickadibes the bijection

in detail.

Proposition 2.1.11Given a Wigner word w= i1 - - - ik 1 Of length k+ 1, let My, be
the partition generated by the function— {ij,ij+1} : {1,...,k} — Ew. (Here,
recall, Ey is the set of edges of the grapk @ssociated to w.) Then the following
hold:

() My is a non-crossing pair partition.

(i) Every non-crossing pair partition of# is of the formrl,, for some Wigner
word w of length k- 1.

(iii) If two Wigner words w and Wof length k+ 1 satisfyn,, = M,,, then w and
w are equivalent.

Proof (i) Because a Wigner word/ viewed as a walk on its grapB,, crosses
every edge exactly twicd],, is a pair partition. Because the gra@lj is a tree,
the pair partitior1,, is non-crossing.

(i) The non-crossing pair partitions 0¥ correspond bijectively to Dyck paths.
More precisely, given a non-crossing pair partitidnof .z, associate to it a
path f = (fr(1),..., frn(kK)) by the rules thatfr (1) = 1, and, fori = 2,... Kk,
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fn(i) = fn(i—1)+1 (resp.,fn (i) = fn(i— 1) — 1) if i is the first (resp., second)
member of the part dfl to whichi belongs. It is easy to check thi is a Dyck
path, and furthermore that the mBlb— fr puts non-crossing pair partitions of
J# into bijective correspondence with Dyck paths of lengthNow choose a
Wigner wordw whose associated Dyck pdit{w), see the proof of Lemma 2.1.6,
equalsfr. One can verify thally, = I1.

(iii) Given My, = My, one can verify thab(w) = D(w'), from which the equiva-
lence ofw andw follows. 0

2.1.4 Proof of Lemma 2.1.7 : Sentences and Graphs
By Chebyshev’s inequality, it is enough to prove that

lim |E (<LN,xk>2) — (L, X2 = 0.

N—oo

Proceeding as in (2.1.10), one has

E(<LN7Xk>2)_<|:N,Xk>2: % % -Fi!}ll, (2121)
i1,0ig=1
it =1
where
T = ETNTN -ETVET)] . (2.1.22)

The role of words in the proof of Lemma 2.1.6 is now played biyspaf words,
which is a particular case ofsentence

Definition 2.1.12 (¥-Sentencessiven a set¥, an.”-sentence &s a finite se-
guence of-wordswy, ..., Wy, at least one word long. Twe”-sentencesy, a,
are called equivalent, denotad ~ ay, if there is a bijection on” that maps one
into the other.

As with words, for a sentenca = (wg,Ws,...,W,), we define the support as
supp(@) = UL, supp(wi), and the weight wia) as the cardinality of sup(@).

Definition 2.1.13 (Graph associated to an¥’-sentence)Given a sentenca =
(Wi,..., W), withw; =8, - §[<Wi), we setG, = (Va, Ea) to be the graph with set
of verticesV, = supp(a) and (undirected) edges

Ea={{s.Sj,1},i=1....00m)—1i=1,. Kk}

We define the set of self edgesEs= {e € Ea: e= {u,u},u € V,} and the set of
connecting edges & = E; \ E3.
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In words, the graph associated with a sentemee (w,...,Wy) is obtained by
piecing together the graphs of the individual wormgs(and in general, it differs
from the graph associated with the word obtained by conedtegthe words
w;). Unlike the graph of a word, the graph associated with aese@t may be
disconnected. Note that the senteaa®finesk paths in the grapl,. Fore € E,,
we useNg@ to denote the number of times the union of these paths tewdhe
edgee (in any direction). We note that equivalent sentences geéa¢he same
graphsG, and the same passage-couxis

Coming back to the evaluation Eﬁfi/, see (2.1.21), recall the closed wokdsw/
of lengthk+ 1, and define the two-word sentergg = (wi,wj). Then,

"’:Nk[ g E(Z |E] E(Y)%) (2.1.23)

CME@Y) [ EVE) [ E@Y) [ EVE].
Ex, E

Wi/

In particular, T 7 =0 unlessNe™ > 2 for all e EaH ,. Also, T'I“, = 0 unless
Ew NEw, # 0. Further, (2.1.23) shows thatafy ~ g j: thenT W= T . Finally,

if N >t then there are exacti@y: N-sentences that are equwalent to a given
N-sentence of weiglit We make the following definition:

Wk<t2) denotes a set of representatives for equivalence classesitencea
of weightt consisting of two closettwords(wy,w,), each of lengttk+ 1,
with N§ > 2 for eache € E5, andEy, NEw, # 0.
(2.1.24)
One deduces from (2.1.21) and (2.1.23) that

E((Ln,X)?) — (Ln,X<)2 (2.1.25)
2 Cny

= 3 oo (QE QE

a= W1W2 EW

_ Nt Nt N2 Ne?
eeuw E(Z} )EEQVlE(Y1 )eeElWZE(Zl'Z )eellsz(Yl ).

1

We have completed the preliminaries to

Proof of Lemma 2.1.7In view of (2.1.25), it suffices to check th%ﬂ[( is empty
fort > k+ 2. Since we need it later, we prove a slightly stronger claiamely
that%/lft) is empty fort > k+ 1.

Toward this end, note that & € Wk(tz) thenG, is a connected graph, with
vertices and at mostedges (sinc®g > 2 for e € E), which is impossible when
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t > k4 1. Considering the cage= k+ 1, it follows thatG, is a tree, and each
edge must be visited by the paths generated byactly twice. Because the path
generated by, in the treeG, starts and end at the same vertex, it must visit each
edge an even number of times. Thus, the set of edges visited Iy disjoint
from the set of edges visited by, contradicting the definition ch(tz) O

Remark 2.1.14Note that in the course of the proof of Lemma 2.1.7, we acgtuall
showed that foN > 2k,

E((Ln,xX)?) = (Ln, X2 (2.1.26)
k
Cnit
= N “!Ez12 uEYl
t= =(W1,W>) 67/(2

—%@laﬁz >%@N1E<YFS >%@N2E<Zfz ) [ e

2

that is, that the summation in (2.1.25) can be restricteicktd.

Exercise 2.1.15Consider symmetric random matric¥g, with the zero mean
independent random variabl¢Xn (i, j) } 1<i<j<n NO longer assumed identically
distributed nor all of variance/N. Check that Theorem 2.1.1 still holds if one
assumes that for a#l > 0,

0L0) 1 NEXu(i, )2 < )
N—oo N2

= :I_7
and for allk > 1, there exists a finitg, independent oN such that

sup E’\/NXN(i,j)‘kgrk.

1<i<j<N

Exercise 2.1.18Check that the conclusion of Theorem 2.1.1 remains true when
convergence in probability is replaced by almost sure cayerece.

Hint: Using Chebyshev’s inequality and the Borel-Cantelli leaihis enough to
verify that for all integer, there exists a consta@t= C(k) such that

B ((Lo?) — (T < .

Exercise 2.1.17n the setup of Theorem 2.1.1, assume that: c for all k but
not necessarily thaI[Zfz] = 1. Show that for any integer numbler

SUPE[(Ln, X)] =: C(ry, £ < k) <
NeN



20 2. WIGNER MATRICES

Exercise 2.1.18Ne develop in this exercise the limit theory Mfishartmatrices.
LetM = M(N) be a sequence of integers such that

;\ljianM(N)/N =a € [1,0).
Consider arN x M(N) matrix Yy with i.i.d. entries of mean zero and variance
1/N, and such tha (N¥/2]Yy(1,1)[¥) < rx < 0. Define theN x N Wishart matrix
asWy = YNY,\T, and letLy denote the empirical measure of the eigenvalu&8of
SetLy = ELy.
(i) Write N(Ly,X¥) as

> EW(in j)Wn(iz jo)Yn(iz, 2) (i3, j2) - (i, di) (i, k)

and show that the only contributions to the sum (divided\)ythat survive the
passage to the limit are those in which each term appearf\eRaice.

Hint: use the words$; j1izj2... jki1 and a bi-partite graph to replace the Wigner
analysis.

(ii) Code the contributions as Dyck paths, where the eveghigicorrespond to

i indices and the odd heights correspond tadices. Let! = /(i,j) denote the
number of times the excursion makes a descent from an odd#theigan even
height (this is the number of distingtindices in the tuple!), and show that the
combinatorial weight of such a path is asymptotit\s 1 a”.

(i) Let ¢ denote the number of times the excursion makes a descentfi@ven
height to an odd height, and set

¢ = o

B«= a .
Dyck paths of length 2k

Dyck paths of length 2k

(The By are thekth moments of any weak limit di.) Prove that
k k
Be=0ay YiBj-1.%= ) Bjy-1.k=1.
=1 =1

(iv) Setting[?a(z) = Ykeo 2By, prove that[?a(z) =1+ zl?o,(z)2 +(a— 1)zf30,(z),
and thus the limif, of Ly possesses the Stieltjes transform (see Definition 2.4.1)
—71B4(1/2), where

1-(a—1)z— \/1—4z[07+1—L}>22}

Ba(2) = 2z
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(v) Conclude thaf, possesses a densify supported orjb_,b. ], with b_ =
(1—a)?, b, = (1+/a)?, satisfying

fa(x) = (X_Z—%ﬁb“x), xe[b_,b,]. (2.1.27)
(This is the famou$larchenko-Pastulaw, due to [MaP67].)
(vi) Prove the analog of Lemma 2.1.7 for Wishart matrices] deduce that
Ln — Foq weakly, in probability.
(vii) Note thatF; is the image of the semicircle distribution under the transfa-
tion X — X2.

2.1.5 Some useful approximations

This section is devoted to the following simple observattwat often allows one
to considerably simplify arguments concerning the conseeg of empirical mea-
sures.

Lemma 2.1.19 (Hoffman-Wielandt)Let A, B be Nx N symmetric matrices, with
eigenvalued ! < A2 < ... <Al andAB<AB< ... <Af Then,

N
AR —ABP2 <tr(A-B)2.
2

Proof Note that tA? = 5;(A/)? and tB? = 3;(AB)2. LetU denote the matrix
diagonalizingB written in the basis determined I8y and letDa, Dg denote the
diagonal matrices with diagonal elemenf AP respectively. Then,

trAB=trDAUDgU " = 5 A/APuf .
1]

The last sum is linear in the coefficients = uﬁ and the orthogonality o)
implies thaty ; vij = 1,5 vij = 1. Thus,

trAB < sup > APAPvi - (2.1.28)

Vij 203 jvij=13ivij=117]

But this is a maximization of a linear functional over the wex set of doubly
stochastic matrices, and the maximum is obtained at themetmpoints, which
are well known to correspond to permutations The maximumrgr@ermuta-
tions is then easily checked to ge)\iA)\iB. Collecting these facts together implies
Lemma 2.1.19. Alternatively, one sees directly that a maim V = {v;;} in
(2.1.28), is the identity matrix. Indeed, assume w.l.olgatt1; < 1. We then
construct a matri¥ = {Vvjj } with vi1 = 1 andv; = v;; fori > 1 such thaV is also
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a maximizing matrix. Indeed, becausg < 1, there exist g and ak with vij >0
andviq > 0. Setv = min(vyj, V) > 0 and define/;; = vi1 +V, Wj = Vj +vand
V1j = Vij — V, Viq = Viq — V, andvap = Vap for all other pairsab. Then,

SMABW —v) = VAR +APAE - APAE - ARAP)
]

= VAR AAE-AR) 0.

Thus,V = {vij} satisfies the constraints, is also a maximum, and the nuniber o
zero elements in the first row and column\bfis larger by 1 at least from the
corresponding one fov. If vi; = 1, the claims follows, while ifv1; < 1, one
repeats this (at most\2— 2 times) to conclude. Proceeding in this manner with
all diagonal elements of, one sees that indeed the maximum of the right hand
side of (2.1.28) is; A/*A8, as claimed. O

Remark 2.1.20The statement and proof of Lemma 2.1.19 carry over to the case
whereA andB are both Hermitian matrices.

Lemma 2.1.19 allows one to perform all sorts of truncatiohsmproving con-
vergence of empirical measures. For example, let us pravéotitowing variant
of Wigner’'s Theorem 2.1.1.

Theorem 2.1.21Assume X is as in (2.1.2), except that instead of (2.1.1), only
r, < o is assumed. Then, the conclusion of Theorem 2.1.1 stilshold

Proof Fix a constan€ and consider the symmetric matek; whose elements
satisfy, for 1<i < j <N,

Raa(i; 1) = X000 D)2 Mgy 1<c — EON G DLy Rixy . pj<c)-

Then, with;\i'\‘ denoting the eigenvalues ¥, ordered, it follows from Lemma
2.1.19that

But,

2

Sincer, < o, and the involved random variables are identical in law toeiZ; »
or Yy, it follows thatE[(\/NXN(i,j))zl‘me(LmZC] converges to 0 uniformly in
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N,i, j, whenC converges to infinity. Hence, one may chose for eachlarge
enoughC such thaP(|Wn| > €) < €. Further, let
f(x)—f
Lip(R) = {f € Gp(R) : sup|f(x)| < 1,supM <1}.
X XA£Y |X_y|

Then, on the ever{{Wy | < €}, it holds that forf € Lip(R),
r 1 N 3N
(L, £) = (Lns )] < NIZMi —A < Ve,

whereLy denotes the empirical measure of the eigenvaluééofand Jensen's
inequality was used in the second inequality. This, togetlith the weak conver-
gence in probability of  toward the semicircle law assured by Theorem 2.1.1,
and the fact that weak convergence is equivalent to conaeegeith respect to
the Lipschitz bounded metric, see Theorem C.8, completerhef of Theorem
2.1.21. O

2.1.6 Maximal eigenvalues andiiredi-Komlos enumeration

Wigner's theorem asserts the weak convergence of the aralineasure of eigen-
values to the compactly supported semicircle law. One imately is led to sus-
pect that the maximal eigenvalueX§ should converge to the value 2, the largest
element of the support of the semicircle distribution. Tiaist, however, does
not follow from Wigner’'s theorem. Nonetheless, the comtonal techniques we
have already seen allow one to prove the following, where sethe notation
introduced in (2.1.1) and (2.1.2).

Theorem 2.1.22 (Maximal eigenvaluelConsider a Wigner matrix K satisfying
r, < kK for some constant C and all integers k. The@', converges t@ in
probability.

Remark: The assumption of Theorem 2.1.22 holds if the random va&H| »|
and|Y;| possess a finite exponential moment.

Proof of Theorem 2.1.22Fix > 0 and letg: R — R be a continuous function
supported o2 — 9, 2], with (o,g) = 1. Then, applying Wigner’s theorem 2.1.1,

P(AN <2-6) <P((Ln,9) =0) < P(|(Ln,9) — (0,0)| > %) —N-w 0. (2.1.29)

We thus need to provide a complementary estimate on the bpititphat )\,\’}‘ is
large. We do that by estimatinigy,x?¢) for k growing withN, using the bounds
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on r¢ provided in the assumptions. The key step is contained irfath@ving
combinatorial lemma, that gives information on the séfs, see (2.1.16).

Lemma 2.1.23For all integers k> 2t — 2 one has the estimate

Wie| < 23 K-2+2) (2.1.30)

The proof of Lemma 2.1.23 is deferred to the end of this sactio

Equipped with Lemma 2.1.23, we have fdt2 N, using (2.1.17),

(Ln, x%) (2.1.31)

k+1
< ZiNt_(kH)'%“' sup [1EZ QNE
t= WEW okt e€E ec
k+1 6 k+1-t
< 4 ZL (@) sup E(Z uWE
t= N WEW it ecEY, ec

To evaluate the last expectation,fixc #5, and letl denote the number of edges
in E§, with N = 2. Holder's inequality then gives

E <f2k 205
ee

with the convention thaly = 1. SinceGy, is connectedES| > V| —1=t—1. On
the other hand, by noting tha’ > 3 for |Ef| — | edges, one hak2> 3(|E§| —
I)+2 +2|E}|. Hence, R—2l < 6(k+1—t). Sincery, is a non-decreasing
function of g bounded below by 1, we get, substituting back in (2.1.38¢ tor
some constart; = ¢1(C) > 0and allk < N,

_ k+1 ) k+1-t
(Lnx®) < 4 Z( ) Fo(ki1t)

k+1< k+1—t)) >k+1t

’ Z
43; (%) . (2.1.32)

A

IN

IA
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Choose nexta sequend®) —n—_.w % such thak(N)® /N —N_.. 0 butk(N)/l0gN —N_
. Then, for anyd > 0, and allN large,

PN > (2+6)) < P(N(Ln, 2Ny > (24 5)2N)y
N<EN,X2k<N>>
(24 5)%N)
2N4k(N)

—N—oo 07

completing the proof of Theorem 2.1.22, modulo Lemma 2.1.23 O

Proof of Lemma 2.1.23The idea of the proof it to keep track of the number of
possibilities to prevent words i from having weight k/2] + 1. Toward this
end, letw € % ; be given. Aparsingof the wordw is a sentencay = (W, ..., W)
such that the word obtained by concatenating the wardsw. One can imagine
creating a parsing of by introducing commas between partsiof

We say that a parsing= a,, of wis anFK parsing(after Firedi and Komlbs),
and call the senten@an FK sentenceif the graph associated withis a tree, if
NG < 2forallee E,, andif foranyi =1,...,n—1, the first letter ofv;;; belongs
to Uijzlsupp/vj. If the one word senten@e= w is an FK parsing, we say that
is anFK word. Note that the constituent words in an FK parsing are FK words

As will become clear next, the graph of an FK word consistseés whose
edges have been visited twice Wwyglued together by edges that have been visited
only once. Recalling that a Wigner word is either a one letterd or a closed
word of odd length and maximal weight (subject to the comstithat edges are
visited at least twice), this leads to the following lemma.

Lemma 2.1.24Each FK word can be written in a unique way as a concatenation
of pairwise disjoint Wigner words. Further, there are at ma% ! equivalence
classes of FK words of length n.

Proof of Lemma 2.1.24Letw=3s; - - - S, be an FK word of length. By definition,
Gy is atree. Lel{sj ’Sj+1}5:1 denote those edges Gfy visited only once by the
walk induced byw. Definingig = 1, one sees that the wordg = Sj1+1° S

] > 1, are closed, disjoint, and visit each edge in the @gg exactly twice. In
particular, withlj :==i; —ij_1 — 1, it holds that; is even (possiblyl; = 0 if w;
is a one letter word), and furtherlif > 0 thenw; € %J.JJ./ZH. This decomposi-
tion being unique, one concludes that for anyvith N, denoting the number of
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equivalence classes of FK words of lengtfand with|#4 1| := 1,

o) o) r
SNzt = % 124174, /214]
n=1 r=1qj1_, =1
lj even
00 00 r
= <z+ )3 z2'+1|%|.|+1|> : (2.1.33)
r=1 I=1

in the sense of formal power series. By the proof of Lemma62|¥/5 1| =
C = . Hence, by Lemma 2.1.3, fz| < 1/4,

1-V1-42

S 2 W1 = B2
Z+|Zl [P2)41] = 2B(Z) >

Substituting in (2.1.33), one sees that (again, in the sehgewer series)

°°Nzn_ ZB(ZZ) _ 1—V1—422 __1_+ Z+%
n; " C1-7B(R) 22-1+V1-42 2 J1-42

Using that
[ 1 >tk ( 2k )
1-t k;4k k )’

ad 1 S onf 2n
Zan“:erE(lJrZz)nZzz ( 0 >,

n=1 1

one concludes that

from which Lemma 2.1.24 follows. a

Our interest in FK parsings is the following FK parsing of a wordw =
s1---S. Declare an edge of Gy to be new (relative tow) if for some index
1<i<nwe havee={s,s:1} ands 1 € {si,...,5}. If the edgeeis not new,
then it isold. Definew to be the sentence obtained by breakinghat is, “insert-
ing a comma”) at all visits to old edges Gf, and at third and subsequent visits to
new edges oGy,.

Since a wordw can be recovered from its FK parsing by omitting the extra
commas, and since the number of equivalence classes of Fésvimestimated
by Lemma 2.1.24, one could hope to complete the proof of LerBrid@3 by
controlling the number of possible parsel sequences. A key step toward this
end is the following lemma, which explains how FK words arefittogether to
form FK sentences. Recall that any FK wavdan be written in a unique way as
a concatenation of disjoint Wigner wordsg, i = 1,...,r. With 5 denoting the first
(and last) letter ofv;, define theskeletorof w as the words; - - - 5. Finally, for a
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6 6

4

Fig. 2.1.3. Two inequivalent FK sentencég,xp] corresponding to (solid linep =
141252363 and (dashed line}= 1712 (in left)~ 3732 (in right).

sentenca with graphG,, let G = (V2,E2) be the graph with vertex sef = V2
and edge st = {ec E,: N& = 1}. Clearly, whena is an FK sentenceG} is
always a forest, that is a disjoint union of trees.

Lemma 2.1.25Suppose b is an FK sentence with-A words and ¢ is an FK

word with skeletonss - - such that g € supp(b). Let? be the largest index such
that 3 € suppb, and set d=s;---s,. Then a= (b,c) is an FK sentence only if
suppbnsuppe = suppd and d is a geodesic iné’s

(A geodesicconnectingx,y € Gf is a path of minimal length starting atand
terminating aty.) A consequence of Lemma 2.1.25 is that there exist at most
(wt(b))? equivalence classes of FK sentenggs. ., x, such thab ~ x,..., %1
andc ~ x,. See Figure 2.1.6 for an example of two such equivalenceetaand
their pictorial description.

Before providing the proof of Lemma 2.1.25, we explain holeétds to

Completion of proof of Lemma 2.1.23Let I (t,¢,m) denote the set of equiva-
lence classes of FK senten@es: (wy, ..., Wm) consisting ofm words, with total
lengthy ", £(w;) = ¢ and w{a) = t. An immediate corollary of Lemma 2.1.25 is
that

IF(t,0,m)| < 2‘*—"‘tz<m—1>< f;__ll ) : (2.1.34)

Indeed, there arey i, := < rl;_—ll > mtuples of positive integers summing 4o

and thus at mOStész[’m equivalence classes of sentences consisting péir-
wise disjointFK words with sum of lengths equal foLemma 2.1.25 then shows
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that there are at mosf(™1 ways to “glue these words into &K sentence”,
whence (2.1.34) follows.

For any FK sentenca consisting ofim words with total lengtt, we have that
m= |El| - 2wt(a) + 2+ /. (2.1.35)

Indeed, the word obtained by concatenating the wordsy@nerates a list af— 1
(not necessarily distinct) unordered pairs of adjoinirttgls, out of whichm— 1
correspond to commas in the FK sentea@nd 2E,| — |E2| correspond to edges
of Ga. Using thatE5| = |Va| — 1, (2.1.35) follows.

Consider a wordv € #4; that is parsed into an FK sentenggconsisting of
m words. Note that if an edgeis retained inG,,, then no comma is inserted
at e at the first and second passagee(but is introduced if there are further
passages 0@). ThereforeE\}, = 0. By (2.1.35), this implies that for such words,
m—1=k+2—2t. Inequality (2.1.34) then allows one to conclude the prdof o
Lemma 2.1.23. O

Proof of Lemma 2.1.25Assumeais an FK sentence. TheB; is a tree, and since
the Wigner words composingare disjoint,d is the unique geodesic B; C G,
connectings; to ;. Hence, it is also the unique geodesiddp C G, connecting

s1 to's,. Butd visits only edges 06y, that have been visited exactly once by the
constituent words ob, for otherwise(b,c) would not be an FK sentence (that
is, a comma would need to be inserted to sglit Thus,Eq C El}. Sincec is

an FK word,E} = Eg,..5,. Sinceais an FK sentenceé, NEc = E} NEZL. Thus,
En,NEc = Eq. But, recall thaiG,, Gy, G, Gg are trees, and hence

[Val

1+ |Ea| = 1+ |Ep| + |Ec| — |EnNEc| = 14 |Ep| + |Ec| — |Edl
14 |Ep| + 1+ |Ec| — 1 — |Eq| = Vol + [Ve| — V4l -

Since |Vp| + [Ve| — Mo NVe| = |Val, it follows that [Vy| = [VpbNV|. SinceVy C
Vp NV, one concludes thady = VNV, as claimed. |

Remark 2.1.26The result described in Theorem 2.1.22 is not optimal, irstrese
that even with uniform bounds on the (rescaled) entriesyd.eniformly bounded,
the estimate one gets on the displacement of the maximateigee to the right
of 2isO(n~%logn), whereas the true displacement is known to be of andér?
(see Section 2.7 for more details, and, in the context of dexpaussian Wigner
matrices, see Theorems 3.1.4 and 3.1.5).

Exercise 2.1.27Prove that the conclusion of Theorem 2.1.22 holds with cenve
gence in probability replaced by either almost sure coremeg orLP conver-
gence.



2.1 TRACES, MOMENTS AND COMBINATORICS 29

Exercise 2.1.28rove that the statement of Theorem 2.1.22 can be streregthen
to yield that for some constadt= 5(C) > 0,N°(A} — 2) converges to 0, almost
surely.

Exercise 2.1.29ssume that for some constamts> 0, C, the independent (but
not necessarily identically distributed) entrig§ (i, j) }1<i<j<n of the symmetric
matricesXy satisfy

supE (VNI < .

ij,N N
Prove that there exists a constant ¢1(C) such that limsug_,, /\,{,\‘ < ¢1, almost
surely, and limsug_, EAY < ¢.

Exercise 2.1.30Me develop in this exercise an alternative proof, that avaio-
ment computations, to the conclusion of Exercise 2.1.28¢euthe stronger as-
sumption that for som# > 0,

supE (e VNX(i)D?) < .
i,ji,N

a) Prove (using Chebyshev’s inequality and the assumpgtanbjhere exists a con-
stantcg independent oN such that for any fixed € RN, and allC large enough,
P(|2" X2 > C) < & %N, (2.1.36)

b) Let 45 = {z;}i'\fl be a minimal deterministic net in the unit ball Bf¥, that
is [|zi]|2 = 1, SUR,|y,—1infi|z—z]|]2 < &, andN; is the minimal integer with the
property that such a net can be found. Check that

(1-0%) sup Z'Xnz< supz Xnz+2sup sup Z'Xnz.  (2.1.37)
Zll2lo=1 zety 222,55

c) Combine steps a) and b) and the estinigge< cg, valid for somecs > 0, to
conclude that there exists a constenindependent oN such that for allC large
enough, independently of,

PAN >C)=P( sup Z'Xnyz>C) <e %N,
z|Z2=1

2.1.7 Central limit theorems for moments

Our goal here is to derive a simple version of a central lithéarem (CLT)
for linear statistics of the eigenvalues of Wigner matric&gith Xy a Wigner
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matrix andLy the associated empirical measure of its eigenvaluedjiget:=
N[(Ln, <) — (L, X€)]. Let

1 X 2
d(x :—/ e Y/2du
==
denote the Gaussian distribution. We sgtas in (2.1.44) below, and prove the
following.

Theorem 2.1.31The law of the sequence of random variableg\\by converges
weakly to the standard Gaussian distribution. More prelgise

lim P (V\M < x) =®(x). (2.1.38)
N—oo Ok

Proof of Theorem 2.1.31Most of the proof consists of a variance computation.
The reader interested only in a proof of convergence to a &auslistribution
(without worrying about the actual variance) can skip totthé following equa-
tion (2.1.45).

Recall the notatior?(/kf), c.f. (2.1.24). Using (2.1.26), we have
Jim EW3 L) (2.1.39)
— im N2 [E((LN,xk>2)—<I:N,xk>2]

- 3 |[E@d[)Em)

2 C
a:(wl.wz)e%f‘k) ectd

- e e g e et

2

We note next that it = (w1, wp) € ka) thenGg is connected and possesses
vertices and at mogtedges, each visited at least twice by the paths generated by

a. Hence, withk vertices,G, possesses eithkr- 1 ork edges. LelI///kfl?+ denote

the subset oWk(f) such thatE,| = k (that is,Gj is unicyclic i.e. “possesses one

edge too many to be a tree”) and Iiéﬁ?i denote the subset of/k(lf) such that

Suppose firsa € Wk(EL. Then,G, is a tree,E5 = 0, and necessariliy, is a
subtree ofG,. This im’plies thak is even and thalE,, | < k/2. In this case, for
Ew, NEw, # 0 one must havéEy, | = k/2, which implies that all edges @, are
visited twice by the walk generated by, and exactly one edge is visited twice

by bothw; andws. In particularw; are both closed Wigner words of lendth- 1.
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The emerging picture is of two trees wiki2 edges each “glued together” at one
edge. Since there a& > ways to chose each of the tre&s2 ways of choosing
(in each tree) the edge to be glued together, and 2 possitgistations for the
gluing, we deduce that

2
2 k
7| =2 (5) Cirz- (2.1.40)
Further, for eacla € Wk(?_
EZ\€) T E(YN)
[eellg 1.2 eellg 1

Wl NW]_ NW2 NWZ
- [ E@%) [1EM®) [] E@S) [] EM®)
eelz\LNl rl eelglw2 }

ecEy, ecEy,
= E(Z)E@ )2 - EZR)N
= E(Zf,)-1. (2.1.41)

We next turn to conside)f//k(? -

structure of unicyclic graphs.

In order to do so, we need to understand the

Definition 2.1.32A graphG = (V,E) is called abraceletif there exists an enu-
merationay, ao, ..., a; of V such that

{{ag,01}} ifr=1,

E— {{01,02}} if r=2,
{{01,02},{02,03},{03,01}} if r=3,

{{a1, 02}, {az, 03}, {03, a4}, {04, 01}} ifr=4,

and so on. We call thecircuit lengthof the braceleG.

We need the following elementary lemma, allowing one to dgoase a uni-
cyclic graph as a bracelet and its associated pendant tResall that a graph
G = (V,E) is unicyclic if it is connected anfE| = |V|.

Lemma 2.1.33Let G= (V,E) be a unicyclic graph. Let Z be the subgraph of
G consisting of all e E such that G, e is connected, along with all attached
vertices. Let r be the number of edges of Z. Let F be the grapdired from G
by deleting all edges of Z. Then, Z is a bracelet of circuigtérr, F is a forest
with exactly r connected components, and Z meets each dednsmmponent of
F in exactly one vertex. Further=£ 1 if ES = 0 while r > 3 otherwise.
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We call Z the braceletof G. We callr the circuit lengthof G, and each of the
components of we call apendant tree(The case = 2 is excluded from Lemma
2.1.33 because a bracelet of circuit length 2 is a tree arglrtuer unicyclic.)

4 1
3 2
8 5
7 6

Fig. 2.1.4. The bracelet 1234 of circuit length 4, and thedpehtrees, associated with the
unicyclic graph corresponding {€25657523412383412

Coming back ta c 7/k(?+ letZ, be the associated bracelet (with circuit length

r=1orr > 3). Note that for anye € E; one hasd\Ng = 2. We claim next that
ec Zy if and only if Ng™ = Ne2 = 1. On the one hand, &< Z, then(Va,E5 \ €)
is a tree. If one of the paths determinedvayandws fail to visit e then all edges
visited by this path determine a walk on a tree and therefeggtth visits each
edge exactly twice. This then implies that the set of edgsited by the walks
are disjoint, a contradiction. On the other hands # (x,y) andNg" = 1 then all
vertices invy, are connected teand toy by a path using only edges froly, \ e.
Hence,(Va, Ea \ €) is connected, and thuese Z,.

Thus, anya = (wy,W») € ka)Jr with bracelet lengtin can be constructed from
the following data: the pendant tre{a“éj‘}jzl (possibly empty) associated to each
wordw; and each vertekof the bracelek,, the starting point for each womg on
the graph consisting of the bracelgtand trees{Tji }, and whetheF, is traversed
by the wordsw; in the same or in opposing directions (in case 3). In view of
the above, counting the number of ways to attach trees toceleteof lengttr,
and then the distinct number of non-equivalent ways to chstarting points for
the paths on the resulting graph, there are exactly

2
21I’23 k2

r )3 iElCK. (2.1.42)

k >0:
25 {1 ki=k-r
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elements 0%5%_ with bracelet of length. Further, fora c Wk(?+ we have

| [] E@S) [] B

Net Net Ne? Ne?
- [ E@S) [] ER®) [] E@S) [] B4
ecEg, eckEy, ecEy, ecE,

W2

B (E(Z2,))% -0 ifr>3
- (E(Z2,)*EY2-0 ifr=1
1 ifr>3,
- { EYZ ifr=1. (2.1.43)

Combining (2.1.39), (2.1.40), (2.1.41), (2.1.42) and (23}, and settin@, = 0O if
X is not an integer, one obtains, with
2

k2 > 2Kk
=k2CZ_ 1EYl + = c2 [EZf,—1]+ 23 |‘ch , (2.1.44)
k,>o
ZZ 1 Ki=k—r
that
of = Jim EWG - (2.1.45)

The rest of the proof consists in verifying that, for 3,

. Wik )’ 0 if j is odd,
am,E (Tk) _{ (j—1)1 if jiseven (2.1.46)
where(j— 1)1 = (j—1)(j—3)--- 1. Indeed, this completes the proof of the theo-
rem since the right hand side of (2.1.46) coincides with tloen@nts of the Gaus-
sian distribution®, and the latter moments determine the Gaussian distributio
by an application of Carleman’s theorem (see, e.g., [DYr@hceS, 41[(2] —
1)!1](*1/21) =

To see (2.1.46), recall, for a multi-inde (i, . ..,ik), the terms‘ITiN of (2.1.15),
and the associated closed wavd Then, asin (2.1.21), one has
) N
EW= Y T (2.1.47)
. 1
j

=S
=5

where

TV, =E [h (TN — ETinN)] : (2.1.48)
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Note thatf’l“ 2. i = = 0 if the graph generated by any wong, := win does not
have an edge in common with any graph generated by the othdswg, n’ # n.
Motivated by that and our variance computation, let

Wk<t‘> denote a set of representatives for equivalence classes of
sentencea of weightt consisting ofj closed wordgwy, wo, ..., wj),
each of lengthk+ 1, with Ng > 2 for eache € E,, and such that for
eachnthere is am’ = '(n) # nsuch tha€y, NEy, # 0.
(2.1.49)
As in (2.1.25), one obtains

< Cni
0 W1,W2 WJ' ZNJK/Z

The next lemma, whose proof is deferred to the end of themeds concerned
with the study oWkt>.

Z Ta. (2.1.50)
aeW'

E(W,,) = zicm

= (W1, W2,...,Wj )E/ﬂ

Lemma 2.1.34Let c denote the number of connected components, db6iIGa €
Ut %, - Then, c< | j/2] andwt(a) <c—j+ |(k+1)j/2].

In particular, Lemma 2.1.34 and (2.1.50) imply that

0 if j is odd,
lim E(W W=

N— o0

DI T. if jiseven (2.1.51)

kkj/2
By Lemma 2.1.34, ia ¢ V/kSIi)j/Z for j even therG, possesses exacty2 con-
nected components. This is possible only if there existsmpetionr: {1,...,j} —
{1,...,]}, all of whose cycles have length 2 (that ismatching, such that the
connected components G are the graph$G,, ,an)}- Letting =" denote the
collection of all possible matchings, one thus obtainsfibiaj even,

_ i/2 _
Ta = zm rl z Twi W)
ae//k<f<)1/2 7T€Zj 1= (Wi,Wn-(i))EV/k(ﬁ)
= 3y o, =|=Moy =gl (j— DI, (2.1.52)
rreZJm
which, together with (2.1.51), completes the proof of Tleeo2.1.31. O

Proof of Lemma 2.1.34Thatc < | j/2] is immediate from the fact that the sub-
graph corresponding to any wordarmust have at least one edge in common with
at least one subgraph corresponding to another woad in
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Next, put

, j
a= [[ai,nm:l]iLl’ I = U{I} x{1,....k}, A= [{ai,nvai,mrl}](i,n)el .
i=1
We visualizeA as a left-justified table of rows. LetG' = (V',E’) be any spanning
forest inG,, with ¢c connected components. Since every connected component of
G’ is atree, we have

wt(a) = ¢+ |E/|. (2.1.53)

Now let X = {Xin}inci b€ a table of the same “shape”Asbut with all entries
equal either to 0 or 1. We caK an edge-bounding tablender the following
conditions:

e Forall(i,n) el,if Xin=1, thenAi, € E".

e Foreactec E' there exist distincti1,n1), (i2,nz) € | such thaii, n, = Xi,n, =
landA,n =A,n =6

e Foreachec E’ and index € {1,..., ]}, if e appears in théth row of A then
there existgi,n) € | such thaty, , = eandX; n = 1.

For any edge-bounding tab}e the corresponding quanti%/z(im@ Xi.n bounds
|[E’|. Atleast one edge-bounding table exists, namely the taitheand in position
(i,n) for each(i,n) € | such thatA; , € E’ and O's elsewhere. Now lét be an
edge-bounding table such that for some ingeadl the entries oK in theipth row
are equal to 1. Then the closed womg is a walk inG’, and hence every entry
in theigth row of A appears there an even number of times araltiori at least
twice. Now choosgip,ng) € | such thati; n, € E’ appears in more than one row
of A. LetY be the table obtained by replacing the entry Xah position(ig, np)

by the entry 0. ThelY is again an edge-bounding table. Proceeding in this way
we can find an edge-bounding table with O appearing at least ionevery row,
and hence we haj&’| < U"T’jj. Together with (2.1.53) and the definition lof
this completes the proof. O

Exercise 2.1.35 (from [AnZO05])Prove that the random vectoWW ; }}‘21 satisfies
a multidimensional CLT (aBl — ).
Remark: see Exercise 2.3.7 for an extension of this result.

2.2 Complex Wigner matrices

In this section we describe the (minor) modifications needkdn one consid-
ers the analogue of Wigner's theorem for Hermitian matric€empared with
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(2.1.2), we will have complex-valued random varialhfgs. That is, start with
two independent families of i.i.d. random variab{gs  } 1<i<; (complex-valued)
and{Y;}1< (real-valued), zero mean, such trE\Zfz =0, E|Z;2/?> =1 and, for
all integerk > 1,

M= max(E|zl,2|", E|Y1|k) < . (2.2.1)
Consider the (Hermitiarm)l x N matrix Xy with entries
. S Zi.j/\/N ifi<ij,

We call such a matrix &lermitian Wigner matrixand if the random variable
andY; are Gaussian, we use the tefdaussian Hermitian Wigner matrixThe
case of Gaussian Hermitian Wigner matrices in wHi¥f = 1 is of particular
importance, and for reasons that will become clearer in @n&dy such matrices
(rescaled by/N) are referred to as GUE (Gaussian Unitary Ensemble) matrice

Let AN denote the (real) eigenvalues X%, with AN < AN < ... <All, and
define theempirical distributionof the eigenvalues as the probability measure on
R defined by

1 N
Ln=— .
N N I; 5)‘iN

The following is the analogue of Theorem 2.1.1.

Theorem 2.2.1 (Wigner)For a Hermitian Wigner matrix, the empirical measure
Ln converges weakly, in probability, to the standard semieidistribution.

As in Section 2.1.2, the proof of Theorem 2.2.1 is a directsegiuence of the
following two lemmas.

Lemma 2.2.2For any ke N,

lim m} = my.

N—oo
Lemma 2.2.3For any ke N ande > 0,

; k ok _
hI1|anP(‘<L,\,,x ) — (LN, X )‘ > e) =0.
Proof of Lemma 2.2.2We recall the machinery introduced in Section 2.1.3. Thus,
anN-wordw = (sy,. .., %) defines a grapt = (Vw, Ew) and a path on the graph.
For our purpose, it is convenient to keep track of the dicecin which edges are
traversed by the path. Thus, given an edge {s,s'}, with s < s, we define
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N&** as the number of times the edge is traversed fsaos’, and we seNe" ™ =
N — Nt as the number of times it is traversed in the reverse dinectio

Recalling the equality (2.1.10), we now have instead of.(&)Lthe equation
N __ Ne Ne
™ = Nk/Z |‘E|c E(Zys (Zi)" ee% E(Y,e). (2.2.3)

In particular,TN = 0 unIessNZ"i > 2 for alle € Ey,. Furthermore, sincEZZ , =0
one hasiN = 0if N&" = 2 andNg"™ # 1 for somee € Ey,.

A slight complication occurs since the function
Ng * x/‘7
gw(N" N ) i=E(Z35 Nz )

is not constant over equivalence classes of words (sincegitgthe letters de-
terminingw may switch the role oNg*" andNg“~ in the above expression). Note
however that for any € #4;, one has

— W
|gw(Ng™ N )| < E(|Ze2l™).

On the other hand, any € % /2,1 satisfies thaGy, is a tree, with each edge
visited exactly twice by the path determinedwySince the latter path starts and
ends at the same vertex, one hNgs" = Ng*~ = 1 for eache € E,. Thus, repeating
the argument in Section 2.1.3, the finitenesgamplies that

im (Ln,X<) =0, if kis odd,

while, fork even,
,!IiLnoo<EN,Xk> = [Wik/2+1|0w(1,1). (2.2.4)

Sincegw(1,1) = 1, the proof is completed by applying (2.1.20). O

Proof of Lemma 2.2.3The proof is a rerun of the proof of Lemma 2.1.7, using

the functionng(N;'“, Ng"”’), defined in the course of proving Lemma 2.2.2. The
proof boils down to showing thél/kfﬁz is empty, a fact that was established in
the course of proving Lemma 2.1.7. O

Exercise 2.2.4Me consider in this exercidgermitian self-duamatrices, which
in the Gaussian case reduce to matrices from the Gaussiapl&ytin Ensemble
discussed in greater details in Section 4.1. Foratne C, set

a b
Mapb = < b & ) € Matx(C).
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Let {Zi(7|?}l§i<j,]_§k§4 and{Y; }1<i<n be independent zero mean real-valued ran-
dom variables of unit variance satisfying the conditiori(2). For 1<i < j <N,
seta j = (27 +iZ%)/(2VN), bij = (2 +iZ])/(2VN), & = ¥/ VN, by, =

0, and writem; j =My ; b, ; for 1 <i < j <N. Finally, constructa Hermitian matrix

XN € j‘@(,f) from the 2-by-2 matricesy j by settingXn(i,j) =m j, 1<i<j<N.

a) Let
0 1
J1_< 1 O)eMatz(R),

and letdy = diag(Jy, .. .,J1) € Maton(R) be the block diagonal matrix with blocks
J; on the diagonal. Check that, = JNXNJ,gl. This justifies the name “self-dual”.
b) Verify that the eigenvalues ofy occur in pairs, and that Wigner’s Theorem,
Theorem 2.1.1, continues to hold true.

2.3 Concentration for functionals of random matrices and lgarithmic
Sobolev inequalities

In this short section we digress slightly and prove thataterfiunctionals of ran-
dom matrices have the concentration property, namely vigth probability these
functionals are close to their mean value. A more completattnent of con-
centration inequalities and their application to randoniriv@s is postponed to
Section 4.4. The results of this section will be useful intidec2.4, where they
will play an important role in the proof of Wigner's theoreniathe Stieltjes trans-
form.

2.3.1 Smoothness properties of linear functions of the engal measure

Let us recall that iX is a symmetric (Hermitian) matrix anidis a bounded mea-
surable functionf (X) is defined as the matrix with the same eigenvectorX as
but with eigenvalues that are the imagefbgf those ofX; namely, ifeis an eigen-
vector ofX with eigenvaluel, Xe= Ae, f(X)e:= f(A)e. In terms of the spectral
decompositiorX = UDU* with U orthogonal (unitary) an® diagonal real, one
hasf(X) =U f(D)U* with f(D); = f(Dj). ForM € N, we denote by-,-) the
Euclidean scalar product d&™ (or CM), (x,y) = M xvi ((xy) = SM1xy5),
and by|| - ||2 the associated norfix||3 = (x,X).

General functions of independent random variables needmgéneral, satisfy

a concentration property. Things are different when thetions involved satisfy
certain regularity conditions. It is thus reassuring to tbedt linear functionals of
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the empirical measure, viewed as functions of the matrikestdo possess some
regularity properties.

Throughout this section, we denote the Lipschitz constéra functionG :
RM — R by
GXx)—G
Gly— sup [BY=CV)
XAyeRM [X=Yll2

and callG aLipschitz functionif |G| ¢ < «. The following lemma is an immediate
application of Lemma 2.1.19. In its statement, we idenflfwith R2.

Lemma 2.3.1Let g: RN — R be Lipschitz with Lipschitz constafg|». Then,
with X denoting the Hermitian matrix with entriegiXj), the map{X(i, j) }1<i<j<n —
9(A1(X),...,An(X)) is a Lipschitz function o\ with Lipschitz constant bounded
by v2|g| . In particular, if f is a Lipschitz function of®, {X(i, })}1<i<j<n —
tr(f(X)) is a Lipschitz function oRN(N+1) with Lipschitz constant bounded by

VoN|f|g.

2.3.2 Concentration inequalities for independent variasl satisfying
logarithmic Sobolev inequalities

We derive in this section concentration inequalities basetthe logarithmic Sobolev
inequality.

To begin with, recall that a probability measitenR is said to satisfy théog-
arithmic Sobolev inequalitft-SI) with constant if, for any differentiable function
fin L2(P),

f2
2| P<2 / #/12dP
/ 09 TrzgpdP=2¢ [ IT1°d
Itis not hard to check, by induction, thatRf satisfy the (LSI) with constamtand
if PM) = @M. B denotes the product measurelM, thenPM) satisfies the (LSI)
with constant in the sense that for every differentiable functon RM,
F2
2 (M) / 24pM)

/F 09 g AP < 20 [ |[OF 3P, 2.3.1)

wherelF denotes the gradient &f. (See Exercise 2.3.4 for hints.) We note that

if the law of a random variablX satisfies the LSI with constact then for any
fixed o # 0, the law ofa X satisfies the LS| with constantc.

Before discussing consequences of the logarithmic Solrodewality, we quote
from [BoL0OQ] a general sufficient condition for it to hold.
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Lemma 2.3.2LetV:RM — RUwo satisfy that for some positive constant Gxy—
[x[|3/2C is convex. Then, the probability measw@x) = Z~te"VX dx where
Z = [eV¥dx, satisfies the logarithmic Sobolev inequality with cansC. In
particular, the standard Gaussian law d&V satisfies the logarithmic Sobolev
inequality with constant.

The lemma is also a consequence of the Bakry-Emery critesea Theorem
4.4.18 in Section 4.4 for details.

The interest in the logarithmic Sobolev inequality, in tlatext of concentra-
tion inequalities, lies in the following argument, that amgoother things, shows
that LSI implies sub-Gaussian tails.

Lemma 2.3.3 (Herbst)Assume that P satisfies the LSI &M with constant c.
Let G be a Lipschitz function dRM, with Lipschitz constaniG| . Then for all
A ER,

Ep[e (C-Fr(0)] < eC/\Z\GEgJ/{ (2.3.2)
and so foralld >0

P(|G—Ep(G)| > &) < 2 0°/%ICl (2.3.3)

Note that part of the statement in Lemma 2.3.3 is By is finite.
Proof of Lemma 2.3.3Note first that (2.3.3) follows from (2.3.2). Indeed, by
Chebyshev’s inequality, for any > 0,
P(IG—EpG| >8) < e *EpelCFrCl]
g 5(EP [e/\ (GprG)] + EP[ef)\ (G*EpG)])
262 5e°‘GE%’\ 2/2 .

IN

IN

Optimizing with respect ta (by takingA = &/c|G|3,) yields the bound (2.3.3).
Turning to the proof of (2.3.2), let us first assume tBas a bounded differen-

tiable function such that

M
1|0G[3]|w = sup § (84G(x))? < w.
X€RM =

Define
A, = logEpe?} (C-ErC)

Then, taking = ¢! (6-F#G) in (2.3.1), some algebra reveals that for- 0,

d (A 2
- 2 < -
5 (3) =lliosi)
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Now, becaus& — Ep(G) is centered,

and hence integrating with respecttqgields
Ay < 2¢]|||0G]3]]A?,

first for A > 0 and then for any € R by considering the functior G instead of
G. This completes the proof of (2.3.2) in caSes bounded and differentiable.

Let us now assume only th@tis Lipschitz with|G| ¢ < «. Fore > 0, define
G: = GA(—1/€)V (1/¢), and note thalG;|» < |G|.¢ < w. Consider the reg-
ularizationGg (x) = pe * G¢(X) = [ Ge(y)pe (X — y)dy with the Gaussian density
pe(X) = e X*/2edx/ /(2me)M such thatpg (x)dx converges weakly towards the
atomic measuréy ase converges to 0. Since for ame RM,

Ge(%) ~ 29| < (Gl [ [1[zPe(y)dy = M[GI £ V.

G¢ converges pointwise towards. Moreover,G; is Lipschitz, with Lipschitz
constant bounded bi5| & independently of. G is also continuously differen-
tiable and

110Ge|3le = sup sup{2(0Ge(x),u) — ||ul|5}
XeRM yeRM
< sup sup{20Y(Ge(x+ du) — Ge(x)) — ||ul|3}
u,xeRM 6>0
< sup{2|G|g|ull2—|lul3} = |G%. (2.3.4)
ueRM

Thus, we can apply (2.3.2) in the bounded differentiable ¢adind that for any
e>0andallA e R,

Ep[e}Ce] < e} EPCegtA?ICl% /2 (2.3.5)
Therefore, by Fatou’s lemma,
Ep[e’\G] < giminfz_oA Estec)\z\G@/Z. (2.3.6)

We next show that limn_g EpGs = EpG, which, in conjunction with (2.3.6), will
conclude the proof. Indeed, (2.3.5) implies that

P(|Ge — EpG¢| > &) < 26~ 8°/20lG% (2.3.7)
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Consequently,

E[(Ge — EpGe)? = 2/ XP (|G — EpGe| > X) dx
0
2

00 _ X
< 4/ xe 5% dx = 4¢|G[2,, (2.3.8)
0

so that the sequen¢€; — EpG; >0 is uniformly integrable. Nows, converges
pointwise towardss and therefore there exists a const&ntindependent o€,
such that fore < &, P(|G¢| < K) > %. On the other hand, (2.3.7) implies that
P(|Ge —EpG¢| <) > % for somer independent of. Thus,

is not empty, providing a uniform bound q&EpG¢)e<¢,. We thus deduce from
(2.3.8) that sup. EpG§ is finite, and hencé€Ge )<<, is uniformly integrable. In
particular,

lim EpGs = EpG < o,
£—0
which finishes the proof. O

Exercise 2.3.4From [Led01, Page 98]] a) Let > 0 be a measurable function
and set En(f) = [ flog(f/Epf)dP. Prove that

Ent(f) = sup{Epfg: Epe? < 1}.

b) Use induction and the above representation to provel(R.3.

2.3.3 Concentration for Wigner-type matrices

We consider in this section (symmetric) matricgg with independent (and not
necessarily identically distributed) entrig8n (i, j) }1<i<j<n. The following is an
immediate corollary of Lemmas 2.3.1 and 2.3.3.

Theorem 2.3.5Suppose that the laws of the independent entries
{Xn(i, ) }1<i<j<n all satisfy the (LSI) with constanydl. Then, for any Lipschitz
function f onR, for anyd > 0,
— L1 N2g?
P(Jtr(f(Xn) — Eftr(f(Xn)]| > ON) < 2e “flz (2.3.9)
Further, for any ke {1,...,N},

2

P () — E FOAO0))] = 8) <26 #15 (2.3.10)



2.4 STIELTJESTRANSFORMS ANDRECURSIONS 43

We note that under the assumptions of Theorem 2BXy(Xy) is uniformly
bounded, see Exercise 2.1.29 or Exercise 2.1.30. In thesizawusase, more in-
formation is available, see the bibliographical notes {i8a@.7).

Proof of Theorem 2.3.5To see (2.3.9), tak&(Xn (i, j),1 <i < j < N) =tr(f(Xn)).

By Lemma 2.3.1, we see thatifis Lipschitz,G is also Lipschitz with constant
bounded byy/2N|f| » and hence Lemma 2.3.3 witl = N(N + 1)/2 yields the

result. To see (2.3.10), apply the same argument to theiumBt Xn (i, ), 1 <i < j < N) =
f(/\k(XN)). O

Remark 2.3.6The assumption of Theorem 2.3.5 is satisfied for Gaussianaaat
with independent on or above the diagonal entries whosemnegi is bounded
by ¢/N. In particular, the assumptions hold for Gaussian Wignetrioes. We
emphasize that Theorem 2.3.5 applies also when the varidnGgi, j) depends
oni, j, e.g. wheXn(i, j) =an(i, J)Yn (i, J) with Yn (i, ) i.i.d with law P satisfying
the log-Sobolev inequality arali, j) uniformly bounded (since iP satisfies the
log-Sobolev inequality with constantthe law ofax underP satisfies it also with
a constant bounded kafc).

Exercise 2.3.1From [AnZ05]] Using Exercise 2.1.35, prove thalf, is a Gaus-
sian Wigner matrix and : R — R is aC} function, thenN[(f,Ln) — (f,Ln)]
satisfies a Central Limit Theorem.

2.4 Stieltjes transforms and recursions

We begin by recalling some classical results concerninthedtjes transform of
a probability measure.

Definition 2.4.1Let u be a positive, finite measure on the real line. Btieltjes
transformof u is the function

Su(2) :Z/RL;((E);),Zé(C\R.

Note that forz e C\ R, both the real and imaginary parts of(x— z) are contin-
uous bounded functions afe R, and furtherS,(z)| < u(R)/|0z. These crucial
observations are used repeatedly in what follows.
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Remark 2.4.2The generating functioﬁ(z), see (2.1.6), is closely related to the
Stieltjes transform of the semicircle distribution for |z| < 1/4,

32 = Y2 o= [ (5 @9)*) o
B(2) kZO /x o(x)dx /(2(2 )>a(x) X

k=0
1
= [ Togeotodx

= [ powee sV,

where the third equality uses that the supporodé the interval—2,2], and the
fourth uses the symmetry of.

Stieltjes transforms can be inverted. In particular, ore ha

Theorem 2.4.3For any open interval | with neither endpoint on an atonuef

1 [Su(A+ig)—Su(A —ig)
b /| 2i dA

/D@u+wmx (2.4.1)

1) = Ilim
u() lim —
1
lim =
e—=0Tl

Proof Note first that because
. 1
08:(1) = [ T HAX.
we have thatS, = 0 impliesu = 0. So assume next th&, does not vanish
identically. Then, since

2

. . . y
lim yOS, (iy) = lim | 5—=p(dx) = pu(R

m YOSu(ly) = Iim [ 5"z KA = U(R)

by bounded convergence, we may and will assumegtli&) = 1, i.e. thatu is a
probability measure.

Let X be distributed according tp, and denote b, a random variable, inde-
pendent ofX, Cauchy distributed with parametgri.e. the law ofC; has density

edx

et (2.4.2)

Then,0S, (A +ig)/mis nothing but the density (with respect to Lebesgue mea-
sure) of the law oK 4 C, evaluated ah € R. The convergence in (2.4.1) is then
just a rewriting of the weak convergence of the law)of- C; to that of X, as
e—0. a
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Theorem 2.4.3 allows for the reconstruction of a measurm fits Stieltjes
transform. Further, one has the following.

Theorem 2.4.4Let u, € M1(R) be a sequence of probability measures.

a) If u, converges weakly to a probability measyrethen $,,(z) converges to
Su(2) for each ze C\ R.

b) If Su,(2) converges for eache C\ R to a limit §z), then $z) is the Stieltjes
transform of a sub-probability measuge and 1, converges vaguely tp.

c) If the probability measuregl, are random and, for each e C\ R, S,,(2)
converges in probability to a deterministic limi{Z that is the Stieltjes transform
of a probability measuret, thenp, converges weakly in probability fo.

(We recall thatu, converges vaguely tg if, for any continuous functiorf onR
that decays to 0 at infinityf fdu, — [ fdu. Recall also that a positive measure
u onRR is a sub-probability measure if it satisfig§R) < 1.)

Proof Part a) is a restatement of the notion of weak convergenceseg&qart

b), letn, be a subsequence on whigh, converges vaguely (to a sub-probability
measureu). (Such a subsequence always exists by Helly’s theorencugex —
1/(z—x), forze C\R, is continuous and decays to zero at infinity, one obtains
the convergencey, (z) — Su(2) pointwise for sucte. From the hypothesis, it
follows thatS(z) = S,(z). Applying Theorem 2.4.3, we conclude that all vaguely
convergent subsequences converge to the ggraad hencel, — L vaguely.

To see part c), fix a sequenge— zy in C\ R with z # z, and define, for
v1,V2 € Mi(R), p(v1,v2) = 5i27S),(z) — S,(z)|. Note thatp(vn,v) — 0 im-
plies thatv, converges weakly to. Indeed, moving to a subsequence if neces-
sary,vn converges vaguely to some sub-probability meaduend thusS,,(z) —
Sp(z) for eachi. On the other hand, the uniform (im) boundedness &, (z)
andp(vn,v) — 0 imply thatS,,(z) — S,(z). Thus,S,(z) = Sy(2) forall z=z
and hence, for alt € C\ R since the sefz} possesses an accumulation point and
S/, Sg are analytic. By the inversion formula (2.4.1), it followsatv = 6 and in
particular@ is a probability measure ang, converges weakly t@ = v. From
the assumption of part ¢) we have thiun, 1) — 0, in probability, and thugi,
converges weakly tp in probability, as claimed. O

For a matrixX, defineSx (z) := (X — zI)~1. TakingA = X in the Matrix Inver-
sion Lemma (Lemma A.1), one gets

Sx(2) =z1(XSx(2) 1), zeC\R. (2.4.3)
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Note that withLy denoting the empirical measure of the eigenvalue§of

S,(29= %terN (2), S (2 = %EtrsxN (2).

2.4.1 Gaussian Wigner matrices

We consider in this section the case whnis a Gaussian Wigner matrix, pro-
viding

Proof #2 of Theorem 2.1.1(Xy a Gaussian Wigner matrix).
Recall first the following identity, characterizing the Gaian distribution, which
is proved by integration by parts.

Lemma 2.4.5If  is a zero mean Gaussian random variable, then for f differen-
tiable, with polynomial growth of f and f

E({f(0)) =E('(9))E(L?).
Define next the matri)zsi,\"k as the symmetridl x N matrix satisfying

ik _ 1, (Ivk):(Jal)Or(lak):(laj)a
ANK(J’l)_{ 0, otherwise

Then, withX anN x N symmetric matrix,

d B ik
WS}( (Z) = S)( (Z)AN S)( (Z) . (244)
Using now (2.4.3) in the first equality and Lemma 2.4.5 and.@.(conditioning
on all entries ofXy but one) in the second, one concludes that

SENS, (2) = 3 + - B (1DWS4(2) (2.4.5)
_ —%—%E(z[smz)(i,i)sm(z)(k,k)+SxN(z><i7k>21>
_% S ((EY?—2)ESx,(2)(i.1)?)
_ _% . %E[<LN7 (x—27H?% - %\]@Na (x=27%)
1

——5 3 (B -2)ES,(2(1.)?) .-
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Since(x—2)~1 is a Lipschitz function for any fixed € C\ R, it follows from
Theorem 2.3.5 and Remark 2.3.6 that

IE[(Ln, (x—2)"1)2] = (L, (x—2) 12| =N O.

This, and the boundedness 92— x)? for a fixedzas above, imply the existence
of a sequencey (2) —n-. 0 such that, letting (z) := N~1EtrSx, (), one has
— 1 1 —
SO =< - H@+an@).
Thus any limit points(z) of Sy(2) satisfies
S(z)(z+s(2))+1=0. (2.4.6)

Further, letC, = {ze C: Oz > 0}. Then, forze C_, by its definition,s(z) must
have a nonnegative imaginary part, while for C\ (RUC,), s(z) must have a
non-positive imaginary part. Hence, for alk C, with the choice of the branch of
the square-root dictated by the last remark,

S(2) = —% [z— 2 —4} . (2.4.7)
Comparing with (2.1.6) and using Remark 2.4.2, one dedbegs(t) is the Stielt-
jes transform of the semicircle lasy, sinces(z) coincides with the latter fde| > 2
and hence for alt € C\ R by analyticity. Applying again Theorem 2.3.5 and Re-
mark 2.3.6, it follows thal () converges in probability t&(z), solution of
(2.4.7), for allze C\ R. The proof is completed by using part c) of Theorem
24.4. a

2.4.2 General Wigner matrices
We consider in this section the case wb&nis a Wigner matrix. We give now:

Proof #3 of Theorem 2.1.1(Xy a Wigner matrix).
We begin again by a general fact valid for arbitrary symneetratrices.

Lemma 2.4.6LetW e %ﬂNu) be a symmetric matrix, and let wenote the ith col-
umn of W with the entry \W¥,i) removed (i.e., wis an N— 1-dimensional vector).
Let Wi € 7Y, denote the matrix obtained by erasing the ith column and row
from W. Then, for everye C\ R,

1

W —z)"1(i,i) = Wi 2 W WOz 1)t (2.4.8)
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Proof of Lemma 2.4.6Note first that from Cramer’s rule,
. det(W(i> — Z|N,1)

_ =16 5y —
(W —zIy) = (i,1) detW —21) (2.4.9)
Write next
W(N) —ZIN—1 WN
W‘”“‘( " W(N,N>—z>’

and use the matrix identity (A.1) with = W®™ —zly_;, B=wy, C = w], and
D =W(N,N) — zto conclude that

det(W — Z|N) =
detw™ —ziy_1) det[W(N, N) —z—w (WM™ — ZlN_l)_lWN} .

The last formula holds in the same manner i), w; andW(i,i) replacing
W) wy andW(N, N) respectively. Substituting in (2.4.9) completes the pafof
Lemma 2.4.6. O

We are now ready to return to the proof of Theorem 2.1.1. Repgethe trunca-
tion argument used in the proof of Theorem 2.1.21, we may aticagsume in
the sequel thaXn (i, i) = O for alli and that for some consta@tindependent oR,

it holds thatlv/NXy(i, j)| < Cfor alli, j. Definea(i) = Xn(i,k), i.e. a is thekth
column of the matriXXy. Let ax denote theN — 1 dimensional vector obtained
from ay by erasing the entrg (k) = 0. Denote by)(,§k> € ff,\fl) the matrix con-
sisting of Xy with the kth row and column removed. By Lemma 2.4.6, one gets
that

1 1N 1
—1rSy, (Z) = — -
N- N i; —z—aT (X — zIn_1)"1a;
1
- INS.E (D), (2.4.10)
where
13 &N
() = N i; (—z—N~1trSx (2) + &n)(—z— N~1trS (2)) (2.4.11)
and
gin =N"1rSe, (2) — o (X — zy_1) 1. (2.4.12)

Our next goal is to prove the convergence in probabilitgfz) to zero for each
fixed ze C\ R with |0z = & > 0. Toward this end, note that the terrz—
N~1trSx, (2)) in the right hand side of (2.4.11) has modulus at l€&stsince
|0zl = & and all eigenvalues ofy are real. Thus, if we prove the convergence
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of sup_y |& n| to zero in probability, it will follow thatdy (z) converges to 0 in
probability. Toward this end, Ie‘f,g) denote the matrixXy with theith column
and row set to zero. Then, the eigenvalues?@* andX,S) coincide except that
)?,S) has one more zero eigenvalue. Hence,

1 1

N|tr8i&i>(z) —trSX< ( )| < — 60N

whereas, with the eigenvaluesi}f) denoted)\l(i) < )\2(') <...< )\,E,i), and those
of Xn denoted\N < AN < ... <A, one has

1
S 1S (@)~ 1S, (@) <

1 1 N 1/2 1 > N 1/2
< SN -AMP) <5 (= i, k)2
> 5& <Nij_| k k| > 5& N sz(la ) s

where Lemma 2.1.19 was used in the last inequality. Sjr@éXy(i,j)| < C,
we get that sqm‘l|trsxn)(z) —1rSx, (2)| converges to zero (deterministically).

Combining the above it follows that to prove the convergesfcgupy |&n| to
zero in probability, it is enough to prove the convergenc® io probability of
Supy |& .|, where

&in=a Bl (2)a — %trBf\i,)(z) (2.4.13)
1 N-1 N-1

~ 5 3 ([Ve] 1)@+ S ammms @k

KK =Tk
= Si,N(l) + Si,N(Z) ,

whereB&i)(z) = (X,S) —zIy_1)71. Noting thata; is independent oBf\P (2), and
possesses zero mean independent entries of varightefe observes by condi-
tioning on the sigma-field#; N generated b)X,E,') thatEg y = 0. Further, since

N~ (BY(2?) < %,

and the random variablés/Na; (k)| are uniformly bounded, it follows that

for some constart; that depends only ody andC. Similarly, one checks that
C2

Elan(2)* < 5
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for some constart, depending only o€, &. One obtains then, by Chebyshev’s
inequality, the claimed convergence of syp|&i n(2)| to O in probability.

The rest of the argument is similar to what has already be@ae @ Section
2.4.1, and is omitted. O

Remark 2.4.7We note that reconstruction and continuity results thasaenger
than those contained in Theorems 2.4.3 and 2.4.4 are alail#n accessible
introduction to these and their use in RMT can be found in9BhiFor example,
in Theorem 2.4.3, ift possesses a Holder continuous densithen forA € R,

Su(A +10) = lim S, (A +e):irrm(/\)+P.V./R ‘)‘((_df (2.4.14)

exists, where the notation P.V. stands for “principal valddso, in the context of
Theorem 2.4.4, if the: andv are probability measures supported|eiB, B, a, y
are constants satisfying

=1 1 du> !
T T lu<a U2+1 27
andA is a constant satisfying
4B
K: €(0,1),

~ n(A—B)(2y—1)
then for anyw > 0,

m(1—k)(2y—1) sup|u([-B,X]) = v([-B,X]) <

[x|<B

[/_/;|5y(u+iv)—3;(u+iv)|du (2.4.15)

+\—1/sgp/y<2Va|u([—B,X+y]) - u([—BaX])Idy} :

In the context of random matrices, equation (2.4.15) isulsefobtaining rate of

convergence in the convergencelgf to its limit, but we will not discuss here at
all this issue.

Exercise 2.4.8.etY(N) be a sequence of matrices as in Exercise 2.1.18. By writ-
ingWy =YYy = Zi'\i(lN) yiy! for appropriate vectorg, and again using Lemma
A.1, provide a Stieltjes transform based proof of point§ éwnd (v) of Exer-
cise 2.1.18, showing thad~trSy, (2) converges to the solution of the equation
mz) = ~1/(z—a/(1+m(2)).

Hint: use the equality

In+ (2= %) (Wh — zIn) ~F = (Why — XIn) (W — zIn) 2, (2.4.16)
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and then use the equality

1

T Ty-1 Th-1

T (B4 vy - - VB

Yi ( T VYiYi ) 1+y;rB*lYi Yi )

with the matricesB; = Wy — zl — yiyJ, to show that the normalized trace of the
right side of (2.4.16) convergesto 0.

2.5 Joint distribution of eigenvalues in the GOE and the GUE

We are going to calculate the joint distribution of eigemes of a random sym-
metric or Hermitian matrix under a special type of probaplkw which displays
a high degree of symmetry but still makes on-or-above-diagentries indepen-
dent so that the theory of Wigner matrices applies.

2.5.1 Definition and preliminary discussion of the GOE anddtGUE

Let {&j,Nij}i’j—1 be ani.i.d. family of real mean 0 variance 1 Gaussian random
variables. We define

pd pd)

5 Py

to be the laws of the random matrices

V&1 & é13
\/351.1 \/%léz } € %(1)7 [ &2 V2&o &3 € %u)w"a
L2 22 é13 &3 V233

respectively. We define

2) p(2

( (
P ,P3 Senn
to be the laws of the random matrices
' 3 é1o+im2  &13+iNi3
é11 frtimz @ | ¢ i V2 & V2 )
) —i +i
oo V2 c % 7 1,2\/5171,2 52’2 2.3\/{)2.3 c % -
V2 §2.2 §13-IM3  §23-iN23 3
V2 V2 33

respectively. A random matriX € %”N(B) with law P,E,B) is said to belong to the
Gaussian orthogonal ensemble (GQdf)the Gaussian unitary ensemble (GUE)
according ag = 1 or 8 = 2, respectively. (We often write GOE(N) and GUE(N)
when an emphasis on the dimension is needed.) The theorygfaVmatrices
developed in previous sections of this book applies hergaahticular, for fixed
B, given for eactN a random matrixX(N) € jf,\fﬁ) with law Ph(,ﬁ), the empirical
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distribution of the eigenvalues & := X(N)/+/N tends to the semicircle law of
mean 0 and variance 1.

So what'’s special about the Idﬂzﬁ) within the class of laws of Wigner matri-
ces? The IaV\P,E,B) is highly symmetrical. To explain the symmetry, as well as
to explain the presence of the terms “orthogonal” and “umitan our terminol-
ogy, let us calculate the density lqiﬁ) with respect to Lebesgue measﬂk@ on
%”N(B). To fix Ef\,’g) unambiguously (rather than just up to a positive constasit fa
tor) we use the following procedure. In the cg®e- 1, consider the one-to-one
onto mapping/4\? — RN(N+1)/2 defined by taking on-or-above-diagonal entries
as coordinates, and normaliﬁhl) by requiring it to push forward to Lebesgue
measure olRNN+D/2 - Similarly, in the casg8 = 2, consider the one-to-one
onto mapping4\?) — RN x CN(N-1/2 — RN’ defined by taking on-or-above-
diagonal entries as coordinates, and normdﬁ?eby requiring it to push forward

to Lebesgue measure &, LetH; j denote the entry dfl ¢ %”N(B) inrowi and
columnj. Note that

N
trHZ:trHH*:ZHfﬁLZ > il
i= 1<i<]<N

It is a straightforward matter now to verify that

dap®) 27N2(2m) NNt/ 4exp(—trH?/4) if =1,
dly 2-N2N*2exp—trH2/2) if B =2.

The latter formula clarifies the symmetry Iq\,@. The main thing to notice is that
the density aH depends only on the eigenvaluestbf It follows that if X is a
random element off,\fl) with law P,E,l), then for anyN x N orthogonal matridJ,
againU XU* has IaWP,E,”; and similarly, ifX is a random element wff,@ with
law P,E,Z), then for anyN x N unitary matrixU, againUXU* has IawP,(f>. As
we already observed, for randoxne %”N(B) it makes sense to talk about the joint
distribution of the eigenvaluel (X) < --- < An(X).

Definition 2.5.1Letx = (X1,...,Xn) € CN. The Vandermonde determinant asso-
ciated withx is

A) = det{x}1j_1) = [(x; —x). (2.5.2)

i<]

(For an easy verification of the second equality in (2.5.@jethat the determinant
is a polynomial that must vanish when= x; for any pairi # j.)
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The main result in this section is the following.

Theorem 2.5.2 (Joint distribution of eigenvalues: GOE and ®E) Let X €
%”N(ﬁ) be random with law ,E@), B =1,2. The joint distribution of the eigenvalues
A1(X) < -+ < An(X) has density with respect to Lebesgue measure which equals

N
NICP 1, - <y ID(X) [P .rlefﬁyﬁ-z/“, (2.5.3)

where

=
3
[

N (/Z / ZIA(X)Wﬂeﬁxﬁ/ztd)q)_l

BN(N-1)/4+N/2 N F(B/Z)
2m) N2 (E) : . (254
e 2 s @59
Here, for any positive rea
r(s) = /0 “ & ledx (2.5.5)

is Euler'sGamma function

Remark 2.5.3We refer to the probability measux@,(f) onRN with density

a7y
dLeby

N
_Bx2
=8P e, (2.5.6)

where Lely is the Lebesgue measure B andc—ﬁ is given in (2.5.4), as the law
of the unordered eigenvalues of the GOE(N) (wjBea 1) or GUE(N) (wher3 =
2). The special cas® = 4 corresponds to the GSE(N) (see Section 4.1 for details
on the explicit construction of random matrices whose eigkres are distributed
according to@,(f)).

The distributions@,ﬂ,m for B > 1, B #1,2,4 also appear as the law of the
unordered eigenvalues of certain random matrices, althwiity a very different
structure, see Section 4.5.

A consequence of Theorem 2.5.2 is that a.s., the eigenvafube GOE and
GUE are all distinct. Lev,, ..., vy denote the eigenvectors corresponding to the
eigenvaluegAl, ..., A) of a matrixX from GOE(N) or GUE(N), with their first
non-zero entry positive real. Recall tHa{N) (the group of orthogonal matrices)
andU (N) (the group of unitary matrices) admit a unique Haar prolitghiieasure
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(see Theorem F.13). The invariance of the lawXofinder arbitrary orthogonal
(unitary) transformations implies then the following.

Corollary 2.5.4 The collectior(vy, ..., ) is independent of the eigenvalu@g', ..., A}).
Each of the eigenvectors ..,y is distributed uniformly on

= {x= (e, %) 1% € R, [[X]l2= 1,1 > O}
(for the GOE), or on
S ={x=(X,....xn) 1 X €R, X € Cfori>2,[[x||p=1,% >0}

(for the GUE). Further(vy,...,vN) is distributed like a sample of Haar measure
on O(N) (for the GOE) or UN) (for the GUE), with each column multiplied by a
norm one scalar so that the columns all belong Y6 5(for the GOE) and §°*
(for the GUE).

Proof Write X = UDU*. SinceT XT* possesses the same eigenvalueX asd

is distributed likeX for any orthogonal (in the GOE case) or unitary (in the GUE
case)T independent oK, and since choosing uniformly according to Haar
measure and independentldfmakesT U Haar distributed and hence of law in-
dependent of that df, the independence of the eigenvectors and the eigenvalues
follows. All other statements are immediate consequenftimsoand the fact that
each column of a Haar distributed orthogonal (resp., wiitaatrix is distributed,

after multiplication by a scalar that makes its first entrgd @nd nonnegative, uni-
formly on S~ (resp.§1). 0

2.5.2 Proof of the joint distribution of eigenvalues

We present in this section a proof of Theorem 2.5.2 that hasattvantage of
being direct, elementary, and not requiring much in termsarhputations. On
the other hand, this proof is not enough to provide one wighetvaluation of the
normalization constar@—ﬁ in (2.5.4). The evaluation of the latter is postponed to
subsection 2.5.3, where tiselberg integral formulé derived. Another approach
to evaluating the normalization constants, in the case®fabE, is provided in
Section 3.2.1.

The idea behind the proof of Theorem 2.5.2 is as follows. &ke jf,\fﬁ),
there exists a decompositioh= UDU*, with eigenvalue matrio € 2y, where
2N denotes diagonal matrices with real entries, and with egeor matrixJ €
%REB), whereﬁZ/,\EB) denotes the collection of orthogonal matrices (wliiea 1)
or unitary matrices (whep = 2). Suppose this map were a bijection (which it
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is not, at least at the matriceswithout distinct eigenvalues) and that one could
parametrize?/,jﬁ) using BN(N — 1) /2 parameters in a smooth way (which one
cannot). An easy computation shows that the Jacobian ofr#msformation
would then be a polynomial in the eigenvalues with coeffisehat are func-
tions of the parametrization @tf,\ﬁm, of degregBN(N — 1)/2. Since the bijection
must break down wheDjj = Dj;j for somei # j, the Jacobian must vanish on
that set; symmetry and degree considerations then showhhatacobian must
be proportional to the factdx(x)?. Integrating over the parametrization@ﬁﬁ )
then yields (2.5.3).

In order to make the above construction work, we need to tlaway subsets
of ij(B) that fortunately turn out to have zero Lebesgue measure.afbthis
end, we say thdll € 42/,\5’3) is normalizedif every diagonal entry ob is strictly
positive real. We say that € 42/,\5’3) is goodif it is normalized and every entry of
U is nonzero. The collection of good matrices is den@éﬁ)’g. We also say that
D € 2y is distinctif its entries are all distinct, denoting bﬁ]ﬂ the collection of
distinct matrices, and b@,ﬂ" the subset of matrices with decreasing entries, that
is .@,910: {De .@ﬂ :Dij > Dit1it+1}-

Let s4\P)%% denote the subset o#(B) consisting of those matrices that possess

a decompositiorK = UDU* whereD ¢ @,‘3, andU € %N(B),g_ The first step is
contained in the following lemma.

Lemma 2.5.5%”,\55) \j‘fN(B)’dg has null Lebesgue measure. Further, the map
(2%, 2%P9) — P19 given by(D,U) — UDU* is one-to-one and onto, while
(28, 2%\P9) — P19 given by the same map idftb-one.

Proof of Lemma 2.5.5In order to prove the first part of the lemma, we note
that for any non-vanishing polynomial functigrnof the entries o, the set{X:
p(X) = 0} is closed and has zero Lebesgue measure (this fact can Heediec
applying Fubini's theorem). So it is enough to exhibit a n@amishing polynomial

p with p(X) =0 if X € ,%”,\](B) \ %ﬂ,\fﬁ)’dg. Toward this end, we will show that
for such X, eitherX has some multiple eigenvalue, or, for soigeX and the
matrix XK obtained by erasing tHeh row and column oK possess an common
eigenvalue.

Given anyn by n matrixH, fori,j =1,...,nlet H(:) be then—1 byn—1
matrix obtained by deleting thi¢h column andjth row of H, and writeH ¥ for
H &K We begin by proving that X = UDU* with D € 24, andX andX ¥ do not
have eigenvalues in common for aky= 1,2, ..., N, then all entries of) are non-
zero. Indeed, led be an eigenvalue of, setA = X — Al, and defineA2d as the
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N by N matrix WithAﬁ?j = (—1)"*idetAl-))). Using the identityAA2d = det A)l,
one concludes tha&A?9 = 0. Since the eigenvalues ¥f are assumed distinct,
the null space ofA has dimension 1, and hence all columnsA8f/ are scalar
multiple of some vectov) , which is then an eigenvector Bfcorresponding to the
eigenvalue. Sincev, (i) = Ai,idJ = det XM — Al) # 0 by assumption, it follows
that all entries ofv, are non-zero. But each column ©Ofis a non-zero scalar
multiple of somev, , leading to the conclusion that all entriedbflo not vanish.

We recall, see Appendix A.4, that the resultant of the chtaratic polynomials
of X andX®, which can be written as a polynomial in the entrieXadind X ¥,
and hence as a polynomRlin the entries oK, vanishes if and only K andX %)
have a common eigenvalue. Further, the discriminadt, afhich is a polynomial
P, in the entries oK, vanishes if and only if not all eigenvaluesXfare distinct.
Taking p(X) = Pi(X)P:(X), one obtains a nonzero polynomjalith p(X) =0
if X e %”N(B) \%”N(B)’dg. This completes the proof of the first part of Lemma 2.5.5.

The second part of the lemma is immediate since the eigeagpaesponding
to each eigenvalue is of dimension 1, the eigenvectors ad iy the normaliza-
tion condition, and the multiplicity arises from the podsipermutations of the
order of the eigenvalues. O

Next, we say thatl € @/N@'g is very goodf all minors ofU have non-vanishing

determinant. Le@/,\gﬁ)’vg denote the collection of very good matrices. The interest
in such matrices is that they possess a particularly nicanpetrization.

Lemma 2.5.6The map T: 24\P)¥9— REN(N-1)/2 defined by

u Uiy U U Un_
TU) = <¥ LN =23 ZN N-LN ) (2.5.7)

’...7—7 gy 9oy
U1 U1 Uz Uz UN-1N-1

(whereC is identified withR? in casef = 2) is one-to-one with smooth inverse.
C
Further, the se(T(?/,\EB)’Vg)) is closed and has zero Lebesgue measure.

Proof of Lemma 2.5.6We begin with the first part. The proof is by an inductive
construction. Clearl); 7 =1+ 3N ,|Uyj?/|U11%. So suppose that; ; are
given for 1<i<igand 1< j <N. Letvi = (Ui 1,...,Uij,), i=1,...,ip. One
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then solves the equation

U ) *
Ul.i0+l+ Zi,\l:iOJrZUl.i ( l+1) )

Vi Uig+1ig+1
v Upioia+ 5N Up; (ki )"
2 7 _ 2jip+1 Zi:ioJrZ 2, Uio+1,io+l
Vig

U. . *
L N ) o ig+L,i
Uigio+1+ Z|=|0+2UIO,I (Uio+1.i0+l)

The very good condition od ensures that the vectdris uniquely determined by
this equation, and one then sets

-2 iO 2 UI +1i
z ()

i=lp+2 Uig+Lig+1

and

Uig+1,j = ZjUig+1ig+1, forl<j<io.

(All entriesUj, 11 j with j > ig+ 1 are then determined By(U ).) This completes
the proof of the first part.

To see the second part, Iﬁ\ﬁﬁ) is the space of matrices whose columns are
orthogonal, whose diagonal entries all equal to 1, and atodse minors have
non-vanishing determinants. Define the actio afn E'f,f,m using (2.5.7). Then,
T(%,jﬁ)’vg) = T(&WN(B)). Applying the previous constructions, one immediately
obtains a polynomial type condition for a point®#N(N-1/2 to not belong to the
setT(&WN(B)). O

Let s4P)V9 denote the subset o9 consisting of those matriceé that
can be written a¥ = UDU* with D € 29 andU € 2",

Lemma 2.5.7The Lebesgue measure.sf "\ 74PV s zero.

Proof of Lemma 2.5.7: We identify a subset of"*9 which we will prove to
be of full Lebesgue measure. We say that a mddrix 7 is strongly distincf
for any integer =1,2,...,N —1 and subsets J of {1,2,...,N},

l={ig<-<it}, I={jr<-<jr}

with | # J, it holds that[]ic Dij # [TicyDii. We consider the subset P59
of jf,\fﬁ)’vg consisting of those matriceéé = UDU* with D strongly distinct and
Ue %(B),Vg

N
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Given an integer and subsetk, J as above, put

r r
(AX) = Jet Xijo

thus defining a square matrix’ X with rows and columns indexed lsyelement
subsets of 1,...,n}. If we replace each entry of by its complex conjugate, we
replace each entry gf" X by its complex conjugate. If we replageby its trans-
pose, we replacf’ X by its transpose. Given anothéiby N matrixY with com-
plex entries, by the Cauchy-Binet Theorem A.2 we hAVEXY) = (A" X)(A"Y).
Thus, ifU € %,\EB) then\"U € %CENB) wherecy = N!/(N —r)!r!l. We thus obtain
that if X = UDU* then/A" X can be decomposed ASX = (A"U)(A"D)(A"U*).

In particular, ifD is not strongly distinct then for somme A" X does not possess all
eigenvalues distinct. Similarly, B is strongly distinct but) ¢ 24")*%, then some
entry of A"U vanishes. Repeating the argument presented in the proloé dif st
part of Lemma 2.5.5, we conclude that the Lebesgue measu#€ B\ P19
vanishes. This completes the proof of the lemma. O

We are now ready to provide the

Proof of (2.5.3): Recall the maprl introduced in Lemma 2.5.6, and define the
mapT : T(%P9) x RN — £ P) by setting, forA € RN andz e T(%P9),

D € 9y with Dij = Aj andT(zA) = T-%(2DT(2)*. By Lemma 2.5.6] is
smooth, whereas by Lemma 2.5.5, iN&to-1 on a set of full Lebesgue measure
and is locally one-to-one on a set of full Lebesgue measuettingJT denote the
Jacobian off, we note thaﬂ'f(z,)\) is a homogeneous polynomial Anof degree
(at most)BN(N — 1) /2, with coefficients that are functions b{since derivatives
of T(z A) with respect to the\ -variables do not depend on while derivatives
with respect to the variables are linear in). Note next thaf fails to be locally
one-to-one wher; = Aj for somei # j. In particular, it follows by the implicit
function theorem thalT vanishes at such points. Hen2g) ) = Mi<j(Aj —Ai)

is a factor ofJT. In fact, we have that

A(A)Pis a factor ofT . (2.5.8)

We postpone the proof of (2.5.8) in the cg®e- 2. SinceA(A) is a polynomial
of degreeN(N — 1) /2, it follows from (2.5.8) thad T (z,A) = g(2)A(A )P for some
(continuous, hence measurable) functgpnBy Lemma 2.5.7, we conclude that
for any functionf that depends only on the eigenvalueXoft holds that

N!/f(H)dP,E,B) :/g(z)dz/f()\)|A()\)|B]ﬂle‘miz/“d)\i.

Up to the normalization constaf g(z)dz) /N, this is (2.5.3).
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It only remains to complete the proof of (2.5.8) in the c8se 2. Writing for
brevity W = T~1(z), we haveT = WDW*, andW*W = |. Using the notation
dT for the matrix of differentials off , we havedT = (dW)DW* +W(dD)W* +
WD(dW*). Using the relatiord(W*W) = (dW*)W +W*(dW) = 0, we deduce
that

W*(dT)W = W*(dW)D — DW* (dW) + (dD).

Therefore, wherdj = A;j for somei # j, acomplexentry (above the diagonal) of
W (dT)W vanishes. This implies that whea = A;, there exist two linear (real)
relations between the on-and-above diagonal entried pfvhich implies in turn
that(A; — Aj)? must divideJT. O

2.5.3 Selberg’s integral formula and proof of (2.5.4)

To complete the description of the joint distribution ofengalues of the GOE/GUE/GSE,
we derive in this section an expression for the normalizimgstant in (2.5.4). The

value of the normalization constant does not play a role énrést of this book,

except for Section 2.6.2.

We begin by stating Selberg’s integral formula. We then dbedn Corol-
lary 2.5.9 a couple of limiting cases of Selberg’s formuldneTevaluation of the
normalizing constant in (2.5.4) is immediate from Coroflar5.9.

Theorem 2.5.8 (Selberg’s integral formula)For all positive numbers a, b and ¢
we have

/ /|A |2CI—| 1 X|b 1d)q

~ T (a+ o)l (b+ jo)r((j+1)c)
o MNa+b+(n+j—1)c)r(c)

(2.5.9)
=

Corollary 2.5.9 For all positive numbers a and ¢ we have

= @+ jo)r((j+1c)

/ /IA |2°|'l>€'1“l e Ndx = |'L o) . (2.5.10)

and

n lr
/ / |2° e /2dx = (2m)" |‘L . (25.11)

J
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Remark 2.5.10The identities in Theorem 2.5.8 and Corollary 2.5.9 holdernd
rather less stringent conditions on the parametgosandc. For example, one can
allow a, b, andc to be complex with positive real parts. We refer to the biblio
graphical notes for references. We note also that onlyX2)3s directly relevant
to the study of the normalization constants for the GOE an&EGIthe usefulness
of the other more complicated formulas will become appareSection 4.1.

We will prove Theorem 2.5.8 following Anderson’s method p1], after first
explaining how to deduce Corollary 2.5.9 from (2.5.9) by nseaf the Stirling
approximation, which we recall is the statement

r(s) = \/Z:(Z)S(l—ir Os - +oo(1)), (2.5.12)

wheres tends to+o along the positive real axis. (For a proof of (2.5.12) by an
application of Laplace’s method, see Exercise 3.5.5.)

Proof of Corollary 2.5.9 We denote the left side of (2.5.9) I9(a, b,c). Consider
first the integral

zﬁ/os.../osA(x)ZCﬂﬁl(l—xi/s)sdm

wheres is a large positive number. By monotone convergence, thesigé of
(2.5.10) equals lim Is. By rescaling the variables of integration, we find that

Is= '@ (195 a s+ 1,c).
From (2.5.12) we deduce the formula

M(s+1+A)
MN(s+1+B)

in which A andB are any real constants. Finally, assuming the validity 3.8,
we can evaluate lig,. Is with the help of (2.5.13), thus verifying (2.5.10).

= B1+0s.10(1)), (2.5.13)

Turning to the proof of (2.5.11), consider the integral

e T

wheres is a large positive number. By monotone convergence thesigé of
(2.5.11) equals lim,» Js. By shifting and rescaling the variables of integration,
we find that

Jo = 23n(n—l)/2+3n/2+2nssn(n—l)c/2+n/281(S+ 1,5+1, C) )
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From (2.5.12) we deduce the formula

r(zs+ 2—|—A) QA+3/2+2sA-2B+1/2

= 1+0s-4w(1)), 2.5.14
whereA andB are any real constants. Assuming the validity of (2.5.9)cae
evaluate ling_,., Js with the help of (2.5.14), thus verifying (2.5.11). O

Before providing the proof of Theorem 2.5.8, we note thedfwlhg identity
involving thebeta integralin the left side:

n

n Sp+1—1
/ 11— X X;S' 71d)({-
{xeRM":min_; x>0,5 ; %<1} = =

_ T(s)--T(s1)
F(si+-+Sns1)

The identity (2.5.15) is proved by substituting=txy, ..., Uy = tXn, Upy1 =t(1—
X1 —-++—Xpn) in the integral

0 oo N+1 1
/ / rlu?’ e Yidu,
0 0 j=

and applying Fubini’s theorem both before and after the tdukisn.

(2.5.15)

Proof of Theorem 2.5.8We aim now to rewrite the left side of (2.5.9) in an
intuitive way, see Lemma 2.5.12 below. Toward this end, weoduce some
notation.

Let 2, be the space consisting of monic polynomR(t) of degreenin a vari-
ablet with real coefficients such th&(t) hasn distinct real roots. More generally,
given an open interval C R, let 2,1 C 2, be the subspace consisting of polyno-
mials withn distinct roots inl. Givenx € R", let P(t) = t"+ 31 ;(—1)'x,it"".
For any open intervdl C R, the sef{x € R" | B € 2yl } is open, since the pertur-
bation of a degrea polynomial by the addition of a degree— 1 polynomial
with small real coefficients does not destroy the properthafing n distinct
real roots, nor does it move the roots very much. By definiaosetA C 2,
is measurable if and only ifx € R" | B € A} is Lebesgue measurable. L&t
be the measure o, obtained by pushing Lebesgue measure on the open set
{xeR"| R € Z,} forward toZ, viax+— P (that is, unde¥,,, monic polynomials
of degreen have coefficients that are jointly Lebesgue distributedye®P € %,
we definedy(P) € R for k = 0,...,n by the ruleP(t) = SR_o(—1)ak(P)t"*.
Equivalently, ifa; < --- < ap are the roots oP € Z,, we havegy(P) = 1 and

ok(P) = Qiy -+~ iy
1I<ip<--<ig<n
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fork=1,...,n. The map(P+— (01(P),...,0n(P))) : Zn — R" inverts the map
X—=PR): {xeR"| R € Zn} — Zhn. Let Zn C R" be the open set consisting
of n-tuples(ay,...,tn) such thata; < --- < an. Finally, for P € 2, with roots
a=(a;<-- <o), weseD(P) =[Ti-j(aj — ai)? = A(a)%

Lemma 2.5.11Fork,/=1,...,nanda = (a1,...,0n) € I put

(9Tk
T = Tk(01,...,0n) = iy = Uiy Tkt = 55
1<ip<--<ig<n a

Then,

n
det 1
‘ké:l k.t

9

= n lai —aj| = |A(a)]. (2.5.16)
1<i<]<n

Proof We have

whence follows the identity

i )™ Mme=d¢ ] (ar—a).

m=1 ie{1,...,n}\{¢}

This last is equivalent to a matrix identi§yB = C where de#\ up to a sign equals
the Vandermonde determinant k}ije;l aj”", detB is the determinant we want to
calculate, and d€ up to a sign equal@etA)?. Formula (2.5.16) follows. O

(See Exercise 2.5.16 for an alternative proof of Lemma 2.5.1

We can now rewrite (2.5.9).

Lemma 2.5.12The left side of (2.5.9) equals
[, o POIS P02t (P) (2.5.17)

Proof We prove a slightly more general statement: for any nonmegyagtmeasurable
functionf on Z,, we have

fdtn — /N f(ﬁ(t —a))A(a)da ---day, (2.5.18)

,@n ,@n

from which (2.5.17) follows by takingd (P) = |P(0)[2~|P(1)[P-1D(P)>~%/2. To
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see (2.5.18), pug(x) = f(Px) for x € R" such thaf € Z,. Then, the left side of
(2.5.18) equals

/ g(Xg,- -, Xn)dXg -+ - dXq
{X€R"| R Zn}

= /N o(11,...,Tn)
Dn

by the usual formula for changing variables in a multivaléaibtegral. The left
sides of (2.5.18) and (2.5.19) are equal by definition; thketrsides are equal by
(2.5.16). O

dai...day, (2.5.19)

n
det 1
G k.0

We next transform some naturally occurring integrals@to beta integrals,
see Lemma 2.5.15 below. This involves some additional imotat et &, C Zn x
Zh+1 be the subset consisting of pailR® Q) such that the rooter; < --- < ap
of P and the root$}; < --- < Bn+1 of Q areinterlaced i. e., ai € (3, B+1) for
i=1,...,n. More generally, given an intervll_ R, let&xl = 0N (Dnl X Dnyal).

Lemma 2.5.13Fix Q € %,,1 with roots By < --- < Bry1. Fix real numbers
Vi,---,¥nt1 and let Rt) be the unique polynomial in t of degreen with real
coefficients such that the partial fraction expansion

w B n+1 Vi
A~ Ai-h
holds. Then the following statements are equivalent:

() (PQ) € én.

1y min™ly >0andyMly =1.

Proof (I=11) The numbersP(f3;) do not vanish and their signs alternate. Simi-
larly, the number€Y (3;) do not vanish and their signs alternate. By L'Hopital’s
Rule, we havey = P(B)/Q(B) fori=1,...,n+ 1. Thus all the quantitieg
are nonzero and have the same sign. The quaR(ity/Q'(t) depends continu-
ously ont in the interval[f3n,1, ), does not vanish in that interval, and tends to
1/(n+1) ast — +. Thusy,,1 is positive. Since the signs B{3;) alternate, and
so do the signs o®' (), it follows thaty = P(5)/Q(B) > 0 for alli. Because
P(t) is monic, the numberg sum to 1. Thus condition (Il) holds.

(I1=-1) Because the signs of the numb&)g3) alternate, we have sufficient in-
formation to forceP(t) to change sigm+ 1 times, and thus to havedistinct real
roots interlaced with the roots @i(t). And because the numbefssum to 1, the
polynomialP(t) must be monic iri. Thus condition () holds. O



64 2. WIGNER MATRICES
Lemma 2.5.14Fix Q € %1 with rootsf; < --- < Bhi1. Then we have

Bj)|V2 = D(Q)Y/?
n

h({PeZ | (RQ) €ént) = ﬂ Q' (B (2.5.20)

Proof Consider the set
A: {X€ Rn | (Px,Q) 6 éan}

By definition the left side of (2.5.20) equals the Lebesguasnee ofA. Consider
the polynomial®Qj(t) = Q(t)/(t—Bj) for j=1,...,n+ 1. By Lemma 2.5.13, for
all xe R", we havex € Aifand only if B(t) = z““ yQ.( ) for some real numbers
¥ such that miry > 0 andy y = 1, or equivalentlyA is the interior of the convex
hull of the points

(TZ,j(Bla"'7Bn+l)a"'7Tn+l.j(Bla"'7Bn+l)) GRn for J = 1a"'an+1a

where thet’s are defined as in Lemma 2.5.11 (but wiilreplaced byn+ 1).
Noting thatty, = 1 for ¢ =1,...,n+ 1, the Lebesgue measure Afequals the
absolute value OL— deQ, 1Tk/(B1a---7[3n+l) by the determinantal formula for
computing the volume of a simplex IR". Finally, we get the claimed result by
(2.5.16). O

Lemma 2.5.15Fix Q € Zn;1 with rootsf3; < --- < Bh1. Fix positive numbers
S1,...,S+1. Then we have

n+1 n+1 /(B[S 1/2r(3)
p S 1d( |Q ( )| . 2.5.21
/{PE%\(PQ e} |_l| (F)= r(zis) ( :

Proof For P in the domain of integration in the left side of (2.5.21), defy; =
%(P) =P(B)/Q(B), i=1,...,n+1. By Lemma 2.5.13y > 0, sy =1,
and furtheP — (y); isa bljecnon from{P € %, | (P,Q) € &n} to the domain
of integration in the right side of (2.5.15). Further, theg»a— y(F) is linear.
Hence,

(Bl)

dén(P)

n+1
/{Pe%\ (PQ)eén} rl

equals, up to a constant multigleindependent ofs }, the right side of (2.5.15).
Finally, by evaluating the left side of (2.5.21) far=--- = s5+1 = 1 by means of
Lemma 2.5.14 (and recalling thafn+ 1) = n!) we find thatC = 1. O

We may now complete the proof of Theorem 2.5.8. Recall thairttegral on



2.5 DINT DISTRIBUTIONS IN THEGOEAND THE GUE 65

the left side of (2.5.9), denoted as aboveShya, b, c), can be represented as the
integral (2.5.17). Consider the double integral

Kn(@b.0) = [ QO QUL YRPQ) Mdn(PIdtnia(Q),

£(0,1)
whereR(P,Q) denotes the resultant BfandQ, see Appendix A.4. We will apply
Fubini's theorem in both possible ways. On the one hand, we ha

_ a—1 b-1
Ka@bo) = [ IQO)F )

R(P.Q)|¢ 1d¢ P>d€
X</{Pe%<o,1><ao>e£n}| (RO n(P) J dens1(Q)

_ r(c)n+1
= Sui(ab, C)m ,

via Lemma 2.5.15. On the other hand, writiRg= t(t — 1)P, we have

Kn(a,b,c) = / /
n( ) »@n(&l)( {Q€@n+1‘(QP>€(’¢n+2}

Q)P Q)P R(P, Q)|°_1d€n+1(Q)>d€n(P)

r@rbr(c)"
I(a+b+nc

[ OB )P 2RE ) oY 2de(P)
Pn(0,1)

r@rbr()"

S@+cb+60 g

)

by another application of Lemma 2.5.15. This proves (2.5ydinduction onn;
the induction basa = 1 is an instance of (2.5.15). O

Exercise 2.5.1@rovide an alternative proof of Lemma 2.5.11 by noting that t
determinant in the left side of (2.5.16) is a polynomial ofceen(n — 1) /2 that
vanishes whenever = x; for somei # |, and thus, must equal a constant multiple
of A(x).

2.5.4 Joint distribution of eigenvalues - alternative fomutation

It is sometimes useful to represent the formulae for the gistribution of eigen-
values as integration formulae for functions that deperig on the eigenvalues.
We develop this correspondence now.

Letf: jf,\fﬁ) — [0,] be a Borel function such thd{H) depends only on the
sequence of eigenvalugs(H) < --- < An(H). In this situation, for short, we say
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that f (H) depends only on the eigenvalueg-bf (note that the definition implies
that f is asymmetridunction of the eigenvalues &f). LetX € jff,\fﬁ) be random
with law P,E‘m. Assuming the validity of Theorem 2.5.2, we have

o T F 0 ) AR N & PX /A

ST [T lB00B N & 5% ian
where f(xg,...,xn) denotes the value of at the diagonal matrix with diago-
nal entriesxs,...,xn. Conversely, assuming (2.5.22), we immediately verify tha
(2.5.3) is proportional to the joint density of the eigemesdA;(X), ..., An(X) by
taking f(H) = 1y (H),... An(H))ca WhereA C RN is any Borel set. In turn, to prove
(2.5.22), it suffices to prove the general integration fdanu

N
B M dx
/f ) (dH) cN/ / F(X0, X0 [AX)| Dld)q, (2.5.23)

where

Ef(X) =

7 (2.5.22)

r(/2k
L TH2)

ifp=1,
clf) _

1 Mot
v [a—y TA=2

and as in (2.5.22), the integrarfigH ) is nonnegative, Borel measurable, and de-
pends only on the eigenvaluestdf Moreover, assuming the validity of (2.5.23),
it follows by taking f(H) = exp(—atr(H?)/2) with a > 0 and using Gaussian
integration that

N|/ / aﬁz/zdx{ (2.5.24)
_ N/2 5~ BN(N-1)/4-N/2 rip/2a) .1
= (@ ﬂ B2 cP

Thus, Theorem 2.5.2 is equivalent to integration formul&.@3).

2.5.5 Superposition and decimation relations

The goal of this short subsection is to show how the eigegadiithe GUE can be
coupled (that is, constructed on the same probability gpaitke the eigenvalues
of the GOE. As a by-product, we also discuss the eigenvaltbs G SE. Besides
the obvious probabilistic interest in such a constructibe,coupling will actually
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save us some work in the analysis of limit distributions feg naximal eigenvalue
of the GOE and the GSE.

To state our results, we introduce some notation. For a fuoitsed C R with
|A| = n, we define Or@A) to be the vector ifR" whose entries are the elements of
A, ordered, that is

Ord(A) = (X1,..., %) Wwithx € Aandx; <xp <...<X.

For a vectorx = (x1,...,%n) € R", we define Defx) as the even-location deci-
mated version ox, that is

Deqax) = (X2,X4;- -+, X|n/2|) -
Note that ifx is ordered, then D€g) erases fronx the smallest entry, the third
smallest entry, etc.
The main result of this section is the following.

Theorem 2.5.17For N integer, let A and By..1 denote the (collection of) eigen-
values of two independent random matrices distributed miiog to GOE(N) and
GOE(N+1), respectively. Set

(n¥,....nN) = n" = Ded(Ord(Ay UBy.1)). (2.5.25)

and
6N,...,8)) = 6N = DeqOrd(Axn 1)) (2.5.26)

Then, {nN} (resp., {6N}) is distributed as the eigenvalues of GUE(N) (resp.,
GSE(N)).

The proof of Theorem 2.5.17 goes through an integratiotioglathat is slightly
more general than our immediate needs. To state it, et(a,b) C R be a non-
empty open interval, perhaps unbounded, and lahdg be positive real-valued
infinitely differentiable functions defined dn We will use the following assump-
tion on the triple(L, f, g).

Assumption 2.5.18For (L, f,g) as above, for each integerk 0, write f(x) =
X<f (x) and g(x) = xg(x) for x € L. Then, the following hold:

(I) There exists a matrix M € Mat, 1(R), independent of x, such thaetM ™ >
Oand

M(n)(f07 fla ceey fn)T = (gi)a géLa oo 79:171) fO)T :

() 3 |fa(x)|dx < oo.
(H1) lim x;a0n(x) = 0 andlimy;, gn(X) = 0.
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For a vectorxn = (X1,...,%n), recall thatA(xn) = [1<i<j<n(Xj — %) is the
Vandermonde determinant associated with noting that ifx, is ordered then
A(xn) > 0. For an ordered vectan and an ordered collection of indicks- {i; <
ih<... < i“‘} c{1,...,n}, we writex; = (xil,>q2,...,>qm). The key to the proof
of Theorem 2.5.17 is the following proposition.

Proposition 2.5.19Let Assumption 2.5.18 hold for a triplg, f,g) with L =
(a,b). For xony1 = (X1,...,Xont1), S€t

x\¥ = DedXans1) = (X2, X4 ..., Xon) » andxspzl = (X1, X3, ..., Xons1) -
Let
Fonr={(1,3):1,dC{L,....2n+1},[l|=n,I =n+11NI=0}.

Then for each positive integer n awéf) € L", we have the integration identities

*2 2n+1f
/ /><2 /X2“< e/2n+1 (XI)A(XJ)> <||1 (Xi)> Pneae Bt

20 (80d)” (2 £00x) (17 F0c)) (-2 90)

VI . (25.27)
and
X2 X4 b 2n+1
L] A(xml)(rlf(xi)) donsa - dxadxs
(2 1000x) (80 (M2 002))2
. (2.5.28)

detM(2n)

Assumption 2.5.18(Il) guarantees the finiteness of thenate in the proposition.
The value of the positive constant 84" will be of no interest in applications.

The proof of Proposition 2.5.19 will take up most of this sactafter we com-
plete the
Proof of Theorem 2.5.1AVe first check that Assumption 2.5.18 wlth= (—co, ),
f(x) = g(x) = e>*/4 holds, that is we verify that a matrd(" as defined there
exists. Definevi(" as the solution to

MO (fo, f1,..., f)T = (fo, £, f1,.... L)

Becausef/ is a polynomial of degree+ 1 multiplied bye*Xz/“, with leading
coeﬁicientequal—l/z we have thafl(" is a Iowertriangular matrix, with?li”l) =
—1/2fori>1 andM 1 =1, and thus déi("W = (—1/2)". SinceM" is obtained



2.5 DINT DISTRIBUTIONS IN THEGOEAND THE GUE 69
from M (" by a cyclic permutation (of lengti+- 1, and hence sign equalte 1)"),
we conclude that d&1(™ = (1/2)" > 0, as needed.

To see the statement of Theorem 2.5.17 concerning the Glgaplies (2.5.27)
of Proposition 2.5.19 with the above choices(bf f,g) andM(", together with
Theorem 2.5.2. The statement concerning the GSE follows thvé same choice
of (L, f,g), this time using (2.5.28). O

In preparation for the proof of Proposition 2.5.19, we ndwdé lemmas. Only
the first uses Assumption 2.5.18 in its proof. To compresatimt, write

A1 ... AN
[AU]nN = .
At ... AN

Lemma 2.5.20For positive integers n and N, we have

MO RS faaX [y (2.5.29)

n+1,N+1
Oi—1(xj) ifi <n+land j<N+1,

= 0 ifi<n+land j=N+1,
[ fo(x)dx ifi=n+1 LN

foralla=xp<x3 <+ <Xy < Xny1=Db.

The left side of (2.5.29) is well-defined by Assumptions 28§, 11).

Proof Leth; =g fori=0,...,n—1 and puth, = fo. The left side of (2.5.29)
equals[ [ hi_1(x)dX,,. ; y, 1 and this in turn equals the right side of (2.5.29) by
Assumption 2.5.18(111). O

Lemma 2.5.21For every positive integer n ande L", we have

n 2 . -
(A(x))“(ﬂg(xn) :detH Gi-1(Xjsn)2) 1 ]is odd } . (2.5.30)
i= 2n,2n

g_1(Xj2) if jiseven

The casagy = 1 is the classicatonfluent alternant identity

Proof Write yon = (Y1,...,Y2n). Set

2n
G(yzn) = det[gi-1(Yj)]n2n) = A(Y) [!g(yi) - (2.5.31)

Dividing G(y2n) by L1 (y2i — Y2i—1) and substituting/si_1 = yzi = X for i =
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1,...,ngive the left side of (2.5.30). On the other hand ugtlenote thejth col-
umn of[gi—1(Yj)]2n2n. (Thus,G(yzn) =defus,...,uz].) Since itis a determinant,
G(y2n) = defuy, U — Uy, U3, Ug — U, . .., Uzn_1, Uzn — Uzn—1] and thus

n G(yzn) = det Uy, UZ_U1a"'7u2nflv ton — Uzn-1

Mit1(Yai — Y2i-1) Y2—V1 Yon—Yan-1
Applying L'Hdpital’s rule thus shows that the last expriessevaluated ay,; 1 =
yoi =X fori =1,...,nequals the right side of (2.5.30). a

Lemma 2.5.22For every positive integer n amthn.1 = (X1,...,Xons1) We have
an identity
PAXDAXY) = Y AXAX). (2.5.32)
(1,9)€ Zoni1

Proof Givenl ={i1 <---<ir} € {1,...,2n+1}, we write; = A(x;). Given
a polynomialP = P(xy,...,X2nt+1) @and a permutation € Syny1, let 7P be defined
by the rule

(TP) (X1, .-, Xant1) = P(Xg (1) - - Xe(2n11)) -

Given a permutatiom € Syni1, let 71 = {z(i) | i € I}. Now let Aj/A; be a term
appearing on the right side of (2.5.32) andiet (ij) € Sn11 be a transposition.
We claim that

T(AD) —1 if{i,j}clor{i,j}cJ,
AnBry _{ (—1)i=i+1 " otherwise. (2.5.33)

To prove (2.5.33), since the cas@gsj} C | and{i, j} C Jare trivial, and we may
allow i and j to exchange roles, we may assume without loss of generhéty t
ielandjeJ. Letk (resp.,f) be the number of indices in the defresp.,J)
strictly between andj. Then

Kt 0=i—j| =1, T /An = (-1), 185/Ar = (-1)",

which proves (2.5.33). It follows that ifand j have the same parity, the effect
of applying T to the right side of (2.5.32) is to multiply by-1, and therefore
(xi —x;) divides the right side. On the other hand, the left side &.@2) equals
2" times the product ofx; — x;) with i < j of same parity. Therefore, because the
polynomial functions on both sides of (2.5.32) are homoges®f the same total
degree in the variables, ..., Xon. 1, the left side equals the right side times some
constant factor. Finally, the constant factor has to be Jabse the monomial

nlx L M, X5t appears with coefficient™n both sides. 0

We can now provide the
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Proof of Proposition 2.5.19Let xo = a andxpn.2 = b. To prove (2.5.27), use
(2.5.32) to rewrite the left side multiplied by dét" as

. n
2006 det(M® [R5, fioa0oa] ) I o).
il

and then evaluate using (2.5.29) and the second equali®.%3(). To prove
(2.5.28), rewrite the left side multiplied by dét2” as

det( Mm@ H St fia(dx if j is odd ]
fiia(xj) if jiseven ], o ’
and then evaluate using (2.5.29) and (2.5.30). O

Exercise 2.5.23 eta,y > —1 be real constants. Show that each of the following
triples(L, f,g) satisfies Assumption 2.5.18:

(@)L = (0,m), f(x) = x%e7X, g(x) = x31e~* (the Laguerre ensembles).
(b)L=(0,1), f(x) =x%(1—x)Y, g(x) = x¢1(1—x)¥*1 (the Jacobi ensembles).

2.6 Large deviations for random matrices

In this section, we consid& random variablegAy, - -- , An) with law
N
Rl (dAL, -, dAn) = (Z ) HA(A)[Pe N TRV rldAi , (2.6.1)
i=

for a3 > 0 and a continuous function : R—R such that, for somg’ > 1 satis-

fying B’ > B,

o V(X
‘X‘lg’f Briog x| > 1. (2.6.2)
Here,A(A) = M1<i<j<n(Ai —Aj) and
N
_ NNV () .
ZN _/ / IA)|Pe NILVA) M dA; . (2.6.3)
BT ke ﬂ !

WhenV (x) = Bx?/4, andB = 1,2, we saw in Section 2.5 thBE‘XZMB is the law
of the (rescaled) eigenvalues oNexN GOE matrix whern = 1, and of a GUE
matrix whengB = 2. It also follows from the general results in Section 4.1 tha
caseB = 4 corresponds to another matrix ensemble, namely the GSEewnof
these and applications to certain problems in physics, wsider in this section

the slightly more general model. We emphasize however tiatstribution
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(2.6.1) precludes us from considering random matrices witlependent non-
Gaussian entries.

We have proved earlier in this chapter (for the GOE, see @e2til, and for the
GUE, see Section 2.2) that the spectral meaknre: N~13N | 5, converges in
probability (and almost surely, under appropriate momestimptions), and we
studied its fluctuations around its mean. We have also cereicthe convergence
of the top eigenvalugd ). Such results did not depend much on the Gaussian
nature of the entries.

We address here a different type of question. Namely, weyshalprobability
thatLy, or )\,[,“, take a very unlikely value. This was already consideredun o
discussion of concentration inequalities, c.f. Sectid) @here the emphasis was
put on obtaining upper bounds on the probability of deviatitn contrast, the
purpose of the analysis here is to exhibit a precise estiofateese probabilities,
or at least of their logarithmic asymptotics. The apprderi@ol for handling
such questions is large deviations theory, and we give ineAgjx D a concise
introduction to that theory and related definitions, togethith related references.

2.6.1 Large deviations for the empirical measure

EndowM3 (R) with the usual weak topology, compatible with the Lipschitzinded
metric, see (C.1). Our goal is to estimate the probabRD!y(LN € A), for mea-
surable set& C My (R). Of particular interest is the case whérdoes not contain
the limiting distribution ofLy.

Define thenon-commutative entrogy: Mi(R) — [—, ), as

Z(u)z{ {folooglx—yldu(X)du(y) glsféog(IXI+1)du(X)<°°7 (2.6.4)

and the functionly : Mi(R) — [0,e], as

Y — { V() — §2() — ¢ T [VOuE) <0, oo
00 else,
where
ch= inf {/V(x)dv(x) — EZ(v)} € (—o, ). (2.6.6)
g veM;(R) 2 ’

(Lemma 2.6.2 below and its proof show that bﬁtlandl;}’ are well defined, and
thatc\lg is finite.)



2.6 LARGE DEVIATIONS FOR RANDOM MATRICES 73

Theorem 2.6.1Let Ly = N1 3N, &, v where the random variableN}N ; are

distributed according to the Iav@ii3 of (2.6.1), with potential V satisfying (2.6.2).
Then, the family of random measureg &atisfies, in M(R) equipped with the
weak topology, a large deviation principle with speetiand good rate function
|)3’. That is,

a I;g’ :M1(R) — [0, 0] possesses compact level sets
{v:ilg(v) <M}foralMeR,,
b. forany opensed C M;(R),

|imigf$ logPyy (Ln € O) > —igflv, (2.6.7)
c. forany closed sef C M1(R),
1
Iirlpsgpm logPgy (Ln € F) < —irF1fI2;’. (2.6.8)

The proof of Theorem 2.6.1 relies on the properties of thetion Izz/ collected in
Lemma 2.6.2 below. Define tHegarithmic capacityof a measurable sé&t C R

as
: -MfA //l
y(A) exp{ Veml( | og

Lemma 2.6.2

1
|X_y|dv(x)dv(y)} .

a. c\/; € (—oo,00) and Iz?/ is well defined on MR), taking its values if0, 4-co].
b. |23/(H) is infinite as soon ag satisfies one of the following conditions
b.1 [V(X)du(x) = +oo.
b.2 There exists a set& R of positiveu mass but null logarithmic capacity,
i.e. aset A suchthagi(A) > 0buty(A) =0.

C. IE’ is a good rate function.

d. 1§ is a strictly convex function on MR).

e. Iy achieves its minimum value at uniqag € Mi(R). The measure); is
compactly supported, and is characterized by the equality

V(x) - B(oy,log|-—x|) =Cy, for of-aimosteverk,  (2.6.9)
and inequality
V(x)—B(oy,log|-—x|) >Cy, forallx¢supoy),  (2.6.10)

for some constant}: Necessarily, § = 2c; — (g)f,V).
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As an immediate corollary of Theorem 2.6.1 and of part e. ohire 2.6.2 we
have the following.

Corollary 2.6.3 Under B

V.5’ Ln converges almost surely towardg’ .

Proof of Lemma 2.6.2For all p € M1(R), Z(u) is well defined andk « due to
the bound

log|x—y| <log(|x|+ 1) +log(|y| + 1). (2.6.11)
Further,c\é < 0 as can be checked by takimgas the uniform law off0, 1].

Set

xy) = V09 + 2V ()~ 5

Note that (2.6.2) implies thdt(x,y) goes to+o whenx,y do since (2.6.11) yields

log|x—y]|. (2.6.12)

(%) 2 5(V(9 — Blog(i|+ 1) + 5(V(y) ~ Bloglyl +1)).  (2.613)

Further, f(x,y) goes to+e whenx,y approach the diagonék = y}. Therefore,
forall L > 0, there exists a constaifL) (going to infinity withL) such that, with

BLi={(xy): x=yl <L }u{(xy): X >LIu{(xy): ly|>L},
BLC {(x,y): f(x,y) >K(L)}. (2.6.14)

Sincef is continuous on the compact &ft, we conclude that is bounded below
onRR?, and denote bigs > —o alower bound. It follows thact\é > bs > —o0. Thus,

becaus#/ is bounded below by (2.6.2), we conclude trﬁlﬁs well defined and
takes its values iffi0, o], completing the proof of point a. Further, since for any
measurable subsatC R,

¥ = [ [(f6xy) = brdu(xdu(y) +bs - ¢}

[, (£66y) = br)du(odu(y) +br

> £ [ [[logyidu(xyduty) + inf v (om(AY ~ bs| - cj
B

> —Zu(AIog(V(A)) — [bi] — ¢} + Inf V(X (A,

vV

one concludes that h;’(u) < oo, andA is a measurable set witla(A) > 0, then
y(A) > 0. This completes the proof of point b.

We now show that\’,3 is a good rate function, and first that its level s{am% <



2.6 LARGE DEVIATIONS FOR RANDOM MATRICES 75

M} are closed, that is thilﬁ,3 is lower semi-continuous. Indeed, by the monotone
convergence theorem,

W = [ [ fydutodu(y) -
_ sup//(f(x,y)AM)du(X)du(y)—

M>0

But fM = f AM is bounded continuous and so fdr< o,

M (u // (%) AM)dp(x)du(y)

is bounded continuous od;(R). As a supremum of the continuous functions
IX’M, IE’ is lower semi-continuous.

To complete the proof thag is a good rate function, we need to show that the
set{lk’ <L} is compact. By Theorem C.9, to see the latter it is enoughawsh
that{lzg’ <L} isincluded in a compact subsetMdf (R) of the form

Ke = () {1 € My(R) : p([-B,B]°) < &(B)},
BeN

with a sequence(B) going to zero a8 goes to infinity. Arguing as in (2.6.14),
there exist constant§’(L) going to infinity asL goes to infinity, such that

{xy) s X>Lyl > L c{(xy): f(xy) >=K'(L)}. (2.6.15)
Therefore, for any. > 0 large,

p(x >L? = poup(x>Lly >L)
u®u( (xy)>K’(L))

w05,/ [ (1009 —bodutoduty)

0 ;) + S —bo).
Hence, takinge(B) = [, /(M +c‘é —bf)+//(K'(B) —bf) 4] A1, which goes to

zero whenB goes to infinity, one has thdl){ < M} C K. This completes the
proof of point c.

IN

IN

Sincelg is a good rate function, it achieves its minimal value. b%/t be
a minimizer. Let us derive some consequences of minimakiyr any signed
measurey (dx) = (p(x)ozg’ (dx) + @ (x)dxwith two bounded measurable compactly
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supported functiongp, ) such thaty > 0 andv(R) = 0, for& > 0 small enough,
01‘3’ + ev is a probability measure so that

I} (0g +€v) > 15 (ay), (2.6.16)

which implies
[ (voo-p [ ogix-yido ) ) 09 = 0
Taking = 0, we deduce (usingt @) that there is a consta@g such that
V(x) — B/Iog|x—y|d02{(y) =Cy, oyas, (2.6.17)

which implies thatrz{ is compactly supported (becadsex) — 3 [ Iog|x—y|dol‘3’ (y)
goes to infinity wherx does by (2.6.13)). Taking = — [ ¢/(y)dy on the support
of 01‘3’, we then find that

V(x)—B/Iog|x-y|d0,\3/(Y) >cY, (2.6.18)

Lebesgue almost surely, and then everywhere outside ofugheost of 0/‘3’ by
continuity. Integrating (2.6.17) with respectmg then shows that

Cp =2c;—(0oy.V),

proving (2.6.9) and (2.6.10), with the strict inequality(f16.10) following from
the uniqueness 0:5‘23/, since the later implies that the inequality (2.6.16) ig&cstr
as soon ay is non-trivial. Finally, integrating (2.6.9) with respetotoz{ reveals
that the latter must be a minimizer k}j‘ so that (2.6.9) characterizeg.

The claimed uniqueness ol;{ and hence the completion of the proof of part
e., will follow from the strict convexity claim (point d. ohte lemma), which we
turn to next. Note first that, extending the definitionzofo signed measures in
evident fashion when the integral in (2.6.4) is well defingd,can rewritd;g’ as

() =5 )+ [ (V0o - B flogl- yiday) - Cf ) ().

The fact thal;g’ is strictly convex will follow as soon as we show tiais strictly
concave. Toward this end, note the formula

) _vl2
Iog|x—y|:/0 %(exp{—%}—exp{—'x 2ty| }) dt, (2.6.19)
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which follows from the equality

}:i/me*“/zdu
z 2z)o

by the change of variablas— 72/t and integration of from 1 to |x—y|. Now,
(2.6.19) implies that for any € M1(R),

vy [*1 x—yl? v v
Su-0f) =~ [ 5 ([ ewl-"F - ) 0d(u— o)) ) at.
(2.6.20)
Indeed, one may apply Fubini’s theorem whpm){ are supported iq—%, %]

since theru ® og(exp{—%} - exp{—%} < 0) = 1. One then deduces (2.6.20)
for any compactly supported probability measpréy scaling and finally for all
probability measures by approximations. The fact that fior 2 0,

_|X—Y|2 LV R,
[ expt="5 yatu— 00k - o))

\/T e
Vol

2
therefore entails that is concave sincg— ‘fexp{i)\ xpd(p — ob’)(x) is convex
for all A € R. Strict convexity comes from the fact that

tA2

/exp{i)\ Xyd(p — 0 ) (%) 2exp{— =-}da,

S(ap+(1-a)) - (aZ(u) + (1- a)Z(v)) = (@® - a)Z(4—v),

which vanishes for € (0,1) if and only if (v — u) = 0. The latter equality
implies that all the Fourier transforms of— u vanish, and hencg = v. This
completes the proof of point d and hence of the lemma. O

Proof of Theorem 2.6.1With f asin (2.6.12),
N
P\'/\fp(d)\l, o dAN) = (ZE.V)flefNfox#yf(x,y)dLN(x)dLN(y) rlefvui)d)\i .
i=

(No typo here: indeed, nd beforeV (A;).) Hence, if

H—>/ f(x,y)du(x)du(y)
XY

were a bounded continuous function, the proof would folloani a standard ap-
plication of Varadhan’s Lemma, Theorem D.8. The main poiifittiverefore be
to overcome the singularities of this function, with the tnibalicate part being to
overcome the singularity of the logarithm.
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Following Appendix D (see Corollary D.6 and Definition D.&)iull large devi-
ation principle can be proved by proving that exponentgditiiess holds, as well
as estimating the probability of small balls. We follow teeseps below.

Exponential tightness

Observe that by Jensen’s inequality, for some con§tant

logzlV > Nlog/e*\“x)

_NZ/ (/#yf(x,y)dl_,\, x)dLn (y )rlfe_v AR

Moreover, by (2.6.13) and (2.6.2), there exist constantd) andc > —o so that
fxy) = aV(x)[+aV(y)l+c,

from which one concludes that for & > 0,

N
R, ( / IV (x)[dLy > M> < g 22NMH(C-ON? ( / e—V<X>dx> . (2621)

SinceV goes to infinity at infinityKy = {¢ € Mi(R) : [|V]du <M}is a com-
pact set for allM < o, so that we have proved that the lawlgf underR Vg 18
exponentially tight.

A large deviations upper bound

Recall thatd denotes the Lipschitz bounded metric, see (C.1). We proresthat
for anyu € M1 (R), if we setPNﬁ = ZBVPNB

lim Ilmsup 2IogPVB( (Lnyp) <€) < —/f(x,y)du(x)du(y). (2.6.22)

£—0 N—oo

(We will prove the full LDP for p @s aconsequence of both the upper and lower
bounds orPNﬁ see (2.6.28) below) For atyt > 0, setfu(x,y) = f(X,y) AM.
Then, the bound

SN —N2 [y fm (xy)dLn (x)dLy N V().

R (d(Ln, o) < 6) < /(j(LNvu)ge Jepy ()AL (AL (Y) ﬂe Mg,
holds. Since under the product Lebesgue measure\; thare almost surely dis-
tinct, it holds thatLy ® Ly(x =y) = N1, P\',“ﬁ almost surely. Thus, we deduce
that

/ fm (X, y)dLn(X)dLn(y) = /X#y fm (%, y)dLn (X)dLn(y) + MN 7,
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and so

RYs (L, k) <€)

N
< VN / e N2/ tmey)dly (dLn () [ g VN g,
B d(Ln,p)<e il:l
Since fy is bounded and continuou%""' (v — [ fm(xy)dv(x)dv(y) is a con-
tinuous functional, and therefore we deduce that
VM

L 1 =\
Ilmollmjoljpmlong,ﬁ (d(Ln, ) <€) < =17 ().

E—

We finally letM go to infinity and conclude by the monotone convergence theo-
rem. Note that the same argument shows that

. 1 BV .
U< — . .0.
lim SUp logZy uemlf( )/ f(x,y)du(x)du(y) (2.6.23)

N—o0

A large deviations lower bound.

We prove here that for any € M1(R),

S 100R (AL, 1) <) > — [ 1(xy)du(du(y). (2629
Note that we can assume without loss of generality t}g‘néw) < oo, since other-
wise the bound is trivial, and so in particular, we may and assume thatt has
no atoms. We can also assume thais compactly supported since if we con-
sider uy = u([—M,M])—ll‘X‘SMdu(X), clearly uy converges towardg and by
the monotone convergence theorem, one checks that, Eiilsdsounded below,

tim [ 10y dn (00 (v) = [ 10y)d(du(y).

lim liminf
N—oo

-0 N—

which ensures that itis enough to prove the lower boundifor M € R, IE’ (M) <
o), and so for compactly supported probability measures wiitefentropy.

The idea is to localize the eigenvalugs)i<i<n in small sets and to take ad-
vantage of the fast spedf of the large deviations to neglect the small volume of
these sets. To do so, we first remark that for any M;(R) with no atoms if we
set

XLN

inf{x: v ((—o0,x]) > NLH} )

- _ - - 1 .
XHIN - — |nf{x>x'*N: v((x'*N,x])>N—+1}, 1<i<N-1,
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for any real numben, there exists an integer numké(n) such that, for an\

larger tharN(n),
d L Oy
vV, — iN | <.
N

In particular, forN > N($),

-
{ Oscizn | 6= < 5 ¥ LN € (e L) < 3},
so that we have the lower bound

S (d(Ln.p) <€)

N
/ e N2 fizy O0)dLn () dLn () |—le—V<Ai>dAi
N {IXi— X'N\<z} i

: N
= / NN _)\j|Be—NZiN:1V(><"N+/\i) I—!Ld)\i
ﬂl{‘)“<2}|<J i=

> [ NN RN - X HIN B g NElLVOet)
|+l<] i

N i,N M) |N
x</”'{“<z}|7||)" /\|+1|7e SV OEN£A) -V (% I’[dA>

Ai<Aiz1

=. F’N’lx Psz, (2.6.25)

where we used thax'N — xIN 4 Aj — Aj| > [}N — xIN| v |Aj — Aj| whenAi > A
andx'N > xI'N, To estimateR », note that since we assumed tjpas compactly
supported, théx'N,1 < i < N)yey are uniformly bounded and so by continuity
of V

Pv

v

lim sup sup sup|V(X"N+x)—Vv(x'N)| =o0.
N=®NeN1<i<N[x|<5

Moreover, writingu; = A1, Ui11 = Ajp1 — Aj,

N B N
a [ -Aalfon = [ u? [du
/:\\</\,: i rl O<u.<z%,|_L I ||_l
5 N(5+1)
> (o)
Therefore,
ImImnf—Io >0. 2.6.26
lim liminf = logPh 2 (2.6.26)
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To handle the ternfy 1, the uniform boundedness of tikeN's and the conver-
gence of their empirical measure towagdsnply that

lim = 3 V() / V(x)d 2.6.27
im 5 Z p(x ( )
Finally sincex— log(x) increases ofR ", we notice that

/Xl’N§X<y§xNvN log(y —x)du(x)du(y)

< 3 '09(Xj+1’N—Xi’N)/xe[x_i,N,xiflﬁN] Iyeydp (x)dp(y)
1<i<]<N-1 yelxd:N, ]+1N]
1
_ loglxdN — x+LN + log|x+LN _ yiN
NT12 .ZJ gl | N+1 Zl gl E

Since logx —y| is upper-bounded whexiy are in the support of the compactly
supported measuge the monotone convergence theorem implies that the ledt sid
in the last display converges towar§§(u). Thus, with (2.6.27), we have proved

I|m|nf—logPN1>[3/ log(y — x)du(x)du(y /V )dp(x

which concludes, with (2.6.25) and (2.6.26), the proof 06(24).

Conclusion of the proof of Theorem 2.6.1

By (2.6.24), for allu € M1(R),

I|m|nf IogZBV > I|m I|m|nf IogPVB( (Ln,p) <€)

a / f(x,y)du(x)du(y),

and so optimizing with respect o € M;(R) and with (2.6.23),
lim — logzl,, = — inf {/ f(x,y)du(x)du(y)} = —cj}
Nooo N2 BV peMy (R) ’ B

Thus, (2.6.24) and (2.6.22) imply the weak large deviationgiple, i.e. that for
all g e M(R),

lim liminf = IogP\',\‘B (d(Ln,u) <€) (2.6.28)

E—

= limlimsup 2IogPVB( (Ln, ) <€) = =I5 (1)

£—0 Now
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This, together with the exponential tightness propertywpdoabove, completes
the proof of Theorem 2.6.1. O

Exercise 2.6.4[Proof #5 of Wigner’s theorem] Tak¥ (x) = Bx?/4 and apply
Corollary 2.6.3 together with Lemma 2.6.2 to provide a proiofVigner's Theo-
rem 2.1.1 in the case of GOE/GUE matrices.
Hint: It is enough to check (2.6.9) and (2.6.10), that is to chbek t
X 1
I - ——
[1ogix-—ylotay < % - 3.

with equality forx € [—2,2], whereao is the semicircle law. Toward this end, use
the representation of the Stieltjes transfornopkee (2.4.6).

2.6.2 Large deviations for the top eigenvalue

We consider next the large deviations for the maximi\jir= max ; A;, of ran-
dom variables that possess the joint law (2.6.1). Thesébwibbtained under the
following assumption.

Assumption 2.6.5The normalization constant‘% satisfy

Z\)N-),
NV/(N-1),8

It is immediate from (2.5.11) that W (x) = Bx?/4 then Assumption 2.6.5 holds,
with ay g = —B/2.

Assumption 2.6.5 is crucial in deriving the following LDP.

Theorem 2.6.6Let(A',..., Al{) be distributed according to the joint law)® of
(2.6.1), with continuous potential V that satisfies (2.@8) Assumption 2 6.5.
Let a){ be the maximizing measure of Lemma 2.6.2, and 'set max{x : x €
suppol‘g’}. Then,Aj = maxy | AN satisfies the LDP ifR with speed N and good
rate function

JX(X):{ B log|x—ylag (dy) ~V(x) —avg if x=X",
) otherwise

Proof of Theorem 2.6.68inceJ;3’(-) is continuous orgx*, o) andJ;g’ (X) increases
to infinity asx — oo, it is a good rate function. Therefore, the stated LDP folow
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as soon as we show that

. 1
for anyx < x*, IlmsupN logR) (A < X) = —, (2.6.30)

—00

. 1 .
for anyx > x*, “E]jgpﬁ logR) (A% > %) < =J§ (), (2.6.31)
and
c mming T N () v
foranyx >, lim liminf = 10gR)5 (A € (x—8,X+8)) > ~J5 (x). (2.6.32)

The limit (2.6.30) follows immediately from the LDP (at sjpk?) for the empiri-
cal measure, Theorem 2.6.1: indeed, the ex@rt ximplies thatLn ((x,x*]) = 0.
Hence, one can find a bounded continuous functiarith support in(x,x*], inde-
pendent oiN, such thatLy, f) =0 but<0/‘3’, f) > 0. Theorem 2.6.1 implies that
this event has probability that decays exponentially (aesipl?), whence (2.6.30)
follows.

The following lemma, whose proof is deferred, will allow faproper trunca-
tion of the top and bottom eigenvalues. (The reader intedestly in the GOE or
GUE setups can note that Lemma 2.6.7 is then a consequengeraide 2.1.30.)

Lemma 2.6.7Under the assumptions of Theorem 2.6.6, we have

N-1
lim supE log ZVNB < 0, (2.6.33)
N—oo N ﬁ
Further,
. . 1 N *
d‘ﬂ"ﬁ‘fﬁjpﬁ IogPV.B()\N >M)=—o (2.6.34)
and, withA; = minl¥; AN,
- 1
lim limsup=logR)!3(A{ < —M) = —co. (2.6.35)
M- N_ e N ’

Equipped with Lemma 2.6.7, we may complete the proof of Teeo2.6.6. We
begin with the upper bound (2.6.31). Note that for &y X,

RIB(A% = %) < RIg(AR > M) +R5(A% € [, M]). (2.6.36)

By choosingM large enough and using (2.6.34), the first term in the righe sif
4
(2.6.36) can be made smaller then " <X), for all N large. In the sequel, we fix
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anM such that the above is satisfied, the analogous bound-withalso holds,
and further

8 [ 10aix-yia @y ~vix| > sup |5 [logiz-via @y V(2

z€[M, )

(2.6.37)
Set, forze [-M,M] andu supported orfi—M, M],
®(z ) = B | 1og|z- ylu(dy) ~ V(@) < Blog(2M) +V_ —: Py,
whereV_ = —infycgr V(X) < . SettingB(Jd) as the ball of radiug aroundol‘}’,

Bw (0) as those probability measuresB(d) with supportin[—M, M], and writing

Z“V/l( DB o = =M. MIN-1
In= Z\’}{B , v =[-M,M]
we get
R (A% € [x,M]) (2.6.38)

<Rp(A{ < —M)+
NZN/ d)\N/ e(N-1) (A Ly 1)p’[l\lv/l(N g (d)\l,uwd)\Nfl)
M
<Rp(A{ < —M)+Ndy [ / eN-DsURicay (&) P@H) g7 ¢
! X

(M_X) (N l>®MP[[j\lv/l(N 1),8 (LN—lgB(é)) :

(The choice of metric in the definition d&(J) plays no role in our argument,
as long as it is compatible with weak convergence.) Notirag the perturbation
involving the multiplication oV by N/(N — 1) introduces only an exponential in
N factor, c.f. (2.6.33), we get from the LDP for the empiricaasure, Theorem
2.6.1, that

pN-1

Ilrlpsup log NV/(N—1),8 (LN,1§ZB(6)) <0,

and hence, for any fixed > 0,

limsup= |ogP,'jV/1N 1 p(bn-1 #B(3)) = —o. (2.6.39)

N—oo
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We conclude from (2.6.38) and (2.6.39) that

limsup— PVB()\N € [x,M]) (2.6.40)

N—oo
< I|msup logdn + lim sup P(z u)
N—oo 5*Oze[x,M],ueBM(6)
= ayg+ lim sup d(z ).
CSHOze[x M],ueBm (d)

Since®(z, ) = infy~o[B [log(|z—y| v n)u(dy) —V(z), it holds that(z, ) —
®(z 1) is upper semi-continuous da-M,M] x M1([—M,M]). Therefore, using
(2.6.37) in the last equality,

lim sup  ®(z,p) = sup ®(z,05) = sup ®(z,0y).
0—02¢[x,M],ueBy (5) ze[x,M] z€[X,00)

Combining the last equality with (2.6.40) and (2.6.36), veéain (2.6.31).

We finally prove the lower bound (2.6.32). Led 2 x— x* and fixr € (x*,x—
26). Then, withl; = (=M, r)N-1,

RIg(A% € (x—8,x+9)) (2.6.41)
> RN € (x—8,x+8).A€(-Mr)i=1... N-1)
X+0
- o d/\N/Ir WSO DRNT (A, )
> 206nexp| (N=1) inf ®(zp) Pﬁv/l(N pp(Ln-1 € Brm(3)),

ze(x—0,x+9)
HEBrm ()

whereB, v () denotes those measuresB(d) with support in[—M,r]. Recall
from the upper bound (2.6.31) together with (2.6.35) that

IlmsupP,[,\‘v/lN p i & (=M,r)for somei € {1,....N—1}) =0

Combined with (2.6.39) and the strict inequality in (2.§.80Lemma 2.6.2, we
get by substituting in (2.6.41) that

I|mI|m|nf IogPVB( € (X=9,x+9)) > ayg+lim inf ®(zp)

0—02z6(x—3.x+8)
UeBrm(0)

= ayg+P(X0E),

where in the last step we used the continuit(ofu) — ®(z ) on [x— d,x+
3] x My([—M,r]). The bound (2.6.32) follows. O
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Proof of Lemma 2.6.7We first prove (2.6.33). Note that, for ady> 0 and allN
large,

N-1 N-1 N-—1 N-1
Lpg g Awviin-ug Zp N(oy 5-+5)
N N—-1 N < N—1 € B y (2642)
~z P z
4y NV/(N-1), B NV/(N—1),8
by (2.6.29). On the other hand,
Z\l}lfl
= [ VIR . (2.6.43)
NV/(N-1),8

By the LDP forLy_1 (at scaleN?, see Theorem 2.6.1),Lemma2.6.2 and (2.6.21),

the last integral is bounded above b)/ §V)+0) . Substituting this in (2.6.43)
and (2.6.42) yields (2.6.33).

For|x| > M, M large and\; € R, for some constantag, bg,

x—AilPe V) < ag(IxP +[Ai|P)e™V M) < by|x|P < bge’™.

Therefore,
R (A% > M)
< N NB / e‘NV"Nd)\N/ r! x— X [Pe VA ) dR
Zyg IM
< Nb'[\;"le*NV ﬁ/ VAN dAN |

implying, together with (2.6.33) that

Jim limsup = IogP\',\‘B()\N >M)=—w,

*}00 N*)

This proves (2.6.34). The proof of (2.6.35) is similar. O

2.7 Bibliographical notes

Wigner’'s theorem was presented in [Wig55], and proved thisieg the method
of moments developed in Section 2.1. Since, this result wiended in many
directions. In particular, under appropriate moment cooils, an almost sure
version holds, see [Arn67] for an early result in that dil@tt Relaxation of mo-
ment conditions, requiring only the existence of third motsef the variables, is
described by Bai and co-workers, using a mixture of combiralt probabilistic,

and complex-analytic techniques. For a review, we refeB&99]. It is important
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to note that one cannot hope to forgo the assumption of fiestf second mo-
ments, because without this assumption the empirical meagstoperly rescaled,
converges toward a non-compactly supported measure, s&O[B.

Regarding the proof of Wigner's theorem that we presentaghetis a slight
ambiguity in the literature concerning the numbering ofalat numbers. Thus,
[Aig79, Pg 85] denotes by, what we denote by, 1. Our notation follow
[Sta97]. Also, there does not seem to be a clear conventida afether the
Dyck paths we introduced should be called Dyck path of ler#gtbr of length
k. Our choice is consistent with our notion of length of Berttiauwalks. Finally,
we note that the first part of the proof of Lemma 2.1.3 is aniapfibn of the
reflection principle, see [Fel57, Ch. 111.2].

The study of Wigner matrices is closely related to the stutdWshart ma-
trices, discussed in Exercises 2.1.18 and 2.4.8. The lifrth@empirical mea-
sure of eigenvalues of Wishart matrices (and generalizgtican be found in
[MaP67], [Wac78] and [GrS77]. Another similar model is givey band ma-
trices, see [BoMP91]. In fact, both Wigner and Wishart neasifall under the
class of the general band matrices discussed in [ShI96]0RE (for the Gaussian
case) and [AnZ05], [HaLNO®6].

Another promising combinatorial approach to the study efghectrum of ran-
dom Wigner matrices, making a direct link with orthogonalypomials, is pre-
sented in [Sod07].

The rate of convergence toward the semicircle distributias received some
attention in the literature, see e.g. [Bai93a], [Bai93&pI03].

Lemma 2.1.19 first appears in [HoW53]. In the proof we mentfat permu-
tation matrices form the extreme points of the set of doutdgtsgastic matrices,
a fact that is is usually attributed to G. Birkhoff. See [CBY/&r a proof and a
historical discussion which attributes this result to Dnigp The argument we
present (that bypasses this characterization) was kiratiyncunicated to us by
Hongjie Dong. The study of the distribution of the maximaeivalue of Wigner
matrices by combinatorial techniques was initiated by §lijhand extended by
[FuK81] (whose treatment we essentially follow; see alsoq¥] for recent im-
provements). See also [Gem80] for the analogous resulté/fsinart matrices.
The method was widely extended in the papers [SiS98a], B #50s99] (with
symmetric distribution of the entries) and [PeS07] (in temeral case), allow-
ing one to derive much finer behavior on the law of the largegresalue, see
the discussion in Section 3.7. Some extensions of the kH@ul6s and Sinai-
Soshnikov techniques can also be found in [KhoO1]. Finalbnditions for the
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almost sure convergence of the maximal eigenvalue of Wigragrices appear in
[BaY88].

The study of maximal and minimal eigenvalues for Wishartrioas is of fun-
damental importance in statistics, where they are refeilwems sample covari-
ance matrices, and has received a great deal of attentienthecSee [SpT02],
[BePO05], [LIPRTJO05], [TaV05], [Rud08], [RuV08] for a sangpdf recent devel-
opments.

The study of central limit theorems for traces of powers ofd@m matrices
can be traced back to [Jon82], in the context of Wishart mesr{an even earlier
announcement appears in [Arh71], without proofs). Ourgmétion follows to a
large extent Jonsson’s method, which allows one to deriveTaf@ polynomial
functions. A by-product of [SiS98a] is a CLT forftfXy) for analytic f, under
a symmetry assumption on the moments. The paper [AnZO5}lgmgeneralizes
these results, allowing for differentiable functiohand for non-constant variance
of the independent entries. See also [AnZ08a] for a diffevension of Lemma
2.1.34. For functions of the forfi(x) = ¥ a;/(z — x) wherez € C\ R, and ma-
trices of Wigner type, CLT statements can be found in [KhKP@@&h somewhat
sketchy proofs. A complete treatment foanalytic in a domain including the sup-
port of the limit of the empirical distribution of eigenvalsi is given in [BaY05]
for matrices of Wigner type, and in [BaS04] for matrices ofstrt type under
a certain restriction on fourth moments. Finally, an apphobased on Fourier
transforms and interpolation was recently proposed in (B&L

Much more is known concerning the CLT for restricted classematrices:
[Joh98] uses an approach based on the explicit joint den§itiye eigenvalues,
see Section 2.5. (These results apply also to a class ofaeatnith dependent
entries.) For Gaussian matrices, an approach based ondtteastic calculus
introduced in Section 4.3 can be found in [Cab01] and [GuiB&cent extensions
and reinterpretation of this work, using the notion of setorder freeness, can
be found in [MiS06] (see Chapter 5 for the notion of freenessits relation to
random matrices).

The study of spectra of random matrices via the Stieltjessfiiam (resolvent
functions) was pioneered by Pastur co-workers, and greatgnded by Bai and
co-workers. See [MaP67] for an early reference, and [Pa®r3urvey of the
literature up to 1973. Our derivation is based on [KhKP9BiP9], and [SiB95].

We presented in Section 2.3 a very brief introduction to emti@ation inequali-
ties. This topic is picked up again in Section 4.4, to whichrefer the reader for a
complete introduction to different concentration inedfieg and their application
in RMT, and for full bibliographical notes. Good referendesthe logarithmic
Sobolev inequalities used in Section 2.3 are [Led01] and3@&n00]. Our treat-
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ment is based on [Led01] and [GuZ00]. Lemma 2.3.2 is takem fiBoL00,
Proposition 3.1]. We note in passing thatlena criterion for a measure to satisfy
the logarithmic Sobolev inequality was developed by Bobdod Gotze [BoG99].
In particular, any probability measure &possessing a bounded above and be-
low density with respect to the measungsix) = Z-te¥“dx for a > 2, where
Z = [e M"dx, satisfies the LSI, see [Led01], [GuZ03, Property 4.6]. Fma
in the Gaussian case, estimates on the expectation of thienalaeigenvalue (or
minimal and maximal singular values, in the case of Wishatrives) can be ob-
tained from Slepian’s and Gordon’s inequalities, see [diBE5] and [DaS01]. In
particular, these estimates are useful when using, in thes&an case, (2.3.10)
with k= N.

The basic results on joint distribution of eigenvalues m @OE and GUE pre-
sented in Section 2.5 as well as an extensive list of intégratulas similar to
(2.5.4) are given in [Meh91], [For05]. We took however a quiifferent approach
to all these topics based on the elementary proof of the 8elbtegral formula
[Sel44], see [AnAR99], given in [And91]. The proof of [AndPis based on a
similar proof [And90] of some trigonometric sum identitiesd is also similar
in spirit to the proofs in [Gus90] of much more elaborate iitexs. For a recent
review of the importance of the Selberg integral, see [FgQ@Bere in particular
it is pointed out that Lemma 2.5.15 seems to have first apgéaf®ix05].

We follow [FORO1] in our treatment of “superposition and ieation” (Theo-
rem 2.5.17). We remark that Tripl€k, f,g) satisfying Assumption 2.5.18, and
hence the conclusions of Proposition 2.5.19, can be cledsifiee [FOR01], to
which we refer for other classical examples where supetipasind decimation
relations hold. An early precursor of such relations carrdesd to [MeD63].

Theorem 2.6.1 is stated in [BeG97, Theorem 5.2] under thgiaddl assump-
tion thatV does not grow faster than exponentially and proved thereetaild
whenV (x) = x2. In [HiPOOb], the same result is obtained when the topology o
M1(R) is taken to be the weak topology with respect to polynomit! fienctions
instead of bounded continuous functions. Large deviationthe spectral mea-
sure of random matrices with complex eigenvalues were densil in [BeZ98]
(where non self-adjoint matrices with independent Gaussidries were studied)
and in [HiP0OOa] (where Haar unitary distributed matrices @onsidered). This
strategy can also be used when one is interested in disegletersion of the law
PEV as they appear in the context of Young diagrams, see [GuMU®ig.LDP for
the maximal eigenvalue described in Theorem 2.6.6 is basgBeDGO01]. We
mention in passing that other results discussed in thisteh&ave analogues for

the IawP/’3\‘V. In particular, the CLT for linear statistics is discussedJoh98],
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and concentration inequalities fof convex are a consequence of the results in
Section 4.4.

Models of random matrices with various degrees of deperelbativeen en-
tries have also be treated extensively in the literature. aFsample of existing
results, see [BodMKV96], [ScS05], and [AnZ08b]. Randomflde, Hankel and
Markov matrices have been studied in [BrDJ06] and [HaMO5].

Many of the results described in this chapter (except fotiGes 2.3, 2.5 and
2.6) can also be found in the book [Gir90], a translation 0®@@3.Russian edition,
albeit with somewhat sketchy and incomplete proofs.

We have restricted attention in this chapter to Hermitiartrites. A natural
guestion concerns theomplexeigenvalues of a matriXy where all are i.i.d. In
the Gaussian case, the joint distribution of the eigengalses derived by [Gin65].
The analogue of the semicircle law is now the circular lave empirical measure
of the (rescaled) eigenvalues converges to the circularilawthe measure uni-
form on the unit disc in the complex plane. This is stated im§&, with a sketchy
proof. A full proof for the Gaussian case is provided in [Edg@vho also eval-
uated the probability that exactkyeigenvalues are real. Large deviations for the
empirical measure in the Gaussian case are derived in [BeE8Bnon-Gaussian
entries whose law possesses a density and finite momentsief ar least 6, a
full proof, based on Girko idea’s, appears in [Bai97]. Thelgem was recently
settled in full generality, see [TaV08a], [TaV08b], [GoT0the extra ingredients
in the proof are closely related to the study of the minimagsiar value ofX X*
discussed above.



3

Hermite polynomials, spacings, and limit
distributions for the Gaussian ensembles

In this chapter, we present the analysis of asymptotic®jdint eigenvalue dis-
tribution for the Gaussian ensembles: the GOE, GUE and GSE téns out, the
analysis takes a particularly simple form for the GUE, beeahen the process of
eigenvalues is determinantal procesgWe postpone to Section 4.2 a discussion
of general determinantal processes, opting to presentiememputations “with
bare hands”.) In keeping with our goal of making this chajgtezessible with
minimal background, we consider in most of this chapter thiEEGand discuss
the other Gaussian ensembles in Section 3.9. Generatizgdtiamther ensembles,
refinements, and other extensions are discussed in Chapiad ¢ the biblio-
graphical notes.

3.1 Summary of main results: spacing distributions in the blk and edge of
the spectrum for the Gaussian ensembles

We recall that theN eigenvalues of the GUE/GOE/GSE are spread out on an in-

terval of width roughly equal to #N, and hence the spacing between adjacent
eigenvalues is expected to be of ordgx/N.

3.1.1 Limit results for the GUE

Using the determinantal structure of the eigenval{ed, ..., A} of the GUE,
developed in Sections 3.2-3.4, we prove the following.

91
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Theorem 3.1.1 (Gaudin-Mehta)For any compact set A R,
Jim PIVNAN ... .VNAY ¢ A] (3.1.1)

= 1+ z ( kl) fA---fAdetj:leine(XhXj)I_llj'(:ldxj7
k=1 :

where

1 sin(x—y) X
KSine(Xa y) — { 7]:[ X-y ;A y7
T X= y
(Similar results apply to the sefs+ c,/n with |c| < 2, see Exercise 3.7.5.)

As a consequence of Theorem 3.1.1, we will show that the yhafantegrable
systems applies and yields the following fundamental tesaricerning the be-
havior of spacings between eigenvalirethe bulk

Theorem 3.1.2 (Jimbo-Miwa-Mori-Sato) One has
Jim PIVNAN ... VNAY & (—t/2,t/2)] = 1—F(t),

with
t
1—F(t):exp</ @dx) fort >0,
0

X
with o solution of

(to”")2 +4(to’ — o) (td’ — o+ (0')?) =0,
so that

L S G ot 0 3.1.2
c=_-_1 _ I+ (tYast | 0. (3.1.2)

The differential equation satisfied lay is the o-form of Painlevé V. Note that
Theorem 3.1.2 implies th&t(t) —¢_o 0. Additional analysis (see Remark 3.6.5in
subsection 3.6.3) yields that alB@t) —_... 1, showing thaF is the distribution
function of a probability distribution ofR , .

We now turn our attention to the edge of the spectrum.
Definition 3.1.3TheAiry functionis defined by the formula
1 3
Ai(x) = — [ /3 Xq 3.1.3
109 =57 . . (3.1.3)

whereC is the contour in the -plane consisting of the ray joinirg /3 to the
origin plus the ray joining the origin te/"/3co.
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Jolx

oly

Fig. 3.1.1. Contour of integration for the Airy function

TheAiry kernelis defined by
Ai (x) Ai’ (y) — Ai’(x) Ai
Ky (,y) = Al y) i= A1) <yl_y (AI(Y)

where the value fox =y is determined by continuity.

By differentiating under the integral and then integratiygparts, it follows that
Ai(x), for x € R, satisfies the\iry equation

d?y
Various additional properties of the Airy function and kelrare summarized in
subsection 3.7.3.

The fundamental result concerning the eigenvalues of th& @tthe edge of
the spectrum is the following.

Theorem 3.1.4For all —oo <t <t’ < oo,

AN
lim P|N%3 (—'—2) tt'],i=1,...,N 3.15
Im PN (2 2) ¢ ) (3.15)
) (_1)k t/ t' Kk k
= 1+ / det A(X, X; dx;,
k; I A W talt J)Dl J

with A the Airy kernel. In particular,

lim P[NZ/3 (\A/—NN —2) gt} (3.1.6)

N—oo0

00 _ k
~1+y %ff.--ﬁmdeﬁjzlA(m,xj)|‘|T=1dxj = FR(1).
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Note that the statement of Theorem 3.1.4 does not ensurdé-thata distribu-
tion function (and in particular, does not ensure thgt—) = 0), since it only
implies the vague convergence, not the weak convergendbeaandom vari-
ablesAN/\/N— 2. The latter convergence, as well as a representati®p, are
contained in the following.

Theorem 3.1.5 (Tracy-Widom)The function E(-) is a distribution function that
admits the representation

Fa(t) :exp<—/too(x—t)q(x)2dx) , (3.1.7)
where q satisfies

g’ =tq+2¢°, q(t) ~Ai(t),ast — +o. (3.1.8)

The functionF(+) is theTracy-Widondistribution. Equation (3.1.8) is tieainle\e
Il equation. Some information on its solutions is collecteB@mark 3.8.1 below.

3.1.2 Generalizations: limit formulas for the GOE and GSE

We next state the results for the GOE and GSE in a concise hatyaliows easy
comparison with the GUE. Most of the analysis will be devdtedontrolling the
influence of the departure from a determinantal structutbese ensembles.

ForB=1,2,4, letA(Bn = (Al</3’”>,...,/\r§ﬁ~“>) be a random vector iRR" with
the Iaw%ﬁﬁ), see (2.5.6), possessing a density with respect to Lebesgasure

proportional to|A(x)|FeBX*/4. (Thus,B = 1 corresponds to the GOB,= 2 to
the GUE an@3 = 4 to the GSE.) Consider the limits

1-Fgpult) = lim P({vmM BV} (-1/2,t/2)} =0),
fort >0, (3.1.9)
Foeagdt) = ImP({n°(A#"—2ym)}n(t,) =0),
for all realt . (3.1.10)

The existence of these limits f@ = 2 follows from Theorems 3.1.2 and 3.1.4,
together with Corollary 3.1.5. Further, from Lemma 3.6.6®lewe also have

t t 2
1_F2,bulk(t)=exp<—7—_[—/o (t—x)r(x) dx),
where

((tr)" + (tr))? = 4n)*((tr)*+ ((tr))?), r(t) = =+ —5 +Oo(t?).
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The following is the main result of the analysis of spacirmgiie GOE and GSE.

Theorem 3.1.6The limits1 — Fg p (B = 1,4) exist and are as follows:

1-Frpukt) g
m = exp( 2/or(x)dx), (3.1.11)
1-Fapuk(t/2) 1

VI—Rpu® COSh( 2/0“X>°'X)- (3.1.12)

Theorem 3.1.7The limits g ¢qge(B = 1,4) exist and are as follows:

,edg

2/3 o
Faeagdt/277) cosh(—% / q(x)dx). (3.1.14)
t

vV F27edg&t)

The proofs of Theorems 3.1.6 and 3.1.7 appear in Section 3.9.

3.2 Hermite polynomials and the GUE

In this section we show why orthogonal polynomials ariseiraly in the study
of the law of the GUE. The relevant orthogonal polynomialthis study are the
Hermite polynomials and the associated oscillator wavestions, which we in-
troduce and use to derive a Fredholm determinant representar certain prob-
abilities connected with the GUE.

3.2.1 The GUE and determinantal laws

We now show that the joint distribution of the eigenvaludbfeing the GUE has

a nicedeterminantal form, see Lemma 3.2.2 below. We then use this formula
in order to deduce Bredholm determinangéxpression for the probability that no
eigenvalues belong to a given interval, see Lemma 3.2.4.

Throughout this section, we shall consider the eigenvatfi€SUE matrices
with complex Gaussian entries of unit variance as in Theo2eén2, and later
normalize the eigenvalues to study convergence issuesh¥lllel® interested in
symmetric statistics of the eigenvalues. ot N, recalling the joint distributions
32,82) of the unordered eigenvalues of the GUE, c.f. Remark 2.568call its
marginal #pn on p coordinates thelistribution of p unordered eigenvalues of
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the GUE More explicitly, & Z,L is the probability measure dRP so that for any

f € Cp(RP),
[ 161 80d R0 05) = [ 161 8)dZT (61, O0)
(recall that@,i,z) is the law of theunorderedeigenvalues.) Clearly, one also has

/fel, 8)d 2261, ,6p)

| Zcv /f(ea(l)’.“’ea(p))dgzl(\la(elv”'veN)’
0ESHN

whereSp \ is the set of injective maps frofdl, - - -, p} into {1,--- ,N}. Note that
we automatically hav@,(\,z.?\, = @,(\,a.

We now introduce the Hermite polynomials and associatedhabtized (har-
monic) oscillator wave-function.

Definition 3.2.1(a) Thenth Hermite polynomiahn(x) is defined as

on(¥) 1= (—1)"e?2 L o e, (3.2.1)

(b) Thenth normalized oscillator wave-functiémthe function

e—x2/4ﬁn(x)

) =

(Often in the literature(—1)" e?‘ e % is taken as the definition of th#h Her-
mite polynomial. We find (3.2. 1) more convenient.)

For our needs, the most important property of the oscilletare-functions is
their orthogonality relations

[ ) (x= 8. (3.2.2)
We will also use the monic property of the Hermite polynomidhat is
$Hn(X) is a polynomial of degree with leading termx”. (3.2.3)

The proofs of (3.2.2) and (3.2.3) appear in Subsection 3s2@ Lemmas 3.2.7
and 3.2.5.

We are finally ready to describe the determinantal strutﬂm@éﬁz,. (See Sec-
tion 4.2 for more information on implications of this deteénantal structure.)
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Lemma 3.2.2For any p< N, the lawZ’ Z,L is absolutely continuous with respect

to Lebesgue measure, with density

N
o0, 05) = P detk ™ (a.@),

where

N-1
Wixy) = ;Wk(X)WK(Y)- (3.2.4)
k=
Proof Theorem 2.5.2 shows thpff,L exists and equals

N 2 N
P81, 6p) = Con [ 1809 e [ 629
i= i=p+1
wherex; = 6 fori < pand( fori > p, andCp n is a normalization constant. The
fundamental remark is that this density depends on the Vammlae determinant

N

= = det$;-1(x), (3.2.6)

N

A(X) = (Xj—Xi) = detx1
1<i< <N Lj=1

where we used (3.2.3) in the last equality.

We begin by considering = N, writing p,E,Z) for p,(\,zg\, Then,

N 2N
o (61, ,6N) CnN (it}lggﬁjl(e.)) |‘le“’i2/2 (3.2.7)
bl R |=

~ N 2
= Cun (iojlegwj_l(el)) —CNNqutK )(8,6)),

where inthe last line we used that (#B) = detA) detB) with A= B* = (y;_1(6))N =t
Here,Cun = MR- (V2mk!)Chn.-

Of course, from (2.5.4) we know th&@k N = G(NZ). We provide now yet another
direct evaluation of the normalization constant, follow[iMeh91]. We introduce
a trick that will be very often applied in the sequel.

Lemma 3.2.3For any square-integrable functions,f.., f,and g, ..., 0, on the
real line, we have

%// det(Z Fie(%) Ok (X ) |'|d>q (3.2.8)
= 5 deticn) deto) [ax = det [ 00000
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Proof Using the identity déAB) = det{A) detB) applied toA = {fx(xi)}ik and
B = {gk(xj) }xj, we get

/ det<sz gkx,>|'ld>q /.../ig'égfi(xj).iﬁneggi(xj)ﬂdx,

which equals, by expanding the determinants involving #imeifies{g; } and{ f;},

RIS Flf >>fld*

areSn I_l‘/f
_ Zﬂ rl/f 0o i) dx_n|det fi(x)g; (X)dx

O

Substitutingf; = gy = 1 andn= N in Lemma 3.2.3, and using the orthogonality
relations (3.2.2), we deduce that

N
detK( (8,6)) |‘ld9. =N! (3.2.9)
i,j=1 i—

which completes the evaluation Gf, y and the proof of Lemma 3.2.2 far= N.

For p < N, using (3.2.5) and (3.2.6) in a manner similar to (3.2.7)fiwe that
for some constar@p n, with x; = 6 if i < pand{; otherwise,

of20(61,.0p) = Con [ (detuy 10002 [] o€

i=p+1
= épN /I_l wa XJ wr XJ |_| ddi.
crreSN i=p+1
Therefore, letting”(p, v) denote the bijections froffil,-- -, p} to {vy,---,vp}
=V, we get
2
PR (B, 6p)
p

= Cn Y > e[ Yo-1(B)ri-2(8)

1<v1<...<vp<N g,1e.7(p,v)

2
Con det g, 1(8 )) : (3.2.10)

1<v<..<vp<N < Li=1

where in the first equality we used the orthogonality of thaifa {(;} to con-
clude that the contribution comes only from permutations/qffor which (i) =
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o(i) fori> p, and we put{vy,--- ,vp} = {1(1),---,1(p)} = {0(1),---,0(p)}.

Using the Cauchy-Binet Theorem A.2 with= B* (of dimensionp x N) and
A = j_1(8), we get that

~ p
péf) (61, ,6p) = CP~Ni?S£(K(N)(9ﬁej))-

To compute’fp,N, note that by integrating both sides of (3.2.10), we obtain

. p 2
1=Cn Y /(iﬁisngjl(a)) d6y---d6p, (3.2.11)

1<vp<...<vp<N

whereas Lemma 3.2.3 implies that for fll;,--- ,vp},

p 2

Thus, since there arN!)/((N — p)!p!) terms in the sum at the right hand of
(3.2.11), we conclude th&t,n = (N — p)!/NL. O

Now we arrive at the main point, on which the study of the Iqualperties of
the GUE will be based.

Lemma 3.2.4For any measurable subset ARf

(—1)*
I

N 0 K k
PO eah =1+ / detK<N>(xi,xj)|'ld>q. (3.2.12)
i=1 k=1 A i

Aci,j=1

(The proof will show that the sum in (3.2.12) is actually fin)t The last expres-
sion appearing in (3.2.12) iscredholm determinantThe latter are discussed in
greater detail in Section 3.4.

Proof By using Lemmas 3.2.2 and 3.2.3 in the first equality, and ttreogonality
relations (point 1 of Lemma 3.2.7) in the second equalityhaee

PO eAi=1,. N

— et [ 9utodx— det (8~ | nxus(0x)

i,i=0JA

=1+§1<—1>k 5 dket(ACwVi<x>wvj<x>dx),

O§v1<<-<<vk§N71"J=1
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Therefore,

PPN cAi=1,. N|

N (_1)k K 2 k
—1p [ ((detuna ) e
kZl k! A A O§v1<4.ka§Nfl =1 e iIJ

1 s (-1 dktK<N>( ) - d
=1+ / e Xi, X %
25 n

& K Aci,j=1
=1+ S (_—Dk/ dketK<N>(>q Xi) : dx (3.2.13)
= kzl k' nc ACi,j:]. s N il:l Ll L.

where the first equality uses (3.2.8) wittx) = fi(X) = ¢, (X)1ac(x), the second
equality uses the Cauchy-Binet Theorem A.2, and the lagtistiivial since the
determinant dgt_; KN)(x;,x;) has to vanish identically fok > N because the

rank of {K(™) (x;, x})}¥,_; is at mostN. 0

3.2.2 Properties of the Hermite polynomials and oscillatwave-functions

Recall the definition of the Hermite polynomials, Definiti8r2.1. Some proper-
ties of the Hermite polynomials are collected in the follogriemma. Through-
out, we use the notatioff,g)y = [ f(x)g(x)e‘xz/zdx In anticipation of further
development, we collect much more information than was edew far. Thus,
the proof of Lemma 3.2.5 may be skipped at first reading. Nwe(3.2.3) is the
second point of Lemma 3.2.5.
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Lemma 3.2.5The sequence of polynomidl§n(x) }1_, has the following proper-
ties.

1 $9o(x)=1,91(X) =xandHn 1(X) = xHn(X) — Hnp(X).
2. $Hn(x) is a polynomial of degree with leading ternx".
3. $Hn(x) is even or odd according ass even or odd.
4. (x99 =0.
5. (9, Do)y = V21Kl §¢.
6. (f,9n)¢ =0 for all polynomialsf (x) of degree< n.
7. XHn(X) = Hnr1(X) +nHp_1(x) forn > 1.
8. 9H,(X) =nHn-1(x).
9. $(X) — X53h(X) + NFin(x) = 0.
10. Forx#y,
“fﬁk(X)ﬁk(y) _ (90 Hn-1(y) = Hn-1()9n(y))
=L (=1 (x—y) '

Property 2 shows thdtHn }n>0 is a basis of polynomial functions, whereas prop-
erty 5 implies that it is an orthogonal basis for the scaladpct(f,g), defined

on L2(e—X2/2dx) (since the polynomial functions are dense in the latterespac

Remark 3.2.6Properties 7 and 10 are ttteee-term recurrencand theChristoffel-
Darboux identitysatisfied by the Hermite polynomials, respectively.

Proof of Lemma 3.2.5Properties 1, 2 and 3 are clear. To prove property 5, use
integration by parts to get that

|
/ﬁk(x)@(x)e—xZ/de = (_1)|/ﬁk(X);_)d(e_xz/2)dx
|
/[%ﬁk(x)] e*/2dx

vanishes ifl > k (since the degree dy is strictly less than), and is equal to
V2mk! if k=1, by property 2. Then, we deduce property 4 since by property 3
$H2 is an even function and so is the functien®/2, Properties 2 and 5 suffice
to prove property 6. To prove property 7, we proceed by indacbn n. By
properties 2 and 5 we have, foe> 1,

_ " (x9n, D)y
& (9 Hk)e

Xn(X) Hk(X)-
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By property 6 thekth term on the right vanishes unlggs- n| < 1, by property 4
the nth term vanishes, and by property 2 tfre+ 1)St term equals 1. To get the
(n—1)% term we observe that

(X9, Hn-1)w _ (X9n, Hn-1)%  (9n, Hn)g —1.-n=n

<f)nfl,f)nfl>€¢ <f)n,f)n>€¢ <f)nfl,f)nfl>€¢

by induction om and property 5. Thus property 7 is proved. Property 8 is atlire
consequence of properties 1 and 7, and property 9 is obtainéiferentiating
the last identity in property 1 and using property 8. To prpxaperty 10, call the
left side of the claimed identitlf (x,y) and the right sid&(x,y). Using properties
2 and 5, followed by integration by parts and property 8, aesghat the integral

equals the analogous integral wiilix, y) replacing- (x,y); we leave the details to
the reader. Equality of these integrals granted, propértpllows since{Hk k>0
being a basis of the set of polynomials, it implies almosesquality and hence
equality by continuity of, G. Thus the claimed properties of Hermite polynomi-
als are proved. O

Recall next the oscillator wave-functions, see DefinitioR.B. Their basic
properties are contained in the following lemma, which iseasy corollary of
Lemma 3.2.5. Note that (3.2.2) is just the first point of tharea.

Lemma 3.2.7The oscillator wave-functions satisfy the following.

=

- [ 0w 0dx= 8.
2. Xn(X) = VN+1dni1(X) + N1 (X).

n-1
3. W(X)Uk(Y) = V(Un(X)Wn-1(y) — Yn-1()¢n(y))/ (X—Y).
k=0

X
4 W) =~ () + Vign_1(x).
" 1 X

5 (X)) + (n+ 5~ Z)"U”(X) =0.

We remark that the last relation above is the one-dimenkBcabdinger equa-
tion for the eigenstates of the one-dimensional quantum-mécdldrarmonic os-
cillator. This explains the terminology.
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3.3 The semicircle law revisited

Let Xy € jf,\fa be a random Hermitian matrix from the GUE with eigenvalues
AN < <A, and let

denote the empirical distribution of the eigenvalues of#sealed matrixXy /v/N.
Ln thus corresponds to the eigenvalues of a Gaussian Wignexmat

We are going to make the average empirical distribuﬁgnexplicit in terms
of Hermite polynomials, calculate the momentsLgf explicitly, check that the
moments ofLy converge to those of the semicircle law, and thus providel-an a
ternative proof of Lemma 2.1.7. We also derive a recursigrtfie moments of
EN and estimate the order of fluctuation of the renormalizedimarn eigenvalue
)\,\’}‘/\/N above the spectrum edge, an observation that will be usefg8ection
3.7.

3.3.1 Calculation of moments dfy

In this section, we derive the following explicit formularfi_y, €%).

Lemma 3.3.1For any s€ R, any Ne N,

— N-1 —1)---(N=K) s
<LN,ES'> _ eSZ/(ZN) kzo Fll < 2kk ) (N 1)Nk(N ) ool . (3.3.2)

Proof By Lemma 3.2.2,
LN, N/ < > (%,X) dx—/ (X \/—X’ \/_X) X (3.3.3)

This last identity shows thaty is absolutely continuous with respect to Lebesgue

measure, with densitg ™) (v/Nx v/Nx)/v/N.

Using points 3 and 5 of Lemma 3.2.7, we obtain that for any

)i 1) — a0l

hence by L'Hbpital’s rule

™ (x,%) / V1 = Y () n-1(%) = Yh_1 () ¥n(X)

Therefore,

<000/ VA= 40040109 — Y1 (9¢n () = —n()¢h-1(). (3.3.4)
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By (3.3.3) the functiorkK ™) (v/Nx,v/NX)//N is the Radon-Nikodym derivative
of Ly with respect to Lebesgue measure and hence we have theifajloepre-
sentation of the moment-generating functiorLQf

(L. € / YVNK M) (x x)dx. (3.3.5)
Integrating by parts once and then applying (3.3.4), we firad t
(Ln,€ / e YNy (%) -1 (X)dx (3.3.6)

Thus the calculation of the moment generating functiohypboils down to the
problem of evaluating the integral on the right.

By Taylor's theorem it follows from point 8 of Lemma 3.2.5 thar anyn,

Let S =: [*, €*n(X)Pn_1(X)dx By the preceding identity and orthogonality we
have

_ —x2/2+tx
S]—m\/—n/f)n fJnl() dx

2/2
= ‘/—é /f)n X+1)Hn_1(x+t)e e/2(x

2 ! n—-1 n—1—
(e

Changing the index of summation in the last sum fiota n— 1 — k, we then get

2/2\/—2 (n— 1 (h—1-Kk)! (n—rl]—k)<nizik>t2k+l

2/2 n 1- k n n-1 2k+1
IZ) k+1 Kk )5

From the last calculation combined with (3.3.6) and afteurhier bit of rear-
rangement we obtain (3.3.2). O

S

We can now present another

Proof of Lemma 2.1.7 — Gaussian Wigner matrice$\le have written the mo-
ment generating function in the form (3.3.2), making it aus that all — o the
moments oLy tend to the moments of the semicircle distribution. a
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3.3.2 The Harer—Zagier recursion and Ledoux’s argument

Recall that throughout this chaptéf\}‘ denotes the maximal eigenvalue of a GUE
matrix. Our goal in this section is to provide the proof of fbkowing lemma.

Lemma 3.3.2 (Ledoux’s bound)There exist positive constantsamd C such that

AN —2/3
PN >N f) <Cle e, 3.3.7
(2\/— = < (3:3.7)

forallN > 1ande > 0.

Roughly speaking, the last inequality says that fluctuatiohthe rescaled top
eigenvalue\( := A\l'/2v/N — 1 above 0 are of order of magnitutle /3. This is
ana priori indication that the random variabl&&/3A [ converge in distribution,
as stated in Theorems 3.1.4 and 3.1.5. In fact, (3.3.7) isggoi play a role in the
proof of Theorem 3.1.4, see subsection 3.7.1.

_ The proof of Lemma 3.3.2 is based on a recursion satisfiedéyntbments of
Ln. We thus first introduce this recursion in Lemma 3.3.3 belorgye it, and
then show how to deduce from it Lemma 3.3.2. Write

o2k
(LN,eS>=k= m( K )m

Lemma 3.3.3 (Harer-Zagier recursions)For any integer numbers k and N,

k(k+1), (N
I b, (3.3.8)

N N
bl<<+>1 = bl<< ) +

where if k= 0 we ignore the last term.

Proof of Lemma 3.3.3Define the (hypergeometric) function

_ 1-n e (-Df n-1
Fn(t)—F< . t> = 1)!( ) )t . (339
and note that
(td—2+(2—t)g+(n—1))F (t)=0 (3.3.10)
dt2 dt my e

By rearranging (3.3.2) it follows from (3.3.9) that
_ ' P2
(L&) = (-5 ) (3.3.11)

where
Pp(t) = e V2Ry(t).



106 3. SACINGS FORGAUSSIAN ENSEMBLES

From (3.3.10) we find that

d2 _d
<4tW+8a+4n—t> ®n(t) =0. (3.3.12)

Write next®n(t) = S5 ai((mtk. By (3.3.12) we have
0=4(k+2)(k+1)a"”; +4ng” —a”,,
where ifk = 0 we ignore the last term. Clearly we have, taking N,

(—Dfa (200 B 2K\ o o
NK _k+1< k >_<"N’X )

The lemma follows. a

Proof of Lemma 3.3.2From (3.3.8) and the definitions we obtain the inequalities

k(k+1
0<bY <) < (1+ ans )) by

for N> 1,k > 0. As a consequence, we deduce that

K3

bV < e (3.3.13)
for some finite constard > 0. By Stirling’s approximation (2.5.12) we have
o k32 2k
o () <

It follows from (3.3.13) and the last display that, for appriate positive constants
c andC,

)\,\[}j o )\NN 2k
P<ﬁ> ) = E<2\/Nef) 3549

—2ekpy pN)
e #KNB 2k < CNt-3/2g-2stHe /N2
2%k(k+1) \ k

for all N > 1,k > 0 and real numberst > 0 such thak = [t|. Takingt = N%/3
and substitutind\—2/3¢ for ¢ yields the lemma. 0

Exercise 3.3.4Prove that in the setup of this section, for every intdgirolds
that

im E(Ln, X2 = im (Ln, X2, (3.3.15)
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Using that the moments ofy converge to the moments of the semicircle distribu-
tion, complete yet another proof of Wigner’'s Theorem 2.fh.thie GUE setup.
Hint: Deduce from (3.3.3) that
— 1
(L, X< = NI /XkK(N)(X,X)dX.

Also, rewriteE (Ly,x¥)? as
= N2+kN|/ /zix1 etK ) (%i,%)) I‘deJ

2
= = / / KN (x, y) 2dxdy+ Nklﬂ ( / ka<N>(x,x)dx)
= <EN,Xk>2+IéN>,

whereIlEN) is equal to

2k k
Nk+3/2//X ka () WUn-1(Y) — Un—1(X) YN (Y))K (X, y)dxdy.

To prove the equality marked with the exclamation pointyskimat
| KO OK® gyt =K xy),

while the expression folriEN) uses the Christoffel-Darboux formula (see Section

3.2.1). To complete the proof of (3.3.15), show that\ina IlEN) =0, expanding
the expression

XK _ ykyk
X—=y

as a linear combination of the functiogs(x) Ym(y) by exploiting the three-term
recurrence (see Section 3.2.1) satisfied by the oscilladweviunctions.

(N UN-1(Y) — Un-2(X)UN(Y))

Exercise 3.3.8Nith the notation of Lemma 3.3.2, show that there exd§6’ > 0
so that, forallN > 1, if € > 1 then

P( AL SN 2/3£> <C’ie’°’£2
2VN ~ €1

This bound improves upon (3.3.7) for large

Hint: optimize differently over the parameteat the end of the proof of Lemma
3.3.2, replacing there by eN~2%/3,

(V)
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Exercise 3.3.6The functionF,(t) defined in (3.3.9) is a particular case of the
generahypergeometric functigrsee [GrKP98]. Let

K =x(x+1)--- (x+k—1)

be the ascending factorial power. The general hypergeanietrction is given
by the rule

F(al o ap

_ co a?_...al’gtk
bl bq

£ bli...bs k-

(i) Verify the following generalization of (3.3.10):
d/d d ap -+ ap
a(ta+b1—1)---(ta+bq—1)F(bl by

_ (., d d ap -+ ap
(S va) (1) E (2 ).

(i) (Proposed by D. Stanton) Check thatt) in (3.3.9) is a Laguerre polynomial.

3.4 Quick introduction to Fredholm determinants

We have seen in Lemma 3.2.4 that a certain gap probabibtytihe probability
that a set does not contain any eigenvalue, is given by a Bhedteterminant.
The asymptotic study of gap probabilities thus involvesdhalysis of such de-
terminants. Toward this end, in this section we review kefiniteons and facts
concerning Fredholm determinants. We make no attempt teaelgreat gen-
erality. In particular we do not touch here on any functioaalytic aspects of
the theory of Fredholm determinants. The reader interestédin the proof of

Theorem 3.1.1 may skip Subsection 3.4.2 in a first reading.

3.4.1 The setting, fundamental estimates, and definitiortlé Fredholm
determinant

Let X be a locally compact Polish space, wi##x denoting its Borel-algebra.
Let v be a complex-valued measure @6, %x ), such that

|\v|\1:/X|v(dx)| <. (3.4.1)

(In many applicationsX = R, andv will be a scalar multiple of the Lebesgue
measure on a bounded interval).
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Definition 3.4.1A kernelis a Borel measurable, complex-valued functi(x, y)
defined onX x X such that

Kl == sup [K(xy)| <. (3.4.2)
(xy)eXxX

Thetraceof a kernelK(x,y) (with respect ta) is
tr(K) = /K(x,x)dv(x). (3.4.3)

Given two kernel¥(x,y) andL(x,y), define theicompositior(with respect ta/)
as

(KxL)(xy) = / K(x2)L(zy)dv(2). (3.4.4)

The trace in (3.4.3) and the composition in (3.4.4) are wedfilebd becausey |1 <
o and||K|| < oo, and furtherK x L is itself a kernel. By Fubini’s theorem, for any
three kernel&, L andM, we have

tr(KxL) =tr(LxK) and(KxL) xM = K% (LxM).

Warning: We do not restricK in Definition 3.4.1 to be continuous. Thus, we may
have situations where two kernédsK’ satisfyK = K’, v x v- a.e., but t(K) #
tr(K’).

We turn next to a basic estimate.

Lemma 3.4.2Fix n > 0. For any two kernels Fx,y) and G(x,y) we have

n n
detF (xi,yj) — i(JjSth(Xi ,yj)

det <n'"2|F - G|l max(|[F||.|G])" " (3.4.5)
L=

and

n
et )| < 2 (3.46)
I]=

The factom™2in (3.4.5) and (3.4.6) comes from Hadamard’s inequalitye@iem
A.3). In view of Stirling’s approximation (2.5.12), it ise&r that the Hadamard
bound is much better than the bounidve would get just by counting terms.

Proof Define
G(xy) ifi<k,

Hmmw={F@M—GMWiH=K
F(x,y) ifi>Kk,
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noting that, by the linearity of the determinant with redgecows,

n n n
detF(x,yj) — iqsth(xi,yj) =

g (0
ij=1 detH;™ (i, y;j)- (3.4.7)

K=t

Considering the vectorg = vfk> with vi(j) = Hi(k) (xi,Yj), and applying Hadamard’s

inequality (Theorem A.3), one gets
n

detH" (x.y))| < n"2|F - G| -max(|F,|G])" *.

Substituting in (3.4.7) yields (3.4.5). Noting that wh@én= 0, the summation in

(3.4.7) involves only one nonzero term yields (3.4.6). O

We are now finally ready to define the Fredholm determinardcated to a
kernelK(x,y). Forn> 0, put

Ao = Ba(K, V) :/---/iﬁirégK(Ei,Ej)dv(El)---dv(En), (3.4.8)
settingAAg = Ag(K, v) = 1. We have, by (3.4.6),

\ [+ [ detk @ &avi) - dvign) | < IVITIKI"2. (3.49)

So, A\, is well-defined.

Definition 3.4.3TheFredholm determinarassociated with the kerniélis defined
as
AK)=AK,v) = s (D" (K,v)
- ) - nZD n! n 9 .

(Asin (3.4.8) and Definition 3.4.3, we often supress the ddpace inv from the
notation for Fredholm determinants.) In view of Stirlinggproximation (2.5.12)
and estimate (3.4.9), the series in Definition 3.4.3 coreg@psolutely, and so
A(K) is well-defined. The reader should not confuse the Fredh@tarchinant
A(K) with the Vandermonde determinaifx): in the former, the argumentis a
kernel while in the latter, it is a vector.

Remark 3.4.4 Here is some motivation for callind(K) a determinant. Let
f1(x),..., In(X), 91(X),...,on(X) be given. Put
N

KOy = 3 09 (0)
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Assume further that magup fi(x) < c and maxsug,gj(y) < . ThenK(x,y) is
a kernel and so fits into the theory developed thus far. Paaspty the proof of
Lemma 3.2.4, we have that

A(K) —qut<d, /f )g;j (x)dv(x > (3.4.10)

For this reason, one often encounters the notatiofi deK) for the Fredholm
determinant oK.

The determinant&(K) inherit good continuity properties with respect to the|
norm.

Lemma 3.4.5For any two kernels Kx,y) and L(x,y) we have

AK) AL < (i VIR ma KL

n=1

) K =L|. (3.4.11)

Proof Sum the estimate (3.4.5). O

In particular, withK held fixed, and withL varying in such a way thafk —L|| —

0, it follows thatA(L) — A(K). This is the only thing we shall need to obtain
the convergence in law of the spacing distribution of theeiglues of the GUE,
Theorem 3.1.1. On the other hand, the next subsectionsevilskeful in the proof
of Theorem 3.1.2.

3.4.2 Definition of the Fredholm adjugant, Fredholm resolag and a
fundamental identity

Throughout, we fix a measureand, a kerneK(x,y). We putA = A(K). All the
constructions under this heading dependkaandv, but we suppress reference to
this dependence in the notation in order to control clufbefine, for any integer
n>1,

Xl Xn n
K = detK(x,yi), 3.4.12
<y1 Yn> det (%,Yj) ( )

set

o) = [ [k (08 ave) v, (43

and
HO(Xa y) = K(Xa y) .



112 3. SACINGS FORGAUSSIAN ENSEMBLES
We then have from Lemma 3.4.2 that

Ha(Y)| < K™ v ]3(n-+ 1) 072, (3.4.14)

Definition 3.4.6 The Fredholm adjuganof the kerneK(x,y) is the function

H(xy) = io (_n? Hn(X,y) . (3.4.15)

If A(K) # 0 we define theesolvenif the kerneK(x,y) as the function

H(x,y)
AK) -

R(X,Y) = (3.4.16)

By (3.4.14), the series in (3.4.15) converges absolutedyuariformly onX x X.
ThereforeH (-) is well-defined (and continuous o¢fP if K is continuous ofX x
X). The main fact to bear in mind as we proceed is that

suplF (X,y)| < o (3.4.17)

for F = K,H,R. These bounds are sufficient to guarantee the absolutergmmee
of all the integrals we will encounter in the remainder of tBet3.4. Also it bears
emphasizing that the two-variable functiddéx,y) (resp.,R(x,y) if defined) are
kernels.

We next prove a fundamental identity relating the Fredhalijugant and de-
terminant associated with a kerrel

Lemma 3.4.7 (The fundamental identity)Let H(x,y) be the Fredholm adjugant
of the kernel Kx,y). Then,

[KxaH@YWv@ = Hixy)~AK)K(xy)
- /H(x,z)K(z,y)dv(z), (3.4.18)
and hence (equivalently)
KxH=H—AK) K=Hx*K. (3.4.19)

Remark 3.4.8Before proving the fundamental identity (3.4.19), we masme
amplifying remarks. IfA(K) # 0 and hence the resolveR(x,y) = H(x,y)/A(K)
of K(x,y) is well-defined, then the fundamental identity takes thenfor

/K(x,z)R(z,y)dv(z) =R(X,y) —K(xy) = /R(x,z)K(z,y)dv(z) (3.4.20)
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and hence (equivalently)

KxR=R-K=RxK.

It is helpful if not perfectly rigorous to rewrite the lastrfoula as the operator
identity

1+R=(1-K)™L

Rigor is lacking here because we have not taken the troubdesgociate linear
operators to our kernels. Lack of rigor notwithstanding st formula makes
it clear thatR(x,y) deserves to be called the resolventdk,y). Moreover, this

formulais useful for discovering compaosition identitiesiah one can then verify
directly and rigorously.

Proof of Lemma 3.4.7Here are two reductions to the proof of the fundamental
identity. Firstly, it is enough just to prove the first of thgualities claimed in
(3.4.18) because the second is proved similarly. Secopdbgeeding term by
term, sinceHp = K andfg = 1, it is enough to prove that, far> 0,

(-)?
(n—1)!

[ Kx D 1(2)dv(2) = - (Ha(xy) ~ Ba-K ()
or, equivalently,
Hn(X,y) :An-K(x,y)—n/K(x,z)Hn_l(z,y)dv(z), (3.4.21)

whereA, = Ap(K).
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Now we can quickly give the proof of the fundamental iden{y4.19). Ex-
panding by minors of the first row, we find that

X &1 ... én
(yu e

= ke (gl

El En
LOEPN . & & & & En>
* j;( b K(X’EJ)K< y & ... o1 a1 &

_ El En
- K(va)K< El En >

< , & & &1 & fn)
j;K(X’EJ)K< y & oo & & b )

Integrating out the variableg, ... ., &, in evident fashion, we obtain (3.4.21). Thus
the fundamental identity is proved. O

We extract two further benefits from the proof of the fundatakidentity. Re-
call from (3.4.8) and Definition 3.4.3 the abbreviated riota\, = An(K) and
AK).

Corollary 3.4.9 (i) For alln > 0,

=17, (xy) = Zn (_1)kA (K * K (X,Y) (3.4.22)
n! n 7y _k: k' k —~ 7y . A
(ii) Further,
1" & (=K

In particular, the sequence of numbers
tr(K), tr(KxK), tr(K«xKxK), ...
uniquely determines the Fredholm determina(K).
Proof Part (i) follows from (3.4.21) by employing an induction onWe leave the

details to the reader. Part (i) follows by putting= ¢ andy = £ in (3.4.22), and
integrating out the variablé. O
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Multiplicativity of Fredholm determinants

We now prove a result needed for our later analysis of GOE/@SEader inter-
ested only in GUE can skip this material.

Theorem 3.4.10Fix kernels Kx,y) and L(x,y) arbitrarily. We have
AK+L—LxK)=A(K)A(L). (3.4.24)

In the sequel we refer to this relation as thaltiplicativity of the Fredholm deter-
minant construction.

Proof Let t be a complex variable. We are going to prove multiplicagiiy
studying the entire function
drL(t) =A(K+t(L—LxK))

of t. We assume below thak | (t) does not vanish identically, for otherwise there
is nothing to prove. We claim that

¢k (0) = —AK)tr(L—L*K)+tr((L—L*xK)*H)
= —AK)tr(L), (3.4.25)
whereH is the Fredholm adjugant df, see equation (3.4.15). The first step
is justified by differentiation under the integral; to jigtthe exchange of limits
one notes that for any entire analytic functib(z) ande > 0 one hasf’(0) =

2—%- Jig=¢ f—z<22—>dz and then uses Fubini’'s theorem. The second step followhdy t
fundamental identity, see Lemma 3.4.7. This completesthefpf (3.4.25).

Sincedo, (t) = A(tL) equals 1 fott = 0, the producto (t)¢Pk L (t) does not
vanish identically. Arbitrarily fix a complex numbgrsuch thatpg | (to) ¢k L (to) #
0. Note that the resolvaigof toL is defined. One can verify by straightforward
calculation that the kernels

K=K+to(L—L*K), L=L+Lx*S, (3.4.26)
satisfy the composition identity
K+ (to+t)(L—LxK)=K+t([L—-LxK). (3.4.27)
With K andL as in (3.4.26), we havgx ; (t) = ¢k L (t +1o) by (3.4.27) and hence

%Iog dkL(t)  =—tr(D)

t=tp

by (3.4.25). Now the last identity holds also fér= 0 and the right side is inde-
pendent oK. It follows that the logarithmic derivatives of the funat®go | (t)
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and ¢k | (t) agree wherever neither has a pole, and so these logaritteriiad

tives must be identically equal. Integrating and exporaginigy once we obtain an
identity ¢k L(t) = ¢k .L(0)do,(t) of entire functions of. Finally, by evaluating

the last relation at= 1, we recover the multiplicativity relation (3.4.24). 0O

3.5 Gap probabilities at0 and proof of Theorem 3.1.1.

In the remainder of this chapter, we &§ < %ﬁa be a random Hermitian matrix
from the GUE with eigenvalues] < --- < AY. We initiate in this section the
study of thespacingsetween eigenvalues &fy. We focus on those eigenvalues
that lie near 0, and seek, for a fixed- 0, to evaluate the limit

Nlmp[\/m{“, OVNAY ¢ (—t/2,1/2)], (3.5.1)
see the statement of Theorem 3.1.1. We notedhaiori, because of Theorems
2.1.1 and 2.1.22, the limit in (3.5.1) has some chance ofgoron-degenerate
because thil random variables/NAY ..., v/NA{ are spread out over an interval
very nearly of length M. As we will show in Section 4.2, the computation of the
limitin (3.5.1) allows one to evaluate other limits, suchfaslimit of the empirical
measure of the spacings in the bulk of the spectrum.

Asin (3.2.4), set

n _ nt _ Un(X)Pn-1(Y) = Yn-1(X)Pn(y)
K(0y) =5 Ununly) = v ) ,

where thei(x) are the normalized oscillator wave-functions introducedefi-
nition 3.2.1. Set
1 X Yy
n) - —km({ 2 X
ST xy) ViR (ﬁ’ﬁ)'

A crucial step in the proof of Theorem 3.1.1 is the followiegima, whose proof,
which takes most of the analysis in this section, is deferred

Lemma 3.5.1With the above notation, it holds that

. 1sin(x—y)
n) _ 1Snx=y)
n|me§ ()= Y (3.5.2)

uniformly on each bounded subset of {kgy)-plane.
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Proof of Theorem 3.1.1Recall that by Lemma 3.2.4,

PV, ..., vl ¢ Al
o (-1)X
= 1+klefﬁ,lA...fﬁ,lAdetszlK(“)(xi,xj)|‘|'j‘=ldxj

- 1+kzl%fA"'fAdeﬁ1gn>(xi’ximii<ldxj'

(The scaling of Lebesgue’s measure in the last equalitya@xplthe appearance
of the scaling by 1,/n in the definition ofS"(x,y).) Lemma 3.5.1 together with
Lemma 3.4.5 complete the proof of the theorem. O

The proof of Lemma 3.5.1 takes up the rest of this section. ¥gérbby bring-
ing, in subsection 3.5.1, a quick introduction to Laplagai&thod for the evalua-
tion of asymptotics of integrals, which will be useful fohetr asymptotic compu-
tations, as well. We then apply it in subsection 3.5.2 to aafecthe proof.

Remark 3.5.2We remark that one is naturally tempted to guess that the ran-
dom variableMy ="width of the largest open interval symmetric about the orig
containing none of the eigenvalugNAY, ... v/NAJ" should possess a limit in
distribution. Note however that we do r@priori have tightness for that random
variable. But, as we show in Section 3.6, we do have tight(sess (3.6.34) be-
low) a posteriori In particular, in Section 3.6 we prove Theorem 3.1.2, which
provides an explicit expression for the limit distributiohVWy.

3.5.1 The method of Laplace

Laplace’s method deals with the asymptotic ¢as o) evaluation of integrals of
the form

/ f(x)%g(x)dx.

We will be concerned with the situation in which the functibpossesses a global
maximum at some poird, and behaves quadratically in a neighborhood of that
maximum. More precisely, left : R — R, be given, and for some constanand
positive constantsy,K,L,M, let¥(a, &, %, f(-),K,L,M) be the class of measur-
able functiongy : R — R satisfying the following conditions:

() lg(a)] < K.
(i) SUPofyai<e | L2 < L.

(ii) [ f(x)*lg(x)|dx < M.
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We then have the following.

Theorem 3.5.3 (Laplace) et f: R — R be a function such that, for some=aR
and some positive constargs c, the following hold.
(i) f(x)<f(X)ifeithera—g<x<xX <aora<x <x<a+é.
(i) Forall € < &, SUPy 4 f(X) < f(a) —ce%
(iii) f(x) has two continuous derivatives in the interyal- 2y, a+ 2¢p).
(iv) f”(a) <0.
Then, for any function g ¢ (a, &, %, f (), K,L,M), we have

2rnf(a)

_f”—(a) g(a), (3.5.3)

lim V/51(2)~* [ £(0°g09dx—
and moreover, for fixed, &, &,5,K,L, M, the convergence is uniform over the
class¥(a, &, %, f(+),K,L,M).

Note that by point 2 of the assumptiorf§a) > 0. The intuition here is that &s
tends to infinity the functioOf (x) / f (a))® nearx = a peaks more and more sharply
and looks at the microscopic level more and more like a hele, whereas (x)°
elsewhere becomes negligible. Formula (3.5.3) is arguhklgimplest nontrivial
application of Laplace’s method. Later we are going to ent@umore sophisti-
cated applications.

Proof of Theorem 3.5.3Let £(s) be a positive function defined fer> 55 such
that £(S) —s . 0 aNASE(S)? —s .0 ®, While g = sup;.¢, £(s). For example we
could takes(s) = & - (so/s)Y/*. Fors > s, write

[ 109°%09dx=g(@)ly + 12+ .

where

li = f\x—a\g.s(s)f(x)sdx7

l2 = Jixea<ery FO3(9(X) —g(a))dx
f(x)*g(x)dx.

I3 = f\x—a\>s(s)

For|t| < 2& put
1
h(t):/ (1—1)(logf)" (a+rt)dr,
0

thus defining a continuous function osuch thah(0) = f”(a)/2f(a) and which
by Taylor’s theorem satisfies

f(x) = f(a)exph(x—a)(x—a)?)
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for [x—al| < 2&. We then have
e heeos (1 (3))
| exp( h{ — |t*)dt,
1= \/é t‘<g s p \/é

lim /s f(a) %11 = /_ o;exp(h( )t?) dt = ng(;‘;‘)

We have|lz| < Lég(s)l; and hence

lim \/sf(a)~®l, =0.
S—00

and hence

We have, since(s) < &,

2\ 5%
ol <M sup [f(X)F®<Mf(a)s® (1— ce(s) ) ,

X:|x—a|>£(s) f(a)
and hence
I|m \/gf( ) S|3
This is enough to prove that the limit formula (3.5.3) holdsl &nough also to
prove the uniformity of convergence over all functiais) of the class?. O

3.5.2 Evaluation of the scaling limit — proof of Lemma 3.5.1

The main step in the proof of Lemma 3.5.1 is the following anif convergence
result, whose proof is deferred. Let

with v a quantity whose difference fromis fixed (in the proof of Lemma 3.5.1,
we willusev =n,n—1,n—2).

Lemma 3.5.4Uniformly for t in a fixed bounded interval,
1
r!mowv( )— \/ﬁcos( ) | = (3.5.4)

With Lemma 3.5.4 granted, we can complete the
Proof of Lemma 3.5.1Recall that
Lpn( )Lpn l(i) _Wn—l(in)Wn(%)

SVxy) = VA ey
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In order to prove the claimed uniform convergence, it is ulsef get rid of the
division by (x—y) in S™(x,y). Toward this end, noting that for any differentiable
functionsf,gonR,

f(x)g(y) — f(y)9(x)

X—y
_ (T —f(y) g(y) —9(x)
= <7X_y )g(y)+f(y)<7x_y ) (3.5.5)
1 1
= o) [ ek @-tydi— 1) [ glbor -ty
we deduce
e (35.6)

y,/t, X y
~Un( ) / Uh-a(t e+ (10 Tt

y., [ z
= Wn—l(ﬁ)/o(\/ﬁ(ﬂn—l(z)—E%@)”z:t%ﬂl—t)%dt
Yy, [t z
~Un( ) [ (V=T -2(8) = G002t x g 0

where we used in the last equality point 4 of Lemma 3.2.7. §6¥5.4) (in case
v=nn—1n-2)in (3.5.6) and elementary trigonometric formulas shdved t

SV(xy) ~ 7—1T<C05(y— rr(nz— 1))/Olcos(tx+ (1-t)y— n(nz— 1)> dt

—cogy— %n)/olcos<tx+ (1-t)y— n(nz— 2)> dt)
1sin(x—y)

)

T X—y

~

which, Lemma 3.5.4 granted, completes the proof of Lemma. 3.5 O
Proof of Lemma 3.5.4Recall the Fourier transform identity
2 1 20
ex /2 _ /eff /Zflfxd )
V2 ¢
Differentiating under the integral, we find that
/2 _(_q nd_n —x2/2 _ 1 / ce\na—&2/2—iEx
f—’n(x)e ( ) d)dqe \/ZT (IE) € dEa
or equivalently
v/

LIJV(X) - W Eve_éz/z_igxdf . (357)
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We use the lettev here instead afi to help avoid confusion at the next step. As a
consequence, settil@y , = 1/n/(2m), we have

iV 2/ (4n)n1/4 )
W) = LS [ eve 2nif/vige

(2m)3/4/v!
2
_ (2")1/4CV7”\‘9/IL'(4M”1/4+V/2/(ge—fz/z)“i"e“ftf"‘”df
v!
N (Zn)l/4c\:}/,_f1'nl/4+n/2/(fe52/2)”i"eiftfvndf
ni

Cy /2 / |Ee€%/2n0 (i signg ) Ve 41| £V N[ dE |

2

where Stirling’s approximation (2.5.12) and the fact thgi(t) is real were used
in the last line. Using symmetry, we can rewrite the last egpions as

20,02 [ £(E)m(E)dé

with f(x) = xe*XZ/lezo andg(x) = g¢(x) = cogxt — X )xV~".

Considett as fixed, and lebh — o in one of the four possible ways such that
o(-) does not depend am(recall thatv — n does not depend am. Note thatf (x)
achieves its maximal value g&= 1 and

f1)=e?? f(1)=0, '(1)=-2e12

Hence, we can apply Laplace’s method (Theorem 3.5.3) to fiad t

Yy (1) —nse %Tcos(t — %) .

Moreover the convergence here is uniform fdn a fixed bounded interval, as
follows from the uniformity asserted for convergence initiformula (3.5.3). O

Exercise 3.5.8Jse Laplace’s method (Theorem 3.5.3) vats 1 to prove (2.5.12):
ass — oo along the positive real axis,

— ® —x%_ ® —X S%N —1/2 -5
l‘(s)_/O xoe X_ss/o (xe ™) V2nsTY2%es,

This recovers in particular Stirling’s approximation (2.8).
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3.5.3 A complement: determinantal relations

Let integers(y,...,¢p > 0 and bounded disjoint Borel sefg,...,Ap be given.
Put

H\](‘gl,,ep,A]_,,Ap)
= PlG=#({VNA),...,.vNAJ}NA) fori=1,....p] .

We have the following.
Lemma 3.5.6Let s, ...,Sy be independent complex variables and let
¢=(1-s)1p + -+ (1—5p)la,.
Then, the limit
P(E]_, o ,ep;A]_, e 7IA\p) = ,\|‘|m H\](El, o ,ep;A]_, e 7IA\p) (358)

exists and satisfies

S P(lr A A)S S (3.5.9)
(=0 (p=0
< (L)X

_ 1+kz " ffdeszl%snléxl;fj) I_llj(:lqb(xl)dxl .
=1 :

That is, the generating function in the left side of (3.5.8) ©e represented in
terms of a Fredholm determinant. We note that this holdseatgr generality, see
Section 4.2.

Proof The proof is a slight modification of the method presenteduibsection
3.5.2. Note that the right side of (3.5.9) defines by the funelatal estimate
(3.4.9) an entire function of the complex varialbdgs . . , sp, whereas the left side
defines a function analytic in a domain containing the prodiip copies of the
unit disc centered at the origin. Clearly we have

N
¢
E rl(l‘ o (VRAN)) = > AN, Lt AL Ap)S - SP
i= 1, 0p>0
O+ +Ep<N
(3.5.10)
The function ofsy, ..., sp on the right is simply a polynomial, whereas the expec-
tation on the left can be represented as a Fredholm detemtmifaom this, the
lemma follows after representing the probabily(¢1,...,¢p;Aq,...,Ap) as ap-
dimensional Cauchy integral. O
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3.6 Analysis of the sine-kernel

Our goal in this section is to derive differential equatiqimsthe parametet)

for the probability that no eigenvalue of the (properly msed) GUE lies in the
interval (—t/2,t/2). We will actually derive slightly more general systems of
differential equations, that can be used to evaluate egjmeslike (3.5.9).

3.6.1 General differentiation formulas

Recalling the setting of our general discussion of Fredhddterminants in Sec-
tion 3.4, we fix a bounded open interval b) C R, real numbers

a<ti<---<th<b

in the interval(a, b) and complex numbers

Sty.--3S0-1, SO:OZSn
Set
N =Sl + + -1l 16)

and definev so that it has densityy with respect to the Lebesgue measure on
X =R. We then have, fof € L[(a,b)],

n-1 i1
<f,v>:/f(x)dv(x): zis/ f(x)dx.
i= K
Motivated by Theorem 3.1.1, we fix the function

sin(x—vy)
Xy)=——= (3.6.1)
Y= Ty)
on (a,b)? as our kernel. As usudl = A(S) denotes the Fredholm determinant
associated t® and the measure. We assume thak = 0 so that the Fredholm
resolventR(x,y) is also defined.

Before proceeding with the construction of a system of difféial equations,
we provide a description of the main ideas, disregardindis sketch issues of
rigor, and concentrating on the most important caseef2. View the kernel$S
andR as operators oh'[(a, b)], writing multiplication instead of the operation.
As noted in Remark 3.4.8, we have, wifiix,y) = (x—y)S(x,y) andR(x,y) =
(x—y)R(x,y), that

(1-971=1+R S=[M,§, R=[M,R
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whereM is the operation of multiplication byand the brackgi, B] = AB— BAis
the commutator of the operatdksB. Note also that under our special assumptions

§(x,y) = (sinxcosy — sinycosx) /T,
and hence the operatSiis of rank 2. But we have

R

[MaR] = [Mv(l_s)il]
~1-97YM,1-5(1-9 = (1+R§1+R),

and henceR is also of rank 2. Lettind®(x) = (1+ R)cogx)/+/7T andQ(x) =
(14 R)sin(x)/+/TT, we then obtaiR = Q(x)P(y) — Q(y)P(x), and thus

(See Lemma 3.6.2 below for the precise statement and pr@ofe checks that
differentiating with respect to the endpoinist, the function log\(S) yields the
functionsR(tj,t), i = 1,2, which in turn may be related to derivatives®fand

Q by a careful differentiation, using (3.6.2). The system iffedential equations
thus obtained, see Theorem 3.6.2, can then be simplifiegt, gfecialization to
the casd, = —t; =1/2, to yield the Painlevé V equation appearing in Theorem
3.1.2.

Turning to the actual derivation, we consider the pararseter..,t, as vari-
able, whereas we consider the kerSgl,y) and the parametess, ..., s,-1 to be
fixed. Motivated by the sketch above, $ék) = (sinx)/./mand

QX = 109+ [REYFWIAV(Y), PO) =1+ [Roxy) ') dviy).
(3.6.3)
We emphasize tha®(x), Q(x) andR(x,y) depend or,...,t, (throughv), al-
though the notation does not show it. The main result of taiisn, of which
Theorem 3.1.2 is an easy corollary, is the following systérdiiferential equa-
tions.

Theorem 3.6.1With the above notation, put, forji=1,...,n,

pi=P), G=0Q(), Rj=R.1).
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Then, forij =1,...,nwithis# j, we have the following equations:

Rj = (aipj—ajpi)/(ti—tj),

2qj/dti = —(s—s-1)-Rjaqi,
opj/oti = —(s—s-1)-Rjipi,
dqi/ot = +pi+§(9&—3k—l)'RikQI<, (3.6.4)
KZi
opi/oti = _Qi"‘;(s&_sx—l)'Rikpk;
4]
Ri = pidqi/oti—qidpi/ot,

(0/dt)logAh = (s —s-1)-Ri.

The proof of Theorem 3.6.1 is completed in Subsection 3.6hZhe rest of
this subsection, we derive a fundamental differentiatmiula, see (3.6.10), and
derive several relations concerning the functiéh introduced in (3.6.3), and
the resolvenR.

In the sequel, we writd;, for ftf‘“. Recall from (3.4.8) that

R A R & S D L2

Therefore, by the fundamental theorem of calculus,

= D(X,Y) (3.6.5)

Ya —
- _ZZ z Z zsl J lSH—l SK(S—S—l)
/ / / / ( o & b & L )lil
by i N, ) Y I N Y T R 1!
j#
- —5(3 _Sfl)Hf—l(tivti)v
with H,_; as in (3.4.13). Multiplying by(—1)¢/¢! and summing, using the esti-

mate (3.4.9) and dominated convergence, we find that

dtl =(s—s-1)H(.t). (3.6.6)

From (3.6.6) we get

dit. logA = (s —s-1)R(t;, ). (3.6.7)
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We also need to be able to differentid®éx,y). From the fundamental identity
(3.4.20), we have

2 RxY) = (3 -8 DROGHSHY) + [ Six2 dti” v(d2). (3.6.8)

Substitutingy = Z in (3.6.8) and integrating againR{z,y) with respect tav(dZ)
gives

[ PEEED Rz ypviad) = (s 5 DR [ SR YD)

+//5( deii RZ,y)v(d2v(dZ). (3.6.9)

Summing (3.6.8) and (3.6.9) and using again the fundaméeatity (3.4.20)
then yields

2 R0Y) = (-1~ RXHRGY). (3.6.10)

The next lemma will play an important role in the proof of Them 3.6.1.

Lemma 3.6.2The functions R, R satisfy the following relations:

QXP(Y) - QYIPKX) _

R(x,y) = <y R(Y %), (3.6.11)
R(x,x) = Q' (x)P(x) — Q(x)P'(x), (3.6.12)
2 Q( )= (S_1—8)RXt)Q(t), (3.6.13)
and similarly
;tl P(x) = (5-1—S)R(X,ti)P(t;). (3.6.14)

Proof We rewrite the fundamental identity (3.4.19) in the abbaid form
RxS=R—S=SxR. (3.6.15)
To abbreviate notation further, put
ROY) = (x=Y)R(xY), Sxy) = (x=y)SxYy).
From (3.6.15) we deduce that

RxS+RxS=R-S.
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Applying the operatiorf-) x Ron both sides, we get
Rx (R—9)+RxSxR=R+«R—SxR.

Adding the last two relations and making the obvious caatielhs and rearrange-
ments, we get

R=(1+R) xS« (1+R).

Together with the trigonometric identity

sin(X —y) = sinxcosy — sinycosx
as well as the symmetry

S(x,y) =S(,x), RxYy) =R(y,%),
this yields (3.6.11). An application of L'Hdpital’s ruleigids then (3.6.12). Fi-
nally, by (3.6.10) and the definitions we obtain
7QW = (sa-sR) (10)+ [Rep 1) )
(s—1—s)R(X1)Q(t),
yielding (3.6.13). Equation (3.6.14) is obtained simiarl O

Exercise 3.6.3An alternative to the elementary calculus used in derivih§.5)
and (3.6.6), which is useful in obtaining higher order datixes of the determi-
nants, resolvents, and adjugants, is sketched in thisisgerc

(i) Let D be a domain (connected open subsef}'T With X a measure space, let
f(x,{) be a measurable function ¢fix D, depending analytically og for each
fixed x and satisfying the condition

sup [ [f(x,{)[du(x) <o
{eK

for all compact subsets C D. Prove that the function
F(O) = [ 10x0)du)

is analytic inD and that for each index=1,...,nand all compacK C D,

sup

9
JeK dZI

f(x@’du(x)@.

Further, applying the Cauchy theorem to turn the derivatite an integral, and
then Fubini’s theorem, prove the identity of functions atialin D:

%F(Z) - / (a%f(x,Z)) du(x).
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(ii) Using that the kernebis an entire function, extend the definitiongf H and
Ainthe setup of this section to analytic functions in the pagterds, ... ,tn,S1,...,S—1.
(i) View the signed measure as defining a family of distributiong (in the sense
of Schwartz) on the intervdl, b) depending on the parametéys...,t,, by the
formula

tit1

n—1
@.m =35 | e0odx

valid for any smooth functiog (x) on (a,b). Show thatdn /dt; is a distribution
satisfying

0
1= (8-1-9)% (3.6.16)
1
fori=1,...,n, and that the distributional derivativd /dx)n of n satisfies
d n n on
S h_S(s_—s & =_852 6.17
ax! i;(s S-1)& 2 3 (3.6.17)

(iv) Use (3.6.16) to justify (3.6.5) and step (i) to justify.6.6).

3.6.2 Derivation of the differential equations: proof of Téorem 3.6.1

To proceed farther we need means for differentia@{g) and P(x) both with
respect toc and with respect to the parameters. . ,t,. To this end we introduce
the further abbreviated notation

S09) = (g5 35 ) SO0 =0, ROxy) = ( 55+ 75 ) Rox)

and
(F¥' G)(x,y) = /F(x,z)G(z,y)dv’(z) = _i(s —s_1)F(xt)G(t,y),

which can be taken as the definitionwdf Below we persist for a while in writing
S instead of just automatically puttin§ = O everywhere in order to keep the
structure of the calculations clear. From the fundamedtattity (3.4.19)

RxS=R—-S=S«R,
we deduce, after integrating by parts, that
R*S+R+x'S+RxS=R -S.
Applying the operatiorR on both sides of the last equation we find that

Rx(R—9 +Rx(R-9 +RxSxR=R+xR—-S«*R.
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Adding the last two equations and then making the obviousel&tions (includ-
ing now the cancellatio8 = 0) we find that

R =R+'R.

Written out “in longhand” the last equation says that

(aax aay) R(xy) = Ii(s_S—l)R(thi)R(tiJ)- (3.6.18)

Now we can differentiat®(x) andP(x). We have from the last identity
/ I d
QN = 0+ [ ZRxy V()
, 0
= 1100~ [ LRI Wdvey)

+/ (/R(x,t)R(t,y)dv’(t)> f(y)dv(y).

Integrating by parts and then rearranging the terms, we get

Q0 = 00+ Ry W)+ [Rxy) fy)dv'(y)

+/ (/R(x,t)R(t,y)n(t)dt> f(y)dv(y)

- f’(x)+/R(x,y)f’(y)dv(y) (3.6.19)

+/R(x,t)( +/Rty )d"()
= P(X)+ i (S — S 1)R(X, 1) Q(t)
k=1

and similarly
n

P(9)=-QX)+ T (8 Sc1)ROtP(t).- (3.6.20)
k=1
Observing now that
7}
ot 0_tiQ(X)
and adding (3.6.19) and (3.6.13), we have

(9 n
a5 2 )+ Ek (5= S 1)R(t,5)Qt) (3.6.21)
! k=Tkei

Q) = Q)+

oy

X=tj
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Similarly by adding (3.6.20) and (3.6.14) we have
a n

9 p(t) = —Q(t; 5 1R, H)P(t). 3.6.22
ot (ti) = —Q( )+k:%<¢i(8k Sk-1)R(ti, t) P(t) ( )

It follows also via (3.6.12) and (3.6.13 that
RI4) = P(1) Q1) ~ Q)3 P(). 3623

(Note that the terms involvingQ(x)/dt;|x—, cancel out to yield the above equal-
ity.) Unraveling the definitions, this completes the prob{&6.4) and hence of
Theorem 3.6.1. O

3.6.3 Reduction to PainleaVV

In what follows, we complete the proof of Theorem 3.1.2. Weeta Theorem
3.6.1 the values = 2,51 = s. Our goal is to figure out the ordinary differential
equation we get by reducing still farther to the case —t/2 andt, =t/2. Recall
the sine kerne§in (3.6.1), set) = % = sl(_t/21/2) and writeA = A(S) for the
Fredholm determinant &with respect to the measuve Finally, setc = g (t) =
t% logA. We now prove the following.

Lemma 3.6.4With notation as above,
(to”")?2 +4(to’ — o) (td’ — o+ (0')?) =0, (3.6.24)

and, for each fixed €) is analytic in te C, with the following expansions as+ O:

A=1- (I—i)t+0(t4), a:—(l—i)t— (%)th— (%)3t3+0(t4). (3.6.25)

Proof We first consider the notation of Theorem 3.6.1 specialipat-t 2, writ-
ing A(ty,t2) for the Fredholm determinant there. (Thidsz A(ty, t2) ]y, — —t,—t/2.)
Recall that

Ro1 = (02p1 — tup2)/ (t2 —t1) = Rua.
From Theorem 3.6.1 specializedrie= 2 we have
% (0/0tz — 2/0dt) logA(ty, tp)
1

1
—5s(Pi+ i+ P+ d) + (- R,

(0q1/0t2 — 9qy1/dty) —P1/2+sRi202, (3.6.26)

((9 pl/dtz — dpl/dtl)

2
1
5 +01/2+ SRi2py.
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We now analyze symmetry. Temporarily we write
pr(ts,t2), Gu(ts,t2), Patytz), Oa(tyt2),
in order to emphasize the roles of the parameteasdt,. To begin with, since
Sx+c,y+c)=Sxy),
for any constant we have
A(ty,t2) = Aty +C,tp+€) = A(—tp, —11) ,. (3.6.27)

Further, we have (recall thd{x) = (sinx)//m)

1 ) (_1)nsn+1
t,t = f,t +
p1(t1,t2) (t2) Aty ) nZO n'
t t 1 X1 ... X
/t / s(; Xi oy )f’(Y)dxl...andy
.
i . o )n3n+1
= f( tl) t2,_tl Z
t2 t2 —t1 —x ... _Xn> !
S P e

_ , 1 ] (_1)nsn+1
= f (_tl)+A(—t2,—t1) ; o

! - -t x1 cee Xn ,
/ / < % f(y) dxg- - - dxady

= pa(—t2,—11). (3.6.28)

Similarly we have
o (t,t2) = —Ga(—t2, —t1). (3.6.29)

Now we are ready to reduce to the one-dimensional situatida.specialize as
follows. Put

p = p(t)=p(-t/2t/2) = p2(-t/2;t/2),
= q(t) =0u(-t/2,t/2) = —g(-t/2,t/2),
= r(t) =Rua(—-t/2,t/2) = —2pg/t, (3.6.30)

g = o(t):t%IogA(—t/Z,t/Z).
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Note that by the symmetry relations, writihépr differentiation with respect tg
we have

1
pit) = 5(0p1/0t = 9p1/0t1) 1= ty~1/2,

qi) = %(ach/atz—(7Q1/0"t1)|t2=—t1=t/27
while
o(t) = 5 (9/0t ~ 3/3t1) 1091, 1)y 12
From (3.6.26) and the above we get
o = -—st(p®+q?) +48q°p?
d = —p/2+2spd/t, (3.6.31)
P = +a/2-2spg/t,
while differentiatingo (twice) and using these relations gives

/

o = —s(p’+q),
to” = 4(pq—p). (3.6.32)

Using (3.6.32) together with the equation farfrom (3.6.31) to eliminate the
variablesp, g, we obtain finally

4t(0’)®+4t%(0')? — 40(0’)? + 40° + (t0”)* — 8taad’ = 0, (3.6.33)

or equivalently, we get (3.6.24). Note that the differelrgiguation is independent
of s.

Turning to the proof of the claimed analyticity Afand of (3.6.25), we write

t/2 t/2 k Sn
A = 1+Z / M —x,) dXJ
k' t/2 t/21,)= 1 Ti(%; —
— 14 lim z st 1/2 /1/2 k sin(tx — txJ)I_I o
n—e 12 1/2|J ° ntx —tx) |4

Each of the terms inside the limit in the last display is anrerftinction int, and
the convergence (in) is uniform due to the boundedness of the kernel and the
Hadamard inequality, see Lemma 3.4.2. The claimed anayttA in t follows.

We next explicitly compute a few terms of the expansioaf powers oft.
Indeed,

/t/Z /t/z /t/z k sin(x — XJ) dx; = O(t%) for k > 2
—t/2 t/2 t/2|J 1 (X — Xj) JEII ) -



3.6 ANALYSIS OF THE SINEKERNEL 133

and hence the part of (3.6.25) dealing withollows. With more computational
effort, which we omit, one verifies the other part of (3.6.25) O

Proof of Theorem 3.1.2 We use Lemma 3.6.4. Talee= 1 and set

ta(u)

F(t)zl_Azl_exp</ Tdu) fort > 0.
0

Then by (3.1.1) we have

1—F(t) = lim P[VNAN, ..., VNAY & (—t/2,t/2)],

N—oo

completing the proof of the theorem. O

Remark 3.6.5We emphasize that we have not yet proved that the funétioh
in Theorem 3.1.2 is a distribution function, that is, we hawé shown tightness
for the sequence of gaps around 0. From the expansion ao(tpfsee (3.1.2),
it follows immediately that lim_gF(t) = 0. To show thaf(t) — 1 ast — o
requires more work. One approach, that uses careful andriviad-analysis of
the resolvent equation, see [Wid94] for the first rigorousybrshows that in fact

o(t) ~ —t?/4 ast — +oo, (3.6.34)

implying that limy, F (t) = 1. An easier approach, which does not however yield
such precise information, proceeds from the CLT for deteamial processes de-
veloped in Section 4.2: indeed, it is straightforward tafyesee Exercise 4.2.40,
that for the determinantal process determined by the sineekethe expected
number of points in an interval of lengtharound 0 increases linearly i) while
the variance increases only logarithmicallyNn This is enough to show that with
A= [-t/2,t/2], the right side of (3.1.1) decreases to & as o, which implies
that lim F(t) = 1. In particular, it follows that the random variable givitige
width of the largest open interval centered at the origin imolr no eigenvalue of
VNXy appears is weakly convergentlds— « to a random variable with distri-
butionF.

We finally bring an alternative formulation of Theorem 3,1tRat is useful
in comparing with the limit results for the GOE and GSE. Retiaé¢ function
r=r(t) =Ry2(—t/2,t/2), see (3.6.30).

Lemma 3.6.6With F(-) as in Theorem 3.1.2, we have

1-F@) = exp(—:—_[—/ot(t—x)r(x)zdx>, (3.6.35)
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and furthermore the differential equation

t2((tr)” + (tr))? = 4(tr)2((tr)% + ((tr)")?) (3.6.36)
is satisfied with boundary conditions

(t) = 7—1T+%+Ouo(t2). (3.6.37)

The function (t) has a convergent expansion in powers of t valid for small t.

Proof Recallp andg from (3.6.30). We have

4p?q?
t

hence (3.6.36) holds and furthermore

d /o 2
= (T) — 12, (3.6.38)
as one verifies by straightforward calculations. From tredditity of A it follows

that it is possible to extend bottit) and o (t) to analytic functions defined in a
neighborhood 0f0, «) in the complex plane, and thus in particular both functions
have convergent expansions in powers adlid for smallt. It is clear that

g
—T=p2+q2— , tr=-2pqg, p'=q/2-2p%/t, d =—p/2+2pF/t,

: 1
Itl[g r(t) = = (3.6.39)

Thus (3.6.35 and 3.6.37) follow from (3.6.33, 3.6.38, 3% and (3.6.25). O

3.7 Edge-scaling: Proof of Theorem 3.1.4

Our goal in this section is to study the spacing of eigenvahtethe edge of the
spectrum. The main result is the proof of Theorem 3.1.4, wliccompleted in
subsection 3.7.1 (some technical estimates involvingtiepest descent method
are postponed to subsection 3.7.2). For the proof of The@.ém, we need the
following a priori estimate on the Airy kernel. Its proof is postponed to sutisec
3.7.3, where additional properties of the Airy function anedied.

Lemma 3.7.1For any % € R,

sup €Y|AKX,Y)| < . (3.7.1)
X,y>Xo
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3.7.1 Vague convergence of the rescaled largest eigenvgineof of Theorem
3.14

Again we letXy € jf,\fa be a random Hermitian matrix from the GUE with eigen-
valuesAN <--- < All. We now present the
Proof of Theorem 3.1.4As before put

KM (x y) = \/ﬁwn(X)Wn—l(Y) — Un-1(X)Un(y)

3

X—y
where thair(x) is the normalized oscillator wave-function. Define
1 X y
n _ n
AN (xy) = mK<>(2ﬁ+m,2\/ﬁ+m). (3.7.2)

In view of the basic estimate (3.4.9) in the theory of Fredhdeterminants and
the crude bound (3.7.1) for the Airy kernel we can by domidatenvergence
integrate to the limit on the right side of (3.1.5). By the bdy3.3.7) of Ledoux
type, if the limit

AN
lim lim P|N?/3 (—'—2) t,t') fori :1,...,N] 3.7.3
Jim_im. [ b-2) ¢ iet) (3.7.3)
exists then the limit (3.1.6) also exists and both limits egeal. Therefore we
can take the limit a§ — o« on the left side of (3.1.5) inside the limit as— « in
order to conclude (3.1.6). We thus concentrate in the sequefoving (3.1.5) for
t' < 0,

We begin by extending by analyticity the definition Kf" and A" to the
complex planeC. Our goal will be to prove the convergence AtV to A on
compact sets of, which will imply also the convergence of derivatives. Reca
that by part 4 of Lemma 3.2.7,

K(n) (X, y) — Wn (X) erm(Y))(: ;pn(y) erm(x) _ %wn(x) wn (y) ,

so that if we set
X
Wn(x) = n""yn(2y/n+ ~176)

then
Wn(X)Wh(y) =Wa(y)Wn(x) 1

(n) = —
A (Xay) - X_y 2n1/3

Wn(X)Wha(y).

The following lemma plays the role of Lemma 3.5.1 in the staflthe spacing in
the bulk. Its proof is rather technical and takes up most bésation 3.7.2.
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Lemma 3.7.2Fix a number C> 1. Then,

lim sup |Wh(u)—Ai(u)|=0. (3.7.4)

N=%yeC:|uj<c

Since the functionV, are entire, the convergence in Lemma 3.7.2 entails the
uniform convergence d#}, to Ai’ on compact subsets 6f Together with Lemma
3.4.5, this completes the proof of the theorem. O

Remark 3.7.3An analysis similar to, but more elaborate than, the prodftafo-

rem 3.1.4 shows that
2/3 ’\N ¢
lim PN — -2 <t

exists for each positive integérand real numbet. In other words, the suitably
rescaled/th largest eigenvalue converges vaguely and in fact weaRiynilar
statements can be made concerning the joint distributioth@frescaled tog
eigenvalues.

3.7.2 Steepest descent: proof of Lemma 3.7.2

In this subsection, we use the steepest descent method\e pemnma 3.7.2.
The steepest descent method is a general, more elaboratenvef the method
of Laplace discussed in subsection 3.5.1, which is inadeawben oscillatory
integrands are involved. Indeed, consider the evaluafiamtegrals of the form

| 100700

see (3.5.3), in the situation whefeandg are analytic functions and the integral
is a contour integral. The oscillatory nature Dfprevents the use of Laplace’s
method. Instead, the oscillatory integral is tamed by myigf the contour of
integration in such a way thdtcan be written along the contourelswith f real,
and the oscillations of at a neighborhood of the critical points bfare slow. In
practice, one needs to consider slightly more generalmessf this example, in
which g itself may depend (weakly) o

Proof of Lemma 3.7.2Throughout, we let

u u
x= 2024 —p =202 (14 5oz ) Wa(u) = 12n(x).

We assume throughout the proof tinds large enough so that| < C < n2/3.
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Let ¢ be a complex variable. By reinterpreting formula (3.5.7\abas a con-
tour integral we get the formula

e?‘ 2/4

The main effortin the proofis to modify the contour integrathe formula above
in such a way that the leading asymptotic order of all termiérintegrand match,
and then keep track of the behavior of the integrand nearitisat point. To carry
out this program, note that by Cauchy’s theorem, we may ceplae contour of
integration in (3.7.5) by any straight line in the complean® with slope of ab-
solute value greater than 1 oriented so that height abowe#heaxis is increasing
(the condition on the slope is to ensure that no contribwjmmears from the con-
tour nearo). Sinceld(x) > 0 under our assumptions concerningndn, we may
take the contour of integration in (3.7.5) to be the perpeuldr bisector of the
line segment joining to the origin, that is, replacé by (x/2)(1+ ¢), to obtain

Yn(x) = / et /207 (3.7.5)

e—x2/8(x/2)n+l

i(2m) ¥y ,iw( +Q)net 220z (3.7.6)

Un(x) =

Let logZ be the principal branch of the logarithm, i. e., the branch o the
interval (0,) and analytic in the complement of the inter¢aleo, 0], and set

F({)=log(1+{)+{%/2—. (3.7.7)

Note that the leading term in the integrand in (3.7.6) haddhm €""(¢), where
O(F) has a maximum along the contour of integratiorfat 0, and a Taylor
expansion starting witid3/3 in a neighborhood of that point (this explains the
particular scaling we took fax). Put

w= ()—2()2/3, U =cw’—n/w,

where to define fractional powers of complex numbers sucthatsfiguring in
the definition ofc we follow the rule thaf? = exp(alog{) whenever is in the
domain of our chosen branch of the logarithm. We remark that-a « we have
U — uandw ~ n/3, uniformly for |u| < C. Now rearrange (3.7.6) to the form
(27-[)1/4n1/12(x/2)n+1/367x2/8

Wh(u) = N In(u), (3.7.8)

where
joo

n(U) = — [ we®F(@)-vwlbyll)qz (3.7.9)

27
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To prove (3.7.4) it is enough to prove that

lim sup|ln(u) — Ai(u)| =0, (3.7.10)

N=%y<C

because we have

1/12 n+1/3,-x2/8 1/3 2
log L (x/2)" e _ (n+%>log(1+ u )_n u u

o 22 1/4 2n2/3 2 8nl/3

and hence

lim sup
N=y|<C

(2n)1/4n1/12(x /2)n+1/3e—x2/8 - ’

1| =0,
NGl

by Stirling’s approximation (2.5.12) and some calculus.

To prove (3.7.10), we proceed by a saddle point analysistheanritical point
{ =00of O(F)({). The goal is to replace complex integration with real inéegr
tion. This is achieved by making a change of contour of irdgn so thafF is
real along that contour. Ideally, we seek a contour so ttabhtaximum off is
achieved at a unique point along the contour. We proceeddocsfich a contour
now, noting that since the maximum@fF)(¢) along the imaginary axis is 0 and
is achieved af = 0, we may seek contours that pass through 0 and suck tisat
strictly negative at all other points of the contour.

Turning to the actual construction, consider the wedggetiglosed set
S={re'|r € [0,%0),6 € [1/3,7/2]}

in the complex plane with “corner” at the origin. For egeh> 0 let S, be the
intersection ofS with the closed disk of radiup centered at the origin and let
JS, be the boundary o&,. For eacht > 0 and all sufficiently larg@, the curve
F(0S,) winds exactly once about the point. Since, by the argument princi-
ple of complex analysis, the winding number equals the wiffee between the
number of zeros and the number of poles of the funcki¢rn) +t in the domain

S, and the functiorf(-) +t does not possess poles there, it follows that there
exists a unique solutiop(t) € S of the equatior=({) = —t (see Figure 3.7.1).
Clearly y(0) = 0 is the unique solution of the equatiéi{) = 0 in S. We have
the following.

Lemma 3.7.4The functiory : [0,) — S has the following properties.
(i) Mo [y()] = oo,
(i) y(t) is continuous for & 0 and real analytic for t> 0.
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Fig. 3.7.1. The contoudS; (solid), its imageF (03) (dashed), and the curvyg-) (dash
and dots).

(i)
yt) = O(tY?) astf o,
yt) = Ot ? astf o,
y(t) = €em/3333 1 ot#3) ast] 0,
yt) = &%332% 23, 0(1Y% ast]O.

Proof (i) follows by noting that- restricted tdSis proper, that is for any sequence
Zy € Swith |z,| — 0 asn — oo, it holds that|F (z,)| — . The real analyticity
claim in (ii) follows from the implicit function theorem.i{) follows from a direct
computation, and together wiff{0) = 0 implies the continuity claim in (ii). O

From Lemma 3.7.4 we obtain the formula
| _i ® Wk 1 — o (147 — o d
n(U) =5 | we (1+y(®) My (1) — (1+y(t) "My (1) ) dt,
0

by deforming the contourico — i in (3.7.9) toy — y. After replacing by t3/3n
in the integral above we obtain the formula

In(U) = % /Ow(Ana,u) _ Ba(t,u)dt, (3.7.11)
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where
w33 B\ Y 13 12
aea = wen(-50) (1v(5)) v (5) 5
w3 B\ 13 12
Bn(t,u) = wexp(——Sn)<1+y<ﬁ)> V(%)F'
Put
t3 -
Alt,u) = exp(—g—e"‘/3tu+ni/3>,
3 .
B(t,u) = exp(—%—e‘"‘/3tu—m/3>.

By modifying the contour of integration in the definition dfet Airy function
Ai(x), see (3.7.16), we have

Ail(U) = i./ (A(t,u) — B(t, u))dt. (3.7.12)
2 Jo
A calculus exercise reveals that for any positive constant
lim sup sup Aa(t,u) —1‘ = (3.7.13)
=2 g<t<ty uf<c | At U)

for eachty > 0 and clearly the analogous limit formula linkiri(t,u) to B(t,u)
holds also. There exist positive constatit@ndc, such that

llog(1+ y(t)| < cit™’3, |y (1)] < comax(t 22, t71/2)
for allt > 0. There exists a positive constamtsuch that
O(w®) >n/2, | <2n¥3, |u|<2c
for all n > ng and|u| < c. Also there exists a positive constagtsuch that
eoat? 5 11/6
fort > 1. Consequently there exist positive constagtandcs such that
| e (14 y(8) "y (1)] < cant/Fe 2o 213,

hence
[An(t, u)] < cagt/0+eS (3.7.14)

for all n>ngp, t > 0 and|u|] < c. Clearly we have the same majorization for
|Bn(t,u)|. Integral formula (3.7.12), uniformity of convergence?d.3) and ma-
jorization (3.7.14) together are enough to finish the prddifwit formula (3.7.10)
and hence of limit formula (3.7.4). O
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Exercise 3.7.55et
1
S (xy) = T

Apply the steepest descent method to show that/if/n —n_. ¢ with |c| < 2,
then S(,z:) (x,y) converges to the rescaled sine kerne[ggio) (x — y)]/(TT(X—)),
uniformly in x,y in compacts, wherg(c) = o (c) = v4—c?/2 ando|(-) is the
semi-circle density, see (2.1.3).

Hint: use (3.7.6) and note the different behavior of the fundiat O wherc < 2.

Zo+X/VN,zn+y/ V).

3.7.3 Properties of the Airy functions and proof of Lemma 317

Throughout this subsection, we will consider various cargan the complex
plane. We introduce the following convenient notation:domplex numbera, b,

we let[a, b] denote the contour joiningto b along the segment connecting them,
i.e. the contouft — (1—t)a+tb): [0,1] — C. We also write[a, co) for the ray
emanating fronain the directiorc, that is the contouft — a+ct) : [0,00) — C,

and write(cw,a] = —[a,c). With this notation, and performing the change of
variables{ — —w, we can rewrite (3.1.3) as
ALX) = — gW-1?/3gyy, (3.7.15)

T 270 Je21/30 0]+ (0,6271/30)

Note that the rapid decay of the integrand in (3.7.15) aldmgindicated con-
tour ensures that Ax) is well defined and depends holomorphically xn By
parametrizing the contour appearing in (3.7.15) in evidiasition, we also obtain
the formula

A (X (3.7.16)

):
1 t3 oo 7O _m T
ﬁ/o exp(—g) (exp(—xte? + §> —exp(—xte 3 — 3)) dt.

In the statement of the next lemma, we use the notatibs to mean thak goes
to o along the real axis. Recall also the definition of Euler’s Ganfunction, see
(2.5.5):T(s) = Jo e x5 1dx, for swith positive real part.

Lemma 3.7.6(a) For any integerv > 0, the derivativeAi (V) (x) satisfies

AV (x) >0, asx] . (3.7.17)
(b) The functionAi (x) is a solution of(3.1.4)that satisfies
1 1
Ai(0) Ai’(0) = (3.7.18)

T 323r(2/3)° T38r(1/3)
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(c) Ai(x) > 0andAi’(x) < Oforallx > 0.

Proof Forx > 0 real,c € C satisfyingc® = 1 andk > 0 integer, define

ek = | )m}(ewx““’a/3dw: ok / texot-t2/3qt (3.7.19)
0,Co0 0

As x 1 « we havel (x,e=2""/3 k) — 0 by dominated convergence. This proves
(3.7.17). Next, (3.7.18) follows from (3.7.19) and the digfom of I'(-). We next
prove that A{x) > 0 for x > 0. Assume otherwise that for somg> 0 one has
Ai(X9) < 0. By (3.7.29), if Aixp) = 0 then Al(xg) # 0. Thus, for somey > 0,
Ai(x1) < 0. Since A{0) = 0 and Aix) — 0 asx T «, Ai(-) possesses a global
minimum at some; € (0,), and Al’(x;) > 0, contradicting the Airy differential
equation. O

We next evaluate the asymptotics of the Airy functions amibtfi For two
functionsf, g, we write f ~ gasx T w if lim y f(X)/9(X) = 1

Lemma 3.7.7For x | « we have the following asymptotic formulas:
Ai(X) ~ T Y2 Y4g=52 . (3.7.20)
A (X) ~ — T Y21/ 435 1o, (3.7.21)

Proof Making the substitutiorw — x1/2(u— 1) and deforming the contour of
integration in (3.7.15), we obtain

2mixY/ 42?13 i (x x3/4/,e?@/2 —/3)4 (3.7.22)
where
C' = (6723w, —iv/3| + [-iV3,iV3] + [iV/3,6?/30)) =: C| +C, +C}.

Since the infimum of the real part of — u®/3 on the ray<C] andCj is strictly
negative, the contribution of the integral o@randCj to the right side of (3.7.22)
vanishes ag | . The remaining integral (oved;) gives

V34 o o
i/ g it 3/4/3dt—>i/ edt=iym asx]o,

—/33/4
by dominated convergence. This completes the proof 0ofZ8)7 A similar proof
gives (3.7.21). Further details are omitted. O

Proof of Lemma 3.7.1Fix xg € R. By (3.7.20), (3.7.21), and the Airy differential
equation (3.1.4), there exists a positive constafossibly depending oxy) such
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that
max(| Ai (x)[, |AI'(x)],|Ai" (x)]) < Ce™
for all realx > xg and hence fox,y > Xo,
x—y| > 1= |A(xy)| < 2C% .

But by the variant (3.5.5) of Taylor’s theorem noted abovealge have, fok,y >
XOI
Xx—y| < 1= |A(XY)| < 2C%?e XY,

Thus the lemma is proved. O

Exercise 3.7.8how that/y’ Ai (x)dx=1/3.
Hint: for p > 0, lety, denote the patlt — pe?™) : [5/6,7/6] — C, and define
the contoulC, = (€730, pe?™/3) 4y, + [pe~2"/3 €27 /300). Show that

/ Ai (x)dx = = wle W /3w,
0 2mi Jc,
and takep — 0 to conclude.

Exercise 3.7.9Nrite x | —oo if x — —oo0 along the real axis. Prove the asymptotics
sin(3|x¥2+ 7

A~ = s

asx | —oo (3.7.23)

and
 cog 32+ )X
T

Conclude that Lemma 3.7.1 can be strengthened to the stateme

Ai’(X) ~

asx | —oo, (3.7.24)

sup€Y|A(X,Y)| < . (3.7.25)
X, yeR

Exercise 3.7.10rhe proof of Lemma 3.7.7 as well as the asymptotics in Exercis
3.7.17 are based on finding an appropriate explicit contbuntegration. An al-
ternative to this approach utilizes the steepest descehiomieProvide the details
of the proof of (3.7.20), using the following steps: (a) Regihg{ by x/2Z in
(3.1.3), deduce the integral representationxfor0,

x1/2

_/Cef/zwdz H(Q) = 3/3—¢. (3.7.26)

Ai(x) = o

(b) Modify the contou€ to another (implicitly defined) conto’, so thatJ(H(C'))
is constant, and the deformed cont@if'snags” the critical poinf = 1 of H, so
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that the imaged (C') runs on the real axis frome to —2/3 and back.
Hint: Consider the closed sets

S={1+rer>0, 6 [n/3,m/2}

and the intersection d8 with the closed disk of radiup about 1, and apply a
reasoning similar to the proof of Lemma 3.7.2 to find a cwte such that

e 2/2/31/2

Ai(x) = /Owe‘xe'/zt(y/(t)—y(t))dt forx>0.  (3.7.27)

27

Identify the asymptotics of(t) and its derivative as— 0 andt — oo.
c) Apply Laplace’s method, Lemma D.9, to obtain (3.7.20).

Exercise 3.7.11Another solution of (3.1.4), denoted®), is obtained by replac-
ing the contour in (3.7.15) with the conto(e2"/3c0, 0] + [0, 00) + (€2™/30, 0] 4
[0,00), that is

_1 /
27 (2130 0]+ 200, 1 (€271/300,0)
Show that Bjx) satisfies (3.1.4) with the boundary conditioj@(0) Bi’(0)] =

Bi(x) W—?/3gy. (3.7.28)

1 31/6
[W(Z/C%) r(1/3)} . Show that for an) € R,
Aix) Ai'(x) ] 1
det{ Bi(x) Bi'(x) |~ 70 (3.7.29)

concluding that Ai and Bi are linearly independent solusionrShow also that
Bi(x) > 0 and Bi(x) > 0 for all x > 0. Finally, repeat the analysis in Lemma
3.7.7, using the substitutiom— x¥/2(u+ 1) and the (undeformed!) contour

C= (_e—2ni/3007 _1] + [_1’ 1] + [1700) + e—2ni/3007 _1] + [_L 1] + [1700) ’

and conclude that
Bi(x) ~ T /2% 1/4e? (3.7.30)

) _ 2.3/2
Bi (x) ~ — 1T /2143

(3.7.31)
3.8 Analysis of the Tracy-Widom distribution and proof of Theorem 3.1.5

We will study the Fredholm determinant

. l (_1)k 0 ) X oo Xk
A:A(t).:1+ngft o A( Xi N )njkzldxj
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whereA(x,y) is the Airy kernel and as before we write

X1 .. Xk k
A = detA(x,yj).
<y1 yk) ij=1 (4,¥3)

We are going to explain whi(t) is a distribution function, which, together with

Gl
Further, we are going to link(t) to the Painlevé Il differential equation.

(n)
Theorem 3.1.4, will complete our proof of weak convergerfog?G? (A”— — 2).

We begin by putting the study of the Tracy-Widom distribatif(t) into a
framework compatible with the general theory of Fredholrtedminants devel-
oped in Section 3.4. Let denote the measure on the real line with density
dv/dx= 14 ) (x) with respect to the Lebesgue measure (althouglepends on
t, we suppress this dependence from the notation). We hare the

A:1+§1(—k!1)k/,,./A< 2 il;)l_ldV(Xj).

Put

B o=y X X o X _
HOX) =AY + 3 S / /A(y . &>rpwmy

In view of the basic estimate (3.4.9) and the crude bound XBfor the Airy
kernel, we must havA(t) — 1 ast T . Similarly we have

supsupe€Y[H(x,y)| < (3.8.1)
t>to x,yeR
for each reaty and
lim sup€Y[H(x,y) — A(x,y)| = 0. (3.8.2)
ooy yeR

Note that becaust can be extended to a not-identically-vanishing entiredital
function oft, it follows thatA vanishes only for isolated real valuestoPut

R(x.y) =H(x,y)/A,

provided of course thak # 0; a similar proviso applies to each of the following
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definitions since each involvé¥x,y). Put

QW = A+ [REYAIY)VE). (3.8.3)
PO = A0+ [ RO AT)v(Y),
g = QU =P, u= [ QXA (dv(x),

v o= /Q(X)Ai’(x)dv(x):/P(X)Ai(x)dv(x),

the last equality by symmetii(x,y) = R(y,X). Convergence of all these integrals
is easy to check. Note that each of the quantitjgs, u andv tends to 0 ag 7 .
More precise information is also available. For examplenfi(3.8.1) and (3.8.2)
it follows that

a(x)/ Al (X) —xe 1, (3.8.4)

because fox large, (3.7.20) implies that for some const@rnihdependent oX,

/m R(x,y) Ai (y)dy < C/oo e X YAi(y)dy < CAi(x)e .

3.8.1 The first standard moves of the game

We follow the trail blazed in the discussion of the sine-lgin Section 3.6. The
first few steps we can get through quickly by analogy. We have

0
ElogA = R(,1), (3.8.5)
%R(x,y) = —RXDR(,y). (3.8.6)

As before we have a relation

Q(X)P(y) — Q(y)P(x)

R(x,y) = Xy =R(Y,Xx) (3.8.7)
and hence by L'Hdpital's Rule we have
R(x,X) = Q' (X)P(X) — Q(X)P'(X) . (3.8.8)
We have the differentiation formulas
JQ0 = —RKDQ() = ~QUR(LX), (38.9)
7}

5P = —ROUP() = —POREX). (3.8.10)
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Here the Airy function and its derivative are playing theesopreviously played

by sine and cosine, but otherwise to this point our calomtais running just as

before. Actually the calculation to this point is simplanse we are focusing on a
single interval of integration rather than on several.

3.8.2 The wrinkle in the carpet

As before we introduce the abbreviated notation

ROy = ( 5+ 0 ) A0k Rixy) = (554 55 )R,

(F«' G)(x,y) = /F(x,z)G(z,y)dv’(z) =F(x,t)G(t,y).

Here’s the wrinkle in the carpet that changes the game intigadrivay: A’ does
not vanish identically. Instead we have

A(x,y) = —Ai(x)Ai(y), (3.8.11)

which is an immediate consequence of the Airy differentiplaiony” — xy = 0.
Calculating as before but this tirmet putting A’ to zero we find that

R =R+ R+A +RxA +AxR+RxA' xR

Written out “in longhand” the last equation says that

(aix ; gy) RxY) —=RXDREY) -QXQY).  (3812)
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The wrinkle “propagates” to produce the extra term on thetrigve now have

QW = A+ [ (iR Ay

A0~ [ (5 R0 ) Aivy)
R [ RLY)A(Y)dv(y) —Qu

AL+ [ RY)AI()dv(y) + [ Rxy)AiY)dv'(y)
R [ RLY)A(Y)dv(y) - Qu

A+ [ ROy A (y)dv(y)

FROGO(A(0) + [ RELY)ATY)dv(Y) - Qu

= PX)+RX1)Q(t) — Q(x)u. (3.8.13)
Similar manipulations yield
P'(X) = xQ(X) + R(X,t)P(t) + P(X)u — 2Q(X)V. (3.8.14)

This is more or less in analogy with the sine-kernel case tignvrinkle continues
to propagate, producing the extra terms involving the gtiasti andv.

3.8.3 Linkage to Painleg I

The derivatives of the quantitigs g, u andv with respect td we denote simply
by a prime. We calculate these derivatives as follows. Qleskrat

I 0 / /_i /
A= 500 +QWM). p= 2P| P,

By adding (3.8.9) to (3.8.13) and (3.8.10) to (3.8.14) wechav

d=p-qu, p =tg+pu—2qv. (3.8.15)
It follows also via (3.8.8) that
% logA(t) = R(t,t) = o p— p'q = p? —to? — 2pqu+ 2G2V. (3.8.16)
We have

u / (%Q(x)) A (x)dv (x) + / Q) Ai (x)d (Z_‘t’) %)

—Q(t) / R(t, %) Ai (X)dV (x) — Q(t) Ai (t) = —c?.
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v o= [ (5000) Areavey + [ Qooaia (5 ) 9
= —Q() [ REX)AT()dv(x) - QA (t) = —pa

We have a first integral
w—2v=q?

at least it is clear that thiederivative here vanishes, but then the constant of inte-
gration has to be 0 because all the functions here tend td 0 @s Finally

/!

q = (p—qu=p —qu—qu =tg+pu—2qv—(p—quu—q(—q’)
= tq+ pu—2qv— pu+qui+q° =tq+20°, (3.8.17)
which is Painlevé II; thatj(t) ~ Ai(t) ast — « was already proved in (3.8.4).

It remains to prove that the functidf defined in (3.1.6) is a distribution func-
tion. By adding equations (3.8.12) and (3.8.6) we get

g 9 0
(d_x + ay + E) R(x,y) = —Q(X)Q(Y)- (3.8.18)
By evaluating both sides at=t = y and also using (3.8.5) we get
a—2|o A=—f (3.8.19)
F gA=—q . .8.

Let us now writeq(t) andA(t) to emphasize the-dependence. In view of the
rapid decay of\(t) — 1, (logA(t))’ andq(t) ast T o we must have

At) = exp(—/tw(x—t)q(x)zdx) , (3.8.20)

whence the conclusion th&b(t) = A(t) satisfiesk () = 1 and, because of the
factor (x—t) in (3.8.20) and the fact thaf(-) does not identically vanish, also
F>(—) = 0. In other wordsk; is a distribution function. Together with (3.8.17)
and Theorem 3.1.4, this completes the proof of Theorem 3.1.5 O

Remark 3.8.1The Painleveé Il equation’ =tq+2g° has been studied extensively.
The following facts, taken from [HaM80], are particularglevant: any solution
of Painleveé Il that satisfieg(t) —t_.. O satisfies also that &s— o, q(t) ~ a Ai (t)

for somea € R, and for each fixedr, such a solution exists and is unique. For
a =1, which is the case of interest to us, see (3.1.8), one thisn ge

qt) ~/—t/2, t— —oo. (3.8.21)

We defer to the bibliographical notes additional remarks.
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Remark 3.8.2The analysis in this section would have proceeded verbatinei
Airy kernel A(x,y) were replaced bgA(x,y) for anys e (0, 1), the only difference
being that the boundary condition for (3.1.8) would be repthbyq(t) ~ sAi(t)
ast — oo. On the other hand, by Corollary 4.2.23 below, the kel (x,y)
replaceA" (x,y) if one erases each eigenvalue of the GUE with probatsility
particular, one concludes that for akixed,

im limsupP(NY6(AN , —2v/N) <t) =0. (3.8.22)

|
=% N

This observation will be useful in the proof of Theorem 3.1.7

Exercise 3.8.3Using (3.7.20), (3.8.4), and (3.8.21), deduce from theasgnta-
tion (3.1.7) ofF, that

.1 4

Jmmbg[l— R()] = 3

.1 1
tlet§|095(t) = I

Note the different decay rate of the upper and lower tailfiefdistribution of the
(rescaled) largest eigenvalue.

3.9 Limiting behavior of the GOE and the GSE

We prove Theorems 3.1.6 and 3.1.7 in this section, usingaible tieveloped in
Sections 3.4, 3.6 and 3.7, along with some new tools, naf&ffians and matrix
kernels. The multiplicativity of Fredholm determinantsesTheorem 3.4.10, also
plays a key role.

3.9.1 Pfaffians and gap probabilities

We begin our analysis of the limiting behavior of the GOE ar®@E®dy proving a
series of integration identities involving Pfaffians; thttér are needed to handle
the novel algebraic situations created by the fac(s)|? with B € {1,4} ap-
pearing in the joint distribution of eigenvalues in the GOifl & SE, respectively.
Then, with Remark 3.4.4 in mind, we use the Pfaffian integratdentities to
obtain determinant formulas for squared gap probabilitiédee GOE and GSE.
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Pfaffian integration formulas

Recall that Mat,,(C) denotes the space kiby-¢ matrices with complex entries,
with Maty(C) = Maty«n(C) andl, € Mat,(C) denoting the identity matrix. Let

0 1
-1 0

(&
=}

Il
m
<
8
=
a

be the block-diagonal matrix consisting micopies of{ 1 } strung along

-1 0
the diagonal. Given a family of matrices

{X(i,]) € Mat,(C):i=1,...,mandj =1,...,n},

let
X(1,1) ... X(1,n)
X(@i,J)|mn= € Matim.n(C).
X(m1) ... X(mn)
0 1

For exampleJn = & j [ ] Inn € Mat(C).

-1 0
Next, recall a basic definition.

Definition 3.9.1 (Pfaffians)Let X € Maty,(C) be antisymmetric, that is" =
—X, Xji = —Xj. ThePfaffianof X is defined by the formula

1 n
S Uezﬂn(—l)a il:lXU(Zi—l),a(Zi)a

where(—1)? denotes the sign of the permutation

PX =

For example, P¥, = 1, which explains the normalizatiq#n—!.

We collect without proof some standard facts related tofiafad.

Theorem 3.9.2Let X € Maty,(C) be antisymmetric. The following hold:

(i) PA(YTXY) = (PfX) (detY) for every Y& Matpn(C).

(i) (PfX)? = detX.

(i) PfX = 320 1(—1)*1X; ,nPFX 127, where X'-2"} is the submatrix obtained
by striking the ith row, ith columr(2n)th row and(2n)th column.
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We next give a general integration identity involving Pfafi$, which is the
analogue fo € {1,4} of Lemma 3.2.3.

Proposition 3.9.3Let f;,..., fon and @, ...,02, be C-valued measurable func-
tions on the real line. Assume that all productgjfare integrable. For x R,
put

F(X) = [fi(X) 6i(X)]|2n1 € Matonx2(C).

Then, for all measurable sets@AR,

Pf/F )3iF(x)Td / /det[F X;) |1n|_ld>q (3.9.1)

Here and throughout the discussion of Pfaffian integratieniities, measurable
means Lebesgue measurable.

Proof Expand the right side of (3.9.1) as

D Y T R A L B S et} COBCLE

The (i, j) entry of the matrix appearing on the left side of (3.9.1) canel-
fix)  @i(x)
fi(x) 9i(®)
pansion (3.9.2) matches term for term the analogous expaonsithe left side of
(3.9.1) according to the definition of the Pfaffian. O

pressed andet{ } dx. Therefore, by Fubini's theorem, the ex-

To evaluate gap probabilities in the GOE and GSE, we will pee Proposi-
tion 3.9.3 in several different ways, varying béttandn. To begin the evaluation,
let ¢ denote a function on the real line of the forhiix) = eC*+C2x+C2 where
C1 < 0,C; andCs are real constants, and lét, denote the span ovér of the set
of functions{x‘—lcp(x)}{‘;ol. Later we will make use of specially chosen bases for
O\ consisting of suitably modified oscillator wavefunctiobst initially these are
not needed. Recall th&i(x) = [11<j<j<n(Xj — %) for x= (Xg,...,%n) € R".

The application of (3.9.1) to the GSE is the following.

Proposition 3.9.4Let { fi }2", be any family of elements 6b,. For x € R, put
F(x)=] fi'(X) fi (x) ]|2n7l € Matony2(C).

Then, for all measurable sets@AR,

Pf/AF(x)JlF(x)de:C/A---/AA(X)“!jqﬁ()(i)zd)q, (3.9.3)
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where c= c({f;}) is a complex number depending only on the farffly, not on
A. Further, c£ 0if and only if { f; } 7, Is a basis forg, overC.

Proof By Theorem 3.9.2(i), we may assume without loss of gengtlét f; (x) =
x~1¢(x), and it suffices to show that (3.9.3) holds witk 0. By identity (3.9.1)
and the confluent alternant identity (2.5.30), identityo(3) does indeed hold for
suitable nonzero independent of. O

The corresponding result for the GOE uses indefinite integrffunctions. To
streamline the handling of the latter, we introduce theofeihg notation, which
is used throughout Section 3.9. For each integrable rdakddunctionf on the
real line we define a continuous functief by the formula

/13|gn(x y)f / f( dy+2/f
/0 f(y dy——/S|gn(y (3.9.4)

where sigiix) = 1.0 — 1x<0, and we write[ f (x)dx = [, f(x)dx to abbreviate
notation. Note thate f)'(x) = f(x) almost everywhere, i. eg,inverts differentia-
tion. Note also that the operati@reverses parity and commutes with translation.

The application of (3.9.1) to the GOE is the following.

(ef)(®)

Proposition 3.9.5Let {fj}]' ; be any family of elements &f,. Let a# 0 be a
complex constant. For each measurable set R and xe R, put

FA) =] fiX) &(Lafi)(X) ][n1 € Matyu2(C).

If nis even, let K(x) = FA(X) € Maty.»(C). Otherwise, if n is odd, letAfx) €
Maty,,(C) be the result of adjoining the rojv0 a | at the bottom of E(x).
Then, for all measurable sets@AR,

Pf/FA )31FA(x) Tdx = c/ /|A ||_l¢ x)dx,  (3.9.5)

where c= c({fi},a) is a complex number depending only on the ddta},a),
not on A. Further, £ 0 if and only if{ i} , is a basis for&,, overC.

Proof By Theorem 3.9.2(i), we may assume without loss of gengrdét f; (X) =
x~1¢(x), and it suffices to show that (3.9.5) holds witk 0 independent oA.
ForxeR, letf(x) = fi(X) ][n1 € Mathk1(C). LetAl be the subset of" C R"
consisting oh-tuples in strictly increasing order. Then, using the syrmynef the
integrand of (3.9.5) and the Vandermonde determinantiigeahe can verify that
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the integralfy; deff (yj)]|1n [17dyi equals the right side of (3.9.5) with= 1/n!.
Putr = [n/2|. Consider, foz € R", then x n matrix

WYa(2)
B [ [e@af)Pallne [ fi(z) e(@af)Z™ Jlns if nis odd,
[ fi(z) e(@af)[2** llns if niseven,

wherez 1 = », andh[} = h(t) — h(s). By integrating every other variable, we
obtain a relation

r n
detWa(z d:/def- dyi.
 detea@ [1dz = [, detfy)lsn] ] 0y
Consider, forze R, then x n matrix

[ [[Fa(z)l|rr afaf(x)dX if nis odd,
Pal2)= { [FAA(ZJJ)H; g if nis even.

Sinceda(z) arises froma(z) by evident column operations, dB(z) = ¢, detWa(2)
for some nonzero complex constantindependent oA andz Because the func-
tion detba(z) of ze R" is symmetric,

r r

detda(2) I_l detd)A( 2) I_l dz.
AL 1 1
If nis even, we conclude the proof by using the Pfaffian integndtentity (3.9.1)
to verify that the right side above equals the left side 8 .&).

Assume for the rest of the proof thats odd. Fori =1,...,n, let Ff’i (x) be the
result of striking theth row fromF£(x) and similarly, let®) (z) be the result of
striking theith row and last column fromP(z). Then we have expansions

Pf{ JAFE(X)I1FE)Tdx  af, f(x)dx ]
—a [y f(x)Tdx 0

:a_i(—l)”l( /A fi(x)dx) (Pf /A FAP“i(x)JlFfi(x)de) ,

1=
n

detda(z) = aii(—l)i*“( /A f (x)dx) detdh (2),

obtained in the first case by Theorem 3.9.2(iii), and in trmoed by expanding
the determinant by minors of the last column. Finally, bylgimg (3.9.1) term
by term to the latter expansion, and comparing the resuléngs to those of the
former expansion, one verifies thf:_;thr detdPa(z)[11dz equals the left side of
(3.9.5). This concludes the proof in the remaining case dfrod O
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The next lemma gives further information about the strietnirthe antisym-
metric matrix [, Fa(x)J1Fa(x) T dx appearing in Proposition 3.9.5. Let = v/2l,

V2, 0
0 1/\/5 ] for oddn.

for evenn, andn, = [

Lemma 3.9.6In the setup of Proposition 3.9.5, for all measurable sets R,
[ FaGO3FAGOT dx= [ Fr(31F (0 dx— | 1o (031Fa00 M. (3..6)

Proof Let L; j (resp.,R; j) denote thei, j) entry of the matrix on the left (resp.,
right). To abbreviate notation we writef,g) = [ f(X)g(x)dx. Fori,j <n+1,
using antisymmetry of the kernébign(x— y), we have

Ly = (3% €(LaT) — (1T} £(1af) = (1af £(1aT)
= (fi,efj) — (Lacfi, efj) — (1afi,e(1act))

1
= <fi,€fj>—<1Acfi,£fj>+<£(1Afi),1Acfj> = ERj,j,

which concludes the proof in the case of everin the case of odd it remains
only to considerthe cases m&y) =n+1. Ifi=j=n+1,then, ;=0=R ;. If
i<j=n+1,thenlij=a(la fi)=Rj. If j <i=n+1,thenl; ; = —a(la, fj) =
Ri.j. The proofis complete. O

2

Determinant formulas for squared gap probabilities

By making careful choices for the functiorisin Propositions 3.9.4 and 3.9.5,
and applying Theorems 3.9.2(ii) and 2.5.2, we are going taiokdeterminant
formulas for squared gap probabilities. Toward that endfi¥ed o > 0 and real
&, let

M) = tho () = 0Y2Yn(07x+8), (3.9.7)
andg@_1 = 0 for convenience. The functiongg are shifted and scaled versions of
the oscillator wavefunctions, see Definition 3.2.1.

We are ready to state the main results for gap probabiliidss GSE and GOE.
These should be compared with Lemma 3.2.4 and Remark 3.4 réBult for
the GSE is as follows.

Proposition 3.9.7For x € R, put

1 ®i-1(X)  @_1(X)

H(X):o—\/i E@i-1(X)  @i-1(X)

|1.n € Matz,on(C) (3.9.8)
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andH (x) = J1H(x)J, L. Then, for all measurable sets@AR,

~ o [ A4 2dx \ 2
det(IZn—/AH(x)TH(x)dx> = (fAf---fAA(A;))‘(‘)ﬂli;hlqla)(?é);z)d:x) . (3.9.9)

To prove the proposition we will interprét as the transpose of a matrix of the
form F appearing in Proposition 3.9.4, which is possible becatseerts differ-
entiation.

The result for the GOE is as follows.

Proposition 3.9.8Letr= |n/2|. Letd = nif nis even, and otherwise, if n is odd,
letn’ =n+1. Let/ € {1,2} have the same parity as n. Foe®, and measurable
sets AC R, put

e _ l (PZi—é(X) %i—é(x) :| M
GA(X) - o |: s(lAq)Zi—Z)(X) s(lA%i_[)(X) |1,r S at2><2l‘((c)'
If nis even, put G(x) = G3(X) € Mat,,y(C). Otherwise, if n is odd, let gx) €
Mat,, v (C) be obtained from §&(x) by adjoining the block
550 sn]
€(1ah-1)(¥) 1/{¢h-1,1)

on the far right. Also puGa(x) = JlGA(x)J;}Z. Then, for all measurable sets
ACR,

G (0T e { Jae e Spe 1B My (X)) 2
det(ln [ Gzx)"Ga (x)dx>_< T P )(3.9 .

To prove the proposition we will interpr&a as a matrix of the forrrIFAT Nn ap-
pearing on the right side of (3.9.6) in Lemma 3.9.6.

Before commencing the proofs we record a series of elemeptaperties of
the functionsg following immediately from Lemmas 3.2.5 and 3.2.7. These
properties will be useful throughout Section 3.9. As abave,write (f,g) =
JT(X)g(x)dx. Letk,Z,n> 0 be integers. Let, = 0, ; ¢ denote the span of the
set{@}"3 overC.

Lemma 3.9.9The following hold:

1/2 oy 1A (02802

w(Xx) = o’/°(2m) % a (3.9.11)
supe™ |gh(x)| < o for every real constany, (3.9.12)
X

= &(dh) = (em)’, (3.9.13)
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<(H<7(P€> = O-Zékﬁ = —<5(ﬂ<7(l’15,>a (3914)

(@, @) = 0 and (g, @) =0 fork+/¢even, (3.9.15)

{@,1) = 0 fornodd, (3.9.16)

o, = — n2+l(Pn+1+ ?%—1, (3.9.17)

(¢n,1) > 0 forneven (3.9.18)

E® € Onh_q fornodd, (3.9.19)

(0 X+ M) = VN+1gha(x) + Vg (%), (3.9.20)
n-1 —

5 fn(xg(y) _ %(XWA(y))(_ zJA(X)%(y) _ "’“(EL‘”J(”’ (3.9.21)

o’g/(x) = (W—n—%) @h(X). (3.9.22)

Proof of Proposition 3.9.7Using property (3.9.19), and recalling thainverts

differentiation, we observe that witth = @ and F(x) = H(x)T, the integra-
tion identity (3.9.3) holds with a constaatindependent oA. Further, we have
SHE)TH(X)dx = Iz, by (3.9.14) and (3.9.15), and hence

det(ln—/Aﬁ(x)TH(x)dx) _ (Pf/ACF(x)JlF(x)de>2,

after some algebraic manipulations using Theorem 3.9&({(d the fact that dét, =
1. Thus, by (3.9.3) witth replaced byA®, the integration identity (3.9.9) holds up
to a constant factor independentAf Finally, since (3.9.9) obviously holds for
A =0, it holds for allA. m|

Proof of Proposition 3.9.8Taking nn as in Lemma 3.9.6¢ = @ andFa(x) =
ny1Ga(x)T, the integration identity (3.9.5) holds with a constaribdependent
of A. Further, we havé, = fJ;,}ZFR(x)JlFR(x)de by (3.9.14), (3.9.15) and
(3.9.16), and hence

det(lnf— /A G(X)TGAc(x)dx) - (Pf /A C FAc(x)JlFAc(x)de>2

by Lemma 3.9.6 withA replaced byA®, after some algebraic manipulations using
Theorem 3.9.2(ii) and the fact that dgt= 1. Thus, by (3.9.5) witi replaced by
AC, the integration identity (3.9.10) holds up to a constantdaindependent of
A. Finally, since (3.9.10) obviously holds fér= 0, it holds for allA. O
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3.9.2 Fredholm representation of gap probabilities

In this section, by reinterpreting formulas (3.9.9) an®(B0), we represent the
square of a gap probability for the GOE or GSE as a Fredholeraétant of a
matrix kernel, see Theorem 3.9.19.

Matrix kernels and a revision of the Fredholm setup

We make some specialized definitions to adapt Fredholmrd@tants as defined
in Section 3.4 to the study of limits in the GOE and GSE.

Definition 3.9.10For k € {1,2}, let Kef denote the space of Borel-measurable
functionsK : R x R — Mat(C). We call elements of Kegrscalar kernels ele-
ments of Keg matrix kernels and elements of KetJ Ker, simply kernels We
often view a matrix kernek € Ker, as a 2< 2 matrix with entries<; j € Kery.

We are now using the term “kernel” in a sense somewhat diffefiiom that in
Section 3.4. On the one hand, usage is more general becausédumess is not
assumed any more. On the other hand, usage is more spetialitteat kernels
are always functions defined @x R.

Definition 3.9.11GivenK, L € Kery, we defineK x L by the formula

(KxL)(xy) = [KODL(ty)t,

whenever/ [K; ((x,t)L,j(t,y)|dt < o for all x,y € R andi, j,¢ € {1,...,k}.

Since the definition of Fredholm determinant made in SeQ@idrapplies only
to bounded kernels on measure spaces of finite total massetib efficiently we
have to make the next several definitions.

Given a real constant> 0, letw,(x) = exp(y|x+ y| — y?) for x € R. Note that
Wy (x) = e for x > —y andwg(x) = 1.

Definition 3.9.12 {-twisting) Givenk € {1,2}, a kerneK € Kery, and a constant
y > 0, we define thg-twistedkernelKY) € Ker by

KX y)wy(y) ifk=1,
K(y) (va) =

wy()Kaa(xy)  wy()Ke2(6ywy(y) | o) 5
K21(x,y) Ka22(X, y)wy(y) '
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We remark thak € Ker} = K{;, Kz, € Ker] whereK]; (x,y) = Kq(Y,X).

As before, let Leb denote Lebesgue measure on the real lioey B 0O, let
Leby(dx) = wy(x)~!Leb(dx), noting that Lep = Leb, and that Lep has finite
total mass for > 0.

Definition 3.9.13Givenk € {1,2}, a kernelK € Kery, and a constant > 0, we
write K € Kerl’(’ if there exists some open détC R and constant > 0 such that
Leby(U) < o and max; [(KV); j| < clyu.

Note that Kef is closed under the operatierbecause, foK, L € Ker!, we have
(Kx L)W (xy) = / KO (x,t)LY)(t,y)Leb(dt) (3.9.23)

and henc& L € Ker.

We turn next to the formulation of a version of the definitidriFoedholm de-
terminant suited to kernels of the class Ker

Definition 3.9.14Givenk € {1,2}, y > 0, andL € Ker), we define Fref{L) by
specializing the setup of Section 3.4 as follows:

(i) Choosel C R open and: > 0 such that max | (LY); j| < clyxu.
(i) Let X =U x ., where.# = {1},{1,2} according a& =1, 2.
(i) Let v = (restriction of Lely toU) ® (counting measure o).
(iv) LetK((s)i),(t,])) =LY (st)i] for (si),(t, ) € X.

Finally, we let Freff(L) = A(K), where the latter is given as in Definition 3.4.3,
with inputsX, v andK as defined above.

The complex number Fré(L) is independent of the choice bf andc made in

point (i) of the definition, and hence well-defined. The déidmi is contrived so
thatif L € Ker)! fori = 1,2, then Frefi(L) is independent of, as one verifies by
comparing the expansions of these Fredholm determinamtsig term.

Two formal properties of Frq{a@-) deserve emphasis.
Remark 3.9.15If K,L € Kerf(’, then multiplicativity holds in the form

Fred/(K +L—KxL) = Fred/(K)Fred/(L),

by (3.9.23) and Theorem 3.4.10. Further, by Corollary 34 R < Ker{ satisfies
K21 =0 orKi2 =0, then

Fred,(K) = Fred/(K{,)Fred (Ky2).
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The analogue of Remark 3.4.4 in the present situation isaifeAfing.

Remark 3.9.16Let y > 0 be a constant. La C R be an open set such that
Leby(U) < . LetG,G: R — Maty,2n(C) be Borel-measurable. Assume further
that all entries of the matrices

|57 2o [ wiy |0

are bounded fox € U. Let
K(x,y) = G(X)G(y)" € Maty(C)

forx,y € R. LetAC U be a Borel set. Thetn, AK € Ker} and
Fred)(1axaK) = det(lgn—/é(x)TG(x)dx> .
A

If K e Kerl‘(’ and Freﬁ(K) # 0, then one can adapt the Fredholm adjugant con-
struction, see equation (3.4.15), to the present situaind one can verify that
there exists uniqui € Ker{ such that the resolvent equatiBr- K = KxR=RxK
holds.

Definition 3.9.17The kerneR € Ker, associated as above koe Ker) is called
theresolvenof K with respect toy, and we writeR = Reg (K).

This definition is contrived so that K € Ker)! for i = 1,2, then Re$(K) is in-
dependent of. In fact, we will need to use this definition only flr= 1, and the
only resolvents that we will need are those we have alreagly tcssanalyze GUE
in the bulk and at the edge of the spectrum.

Finally, we introduce terminology pertaining to useful @uchal structure a
kernel may possess.

Definition 3.9.18We say thaK € Kery for k € {1,2} is smoothif K is infinitely
differentiable. We say thate Ker; is symmetridresp. antisymmetrigif L(x,y) =
L(y,x) (resp.L(x,y) = —L(y,x)). We say thaK € Ker, is self-dualif K1 andKj2

are antisymmetric anid; 1 (X, y) = K1(x,y). Given smooth € Ker; andK € Kery,

2
% (Xa y) - gx—ﬁl_y (Xa y)

we say thaK is thedifferential extensioof L if K(x,y) = oL
L(Xa y) oy (X7 y)

Note that ifK € Ker; is smooth,K»; is antisymmetric, an& is the differential
extension oKy1, thenK is self-dual ano1(x,y) = f; Kia(t,y)dt.
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Main results

Fix real constantg > 0 andé. With ¢4 = @, 5 ¢ as defined by formula (3.9.7),
we put

1 n—-1
Knog26¥) =3z 3 AXAY). (3.9.24)
1=
The kernelK, 5 ¢ »(X,y) is nothing new: we have previously studied it to obtain
limiting results for the GUE.
We come to the novel definitions. We writg = K, ; ¢ » to abbreviate. Let

l Kn(X,Y) —%a(xy) 1

Kn,a,f,l(xay) _%sign(x y) +fy Kn(t y)d Kn(X y)

i l L0ERY) B (X)@) ]
203 | ( K an-at)dem(y)  em()eh-a(y)
<¢h— 1% 0

if nis odd

%
+ K hadt gy a(y) * (3.9.25)
(-

0 if nis even,
and

1 Kant1(X,y) e (x.y)
K X _ 1 ay 3.9.26
no.£4(%Y) 2 [ Jy Kensa(t,y)dt  Kania(x,y) ( )

n van+1

403

@on(X)€@n11(y) —<pzn(><)<pzn+1(y)1

(Jy @n()dt)e@nia(y)  €@nr1(X)@n(y)

We then have the following representations of squares opgapabilities as Fred-
holm determinants of matrix kernels.

Theorem 3.9.19Let y > 0 and a Borel set AC R be given. Assume either that
y > Oorthat A is bounded. Lgt € {1,4}. Then we have

(fAc---fAc A Ty .6 (%) VPl
ST 1A My @ o6 (%) VPl

It is easy to check using Lemma 3.9.9 that the right side is\ddfi For compari-
son, we note that under the same hypothesgsamdA we have
Jne Sac B2 M1 .0, (%) ?d%
S JIBCOP Ly @06 (xi)2dX

2
) = Fred(1axaKnozp). (3.9.27)

= Frec{(lAXAKn,O',E,Z) . (3928)
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The latter is merely a restatement in the present setup ofat2.4.

Before commencing the proof we need to prove a Pfaffian analo(3.9.21).
For integers > 0, put

Ln(Xy) = Lnoes (x,y) = o ? Z
0</<n

Lemma 3.9.20

\/— 1 n—-1

LnCoy) = 531 00EmY) + 55 3 eANIA).

Proof In view of (3.9.13), it is enough to prove

() aly) \/_
0§§<n z(i) z(i) ‘ 20 % +20(ﬂ

(="

Let F1(x,y) andR(x,y) denote left and right sides of the equation above, respec-
tively. Fix a € {1,2} and integerg,k > 0 arbitrarily. By means of (3.9.14) and
(3.9.17), one can verify thdil Fq (X, ¥) @ (X) ¢k (y)dxdyis independent aft, which

is enough by (3.9.14) to complete the proof. O

Proof of Theorem 3.9.19Given smooth. € Kery, to abbreviate notation, 1&€Xt ¢
Ker, denote the differential extension bf see Definition 3.9.18.

First we prove the cas@ = 4 pertaining to the GSE. Léd (x) be as defined
in Proposition 3.9.7. By straightforward calculation bédhea Lemma 3.9.20, one
can verify that

_ 1
HOOJ H) T3 = 5LE 1 0.6 (0Y) = Kng £.a(xY).

Then formula (3.9.27) in the cagke= 4 follows from (3.9.9) and Remark 3.9.16.

We next prove the cage = 1 pertaining to the GOE. We use all the notation
introduced in Proposition 3.9.8. One verifies by straigitfard calculation using
Lemma 3.9.20 that

Gr(X)J1Gr(Y)"J Lﬁxct; cxy)+ Mﬁ)g £(%y),
where

Eh1(X)—Eh-1(Y) £ i
Mn.g.e(Xy) = T 1 f nis odd,
- 0 if niseven.
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Further, with

L 0 0

= C Ti- = .J.
Q(Xv y) — GA (X)‘]].GR(y) ‘]n ) E(Xv y) %Slgr(x—y) 0 ) (3 9 29)

QA = 1A><AQ andEa = 1a4aAE, we have

—Ea+Qa+Ea*xQa=1axaKno s 1-

Finally, formula (3.9.27) in the cage = 1 follows from (3.9.10) combined with
Remarks 3.9.15 and 3.9.16. O

Remark 3.9.21Because the kerné}, ; ¢ is smooth and antisymmetric, the proof
above actually shows th#t, ; ¢ 4 is both self-dual and the differential extension
of its entry in the lower left. Further, the proof shows thesdorK, ; ¢ 1 +E.

3.9.3 Limit calculations

In this section we evaluate various limits of the form Jin Krg}gn,én,ﬁ’ paying
strict attention to uniformity of the convergence, see Thets 3.9.22 and 3.9.24
below. Implications of these to spacing probabilities anamarized in Corollar-
ies 3.9.23 and 3.9.25 below.

Statements of main results

Recall the symmetric scalar kernels, see Theorem 3.1.1Dafidition 3.1.3,

Ksine(X, Y) = Ksine2(X,y) = %%_yy) , (3.9.30)
Kairy (X,y) = Kairy 2(X,y) = alt Ai/(y))(:si,(x) AW (3.9.31)

Itis understood that these kernels are definecfery in the unique way making
them continuous (and in fact infinitely differentiable). érbubscript 2 refers to
the 3 parameter for the GUE.

We define matrix variants of the sine kernel, and state th& messiult on con-
vergence toward these variants. Let

Ksine(X,Y) B al;sine(x7 Y)
K i Xa i . 7
sine1(%,Y) [ —%SIQH(X— y) + f;‘ Ksine(t,y)dt  Ksine(X,Y)
(3.9.32)
1 Ksine(X, Y) - a‘;sme (%y)
K _ 1 y . 3.9.33
singe() 2 [ f; Ksine(t,y)dt  Ksine(X,Y) ( )
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The subscripts 1 and 4 refer to teparameters for the GOE and GSE, respec-
tively. Note that each of the kernéfgine4 and, withE as in (3.9.29)E + Ksine1 is
self-dual and the differential extension of its entry in liner left. In other words,
the kernel¥jqeg have properties analogous to thos&gf; s 3 mentioned in Re-
mark 3.9.18.

We will prove the following limit formulas.

Theorem 3.9.22or all bounded intervals & R,

r|1i_l:r10 Kn,ﬁ,o,l(X, y) = KSinel(Xv y) ) (3934)
r|1i_l:r10 Kn,ﬁ,O,Z (Xa y) = KSi“EZ(Xv y) ) (3935)
lim Kn’ V200, 4XY) = Ksinea(X,y), (3.9.36)

n—oo

uniformly for xy € 1.

Limit formula (3.9.35) is merely a restatement of Lemma B.and to the proof
of the latter there is not much to add in order to prove therdilie limit formu-
las. Using these we will prove the following concerning thitklimits Foyu g (t)
considered in Theorem 3.1.6.

Corollary 3.9.23For 3 € {1,2,4} and constants t- 0, the limits kg g(t) exist.
More precisely, with k= (—t/2,t/2) C R,

(1- FbU”(,l(t))z = Frecg(ll 1 Ksine1) , (8.9.37)
1—Fouka(t) = Fred(Li«Ksinez), (3.9.38)
(1 - FbU|K4(t/2))2 = Frefg(h x| Ksine4) . (3.9.39)

Further, forB € {1,2,4},

lim Foup(t) = 1. (3.9.40)

Formula (3.9.38) merely restates the limit formula in Treeni3.1.1. Note that the
limit formulas limy o Foyic g (t) = 0 for B € {1,2,4} hold automatically as a conse-
guence of the Fredholm determinant formulas (3.9.37),38)%and (3.9.39), re-
spectively. The casg = 2 of (3.9.40) was discussed previously in Remark 3.6.5.
We will see that the casgd e {1,4} are easily deduced from the cg8e= 2 by
using decimation and superposition, see Theorem 2.5.17.

We turn to the study of the edge of the spectrum. We introduateixnvariants
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of the Airy kernelKajry and then state limit results. Let

Kairy.1(%,Y) (3.9.41)

e sl
—3sign(x—y) + J§ Kairy (t,y)dt KAlry (xy)

1] AL [PA()dY) — AT (X)Ai(y)
T2 (A A0 (1— 2 A Ai(Y)

Kairy 4(X,Y) (3.9.42)
1 l Kary (y)  — 28 (x.y) ]

fy Kairy (t,y)dt KA|ry (xY)

L1 —Ai(x) [y" Ai(t)dt —Ai(X)Ai(y)

4 —(JyA (t)dt)(fy Ai(t)dt) —(f" Ai(t)dt)Ai(y)

Although it is not immediately apparent, the scalar keraglsearing in the lower
left of Kairy g for B € {1,4} are antisymmetric, as can be verified by using formula
(3.9.58) below and integration by parts. More preciselghest the kernel&ajry 4
andE + Kajry 1 (with E as in (3.9.29)) is self-dual and the differential extension
of its entry in the lower left. In other words, the kern&lg, g have properties
analogous to those &, ; s 3 mentioned in Remark 3.9.18.

We will prove the following limit formulas.

Theorem 3.9.24For constants/ > 0 and intervals IC R bounded below,

MLKr(] rzl/6 2V0, aaxy) = K'E‘}i/r)y.l(x’y)a (3.9.43)
r!moKri)gl/Gz\[z( ) = K'E\‘i?y.z(xay)a (3.9.44)

lim K( V)

n—oo N (2n)1/6 2\/— 4( y) = K;&‘i?y,ll(x’ y) 5 (3945)

uniformly for xy € 1.

The proofs of the limit formulas are based on a strengthenfnigemma 3.7.2
capable of handling intervals unbounded above, see Ptgpo8i9.30. The limit
formulas imply with some extra arguments the following tessaoncerning the
edge limitsFeqgep(t) considered in Theorem 3.1.7.

Corollary 3.9.25For B € {1,2,4} and real constants t, the edge limitgyfeg (t)
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exist. More precisely, with+ (t,), andy > 0 any constant,

Feager(t)® = Fred)(1y.Kaiy.1), (3.9.46)
Fedge2(t) = Fred/(1i.iKaiy.2), (3.9.47)
Feagea(t/2%3)2 = Fred)(1xiKairy 4)- (3.9.48)

Further, for 8 € {1,2,4},
Nim_Feqgep(t) =0. (3.9.49)

We will show below, see Lemma 3.9.33, that fpe> 0 andf € {1,2,4}, the
y-twisted kerneIK/(Qi’r)y’B is bounded on sets of the forlnx | with | an interval
bounded below, and hence all Fredholm determinants on ¢t aire defined.
Note that the limits lim. . Feqgep(t) = 1 for 8 € {1,2,4} follow automatically
from formulas (3.9.46), (3.9.47), and (3.9.48), respetyivin particular, formula
(3.9.47) provides another route to the proof of Theoremd3cbncerning edge-
scaling in the GUE which, bypassing the Ledoux bound (Lemr8&23 handles

the “right-tightness” issue directly.

Proofs of bulk results

The proof of Theorem 3.9.22 is based on the following refinemé(3.5.4).

Proposition 3.9.26For all integers k> 0, integersd, and bounded intervals | of
real numbers, we have

(%) k (%+5.ﬁ.o(x) - X I\T/(TnT+ 6)/2)> ’ -0

uniformly for xe I.

lim

NnN—oo

Proof The case& = 0 of the proposition is exactly (3.5.4). Assume hereaftat th
k> 0. By (3.9.17) and (3.9.20) we have

n+o XGhy s /ao(X)
(pr(1+5,\/ﬁ.0(x) = T%+6—1,ﬁ,o(x) e

Repeated differentiation of the latter yields a relatiorichtfinishes the proof by
induction onk. O

Proposition 3.9.27For J,k € {0,1} and bounded intervalsd¢ R we have

9 \" 9\"
lim. (W) Knis./n02(%Y) = (W) Ksine2(X,Y),

uniformly for xy € 1.
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The proof is a straightforward modification of the proof ofnuma 3.5.1, using
Proposition 3.9.26 to justify differentiation under thésigral. We omit the details.

The following elementary properties of the oscillator wdmnactions will also
be needed.

Proposition 3.9.28\e have
lim n1/4/ Un(x)dx= 2. (3.9.50)

n—oo
nieven

In the bulk case only the order of magnitude establishedikereeded, but in the
edge case we will need the exact value of the limit.

Proof By (3.9.11) in the case = 1 andé = 0 we have
Wo(x) = 27 VA Y/4e/4, /Lpo(x)dx: 2%/4t/4, (3.9.51)

By (3.9.17) in the casé = 0 ando = 1 we have

Jyndx 7221 [ 2
TWo(x)dx rl 2 2“((n/2)!)2N\/;’

by the Stirling approximation, see (2.5.12). Then (3.9f60pws from (3.9.51).
O

Proposition 3.9.29e have

sup
n: odd

/qJn X)dx

Proof For odd positive integenswe have a recursion

i Uni2(X)dx = Un+1(0 (Pn
0 \/—

which follows directly from (3.9.17) in the ca:ie: 0 ando = 1. lterating, and
using also the special case

VN+1h11(0) = —v/nipn-1(0) (3.9.53)
of (3.9.20) we obtain the relation

(_1)(n+5)/2/ wn+4(X)dX— /% /%(_1)@4&)/2/ (IJn(X)dX
— ( 1) (n+1) /2 n+2 n+3
m ~Vn+3 V n+2

< oo, (3.9.52)
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for odd positive integers. The right side by (3.9.51) and (3.9.53) is positive and
in any case i©(n~%4). The bound (3.9.52) follows. i

Proof of Theorem 3.9.22The equality (3.9.35) is the cage= 0 of Proposition
3.9.27. To prove (3.9.34) and (3.9.36), in view of Propositi 3.9.26 and 3.9.27,
we just have to verify the (numerical) limit formulas

1
im ——— = |lm——————-=0,
Moo (-1, m0:1) n e n3/4(n_1,1)
£ 0 1 oo
Amm = Amo_lm/ Un(x)dx= 0.
n:odd n hoda 2N/ Jo

These hold by Propositions 3.9.28 and 3.9.29, respectividig proof of Theo-
rem 3.9.22 is complete. O

Proof of Corollary 3.9.23 For B € {1,2,4}, let AW = (AP APy pe

a random vector iR" with law possessing a density with respect to Lebesgue
measure proportional ti\(x)|PeB?/4. We have by Theorem 3.9.19, formula
(3.9.11) and the definitions that

PUo(A® —&)}ni =02 = Fred(1Knge1),
PUo(AEY—&)}n1=0) = Fred(LiaKngzo),
P{o(vV22A4Y —&)}n1=0)? = Fred(LixKngea)-

The proofs of (3.9.37), (3.9.38) and (3.9.39) are complbtedsing Lemma 3.4.5
and Theorem 3.9.22. It remains only to prove the stateme®i4@). For = 2,

it is a fact which can be proved in a couple of ways describedamark 3.6.5.
The case3 = 2 granted, the cas¢se {1,4} can be proved by using decimation
and superposition, see Theorem 2.5.17. Indeed, considettfi casgs = 1. To
derive a contradiction, assume {im, Foyik 1(t) = 1— & for somed > 0. Then, by
the decimation relation (2.5.25), lime. Foui2(t) < 1— 82, a contradiction. Thus,
liMt—e Foulk1(t) = 1. This also implies by symmetry that the probability that no
(rescaled) eigenvalue of the GOE appearfit], denoted™ (t), decays to 0 as

t — co. By the decimation relation (2.5.26), we then have

1— Fouika(t) < 2|51(2t) —te 0.

This completes the proof of (3.9.40). O

Proofs of edge results

The proof of Theorem 3.9.24 is similar in structure to thatb&orem 3.9.22. We
begin by refining Lemma 3.7.2.
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Proposition 3.9.30For all constantsy > 0, integers K> 0, integersd and intervals
| bounded below we have

. K .

lim eVX(prng)5,n1/6,2 A0 =eA ®)(x) (3.9.54)

uniformly for xe I.

We first need to prove two lemmas. The first is a classical wigkng growth
information about solutions of one-dimensional Schrgdmequations. The sec-
ond applies the first to the Schrodinger equation (3.9.28%fsed by oscillator
wavefunctions.

Lemma 3.9.31Fix real numbers a< b. Let@ and V be infinitely differentiable
real-valued functions defined on the interyal «) satisfying the following:

(i) @ =V . (i) > 00n[b,). (iii) limy_e(loge) (x) = —.

(iv)V > 0on|b,). (v) V' >0o0n [b,o).

Then(logp)’ < —vV on|b, ).

The differentiability assumptions, while satisfied in onteinded application, are
much stronger than needed.

Proof Suppose rather that the conclusion does not hold. Afteacamyb by
some point of the intervalb, ) we may assume th%(b) > —/V(b). After
making a linear change of both independent and dependeiables, we may
assume thab =0, V(0) = 1 and hence%(O) > —1. Consider the function
0(x) = coshx+ %(0) sinhx. Clearly we havéd(0) =1, %’ (0)= %(0) andd” = 6.
Further, becaus%(O) > —1, we haved > 0 and%' > —1 on|0,). Finally, we
have
(69~ 0/9)(0) =0, 3 (00 —~0'9) = 69(V ~1)>0 on[0.es).

and hencé(%' > % > —1 0n[0,), which is a contradiction. O

Lemma 3.9.32Fix n > 0 and putgh(x) = @, /s 5 7(X). Then for x> 1 we have
@ (x) >0and(log@)’ (x) < —(x—1/2)%2,

Proof Let { be the rightmost of the finitely many zeroes of the funcggnThen

¢n does not change sign @4, ) and in fact is positive by (3.9.20). The logarith-
mic derivative ofg, tends to—o asx — 4o becauses is a polynomial inx times

a Gaussian density function @f In the present case the Schrodinger equation
(3.9.22) takes the form

@ (X) = (x+n"2/32/4—1/(2nY3)) @h(x) . (3.9.55)
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We finally apply Lemma 3.9.31 with = max(1,{) < b, thus obtaining the esti-
mate

(log@)'(b) < —v/b—1/2 for be ({,0)N(1,0).

This inequality forces one to ha¥e< 1 because the function bfon the left side
tends to+-e ashb | Z. O

Proof of Proposition 3.9.30To abbreviate, we write, 5(X) instead of, , 5 /s 2ﬁ(x).
We have

Gho+1(X) — @hs(X)
X@h,5(X) n nl/6
o /nT e | (\/ n+o 1) W) F g tha):

by (3.9.20) and (3.9.17), and by means of this relation weeeesily reduce to the
cased = 0. Assume thad = 0 hereafter and write simplgh = @ o.

By Lemma 3.7.2, the limit (3.9.54) holds on bounded intesVaFurther, from
Lemma 3.7.7 and the Airy equation’Ak) = xAi (x), we deduce that

e” Ai ¥ (x) is bounded on intervals bounded below (3.9.56)

Thus it is enough to establish the following bound, for agbit constanty > 0
and integer& > 0:

s°ﬁpsup|e"x(p}§k> (X)| < 0. (3.9.57)

n=1x>1

Since in any case sfjp, ¢h(1) < «, we get the bound (3.9.57) fér= 0,1 and all
y > 0 by Lemma 3.9.32. We then get (3.9.57) kor 2 and ally > 0 by (3.9.55)
and induction ork. O

Growth ofKairy g is under control in the following sense.

Lemma 3.9.33For 3 € {1,2,4}, y > 0 and intervals | bounded below,,&&, pis
bounded on Kk I.

Proof We have
Kaiy (X,Y) = / A (x+t) Ai (y+t)dt. (3.9.58)
0

To verify this formula, first applys; + 4 to both sides, using (3.9.56) to justify
differentiation under the integral, then apply the Airy atian Ai” (x) = xAi (x) to
verify equality of derivatives, and finally apply (3.9.5&)an to fix the constant
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of integration. By further differentiation under the intafj it follows that for all
integerk, ¢ > 0, constanty > 0 and interval$ bounded below,

k+-¢
sup|e/*HY) Kairy (X,y)| < o0. 3.9.59
x.yeFI) axkgyt iy (Y)| < e ( )
The latter is more than enough to prove the lemma. O

The following is the analogue of Proposition 3.9.27.

Proposition 3.9.34For 4,k € {0,1}, constanty > 0 and intervals IC R bounded
below we have

. 9\"
lim e/<Y) (E/) Knts.n/6.2ym2(%Y)

Nn—oo
a K
_ gy (W) Kaiy2(xY),  (3.9.60)

uniformly for xy € 1.

Proof To abbreviate we writg 5 = @, 5 16 -, - We have
Koo 2,m2(%Y) (3.9.61)
= | ;slcrOmsly+tat

00

1
T ) OCHY+ 2D D syt

s | (thalct Oy -0+ Gralx+ OG5y 1))t

This is proved using (3.9.12), (3.9.21) and (3.9.22), felltg the pattern set in
proving (3.9.58) above. In the cage= 0 we then get the desired uniform con-
vergence (3.9.50) by Proposition 3.9.30 and dominatedergewnce. After differ-

entiating under the integrals in (3.9.58) and (3.9.61), eetlge desired uniform
convergence fok = 1 in similar fashion. O

Proof of Theorem 3.9.24The limit (3.9.44) follows from Proposition 3.9.34. To
see (3.9.43) and (3.9.45), note that by definitions (3.%a4)(3.9.42), and Propo-
sitions 3.9.30 and 3.9.34, we just have to verify the (nuoariimit formulas

i 1< n i nl/“< n 1
m, 2 Ghnveoml) = M ——Wh 1) =5,
r?:even4 " ﬁ r?:even 4 2
. 1 . 1 1
N oda (Ph-1nv/6 2 m 1) Mg (Yh-1,1) 2

These hold by Proposition 3.9.28. The proof of Theorem &.&s2Zomplete. O
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Proof of Corollary 3.9.25With the notatiom (3" as defined at the beginning of
the proof of Corollary 3.9.23, we have by Theorem 3.9.19ida (3.9.11) and
the definitions that
P({G(/\ m _ E)} nl= 0)2 Fredz/(ll X1 Kn,a.f,l) )
P({G(/\ @m _ E)} nl= 0) Fredl/(ll x| Kn,a.E,Z) )
P{o(v2AUW —&)inl=0)* = Fred(LxiKnoza))-
To finish the proofs of (3.9.46), (3.9.47) and (3.9.48), useima 3.4.5 and The-

orem 3.9.24. The statement (3.9.49) holdsfot 2 by virtue of Theorem 3.1.5,
and for3 = 1 as a consequence of the decimation relation (2.5.25).

The argument fof = 4 is slightly more complicated. We use some information
on determinantal processes as developed in Section 4.3.8922), the sequence
of laws of the second eigenvalue of the GUE, rescaled at tge'scaling”, is
tight. Exactly as in the argument above concerifing 1, this property is inherited
by the sequence of laws of the (rescaled) second eigenvathe GOE. Using
(2.5.26), we conclude that the same applies to the sequétengof the largest
eigenvalue of the GSE. O

Remark 3.9.35An alternative to using the decimation relations (2.5.2k) &.5.26)
in the proof of lower tail tightness is to use the asymptotitsolutions of the
Painlevé Il equations, see Remark 3.8.1. It has the adgamttleading to more
precise tail estimates dfyges. We sketch the argument in Exercise 3.9.36.

Exercise 3.9.3@Jsing Exercise 3.8.3, (3.7.20), (3.8.4), and (3.8.21), Bimebrem
3.1.7, show that fo = 1,2,4,

1 2B
tILrDO @ |Og[1 - FedgeB (t)] = - ? y
1 B
tL"Dm 3 logFedgep t) = T oa

Again, note the different rates of decay for the upper anckiawails of the distri-
bution of the largest eigenvalue.

3.9.4 Differential equations
We derive differential equations for the ratios

o (1 - I:bullgﬁ (t/z))z o Fedgeﬁ (t/22/3)2
Pouikp (t) = 1= Fouo®) Pedgep (t) = " Feaga

(3.9.62)
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for B € {1,4}, thus finishing the proofs of Theorems 3.1.6 and 3.1.7.

Block matrix calculations

We aim to represent each of the quantiigg g (t) andpeqges(t) as a Fredholm
determinant of a finite rank kernel. Toward that end we proxeefollowing two
lemmas.

Fix a constany > 0. Fix kernels

a b 00 v v
[ c d } ,{ e 0 ] € Ker,, o,we Ker;. (3.9.63)
Assume that
d=o0+w, Fred(o)#0. (3.9.64)

Below, for brevity, we suppress writing AB for AxB. Put

[ a—be (a—be)b
Ki = | c—de w+(c—deb }’ (3.9.65)
[ e g
Kg = derelat _dere(a—balb ] , (3.9.66)
I [ e+t23(a e W+£2d+(c e+e[§a )
_ 1|0 0 y
R = 0 Red(0) ] € Ker;

ThatR is well-defined and belongs to Kz/efollows from assumption (3.9.64).
ThatK 1 andK 4 are well-defined will be proved below. Recall that foe {1,2}
andLy, L, € Ker!, againL,L, € Ker}, by (3.9.23).

Lemma 3.9.37With data(3.9.63)and under assumptiof8.9.64) the kerneld ¢
andK 4 are well-defined, and have the following properties:

Ki,Ks € Kerb, (3.9.67)
b
rred (| .5 a))
Fred(K1+K1R) = Fred (o) , (3.9.68)
e (32 o))
Fred(K4+K4R) = Fred (o) . (3.9.69)

Proof Put

(3] [0 2] [0 2]
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Note thatB, E, S € Ker. GivenLy,...,Ln € Kery with n> 2, let

m(Ly,L2) = Li+Lo—Lilo€Ker,
m(Ly,...,Ln) = m(m(Ly,...,Ln-1),Ln) € Ker} forn>2.

ab
o[ 2 Peer).

lia b 1
Ly = m(—E,E[C d],E,—EB,—R).

Ones verifies that

Put

Kp=Lg—LgS Lg=Kpg+KgR (3.9.70)

for B € {1,4} by straightforward calculation with:2 2 matrices in which one uses
the first part of assumption (3.9.64), namdly o 4w, and the resolvent identity
R —S=RS= SR. Relation (3.9.70) establishes th&t andK 4 are well-defined
and proves (3.9.67). By Remark 3.9.15, we have

Fred(cB) = 1, Fred(+E) = 1, Fred(R)Fred/(o) =1,
wherec is any real constant, and fbg, ..., Ly € Ker{ withn> 2,
Fredy(m(Ly,...,Ln)) = Fred(L1) - Fredy(Lp).

We can now evaluate Fré(d_ﬁ), thus proving (3.9.68) and (3.9.69). O

The next lemma shows thb(tﬁ can indeed be of finite rank in cases of interest.

Lemma 3.9.38Let K € Ker, be smooth, self-dual, and the differential extension
of its entry k1 € Kery in the lower left. Let k= (t1,t2) be a bounded interval. Let

[ a(x,y) b(xy)

c(xy) d(xy) ] =11 (X, Y)K(X,Y), eXxy)= %1|X|(x,y)sign(x_y)’

thus defining &b, c,d,e € Kerd. Let

P(x) = %(Kll(x7tl)+Kll(X7t2))v (3.9.71)

Px) = Ku(x,tz) — Kaa(xt1), (3.9.72)
X 153

o = 3 ([ omay- [“oay). 3979

LetKg for B € {1,4} be as defined if3.9.65)and (3.9.66) respectively, with
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w=_0. Then
Ki(xy) = 1|x|(x,y)[ ;’;(X) } [1 vy ], (3.9.74)
@

Ka(xy) = 1|X|(x,y)[ ¢(():())/2 _2] H :’;(%)//5]. (3.9.75)

We omit the straightforward proof.

Proof of Theorem 3.1.6

We begin by recalling basic objects from the analysis of th#Gn the bulk of
the spectrum. Reverting to the briefer notation introduoegtjuation (3.6.1), we
write S(X,¥) = Ksine2(X,y) for the sine kernel. Explicitly, equation (3.9.38) says
that

B 00 (_1)n Xl Xn A .
1—FbuIK2(t)_1+z n! /[7%,%]ns X1 ... Xn il:!dx{.

n=1

Let R(x,y;t) be the resolvent kernel introduced in Section 3.6.1 (okthiinom
the sine kernel with the choige=2,5=0==s,, 5 = 1 andt, = —t; =t/2).
Explicitly, R(x,y;t) is given by

(1= Foui2(t))R(X,y;t) = S(X,y) +
2 (=" X XL o Xn ) e
nZl n! /[Eaﬁ]“s< y X% 0 X )il_ldxh

S(x,y) + tt//zz S(x,2)R(zy;t)dz= R(x,y;t) (3.9.76)

and satisfies

by the fundamental identity, see Lemma 3.4.7. Recall thetfans

sinx t/2 sin
Qxt) = +/ RO Y;t) 2 dy,

NG
Poxt) = 2%, v Rix,y;t) 2 d
1 - \/ﬁ —t yl \/ﬁ ya

which are as in definition (3.6.3) as specialized to the case2,5 =0, =1,
s, =0,t; = —t/2 andty =t/2 studied in Section 3.6.3. Finally, as in (3.6.30), let

p=p(t) =P(-t/2;t), q=q(t) = Q(-t/2;t),
noting that
r=r(t)=-2pqg/t, (3.9.77)
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is the function appearing in Theorem 3.1.6.

We introduce a systematic method for extracting useful ione of t from
R(x,y;t). A smooth (infinitely differentiable) functiop(x;t) defined for reak
and positivet will be called atest-function Given two test-functiongy and ¢,
we define

1/2
(@) = t 1/2@(t><:t)<pz(tx;t)dx

, (Y2 (12
+t / @ (I R(tX ty; ) gp(ty; t)dxdy.
—1/2J-1/2

We call the resulting function dfanangle bracketBecause
R(x,y;t) = Ry, xt) = R(—x, —y;t), (3.9.78)
the pairing(-|-)t is symmetric and furthermore
a(=x)@(=xt) = —@ (X ) @(xt) = (@/@) =0. (3.9.79)
Given a test-functiop = @(x;t), we also define

0= 9" (0= 920, ¢ =dxt) = 2o (x1).

Now consider the test-functions

fxt) = %
oxt) = (St +SKt/2),
hct) = 3(Sxt/2) - Sx —t/2)),
G(xt) = /Oxg(z;t)dz.
By the resolvent identity (3.9.76) and the symmetry (3.DW& have
p(t) = (O +(glf), —at) = F7(t) + ([ ). (3.9.80)

It follows by (3.9.77) that (t) is also expressible in terms of angle brackets. To
link the functionr (t) to the ratios (3.9.62) in the bulk case, we begin by exprgssin
the latter in terms of angle brackets, as follows.
Lemma 3.9.39For each constantt O we have

Pouk(t) = 1—2G*(t) —2(h|G), (3.9.81)

Pouka(t) = (1—G+(t>—<h|e>t><1+%<g|1>t). (3.9.82)
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Proof Let| = (—t/2,t/2) and define inputs to Lemma 3.9.37 as follows:

{ a(xy) b(xy) }

c(xy) d(xy) 2111 (%, Y)Ksinea(X,Y) ,

exy) = 1i1(xY)35ignx-Y).
U(va) = 1|x|(X,y)S(X,y), w=0.

Then we have

Kaey) = atey [ 39011 2000 ),
Kaey) = daley)| S0 DS I ]
R(X’y) = 1|><|(X’y) 8 R(X,Oy,t):|7

where the first two formulas can be checked using Lemma 3.9u38 the last
formula holds by the resolvent identity (3.9.76).

The right sides of (3.9.68) and (3.9.69) eqpglig(t) for B € {1,4}, respec-
tively, by Corollary 3.9.23. Using Remark 3.9.15, one caeaktthat the left side
of (3.9.68) equals the right side of (3.9.81), which coneluthe proof of the latter.
A similar argument shows that the left side of (3.9.69) egual

[ GT®+ G —(hL)
det('Z{ 1(glG): —%<g|1>tD'

But (h|1); and(g|G): are forced to vanish identically by (3.9.79). This conckide
the proof of (3.9.82). O

Toward the goal of evaluating the logarithmic derivativéshe right sides of
(3.9.81) and (3.9.82), we prove a final lemma. Given a testtfan @ = @(x;t),
let D@ = (D)(xt) = (X% +tZ)@(x;t). In the statement of the lemma and the
calculations following we drop subscriptstafior brevity.

Lemma 3.9.40For all test-functionsp;, ¢ we have

(W) + (@ul@p) = (3.9.83)
(@ +(9+hl@) (@ +(g+hl@) — (@ +(9—hle) (@ +(g—hl@)),
t%<¢1l¢z> = (3.9.84)

(@ul@2) + (D@1l @) + (@1|D@) + (@] ) (Fl@) + (@] ) (F'[q) .
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Proof The resolvent identity (3.9.76) and the symmesty, y) = S(y, X) yield the
relation

t/2
(g hlgh = [~ RE:/20)000dx

Formula (3.6.18) with=2,5=0=15y, 5 = 1,t, = —t; =t/2 states that

(;_x + %) R(x,y;t) = R(X, —t/2;t)R(—t/2,y;t) — R(x, t/2;1)R(t/2,y;1).

These facts, along with the symmetry (3.9.78) and integmaliy parts, yield

(3.9.83) after a straightforward calculation. Similatlgjng the previously proved
formulas for%R(x,y;t), (x=y)R(x,y;t), P'(xt), andQ/(x;t), see Section 3.6,
along with the trick

0 0 0 o 0
(1+x5(+yw> R= 5((x—y)l?er(E(4—E/) R,

one gets

<1+X§_x +y;—y +t%) R(x,y;t) = P(x;t)P(y;t) + Q(x;1)Q(y;t),

whence formula (3.9.83) by differentiation under the im&g O

To apply the preceding lemma we need the following iderstifad which the
verifications are straightforward.

h+Dh=f*f, g+Dg= f'*f/, DG= f'*f, t%G*zf”rer. (3.9.85)

The notation here is severely abbreviated. For examplehtterelation written
out in full reads(DG)(x;t) = f'*(t)f(x) = f/(t/2)f(x). The other relations are
interpreted similarly.

We are ready to conclude. We claim that

t%(l— 2G* — 2(h|G)) (3.9.86)
= =2(f" +(h[f))(f"" +(f|G)) = 2q(f"" +(f|G))
= 2q(f""+(glf) —2(f"" +(g|f"))(G" + (h|G)))

= 2pq(1—-2G"—2(h|G)) = —tr(1—-2G" - 2(h|G)).
At the first step we apply (3.9.79), (3.9.84), and (3.9.853)th& second and fourth

steps we apply (3.9.80). At the third step we apply (3.9.88) vy = —f’ and
@ = G, using (3.9.79) to simplify. At the last step we apply (38.7Thus the
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claim (3.9.86) is proved. The claim is enough to prove (3. Lsince both sides
of the latter tend to 1 as| 0. Similarly, we have

tg(1+ (/1)) = p(f'|1) = —2pa(1+(g|1)) =tr(1+(gl1)),

dt
which is enough in conjunction with (3.1.11) to verify (3L.2). The proof of
Theorem 3.1.6 is complete. O

Proof of Theorem 3.1.7

The pattern of the proof of Theorem 3.1.6 will be followedheatclosely, albeit
with some extra complications. We begin by recalling themwbjects from the
analysis of the GUE at the edge of the spectrum. We reverted@bbreviated
notationA(x,y) = Kairy 2(X,y). Explicitly, equation (3.9.47) says that

_1)\n n
(-1) / A<Xl Xn)l_!dxi~
Nt Jiteo)n X1 ... Xn )L
Let R(x,y;t) be the resolvent kernel studied in Section 3.8. ExplicRl¥, y;t) is
given by

Fedgez(t) =1+ Z
n=1

Fedge2 (t)R(X, y;t)

- )+ 3

X X - Xn n
A dx,
/(t, )n (y X Xn)ﬂ i

A(X,y) + /twA(x, 2R(zy;t)dz=R(x,y;t). (3.9.87)

and by Lemma 3.4.7 satisfies

Recall the functions
Q) =AY+ [ ROy DAYy a=a(0) = Q).

which are as in definition (3.8.3), noting thais the function appearing in Theo-
rem3.1.7.

Given any smooth functiong = @ (x;t) andg@ = @(x;t) defined onR?, we
define

(pl@) = /()W(Pl(t+x§t)(P2(t+X;t)dx

+/O /O Ot + xR+ X+ Y1) @(t+ y;t)dxdy,

provided that the integrals converge absolutely for eaddtixWe call the result-
ing function oft anangle bracketSince the kerndR(x, y;t) is symmetric inx and

Yy, we have(gr | @)t = (@[ @)t
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We will only need finitely many explicitly constructed paifg, @) to substi-
tute into(-|-)t. For each of these pairs it will be clear using the estimaé3e% %6)
and (3.9.59) that the integrals above converge absolaet/that differentiation
under the integral is permissible.

We now define the finite collection of smooth functions(gft) € R? from
which we will draw pairs to substitute int@|-);. Let

f=1f(xt) = Ai(X),
g=g(xt) = Alt,x),
F=F(xt) = —/ f(z)dz,
X

G=0G(xt) = —/ g(zt)dz

X
Given any smooth functiop = @(x;t), it is convenient to define
7}
g =d(xt) = Soxt),
o =0 () = o),

7} 7}
Dp= D)) = 5+ ;) 9050
We have
Df—f, DF=F'—f G =g, %F‘:f‘, (3.9.88)
Dg=—ff, DG=—fF, G = —(F )?/2, %G*:—f*F*, (3.9.89)

the first four relations clearly, and the latter four follogifrom the integral rep-
resentation (3.9.58) &(x,y). We further have

q=f"+(flg), (3.9.90)

by (3.9.87). The next lemma linkg to the ratios (3.9.62) in the edge case by
expressing these ratios in terms of angle bracketsfFof 1,4} let

[ hg T [ -1 -iF- .
[ _

o |=| 1 Fiie || 9]

Lfg ] | O 1

N . Y A G
Gg] |3 —FF F+iF 1
Fs | 3.1 1

L ﬁ . _O wa 5 F



3.9 LIMITING BEHAVIOR OF THEGOEAND THE GSE 181

Lemma 3.9.41For each real t we have

_ B “(t)/2+4 (h|Ga)t  (ha|Fa)t
Pedge1(t) = det(l2 { (f1Guk (f1[F D (3.9.91)
(ha|Ga)t/2  —(ha|1)t/2  (ha|Fa)i/2
Pedges(t) = det| Iz3— | (9a|Ga)t/2 —(0a|1)t/2 (QalFa)/2 | | .
(falGa)e  —(fall)t  (falFa)t

(3.9.92)

It is easy to check that all the angle brackets are well-défine

Proof We arbitrarily fix reat, along withf € {1,4} andy > 0. LetK = E+Kajry 1
if B =1 and otherwise le = 2Kjry 4 if B = 4. Letl = (t,) and define inputs
to Lemma 3.9.37 as follows.

[ a(x,y) b(xy)

cixy) dixy) | W YKEY),

| S

e(xy) = lx(xy)3 SIgn(x y),
(Xay) = 1|><|(Xay) (va)v
wixy) = %(55’1_ /X Ai (z)dz) Ai(y).

Using Lemma 3.9.38 with =t andt, — o, one can verify after a straightforward
if long calculation that if3 = 1, then

_ qulyt) 0 1 hi(xt)
Kl(x’y)_l'x'(x’y){ G Falyi) ] { 0 i) } ’

whereas, if3 = 4, then

0 ga(yst)/2

wxt)y2 0 0 ][
0 fa(yst)

1 ha(y;t)/2
K4(X,y)=1|xl(XvY)[ Ga(xt) —1 Fa(x;t)

We also have
0 0
RO =1109) | 0 poe) |

The right sides of (3.9.68) and (3.9.69) eqajges(t) for B € {1,4}, respec-
tively, by Corollary 3.9.25. Using Remark 3.9.15, and thenitity

o 0,
Ny OBl
/t gp(xt)dx= > F~ (1),

which follows from (3.9.88) and the definitions, one can ¢hibat for3 = 1 the
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left side of (3.9.68) equals the right side of (3.9.91), amat for 3 = 4, the left
side of (3.9.69) equals the right side of (3.9.92). This clatgs the proof. O

One last preparation is required. For the rest of the proafirge the subscript
t, writing (@1 |@) instead of @1 |@):. Forg € {f,g} andg € {1,F,G}, we have

%(%l@) = (D@r| @) + (@|Dep) — (flon) (flaz), (3.9.93)

(@l @) + (@l@h) = — (@ +(gle) (@ +(gl@) +(fle)(fle), (3.9.94)
as one verifies by straightforwardly applying the previguitained formulas for
(g—x + %) R(x,y;t) and ZR(x,y;t), see Section 3.8.

We now calculate using (3.9.88), (3.9.89), (3.9.90), @&%and (3.9.94). We
have

d
Gt @) = a(=(f1),

S = (P DA = a1+ (),
SN = ~(VIF) {110+ (1I0(1IF) = a(F + (gIF)).
SE TR = aa-(fF).

@) = (G + GG+ (gl + (TGN (T,

GF)+(1G) = —(G +UG)(F +(gF) + (fIF){f]G).

The first four differential equations are easy to integrate] moreover the con-
stants of integration can be fixed in each case by noting ktieatihgle brackets
tend to 0 a$ — +o, as doeg|. In turn, the last two algebraic equations are easily
solved for(g|G) and(f|G). Letting

x=X(t) = exp(— /tmq(x)dx) ,

we thus obtain the relations

(9lG) (9l1) (glF)
[ (fIG) (f|1) (f|F } (3.9.95)
_ [ e ; e (Feo1 xtog apt g
- F7 Xi; - X ; -1 1_x+§*1

It remains only to use these formulas to evaluate the determs on the right sides
of (3.9.91) and (3.9.92) inlterms gfandF~. The former determinant evaluates
to x and the latter td+2*—. The proof of Theorem 3.1.7 is complete. 0
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Remark 3.9.42The evaluations of determinants which conclude the proofab
are too long to suffer through by hand. Fortunately one cgarmize them into
manipulations of matrices with entries that are (Laureatypomials in variables
x andF—, and carry out the details with a computer algebra system.

3.10 Bibliographical notes

The study of spacings between eigenvalues of random mafricthe bulk was
motivated by “Wigner's surmise” [Wig58], that postulatediansity of spacing
distributions of the fornCse s/4. Soon afterwords, it was realized that this was
not the case [Meh60]. This was followed by the path-breakwog [MeG60],
that established the link with orthogonal polynomials amel sine kernel. Other
relevant papers from that early period include the seriggsfb], [Dys62c],
[Dys62d], [DyM63] and [DyM63]. An important early paper amerning the or-
thogonal and symplectic ensembles is [Dys70]. Both therthaod a description
of the history of the study of spacings of eigenvalues ofaiggiensembles can be
found in the treatise [Meh91]. The results concerning tingdst eigenvalue are
due to [TrW94a] for the GUE (with a 1992 ArXiv online postingnd [TrW96]
for the GOE and GSE; a good review is in [TrW93]. These resdige been ex-
tended in many directions; at the end of this section we pieaibrief description
and pointers to the relevant (huge) literature.

The books [Wil78] contains an excellent short introductioorthogonal poly-
nomials as presented in Section 3.2. Other good referemreetha classical
[Sze75] and the recent [Ism05]. The three term recurrendetaa Christoffel—
Darboux identities mentioned in Remark 3.2.6 hold for arstey of polynomials
orthogonal with respect to a given weight on the real line.

Section 3.3.1 follows [HaT03], who proved (3.3.11) and oted that differ-
ential equation (3.3.12) implies a recursion for the morsenhty discovered by
[Haz86] in the course of the latter’s investigation of thedulh space of curves.
Their motivation came from the following: at least formallye have the expan-
sion
2P

2p! (L),

<ENveS'>: Z

p=0

Using graphical rules for the evaluation of expectationpraiducts of Gaussian

variables (Feynmann’s diagrams), one checks(ihatx??) expands formally into

1
g;)@f/‘/%&tr(xzw,g(l)
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with W%tr(pr%g(l) the number of perfect matchings on one vertex of degpee 2
whose associated graph has gegudence, computingLy,€®) as in Lemma
3.3.1, gives exact expressions for the nuMber& 'ty x2p) 4(1). The link be-
tween random matrices and the enumeration of maps was festided in the
physics context in [tH74] and [BrIPZ78], and has since beanrmously devel-
oped, also to situations involving multi-matrices, seeH®&91a], [FrGZJ95] for

a description of the connection to quantum gravity. In thesses, matrices do
not have in general independent entries but their jointribistion is described
by a Gibbs measure. When this joint distribution is a smaitysbation of the
Gaussian law, it was shown in [BrIPZ78] that, at least at anfdrlevel, annealed
moments(lfN,sz’> expands formally into a generating function of the numbérs o
maps. For an accessible introduction, see [Zv097], and flis@ission of the as-
sociated asymptotic expansion (in contrast with formabagion), see [GuMO06],
[GuMO7], [Mau06] and the discussion of Riemann—Hilbert hoets below.

The sharp concentration estimates Agfax contained in Lemma 3.3.2 are de-
rived in [Led03].

Our treatment of Fredholm determinants in Section 3.4 istliermost part
adapted from [Tri85]. The latter gives an excellent shdroiduction to Fredholm
determinants and integral equations from the classicalpdént.

The beautiful set of nonlinear partial differential eqoas (3.6.4), contained
in Theorem 3.6.1, is one of the great discoveries reportgdiMS80]. Their
work follows the lead of the theory of holonomic quantum fietteveloped by
Sato, Miwa and Jimbo in the series of papers [SaMJ80]. T hkelkxtween Toeplitz/Fredholm
determinants and the Painlevé theory of ordinary difféaéequations was ear-
lier discussed in [WUMTB76], and influenced the series [SBD].J See the re-
cent monograph [Pal07] for a discussion of these developsriarthe original
context of the evaluation of correlations for two dimensibirelds. To derive the
equations (3.6.4) we followed the simplified approach o¥yBi3], however we al-
tered the operator-theoretic viewpoint of [TrW93] to a “nvatlgebra” viewpoint
consistent with that taken in our general discussion ini&e@&.4 of Fredholm
determinants. The differential equations have a Hamitorstructure discussed
briefly in [TrW93]. The same system of partial differentigimtions is discussed
in [Mos80] in a wider geometrical context. See also [HaTW93]

Limit formula (3.7.4) appears in the literature as [Sze7&, £22.14, p. 201]
but is stated there without much in the way of proof. The ety short self-
contained proof of (3.7.4) presented in Section 3.7.2 ietham the ideas of
[PIR29]; the latter paper is however devoted to the asynptmhavior of the
Hermite polynomials)s(x) for real positivex only.
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In Section 3.8, we follow [TrWO02] fairly closely. Itis po$se to work out a sys-
tem of partial differential equations for the Fredholm detimant of the Airy ker-
nel in the multi-interval case analogous to the system43f6r the sine-kernel.
See [AdvMO01] for a general framework that includes also @aussian models.
As in the case of the sine-kernel, there is an interpretatidhe system of partial
differential equations connected to the Airy kernel in thdtivinterval case as an
integrable Hamiltonian system, see [HaTW?93] for details.

The statement contained in Remark 3.8.1, taken from [HaM8Q solution
of a connection problemFor another early solution to connection problems, see
[McTW77]. The book [FOIKNO6] contains a modern perspeciire Painlevé
equations and related connection problems, via the Rierhfilbert approach.
Precise asymptotics on the Tracy-Widom distribution arg&@ioed in [BaBDO08]
and [DelKO08].

Section 3.9 borrows heavily from [TrW96] and [TrwWO05], agegworked to our
“matrix algebra” viewpoint.

Our treatment of Pfaffians in Section 3.9.1 is classical,[8ae85] for more
information. We avoided the use of quaternion determindnits treatment based
on these, see e.g. [Dys70] and [Meh91].

An analogue of Lemma 3.2.2 exists fr= 1,4, see Theorem 6.2.1 and its
proof in [Meh91] (in the language of quaternion determisgand the exposition
in [Rai00] (in the Pfaffian language).

As mentioned above, the results of this chapter have beemésd in many
directions, seeking to obtaimiversalityresults, stating that the limit distributions
for spacings at the bulk and the edge of the GOE/GUE/GSE ajpfmain other
matrix models, and in other problems. Four main directiamstich universality
occur in the literature, and we describe these next.

First, other classical ensembles have been considere&¢éstien 4.1 for what
ensembles mean in this context). These involve the studihef types of orthog-
onal polynomials than the Hermite polynomials (e.g., Lagaer Jacobi). See
[For93], [For94], [Trw94b], [Trw00], [Joh00], [John01]Fpr06], and the book
[For05].

Second, one may replace the entries of the random matrix hyQaussian
entries. In that case, the invariance of the law under catjog is lost, and no
explicit expression for the joint distribution of the eigatues exist. It is however
remarkable that it is still possible to obtain results cono® the top eigenvalue
and spacings at the edge, that are of the same form as The8resand 3.1.7,
in case the law of the entries possesses good tail propeftiesseminal work is
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[S0s99], who extended the combinatorial techniques ing8ti$to show that the
dominant term in the evaluation of traces of large powersonéfiom matrices does
not depend on the law of the entry, as long as the mean is ber@atiance as in
the GOE/GUE, and the distribution of the entries symmeffibis has been ex-
tended to other models, and specifically to certain Wishaittiges, see [Sos02b]
and [Péc07]. Some partial results relaxing the symmesyragtion can be found
in [PeS07], [PeS08b], although at this time the univengalitthe edge of Wigner
matrices with entries possessing non-symmetric disiobuemains open. When
the entries possess heavy tail, limit laws for the largegtmialue change, see
[Sos04], [AuBPQ7]. Concerning the spacing in the bulk, endality was proved
when the i.i.d. entries are complex and have a distributiam tan be written as
convolution with a Gaussian law, see [Joh01b] (for the caxpVigner case) and
[BeP05] (for the complex Wishart case). The proof is base@dmmpplication
of the Itzykson-Zuber-Harish-Chandra formula, see théidmbaphical notes for
Section 4.3. Similar techniques apply to the study of thgdat eigenvalue of so
called spikedmodels, which are matrices of the fondil X* with X possessing
i.i.d. complex entries andl a diagonal real matrix, all of whose entries except for
a finite number equal to 1, and to small rank perturbationsighéf matrices, see
[BaBPO05], [Péc06], [FeP07], [Kar07b] and [Ona08].

Third, one can consider joint distribution of eigenvaluéthe form (2.6.1), for
general potentialg. This is largely motivated by applications in physics. When
deriving the bulk and edge asymptotics, one is naturallytdestudy the asymp-
totics of orthogonal polynomials associated with the weigl/. At this point,
the powerful Riemann-Hilbert approach to the asymptoticgthogonal polyno-
mials and spacing distributions can be applied. Often, dgipatoach yields the
sharpest estimates, especially in situations where thegonal polynomials are
not known explicitly, thereby proving universality statents for random matri-
ces. Describing in details this approach goes beyond thgesabthis book (and
bibliography notes). For the origins and current state et of this approach we
refer the reader to the papers [FolK92], [DeZ93], [DeZ9B[Z97], [DeVZ97]
[DeKM 98], [DeKM'99], [BII99], to the books [Dei99], [DeG09] and to the
lecture [Dei07]. See also [PaS08a].

Finally, expressions similar to the joint distribution biteigenvalues of ran-
dom matrices have appeared in the study of various combriabpooblems. Ar-
guably, the most famous is the problem of the longest inangasibsequence of
a random permutation, also known dlam’s problem which we now describe.
Let L, denote the length of the longest increasing subsequenceaoidam per-
mutation on{1,...,n}. The problem is to understand the asymptotics of the law
of L. Based on his subadditive ergodic theorem, Hammersley [f2ashowed
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thatL,/+/n converges to a deterministic limit, and shortly thereafieeK77] and
[LoS77] independently proved that the limit equals 2. It wasjectured (in anal-
ogy with conjectures for first passage percolation, see §@[for some of the
history and references) thiag := (L, — 2,/n) /n%/® has variance of order 1. Using
a combinatorial representation, due to Gessel, of theildision of L, in terms
of an integral over an expression resembling a joint distidm of eigenvalues
(but with non-Gaussian potentid)), [BaDJ99] applied the Riemann-Hilbert ap-
proach to prove that not only is the conjecture true, but @t fa asymptotically
is distributed according to the Tracy-Widom distributiBn Subsequently, di-
rect proofs that do not use the Riemann-Hilbert approachdbuwse the random
matrices connection) emerged, see [Joh0la], [BoOOO00] @kd(0]. Certain
growth models also fall in the same pattern, see [Joh00]Rr8d2]. Since, many
other examples of combinatorial problems leading to a usalébehavior of the
Tracy-Widom type have emerged. We refer the reader to thtedoming book
[BaDSO08] for a thorough discussion.

We have not discussed, neither in the main text nor in thesiographical
notes, the connections between random matrices and nuhdmey more specif-
ically the connections with the Riemann zeta function. Weerr¢he reader to
[KaS99] for an introduction to these links, and to [KeaO@]daecent account.



4
Some generalities

In this chapter, we introduce several tools useful in thelystf matrix ensem-
bles beyond GUE, GOE and Wigner matrices. We begin by satjinig Section
4.1 a general framework for derivation of joint distributiof eigenvalues in ma-
trix ensembles, and then we use it to derive joint distrifnutiesults for several
classical ensembles, namely, the GOE/GUE/GSE, the Lagaasembles (corre-
sponding to Gaussian Wishart matrices), the Jacobi enssnitdrresponding to
random projectors), and the unitary ensembles (correspotarandom matrices
uniformly distributed in classical compact Lie groups).Saction 4.2, we study
a class of point processes that degerminantglthe eigenvalues of the GUE, as
well as those for the unitary ensembles, fall within thisslaWe derive a repre-
sentation for determinantal processes and deduce from lifTaf@ the number
of eigenvalues in an interval, as well as ergodic conseggenin Section 4.3,
we analyze time-dependent stochastic matrices, wherenthiegare replaced by
Brownian motions. The introduction of Brownian motion a® us to use the
powerful theory of Ito integration. Generalizations of iMgner law, CLT's, and
large deviations are discussed. We then present in Sectdba discussion of
concentration inequalities and their applications to camanatrices, substantially
extending Section 2.3. Both concentration results for ivedrwith independent
entries, as well as for matrices distributed according tarti@easure on compact
groups, are discussed. Finally, in Section 4.5, we intreduttidiagonal model of
random matrices, whose joint distribution of eigenvalusrsagalizes the Gaussian
ensembles by allowing for any value Bf> 1 in Theorem 2.5.3. We refer to this
matrix model as thbeta ensemble

188
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4.1 Joint distribution of eigenvalues in the classical matix ensembles

In Section 2.5, we derived an expression for the joint digtion of eigenvalues
of a GUE or GOE matrix which could be stated as an integratiwméla, see

(2.5.22). Although we did not emphasize it in our derivatiaey point was that
the distribution of the random matrices was invariant urtderaction of a group
(orthogonal for the GOE, unitary for the GUE). A collectiocineatrices equipped
with a probability measure invariant under a large groupyafmmetries is gener-
ally called arensemblelt is our goal in this section to derive integration formajla
and hence joint distribution of eigenvalues, for severakembles of matrices, in
a unified way, by following in the footsteps of Weyl. The poafitview we adopt

is that of differential geometry, according to which we ddies ensembles of ma-
trices as manifolds embedded in Euclidean spaces. Theguisites and notation
are summarized in Appendix F.

The plan for Section 4.1 is as follows. In Section 4.1.1,rdftéefly recalling
notation, we present the main results of Section 4.1, nainédgration formu-
las yielding joint distribution of eigenvalues in three sdcal matrix ensembles
linked to Hermite, Laguerre and Jacobi polynomials, regpely, and also Weyl's
integration formulas for the classical compact Lie groiye.then state in Section
4.1.2 a special case of Federer’s coarea formula and aligsitrby calculating the
volumes of unitary groups. (A proof of the coarea formulahia teasy version”
used here is presented in Appendix F.) In Section 4.1.3 weeptea general-
ized Weyl integration formula, Theorem 4.1.28, which weverby means of the
coarea formula and a modest dose of Lie group theory. In@e4tiL.4 we verify
the hypotheses of Theorem 4.1.28 in each of the setups destirsSection 4.1.1,
thus completing the proofs of the integration formulas byupdated version of
Weyl's original method.

4.1.1 Integration formulas for classical ensembles

Throughout this section, we I&tdenote any of the (skew) field, C or H. (See
Appendix E for the definition of the skew field of quaternidfis Recall thatH
is a skew field, but not a field, because the produdtliis not commutative.)
We setf3 = 1,2,4 according a¥ = R, C,H, respectively. (Thug is the dimen-
sion of F overR.) We next recall matrix notation which in greater detail & s
out in Appendix E.1. Let Mak.q(F) be the space op x q matrices with en-
tries inF, and write Ma§(IF) = Matnn(F). For each matrix € Matpq(F), let
X* € Matg p(IF) be the matrix obtained by transposiXgand then applying the
conjugation operatiof to every entry. We endow Matq(F) with the structure
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of Euclidean space (that is, with the structure of finite-glirsional real Hilbert
space) by settingl - Y = Otr X*Y. Let GLy(IF) be the group of invertible ele-
ments of Ma§(FF), and let U,(IF) be the subgroup of GI(FF) consisting of unitary
matrices; by definitiot) € Un(F) iff UU* = I, iff U*U = I,,.

The Gaussian ensembles

The first integration formula that we present pertains toGhessian ensembles,
that is, to the GOE, GUE and GSE. L&y(F) = {X € Maty(F) : X* = X}. Let

P r) denote the volume measure g (IF). (See Proposition F.8 for the general
definition of the volume measug, on a manifoldM embedded in a Euclidean
space.) Lepy, ) denote the volume measure oq(B). (We will check below,
see Proposition 4.1.14, tha (F) is a manifold.) The measurgsy, ) andpy, )

are just particular normalizations of Lebesgue and Haasorearespectively. Let
p[Un(F)] denote the (finite and positive) total volume af(@). (For any manifold

M embedded in a Euclidean space, we wgf®l] = pm(M).) We will calculate
p[Un(F)] explicitly in Section 4.1.2. Recall that¥= (x1,...,X%), then we write
A(X) = MMa<i<j<n(Xj —Xi). The notion of eigenvalue used in the next result is
defined for generdl in a uniform way by Corollary E.12 and is the standard one
forF =R,C.

Proposition 4.1.1For every nonnegative Borel-measurable functfoon %, (F)
such thatp (X) depends only on the eigenvalues of X, we have

Un(F n
[ #9000 = ol [ OWIAP T ax. @)

where for every x= (xi,...,%)) € R" we write @ (x) = ¢ (X) for any X e J4(F)
with eigenvaluesy. .., X,.

According to Corollary E.12, the hypothesis tigeiX) depends only on the eigen-
values ofX could be restated as the condition tlgu XU*) = ¢ (X) for all
X € 74 (F) andU € Uy (F).

Suppose now thaX € s, (F) is random. Suppose more precisely that the en-
tries on or above the diagonal are independent; that eaglomh entry is (real)
Gaussian of mean 0 and variangg82and that each above-diagonal entry is stan-
dard normal ovelf. (We say that a random variab&with values inF is stan-
dard normalif, with {G;}{*_; independent real-valued Gaussian random variables
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of zero mean and unit variance, we have Bas$ distributed like

Gy if F=R,
(GL+iGy)/V?2 ifF=C, (4.1.2)
(G1+iG2+G3+kGy)/2 ifF=H.)

Then forF =R (resp. JF = C) the matrixX is a random element of the GOE (resp.,
GUE), and in the cade = H is by definition a random element of t&SE (Gaus-
sian Symplectic EnsembleJonsider now the substitutigh(X) = e=Bt X*/4f (X

in (4.1.1), in conjunction with Proposition 4.1.14 belowialihcomputes volumes
of unitary groups. Fop = 1,2, we recover Theorem 2.5.2 in the formulation
given in (2.5.22). In the remaining cafe= 4 the substitution yields the joint
distribution of the (unordered) eigenvalues in the GSE.

Remark 4.1.2As in formula (4.1.1), all the integration formulas in thisction
involve normalization constants given in terms of volumésertain manifolds.
Frequently, when working with probability distributionsne bypasses the need
to evaluate these volumes by instead using the Selbergatfegmula, Theorem
2.5.8, and its limiting forms, as in our previous discussibthe GOE and GUE
in Section 2.5.

We saw in Chapter 3 that the Hermite polynomials play a ctuocia in the
analysis of GUE/GOE/GSE matrices. For that reason we witletimes speak of
Gaussian/Hermite ensembles. In similar fashion we willgagh of the next two
ensembles by the name of the associated family of orthogmiahomials.

Laguerre ensembles and Wishart matrices

We next turn our attention to random matrices generaliiegWishart matrices
discussed in Exercise 2.1.18, in the case of Gaussian &nffie integers <

p <gandputn= p+gq. Let Phatp,q(F) be the volume measure on the Euclidean
space Mas.q(F). The analogue of integration formula (4.1.1) for singulaiues

of rectangular matrices is the following. The notion of sifeg value used here is
defined for generdl in a uniform way by Corollary E.13 and is the standard one
forF =R,C.
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Proposition 4.1.3For every nonnegative Borel-measurable functjoon Matp . q(IF)
such thatp (X) depends only on the singular values of X, we have

[ ¢dp _ plUp(F)]p[Uq(F)|28P/2
Matpxq(F) = P[Ul(F)]pP[Uq_p(]F)]Zﬁpq/Zp!

P
< | ¢ (x)|A0R) B [xPa Py
Jop #0100 T

(4.1.3)

where for every x= (xy,...,Xp) € R} wewrite ¥ = (x2,...,x3), and¢ (x) = ¢ (X)
for any X Matp.q(IF) with singular values x . ..., Xp.

Here and in later formulas, by conventignUy(F)] = 1. According to Corol-
lary E.13, the hypothesis thgt(X) depends only on the singular valuesf
could be restated as the condition tiggty XV) = ¢ (X) for all U € Up(F), X
Matpyq(F) andV € Uq(F).

Suppose now that the entries Xfe Maty,q(F) are i.i.d. standard normal. In
the casdrF = R the random matrixXX* is an example of a Wishart matrix, the
latter as studied in Exercise 2.1.18. In the case of gefifenad call X X* a Gaus-
sian Wishart matrixoverF. Proposition 4.1.3 implies that the distribution of the
(unordered) eigenvalues ¥fX* (which are the squares of the singular values of
X) possesses a density @ )P with respect to Lebesgue measure proportional
to

p p
|A(X)|B . I—!e—BXi/4_ rlxilg(q_p+1)/2_l'

1= 1=
Now the orthogonal polynomials corresponding to weighthefformx®e~¥* on
(0,0) are the Laguerre polynomials. In the analysis of random ioestrof the
form X X*, the Laguerre polynomials and their asymptotics play aaokdogous
to that played by the Hermite polynomials and their asyniggan the analysis of
GUE/GOE/GSE matrices. For this reason we alsoX3lf a random element of
alaguerre ensembleverFF.

Jacobi ensembles and random projectors
We first make a general definition. Put
Flag,(A,F) = {UAU*:U € Un(F)} C J4(F), (4.1.4)

whereA € Mat, is any real diagonal matrix. The compact set E[agF) is al-
ways a manifold, see Lemma 4.1.18 and Exercise 4.1.19.

Now fix integers O< p < g and puth=p+g. Also fix 0<r <g-p and
write g = p+r +s. Consider the diagonal matrl = diag(lp+r,0p+s), and the
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corresponding space Flgdp,F) as defined in (4.1.4) above. (As in Appendix
E.1, we will use the notation diag to form block-diagonal ricats as well as
matrices diagonal in the usual sense.) pgl, o) denote the volume measure
on Flag,(D,F). GivenW ¢ Flag,(D,F), letW(P) € J#(FF) denote the upper left
p x p block. Note that all eigenvalues @(P) are in the unit interval0, 1].

Proposition 4.1.4With notation as above, for all Borel-measurable nonnagati
functionsg on .7(IF) such thatp (X) depends only on the eigenvalues of X, we
have

/¢ (WP)dPEiag,(p.5) (W) (4.1.5)

PIUp(E)]p[Uq(F)]28P/2
PIUA(F)Po[U; (F)]p[Us(F)]2°P! Jiogp
X|B(X)|P - |£l(x§'“>”/“<1— x) (S UB/2 1)

¢ ()

where for every x= (x1,...,Xp) € RP we write ¢ (x) = ¢ (X) for any matrix Xe
4 (IF) with eigenvalues. .., Xp.

The symmetry here crucial for the proof is thigtW(P)) = ¢ (UWU*)(P)) for all
U € Un(F) commuting with diaglp,0q) and allW € Flag, (D, F).

Now up to a normalization constarziag (o) is the law of a random matrix
of the formU,DU;;, whereU,, € Uy(F) is Haar-distributed. (See Exercise 4.1.19
for evaluation of the constami[Flag,(D,F)].) We call such a random matrix
UnDU,; arandom projector The joint distribution of eigenvalues of the submatrix
(UnDU;) (P is then specified by formula (4.1.5). Now the orthogonal polyials
corresponding to weights of the forrd (1 — x)¥ on [0,1] are the Jacobi polyno-
mials. In the analysis of random matrices of the fo(rlm,DUn)<P>, the Jacobi
polynomials play a role analogous to that played by the Hermolynomials in
the analysis of GUE/GOE/GSE matrices. For this reason we(ldaDU;)(P) a
random element of dacobi ensembleverF.

The classical compact Lie groups

The last several integration formulas we present pertathéalassical compact
Lie groups W (F) for F =R, C, H, that is, to the ensembles of orthogonal, unitary
and symplectic matrices, respectively, equipped with redmad Haar measure.

We setR(0) = [ _Cs?:g :;r;g } € Uz(R) for 68 € R. More generally, folf =
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(61,...,60) €R", we seR,(0) =diagR(61), . ..,R(6n)) € Uan(R). We also write
diag(0) = diag(64, ..., 6,) € Maty.

We define nonnegative functioAs, By, Cn, Dn onR" as follows:

2

A(0) = ] €% —€%? Dn(6)=An(6) [] |€%—-e'%|,

1<i<j<n 1<i

<
Dn(6) ﬂle‘f" ~1P, Ca(8) = Dn(9)_|j|ei9l g,

<n

Bn(6)

Remark 4.1.5The choice of letterg\, B, C, andD made here is consistent with
the standard labeling of the corresponding root systems.

We say that a functiogp on a groupG is centralif ¢(g) depends only on the
conjugacy class dd, that is, if¢(glgzgfl) = ¢(gy) forall 91,92 € G.

Proposition 4.1.6 (Weyl)(Unitary case) For every nonnegative Borel-measurable
central functiong on U, (C), we have

douye) _ 1 idiag(0) n /de
/d’m - H/[O.Z,T]n‘p(d )An(8) H<§T> : (4.1.6)

(Odd orthogonal case) For odd-a 2/ + 1 and every nonnegative Borel-measurable
central functionp onUn(R), we have

dpy,(r)
[ ¢ oo 417

— 7 o kimdiag(w(e),<—1>k>>Be<e>_|j(%) .

(Symplectic case) For every nonnegative Borel-measu@aieral functiong on
Un(H), we have

(Even orthogonal case) For even=2/¢ and every nonnegative Borel-measurable
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central functiong on U, (R) we have

dPuyz)
/¢ PUn(R)] (4.1.9)
1 ¢ a6
- 2001 /[O,znjz ¢ (Ri(8))De(8) il:l (?-[)
(-1
+ﬁ /[o,znvf—l #(diagRi-1(6). 1, ~1))Ca(6) [ <g_?1|> '

We will recover these classical results of Weyl in our setupider to make it
clear that all the results on joint distribution discussedection 4.1 fall within
Weyl's circle of ideas.

Remark 4.1.7Because we have

Dn(8)= (2cosd —2cosh;)?,
1<i<)<n

the process of eigenvalues of,() is determinantal (see Section 4.2.9 and in
particular Lemma 4.2.50) not only fér= C but also folf = R, H. Thisis in sharp
contrast to the situation with Gaussian/Hermite, Laguarma Jacobi ensembles
where, in the caseB = R, H, the eigenvalue (singular value) processesrare
determinantal. One still has tools for studying the lattercesses, but they are
pfaffian- rather than determinant-based, of the same typsidered in Section
3.9 to obtain limiting results for GOE/GSE.

4.1.2 Manifolds, volume measures, and the coarea formula

Section 4.1.2 introduces tlewarea formula Theorem 4.1.8. In the specialized
form of Corollary 4.1.10, the coarea formula will be our mtdnl for proving the
formulas of Section 4.1.1. To allow for quick reading by tixpert, we merely
state the coarea formula here, using standard terminolpgagise definitions,
preliminary material and a proof of Theorem 4.1.8 are alsprged in Appendix
F. After presenting the coarea formula, we illustrate it lyrking out an explicit
formula for p[Un(IF)].

Fix a smooth mag : M — N from ann-manifold to ak-manifold, with deriva-
tive at a pointp € M denotedI'y(f) : Tp(M) — Tf<p)(N). Let Mcrit, Mreg, Nerit
andNreg be the sets of critical (regular) points (values)fofsee Definition F.3
and Proposition F.10 for the terminology. Fpe N such thatViregN f-1(q) is
nonempty (and hence by Proposition F.16 a manifold) we etipeifatter with the
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volume measurey, . Af-1(q) (see Proposition F.8). Py = 0 for convenience.
Finally, letJ(Tp(f)) denote the generalized determinanilef ), see Definition
F.17.

Theorem 4.1.8 (The coarea formula)Nith notation and setting as above, It
be any nonnegative Borel-measurable function on M. Then:

(i) The function p— J(T(f)) on M is Borel-measurable.

(i) The function g— f¢(p)deregmf_1(q>(p) on N is Borel-measurable.

(i) The integral formula

/¢ ))dom (p /</¢ P)dPeq -1 (p)> dpon(a)  (4.1.10)

holds.

Theorem 4.1.8 is in essence a version of Fubini’s theoreris dtso a particu-
lar case of the general coarea formula due to Federer. Tiee fatmula at “full
strength” (that is, in the language of Hausdorff measuregjires far less differ-
entiability of f and is much harder to prove.

Remark 4.1.9Sincef in Theorem 4.1.8 is smooth, we have by Sard’s Theorem
(Theorem F.11) that fopy almost everyg, MregN f~1(q) = f~1(q). Thus, with
slight abuse of notation, one could write the right side ofl (#0) with f~(q)
replacingMregN f~1(q).

Corollary 4.1.10 We continue in the setup of Theorem 4.1.8. For every Borel-
measurable nonnegative functignon N one has the integral formula

[ e)ITa(D)dou(p) = [ ol H@lw(@dpn(a).  (@4L.1)

Nreg

Proof of Corollary 4.1.10By (4.1.10) with¢ = o f, we have

/w (f))dpm(p) = /p[Mregﬂ f~(@)]w(a)dpn(a),
whence the result by Sard’s theorem (Theorem F.11), Pripog$t.16, and the
definitions. O

Let S™1 be the unit sphere centered at the originRfh We will calculate
p[Un(IF)] by relating it top[S'1]. We prepare by proving two well-known lem-
mas concernin™! and its volume. Their proofs provide templates for the more
complicated proofs of Lemma 4.1.15 and Proposition 4.1€ldvia



4.1 DINT DISTRIBUTIONS FORCLASSICAL MATRIX ENSEMBLES 197

Lemma 4.1.11S"1 is a manifold and for every & S™ we haveTy(S™ 1) =
{XeR":x-X=0}.

Proof Consider the smooth mafp= (x+— x-x) : R" — R. Let y be a curve with
y(0) =xe R"andy/ (0) = X € Tx(R") = R". We have(Tx(f))(X) = (y-y)'(0) =
2x-X. Thus 1 is a regular value df whence the result by Proposition F.16.0

Recall that (s) = [5° x5~ le~*dxis Euler's Gamma-function.

Proposition 4.1.12With notation as above, we have

Ly 2m?
p[S" Y = Fa) (4.1.12)

Proof Consider the smooth map
f = (x— x/||x]|): R"\ {0} — S 1.

Let y be a curve withy(0) = x € R"\ {0} andy'(0) = X € Tx(R"\ {0}) = R".
We have

() X) = (VI (©) = 2z — == (x . )

(2| I AN

and hence(Tx(f)) = [[x||*". Letting ¢ (x) = ||x||" L exp(—|x||), we have

/---/e‘x'xdxl---dxn:p[S"‘l]/ rle~dr,
0
by Theorem 4.1.8 applied tband¢. Formula (4.1.12) now follows. O

As further preparation for the evaluation pfU,(FF)], we state without proof
the following elementary lemma which allows us to considensformations of
manifolds by left (or right) matrix multiplication.

Lemma 4.1.13 et M C Mat,,(IF) be a manifold. Fix g GLy(FF). Let f= (p—
gp) : M — gM = {gpe Mat(F): pe M}. Then:

(i) gM is a manifold and f is a diffeomorphism.

(i) For every pe M and X e Tp(M) we havel'y(f)(X) = gX.

(iii) If g € Up(F), then f is an isometry (and hence measure-preserving).

The analogous statement concerning right-multiplicabigran invertible matrix
also holds. The lemma—especially part (iii) of it—will beefuently exploited
throughout the remainder of Section 4.1.

Now we can state our main result concerningl®) and its volume. Recall in
what follows thai8 = 1,2,4 according a& = R, C, H.
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Proposition 4.1.14U,(TF) is a manifold whose volume is

Uy (IF)] = 2 Bnin-1)/4 L R 2(2m)Px/2
p[Un(F)] Dlp[ ] lDlZB

W. (4.1.13)

The proof of Proposition 4.1.14 will be obtained by applythg coarea formula
to the smooth map

f = (g (last column ofg)) : Un(F) — SP"1 (4.1.14)
where, abusing notation slightly, we make the isometriaiifieation
P11 = [x e Maty, 1 (F) : x'x =1}

on the extreme rightin (4.1.14).

Turning to the actual proof, we begin with the identificatafi,(F) as a man-
ifold and the calculation of its tangent spaceat

Lemma 4.1.15Un(F) is a manifold andT),(Un(F)) is the space of anti-self-
adjoint matrices irMaty(IF).

Proof Consider the smooth map
h= (X X*X) : Mat,(F) — J4(F).

Let y be a curve in Ma{FF) with y(0) = I, and y(0) = X € T, (Maty(F)) =
Maty(F). Then, for allg € Un(F) andX € Maty(IF),

(Tg(h)(gX) = ((9y)"(gy))'(0) =X +X". (4.1.15)
Thusl, is a regular value df, and hence W) is a manifold by Proposition F.16.

To find the tangent spac®,(Un(F)), consider a curve/(t) € Un(F) with
y(0) = In. Then, becaus¥X* = I, on U,(F) and thus the derivative df(y(t))
vanishes fot = 0, we deduce from (4.1.15) thdt+- X* = 0, and henc@), (Un(F))
is contained in the space of anti-self-adjoint matrices ai§F'). Because the lat-
ter two spaces have the same dimension, the inclusion mast bguality. 0O

Recall the functiorf introduced in (4.1.14).

Lemma 4.1.16f is onto, and furthermore (provided thatni), for any se "1,
the fiber f-1(s) is isometric toU,_1(TF).

Proof The first claim (which should be obvious in cags R, C) is proved by
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applying Corollary E.8 withkk = 1. To see the second claim, note first that for any
W e Up_1(F), we have
W 0
[ 0 1 ] € Up(F), (4.1.16)

and that everg € Un(FF) whose last column is the unit vectey = (0,...,0,1)"
is necessarily of the form (4.1.16). Therefore the fithet (&) is isometric to
Un—1(TF). To see the claim for other fibers, note thag,ih € Un(FF), thenf(gh) =
gf(h), and then apply Lemma 4.1.13(iii). O

Lemma 4.1.17Let f be asin (4.1.14). Then:
(i) I(Ty(f)) is constant as a function ofgUn(FF).

(i) 3 (T, (1)) = v2P*.

(iii) Every value of f is regular.

Proof (i) Fix h € Un(FF) arbitrarily. Lete, = (0, ...,0, 1)T € Maty«1. The diagram

Ty (Un(F)) 2 g (901

Tin(g—hg) ! ! Ten (x—h)
Th(f
T(Un(F)) " Typy(S"Y)
commutes. Furthermore, its vertical arrows are by Lemmadl 3(if) induced by

left-multiplication byh, and hence are isometries of Euclidean spaces. Therefore
we havel(Ty(f)) = I(Ty,(f)).

(i) Recall the notation,j,k in Definition E.1. Recall the elementary matrices
&;j € Mat,(IF) with 1 in position(i, j) and 0's elsewhere, see Appendix E.1. By
Lemma 4.1.15 the collection

{(uaj —u'ej)/vV2:1<i<j<n uc{lijk}NF}
U {ugi:1<i<n,uef{ij,k}nF}

is an orthonormal basis fdF,, (Un(F)). Lety be a curve in W(F) with y(0) = I,
andy'(0) = X € T}, (Un(FF)). We have

(Ti, ())(X) = (ven)'(0) = Xen,
hence the collection

{(uen —ueni)/vV2:1<i<n,ue{Lij,k}NF}
U {uen:ueij,k}nF}

is an orthonormal basis fdt,, (Un(F)) N (ker(Ty, (f)))*. An application of Lemma F.19
yields the desired formula.
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(i) This follows from the preceding two statements, sirfcis onto. O

Proof of Proposition 4.1.14Assume at first that > 1. We apply Corollary 4.1.10
to f with ¢y = 1. After simplifying with the help of the preceding two lems)ave
find the relation

V2P plUn(F)] = p[Un 1 (F)] p[SP™Y).

By induction onn we conclude that formula (4.1.13) holds for all positiveptrs
n; the induction basa = 1 holds becaus8® ! = U (F). O

With an eye toward the proof of Proposition 4.1.4 about Jaenbembles, we
prove the following concerning the spaces FlagF) defined in (4.1.4).

Lemma 4.1.18With p g, n positive integers so thatypg = n, and D= diag(lp, 0q),
the collectiorFlag,(D,F) is a manifold of dimensiofi pg.

Proof In view of Corollary E.12 (the spectral theorem for self@dj matrices
overF), Flag,(D,[F) is the set of projectors in Mg{F) of tracep. Now consider
the open seD C 44 (FF) consisting of matrices whogeby-p block in upper left

is invertible, noting thab € O. Using Corollary E.9, one can construct a smooth
map from Mapyq(F) to ONnFlag,(D,F) with a smooth inverse. Now ld? €
Flag,(D,F) be any point. By definitiof® = U*DU for someU € Un(D,F). By
Lemma 4.1.13 the sgiUMU* | M € ONFlag,(D,F)} is a neighborhood oP
diffeomorphic toO N Flag,(D,F) and hence to Mat.q(F). Thus Flag(D,F) is
indeed a manifold of dimensigBipgq. O

Motivated by Lemma 4.1.18, we refer to FJgB, F) as theflag manifolddeter-
mined byD. In fact the claim in Lemma 4.1.18 holds for all real diagamatrices
D, see Exercise 4.1.19 below.

Exercise 4.1.19

Fix A1,...,An € R and putA = diag(A1,...,An). In this exercise we study
Flag,(A,F). Write {tn < --- < (e} = {A1,...,An} and letn; be the number of
indicesj such thatyj = Aj. (Thus,n=ng +---+ny.)
a) Prove that FlagA,F) is a manifold of dimension equal to
dim Uy (F) — 5¢_, dim U, (F).
b) Applying the coarea formula to the smooth miag: (g+— gAg~?) : Un(F) —
Flag,(D,F), show that

pIFiag(x.F)] = —PLnE r| Al @117

|_|| 1P Un. 1<i< <

Ai#
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Exercise 4.1.20MNe look at joint distribution of eigenvalues in the Gaussan
sembles (GUE/GOE/GSE) in yet another way. We continue vighniotation of
the previous exercise.

a) Consider the smooth mdp= (A (tr(A),tr(A%)/2,...,tr(A")/n)) : S (F) —
R". Show that)(Ta(f)) depends only on the eigenvaluesht %4 (F), that
J(T, (f)) =]A(A)|, and that a point oR" is a regular value of if and only if it
is of the formf (X) for someX e J# (F) with distinct eigenvalues.

b) Applying the coarea formula tb, prove that

[odonm= [+ ([ odpragnm ) dhadhe, @1
—

—00<A < <Ap< o

A=diagA1,....An)
where¢ is any nonnegative Borel-measurable functionséi(F).
c¢) Derive the joint distribution of eigenvalues in the GUEDE and GSE from
(4.1.17) and (4.1.18).

Exercise 4.1.2Fix Aq,...,An € Cand putA =diag(Ay,...,An). We define Flag(A,C)
to be the set of normal matrices with the same eigenvalués @¥henA has real
entries, then FlagA, C) is just as we defined it before.) Show that in this extended
setting Flag(A,C) is again a manifold and that formula (4.1.17), with- C and

B = 2, still holds.

4.1.3 An integration formula of Weyl type

For the rest of Section 4.1 we will be working in the setup of groups, see
Appendix F for definitions and basic properties. We aim taveéean integration

formula of Weyl type, Theorem 4.1.28, in some generalityjolvlencompasses
all the results enunciated in Section 4.1.1.

Our immediate goal is to introduce a framework within whichrdaform ap-
proach to derivation of joint eigenvalue distributions @spible. For motivation,
suppose thaG andM are submanifolds of MafF) and thatG is a closed sub-
group of U,(FF) such that{gmg: me M,g € G} = M. We want to “integrate
out” the action ofG. More precisely, given a submanifoddC M which satisfies
M={gAgl:ge G, A € A}, and a functionp onM such thatp (gmg 1) = ¢ (m)
for all me M andg € G, we want to represent¢dpm in a natural way as an
integral onA. This is possible if we can control the set of solutidgst ) € G x A
of the equatioryA g~ = mfor all but a negligible set aihe M. Such a procedure
was followed in Section 2.5 when deriving the law of the eigadues of the GOE.
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However, as was already noted in the derivation of the lavhefdigenvalues of
the GUE, decompositions of the form= gA g1 are not unique, and worse, the
set{(g,A) € Gx A:gAg~! =m} is in general not discrete; however, fortunately,
it typically has the structure of compact manifold. Thesesiderations (and hind-
sight based on familiarity with classical matrix ensempiastivate the following
definition.

Definition 4.1.22A Weyl quadrupléG,H, M, A) consists of four manifold§,H,M
andA with common ambient space M@F) satisfying the following conditions:

0) (a) Gis aclosed subgroup of JJF),

(b) H is a closed subgroup @, and
(¢) dimG—dimH =dimM — dimA.

() (@ M={gAgt:geG, A cA},
(b) A={hAh~1:hecH, A A},
(c) for everyA € Athe set{hAh~1:hec H} is finite, and
(d) forallA,u € Awe haved*u = uA*.

(1) There exists\’ C A such that
(@) N is open inA,
(b) pA(A\A) =0, and
(c) foreveryd € A’ we haveH = {ge G:gAg Lt e A}.

We say that a subsét c A for which (llla,b,c) hold isgeneric

We emphasize that by conditions (la,b), the gro@andH are compact, and
that by Lemma 4.1.13(iii), the measurgs andpy are Haar measures. We also
remark that we make no connectedness assumptions corg&nid, M and
A. (In general, we do not require manifolds to be connectatipagh we do
assume that all tangent spaces of a manifold are of the sanendion.) In fact,
in practice H is usually not connected.

In the next proposition we present the simplest example oegl \@Wuadruple.
We recall, as in Definition E.4, that a mathye Mat,(IF) is monomialf it factors
as the product of a diagonal matrix and a permutation matrix.

Proposition 4.1.23Let G= Uy(FF) and let HC G be the subset consisting of

monomial elements. Let M 4 (FF), let A C M be the subset consisting of (real)

diagonal elements, and l&t C A be the subset consisting of matrices with dis-
tinct diagonal entries. ThefG,H,M,A) is a Weyl quadruple with ambient space
Mat,(F) for which the set\’ is generic, and furthermore

pIGl _ plUn(F)]
P[] ~ mp[Uy(E)

(4.1.19)
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This Weyl quadruple and the value of the associated conp{&if p[H] will be
used to prove Proposition 4.1.1.

Proof Of all the conditions imposed by Definition 4.1.22, only ciiuhs (Ic),
(Ila) and (llic) require special attention, because theegtare clear. To verify
condition (Ic), we note that

dimM =n+pn(n—1)/2, dmA =n,
dimG= (B —-1)n+pBn(n—1)/2, dimH = (B —1)n.

The first two equalities are clear singeandA are real vector spaces. By Lemma
4.1.15the tangent spatie (G) consists of the anti-self-adjoint matrices in M@),
and thus the third equality holds. So does the fourth bec@gkl) consists of
the diagonal elements df,(G). Thus condition (Ic) holds. To verify condition
(lla), we have only to apply Corollary E.12(i) which assdhs possibility of di-
agonalizing a self-adjoint matrix. To verify conditionIgt), arbitrarily fix A € /',

U € A andg € G such thagAg—! = u, with the goal to show thaj € H. In any
case, by Corollary E.12(ii), the diagonal entriesuoére merely a rearrangement
of those ofA. After left-multiplying g by a permutation matrix (the latter belongs
by definition toH), we may assume that= pu, in which caseg commutes with
A. Then, because the diagonal entries\cdre distinct, it follows thag is diag-
onal and thus belongs td. Thus (llic) is proved. Thu$G,H,M,A) is a Weyl
guadruple for which\’ is generic.

We turn to the verification of formula (4.1.19). It is cleaatlthe numerator on
the right side of (4.1.19) is correct. To handle the denotoinae observe that
is the disjoint union of! isometric copies of the manifold4JF)", and then apply
Proposition F.8(vi). Thus (4.1.19) is proved. O

Note that condition (lla) of Definition 4.1.22 implies thging 1 € M for all
me& M andg € G. Thus the following definition makes sense.

Definition 4.1.24Given a Weyl quadrupl¢G,H,M,A) and a functionp on M
(resp., a subseh C M), we say thatp (resp.,A) is G-conjugation-invariantf
¢(gmgt) = ¢ (m) (resp.,1a(gmgt) = 1a(m)) for all g € G andm e M.

Given a Weyl quadrupléG,H,M,A) and aG-conjugation-invariant nonnega-
tive Borel-measurable functiop on M, we aim now to represent¢dpm as an
integral on/\. Our strategy for achieving this is to apply the coarea fdentoi the
smooth map

f=(g—grAg):GXxA—=M. (4.1.20)

For the calculation of the factd(T g »)(f)) figuring in the coarea formula for the
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map f we need to understand for each fixed A the structure of the derivative
atl, € G of the map

f=(g—grg ) :G—>M (4.1.21)

obtained by “freezing” the second variable fn For study of the derivative
Ty, (fy) the followingad hocversion of the Lie bracket will be useful.

Definition 4.1.25GivenX.,Y € Maty(F), let[X,Y] = XY-YX
Concerning the derivativg, (f, ) we then have the following key result.

Lemma 4.1.26Fix a Weyl quadrupléG,H,M,A) with ambient spacMat,(F)
and a pointA € A. Let fy be asin (4.1.21). Then we have

T, (f2)(T1,(H)) =0, (4.1.22)
Ty, (fA)(X) = [X,A], (4.1.23)
Ty, (£1)(T), (G)) € Ty (M)NT, (A)-. (4.1.24)

The proof will be given later.

Definition 4.1.27Let (G,H,M,A) be a Weyl quadruple. Giveh € A, let
D, : T, (G)NTy,(H)L — Ty (M)NT, (A)* (4.1.25)

be the linear map induced B, (f, ). For eacht € A we define th&Veyl operator
©, to equalD; o D,.

The abbreviated notatidd, and®, is appropriate because in applications below
the corresponding Weyl quadrugleé, H, M, A) will be fixed, and thus need not be
referenced in the notation. We emphasize that source aget tairthe linear map
D, have the same dimension by assumption (Ic). The determited®} , which is
independent of the choice of basis used to compute it, isegative becaus®,

is positive semidefinite, and hengéleto, is a well-defined nonnegative num-
ber. We show in formula (4.1.29) below how to reduce the dat@mn of ©, to

an essentially mechanical procedure. Remarkably, in thiohed applications,
we can calculate d&, by exhibiting an orthogonal basis fi,(G) NT),(H)*
simultaneously diagonalizing the whole famil@, } s cn.-

We are now ready to state the generalized Weyl integrationdéa.

Theorem 4.1.28 (Weyl)Let (G,H,M,A\) be a Weyl quadruple. Then for every
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Borel-measurable nonnegative G-conjugation-invariantgtion¢ on M, we have

_ p[G]
[ ddou = o [9(2)v/de®;don(2).

The proof takes up the rest of Section 4.1.3. We emphasiza eyl quadruple
(G,H,M,A\) with ambient space Ma{F) is fixed now and remains so until the
end of Section 4.1.3.

We begin with the analysis of the mapandf, definedin (4.1.20) and (4.1.21),
respectively.

Lemma 4.1.29The restricted function,fiy is constant on connected components
of H, anda fortiori has identically vanishing derivative.

Proof The functionf, |4 is continuous and by assumption (llc) takes only finitely
many values. Thus, |y is locally constant, whence the result. O

Lemma 4.1.30Let A C A be generic. Then for everyy@g G andAg € A, the
fiber f‘l(go)\ogal) is a manifold isometric to H.

It follows from Lemma 4.1.30 and Proposition F.8(v) tlﬂﬁ‘l(go)\ogal)] =
p[H].
Proof We claim that

f~%(googo?) = {(goh,h*Aoh) € Gx M :h e H}.

The inclusionD follows from assumption (llb). To prove the opposite inclu-
sion C, suppose now thajAg ! = go/\oggl for someg € G andA € A. Then
we haveg1go € H by assumption (llic), hencgy'g = h for someh € H, and
hence(g,A) = (goh,h~1Agh). The claim is proved. By assumptions (la,b) and
Lemma 4.1.13(iii), the map

(h—goh):H —goH ={goh:heH}

is an isometry of manifolds, and indeed is the restrictiohltof an isometry of
Euclidean spaces. In view of Lemma 4.1.29, the map

(h= (goh,h™*A0h)) : H — f~*(googy ) (4.1.26)
is also an isometry, which finishes the proof of Lemma 4.1.30. O

Note that we havenot asserted that the map (4.1.26) preserves distances as
measured in ambient Euclidean spaces, but rather mer¢lypheserves geodesic
distances within the manifolds in question. For manifoldhseveral connected
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components (as is typically the case f#), distinct connected components are
considered to be at infinite distance one from the other.

Proof of Lemma 4.1.26The identity (4.1.22) follows immediately from Lemma 4.9.2

We prove (4.1.23). Leg be a curve irG with y(0) =1, andy’(0) = X € T,,(G).
Since(y 1) = —y Yy, we haveT,(f))(X) = (yAy 1) (0) = [X,A]. Thus
(4.1.23) holds.

It remains to prove (4.1.24). As a first step, we note that
[A*,X]=0forA e AandX € T, (N). (4.1.27)

Indeed, lety be a curve im\ with y(0) = A andy'(0) = X. Then[A*,y] vanishes
identically by Assumption (lld) and hen¢g*, X] = 0.

We further note that
[X,A]-Y =X-[Y,A%] for X,Y € Mat,(F), (4.1.28)

which follows from the definitiorA- B = OtrX*Y for any A,B € Maty(IF), and
straightforward manipulations.

We now prove (4.1.24). Gived € T, (G) andL € T, (A), we have
T, (fA)(X)-L=[X,A]-L=X-[L,A*] =0,

where the first equality follows from (4.1.23), the secormhir(4.1.28), and the
last from (4.1.27). This completes the proof of (4.1.24) ahdemma 4.1.26. O

Lemma 4.1.31Let M : Maty(F) — Ty, (G) N Ty, (H)* be the orthogonal projec-
tion. FixA € A. Then the following hold:

0, (X) = M([A*,[A,X]]) for X € T, (G) N'Ty, (H)*, (4.1.29)
J(Tg)(f)) = +/det®, forgeG. (4.1.30)

Proof We prove (4.1.29). FiX,Y € Ty, (G) N'T),(H)~* arbitrarily. We have

©x(X)-Y = Dj(Da(X))-Y = Dy (X)-Da(Y)
= T, (f2)(X) - T, (f2)(Y)
= XA AL = [XALATTY =N([[X,A],A7]) Y
at the first step by definition, at the second step by defindfadjoint, at the third

step by definition oD, , at the fourth step by (4.1.23), at the fifth step by (4.1.28),
and at the last step trivially. Thus (4.1.29) holds.

Fix h € G arbitrarily. We claim that)(T, y)(f)) is independent oh € G.
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Toward that end consider the commuting diagram
T f
T (G A) oL,
T(in) ((G1)—(hg.u)) ! ! T (m—hmht).
Tna) ()
T (GxA) ————  Typri(M)
Since the vertical arrows are isometries of Euclidean sphgeassumption (la)
and Lemma 4.1.13(ii), it follows tha(T, (f)) = I(Ty, ) (f), and in particular
is independent dfi, as claimed.

We now complete the proof of (4.1.30), assuming without &dggenerality that
g = In. By definition

T, (G xA) =T, (G) & Tr(N),

where we recall that the direct sum is equipped with Euchidgaucture by declar-
ing the summands to be orthogonal. Clearly we have

(T (F) (X L) = Ty (1) (X) +L for X € Ty, (G) andL € Ty (A). (4.1.31)

By (4.1.24) and (4.1.31), the linear mdp, ,(f) decomposes as the orthogonal
directsum oo T, (f, ) and the identity map df, (A) to itself. Consequently we
haveJ(T), »(f)) = J(ZoT,(fy)) by Lemma F.18. Finally, by assumption (Ic),
formula (4.1.22) and Lemma F.19, we find tdéE o Ty, (f, )) = /det©, . O

Proof of Theorem 4.1.28 et Mg be the set of regular values of the mapwe
have

[ eIt Hma(mdpu(m) = [ §(A)\/de®; dpen(3.2)
- p[G]-/¢()\)\/detO)\dp/\()\). (4.1.32)

The two equalities in (4.1.32) are justified as follows. Thstfholds by formula
(4.1.30), the “pushed down” version (4.1.11) of the coameentila, and the fact
thatg (f(g,A)) = ¢(A) by the assumption that is G-conjugation-invariant. The
second holds by Fubini’s theorem and the fact ihatn = pc x pa by Proposi-

tion F.8(vi).

By assumption (lla) the map is onto, hencéVieg = M \ Mcsit, implying by
Sard's theorem (Theorem F.11) ti¥feq has full measure iM. For everym
Mreg, the quantityp[f~1(m)] is positive (perhaps infinite). The quantiyG| is
positive and also finite sind® is compact. It follows by (4.1.32) that the claimed
integration formula at least holds in the weak sense ti&tanjugation-invariant
Borel setA C M is negligible inM if the intersectiorAN A is negligible inA.

Now putM’ = {gAg1:g € G,A € A'}. ThenM’ is a Borel set. Indeed, by
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assumption (llla) the seY’ is g-compact, hence so M’. By constructiorM’ is
G-conjugation-invariant. Now we havws¥ ¢ M’ N A, hence by assumption (Il1b)
the intersectioM’ N A is of full measure im\, and therefore by what we proved
in the paragraph abové)’ is of full measure inM. Thus, if we replacep by
o1y in (4.1.32), neither first nor last integral in (4.1.32) chgas and further, by
Lemma 4.1.30, we can replace the faqtptl(rm f~1(m) in the first integral by
p[H]. Therefore we have

pIHI [ p(midpu(m) = plG] [ (A)\/deiBrdpn(2).

NN

Finally, sinceM’ N Myeg is of full measure irM andM’ N A is of full measure in
N, the desired formula holds. |

4.1.4 Applications of Weyl’s formula

We now present the proofs of the integration formulas ofiSeat.1.1. We prove
each by applying Theorem 4.1.28 to a suitable Weyl quadruple

We begin with the Gaussian/Hermite ensembles.
Proof of Proposition 4.1.1Let (G,H,M,A) be the Weyl quadruple defined in
Proposition 4.1.23. As in the proof of Lemma 4.1.17 abovel fam a similar
purpose, we use the notatief,i,j,k. By Lemma 4.1.15 we know tha,(G) C
Maty(F) is the space of anti-self-adjoint matrices, and it is cléatT),(H) C
T, (G) is the subspace consisting of diagonal anti-self-adjomtrizes. Thus the
set

{uaj —u'ejijue {1,i,j,k}nF,1<i<j<n}
is an orthogonal basis fak,(G) Ny, (H)~*. By formula (4.1.29), we have

Ogiagx (UBj — U"€Eji)
= [diag(x), [diag(x), ua; — u*eji]] = (xi —x;)*(uaj — ue;i)

A /det@diag(x) = |A(X)|B for x e R".

To finish up bookkeeping, note that the map- diag'x) send<R" isometrically to
A and hence pushes Lebesgue measuif@diorward topa. Then the integration
formula (4.1.1) follows from Theorem 4.1.28 combined withrhula (4.1.19) for

P[G]/pMHI. O

and hence
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We remark that the orthogonal projecti@rappearing in formula (4.1.29) is un-
needed in the Gaussian setup. In contrast, we will see ttiaeg play a nontrivial
role in the study of the Jacobi ensembles.

We turn next to the Laguerre ensembles. The following privjposprovides
the needed Weyl quadruples.

Proposition 4.1.32Fix integersO < p < q and put n= p+q. Let

G = {diagU,V):U € Up(F),V € Uy(F)} C Un(F),
H = {diagU,V',V"):U,V' € Up(F),V" € Ug_p(F),
U,V’ are monomialU (V')* is diagonal (U (V)" )2 =1} C G,
M = {[ >?* )é } :XeMathq(F)} C 4 (),
0 x O
N = x 0 O : X € Matp, is (real) diagonaly C M.
0 0 Gy

Let A’ C A be the subset consisting of elements for which the correipgmeal
diagonal matrix x has nonzero diagonal entries with didtadzsolute values. Then
(G,H,M,A) is a Weyl quadruple with ambient spadat,(F) for which the sef\’

is generic and furthermore

plG] _ PUp(F)]p[Uqg(FF)]
p[H]  2pPp!(2F=1/2p[U4(F)])Pp[Uq-p(F)]

(4.1.33)

We remark that in the cage= q we are abusing notation slightly. Fpr= q one
should ignor&/” in the definition ofH, and similarly modify the other definitions
and formulas.

Proof Of the conditions imposed by Definition 4.1.22, only corati (Ic), (l1a)

and (llic) deserve comment. As in the proof of Propositiah23 one can verify
(Ic) by means of Lemma 4.1.15. Conditions (lla,llic) follémm Corollary E.13
concerning the singular value decomposition in pMatF), and specifically fol-
low from points (i,iii) of that corollary, respectively. Tis (G,H,M,A\) is a Weyl

guadruple for which\’ is generic.

Turning to the proof of (4.1.33), note that the grdsis isometric to the product
Up(FF) x Ug(IF). Thus the numerator on the right side of (4.1.33) is justifiEioe
mapx — diag(x,x) from Uy(F) to Ux(IF) magnifies by a factor of/2. Abusing
notation, we denote its image ky2U1 (FF). The groupH is the disjoint union of
2Pp! isometric copies of the manifolth/2U; (F))P x Ug_p(F). This justifies the
denominator on the right side of (4.1.33), and completepthef. O
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Proof of Proposition 4.1.3 Let (G,H,M,A) be the Weyl quadruple defined in
Proposition 4.1.32. By Lemma 4.1.1%,,(G) consists of matrices of the form
diagX,Y), whereX € Maty(F) andY € Maty(F) are anti-self-adjoint. By the
same lemmaT,(H) consists of matrices of the form dighf,W,Z), whereW e
Maty () is diagonal anti-self-adjoint aritle Maty_p(RR) is anti-self-adjoint. Thus
T),(G)NTy,(H)* may be described as the set of matrices of the form

NS

wherea, b € Maty(F) are anti-self-adjoint witla vanishing identically on the di-
agonal, ana € Matp,q(IF). Given (real) diagonat € Mat,, we also put

0 x O
)\(x)::[x 00 ],
0 0 Gp

thus parametrizing\.. By a straightforward calculation using formula (4.1.28),
which the orthogonal projection is again unneeded, one verifies that

a x2a— 2xax+ ax?
b ” = ” X2b + 2xbx+ bx? ” ,

c X2c

O (x)

and hence that

p p
detO) (giagn)) = IA0C)[P - |_| 2|1 rl x|P@=P) for x € RP.
i= i=

0 X
X* 0
of formula (4.1.3), lety be the unique function oM such thaty(X') = ¢ (X)

for all X € Matp.q(F). By construction,y is G-conjugation-invariant, and in
particular, (A (diag(x)) depends only on the absolute values of the entries of
x. Note also that the maj — X’ magnifies by a factor of/2. We thus have
integration formulas

p
279 [ 9Py o) = [ Wilpu, 272 [ 9(x) [ex = [ wdpn.
Ry i=
Integration formula (4.1.3) now follows from Theorem 4 8 cdmbined with for-
mula (4.1.33) fop[G]/p[H]. O

We turn next to the Jacobi ensembles. The next propositmriges the needed
Weyl quadruples.

Now for X € Matp,q(F), putX’ = [ ] € M. With ¢ as in the statement
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Proposition 4.1.33Fix integersO < p<gand putn=p+q. Fix0<r<qg-p
and write g= p+r +s. Let

G = {diagU,V):U € Up(F),V € Ug(F)} C Uy(F),

H = {diagU,V’ V" V") :U,V' € Up(F),V" € U, (F),V" € Ug(F),
U, V'’ are monomialU (V')* is diagonal (U (V/)*)? = 1p} C G,
M == F|a%(dlad|p+r,0p+s),F),

A {diag({? | yx],Ir,OS):x,yeMatparediagonaI
p—

and¥ +y?=x} C M.

Let A’ C A be the subset consisting elements such that the absolutesvaf the
diagonal entries of the corresponding diagonal matrix ydog to the interval
(0,1/2) and are distinct. TherdG,H,M,A) is a Weyl quadruple with ambient
spaceMat,(F) for which/’ is generic and furthermore

PIC] _ p[Up(F)]p[Uq(F)]
p[H] B 2Pp! (2(5_1)/2P[U1(F)])pP[Ur(F)]p[US(IE‘)] . (4.1.34)

As in Proposition 4.1.32, we abuse notation slightly; ongtoanake appropriate
adjustments to handle extreme values of the parampigrs s.

Proof As in the proof of Proposition 4.1.32, of the conditions irepd by Defini-
tion 4.1.22, only conditions (Ic), (lla) and (llic) need bredted. One can verify
(Ic) by means of Lemma 4.1.18 and Lemma 4.1.15.

We turn to the verification of condition (lla). By Propositid.14, for every
m e M, there existg € G such that

T Xy
gmg —dlag({y Z},W)

wherex,y,z € Mat, andw € Mat,_,,, are real diagonal and satisfy the relations
dictated by the fact thagmg ™ is idempotent and has trage+r. If we have
trw=r, then after left-multiplyingy by a permutation matrix i we havew =
diagl;,0s), and we are done. Otherwisevirs£ r. After left-multiplying g by

a permutation matrix belonging 16, we can writey = diag(y’,0) wherey €
Maty has nonzero diagonal entries. Correspondingly, we writediag(x’,x")
andz = diag(Z,Z’) with X¥,Z € Maty andx”,Z’ € Mat,_y. We then have =

|y —X. Further, all diagonal entries of andZz’ belong to{0,1}, and finally,
trZ/ +trw >r. Thus, if we left-multiplyg by a suitable permutation matrix @&

we can arrange to havewr=r and we are done.

We turn finally to the verification of Condition (llic). Fix € A’ andg € G
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suchthagAg e A. Letx,y e Mat, be the real diagonal matrices corresponding
to A as in the definition of\. By definition of A, no two of the four diagonal
matricesx, Ip — X, Iy and Q have a diagonal entry in common, and hegce
diagU,V,W,T) for someU,V € Uy(F), W € U, (F) and T € Ug(F). Also by
definition of \’, the diagonal entries of have distinct nonzero absolute values,
and hence we havg € H by Corollary E.13(iii) concerning the singular value
decomposition. ThuG,H, M, A) is a Weyl quadruple for which\' is generic.

A slight modification of the proof of formula (4.1.33) yielétemula (4.1.34).
O

Proof of Proposition 4.1.4Let (G,H,M,A) be the Weyl quadruple provided by
Proposition 4.1.33. We follow the pattern established i pihevious analysis
of the Laguerre ensembles, but proceed more rapidly. Wenpraze A\ and
T),(G)NTy,(H)*, respectively, in the following way.

. X y
/\(Xay) - dlag<|: y Ip—X :| ;IF7OS) 9
g atb 0 0 O
c _ 0 a-b ¢ d
q 0 —c* 0O e|’
0 —d* —e 0
e

where:

e X,y € Matp are real diagonal and satisty + y? = X,

¢ a,b € Maty(F) are anti-self-adjoint witta vanishing identically along the diag-
onal, and

e c < Maty,(IF), d € Matp,s(F) ande € Mat; . s(IF).

By a straightforward if rather involved calculation usimgrhula (4.1.29), we have

a xa+ ax— 2xax— 2yay

b xb+ bx— 2xbx+ 2yby
@)\ (xy) C = XC

d (Ip—x)d

e e

(Unlike in the proofs of Propositions 4.1.1 and 4.1.3, thba@gonal projectiofl
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is used nontrivially.) We find that
\/ detO, (giagx).diagy))

= A ,|_£l<4m<1—xi>><ﬂ1>/2 - _ﬁ(x{(l—xoswz

for x,y € RP such that(1—x) = y? (and hence; € [0,1]) fori =1,...,p. The
calculation of the determinant is straightforward once itdted that the identity

(X1 + X2 — 2X1X2 — 2y1Y2) (X1 + X2 — 2X1%2 + 2y1Y2) = (X1 — X)?
holds ifx; (1 —x) = y? fori = 1,2.
Now let ¢ be as it appears in formula (4.1.5). Note thas an isometric copy

of Flag,(diag(1,0), R)P and that Flag(diag(1,0),R) is a circle of circumference
/21 Note also that

/f1+cose/2de /m

We find that

p dx
/ $(APYdpa(A) = 2P/2 /[O.l]qu(X) i|:| 7Jﬁ

Finally, note that the unique functiap on M satisfyingy/(W) = ¢ (W(P) is G-
conjugation invariant. We obtain (4.1.5) now by Theorem2BIlcombined with
formula (4.1.34) fopp[G]/p[H]. O

The next five propositions supply the Weyl quadruples ne&alptbve Proposi-
tion 4.1.6. All the propositions have similar proofs, wittetlast two proofs being
the hardest. We therefore supply only the last two proofs.

Proposition 4.1.34Let G=M = Uy(C). Let HC G be the set of monomial
elements of G. Lek C G be the set of diagonal elements of G, andNet A be
the subset consisting of elements with distinct diagonaie=n ThenG,H, M, A)

is a Weyl quadruple with ambient spat#at,(C) for which A’ is generic and
furthermore

p[H]/p[A]=n!. (4.1.35)

The proof of this proposition is an almost verbatim repetitof that of Proposi-
tion 4.1.23.

Putl:[o 1

1 0 } € Mat, and recall the notatioR,(8) used in Proposition
4.1.6.
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Proposition 4.1.35Let n=2¢/+ 1 be odd. Let G= M = Uy(R). Let W, be the
group consisting of permutation matriceshtat, commuting witldiag(t, ..., 1,1).
Let

A= {+diagR/(8),1): 0 € R}, H={WA: X €A\, weEWh}.

Let A’ C A be the subset consisting of elements with distinct (comngiigen-
values. Ther{G,H,M,A) is a Weyl quadruple with ambient spaktat,(R) for
which A\ is generic, and furthermore

p[H]/pIA =201, (4.1.36)

Proposition 4.1.36Let G=M = U, (H). Let H C G be the set of monomial ele-
ments with entries i UCj. LetA C G be the set of diagonal elements with en-
tries inC. Let/A’ C A be the subset consisting of elemehtsuch thadiag(A,A*)
has distinct diagonal entries. Thé®, H,M,A\) is a Weyl quadruple with ambient
spaceMat,(H) for which/A\ is generic, and furthermore

p[H]/p[A]=2"n!. (4.1.37)
Proposition 4.1.37Let n= 2¢ be even. Let G= Uy(R) and let MC G be the

subset on whicllet= 1. Let W- C G be the group consisting of permutation
matrices commuting wittliag(t,...,1). Put

A={R(0):0cR}ICM H={wA:AeA,weW,}CG.

Let A’ C A be the subset consisting of elements with distinct (conplgenval-
ues. TherfG,H,M,A) is a Weyl quadruple with ambient spadat,(R) such that
N is generic, and furthermore

p[H]/p[A] =2 (4.1.38)

Proposition 4.1.38Let n= 2¢ be even. Let G= Uy(R) and let MC G be the
subset on whicdet= —1. Put

W, = {diagw,+1,+£1):weW,,} CG,
A = {diagR_1(6),1,-1):0 e R} c M,
H = {wA:weW;,AeA}CG.

Let A’ C A be the subset consisting of elements with distinct (comgliegen-
values. Ther{G,H,M,A) is a Weyl quadruple with ambient spabtat,(R) for
which/\ is generic and furthermore

pH]/p[A] =2 (e — 1), (4.1.39)
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Proof of Proposition 4.1.370nly conditions (lla) and (llic) require proof. The
other parts of the proposition, including formula (4.1.,38% easy to check.

To verify condition (lla), fixm & M arbitrarily. After conjugatingn by some
element ofG, we may assume by Theorem E.11 thats block-diagonal with
R-standard blocks on the diagonal. Now the only orthog@zatandard blocks
are+1 € Mat; andR(0) € Mat, for 0 < 8 < 1. Since we assume det= 1,
there are even numbers of 1's anrd’s along the diagonal ah, and hence after
conjugatingm by a suitable permutation matrix, we hawes A as required. Thus
condition (lla) is proved.

To verify condition (llic), we fixA € A, g€ Gandu € A such thagAg™t =y,
with the goal to show thag€ H. After conjugatingA by a suitably chosen element
of W;", we may assume that the angts. .., 6, describing), as in the definition
of A, satisfy 0< 6; < --- < 6; < . By another application of Theorem E.11,
after replacingy by wg for suitably chosemv € W;F, we may assume that= p.
Theng commutes with, which is possible only i € A. Thus condition (llic)
is proved, and the proposition is proved. O

Proof of Proposition 4.1.38As in the proof of Proposition 4.1.37, only conditions
(lla) and (llic) require proof. To verify condition (lla) wargue exactly as in the
proof of Proposition 4.1.37, but this time, becausentlet —1, we have to pair
off a 1 with a—1, and we arrive at the desired conclusion. To prove conditio
(Illc), we again fixA € A/, g€ G andu € A such thatghAg™! = u, with the
goal to show thag € H; and arguing as before, we may assume ghatmmutes
with A. The hypothesis that has distinct complex eigenvalues then insures then
g=diagl,_2,£1,+1)v for somev € A, and hencg € H. Thus condition (llIc)

is verified, and the proposition is proved. O

Proof of Proposition 4.1.6It remains only to calculate/det®, for each of the
five types of Weyl quadruples defined above in order to coreple proofs of
(4.1.6), (4.1.7), (4.1.8), and (4.1.9), for then we obtainhleformula by invoking
Theorem 4.1.28, combined with the formulas (4.1.35), 86)..(4.1.37), (4.1.38)
and (4.1.39), respectively, for the ratidH]/p[A]. Note that the last two Weyl
guadruples are needed to handle the two terms on the right&{d.1.9), respec-
tively.

All the calculations are similar. Those connected with theopof (4.1.9) are
the hardest, and may serve to explain all the other calonistiThe Weyl quadru-
ples defined by Propositions 4.1.37 and 4.1.38 are hereeldhp(G,H* , M A™T)
and(G,H=,M~ A7), respectively. We treat each quadruple in a separate para-
graph below.

To prepare for the calculation it is convenient to introdivee special functions.
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Given real numbera andf, letD(a, 8) be the square-root of the absolute value
of the determinant of thR-linear operator

Z—R(-a)(R(a)Z) - ZR(B) - (R(a)Z - ZR(B)R(-B)

on Mab(R), and letC(a) be the square-root of the absolute value of the determi-
nant of theR-linear operator

Z— R(—a)(R(a)Z — Zk) — (R(a)Z — ZK)k

on Mab(R), wherek = diag(1, —1). Actually both operators in question are non-
negative definite and hence have nonnegative determir@nésfinds that

D(a,B) = |(€ - €P)(e* —e )|, C(a) =" —e |
by straightforward calculations.
Consider the Weyl quadruplg,H™,M* ,A") and for8 € R’ putA*(8) =

R/(6). The spaceT,(G) N T, (H")* consists of real antisymmetric matrices
X € Mat, such thatXy 51 =0 fori=1,...,¢. Using formula (4.1.29) one finds

that
Vdet@r- = [] D(&,6)=D(6)
1I<i<)<t

which proves (4.1.9) for all functiong supported oM ™.

Consider next the Weyl quadruglé,H—,M~,A~) and for@ ¢ R“~* putA —(9) =
diagR/(8),1,—1). The spacel|,(G)NTy,(H™)* consists of real antisymmet-
ric matricesX € Mat, such thatXy 51 =0 fori =1,...,¢— 1. Using formula
(4.1.29) one finds that

Vde - = [] D(6.6) [] C(&)-2,

1<i<j<t—1 1<i<t-1

which proves (4.1.9) for all functiong supported oM. (The last factor of 2 is
accounted for by the fact fa& € Mat, real antisymmetrick, [k, Z]] = 4Z.) This
completes the proof of (4.1.9).

All the remaining details needed to complete the proof ofpBsition 4.1.6,
being similar, we omit. O

Exercise 4.1.39

Let G = Uy(C) and letH C G be the subgroup consisting of monomial ele-
ments. LetM C Mat,(C) be the set consisting of normal matrices with distinct
eigenvalues, and It C M be the subset consisting of diagonal elements. Show
that(G,H,M,A) is a Weyl quadruple. Show thgfdet®, = [Ti<i<j<n|Ai — Aj|?
forall A =diag(A1,...,An) € A
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4.2 Determinantal point processes

The collection of eigenvalues of a random matrix naturadiy de viewed as a
configuration of points (ofR or on C), that is, as goint process This section
is devoted to the study of a class of point processes knowetasmdinantal pro-
cesses; such processes possess useful probabilistiatepsuch as CLT's for
occupation numbers, and, in the presence of approximatslatsoon invariance,
convergence to stationary limits. The point process detexdby the eigenvalues
of the GUE is, as we show below, a determinantal processhé&tideterminantal
processes occur as limits of the rescaled configuratiorgefwalues of the GUE,
in the bulk and in the edge of the spectrum, see Section 4.2.5.

4.2.1 Point processes — basic definitions

Let A be a locally compact Polish space, equipped with a (hedbssgafinite)
positive Radon measuge on its Borelg-algebra (recall that a positive measure
is Radonif p(K) < o for each compact sét). We let.# (/) denote the space
of o-finite Radon measures ok, and let.#, (A\) denote the subset ofZ(A\)
consisting of positive measures.

Definition 4.2.1(a) A point processs a random, integer-valuede .7, (A\). (By
random we mean that for any BorBIC A, x(B) is an integer-valued random
variable.)

(b) A point procesy is simpleif

PExeA: x({x})>1)=0. (4.2.1)

Note that the event in (4.2.1) is measurable due to the fatt\this Polish. One
may think abouty also in terms of configurations. Let” denote the space of
locally finite configurations im\, and let.2"# denote the space of locally finite
configurations with no repetitions. More precisely, o A, i € | an interval
of positive integers (beginning at 1 if non-empty), witfinite or countable, let
[xi] denote the equivalence class of all sequedggs, }ici, wheremruns over all
permutations (finite or countable) bf Then, set

X=X (N)={x=[x]{1, wherex;e, k<o, and
Xk | :=#{i: xi € K} < oo forall compac C A}
and
%#:{xe%:m;«éxjfori;&j}
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We endow.2” and 2°# with the o-algebra%’s- generated by the cylinder sets
CB = {x € 2 : |xg| = n}, with B Borel with compact closure aminonnegative
integer. Sincel = S, d, for some (possibly randong) < « and randony, each
point procesg can be associated with a point#i (in 2°7 if x is simple). The
converse is also true, as is summarized in the following elgary lemma, where
we letv be a probability measure on the measure spaeéy ).

Lemma 4.2.2A v-distributed random elementof 2" can be associated with a
point process( via the formulay (B) = |xg| for all Borel BC A. If v(2'7) =1,
theny is a simple point process.

With a slight abuse, we will therefore not distinguish begwé¢he point procesg
and the induced configuration In the sequel, we associate the lawo the point
processy, and writeE, for expectations with respect to this law.

We next note that ik is not simple, then one may construct a simple point pro-
cessx” = {(xj,Nj) ‘jil € Z (N*) onA\* = A x N, by lettingk* denote the num-
ber of distinct entries ix, introducing a many-to-one mappigg) : {1,...,K} —
{1,...,k*}with Nj = [{i: j(i) = j}| such thatifj (i) = j(i") thenx; = Xy, and then
settingxj = x; if j(i) = j. In view of this observation, we only consider in the se-
guel simple point processes.

Definition 4.2.3Let x be a simple point process. Assume locally integrable func-
tions py : AK—[0,), k > 1, exist such that for any mutually disjoint family of
subsetd,--- ,Dy of A,

k
Ev[.uX(Di)] :‘/l'l'k— o Pr(Xg, X )du(Xg) - - dp (%) -

Then, the functiongy are called thgoint intensitieg(or correlation function} of
the point procesg with respect tqu.

The term “correlation functions” is standard in the phyditesature, while “joint
intensities” is more commonly used in the mathematicaldiigre.

Remark 4.2.4By Lebesgue’s theorem, far< almost everyxy, ..., X),

i P(x(B(x,¢))=1i=1,...,k)
im .
e-0 Mi=1 H(B(Xi,€))

Further, note thapy(+) is in general only defineg®-almost everywhere, and that
Pr(X1,..., %) is not determined by Definition 4.2.3 if there arg j with x = X;.

= Pr(X1, .-+, X) -
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For consistency with Lemma 4.2.5 below and the fact that wesicker simple
processes only, we spi(x1, . ..,Xx) = 0 for such points.

The joint intensities, if exist, allow one to consider oeging sets, as well. In
what follows, for a configuratior € 2°#, andk integer, we lek”k denote the set
of ordered samples &fdistinct elements from. (Thus, ifA =R andx={1,2,3},
thenx? = {(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}.)

Lemma 4.2.5Let ¥ be a simple point process with intensit@as
(a) For any Borel set B- A with compact closure,

B (4NB1) = [pcb - i)dua) - dutx).  (422)

(b) If Dj, i = 1,...,r, are mutually disjoint subsets @f contained in a compact
set K, and if kis a collection of positive integers such thgt ; ki = k, then

Ey |JI=Ll< X(k[i)i) >k||‘| :/|-|D.in Pr(Xa, - X ) (dxg) -+ - p(d) - (4.2.3)

Proof of Lemma 4.2.5Note first that for any compad C A, there exists an
increasing sequence of partitiof®'}{_; of Q such that, for anx € Q,
N N QA ={x.
n ixeQ
We denote b;@r'ﬁ the collection of (ordered}-tuples of distinct elements ¢Q'}.
(a) It is enough to consider sets of the foBa= B; x By x - -- x By, with the sets
B; Borel of compact closure. Then,
k
M= S [(Qx--xQonBNx =y rlX(QiﬂBi)-
(Q17"'7Qk)egh (le"'va)eghi:
Thus,

EM)= Y / oc(Xes . XA (x) . dH(X) . (4.2.4)
(Qu.- ' Quel Qe QN8

Note thatVl! increases monotonically mto [x"¥NBJ|. On the other hand, since

is simple, and by our convention concerning the intensgigsee Remark 4.2.4,

limsup z / (X, X )dp(x1) ... dp(x) = 0.
M (QqQUe(2h)k 2k (Que QB

The conclusion follows from these facts, the fact tatis a Radon measure, and

(4.2.4).

(b) Equation (4.2.3) follows from (4.2.2) through the cteoB:= [ DiXk" O
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Remark 4.2.6Note that a system of nonnegative, measurable and symrhetde
tions{pr : A" — [0, ]} ; is a system of joint intensities for a simple point process
that consists of exactly points almost surely, if and only g = 0 forr >n, p1/n

is a probability density function, and the family is coneigt that is, for kx r <n,

[ o)A 06) = (1= Dpro s 0).

As we have seen, for a simple point process, the joint intiesgjive information
concerning the number of points in disjoint sets. Let Howbe given disjoint
compact sets, with = |J-_; D; be such thaE (2X(®)) < o for zin a neighborhood
of 1. Using the Taylor expansion, valid farin a neighborhood of 1,

(Dy) © L x(Di)! L . .
J_lzx = 1n,<xz< )HWQ@—M (4.2.5)

n,FLn

1) (x(Di) —ni+1)) -

o L . N
i nZlnianil:l KO n;! iEl(Zi -,

where we wrote

L

{miLn}={(ng,....,n.) eN';:Zlni =n},

one sees that under these conditions, the factorial monreds2.3) determine
the characteristic function of the collectidix(Dj)}-_;. A more direct way to
capture the distribution of the point procegss via its Janossi densitieghat we

define next.

Definition 4.2.7Let D C A be compact. Assume there exist symmetric functions
jox : DX — R, such that for any finite collection of mutually disjoint mesable
setsD; € D,i=1,...k

P(x(D>:k,x(Di>=1,i=1,...,k>=/n_ Jox(a %) [Tu(dx). (426
Then, we refer to the collectiohip k }i_, as theJanossi densitiesf x in D.

The following easy consequences of the definition are provede same way that
Lemma 4.2.5 was proved.

Lemma 4.2.8For any compact DC A, if the Janossi densitieg i, k > 1 exist
then

P(x(D)=k) = %/Dk Jok(xe, - %) [T u(dx), (4.2.7)
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and, for any mutually disjoint measurable setsID, i=1,...,k, and any integer
r >0,

P(X(D) =k+r.x(Di) =1i=1,....K (4.2.8)
1 .
=T oy 10 (e Xesr) [ THEX)

In view of (4.2.8) (withr = 0), one can naturally view the collection of Janossi
densities as a distribution on the spagg ,DX.

Janossy densities and joint intensities are (at leastljpda. restricted to a
compact seD) equivalent descriptions of the point procegsas the following
proposition states.

Proposition 4.2.9Let x be a simple point process ok and assume [ A is
compact.
a) Assume the Janossi densitiggjk > 1, exist, and that

K'j
/ Kok, %) |_| p(dx) < e, forallrinteger. (4.2.9)
Dk k! i
Then,x restricted to D possesses the intensities

D,....D
%D...0) (4.2.10)

2 k+r(X1,.. .,
Pe(Xts - %) = Jpker (X .
r:;) :

where

r

jD,k-H’(le"' anaDa"'7D) = /D" jD,k+I‘(le"' axkvylv"' ,yr) rll"l(dyi)
i=
b) Assume the intensitiﬁ(xl, ..., X) exist and satisfy
Z/k Kl Xl’ X |_|u (dx) <o, forallrinteger. (4.2.11)
D

Then, the Janossi densitigsj exist for all k and satisfy

Pk+r Xl7 XkaDa"'vD)

. , (4.2.12)

Jok(X1, .. X

;Ms

where

r

pk+l‘(xlv"'axkaDa"'7D) :/Drpk+l‘(xlv"'anayla"'7yl‘) rll"l(dyi)
i=
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The proof follows the same procedure as in Lemma 4.2.5: twart\ and use
dominated convergence together with the integrabilityditions and the fact that
X is assumed simple. We omit further details. We note in pgsfiat under a
slightly stronger assumption of the existence of expoaénmbments, part b) of
the proposition follows from (4.2.5) and part b) of Lemma.8.2

Exercise 4.2.1(Bhow that for the standard Poisson process ofxated onA\ =R
with u taken as the Lebesgue measure, one has, for any cobpadR with
Lebesgue measutB|,

pk(xla"'yxk) = eMD‘jD,k(Xla"'yxk) = )\k'

4.2.2 Determinantal processes

We begin by introducing the general notion of determinagotatesses.

Definition 4.2.11 A simple point procesy is said to be aleterminantal point
processwith kernelK (in short: determinantal process) if its joint intensitgs
exist and are given by

(K(%i,Xj)) - (4.2.13)

In what follows, we will be mainly interested in certain |dgdrace-class oper-
ators onlL?(u) (viewed as either real or complex Hilbert space, with inrredpict
denoted f,g), 2(,), motivating the following definition.

Definition 4.2.12An integral operator#” : L?(u) — L?(u) with kernelK given
by

H (DX = [KExyiy)du), 1 el

is admissible(with admissible kerneK) if .7 is self-adjoint, nonnegative and
locally trace-class, i.e., with the operatéf, = 157 1p having kerneKp (x,y) =
1o (X)K(x,¥)1p(y), the operators?” and.#p satisfy:

(@A ()2 = ((9), Pz, f.9€l(w), (4.2.14)
(0 ()2 >0, fel’(n), (4.2.15)

For all compact® C A, the eigenvaluef\P)i>o(€ RY)

of #p satisfyy AP < oo. (4.2.16)
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We say that’?” is locally admissiblgwith locally admissible kerne) if (4.2.14)
and (4.2.15) hold with#p replacing7”.

The following standard result, which we bring from [SimO5kheorem 2.12]
without proof, gives sufficient conditions for a (positivefthite) kernel to be ad-
missible.

Lemma 4.2.13Suppose K A x A — C is a continuous, Hermitian and posi-
tive definite function, i.e.3! ;ZzjK(x,x;) > 0 for any n, X,...,x, € A and
2,...,Z, € C. Then 7 is locally admissible.

By standard results, see e.g. [Sim05b, Theorem 1.4], agriteompact operator
¢ with admissible kerndk possesses the decomposition

HE(X) = kz A () (G, )12 (4.2.17)
=1

where the functiongy are orthonormal i.?(u), nis either finite or infinite, and
theAg > 0, leading to

K(xy) = kﬁ A)R)" (4.2.18)
=1

(The last equality is to be understoodLif(u x p).) If K is only locally admis-
sible,Kp is admissible and compact for any compBetand the relation (4.2.18)
holds withKp replacingk and theAy andg, depending oiD.

Definition 4.2.14 An admissible (respectively, locally admissible) intdgop-
erator.z” with kernelK is goodif the Ay (respectively)\l?) in (4.2.17) satisfy
Ak € (0,1].

We will later see (see Corollary 4.2.21) that if the kerdeh definition 4.2.11 of
a determinantal process is (locally) admissible, then istntufact be good.

The following example is our main motivation for discussidgterminantal
point processes.

Example 4.2.15.et(AN,--- | A) be the eigenvalues of the GUE of dimension N,

and denote byy the point procesgn(D) = 3N ; 1AiN€D. By Lemma 3.2.2 is
a determinantal process with (admissible, good) kernel

N-1
KN (x,y) = > ()Ui(y)
Ko

where the functiongy are the oscillator wave-functions.
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We state next the following extension of Lemma 4.2.5. (Resak Definition
3.4.3, thatA(G) denotes the Fredholm determinant of a kef@g!

Lemma 4.2.16Supposg is av-distributed determinantal point processes. Then,
for mutually disjoint Borel sets D¢ =1,...,L, whose closure is compact,

L L
E([1Z®)=a(1S (1-2)Kilp, |, 4.2.19
(Dl ) ( Dgl( z) D,) ( )

where D= J;_, D, and the equality is valid for al(z)5_, € C-. In particu-
lar, the law of the restriction of simple determinantal pesses to compact sets
is completely determined by the intensity functions, amdréistriction of a de-
terminantal process to a compact set D is determinantal &itmissible kernel

Ip(X)K(%,y)1p(y).

Proof of Lemma 4.2.16By our assumptions, the right hand side of (4.2.19) is well
defined for any choice dfz)_; € C* as a Fredholm determinant (see Definition
3.4.3), and

L
( ;1 nglD[> 1 (4.2.20)

n

1/ /det{ zp—1>K<xi,x,->1D(<x,->} u(dx) - p(dx)

n .
i,j=1

-/---/det{lD(Xi)K(Xian)lD;;j (Xj)}:j:lﬂ(dxl)...“(dxl_).

On the other hand, recall the Taylor expansion (4.2.5). ¢éin2.3) we see that
the v-expectation of each term in the last power series equalsdiresponding
term in the power series in (4.2.20), which represents ainegfioinction. Hence,
by monotone convergence, (4.2.19) follows. O

Note that an immediate consequence of Definition 4.2.3 aman& 4.2.16 is
that the restriction of a determinantal process with kekiedy) to a compact
subseD is determinantal, with kerndkepK(X,y)lyep.
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4.2.3 Determinantal projections

A natural question is now whether given a good kerndelone may construct
an associated determinantal point process. We will andweruestion in the
affirmative by providing an explicit construction of detén@ntal point processes.
We begin however with a particular class of determinantatpsses defined by
projection kernels.

Definition 4.2.17A good kernekK is called atrace-class projection kernéf all
eigenvalues\y in (4.2.18) satisfyA, = 1, andy}_; Ax < . For a trace-class
projection kerneK, setHx = sparf @ }.

Lemma 4.2.18Supposg is a determinantal point process with trace-class pro-
jection kernel K. Theny (A) = n, almost surely.

Proof By assumptionn < o« in (4.2.18). The matri>{K(xi,xj)}i‘szl has rank at
mostn for all k. Hence, by (4.2.3)x(A) < n, almost surely. On the other hand,

/pl (X)dp(x /Kxxdu /Iqa x)|Pdu(x) =n.

This completes the proof. O

Proposition 4.2.19Let K be a trace-class projection kernel. Then a simple deter
minantal point process with kernel K exists.

A simple proof of Proposition 4.2.19 can be obtained by rgthat the function
de{‘,j:1 K(xi,xj)/n! is nonnegative, integrates to 1, and by a computation amil
to Lemma 3.2.2, see in particular (3.2.10), kb marginal is(n — k)!delﬁfj=1
K(xi,Xj)/nl. We present an alternative proof, that has the advantageoofding
an explicit construction of the resulting determinantahpprocess.

Proof For a finite dimensional subspake of L2(u) of dimensiond, let 74
denote the projection operator irttband letKy denote an associated kernel. That
is, Ku(x,y) =38, W(X) g (y) for some orthonormal familyyx}d_, in H. For

x € A, setkl! (-) = Ky (x,-). (Formally,kt! = 6, in the sense of distributions.)
The functionkl! (-) € L?(u) does not depend on the choice of ba§i}, for
almost every: indeed, if{ @} is another orthonormal basis i, then there exist
complex coeﬁ‘icientz{a{-,j}»i‘fj:l such that

d d
= Zlak,jwj : Zlak,jaii.y =0
1= =
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Hence, foru-almost every,y,
d d

d

Y AXOEY) = S acE W) = 3 W),

k=1 kjoT=1 =1
We have thaKy (x,x) = ||k%||? belongs toL'(u) and that different choices of
basis{ Yk} lead to the same equivalent class of functionklitu). Let uy be the
measure or\ defined bydpy /du(x) = Ky (X, X).

By assumptionn < « in (4.2.18). Thus, the associated subspdges finite
dimensional. We construct a sequence of random variables.,Z, in A\ as
follows. SetH, = Hk andj =n.

If j =0, stop.
Pick a pointz; distributed according tp; /j.

Let Hj_1 be the orthocomplement to the functik{;j in Hj.
Decreasg by one and iterate.

We now claim that the point process= (Z1,...,Z,), of law v, is determinantal
with kernelK. To see that, note that

Ky = kg, in L2 (p), v-as.
Hence, the density of the random vectds, . . ., Z,) with respect tqu®" equals

H
D I[kx ‘H2 Iﬂllle%/HJ 12

pP(X1,...,%n) =
J:

., k)L, it holds that

n
V= Ik
[

equals the volume of the parallelepiped determined by thmmk;'l,...,k;'n in
the finite-dimensional subspallec L?(u). Since ki (x)ki! (x)u(dx) = K(x,Xj),

it follows thatV? = det(K(xi,xj)){'j_- Hence,

SinceH;j = H N (k!

Xj+17 "

1
p(X1,...,Xn) = o det(K(xi,xj))ﬂjzl.

Thus, the random variables,...,Z, are exchangeable, almost surely distinct,
and then-point intensity of the point processequalsn! p(Xa,...,%n). In partic-
ular, integrating and applying the same argument as in1@)2allk point inten-
sities have the determinantal form fo< n. Together with Lemma 4.2.18, this
completes the proof. O
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Projection kernels can serve as building blocks for trdasscdeterminantal
processes.

Proposition 4.2.20Suppose is a determinantal process with good kernel K of
the form (4.2.18), witty, Ak < o. Let{l}}_; be independent Bernoulli variables
with P(Ix = 1) = Ak. Set

Ki(xy) = ki'k""(w ).

and lety, denote the determinantal process with (random) kernellken,x and
X1 have the same distribution.

The statement in the proposition can be interpreted asgtttat the mixture of
determinental processgs has the same distribution gs

Proof Assume firsin is finite. We need to show that for ath < n, the m-point
joint intensities ofy andy; are the same, that is

det(K(x.)) = E[det(Ki ().

But, with A i« = lk@(x) andBy; = ¢ (x) for 1 <i <m,1 <k < n, then
(K (Xi,Xj))mleAB, (4.2.21)
and by the Cauchy-Binet Theorem A.2,
m
det(Ki(xi,xj)) = > detlAu mpxivy - vimp) 9By, - v {1, m}) -
hj=1 1<vi<-—<vm<n

SinceE(ly) = Ak, we have

E[det(A{l,..,m}x{v1,~~~,vm})] = det(c{l,..,m}x{vl,m,vm})
with G« = Akgi(Xi). Therefore,

E[i,jnég(Kl (%, %}))] (4.2.22)

= > detCurmysqvy, o vip) €MByy vy 1m})

1<vi<---<vm<n
m

= det(CB) = det(K (x.,x;).
=

where the Cauchy-Binet Theorem A.2 was used again in thénast

Suppose next that= . Sincey Ay < o, we have that/ := 5 Iy < o almost
surely. Thusy; is a well defined point process. LE,N denote the determinantal
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process with kernekN = SN ; lk@(X)¢g (y). Then,xN is a well defined point
process, and arguing as in (4.2.21), we get, for every int@ge

det(K"(x.x)) = (4.2.23)

det(A{l.“,m}x{vl.-u,vm})de(B{vl,m.vm}x{l,..m})
1<vi<--<vm<N
= > Ly, =1j=1.... | AE(Byuy . v (1,.mp) |2
1<vi<--<vm<N
In particular, the left side of (4.2.23) increasesNn Taking expectations and
using the Cauchy-Binet Theorem A.2 and monotone conveggeme get, with
the same notation as in (4.2.22), that

m . m N
E det(Ki(x,xj)) = lim E det(K]"(x;,X;j))
i,j=1 N—oo ij=1

= lim Z det(C{l.“,m}x{vl.-u,vm})de(B{vl,m.vm}x{l,..m})

N—o 1<y < <vm<N

— lim det(Kn(x,x})) = det(K(x,x)), (4.2.24)
N—ooi j=1 i,j=1
where we wrote (X, y) = TR A@(X) @ (y)- O

We have the following.

Corollary 4.2.21Let.#" be admissible ond(y), with trace-class kernel K. Then,
there exists a determinantal procegsvith kernel K if and only if the eigenvalues
of 2 belong to[0, 1].

Proof From the definition, determinantal processes are detethipeestriction
to compact subsets, and the resulting process is detertairtan, see Lemma
4.2.16. Since the restriction of an admissibté to a compact subset is trace
class, it thus suffices to consider only the case wheig trace class. Thus, the
sufficiency is immediate from the construction in Propaosité.2.20.

To see the necessity, suppgeés a determinantal process with nonnegative
kernelK(x,y) = ¥ Ak@(X) @ (y), with maxA; = A1 > 1. Let x; denote the point
process with each point deleted with probability - 1/, independentlyy; is
clearly a simple point process, and moreover, for disjaitsgtdd;, ..., Dy of A,

k
Ev[llel(DJ] :,/ﬂk o (1//\1)kpk(xla"' ;Xk)du(xl)"'du(xk)-

=1 Ui

Thus, x1 is determinantal with kernéd; = (1/A1)K. Sincey had finitely many
points almost surely (recall thKtwas assumed trace-class!), it follows tRék1 (A) =
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0) > 0. But, the procesg; can be constructed by the procedure of Proposition
4.2.20, and since the top eigenvalud@gfequals 1, we obtaiR(x1(A) > 1) =1,
a contradiction. O

We also have the following corollaries.

Corollary 4.2.22Let K be a locally admissible kernel @y such that for any com-
pact DC A, the nonzero eigenvalues opKelong to(0,1]. Then K determines
uniquely a determinantal point process An

Proof By Corollary 4.2.21, a determinantal process is uniquetgiteined byKp
for any compacD. By the definition of the intensity functions, this sequente
laws of the processes is consistent, and hence they detetmiguely a determi-
nantal process oA. O

Corollary 4.2.23 Let x be a determinantal process corresponding to an admissi-
ble trace class kernel K. Define the proceggsby erasing, independently, each
point with probability(1— p). Thenyp is a determinantal process with kernel pK.

Proof Repeat the argument in the proof of the necessity part ofll2oyat.2.21.
O

4.2.4 The CLT for determinantal processes

We begin with the following immediate corollary of Propdsit4.2.20 and Lemma
4.2.18. Throughout, for a good kerrt€land a seD C A, we write Kp(x,y) =
1o (X)K(x,y)1p(y) for the restriction oK to D.

Corollary 4.2.24 Let K be a good kernel, and let D be such thai Is trace-
class, with eigenvalue,k > 1. Then,x (D) has the same distribution &g &k
whereéy are independent Bernoulli random variables witéP= 1) = Ax and
P(ék=0)=1— A

The above representation immediately leads to a centréltliorem for oc-
cupation measures.

Theorem 4.2.29 et x,, be a sequence of determinantal processeA aith good
kernels K. Let D, be a sequence of measurable subsets sdich that(Kn)p, is
trace class an&/ar(xn(Dn)) —n—e ©. Then

Xn(Dn) — Ey[Xn(Dn)]

E
v/ Var(xn(Dn))

Zn:
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converges in distribution towards a standard normal vahkab

Proof We write K, for the kernel(Kn)p, and setS, = /Var(xn(Dn)). By
Corollary 4.2.24 x,(Dn) has the same distribution as the sum of independent
Bernoulli variables!, whose parameterg’ are the eigenvalues &f,. In partic-
ular, § = kAR (1—AD). SinceK,, is trace-class, we can write for any real number
6,

logE[e™] = Z|OgE[ee(EI'<L)‘;?)/Sn]

65, )
- —% +y log(L+ANe®/S — 1))

025 AP(L— AP AN(L—AD

YU k)+0(zk K ( k)),
25 S

uniformly for 8 in compacts. Sincgk/\Q/S;’; —n-w 0, the conclusion follows.

O

We note in passing that under the assumptions of Theore@4.2.
Vat(xa(Dn) = Y AL M) < Y AL = [ KolxXdhn(x).
Thus, for Vaf xn(Dy)) to go to infinity, it is necessary that

Aim Kn (X, X)dn(X) = +oo. (4.2.25)
—> 00 Dn

We also note that from (4.2.3) (with= 1 andk = 2, andpiin> denoting the inten-
sity functions corresponding to the keri@l from Theorem 4.2.25), we get

Var(xa(D)) = [ Kalx)dhn() — [ KE(ey)dun(xdun(y).  (4.2.26)

nxDn

Exercise 4.2.28Jsing (4.2.26), provide an alternative proof that a neagssan-
dition for Var(xn(Dp)) —  is that (4.2.25) holds.

4.2.5 Determinantal processes associated with eigenvalue

We provide in this section several examples of point praeesslated to configu-
rations of eigenvalues of random matrices, that possesteamiaantal structure.
We begin with the eigenvalues of the GUE, and move on to defieesine and
Airy processes, associated with the sine and Airy kernels.
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The GUE

[Continuation of Example 4.2.15] LéA N, --- | AY) be the eigenvalues of the GUE
of dimensiorN, and denote byy the point procesgn(D) = ZiN:1 1)\iN6D. Recall
that with the GUE scaling, the empirical measure of the eigkres is, with high
probability, roughly supported on the interyal2\/N, 2y/N].

Corollary 4.2.27Let D= [—a,b] with a,b > 0, a € (-1/2,1/2), and set [} =
N9D. Then
XN (Dn) — E[xn(Dn)]

Var(Xn(Dn))

converges in distribution towards a standard normal vahkab

Zy =

Proof In view of Example 4.2.15 and Theorem 4.2.25, the only thimgnged to
check is that Vaixn(Dn)) — o asN — . Recalling that

/R(Km)(x,y))zdw KM (xx),

it follows from (4.2.26) that for anyR > 0, and alN large,

Var(xu(Dn)) = /DN/<DN>C(K<N>(X’V>)2dXdy

1 X y 2
L X Y ) dxd
/mDN /mmmc (m NN

0 (R
/42/0 Sé',\\‘,)a (x,y)dxdy, (4.2.27)

Y

where

N) - 1 X y
00y = oK™ (2 g 2 )

is as in Exercise 3.7.5, alﬁm, (x,y) converges uniformly on compacts, lds—

o, to the sine kernel six—y)/(m(x—y)). Therefore, there exists a constant 0
such that the right side of (4.2.27) is bounded below, fayé&t, by clogR. Since
Ris arbitrary, the conclusion follows. O

Exercise 4.2.28Jsing again Exercise 3.7.5, prove thabi is the interva[—ay/N, by/N]
with a,b € (0,2), then Corollary 4.2.27 still holds.

Exercise 4.2.2%rove that the conclusions of Corollary 4.2.27 and Exerti2e28
hold when the GUE is replaced by the GOE.
Hint: Write x(\)(Dy) for the variable corresponding tpy(Dy) in Corollary
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4.2.27, with the GOE replacing the GUE. LtV (Dy) andx N1 (Dy) be inde-
pendent.

a) Use Theorem 2.5.17 to show th@{(Dn) can be constructed on the same prob-
ability space ag ™) (Dy), x(N*1(Dy) in such a way that, for ang > 0 there is a
C; so that

limsupP(|xn (Dn) — (XY (Dn) + XN (DN)) /2 > Ce) < &

N—oo

b) By writing a GOE(N+1) matrix as a rank 2 perturbation of alEg®N) matrix,
show that the laws ot (N)(Dy) and x(N*+1)(Dy) are close in the sense a copy of
x™N)(Dn) could be constructed on the same probability space®sY (Dy) in
such a way that their difference is bounded by 4.

The sine process

Recall the sine kernel
1sin(x—y)

Ksine(X,y) = T ox—y

TakeA = R andy to be the Lebesgue measure, andfferL?(R), define #ginef (X) =
stme(X_y)f(y)dy ert'ng ksme(z) - Ks|ne(x,y)|Z:X7y, we see thaksme(z) |S
the Fourier transform of the functidh)_; 51/ (&). In particular, for anyf €
L*(R),

(f, Hsinef) //f Y)Ksine(X— y)dxdy= / )|2d5 < Hf”Z

(4.2.28)
Thus,Ksine(X, y) is positive definite, and by Lemma 4.2.18gine is locally admis-
sible. Further, (4.2.28) implies that all eigenvalues atrietions of e to any
compact interval belong to the intervi@l 1]. Hence, by Corollary 4.2.22%5ine
determines a determinantal point processRofwhich is translation invariant in
the terminology of Section 4.2.6 below).

The Airy process

Recall from Definition 3.1.3 the Airy function Ax) = 2% [ e¢*/3-¢dZ, whereC

is the contour in thé-plane consisting of the ray joinireg /3w to the origin plus
the ray joining the origin t@"/3e, and the Airy kerneKair (X,y) = A(X,y) :=
(Ai (x) Ai’(y) — Ai'(x)Ai(y))/(x—Yy). TakeA = R and u the Lebesgue measure.
Fix L > —c0 and IeL%fAIW denote the operator drf([L,»)) determined by

Alry / KAlry X y )dy
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We now have the following.

Proposition 4.2.30For any L> —o, the kernel i, (x,y) is locally admissible.
Further, all the eigenvalues of its restriction to compaatissbelong to the interval
(0,1]. In particular, K,';iry determines a determinantal point process.

Proof We first recall, see (3.9.58), that
Kaiy (%,Y) = /OooAi (X+t) Al (y+)dt. (4.2.29)
In particular, for any. > —o and functionsf,g € La([L,®)),
(A0 = @ty 1= [ [ [ A x0 A v+ T 001y dixay

It follows thatJ‘{/A'-iry is self adjoint orLy([L, »)). Further, from this representation,
by an application of Fubini's theorem,

2

<f,%&wf>:/o°° /wa(x)Ai(x—H)dx dt>0.

Together with Lemma 4.2.13, this proves ttﬂé;ﬂ;ry is locally admissible.

To complete the proof, as in the case of the sine process, e ae upper
bound on the eigenvalues of restrictions#;, to compact subsets &. Toward
this end, deforming the contour of integration in the defimtof Ai(x) to the
imaginary line, using integration by parts to control thetribution of the integral
outside a large disc in the complex plane, and applying Gasitheorem, we
obtain the representation, fee R,

with the convergence uniform for in compacts (from this, one can conclude
that Ai(x) is the Fourier transform, in the sense of distribution®5f3/ /27, al-
though we will not use that). We now obtain, for continuousdiionsf supported
on[—M,M] C [L, ),

2

(f, Haig T) = /Om /me(x)Ai(xﬂ)dx dt (4.2.30)

&

2
dt.

IN

M
/ £(x) Al (X4 t)dx
M
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But, for any fixedK > 0,

K
[«

K
[«
i 1 /K
RmnooET‘/_K

wheref denotes the Fourier transform bfand we have used dominated conver-
gence (to pull the limit out) and Fubini's theorem in the lagtiality. Therefore,

2

M
/ f(x) Al (x+t)dx| dt

-M

2
dt

M R .
/ lim i/ d(S /3119 sy f(x)dx
~MR— 27T R

R 2
/ d(S/3+19) f(—s)ds‘ dt,

-R

/K /M f(x)Ai(x+t)dx2dt—Iim ‘ i/R e‘itse_iSS/Sf(S)dSrdt
«|)-m C Row )k |2 )oR
o0 1 00 . . 3 . 2
<limsu —/ e 15e71°/31 L (s)f sd% dt
< Rﬂmp | V27t ) e [ R.R]() (s)
00 . ~ 2 00 ~
—timsup [ [e"y prvfd di< [ [fo)*at=1]3,
R—o0 —0 —0

where we used Parseval’'s theorem in the two last equalitisgg (4.2.30), we
thus obtain

(f, Hairy f) < I F113.

first for all compactly supported continuous functiohsand then for allf €
Lo([—L,)) by approximation. An application of Corollary 4.2.22 cowigis the
proof. O

4.2.6 Translation invariant determinantal processes

We specialize in this section the discussion to determalgrbcesses on Eu-
clidean space equipped with Lebesgue’s measure. Thus deR? and lety be
the Lebesgue measure.

Definition 4.2.31A determinantal process witt\, u) = (RY,dx) is translation
invariantif the associated kern&l is admissible and can be written liéx,y) =
K(x—y) for some continuous functiok : RY — R.

As we will see below after introducing appropriate notati@meterminantal pro-
cessy is translation invariant if its law is invariant under (spdtshifts.

For translation invariant determinantal processes, thalitions of Theorem
4.2.25 can sometimes be simplified.
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Lemma 4.2.32Assume that K is associated with a translation invarianed®i-
nantal process oiRY. Then,

. 2
lim (2L) _Var(x([-L, L] / K (x)2dx. (4.2.31)

Proof. By (4.2.26) withD = [—L, L],

Var(x (D)) = Vol(D)K (0) — . K2(x—y)dxdy.

In particular,
\Vol(D) / K2(x—y)dxdy.
DxD

By monotone convergence, it then follows by taking- o that [K?(x)dx <
K(0) < . Further, again from (4.2.26),

Var(x(D)) = Vol(D /K x)2dx) +/dx/yy¢D (x—y)d

Since [a K(x)?dx < oo, (4.2.31) follows from the last equality. O

We emphasize that the RHS in (4.2.31) can vanish. In suchti&ity a more
careful analysis of the limiting variance is needed. Wenféxercise 4.2.40 for
an example of such situation in the (important) case of the kérnel.

We turn next to the ergodic properties of determinantal @sees. It is natural
to discuss these in the framework of the configuration spéicdort € RY, let T*
denote the shift operator, that is for any Borel Aet RY, T'A= {x+1t:x € A}.
We also writeT' f(x) = f(x+t) for Borel functions. We can extend the shift to
act on.2” via the formulaT'x = (x; +t)¥_; for x = (%) ;. T' then extends to a
shift on €%~ in the obvious way. Note that one can alternatively also eéfiry
by the formulaT! x (A) = x (T'A).

Definition 4.2.33Letx be a point process inZ", ¢ ,v). We say thak is ergodic
if for any A € ¢ satisfyingT'A = A for all realt, it holds thatv(A) € {0,1}. It
is mixingif for any A,B € €5, V(ANT'B) — .o V(A)V(B).

By standard ergodic theory,Xfis mixing then it is ergodic.
Theorem 4.2.34Let x be a translation invariant determinantal point process in

RY, with good kernel K satisfying #x|) —x—w 0. Thenx is mixing, and hence
ergodic.
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Proof Recall from Theorem 4.2.25 thgtk?(x)dx < . It is enough to check
that for arbitrary collections of compact Borel séE«;}iLzll and{G; }J-Lil such that
FNF =0andGjNGy =0fori#1', j # j’, and with the notatio®, = T'Gj, it
holds that for ang = {z };%, € Ctt, w = {w;}2, € C'z,

Ly Lo t L1 Lo
E XF AW @) L E X(F) ) g W) 4232
(R ) e () () wasn

DefineF = i1, R, G' =\?, G}. LetKy =1¢ 3 (1-2)K1g, KS = 1 312, (1—
L L

wj)Klg, Kip = 1¢ 52, (1 - wj)Klg, Ky = gt 574 (1~ 2)K1s. By Lemma

4.2.16, the left hand side of (4.2.32) equals,|folarge enough so th&NG! = 0,

A(Ky + K5+ Ko+ Kby). (4.2.33)

Note that by assumption, i, — -« 0, SURy K51 — ..o 0. Therefore, by
Lemma 3.4.5, it follows that

‘tl‘im |A(Ky 4 K5+ Ki,+ KSy) — A(Ky +KY)| = 0. (4.2.34)
Next, note that foft| large enough such th&n G = 0, Ky K}, = 0, and hence,
by the definition of the fredholm determinants,

A(Ky +K3) = A(K1)A(KS) = A(K1)A(K2),

whereKj := Kg and the last equality follows from the translation invadafK.
Therefore, substituting in (4.2.33) and using (4.2.34) geethat the left side of
(4.2.32) equald(K3)A(Kz). Using again Lemma 4.2.16, we get (4.2.32). O

Let x be a non-zero translation invariant determinantal poiatess with good
kernelK satisfyingK(|x|) —x—« 0. As a consequence of Theorem 4.2.34 and
the ergodic theorem, the limit

c:= lim x([-n,n%)/(2n)¢ (4.2.35)

n—oo
exists and is strictly positive, and is called th&ensityof the point process.

For stationary point processes, an alternative descriptém be obtained by
considering configurations “conditioned to have a poinhatdrigin”. When spe-
cialized to one dimensional stationary point processés piint of view will be
used in subsection 4.2.7 when relating statistical pragseaf the gap around zero
for determinantal processes, to ergodic averages of sgmcin

Definition 4.2.35Let x be a translation invariant point process, andléeenote a
Borel subset oRY of positive and finite Lebesgue measure. Paén distribution
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Q associated witly is the measure o7, (Rd) determined by the equation, valid
for any measurabla,

QA =E ( / 1A<T5x>x<ds>) JE(X(B)).

We then have:

Lemma 4.2.36The Palm distribution Q does not depend on the choice of thel Bo
set B.

Proof We first note that due to the stationarify(x(B)) = cu(B) with u the
Lebesgue measure, for some constaitt is referred to as thimtensityof x, and
for determinantal translation invariant point proces#tespincides with the pre-
viously defined notion of intensity, see (4.2.35)). It is s from the definition
that the random measure

xa(B) = [ 1a(T0x(ds)

is stationary, namelya(T'B) has the same distribution as(B). It follows that
ExXa(T!B) = Exa(B) for all t € RY, implying thatExa(B) = cau(B) for some
constantcy, since the Lebesgue measure is (up to multiplication byasc#he
unique translation invariant measure®f. The conclusion follows. O

Due to Lemma 4.2.36, we can speak of the point prog@sattached to the
Palm measur€), which we refer to as th®alm process Note thatx? is such
thatQ(x°({0}) = 1) = 1, i.e. x° is such that the associated configurations have
a point at zero. It turns out that this analogy goes deepérjrafact the lawQ
corresponds to “conditioning on an atom at the origin”. \{gtdenote thé/oronoi
cell associated wittx©, i.e., with B(a,r) denoting the Euclidean ball of radius
arounda,

Vyo = {t e R%: x°(B(t,[t|)) = 0} .

Proposition 4.2.37Let x be a nonzero translation invariant point process with
good kernel K satisfying KX|) — |y« O, with intensity c. Letx® denote the
associated Palm process. Then, the law B @fin be determined from the law Q
of x° via the formula, valid for any bounded measurable function f

Ef(x) = CE/V F(TO)dt, (4.2.36)
XO

where c is the intensity of.
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Proof From the definition of? it follows that for any bounded measurable func-
tion g,

E [ o(Tx)x(ds) = cu(BIEQGX"). (4.2.37)

This extends by monotone class to jointly measurable naativegfunctionsh :
M (RY) xRY— R as

E/ h(Ttx,t)x (dt) = CE/ h(x°,t)dt.
Rd Rd
Applying the last equality th(x,t) = g(T x,t), we get

E/ g(x,t)x(dt) =cE/ g(T“XO,t)dt:cE/ g(T'x%, —t)dt. (4.2.38)
Rd Rd Rd

Before proceeding, we note a particularly useful consegeiefi(4.2.38). Namely,
let

2 = {x :there exist #t' € RY with [t|| = ||t'|| andx ({t})- x ({t'}) = 1}.
The measurability o7 is immediate from the measurability of the set
7' ={(tt) € Rt = |t'l,t #t}.
Now, with & = {x : x(y) = 1 for somey # t with |ly|| = ||t||},

1< [ Laxa,
Therefore, using (4.2.38),

P(Z) < cE /R Artpesdt.

Since all configurations are countable, the set-sfin the indicator in the inner
integral on the right side of the last expression is conthinea countable collec-
tion of d — 1 dimensional surfaces. In particular, its Lebesgue meagmishes.
One thus concludes that

P(2)=0. (4.2.39)

Returning to the proof of the proposition, apply (4.2.38jwi
a0t = FOX) Ly (qt)=1.x(B(0,1))—0» @Nd use that' x°(B(0, [t])) = 0 iff t € Vjo to
conclude that

E(fu)/h$m¢»£xwo):cE<LOwTW%m>.

SinceP(Z) = 0, it follows that [ 1y g o,t))=0X (dt) = 1, for almost every. This
yields (4.2.36).

O
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Exercise 4.2.38 et x be a hon-zero translation invariant determinantal poiot pr
cess with good kernd{. Show that the intensitg defined in (4.2.35) satisfies
c = K(0).

Exercise 4.2.3%9ssume thaK satisfies the assumptions of Lemma 4.2.32, and
define the Fourier transform

R(A) = /XeRd K (x) exp(27tix - A )dx € L2(RY).

Give a direct proof that the right hand side of (4.2.31) ismegative.
Hint: use that sinc& is a good kernel, it follows thatK || < 1.

Exercise 4.2.4(JCoL95] Taked = 1 and check that the sine kern&line(X) =
sin(x)/7x is a good translation invariant kernel for which the righhiaside of
(4.2.31) vanishes. Check that thena ik b are fixed,

Elx(Llab)]=L(b—a)/m
whereas
Var(x(L[a, b)) = % logL +O(1).

Hint: (a) Apply Parseval’s theorem and the fact that the Fourarsform of the
function sir(x)/mix is the indicator over the intervgl-1/2m,1/2m] to conclude
that [ K?(x)dx= 1/m= K(0).

(b) Note that, withD = L[a,b] andDy = [La— x,Lb —X],

2 20, 1- cos(Zu
/dx Ke(x—y)dy= /dx K / /DC 2 u,

from which the conclusion follows.

Exercise 4.2.41 et |V,0| denote the Lebesgue measure of the Voronoi cell for a
Palm procesg® corresponding to a stationary determinantal procesR%with
intensityc. Prove thag(|V,o|) = 1/c.

4.2.7 One dimensional translation invariant determinantprocesses

We restrict attention in the sequel to the case of most istéceus, namely to
dimensiond = 1, in which case the results are particularly explicit. lediewhen

d = 1, each configuratior of a determinantal process can be ordered, and we
write X = (...,X_1,Xp,X1,...) With the convention thak, < x1 for all i and

Xo < 0 < xq (by stationarity and local finitenesB(x({0}) = 1) = 0, and thus
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the above is well defined). We also ude= (...,x°;,0=x3,x),...) to denote the
configuration corresponding to the Palm proge&sThe translation invariance of
the point procesg translates then to stationarity for the Palm process inergs)
as follows.

Lemma 4.2.42Let x0 denote the Palm process associated with a determinantal
translation invariant point processonR with good kernel K satisfying X|) — |x—.c
0, and with intensity c- 0. Then, the sequeng8 := {x?, ; — x’}icz, is stationary

and ergodic.

Proof Let Ty% = {y ;}icz, denote the shift of®. Considerg a Borel function
onR? for somer > 1, and seg(y®) = g(y°,,...,y? ;). For any configuration
with X < X117 andx_; < 0 < Xg, sety := {Xi+1— X }iez. Setf(x) = g(X_r41—
Xory.. oy X —X—1), and letA, = {x : f(x) <u}. Ay is clearly measurable, and
by Definition 4.2.35 and Lemma 4.2.36, for any BoBelvith positive and finite
Lebesgue measure,

P(g(y°) < u)

Q) = ( / 1AU<TSx>x<ds>) Jeu(B)

E <i;xzeslg(Tiy><”> Jcu(B). (4.2.40)

(Note the different roles of the shiff&S, which is a spatial shift, an@', which is
a shift on the index set, i.e. ¢h) Hence,

IP@y°) < u) —P(G(TY") < u)| < 2/cu(B).

Taking B = B, = [—n,n] and them — o, we obtain that the left side of the last
expression vanishes. This proves the stationarity. Thedédy (and in fact,
mixing property) of the sequeng® is proved similarly, starting from Theorem
4.2.34. O

We also have the following analogue of Proposition 4.2.37.

Proposition 4.2.43Assume is a non-zero stationary determinantal procesgfon
with intensity c. Then, for any bounded measurable function

R0
E(f(x)) = cE/0 F(TXO)dt. (4.2.41)

Proof Apply (4.2.38) withg(x,t) = f(X)1x(x)=—t- O

Proposition 4.2.43 gives an natural way to construct thetgobcesg starting
from x° (whose increments form a stationary sequence!): indegupltes thaty
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is nothing but thesize biasedersion ofx?, where the size biasing is obtained by
the value ofxg. More explicitly, letx denote a translation invariant determinantal
process with intensitg, and letx? denote the associated Palm processRon
Consider the sequengé introduced in Lemma 4.2.42, and denote its lanQyy
Lety denote a sequence with a@Y satlsfymngy/dQV( ) = ¢y, letx° denote
the associated configuration, thats= ZJ 1¥i, noting thatxg = 0, and letU
denote a random variable distributed uniformly[6ri], independent ok°. Set

X = TU4X0. We then have

Corollary 4.2.44The point procesg has the same law as

Proof By construction, for any bounded measurable

1 00 d
Ef(X) = E/ £(TW8% du—E/ F(TR) S
0 %
4
- cE/ FTHO)dt = E f(x),
0
where Proposition 4.2.43 was used in the last step. O

Corollary 4.2.44 has an important implication to averages B, = [0,n]. For
a bounded measurable functibrand a point processonR, let

g F(TXx
fn(x) _ ZXtE.Bn ( ) )
I{i : X € Bn}|
Corollary 4.2.45 Let x be a translation invariant determinantal process with in-
tensity ¢, and good kernel K satisfying>¥ —y_.., 0, and Palm measure Q.
Then,

rI}im fn(X) = Eqf ,almost surely

Proof The statement is immediate from the ergodic theorem and Lemth42
for the functionsf,(x°). Since, by Corollary 4.2.44, the law ®4x is absolutely
continuous with respect to that &%, the conclusion follows by an approximation
argument. O

Corollary 4.2.44 allows us to relate several quantitiesitdriest in the study of
determinantal processes. For a translation invariantiétantal point process
let Gx = x1 — Xo denote thgaparound 0. WithQ, denoting the marginal oxﬁ of
the Palm measure, and wi@y defined bydQ1/dQ;(u) = cu, note that

PG =1) =P >1) = [ Qudu=c [ uQu(du).
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LetG(t) = P({x} n(—t,t) = 0) be the probability that the intervét-t,t) does not
contain any point of the configuration Letting Dy = 1(_y) Kt = 1p,K1p,, and
Xt = x(Dt), we have, using Lemma 4.2.16, that

G(t) = P(xt = 0) = lim E(2%) = A(K;), (4.2.42)

|2—0

that is,G(t) can be read off easily from the kerrtel Other quantities can be read
off G, as well. In particular, the following holds.

Proposition 4.2.46Let x be a translation invariant determinantal point process
of intensity c. Then, the functid@h is differentiable, and

‘93—?) = _2c/2:°Q1(dw). (4.2.43)

Proof By Corollary 4.2.44,

_ 1/2 1/2 oo _
Gt) = 2/ Pu>t)du=2 / Qu(dg)du
0 0 t/u

Zt/: dWW*Z/Woo Qi(ds).

where the change of variables=t/u was used in the last equality. Integrating
by parts, using/ (w) = —1/wand% (w) = Q1 ([w,)), we get

Gt = %) —2t/:w—161(dw)
— w(@)-20t | Qudw) = % (21) - 201 Qu([2,))
= c/:[w—Zt]Ql(dw).
Differentiating int we then get (4.2.43). O

Finally, we describe an immediate consequence of Propasii2.46, which
is useful when relating different statistics related to $pacing of eigenvalues
of random matrices. Recall the “spacing processissociated with a stationary
point process, i.e.y; = Xi+1 — X

Corollary 4.2.47 Let g be a bounded measurable functiorfopnand define g=
1S ,9(%). Then,

On —n-w EQ,0 :/ g(w)Q1(dw), almost surely
0
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In particular, with d (w) = 1y~2, we get

—dc;—ft) = 2clim (g")n, almost surely (4.2.44)

n—oo

4.2.8 Convergence issues

We continue to assumi€ is a good translation-invariant kernel @& satisfying
K(]X]) —x—w 0. In many situations, the kernl arises as a suitable limit of
kernelskn(x,y) that are not translation invariant, and it is natural to tesfarop-
erties of determinantal processé (or xN) associated witKy to those of the
determinantal process(or x) associated witl.

We begin with a simple lemma, that is valid for (not nece$gdranslation
invariant) determinantal processes. kgt denote a sequence of good kernels
corresponding to a determinantal proceds and letK be a good kernel cor-

responding to a determinantal processSetG(t) = P({x} N (-t,t) = 0) and
Gn(t) =P({(X"}N(-t,t) =0).

Lemma 4.2.48Let D, denote disjoint compact subsets ®f Suppose a se-
quence of good kernelsyksatisfy K (x,y) — K(x,y) uniformly on compact sub-

sets ofR, where K is a good kernel. Then, for any L finite, the randomorec
(XxN(Dy),...,xN(DL)) converges in distribution to the random vectg(Dy), ..., X (DL)).
In particular, Gy (t) —n_e G(t).

Proof: It is clearly enough to check that

E (ﬁlzf(m)) o E (ﬁlz”‘X(DU> .

By Lemma 4.2.16, wittD = |J5_;, the last limit would follow from the conver-
gence

L

L
A (1.3/2 (1- Zg)KNle> N A <1D/Z (1—zg)K1Dé> :
(=1 /=1

which is an immediate consequence of Lemma 3.4.5. O

In what follows, we assume th&t is a good translation-invariant kernel &
satisfyingK(|x|) —x—w 0. In many situations, the kernkl arises as a suitable
limit of kernelsKy (x,y) that are not translation invariant, and it is natural totesla
properties of determinantal process&s(or xN) associated withy to those of
the determinantal procegqor x) associated withK.



244 4, ME GENERALITIES

We next discuss a modification of Corollary 4.2.47 that isliapple to the
procesxN, and its associated spacing procg$s

Theorem 4.2.49 et g(x) = 1o, and define By = 2 37 ot (yN) . Suppose further
that n=0(N) —N_  is such that for any constanta0,
limsup sup |Kn(Xy)—K(x—y)|=0. (4.2.45)

N—o |x|+|y|<2an

Then,
oY N Eou0 = / Q1(dw), in probability. (4.2.46)
t

Proof: In view of Corollary 4.2.47, itis enough to prove thgh{t —0Ont| =Now 0,
in probability. Letc denote the intensity of the processFora > 0, letDpa =
[0,an]. By Corollary 4.2.45x(Dp.a)/n converges almost surely &/c. We now
claim that

N
D
w - g in probability. (4.2.47)
Indeed, recall that by Lemma 4.2.5 and the estimate (4.2.45)

1 1 ran anK(0 a
—EXN(Dn’a) = —/ [Kn(%,x) — K(0)]dx+ J — N —
n n.Jo n c

while, c.f. (4.2.26),

1 N 1 ran
Var( =x"(Dna) | < = KN (X, X)dX —N_e O,
n n< Jo
proving (4.2.47).

In the sequel, fa > 0 and let

12 12
Cn(sn) = N i; Lanoxt s isse C(SN) = o iZilrsm>xm+1—xi>S~

In view of (4.2.47), in order to prove (4.2.46) it is enoughstwow that for any
a,s>0,

|ECn(s.n) —EC(S,n)] —N—w 0, |E(Cn(s,n))®—E(C(S,n))?| —N—w O.
(4.2.48)
Fix 6 > 0, and divide the intervdD, an) into [n/d] disjoint intervalsD; = [(i —
1)5,i8) N [0,n), each of length 5. Let xN = xN(Di) and); = x(Di). Set

[an/d]
SN(s.8,n) = o i; LN N0 j=i41,.i+[s/5)
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and
[an/o]

We prove below that, for any fixesld,
IESV(s,8,n) —ES(S,8,n)| —N_w O, (4.2.49)
IE(S¥(s,8,n)?) — E(S(5,8,M)?)| =N-w O, (4.2.50)
from which (4.2.48) follows by approximation.
To see (4.2.49), note first that

1 [an/d] i+s/d]
ESV(s,d,n) = - Z E<1XiN>1 M XJN>
i=

j=i+1
1 [an/d] i+[s/0]

= = Y E{(1-1pn0) X
n i; < x=0 jli_Jlrl J
1 [an/3] +15/3) +15/3]
= - lim E z!' | -E Z
n i; max; |zj|—0 jﬂrl ! JEI, ]

L [aa]
- 53 (815 Knls) - A(lg Knlg)|

whereB; = U'in/fJ Dj andB;" = Uijjs/‘” Dj, and we used Lemma 4.2.16 in the
last equality. Similarly,

1 fan/o]
ESs =1 ) [A(18K1g) ~ A1 K1g)]

i=
Applying Corollary 4.2.45, (4.2.49) follows.
The proof of (4.2.50) is similar and omitted. O

4.2.9 Examples

We consider in this subsection several examples of detamtahprocesses.

The Biorthogonal ensembles

In the setup of Subsection 4.2.1, (g, @)i>o be functions in_?(A, ). Let

gij = /LM(X)fpj (x)du(x),1<i,j <N.
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Define the measurgN on AN by

uN(dxg,-- -, dxy) = (ilg (@(x )).NS t(gi(x;) r!du Xi) (4.2.51)

Lemma 4.2.50Assume that all principal minors of & (gij) are not zero. Then
the measurguN of (4.2.51) defines a determinantal simple point process it
points.

Proof The hypothesis implies th& admits a Gauss decomposition, that is it
can be decomposed into the product of a lower triangular angpger triangular
matrices, with nonzero diagonal entries. Thus, there endtices. = (Iij)_;
andU = (uj);_, so thatLGU = 1. Setting

p=Up P=Ly,
it follows that, with respect to the scalar productif{ ),

(@.07) =48, (4.2.52)

and further
N N N
KN (e, da) = C det(@(x))) det(Bi(x)) I'!du

for some constany. Proceeding as in the proof of Lemma 3.2.2, we conclude
that

H(dha, - ) = Cn det z 04) Picx)) |'ldu x)

ij=1

The proof of Lemma 4.2.50 is concluded by using (4.2.52) amputations sim-
ilar to Lemma 3.2.2 in order to verify the property in Remark.8. O

Exercise 4.2.51By using Remark 4.1.7, show that all joint distributions epp
ing in Weyl's formula for the unitary groups (Propositiori4) correspond to
determinantal processes.

Birth-death processes conditioned not to intersect

TakeA to beZ, u the counting measure ang, a homogeneous (discrete time)
Markov semigroup, i.€&,, : AxA—R™ so that, for any integer,m,

Knsm(x,y) = KnxKn(x,y) = [ Kn(x 2Kn(zY)H().
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and furtherf Kn(x,y)du(y) = 1. We assum&;(x,y) =0 if [x—y| # 1. We let
{Xn}n>0 denote the Markov process with kerii@l, i.e for alln < mintegers,

P(Xm € AlXj,j <n) =P(Xm € AlX,) = /EA Km-n(Xs,y)du(y).

Fix x = (xt < ... < xN) with X' € 2Z. Let {X}}ns0 = {(X}, -+, X)) }n=0 denote
N independent copies df¥%n}n>o, With initial positions(X3,...,X") = x. For
integerT, define the event = Moyt {XF < X2 < -+ < XN}

Lemma 4.2.52 (Gessel-Viennotvith the previous notation, sgt= (y* < --- <
yN) with y € 27Z. Then,

A
KF(xy) = P(X3r= Y|~Q72T)
def!,_; (Kot (X.y)))
le< <N de\Nj X ZJ)) I d[J(Zj) .
Proof The proof is an illustration of theeflection principle Let %1 (X,y),
X,y € 27, denote the collection ¢-valued, nearest neigbor patfw(¢)} 2T ; with
1m(0) =x, m(2T) =yand|(¢/+ 1) — ni(¢)| = 1. Let
Mar(x,y) = ({7 € Zor (X))}

denote the collection dfl nearest neighbor paths, with ttth path connecting'
andy'. For any permutation € ., setys = {y’)}N ,. Then,

o N _
detkor(Xy)) = 5 e0) Y [kt @259)
H oEh (), (ko)
where
2T-2 ) )
Kor (1) = Ka (X, 7(2 ( |‘L Ky(rt (k), 7t (k+ 1))) Ky (' (2T —1),y°0).

On the other hand, let
N CH = {{mL e Nar(xy) : {H}n{m} = 0if i # j}
denote the collection of disjoint nearest neighbor patmneoting« andy. Then,

P(X3r =y, dbt) = HKZT (4.2.54)
{rN 1ewczyl

Thus, to prove the lemma, it suffices to check that the totatrdaution in (4.2.53)
of collection of paths not belonging UZVC’Z(TV vanishes. Toward this end, the im-
portant observation is that because we assumed 27, for anyn < 2t andi, j <
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N, any pathrt € Mor (X, y!) satisfiesr(n) € 2Z+n. In particular, |f{n‘}I 1€
Uge.s Mar(X,Yo) and there is a tima < 2T and integers < j such thatt (n) >
i) (n), then there actually is a timma < n with 7' (m) = 71 (m).

Now, suppose that in a familyrr 1N | € Mar (X, Y0 ), there are integeiis< j so
thatr' (n) = ! (n). Consider the patft so that

m(f), k=i{>n
ﬁk(e):{ (), k=j,{>n
m*(0), else

Then, obviously[]N ; Kot (1) = [IN.; Ko (7). Further, for some’ € A, {7t 1N, €
Mot (X,Yo), With o and o’ differing only by the transposition afand j. In par-
ticular,e(o) +¢&(o’) =0.

We can now conclude: by the previous argument, the conioibin (4.2.53) of
the collection of paths wherg! intersects with any other path, vanishes. On the
other hand, for the collection of paths wheredoes not intersect any other path
(and thusrt*(2T) = yb), one freezes a path' and repeats the same argument to
conclude that the sum over all other paths, restricted rintéssect the frozen path
T but to haverr intersect another path, vanishes. Proceeding inductively
concludes that the sum in (4.2.53) over all collecti¢rig N, ¢ .#'C5¥, vanishes.
This completes the proof. O

Combining Lemma 4.2.52 with Lemma 4.2.50, we get the follayvi

Corollary 4.2.531n the setup of Lemma 4.2.52, let

N
Boty = <ot ﬂ{xi (2T)=y'}.
i=1

Conditioned on the ever#or , the procesgX(n),...,XN(n))ne 0,21] IS @ (time
inhomogeneous) Markov process satisfying, with ( <Z<..<?)and
n<2T,

N L N

P (XK = 2l#r) = Cu(n.Tx.y) det(Kn(¥.2))

qg t(Kar—n(Z,y)))

i
with
N

Cn(n,T,X,y) = /iﬁihlgg(Kn(x'7zJ))lﬁiS (KZT_n(i,yJ))_udu(z)

At any time n< 2T, the configurationX*(n),...,XN(n)), conditioned on the
event#sr y, is a determinantal simple point process.
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We note that in the proof of Lemma 4.2.52, it was enough to idensonly
thefirst time in which paths cross; the proof can therefore be adaptedver
diffusion processes, as follows. Take= R, u the Lebesgue measure, and con-
sider a time homogeneous, real valued diffusion pro¢¥gs-o with transition
kernel K¢(x,y) which is jointly continuous in(x,y). Fix x = (x! < --- < xN)
with X € R. Let {X{}t=0 = {(X,---,XN) li=0 denoteN independent copies
of {X }+>0, with initial positions(X},...,X}") = x. For realT, define the event
2 = No=t P4 <X < < XN

Lemma 4.2.54 (Karlin-McGregor) With the previous notation, the probability
measure RX} € -|o#) is absolutely continuous with respect to Lebesgue measure
restricted to the sefy = (Y <y? < ... <yM)} ¢ RN, with density § (y|.<#)
satisfying

def!,_; (Kr(X,y))
le< <N de{\lj KT X ZJ))ﬂde .

pT (ylor) =

Exercise 4.2.55Prove the analogue of Corollary 4.2.53 in the setup of Lemma
4.2.54. Namely:

(a) Fort < T, construct the densitf" ™Y of X} “conditioned ona N {X% =y}

so as to satisfy, for any Borel sedssB ¢ RN andt < T,

P(XX € A XX € BlaA) /rldi/r‘dy T (2)p* (y| ) -

(b) Show that the collection of densitie|§'T'X'y determine a Markov semigroup
corresponding to a diffusion process, and

N

NTXY oy N i j
O (Z)—CN,T(t,X,y)i(jjSE(Kt(X,Z))chjs (Kr—t(Z,y})

with
N

N S
Our(txy) = [ det(k(¢,2)) det(kr(Z.y)) r!du

whose marginal at any time< T corresponds to a determinantal simple point
process withN points.

Exercise 4.2.56a) Use Exercise 4.2.55 and the heat kernel
Ka(xy) = (2m)*/2g=0v/2

to conclude that the law of the (ordered) eigenvalues of tB&@oincides with
the law ofN Brownian motions run for a unit of time and conditioned noittier-
sect at positive times smaller than 1.
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Hint: start the Brownian motion at locations-0x; < x» < --- < Xy and then take
xn — 0, keeping only the leading term inand noting that it is a polynomial in
that vanishes whefi(y) = 0.

(b) Using part (a) and Exercise 4.2.55, show that the law ef(tindered) eigen-
values of the GUE coincides with the law NfBrownian motions at time 1, run
for two units of time, and conditioned not to intersect atifpastimes less than 2,
while returning to 0 at time 2.

4.3 Stochastic analysis for random matrices

We introduce in this section yet another effective tool foe study of Gaussian
random matrices. The approach is based on the fact thatdgesth@aussian vari-
able of mean zero and variance 1 can be seen as the valuegdt toha standard
Brownian motion. (Recall that a Brownian motidy is a zero mean Gaussian
process of covariande(WWs) =t A's.) Thus, replacing the entries by Brownian
motions, one gets a matrix-valued random process, to whathastic analysis
and the theory of martingales can be applied, leading toatize derivations and
extensions of laws of large numbers, central limit theoreansl large deviations
for classes of Gaussian random matrices that generali2&/igpeer ensemble of
Gaussian matrices. As discussed in the bibliographicalsy&ection 4.6, some of
the later results, when specialized to fixed matrices, ameotly only accessible
through stochastic calculus.

Our starting point is the introduction of the symmetric aretiditian Brownian
motions; we leave the introduction of the symplectic Braaymimotions to the
exercises.

Definition 4.3.1Let (Bijj,éi.j,l <i < j <N) be a collection of i.i.d. real valued
standard Brownian motions. Tlsgmmetrigresp. Hermitian) Brownian motion
denotedHN-P ¢ %’3, B =1,2, is the random process with entri{alsli'f'j’ﬁ (t),t>
0,i < j} equalto

L B +i(B-1)By), ifk<l,
NE \/B_N( Kl +1(B—1)By)) s
k| V2 B ifk=1. >

/BN

We will be studying the stochastic process of the (orderg®realues ofHN-A.

In subsection 4.3.1, we derive equations for the systemgafn@ialues, and show
that at all positive times, eigenvalues do not “collide”.€Bk stochastic equations
are then used in subsections 4.3.2, 4.3.3 and 4.3.4 to davivef large numbers,
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central limit theorems, and large deviations upper bourelpectively, for the
process of empirical measure of the eigenvalues.

4.3.1 Dyson’s Brownian motion

We begin in this subsection our study of the process of e@arg of time-
dependent matrices. Throughout, we(M4, - -- W) be aN-dimensional Brow-
nian motion in a probability spad€, P) equipped with a filtration# = { % ,t >
0}. LetAy denote the open simplex

An = {(%)1<ien ERN i xg < Xo < -+ <Xn_1 < XN},

with closureAy. With B € {1,2}, let XN-B(0) ¢ %’3 be a matrix with (real)
eigenvaluesAN(0),...,AN(0)) € An. Fort >0, letAN(t) = (AN(t),--- , AN (1)) €
Ay denote the ordered collection of (real) eigenvalues of

XNAB (1) = xNB0) + HNA (1), (4.3.2)

with HN2 as in Definition 4.3.1. A fundamental observation (due tody the
caseXN-B(0) = 0) is that the proces@\ N(t));>o is a vector of semi-martingales,
whose evolution is described by a stochastic differenyisiean.

Theorem 4.3.2 (Dyson).et (XN-A(t)),. , be asin (4.3.2), with eigenvalugs™ (t) )0
andAN(t) € Ay for allt > 0. Then, the processéaN (t))i~o are semi-martingales.
Their joint law is the unique distribution & (R*,RN) so that

P(vt>0, (AN(t), -, AN (1) €An) =1,

which is a weak solution to the system

Ny V2 1 1 .

with initial conditionAN(0).

We refer the reader to Appendix H, Definitions H.4 and H.3,tf@ notions of
strong and weak solutions.

Note that in Theorem 4.3.2, we do not assume #40) € Ay. The fact that
AN(t) € Ay for all t > 0 is due to the natural repulsion of the eigenvalues. This
repulsion will be fundamental in the proof of the theorem.

It is not hard to guess the form of the stochastic differeémtgpation for the
eigenvalues oXN-B(t), simply by writing XN-A(t) = (ON)*(t)A(t)ON(t), with



252 4, ME GENERALITIES

A(t) diagonal andON)*(t)ON(t) = Iy. Differentiating formally (using Ito’s for-
mula) then allows one to write the equations (4.3.3) and@mate stochastic dif-
ferential equations foBN(t). However, the resulting equations are singular, and
proceeding this way presents several technical difficultiestead, our derivation
of the evolution of the eigenvalu@d (t) will be somewhat roundabout. We first
show, in Lemma 4.3.3, that the solution of (4.3.3), whentsthatAy, exists, is
unique, and stays iAy. Once this is accomplished, the proof t{af(t));>o
solves this system will involve routine stochastic anaysi

Lemma 4.3.3LetAN(0) = (AN(0),--- ,AN(0)) € An. For anyf > 1, there exists
a unique strong solutiofiAN(t));=0 € C(RT,Ay) to the stochastic differential
system (4.3.3) with initial conditioAN(0). Further, the weak solution to (4.3.3)
is unique.

— —~

This result is extended to initial conditiond'(0) € Ay in Proposition 4.3.5.

Proof The proof is routine stochastic analysis, and proceed ieetisteps. To
overcome the singularity in the drift, one first introducesuoff, parametrized
by a paramete¥, thus obtaining a stochastic differential equation withddhitz
coefficients. In a second step, a Lyapunov function is intoedthat allows one
to control the timeTy until the diffusion sees the cut-off; before that time, the
solution to the system with cut-off is also a solution to thigimal system. Finally,
takingMM — o one shows thalyy — o almost surely, and thus obtains a solution
for all times.

Turning to the proof, set, faR > 0,

x1 if x| >R1,
w0 = { X

R?x otherwise
Introduce the auxiliary system

dAiN’R(t)ﬂ/BiNdW(tH% S ®ANO AL i=1,.N,

A
(4.3.4)
with /\iN'R(O) =AN(0) fori=1,...,N. Sincegr is uniformly Lipschitz, it follows
from Theorem H.6 that (4.3.4) admits a unique strong sahtadapted to the
filtration %, as well as a unique weak solutiéﬁﬁ,(o) € .#,(C([0,T],RV)). Let

= inf{t: min AT () - AR <R,
i#]

noting thatrgr is monotone increasing iR and

ANR@) = ANR () forallt < 1r andR < R. (4.3.5)
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We now construct a solution to (4.3.3) by taki§j(t) = ANR(t) on the eventr >
t, and then showing thak —r_« ©, almost surely. Toward this end, consider the
Lyapunov function, defined for= (xi,...,Xn) € An,

1N, 1
f(X)=f(X1,---,XN)=NZl>q —m;loglm—le-
i= i#]

Using that
log|x—y| <log(|x|+ 1) +log(ly| +1) and x2—2log(|x|+1) > —4,

we find that for alli # j,

1
f(Xg, -, Xn) > 4, —mlog|xi —Xj| < f(xq,---,xn) + 4. (4.3.6)

For anyM > 0 andx = (xg,...,Xn) € An, Set
R=R(N,M) = 4™ andTy =inf{t > 0: fANR(t)) > M}.  (4.3.7)

Sincef is C*(An,R) on sets where it is uniformly bounded (note here tha
bounded below uniformly), we have thgliy > T} € %7 forall T > 0, and hence
Twm is a stopping time. Moreover, due to (4.3.6), on the ef@it > T}, we get
thatforallt <T,

AR - AR >R,

and thus on the eved < Ty}, (ANR(t),t < T) provides a strong adapted so-
lution to (4.3.3). For=1,...,Nandj = 1,2, define the functions; j : Ay — R
by

1 1

Ui 1(X) :k;ixi % Ui 2(X) = Zlm

Itd’s lemma (see Theorem H.9) gives

2 N

dIANREY) = N2;(A”R<t>—§ui,1<ANR<t>>)ui.luNR(t))dt

i A i N,R N
+BN; <1+ 5 Ui 2(A (t))> dt+dM™(t), (4.3.8)

with MN(t) the local martingale

N 22 U
dM™(t) = B%Nglzl<i NZ/\NR ANR())olW(t).
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Observing that for ak = (x1,...,Xn) € AN,

S (107 2(3) = -
i; " 2 B k#%#i X — X X — X
kel
_ 1 ( 1 1 )_ 5 11
ku#iXI—Xk X=X X —Xq kgﬁ Xi— X Xi =X
k#l k£l

we conclude that fox € Ay,
N

zi(ui,l(x)2 —Ui(x)) =0.

Similarly,
N N(N—1)
iZLUI’l(X)XI ==

Substituting the last two equalities into (4.3.8), we get

2 1 2(1-B)
f /\N.R —(1+Z=_=
df( t)=( +B N)dH— BN?
Thus, for all@ > 1, for allM < oo, since(MN(t ATy ),t > 0) is a martingale with
zero expectation,

> ui2(A NR(t))dt+dMN(t).

E[f ANREATW))] < 3EATM]+ F(ANR(0)).
Therefore, recalling (4.3.6),

=E[(fANREATM)) +4) LTy,
+4] < BE[t AT+ 4+ FANR(0))

which proves that

3t+4+ f(ANR(0)

P(Ty <t) <
(Tw<1) < M+c

Hence, Borel-Cantelli's lemma implies that for alf R,
PEAMeN: Ty >t) =1,

and in particular],,2 goes to infinity almost surely. As a consequence, recalling
thatM = —4+ (logR)/N?, c.f. (4.3.7), and settingN(t) = ANR(t) fort < Ty,e,
gives, due to (4.3.5), a strong solution to (4.3.3), whichienwer satisfiea N (t) €

Ay for allt. The strong (and weak) uniqueness of the solutions to (4 t8dether



4,3 STOCHASTIC ANALYSIS FORRANDOM MATRICES 255

with ANR(t) = AN(t) on {T < T} and the fact thafyy — o almost surely, imply
the strong (and weak) uniqueness of the solutions to (4.3.3) O

Proof of Theorem 4.3.2As a preliminary observation, note that the lawBf? is
invariant under the action of the orthogonal (whiea: 1) or unitary (wher = 2)
groups, that iOHN-B(t)O*)i~ has the same distribution &BIN-A(t))i> if O
belongs to the orthogonal (B = 1) or unitary (if 3 = 2) groups. Therefore, the
law of (AN(t))¢=0 does not depend on the basis of eigenvectorot(0) and we
shall assume in the sequel, without loss of generality XAt (0) is diagonal and
real.

The proof we present goes ‘backward’ by proposing a way tairoot the ma-
trix XN-B(t) from the solution of (4.3.3) and a Brownian motion on the ogibnal
(resp. unitary) group. Its advantage with respect to a ‘Bydvproof is that we
do not need to care about justifying that certain quantiifined fromx\'# are
semi-martingales to insure that 1td’s calculus applies.

We first prove the theorem in cadg(0) € Ay. We begin by enlarging the
probability space by adding to the independent Browniarions{W,1 <i <N)
an independent collection of independent Brownian motjans1 <i < j <N),
which are complex i = 2 (i.ew;j = 23 (Wilj + \/—_1wizj) with two independent
real Brownian motiom;svilj ,wﬁ-) and real if = 1. We continue to usé; to denote
the enlarged sigma-algebogwij (s),1 <i < j <N,W(s),1 <i <N,s<t).

Fix M > 0 andR as in (4.3.7). We consider the strong solution of (4.3.3),
constructed with the Brownian motio8/,1 <i < N), till the stopping timeTy
defined in (4.3.7). We set, for< |,

1 1
dR(t) = Wmdwj (t), RY(0)=o. (4.3.9)

We letRN(t) be the skew-Hermitian matrix (i.&N (t) = —RN(t)*) with such en-
tries above the diagonal and null entries on the diagonate Mat since\ N (t) €
Ay for all t, the matrix-valued proces®\(t) is well defined, and its entries are
semi-martingales.

Recalling the notation for the bracket of semi-martingatefs (H.1), forA, B
two semi-martingales with values iy, we denote byA B); the matrix

4

((AB))ij = ((AB)ij)t =y (A, Bxj)t, 1 <i,j <N.
=1
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Observe that for atl> 0, (A, B); = (B*,A*);. We setON to be the (strong) solution
of

doN(t):oN(t)dFé“(t)—%ON(t)d«RN)*,RN)t, o) =Iy. (4.3.10)

This solution exists and is unique since it is a linear equmith ON andR is a
well defined semi-martingale. In fact, as the next lemma sh@N(t) describes
a process in the space of unitary matrices (orthogoraHf1).

Lemma 4.3.4The solution of (4.3.10) satisfies
oN)oN(t)* = oNt)*oN(t) =1 forallt >0.

Further, Iet D(AN(t)) denote a diagonal matrix with @N(t)); = AN(t); and set
YN(t) = ON(t)DAN(1))ON(t)*. Then,

P(vt >0, YNt) esgl) =

and the entries of the proce€gN (t));>o are continuous martingales with respect
to the filtration.7, with bracket

LY = N"H (12 (2— B) + Lij—uot.

Proof We begin by showing thal™ (t) := ON(t)*ON(t) equals the identityy for
all timet. Toward this end, we write a differential equation Fo¥ (t) := IN(t) — Iy
based on the fact that the procé€8'(t) ;>0 is the strong solution of (4.3.10). We
have

= (d([ dRY)*(s)(0Y)*(s), [ ON(s)dR"
CORLSRCLRICYCRCTCIN
N
= 3 4[| (@RY (510" (9D ( || MR
N N
= = 3% On(®0(0d(Ry, R
= - % Inn(t)d (R, R e - (4.3.11)
mn=1
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Therefore, settind.B = AB+ BA, we obtain

dkMt) = N®ERYY) - %d«RN)*aRNH
+[A(RY)*(t) - %d«RN)*aRN)t]JN(t)+d<(ON)*7ON>t
= KN@.R') — Sd((RY)” R +dro),
with drV(t)ij = — 3o KN d (RN, RY,)t. For any deterministié/ > 0 and
0< S<T, set, withTy given by (4.3.7),
K(MvS’T) = _max Sup|Ki’}l(T/\TM)|27

1<i,j<Ni<s

and note thaEk(M,S T) < « for all M,S T, and that it is non-decreasing in
S. From the Burkholder-Davis-Gundy Inequality (Theorem HiBe equality
Kn(0) =0, and the fact thalRN (t A Ty ) )i<T has a uniformly (inT) bounded mar-
tingale bracket, we deduce that there exists a con€tdv} < « (independent of
S T)suchthatforalS<T,

s
EK(M,ST) SC(M)E/ K(M,t, T)dt.
0
It follows thatEk (M, T, T) vanishes for alll, M. LettingM going to infinity we

conclude thakN(t) = 0 almost surely, that i©N (t)*ON(t) = Iy.

We now show tha¥N has martingales entries and compute their martingale
bracket. By construction,

dYN(t) = dONO)DAN()ON(t)* + ON()DAN(t))dON(t)*
+ONt)dDAN(t)ON (1) + d(OND(AN)(ON)*); (4.3.12)

where for alli, j € {1,--- ,N}, we have denoted

(d(O"DAM)(OM) )
=5 (o a4 AN (0L, O + S, B
= kzl<§ ik (1) (A, Ojj)t + A (1)d (O, jk>t+§ k(DA ik>t>
N
- kZlW(t)d<Oi'ﬂﬁj“k>t ;

and we used in the last equality the independencewfl <i < j < N) and
(W,1 <i <N) to assert that the martingale brackefdf andON vanishes. Set-
ting

dzN(t) := oV (t)*dYN(t)oN(t), (4.3.13)
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we obtain from the left multiplication b@" (t)* and right multiplication byON(t)
of (4.3.12) that
dZ2Nt) = (O dANODAN®)) +DAN(t)dON (1) ON(t)
+dDAN (1)) + ON(t)*d(OND(AN)(ON)y" ) ON(t). (4.3.14)

We next compute the last term in the right side of (4.3.14).afa, j € {1,--- ,N}?,
we have

N
(dO"DAM O )); = Y A (d(Ok Oje

But, by the definition (4.3.9) oRN,

N BNy 1
d kaRmk>t—1m:|1m7ékN()\lL\l(t)_/\N(t))2dt, (4.3.15)

and so we obtain

(d<OND()\N)(ON)*>I)ij - lSk;SN|\|()\l§\‘(t)k—)\IN(t))z.

Hence for alli, j € {1,--- ,N}2,

[OM(t)*d(OD(AN) (OM)*):ON (1)]ij = i ;

Similarly, recall that
oN(t)*doN(t) = dRY (t) — 27 1d((RY)*, RY);
so that from (4.3.15) we get, for allj € {1,---,N}?,
1
1;9. NAN () = A (1))2

ki

[OV(t)*dOM(1)];; = dR](t) — 2 11, dt.

Therefore, identifying the terms on the diagonal in (4.34dd recalling thaRY
vanishes on the diagonal, we find, substituting in (4.3.thaY,

daZ'(t) =/ BiNdwm

Away from the diagonal, for# j, we get
1

dZ)(t) = [dRY()D(AN (1)) + D(AN () dR ()] N

dwj (t).
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Hence,(ZN(t))i=0 has the law of a symmetric (resp. Hermitian) Brownian mation
Thus, sincgON(t) >0 is adapted,

Ny [T N N AN ()
YN@) /Oo (9)dZN(90(s)

is a continuous matrix-valued martingale whose quadrati@tion
d(yN Yﬂ,)t is given by

ijo i

N
= 2 OO}l (t)OPe ()0 (t)d < Zi, Zys >t

kI KT=1
1 N N N
= N Oik (1) Oji (1) Opye (1) Oy (1) (L= + Lp=11ki—k1r)dt
kI KT=1
1
= N Wii=iv T 1p=adij—vy)dt.

O

We return to the proof of Theorem 4.3.2. Applying Lévy’s dhem (Theo-
rem H.2) to the entries ofN, we conclude thatYN(t) — YN(0));>0 is a symmet-
ric (resp. Hermitian) Brownian motion, and $8N(t) )~ has the same law as
(XNB(t));=0 sinceXN(0) = YN(0), which completes the proof of the theorem in
caseYN(0) € Ay.

Consider next the case wheXé“F(0) € Ay \ An. Note that the condition
AN(t) ¢ Ay means that the discriminant of the characteristic polymbofix N-A (t)
vanishes. The latter discriminant is a polynomial in therieatof XNA(t), that
does not vanish identically. By the same argument as in tbefmf Lemma
2.5.5, it follows thatA N(t) € Ay, almost surely. Hence, for argy> 0, the law of
(XNB(t))>¢ coincides with the strong solution of (4.3.3) initializetd"# (¢).
By Lemma 2.1.19, it holds that for &t € R,

N N
1
Ny _aNQ))2 « = N.B iy yNB 2
i;(A. O =AT(S)" = § uZ:l(Hl, (t) —H;"(9)7,
and thus the a.s. continuity of the Brownian motions patkslte with the a.s.
continuity oft — AN(t) for any giverN. Lettinge — 0 completes the proof of the
theorem. 0

Our next goal is to extend the statement of Lemma 4.3.3 t@lrgbnditions
belonging taAy. Namely, we have the following.

Proposition 4.3.5Let AN(0) = (AN(0),---,A}(0)) € An. For any > 1, there
exists a unique strong solutigA N (t));>0 € C(R*,Ay) to the stochastic differen-
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tial system (4.3.3) with initial conditiohN(0). Further, for any t> 0, AN(t) € Ay
andAN(t) is a continuous function gfN(0).

When = 1,24, Proposition 4.3.5 can be proved by using Theorem 4.3.2. In
stead, we provide a proof valid for @I> 1, that does not use the random matrices
representation of the solutions. As a preliminary step, vasgnt a comparison
between strong solutions of (4.3.3) with initial conditiom\y.

Lemma 4.3.6Let (AN(t))=0 and (nN(t))i>0 be two strong solutions of4.3.3)
starting, respectively, fromN(0) € Ay andnN(0) € Ay. Assume thadN(0) <
nN(0) for alli. Then,

P(forallt >0andi=1,...,N, AN(@t) <nN@t) =1. (4.3.16)

Proof of Lemma 4.3.6We note first thatl(3; AN(t) — 3; nN(t)) = 0. In particular,
Z()‘iN ®-nM®) = Z()\iN(O) -n(0) <o0. (4.3.17)

Next, for alli € {1,--- N}, we have from (4.3.3) and the fact thgi (t) € Ay,
AN(t) € Ay for all t that

5 (NN =AN=nN+2M 1)
i (N O = n ) AN - ANE)

Thus, AN — nN is differentiable for alli and, by continuity, negative for small
enough times. LeT be the first time at whicliAN — nN)(t) vanishes for some
i€ {1,---,N}, and assum&@ < . Since(nN(t) — n)(t)(AN() - AN()) is

strictly positive for all time, we deduce that(AN — ni{\‘)h:T is negative (note
that it is impossible to havg\ N — nN)(T) = 0 for all j because of (4.3.17)). This

provides a contradiction sing@N — nN)(t) was strictly negative for< T. O

dt.

Zl-

dAN —nM)(t) =

We can now prove Proposition 4.3.5.

Proof of Proposition 4.3.5SetAN(0) = (AN(0),--- ,A}}(0)) € Ay and put fom €

Z, A7 (0) = AN(0) + L. We haveAN-"(0) € Ay and further ifn > 0, A" "(0) <
AN 0) < ANM0) < AN(0). Hence, by Lemma 4.3.6, the corresponding
solutions to (4.3.3) satisfy almost surely and fortal 0

AN < AN ) < AN ) < AN (@)

Since
iu”v“m —ANT() = (AN (0) - ANT(0) (4.3.18)

z
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goes to zero as goes to infinity, we conclude that the sequentbs™ andAN-"
converge uniformly to a limit, which we denote By¥. By constructionAN ¢
C(R*,Ay). Moreover if we take any other sequemt®P(0) € Ay converging
to AN(0), the solutionAN-P to (4.3.3) also converges &N (as can be seen by
comparingA NP(0) with someAN"(0), AN:—"(0) for p large enough).

We next show thaA N is a solution of (4.3.3). Toward that end it is enough
to show that for alt > 0, AN(t) € Ay since then if we start at any positive time
s we see that the solution of (4.3.3) starting frafi(s) can be bounded above
and below byAN" and AN-—" for all large enoughn so that this solution must
coincide with the limit(AN(t),t > s). So let us assume that there is 0 so that
AN(s) € Ay\Ay for all s< t and obtain a contradiction. We letbe the largest
i €{2,---,N} so thatA)(s) < AN (s) for k> 1 but AN ,(s) = AN(s) for s<'t.
Then, we find a constaf independent of andg, going to zero withn so that
for n large enough,

AL AN =Ck=1, AN - AM(9)] < en.

SinceAN" solves (4.3.3), we deduce that K t

N, N, 2 Wity Lt
AL > A n(O)WLB—NW N(sn —C(N-1))s.
This implies that/\,'\l'g(s) goes to infinity am goes to infinity, a.s. To obtain a
contradiction, we show that wiBy (n,t) := & 5N, (A" (t))2, we have

sup sup v/Cn(n,t) < o, a.s. (4.3.19)

N se[0jt]
With (4.3.19), we conclude that for all> 0, AN(t) € Ay, and in particular it is
the claimed strong solution.

To see (4.3.19), note that sinad™"(s) > AN () for anyn > n and alls by
Lemma 4.3.6, we have that

N / /
O(n.9) = Cu.9) = Y A9 -2 (9)[(A"(9)+ A1 (9)
s N,n N, 1o N,n N,
< 3 AN -ANE) G 3 (A1)
N

(vCn(n,s) +/Cn(1,9)) (AN“<0>—ANv“’<0>>,

IN
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where (4.3.18) and the Cauchy—-Schwarz inequality were isbe last inequal-
ity. It follows that

N
V(s < VOu(I.9) + 5 (A0 -ANT(0)),

and thus
sup sup V/Cn(n,s) < sup VCn(1,s +Zl/\N” ) — AN (0)).
n>r' s[0,t sc[0t

Thus, to see (4.3.19), itis enough to bound almost surely.gy Cn(n,t) fora
fixedn. From Ito’s Lemma (see Lemma 4.3.12 below for a generatinatf this
particular computation),

o 2\/2 N tN,n
CN(n,t)—DN(n,t)—kVB_Ni;/O AN (Sdw ()

with Dn(n,t) := Cn(n,0) + (5 + Mgt Define the stopping timér = inf{s:
Cn(n,s) > R}. Then, by the Burkholder—Davis—Gundy inequality (Theoi¢i8)
we deduce that

E[ sup Cn(n,sAR)?

sc[01]

< 2[Dn(n,t)]2+ 2N 2A/ sup Cn(n,sA R)]du
se[0,u]
< 2Dn(N)2+N"2At+N" 2/\/ [ sup Cn(n,sA Se)Fdu

sc[0,u]

where the constart does not depend dR Gronwall’'s Lemmathen implies, with
En(n,t) := 2[Dn(n,t)]? +N~2At, that

t
E[ supCn(n,sASR)?] < EN(n,t)+/ N PMUE (n, s)ds.
sc[0] 0

We can finally letR go to infinity and conclude thd&[sup. o Cn(n,s)] is finite

and so sup o v/Cn(n,s), and therefore sysup. gy +/Cn(n,s), are finite al-
most surely, completing the proof of (4.3.19). O

Exercise 4.3.LetHN4 = Xi'j\"B) be 2N x 2N complex Gaussian Wigner matrices
defined as the self-adjoint random matrices with entries

W
HN’B—ZLQI"'QB 1<k<l<N, xM_ . /Llge 1<k<nN
kI — \/m ) = =N, ka = 2Ngkk B> SK>
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where(éb)lgigﬁ are the Pauli matrices

a-(39)a=(2 3 )a=(% 3 )e=(5 %)

Show that withHN# as above, an&N-4(0) a Hermitian matrix with eigenval-
ues(AN(0),---,AN(0)) € Ay, the eigenvalueSAN(t),--- , AN (1)) of XN4(0) +
HN-4(t) satisfy the stochastic differential system

1 1 1
AN = —=—dW(O) + = F —————dt,i=1..2N. (4.3.20
=" W(HN;AiN(t)—AjN(t) ' (4.3.20)

Exercise 4.3.4Bru91] LetV (t) be anNxM matrix whose entries are independent
complex Brownian motions and [gt(0) be aNxM matrix with complex entries.
Let AN(0) = (AN(0),---,A}}(0)) € Ay be the eigenvalues &f(0)V (0)*. Show
that the law of the eigenvalues ¥{t) =V (t)*V (t) is the weak solution to

AN+ AN
)\N /\N

dAN(@t) =2 A ()dW()+2 +§ )dt,

with initial conditionAN(0).

Exercise 4.3.9Let XN be the matrix-valued process solution of the stochastic
differential systeniXN = dH"* — xNdt, with D(XN(0)) € Ay.
a) Show that the law of the eigenvalues@Y is a weak solution of

d)\iN(t):—dW NZ”‘N d —AN@)dt. (4.3.21)

b) Show that ifX) = HN-A(1), then the law ot is the same law for ali > 0.
Conclude that the Ia\l?,E,B) of the eigenvalues of Gaussian Wigner matrices is sta-
tionary for the process (4.3.21).

c) Deduce thaP,E,B) is absolutely continuous with respect to the Lebesgue mea-
sure, with density

N

_Bx2/4

L <y X —xjP Me P4,
1<i<J<N =

as proved in Theorem 2.5.Hint: obtain a partial differential equation for the
invariant measure of (4.3.21) and solve it.
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4.3.2 A dynamical version of Wigner’s Theorem

In this subsection, we derive systems of (deterministitfcintial equations sat-
isfied by the limits of expectation df.(t), ), for nice test functiong and

Ln®) =N"5 Gyng) (4.3.22)

where(AN(t))>0 is a solution of (4.3.3) fof > 1 (see Proposition 4.3.10). Spe-
cializingtoB =1 or 3 = 2, we will then deduce in Corollary 4.3.11 a dynamical
proof of Wigner’s theorem, Theorem 2.1.1, which, while restd to Gaussian
entries, generalizes the latter theorem in the sense thHbws one to consider
the sum of a Wigner matrix with an arbitrarfd-dependent Hermitian matrix,
provided the latter has a converging spectral distributidhe limit law is then
described as the law at time one of the solution to a complegds equation, a
definition which introduces already the concepfret convolutior(with respect
to a semi-circular variable) that we shall develop in Sectd3.3. In Exercise
4.3.18, Wigner’s theorem is recovered from its dynamicasics.

We recall that fofT > 0, we denote by([0, T],.#1(R)) the space of contin-
uous processes froff), T] into .#1(R) (the space of probability measures®&n
equipped with its weak topology). We now prove the convecgexri the empirical
measurd.y(-), viewed as an element 6{[0, T],.#1(R)).

Proposition 4.3.10Let B > 1 and letAN(0) = (AN(0),---,AN(0)) € Ay, be a
sequence of real vectors so thdl (0) € Ay,

Z||—\

sup
N>0

and the spectral measureyl0) =
infinity towards au € .#1(R).
Let AN(t) = (AN(t), -+, A} (t) 10 be the solution of(4.3.3)with initial con-
dition AN(0), and set Iy(t) as in (4.3.22). Then, for any fixed time I o,
(Ln(t))tefo,r] converges almost surely in(©, T],.#1(R)). Its limit is the unique
measure-valued procesf )ic(o,1] SO thatpo = p and the function

N
ZI +1) < oo, (4.3.23)
ﬁz 5)\N converges weakly as N goes to

Gi(2) = / (z— %) Ldpk(x) (4.3.24)
satisfies the equation
Gi(2) = Go(2) — /0 ' 6u(2)0,6:(2)ds (4.3.25)

forze C\R.
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An immediate consequence of Proposition 4.3.10 is thewviatig.

Corollary 4.3.11 For B = 1,2, let (XN#(0))nen be a sequence of real diago-
nal matrices, with eigenvalugd N(0),---,A}(0)) satisfying the assumptions of
Proposition 4.3.10. For t 0, let AN(t) = (AN(T),...,AN(t) € Ay denote the
eigenvalues of XA (t) = XN-B(0) + HN-B(t), and let Ly (t) be as in (4.3.22). Then,
the measure valued proceflsy(t))i>o converges almost surely towardg: )t>o0

in C([0,T],.#1(R)).

Proof of Proposition 4.3.10/Ne begin by showing that the sequeritg(t) )ic(o 1)

is almost surely pre-compact @([0, T],.#1(R)) and then show that it has a
unigue limit point characterized by (4.3.25). The key stémur approach is

the following direct application of Itd’'s lemma, Theorem3ito the stochastic
differential system (4.3.3), whose elementary proof wetomi

Lemma 4.3.12Under the assumptions of Proposition 4.3.10, for altT0, all
f € C?([0,T]xR,R) and allt€ [0, T],

(f(t,"),Ln(t)) = <f(0,-),LN(O)>+/t<(9sf(s’.)7|_N(S)>ds (4.3.26)
2///0)( dy S7y)C“-N(S)(X)C“—N(5)()/)0|s

+ (G- [0s ) Luohdst M),

where M\‘ is the martingale given for£ T by

2 N .
NI || ot (s AN (s,

We note that the bracket of the marting§ appearing in Lemma 4.3.12 is

M (1) =

' 2 At (.92
<M==\‘>t=ﬁ/()((@xf(ﬁx))z,LN(S»dsg Sugdo,gﬂlz 9l

We also note that the term multiplyir{@/8 — 1) in (4.3.26) is coming from both
the quadratic variation term in Ité’s lemma and the finiteiation term where
the terms on the diagona&l=y were added. That it vanishes whgn=2 is a
curious coincidence, and emphasizes once more that theititertase § = 2)
is in many ways the simplest case.

We return now to the proof of Proposition 4.3.10, and begishiywing that the
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sequencéln (t))icjo 1] is @ pre-compact family i€([0, T], .#1(R)) forall T < eo.
Toward this end, we first describe a family of compact seG(@, T], .#1(R)).

Lemma 4.3.13Let K be a an arbitrary compact subset.afi(R), let (fi)i>o be a
sequence of bounded continuous functions densg(iR)Cand let G be compact
subsets of §O, T|,R). Then, the sets

H =t e[0,T], i e K} {t—w(f) G} (4.3.27)

i>0

are compact subsets of 0, T],.Z1(R)).

Proof of Lemma 4.3.13The spaceC([0,T],.#1(R)) being Polish, it is enough
to prove that the se#” is sequentially compact and closed. Toward this end, let
(UM >0 be a sequence it¥”. Then, for alli € N, the functiong— (i) be-
long to the compact se@ and hence we can find a subsequep¢r) —n_e ©
such that the sequence of bounded continuous functiearm‘”(n)(fi) converges

in C[0, T]. By a diagonalization procedure, we can findiandependent subse-
quencep(n) —n—o % such that for all € N, the functionseu{p(”)(fi) converge
towards some function— Lk (fi) € C[0, T]. Becaus€ fi)i>o is convergence deter-
mining inK N.#1(R), it follows that one may extract a further subsequencé, stil
denotedg(n), such that for a fixed dense countable subsd0of], the limit Lk
belongs ta. The continuity ot— p(f;) then shows thaty € .#1(R) for all t,
which completes the proof thgi"),>0 is sequentially compact. Sinc# is an
intersection of closed sets, it is closed. Thifs,is compact, as claimed. O

We next prove the pre-compactness of the sequéneg),t € [0,T]).

Lemma 4.3.14Under the assumptions of Proposition 4.3.10, fie R*. Then,
the sequencl.n(t),t € [0,T]) is almost surely pre-compact in({, T],.#1(R)).

Proof We begin with a couple of auxiliary estimates. Note that froemma
4.3.12, for any functiorf that is twice continuously differentiable,

I/ W’?(%)'j(”dm(s)(xw Lu(s)y) (4.3.28)
_ ///01 £ (ax+ (1— a)y)dadLn(s)(X)dLn(S)(y).

Apply Lemma 4.3.12 with the functioh(x) = log(1+ x?), which is twice contin-
uously differentiable with second derivative uniformlyuraled by 2, to deduce
that

Supl(f, Lu(©)] < (F,Lu(O) + T(1+ )+ SupMN (0 (4.3.29)
t<T t<T
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with MN a martingale with bracket bounded byBN?)~* since|f’| < 1. By the
Burkholder—Davis—Gundy inequality (Theorem H.8) and Gisflev’s inequality,
we get that, for a universal constalkt,
2N\,
P(supMR(t)| > &) < =5 4.3.

(f;Tpl f()=¢€) < 2BNZ (4.3.30)
which, together with (4.3.29), proves that there exists a(T) < « so that for
M>T+Cy+1,

2 a.
P (tes[g%dog(x +1),Ln(t)) > M) < M T Cy 1A (4.3.31)

We next need an estimate on Holder nornt-ef(f,Ln(t)), for a twice bound-
edly differentiable functiorf on R, with first and second derivatives bounded by
1. We claim that there exists a constant a(T) so that for anyd € (0,1) and
M > 2,

Pl su f,Ln(t)) — (f,Ln(S)| > MO8 | < ——.
[‘Sqo‘g]K N()) = (f,Ln(s))] AN

lt-si<5

(4.3.32)

Indeed, apply Lemma 4.3.12 wit{x,t) = f(x). Using (4.3.28), one deduces that
forallt > s

(£ Ln®) — (FLLu()] < [1F][wls—t]+MNO) — MY (9], (4.3.33)

whereMN(t) is a martingale with bracket@ *N=2 [$((')?,Ln(u))du. Now,
cutting [0, T] to intervals of length we get, withd := [T& 1],

P( sup [MY (1) —MY(g)| > (M —1)61/8)
[t—s|<d

t,s<T

IA

J+1
P sup MY (t) —MP(k8)| > (M —1)6Y%/3
k=1 ko<t<(k+1)o

J+1 34 N N 4
< ———E sup  |M{(t) — M{ (ko
k; OL2(M—1)4 k6§t§(k+1)6‘ () = M7 (k)
4.3%\,52 ,o  ad? o
e 1)4(J+1)||f |5 =t m”f [l

where again we used in the second inequality Chebyshejuaiity, and in the
last the Burkholder—Davis—Gundy inequality (Theorem Hv@8h m= 2. Com-
bining this inequality with (4.3.33) completes the proo{413.32).
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We can now conclude the proof of the lemma. Setting
Ku = {p €.24(R): [log(L+x)du(x) < M},

Borel-Cantelli's Lemma and (4.3.31) show that

P( U N {vteo,T], La(t) € KM}> =1. (4.3.34)

No>0N>No

Next, recall that by the Arzela—Ascoli theorem, sets of threnf

C=({geC(0.T,R): sup g(t)—g(s)| < &, sup[g(t)| <M}
n t,5¢[0,T] te[0,T]
[t=si<nn
with sequencese,, n > 0} and{nn,n > 0} of positive real numbers going to zero
asn goes to infinity, are compact. Fére C?(R) with derivatives bounded by 1,
ande > 0, consider the subset 6{[0, T],.#1(R)) defined by

[oe]

Cr(1.6) = (|{H €C(OTL ()5 sup (1) el 1) < ol

Then, by (4.3.32),
4

P(Ly €Cr(f,e)%) < 22

g (4.3.35)

Choose a countable familfy of twice continuously (lalifferentiable functions
dense irCo(R), and setx = 1/K(|| fulleo + || filleo + || fi'[|0) 2 < 277, with
H =Kun ﬂ Cr(fx, &) C C([0,T],.#71(R)). (4.3.36)
k>1
Combining (4.3.34) and (4.3.35), we get from the Borel-€liiemma that

P<U N {LNE%}>:1.

No>0N>Ng
Since#” is compact by Lemma 4.3.13, the claim follows. O

We return to the proof of Proposition 4.3.10. To characeetie limit points
of Ly, we again use Lemma 4.3.12 with a general twice continuadiffigren-
tiable functionf with bounded derivatives. Exactly as in the derivation iegd
to (4.3.30), the Borel-Cantelli lemma and the Burkholdew3-Gundy inequality
(Theorem H.8) yield the almost sure convergencb’lﬁftowards zero, uniformly
on compact time interval. Therefore, any limit poipt,t € [0, T]) of Ly satisfies
the equation

/f(t,x)dut(x) :/f(O,x)duo(x)+/0t/o'?sf(s,x)dus(x)ds (4.3.37)
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1t 1 of(s,x) —of(sy)
5 | )Ry s dus(y)ds

Taking f (x) = (z—x) ! for somez € C\R, we deduce tha® (2) = [(z—x)du (x)
satisfies (4.3.24), (4.3.25). Note also that since the limis a probability mea-
sure on the real lines(z) is analytic inzforze C...

To conclude the proof of Proposition 4.3.10, we show belovémma 4.3.15
that (4.3.24), (4.3.25) possess a unique solution anaiytze C, := {z€ C:
O(z) > 0}. Since we know a priori that the support of any limit pojrtlives in
R for all t, this uniqueness implies the uniqueness of the Stieltfgsform ofy
for all t and hence, by Theorem 2.4.3, the uniquenegs ébr all t, completing
the proof of Proposition 4.3.10. O

Lemma 4.3.15Let I, 3 = {z€ C; : 0z> a|0Z,|2 > B} and for t> 0, set
N :={ze C;:z2+tGy(z) € C.}. Forallt >0, there exist positive constants
at, B, of, B such thal g, 5 C Ay and the function & Iy, g —2+1Go(2) € Ty

is invertible with inverse H: Iy g —T 4 . Any solution of(4.3.24) (4.3.25)is
the unique analytic function o, such thatfor allt and all 2 '/ g/,

Gi(2) = Go (Hi(2)) -

Proof We first note that sincéGo(2)| < 1/|02], O(z+tGp(2)) > Oz—t/Ozis
positive fort < (0z)? andJz > 0. Thus,lq g C A for t < (ayf3)?/(1+ af).
Moreover,|0Gy(z)| < 1/2|02 from which we see that for all> 0, the image of
[, p DY Z+1Go(2) is contained in somey pr providedf is large enough. Note
that we can choose thig, 5 andly, p decreasing in time.

We next use the method of characteristics. Gia solution of (4.3.24), (4.3.25).
Let us associate toe C the solution{z,t > 0} of the equation

0z =G(z), =2 (4.3.38)

We can construct a solutianto this equation up to timéJz)? /4 with Oz > 0z/2
as follows. We put foe > 0,

o) = [ X

= mdut(X),dth =G{(%), %=12

Z exists and is unique sin¢gf is uniformly Lipschitz. Moreover,

al(#) 1 1
e i e U e )
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implies that|0(Z)|2 < [|0(2)|? — 2t,|0(2)|?] and
O(F)—x 1 1
a0 = / ———d(x) € [— ,

D= e W e VR
shows thafl () stays uniformly bounded, independentlyeptip to time([z)2 /4
as well as its time derivative. Hencgf ,t < (0z)2/4} is tight by Arzela-Ascoli’'s
theorem. Any limit pointis a solution of the original equatiand such thdiiz >
0z/2 > 0. Itis unique sincé&; is uniformly Lipschitz on this domain.

Now, &Gt (z) = 0 implies that fott < (0z)?/4,
z =tGy(2) + 2z Gi(z+1tGp(2)) = Go(2) .

By the implicit function theoremz +tGo(2) is invertible fromrl g, g into g/ 5
since 14-t1Gy(2) # 0 (note thatlGy(z) # 0) onT ¢ g . Its inverseH; is analytic
from[ g g into Iy, 5 and satisfies

Gt(2) = Go(Ht(2))-

]

O

With a view toward later applications in Subsection 4.3.thproof of central
limit theorems, we extend the previous results to polynbtest functions.

Lemma 4.3.16Let 3 > 1. Assume that

C = sup max [AN(0 .
Ng}glgi;,gI i (0) <o

With the same notation and assumptions as in Propositiod@,3or any T< oo,
for any polynomial function g, the proce$&,Ln(t)))icjo,r] converges almost
surely and in all I, towards the procesg (q) )icjo7), i-€
limsup sup |(g,Ln(t)) = (q, )| =0 as,
T

N—eo tc[0,T]

and for all pe N,

limsupE[ sup [(q,Ln(t)) — (g, k)|P] = 0.
N—o0 te[0,T]

A key ingredient in the proof is the following control of theoments ofAj(t) :=
mavg<ien AN (1)] = max(AY (1), AN (1))

Lemma 4.3.17Let 8 > 1 and AN(0) € An. Then, there exist finite constants
a=a(p)>0,C=C(B), and for all t > 0 a random variableny(t) with law
independent of t, such that

P(nj(t) > x+C) < e N
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and further, the unique strong solution ¢f.3.3)satisfies, for all > 0,
AG (1) < AG0) +vinj(b). (4.3.39)

We note that for8 = 1,2,4, this result can be deduced from the study of the
maximal eigenvalue oKNA(0) + HNA(t), since the spectral radius 6f"-A(t)

has the same law as the spectral radiug/afiN-2(1), that can be controlled as

in Section 2.1.6. The proof we bring below is based on stdahasalysis, and
works for all > 1. It is based on the comparison between strong solutions of
(4.3.3) presented in Lemma 4.3.6.

Proof of Lemma 4.3.170ur approach is to construct a stationary procgsg) =
(nN),...,nN (1)) € Oy, t > 0, with marginal distributiorP(’\[‘;) = PE‘XZ/‘MB as in
(2.6.1), such that, witmg;(t) = max(n{ (t), —n}(t)), the bound (4.3.39) holds.
We first construct this process (roughly corresponding ¢égpfocess of eigenval-
ues ofHNA(t) /T if B = 1,2,4) and then prove (4.3.39) by comparing solutions

to (4.3.3) started from different initial conditions.
Fix € > 0. Consider, fot > &, the stochastic differential system

du(t) = ﬁdW(t)—ki N S 1u|N(t)dt. (4.3.40)

Nt & uNt) —uit) 2
Let Pﬁ denote the rescaled versionlﬁ{f}) from (2.5.1), that is the law oty with
density proportional to
2
A _)\j|B. e NBAZ/4
Il Il
BecausePﬁ (AN) = 1, we may takeuN(g) distributed according t®°, and the
proof of Lemma 4.3.3 carries over to yield the strong existesind uniqueness of
solutions to (4.3.40) initialized from such (random) iaitcondition belonging to
AN.

Our next goal is to prove thzﬂ,ﬁ is a stationary distribution for the system
(4.3.40) with this initial distribution, independently ef Toward this end, note
that by Itd’s calculus (Lemma 4.3.12), one finds that for amige continuously
differentiable functionf : RN SR,

uN(t) — 9 F(uN (D)
AE[f(u( 2Nt; ulN( —uN(t) ]
ZU. ()] +E| BNtzdz ()]

where we used the notatiahf(x) = dy f(x1,...,xn). Hence if at any time,
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uN(t) has lawP?, we see by integration by parts th@€[f(uN(t))]| vanishes
for any twice continuously differentiable Therefore (uN(t));>¢ is a stationary
process with marginal Ia\)?,’j. Because the marginﬁ’ﬁ does not depend og,
one may extend this process to a stationary proa€4s));o.

Setug (t) = max(ul(t), —ul(t)). Recall that by Theorem 2.6.6 together with
(2.5.11),
.1 .
dim logPS (An > u) = — inf ngz/4(s),

s>u

with ngz/4(s) > 0 fors> 2. Thus, there exi€f < o anda > 0 so that fox > C,
forallN e N,

P(Ui(t) > X) < 2P§ (An > x) < e 0N (4.3.41)

Define nextANO(t) = /iuN(t). Clearly, AN9(0) = 0 € Ay. An application
of Itd’s calculus, Lemma 4.3.12, shows thlt9(t) is a continuous solution of
(4.3.3) with initial data 0, and N-0(t) € Ay for all t > 0. For an arbitrary constant
A, defineANA(t) e Ay by AN (t) = ANO(t) + A, noting that ANA(t) )0 is again
a solution of (4.3.3) starting from the initial data, - - - ,A) € Ay, that belongs to
Ay forallt > 0.

Note next that for anyy > 0, /\iN"SH“*‘(O) (0) > AN(0) for all i. Further, for

t small, )\iN"SHmO) (t) > AN(t) for all i by continuity. Therefore, we get from
Lemma 4.3.6 that for atl > 0,

ANO <AVTMNO 1) <2300+ 5+ VAU (1)

A similar argument shows that
M) <AK0) + 5+ VAR (D).
SinceuN(t) is distributed according to the Iaﬁqﬁ, takingd — 0 and recalling

(4.3.41) completes the proof of the lemma. O

Proof of Lemma 4.3.16We use the estimates oxj(t) from Lemma 4.3.17 in
order to approximatéy, Ln(t)) for polynomial functionsy by similar expressions
involving bounded continuous functions.

We begin by noting that due to Lemma 4.3.17 and the Borel-ialgmma,
for any fixedt,

limsupAg(t) < Af(0)+AC  as (4.3.42)

N—oo
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Again from Lemma 4.3.17, we also have that for any O,

E[A5)P] < 2P (()\K,(O)Jrc\/f)hrpt%’ /Omxp—le—aNde)

= 2p(<m<0>+c¢f>'3+ (aﬁ’\:)ptg) . (4.3.43)

As a consequence, there exists an increasing fun€ion such that for anyii <
0, C(T) = sup-7 C(t) < «, and so that for alN sufficiently large, alp < [0, aN],

E[(AN(1))P] < (2C(1))P. (4.3.44)

Note that (4.3.42) implies that under the current assumgptithe support of the
limit &, c.f. Proposition 4.3.10, is contained in the compact[sek(t),A(t)],
whereA(t) := C+Cy/Ai.

We nextimprove (4.3.42) to uniform (ir< T) bounds. Lee < min(a/6,1/T+/A1),
where/\; is as in the Burkholder—Davis—Gundy inequality (Theorer)HWe
will show that for allT < coandp < ¢eN,

E[ sup (|x|P,Ln(t))] < C(T)P. (4.3.45)
te[0,T]
This will imply that
E[ sup AN (t)P] < NC(T)P, (4.3.46)
te[0,T]

and therefore, by Chebyshev’s inequality, for @ny 0

] NC(T)P
P(tes[g%)\,\,(t) >C(T)+9) < COFHE

Takingp = p(N) = (logN)?, we conclude by the Borel-Cantelli lemma that

limsup sup AJ(t) <C(T) a.s.
N—oo 0<t<T

To prove (4.3.45), we can apply (4.3.26) wiflit,x) = x" and n integer, to
obtain

MLND) = (X LN(0)) + Mio(t) (4.3.47)

PR (5 1) [ o atspas
n+2

+g : /t<x” Ln(s)) (X", Ln(s))ds
2 ,; o'’ 7 7
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whereM. , is a local martingale with bracket

<Mn+2> 2(?3+22)/0 <X2n+2,LN(S)>dS.

Settingn = 2p and using the Burkholder—Davis—Gundy inequality (Theokk8),
one obtains

2 T
E sup M. (7] < SR e[ P2 (o)

PP Jg COUPHIMAE | AypPTC(T) P2
N2 =¢ N2 ’

for some constarnt = ¢(f3) independent op or T, where we used (4.3.44) (and
thus used thatg+ 2 < aN). We set

Ai(p) == E[ sup (|x/”,Ln ()],
t€[0,T]

and deduce from (4.3.47) and the last estimate thagp fof0, eN/2] integer,

(cAy)? p\f ()Y

IN

M@(p+1) < Aof2(p+ D)+ (4.3.49
Hp+1? [ —
0
< @A+ (cA1) 2 pViC(t) 2P+ + (aNY2C(t)P

N

Takingp = eN/2, we deduce that the left hand side is boundes(T))?N, for
all N large. Therefore, by Jensen’s inequality, we conclude

Ac(0) < A(eN)F < (2C(T))! for all ¢ € [0,eN]. (4.3.49)

We may now complete the proof of the lemma. For- 0 and continuous
functiong, set

ds(x) =q(ﬁ)-

By Proposition 4.3.10, for an§ > 0, we have

lim_ sup |(ds, Ln(t)) — (ds. k)| =0 (4.3.50)
—%®te(0,T]

Further, since the collection of measugast € [0,T], is uniformly compactly
supported by the remark following (4.3.42), it follows that

lim sup |<Q5al-*lt> <qv “I>| =0. (4351)
-0t T]
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Now, if gis a polynomial of degrep, we find a finite constar@ so that

X3
14 0x2

|a(X) — as(x)| < C3(Ix/P~*+1) < CO(IXP2 4 [x%).

Hence, (4.3.45) shows that for aAy> 0,

P( sup [((q—0s),Ln(t))[ = AC5>

te[0,T]

< %E[ sup (1P + xP)", Ln(1))] < ig((ZC(T))(pH) +(2¢(T))%)",
A" e A

for any ¢ < eN. By the Borel-Cantelli lemma, taking= (logN)? andA larger
than Z(T), we conclude that

imsup sup [((d- ), Ln(0)| < [(2C(T))*+ (20(T)C8, as
—o te[0,T]

Together with (4.3.50) and (4.3.51), this yields the unif@monvergence dfg, Ln(t))

to (q, k), almost surely. The proof of tHe” convergence is similar once we have
(4.3.45). O

Exercise 4.3.18akeLp = d&. Show that the spectral measlig(1) of the Gaus-
sian (real) Wigner matrices converges almost surely. Shaiv t
1

Gi(2) = > G1(2)°
and conclude that the limit is the semi-circular law, henigtng a new proof of
Theorem 2.1.1 for Gaussian entries.
Hint: by the scaling property, show th@t(z) = t~1/2G;(t-¥/2z) and use Lemma
4.3.25.

Exercise 4.3.19Using Exercise 4.3.7, extend Corollary 4.3.11 to the syuotjle
setup B =4).

4.3.3 Dynamical central limit theorems

In this subsection, we study the fluctuations(bf(t))i>0 on path space. We
shall only consider the fluctuations of moments, the geizatabn to other test
functions such as continuously differentiable functiompassible by using con-
centration inequalities, see Exercise 2.3.7.
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We continue in the notation of Subsection 4.3.2. Formtyple of polynomial
functionsPy, - -, Py € C[X] and (L4 )ie(o,7) @S in Lemma 4.3.16 witjy = y, set

Gny(Pr,--,Pr)(t) =N ((Pl, Ln(t) — ), ..., (Po,Ln(t) — ut>> .
The main result of this subsection is the following.

Theorem 4.3.20Let 3 > 1 and T < . Assume that

C—supmax|)\ (0)] <o
NeN1

and that Ly (0) converges towards a probability measyrén such a way that for
allp>2,

SUPE[IN({X",Ln(0)) — (X", ))|P] < o0

NeN
Assume that for any a N and any ,--- ,P, € (C[ 1, Gn,u(Py, -+ -, Pn)(0) con-
verges in law towards a random vect@®(Py)(0),--- ,G(Py)(0)). Then,
a) There exists a proceg$(P)(t))ic(o.1],pecix|s such that for any polynomial
functions B, --- ,P, € C[X], the procesgGn (P, ,Pn)(t) ejo,7) CONverges in
law towards(G(Py)(t),- -, G(Pna)(t))tcjo1)-
b) The limit proces$G(P)(t))ic(o.1),pecix) IS Uniquely characterized by the fol-
lowing two properties.
(1) ForallP,Q e C[X] and(A,a) € R?,

G(AP+aQ)(t) =AG(P)(t) + aG(Q)(t) Vte[0,T].

(2) For any ne N, (G(x")(t) e[o,1),nen IS the unique solution of the system of
equations

and, for n> 2,

G = GO0 +n [ ”f)us(x”k%e(xk)(s)ds

213 n(n—1 /us X"2)ds+ GP, (4.3.52)

where(Gl')icjo.1) nenv IS @ centered Gaussian process, independent of
(G(X )(O))neN, such that, if a,ny > 1, then for all st > 0,

tAS

E[GGR] =mny [ py(xmt2=2)du.
0



4,3 STOCHASTIC ANALYSIS FORRANDOM MATRICES 277

Note that a consequence of Theorem 4.3.20 is th@(k")(0) )nen is a centered
Gaussian process, then sd@&x")(t) )c(o,1],nen-

Proof of Theorem 4.3.20The idea of the proof is to use (4.3.47) to show that
the processGN (x, - - - ;X")(t))te[o,7] is the solution of a stochastic differential sys-
tem whose martingales terms converge by Rebolledo’s Thebétd 4 towards a
Gaussian process.

Itis enough to prove the theorem with=x fori € N. SetGN(t) := GN(x)(t) =
N(X,(Ln(t) — i)) to get, using (4.3.47) (which is still valid with obvious nifid
cations ifi = 1),

i—2 .t
GN(t) = GN(0) +i GR(9)us(X "2 )ds+ MN(t 4.3.53
©=a'0+i3 [[Clomx > asiMie) (4359

— t o Poi—2 gt
+%i(i—l)/o <X|—2,|_N(s)>ds+$ko/o GN(s)GN,_,(s)ds

where(MN,i € N) are martingales with bracket
2.t
(M M) = B! /0 (X172 L(s))ds

(Note that by Lemma 4.3.16, tHe? norm of (MN) is finite for all p, and so in
particularMN are martingales and not just local martingales.)

By Lemma 4.3.16, for all > 0, (M{¥,M}); converges in.? and almost surely
towards%ij Jo(x*+1=2 uoyds  Thus, by Theorem H.14, and with the Gaussian
process{G{)tE[o,T],ieN as defined in the theorem, we see that fokallN,

(MR(t), -+, MY (t) )y o.7] CONVerges in law towards (4.3.54)
thek-dimensional Gaussian procé&, Gt %, -, G (o] -
Moreover, (G, G- aG[l)te[O.T] is independent of G(x")(0))nen Since the

convergence in (4.3.54) holds given any initial conditiarcts thatLy(0) con-
verges tqu. We next show by induction overthat for allq > 2,

P = maxsupE[ sup |GN(t)]9] < o. 4.3.55
Ag 1= maxsup [te[o.g]l v (O] (4.3.55)

To set the induction, note that (4.3.55) holds fo 0 sinceG} (t) = 0. Assume
(4.3.55) is verified for polynomials of degree strictly lésanp and allg. Recall
that by (4.3.45) of Lemma 4.3.16, for ajlc N,

Bq = sup sup E[{|x|% Ln(t))] < c. (4.3.56)
NeNte[0,T]

SetAj(N,T) := E[SURciom |G'[§‘ (t)|9]. Using (4.3.56), Jensen’s inequality in the
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form E(xg + X2 +%3)9 < 34153 | E|x|9, and the Burkholder-Davis-Gundy in-
equality (Theorem H.8), we obtain that for alt> 0

AN, T) < 39Af(N,0)
p-2 £
k 14+¢)~1 €
+(pT)? k;(AQ(Hs)(N’T))( o Blite)e1(p-2-Kg

)
(PN T g | 0P D, Ly(s)ds,

By the induction hypothesiﬁgmg) is bounded sinck < p), the fact that we con-
trol AE(N, 0) by hypothesis and the finithess B for all g, we conclude also that
AE(N,T) is bounded uniformly irN for all g € N. This completes the induction
and proves (4.3.55).

Set next, foi € N,

n(i)() = Nz [ asie i (sjas

Since

sup Elen(i)(9)% < N-%2(A)2 T,
s€[0,T]

we conclude from (4.3.55) and the Borel-Cantelli Lemma that

en(i)() @ N=e 0, inallL% gq>2,anda.s. (4.3.57)

Setting

i—2 At
—_al e i i—2—k
WO =60 -6l -y [eleK** uds

for all t € [0, T], we conclude from (4.3.53), (4.3.54) and (4.3.57) that tte p
cessegYN(t), YN, (1), ,Y]N(t))=0 converge in law towards the centered Gaus-
sian proces§G (t),---,G(t))i>0.

To conclude, we need to deduce the convergence in law dbtefrom that
of theYN’s. But this is clear again by inductioﬁi? is uniquely determined from
YN and G)(0), and so the convergence in law 8l implies that ofG) since
G'f(O) converges in law. By induction, if we assume the convergémd¢aw of
(G{,k < p—2), we deduce that 0B}, ; andG}; from the convergence in law of
YFQ\‘ andYIL\‘il. O

Exercise 4.3.21Recover the results of Section 2.1.7 in the case of Gaussian
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Wigner matrices. by takingN-#(0) = 0, with o = 0 andG(x")(0) = 0. Note
thatm(t) := EG(x")(t) = t"2m"(1) may not vanish.

Exercise 4.3.22n each part of this exercise, check that the given initighda
XN(0) fulfills the hypotheses of Theorem 4.3.20. (a) D€Y(0) be a diagonal
matrix with entries on the diagon&tp(%),l <i < N), with ¢ a continuously
differentiable function o1f0, 1]. Show that

[¢(1)P — @(0)*]for all p,

NI =

1
kolf) = [ 1(@00)dx  GOA)(0) =

and thatG(xP)(0), p > 0) are deterministic.

(b) Let XN:A (0) be a finite rank diagonal matrix, i.e. for sorkdixed indepen-
dently of N, X(')“ = diag(n1,---,Nk,0,---,0), with the ni’s uniformly bounded.
Check that

k
Ho= &, G(¥)(0) = 5 nPfor il
|=

and thatG(xP)(0) is random if then;’s are.
(c) LetXN-A(0) be a diagonal matrix with entrie€" (0)(ii) = ni/v/N for 1 <i <
N, with some i.i.d. centered bounded random variahle€heck that

Ho(f) =%, G(xP)(0)=0if p#1

butG(x)(0) is a standard Gaussian variable.

4.3.4 Large deviations bounds

Fix T € R;. We discuss in this subsection the derivation of large devia esti-

mates for the measure valued prociss(t) }ic(o.1)- We will only derive exponen-
tial upper bounds, and refer the reader to the bibliograghiates for information
on complementary lower bounds, applications, and relatiospherical integrals.

We begin by introducing a candidate for a rate function orsgreeeC([0, T],.#1(R)).
For anyf,g € C>'(Rx[0,T]), s<t € [0,T], andv. € C([0,T],.#(R)), set

St f) = /f(x,t)dvt(x)—/f(x,s)dvs(x)
—/t/duf(x,u)dvu(x)du (4.3.58)

1/t oxf(x,u) — oxf(y,u)
-5 / / / = dvy(X)dvy(y)du,
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(f,9)S _/ /ax (%, U)Akg(x, U)dvy(X)du, (4.3.59)
and

St(v, f) :sﬂ(v,f)—%u,f);t. (4.3.60)

Set, for any probability measugee .71 (R),

_ +00 if vo # W,
Su(v) = LT(v) = SUR 215 o) SURy<st<T (v, ), otherwise.

We now show tha$,(-) is a candidate for rate function, and that a large devia-
tions upper bound holds with it.

Proposition 4.3.23(a) For any 4 € .#1(R), S,(-) is a good rate function on
C([0,T],.#1(R)), i.e. {v e C([0,T], #1(R));Su(v) < M} is compact for any
M e R*.

(b) With assumptions as in Proposition 4.3.10, the sequén¢@) )0, 7] Satisfies
a large deviation upper bound of speed &hd good rate function,S i.e. for all
closed subset F of(([D,T],//l(R)),

I|msup N2 logP(Ln(:) €F) < —iEfSy.

N—oo

We note in passing that, sin€g(-) is a good rate function, the proceéts (t) (o 1)
concentrates on the sév. : S, (v) = 0}. Exercise 4.3.25 below establishes that
the latter set consists of a singleton, the solution of p&8.

The proof of Proposition 4.3.23 is based on Itd’s calculud toe introduction
of exponential martingales. We first need to improve Lemn3al4. in order to
obtain exponential tightness.

Lemma 4.3.24Assumg4.3.23) Let T € R™. Then, there exists(@) > 0 and
M(T),C(T) < o so that:
(@) ForM > M(T),

P ( sup (log(X* +1),Ln(t)) > M) < C(T)e ATMN?
te[0,T]

(b) For any Le N, there exists a compact se’ (L) € C([0,T],.#1(R)) so that

P(Ln(-) € # (L)) < e ML,
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It follows in particular from the second part of Lemma 4.3tB4t the sequence
(Ln(t),t € [0,T]) is almost surely pre-compact@{[0, T],.#1(R)), compare with
Lemma 4.3.14.

Proof The proof proceeds as in Lemma 4.3.14. Set fist) = log(x® + 1).
Recalling (4.3.29) and Corollary H.13, we then obtain tleatdl L > 0,

N _ BN2L2
P(supMy(9) > L) < 2e 55,

s<T
which combined with (4.3.29) yields the first part of the leenm

For the second part of the lemma, we proceed similarly, by fiosicing that
if f € C?(R) is bounded, together with its first and second derivatived,, ihen
from Corollary H.13 and (4.3.33) we have that

sup  |[{f,Ln(s)—Ln(t))| <20 +c¢,
i6<s<(i+1)0
. . _ BN?(e)? _
with probability greater than 4 2e™ 166 . Using the compact set¥” = iy
of C([0, T], #1(R)) as in (4.3.36) withe, = 1/kM(]| fic||eo + || fil[eo + || T[] 0), WeE
then conclude that

P(Ln & i) < 26N
with v —Mm—« . AdjustingM = M(L) completes the proof. O

Proof of Proposition 4.3.23: We first prove thatS,(-) is a good rate function.
Then, we obtain a weak large deviation upper bound, whickgyiby the ex-
ponential tightness proved in the Lemma 4.3.24, the fulidagleviation upper
bound.

(a) Observe first that, from Riesz’ Theorem (Theorem B.B)Vv) is also
given, whenvg = U, by

S(v, f)?

. 4.3.61
X5 (360

Suo (V) —2 swp sup
feC2t (Rx[0,T]) O=S=t=T (
Consequenthyg, is non negative. Moreoves, is obviously lower semi-continuous
as a supremum of continuous functions. Hence, we merely toegttbck that its
level sets are contained in relatively compact sets. By Lamr8.13, it is enough
to show that, for any > 0:

(1) for any integem, there is a positive real numbg} so that for any €

{Sp <M},

sup vs(|x| > LM) <

<1 (4.3.62)
0<s<T m
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proving thatvs € K m for all s€ [0, T];

2) for any integemand f € CZ(R), there exists a positive real numbEYf so
that for anyv € {S;(-) < M},

. (4.3.63)

Sl

sup_|u(f)—vs(f) <
lt—s|<g}

showing thas—vs(f) € Csm | f.,-
To prove (4.3.62), we consider, fér> 0, f5(x) = log (x*(1+0x?)~1+1) €
Cﬁ’l(IR{x [0,T]). We observe that

C:= sup ||dfslle+ SUP |07 fs][e
0<5<1 0<6<1

is finite and, ford € (0,1],
fs(x) — kfs(y)
X=y
Hence, (4.3.61) implies, by takinfg= f5 in the supremum, that for arye (0, 1],
anyt € [0,T], any. € {Syp <M},

He(f5) < po(fs) + 2Ct+ 2CVMt.

<C.

Consequently, we deduce by the monotone convergence theand lettingd
decrease to zero that for apye {S,(-) <M},

sup (log(>x+1)) < (u,log(x® + 1)) + 2C(1+ VM).
te[0,T]

Chebyshev’s inequality and (4.3.23) thus imply that for png {S,(-) <M} and
anyK € R,

Cp +2C(1+ VM)
sup (x| = K) <
te[0.T] (= K) log(K2+1)
which finishes the proof of (4.3.62).
The proof of (4.3.63) again relies on (4.3.61) which implieat for anyf ¢
CA(R), anyp, € {Sy(-) <M}andany < s<t<T,

[(F, e — )| < 11 lolt — 8]+ 20| '] VM /[ = 8. (4.3.64)

We turn next to establishing the weak large deviations ufijoemd. Pick
v € C([0,T],.#1(R)) and f € C>1([0, T]xR). By Lemma 4.3.12, for ang > 0,
{S*(Ln, f),t > s} is a martingale for the filtration of the Brownian motigh,
which is equal to,/2/BN=3/2 ]} [1 /(AN (u))dW. Its bracketigf, f)3! As f’
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is uniformly bounded, we can apply Theorem H.10 to dedudg{tfa (L, f)(t),t >
s} is a martingale if fou € C([0, T],.#1(R)) we denote

M1, £)0) = xp{NS g, £) - (1, )3 Ne( )
with
t
e(0i = (53 [ [ xdutu

Moreover,u € C([0,T],.Z1(R))—S*(u, ) := S (u, ) — 3(f, )3 is continu-
ous asf and its two first derivatives are bounded continuous thuea§§ [02f(s,x)du(x)du
is uniformly bounded byl |82 f||... Therefore, if we pickd small enough so that
St(., f) varies by at mos¢ > 0 on the ball (for some metri¢ compatible with
the weak topology o([0, T],.#1(R))) of radiusd aroundv, we obtain for all
s<t<T
Mn (Ln, f)(t)

P(d(Ln,v) <) = E[mld(LN.v)<5]

VeIl NSV E My (L, £)() LaLyv) <o)
< @PENITIeNS VD E My (L, )(1)]

_ eN28+NHf”Ho°—N2§S‘(v,f)
- )

IN

where we finally used th&[Mn (L, ) (t)] = E[Mn(Ln, f)(s)] = 1 since{Mn/(Ln, f)(t),t >
s} is a martingale. Hence,

1
. . < N vt
lim lim > logP(d(Ly,v) <8) < —S'(v.f)

for any f € C21(]0, T]xR). Optimizing overf gives
| .
N < — ) .
lim lim 7 10gP(d(Ln,v) <9) < (v, )
SinceLy (0) is deterministic and convergesn, if Vo # Ua,
- 1
(I;Lno’\lllinwmlogp(d(LN,v) <d) = —o
which allows to conclude that
L 1
— < - :
(I;LnoNthw NG logP(d(Ln,v) <) < =Sy (v,f)
O

Exercise 4.3.28n this exercise, you prove that sgt. : S;(v) = 0} consists of
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the unique solution of (4.3.25).
(a) By applying Riesz’ theorem, show that
S(v, f)?

ST(v):=  sup sup ————~.
fe(Cﬁ’l(RX[QT])OSSStST 2<fa >S't

(b) Show thaS,(v.) = 0iff vo = p andS* (v, f) =0forall 0<s<t < T and all
f e G271 (Rx[0,T]). Takef(x) = (z—x)~! to conclude.

4.4 Concentration of measure and random matrices

We have already seen in Section 2.3 that the phenomenon cectation of
measure can be useful in the study of random matrices. Iisé¢gigon, we further
expand on this theme, by developing both concentratiomigadles and their ap-
plications to random matrices. To do so we follow each of tvedl\@stablished
routes. Taking the first route, we consider functionals eféimpirical measure
of a matrix as functions of the underlying entries. When gtoindependence is
present, and for functionals that are smooth enough (tipit#pschitz), concen-
tration inequalities for product measures can be appliaking the second route,
which applies to situations in which random matrix entries mo longer inde-
pendent, we view ensembles of matrices as manifolds eqdiyjib probability
measures. When the manifold satisfies appropriate cuevaturstraints, and the
measure satisfies coercivity assumptions, semigroupigpadsican be invoked to
prove concentration of measure results.

4.4.1 Concentration inequalities for Hermitian matricesith independent
entries

We begin by considering Hermitian matricgg, whose entries on-and-above the
diagonal are independent (but not necessarily identiahifiiributed!) random
variables. We will mainly be concerned with concentratinaqualities for the
random variable tr(Xy), which is a Lipschitz function of the entries 3§, see
Lemma 2.3.1.

Remark 4.4.1Wishart matrices, as well as matrices of the fofigTy Yy with Ty
diagonal and deterministic, aig € Maty <N possessing independent entries, can
be easily treated by the techniques of this section. For pla@rto treat Wishart
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matrices, fixN < M positive integers, and define the matkx € Matym,

/0 W
“(v o)

WY 0
0 YW

and therefore, for any continuous functibn

Now, (Xn)? equals

tr(f(X3)) = 2tr(f(YNY3)) + (M —N)f(0).

Hence, concentration results for linear functionals ofdhwmirical measure of the
singular values oYy can be deduced from such results for the eigenvalug of
For an example, see Exercise 4.4.9.

Entries satisfying Poinc&’s inequality

Our first goal is to extend the concentration inequalitiesnima 2.3.3 and The-
orem 2.3.5, to Hermitian matrices whose independent ensiagisfy a weaker
condition than the LSI, namely to matrices whose entriesfygad Poincaré type
inequality.

Definition 4.4.2 (Poincag inequality) A probability measur® on RM satisfies
the Poincaté inequality(PI) with constantn > O if for all continuously differen-
tiable functionsf,

Varp(f) := Ep (|f(x) — Ep(f (x))[?) < %Ep(|Df|2).

It is not hard to check that P satisfies a (LSI) with constamit then it satisfies a
(PI) with constantn> ¢ ™1, see [GuZ03, Theorem 4.9]. However, there are proba-
bility measures which satisfy (P1) but not (LSI) suchzase **dxforac (1,2).
Further, like the (LSI), the (PI) tensorizesHfsatisfies (PI) with constamt, P®M

also satisfies (PI) with constamtfor anyM € N, see [GuZ03, Theorem 2.5]. Fi-
nally, if for some uniformly bounded function we setR, = Z-1e'¥dP(x), then

R, also satisfies (PI) with constant bounded beloveb§*? +i"fVm see [GuZ03,
Property 2.6].

As we now show, probability measureskM satisfying (PI) have sub-exponential
tails.
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Lemma 4.4.3Assume that P satisfies the (PI) BN with constant m. Then, for
any differentiable function G oRM, for |t| < /m/v/2|| [|0G]|2]

Ep(d(CBr@)) <K, (4.4.1)

with K = — 32 2'log(1 — 27147"). Consequently, for a6 > 0,
___Yym 5
P(|G—Ep(G)| > 9) < 2Ke V2IDGizl= ", (4.4.2)

Proof With G as in the statement, faf < m/||[|0G||3||«, setf = &€ and note
that

2
Ep(7%) - (Ep(€%))” < 0G| 3Ep(e°)
so that
t2

_ -1 dG 2.
AR

Ep(e?C) < (1

Iterating we deduce that

n 4—it2 _n
logEp(e”®) < — Z}Z‘ log(1— ——|| |G |3l|) + 2™ logEp(e” *€).
i=

Since
lim 2"t1ogEp(e? "®) = 2tEp(G)
and
D= § 2 Iog(l—LHZI\ 10G][3]|e) < o
t . i; m 2|

increases wittit|, we conclude that witky = /m/+/2|| | JG||2/|
Ep(e20(C-Er(G)) < Dy, =K.

The estimate (4.4.2) then follows by Chebyshev’s ineqgyalit O

We can immediately apply this result in the context of largegdom matri-
ces. Consider Hermitian matrices such that the laws of thepgandent entries
{Xn(i, J) }1<i<j<n all satisfy the (PI) (oveR or R?) with constant bounded below
by Nm Note that, as for the (LSI), P satisfies the (PI) with constant, the law
of ax underP satisfies it also with a constant boundeda8yn, so that our hy-
pothesis includes the case whékg(i, j) = an(i, )W (i, J) with Yy (i, j) i.i.d with
law P satisfying the (PI) and(i, j) deterministic and uniformly bounded.
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Corollary 4.4.4 Under the preceding assumptions, there exists a univemsal ¢
stant C> 0 such that for any differentiable function f, and ady- O,

P([tr((Xn) — Eftr(f(X)]] > ON) < Ce T,

Exercise 4.4.8Jsing an approximation argument similar to that employethé
proof of Herbst's Lemma 2.3.3, show that the conclusionserhima 4.4.3 and
Corollary 4.4.4 remain true & is only assumed Lipschitz continuous, wjt| &
replacing|| || 0G| 2/l c-

><2 .
Exercise 4.4.6Let y(dx) = (2r1)"%2%e~Z dx be the standard Gaussian measure.
Show thaty satisfies the Poincaré inequality with constant one, bigfohg the
following approaches.

e Use Lemma 2.3.2.
e Use the interpolation

(1 -2 = [Co [ [ f(ﬁx+ﬂy>dv(y>>2dv(><>da,

integration by parts, the Cauchy-Schwarz inequality ardféict that, for
anya € [0,1], the law of\/ax++/1— ayis yunderygy.

Exercise 4.4.1Guz03, Theorem 2.5] Show that the (PI) tensorize$ #atisfies
(P1) with constantn, P*M also satisfies (P1) with constamtfor anyM € N.

Exercise 4.4.§Guz03, Theorem 4.9] Show that i satisfies a (LSI) with con-
stantc, then it satisfies a (Pl) with constant > ¢~1. Hint: Use (LSI) with
f =14 egwith e — 0.

Exercise 4.4.8how that Corollary 4.4.4 extends to the setup of singularesof
the Wishart matrices introduced in Exercise 2.1.18. Thanithe setup described
there, assume the entrigg(i, j) satisfy the (PI) with constant bounded below by
Nm and seiy = (YnYy )¥/2. Prove that for a universal constaiitand all§ > 0,

P(tr(f (Xa) — EItr(f(Xn)]| = 5(M+N)) < Ce T2

Matrices with bounded entries and Talagrand’s method

Recall that the mediaiWy of a random variabl¥’ is defined as the largest real
number such thaP(Y < x) < 2-1. The following is an easy consequence of a
theorem due to Talagrand, see [Tal96, Theorem 6.6].
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Theorem 4.4.10 (Talagrand)Let K be a convex compact subsefRofvith diam-
eter [K| = sug,yek [X—Y|. Consider a convex real-valued function f defined on
KM. Assume that f is Lipschitz oK with constantf| . Let P be a probability
measure on K andX:-- , Xy be M independent copies with law P. Then, if igl
the median of Xq,---,Xu), forall 6 >0,

52

P(If(Xe,- -, Xm) — M¢| > 8) < 4e 10K2T%
Under the hypotheses of Theorem 4.4.10,

E[f(Xe, -, Xu) —M;|] = /OP(|f(X1,---,XM)—Mf|2t)dt
t2

< 4/ e SKET% gt — 16K | 2.
0

Hence, we obtain as an immediate corollary of Theorem 4 #hd @ollowing.

Corollary 4.4.11 Under the hypotheses of Theorem 4.4.10, for allR ",
2
P(If(X,--+, Xm) = E[f(Xe, -+, Xw)]| = (t+16)[K][ f|») 4e 5.

In order to apply Corollary 4.4.11 in the context of (Hermuit) random matrices
XN, we need to identify convex functions of the entries. Since

A(XN) = sup  (, XnV),
veCN v)p=1
it is obvious that the top eigenvalue of a Hermitian matria isonvex function of

the real and imaginary parts of the entries. Somewhat mopeisingly, so is the
trace of a convex function of the matrix.

Lemma 4.4.12 (Klein’s lemma)Suppose that f is a real-valued convex function
onR. Then the function X- trf (X) on the vector spac;%”,\f2> of N-by-N Hermi-
tian matrices is convex.

For f twice-differentiable andf” bounded away from O we actually prove a
sharper result, see (4.4.3) below.

Proof We denote byX (resp.,Y) anN x N Hermitian matrix with eigenvalues

(Xi)1<i<n (resp.(Yi)i<i<n) and eigenvector&i)i<i<n (resp.(&)i<i<n). Assume
at first thatf is twice continuously differentiable, and consider theldayemain-

derRs(x,y) = f(x) — f(y) — (x—y) f'(y). Since

f’">c>0
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for some constant, we haveRg(x,y) > §(x—y)? = R%Xz(x,y). Consider also
the matrixR; (X,Y) = f(X) — f(Y) — (X =Y)f’(Y), noting that t(R%Xz(X,Y)) =
tr(S(X—Y)?). Fori € {1,...,N}, with ¢;j = |(&,n;)|?, and with summations on
i €{1,...,N}, we have

(G.Re(XY)&) = f06)+ 3 (=6 Fyj) —xai F(yi) +cijyi f'(y))
]
= D CGiR06LY)) = Y GiRge(%,Yi),
J J

where at the middle step we use tiygtcij = 1. After summingoni € {1,--- N}
we have

tr(F(X) — F(Y) = (X=Y)f'(Y)) > gtr(x ~v)2>0. (4.4.3)

Now take successivelgX,Y) = (A, (A+B)/2),(B,(A+B)/2). After summing
the resulting inequalities, we have for arbitr#)B ¢ %‘#2) that

tr <f(%A+ %B)) < %tr(f(A)) + %tr(f(B)) .

The result follows for general convex functiohdy approximations. O

We can now apply Corollary 4.4.11 and Lemma 4.4.12 to thetfanc
f({Xn(i, )} 1<i<j<n) = tr(f (X)) to obtain the following.

Theorem 4.4.13Let (R j,i < j) and (Q;j,i < j) be probability measures sup-
ported on a convex compact subset KRofLet Xy be a Hermitian matrix, such
that OXn (i, j), | < j, is distributed according toiR, andOXn(i, j), i < j, is dis-
tributed according to @;, and such that all these random variables are indepen-
dent. Fixd:(N) = 8/K|/ma/N. Then, for anyd > 4,/|K|51(N), and any convex
Lipschitz function f ofR,

PY (Jtr(f (X)) — EN[tr(f (Xn))]| > N9) (4.4.4)
32/K| 1 &2
s 75 <_N216|K|2a2[16|K||f|fg - 51('\')]) :

4.4.2 Concentration inequalities for matrices with non iegendent entries

We develop next an approach to concentration inequalised on semi-group
theory. When working ofR™, this approach is related to concentration inequali-
ties for product measures, and in particular to the (LSI)wehger, its great advan-
tage is that it also applies to manifolds, through the Beknyery criterion.



290 4, ME GENERALITIES

Our general setup will be concerned with a manifelcequipped with a mea-
sureu. We will consider eitheM = R™ or M compact.

The setup with M= R™ and u =Lebesgue measure

Let ® be a smooth function fro®™ into R, with fast enough growth at infinity
such that the measure

Ho(dX) := %e—q’mv“vxm)dxl...dxm

is a well defined probability measure. (Further assumptidras will be imposed
below.) We consider the operatéfe on twice continuously differentiable func-
tions defined by

Lo=0—(00)-0= i[aﬁ— (ad)a].

Then, integrating by parts, we see tié is symmetric inL?(ue), that is that for
any smooth functions$, g,

[ (1209 dbo = [ (%o f) dbo.

In the rest of this section, we will use the notatjepf = | fdue.

Let # denote a Banach space of real functiondvbnequipped with a partial
order <, that containsC,(M), the Banach space of continuous functionshdn
equipped with the uniform norm, with the latter being densed. We will be
concerned in the sequel wit# = L?(Uo).

Definition 4.4.14A collection of operatorgR )i>o with R : #—% is aMarkov
semi-groupwith infinitesimal generator? if the following hold.

(i) Pof = f forall f € £.

(il) The mapt—R is continuous in the sense that for &l 4, t—R f is a con-
tinuous map fronR ;. into 4.

(iii) For any f € # and(t,s) € R?, R, sf = RPsf.

(iv) R1=1fort >0, andR preserves positivity: for each> 0 andt > 0,Rf > 0.
(v) For any functionf for which the limit exists,

Z(f) = |ti[gt*1(af —f). (4.4.5)

The collection of functions for which the right side of (&}exists is th&lomain
of £, and is denote® (.¥).
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Property (iv) implies in particular thatR f || < ||f|l». FurthermoreR is re-
versible inL?(us), i.e., Uo(fRQ) = Uo(gRT) for any smooth functions,g. In
particular,uqe is invariantundeR: thatis,usR = Ue. Italso follows immediately
from the definition that for any € 2(.¢) andt > 0,

fed(¥) = Rfe2(¥), ZRf =RZT. (4.4.6)
In what follows we will be interested in the case where= %y, at least as

operators on a large enough class of function. We introdueendy of bilinear
formsI", on smooth functions by settiig(f,g) = fgand, forn > 1,

Mn(f,9) = %(fd)rnfl(fag) —Ina(f, Zog) —Tno1(9, Lo f)) -
We will only be interested in the cases- 1,2. Thus, thearré du champ operator
"1 satisfies
rl(f,g):%(fmfg—fzmg—gc,%,f), (4.4.7)
and thecarré du champ &ré operator;, satisfies
Fg(f,f)z%{Zcprl(f,f)—zrl(f,fq,f)}. (4.4.8)

We often writel";(f) for I'j(f, f), i = 1,2. Simple algebra shows thBj(f) =
ity (a1f)? and
m m
F2(f,f)= Y (39;f)+ 5 afHesd®);;o;f, (4.4.9)
i,]=1 i,]=1

with Hesg®);; = Hesg®);i = d,0; P the hessian op.

Remark 4.4.15We introduced the formE,(f, f) in a purely formal way. To
motivate, note that assuming all differentiation and Ig@an be taken as written,
one has

rn(fvg) =

= % (Zo-1(f.0) — Th-1(f, Zo9) — Th-1(9, %o f)) . (4.4.10)

We will see below, c.f. Lemma 4.4.22, that indeed these maaijpns are justi-
fied whenf, g are sufficiently smooth.

(AT 4(1.0) ~ T 1(AT,RY) o

NI =

Definition 4.4.16We say that th8akry—Emery conditio(denoted (BE)) is satis-
fied if there exists a positive constant- 0 such that

Mo(f, ) > %rl(f;f) (4.4.11)
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for any smooth functiorf.

Note (by takingf = 3 ajx; with & arbitrary constants) that the (BE) condition is
equivalent to

Hesg®)(x) > %I forall xe R™, (4.4.12)

in the sense of the partial order on positive definite madrice

Theorem 4.4.17Assume that € C?(R™) and that the (BE) conditio4.4.12)
holds. Thenpug satisfies the logarithmic Sobolev inequality with constarihat
is for any fe L?(uo),

f2
2log—s—— <
/f 100 Tz o < Zc/l'l(f, f)dpto . (4.4.13)
In the sequel, we le€;, (R™) denote the subset @ (R™) that consists of func-
tions all of whose derivatives have polynomial growth atriitfi The proof of

theorem 4.4.17 is based on the following result which rezugtronger assump-
tions.

Theorem 4.4.18Assume the (BE) conditidd.4.12) Further assume thab <

Cox,(R™M). Then,ue satisfies the logarithmic Sobolev inequality with constant

From Theorem 4.4.17, (4.4.9), and Lemma 2.3.3 of Sectioov&3jet imme-
diately the following.

Corollary 4.4.19 Under the hypotheses of Theorem 4.4.17,
Ho (IG— / G(X) o (dX)| > 5) < 207 %/206%, (4.4.14)

Proof of Theorem 4.4.17(with Theorem 4.4.18 granted). F&> 0,M > 1, and
setB(0,M) = {x e R™: ||x||2 < M}. We will construct below approximations of
® by functions®y ¢ € C, (R™) with the following properties:

poly

SUp |®yg(x) - P(x)| <€,
xeB(0,M)

1
Hesgdy ) > ——1 uniformly. 4.4.15
gPm) > crel un y ( )

With such a constructiorys,, , converges weakly (alsl tends to infinity ance
tends to 0) towardue, by bounded convergence. Further, by Theorem 4.4.18,
for any M, € as above s, , satisfies (4.4.13) with the constant- £ > 0. For

2 smooth, bounded below by a strictly positive constant, antstant outside a
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compact set, we deduce tha satisfies (4.4.13) by lettingl go to infinity ande
go to zero in this family of inequalities. We then obtain tleaibd (4.4.13) for all
functionsf € L?(ue) with [T1(f, f)due < o by density.

So it remains to construct a famityy ¢ satisfying (4.4.15). Fod > 0, we let
Ps be a polynomial approximation @ on B(0,2M) such that

sup ||HesgPs)(x) — Hesg®)(X)||e < % P5(0) = ®(0), OP5(0) = [I(0)
x€B(0,2M)

with || - || the operator norm on MatR). Such an approximation exists by Weier-
strass’ theorem. Note that

sup |Ps(x) — P(x)| (4.4.16)
xeB(0,2M)
1 5M2
< sup / ada (x, (HesgPs)(ax) — Hesg®) (ax))x)| < S
xeB(0,2M) | /0 2

With c;* = ¢ — ¢ > 0 for & small, note that He$Bs)(x) > c; 1 onB(0,2M)
and definéds as the function ofR™ given by

1

P = sup {Po(y)+ OPs(y) - (x-9) - vI3}
yeB(0,2M) Cs

Note that®; = Ps onB(0,2M) whereas Heg#s) > Cgll almost everywhere since

the map

1 1

X—  sup {Pes(y) +OPs(y) - (x=) + Z—IX—yIIZ} — 5o IXI?
yeB(0,2M) Cs Cs

is convex as a supremum of convex functions (and thus itsdressghich is almost

everywhere well-defined, is nonnegative). Finally, to defaC?, (R™)-valued

poly
function we put for some small
@5:x) = [ B+ 2)u(2

with p the standard centered Gaussian law. By (4.4.16) and $ineePs on
B(0,M), we obtain forx € B(0,M),

Am(d,t) = sup |®s(x) - D(x)|
xeB(0,M)
~ < M2
< sup [ [Ps(x+1t2) = Ps(X)[du(2) + ——
xeB(0,M) 2

Thus,Am(d,t) vanishes whed andt go to zero and we choose these two pa-

rameters so that it is bounded byMoreover®s, belongs taC, (R™) since the
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density of the Gaussian law@° andPs has at most a quadratic growth at infinity.
Finally, since Hes$s) > cgll almost everywhere, He®g; > cgll everywhere.
To conclude, we choos®small enough so thats < c+ €. O

Our proof of Theorem 4.4.18 proceeds via the introductiothefsemi-group
R associated witltZy through the solution of the stochastic differential equrati

dX* = —0D(X)dt+ v2dw , X§ = x, (4.4.17)

wherew; is anm-dimensional Brownian motion. We first verify the propestif
the solutions of (4.4.17), and then deduce in Lemma 4.4.@@smalytical prop-
erties of the semi-group. The proof of Theorem 4.4.18 fodldiese preliminary
steps.

Lemma 4.4.20With assumptions as in Theorem 4.4.18, for amyR™, the solu-
tion of (4.4.17)exists for all te R . Further, the formula

Rf(x) =E(f(X)) (4.4.18)

determines a Markov semi-group efi= L?( o), with infinitesimal generata’
so that?(.Z) contains G, (R™), and.Z coincides withZy on C7, (R™).

Proof Since the second derivatives ®@fare locally bounded, the coefficients of
(4.4.17) are locally Lipschitz, and the solution exists @dnique up to (possi-
bly) an explosion time. We now show that no explosion ocduarg, way similar
to our analysis in Lemma 4.3.3. L& = inf{t : )| > n}. Ito’s Lemma and
the inequalityx - (0d(x) > |x|?/c— ¢ for some constant’ > 0 (consequence of
(4.4.12)) imply that

P 5 tATh
E(1X 7 ?) = X —E( / xs-mmxsms) L2E(UAT)

tATH
< X %E (/ IXslzdS> +(24C)E(tAT). (4.4.19)
0
Gronwall's Lemma then yields that
E(XS512) < 0@+ (2+)t)e/e.

Since the right side of the last estimate does not depend, dnfollows from
Fatou’s Theorem that the probability that explosion ocaufaite time vanishes.
That (4.4.18) determines a Markov semi-group is then imatedinote thaPk is
a contraction on.?(ge) by virtue of Jensen’s inequality).

To analyze the infinitesimal generator Bf we again use Ito’s Lemma. First
note that (4.4.19) implies thdX|%;|2 < C(t)(x? + 1) for some locally bounded
C(t) . Repeating the same computation (with the funcﬂDqﬁTan, p positive
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integer) yields thaEX|%|?P < C(t, p)(x®® +1). For f € C*,

oy (R™), we then get
that

tATh tATH
)~ 100 = [ Zof(Q)ds+ /0 g(X)dwis, (4.4.20)

where the functiorg has polynomial growth at infinity and, thus, in particular,
t
E(supl | g0K)dwe)?) < .
t<1 JO

Arguing similarly with the term containings f (XX), we conclude that all terms
in (4.4.20) are uniformly integrable. Takimg— c and using thal,, — o together
with the above uniform integrability yields that

(100~ 10 =E [ ZofOQ)ds

Taking the limit a2 — 0 (and using again the uniform integrability together with
the continuityXy —s .o xa.s.) completes the proof th@f, (R™) ¢ (). O

Remark 4.4.211In fact, 2(.¢) can be explicitly characterized: it is the subset
of L?(ue) consisting of functiond that are locally in the Sobolev spad¢*?
and such that?y f € L?(le) in the sense of distributions (see [Roy07, Theorem
2.2.27]). In the interest of providing a self contained graee do not use this
fact.

An important analytical consequence of Lemma 4.4.20 isdHevfing.

Lemma 4.4.22With Assumptions as in Theorem 4.4.18, we have the following
(i) If f is a Lipschitz(1) function ofiR™, then Rf is a Lipschitz(e2/°) function
forallt e R..

(i) If f € CH(R™), then Pf € CF, (R™).

(iii) If f ,g e C2 (R™M), then the equality4.4.10)with n= 2, holds.

poly

Proof (i) By applying Ito’s Lemma we obtain that
d 2
Gi X = 20 ) (O000g) - DoY) < — 21X =X

In particular, | XX — XY| < |x—yle~2/¢, and thus forf Lipschitz with Lipschitz
constant equal to 1, we hayB(X*) — f(X)| < |x—y|e 2/C. Taking expectations
completes the proof.

(i) Since f € C;, (R™), we have thaf € 2(.£) andZ f = Zof. Therefore, also
Rf € 2(%), and ZoRf = R%of € L?(Uop) (SinceZof € L?(Up) andR is a
contraction on_?(ug)). By part (i) of the lemma|0R f| is uniformly bounded,
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and by assumptior]J®| has at most polynomial growth. It follows thAR f,
which exists everywhere, satisfies

ARf =g

where the functiom; € L?(us) has at most polynomial growth at infinity. Stan-
dard estimates for the solutions of uniformly elliptic ejaas (for this version,
see [GiT98, Theorem 4.8]) then imply tHaf € C* (R™).

poly
(iii) By assumption,f,g € C7, (R™). Thus,I'1(f,g) € C (R™), and in particular,

P poly

by Lemma 4.4.20, belongs @(.Z’), and so doefl1(f,g). The rest follows
from the definitions. O

Proof of Theorem 4.4.18.Let h be a positive bounded continuous function so
that [hdue = 1. We begin by proving tha@ is ergodic in the sense that

lim po(Rh— toh)? = 0. (4.4.21)
A direct proof can be given based on part (i) of Lemma 4.4.88tdad, we present
a slightly longer proof, that allows us to derive useful mtediate estimates.

We first note that we can localize (4.4.21): becaBde= 1 andR f > O for f
positive continuous, is enough to prove (4.4.21)Har C,(R™) that is compactly
supported. Becausg] (K) is dense inC(K) for any compackK, it is enough
to prove (4.4.21) foh € CJ(R™). To prepare for what follows, we will prove
(4.4.21) for a functiorh satisfyingh = ¢(Pgg) for someg € C7’, 6 > 0, andg
that is infinitely differentiable with bounded derivatives the range ofj (the
immediate interest is with = 0, ¢(X) = X).

Seth; = Rh and fors € [0,t], definey(s) = PM1(h—s,hi—s). By part (i) of
Lemma 4.4.22 1 (h_s,h_s) € 2(&). Therefore,

d 2 2
d—SW(S) = 2R >2(R-sh,R_sh) > Epsrl(ﬂ—sh; R_sh) = ELMS)?
where we use (BE) in the inequality. In particular,
|0he||3 =T 1(he,h) = @(0) < e 2/°y(t) = e 2/°RI 1 (h,h). (4.4.22)

The expressiofil 1 (h, ht) || converges to 0, as— o becausé 1(h,h) = ||Oh||3
is uniformly bounded. Further, since for ary € R™,

[he(X) —he(y)]

] [ (o (1), (x-y)oa

Ix=Yll2- 111 Ehel2]le < [[x—yll26™/] |Dh2l]e

IN

it follows thathy () — pe (hy) converges almost everywhere to zero. Singéh) =
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U (h), we conclude that, converges almost everywhere and.fif (e ) to to(h),
yielding (4.4.21).

We now prove Theorem 4.4.18 féf = h € C’ that is uniformly bounded below
by a strictly positive constant. Set

Si(t) = [ (Rlogh)dpio.
Sinceh loghy is uniformly bounded antl € RC (R™), we have by (4.4.21) that
S (t) converges to 0 as— . Hence,

00 d 00
- /0 dt S (t) = /0 dt [ T (t.loght)d. (4.4.23)

where in the second equality, we used (4.4.7) and the fatt[t¥ (g)due =0

for anyg € C;, (R™), and in particular, fog = h; logh.

Next, using the fact tha® is symmetric together with the Cauchy-Schwarz in-
equality, we get

/rl(h'(alogh'()duQ):/rl(h7R(|Oght))dqu> (4.4.24)

< (/wdua))% (/hrl(Hlogh[,Hlogh[)duq))%

Now, applying (4.4.22) with the function Idg (note that sincey is bounded
below uniformly away from 0, log) is indeed smooth on the range fgj, we
obtain

/hrl(Hloght,Hloght)dum < /he’%tHrl('Oght"Oth)dW
=& [ hra(logh,logh)dus = & & [ Fi(hlogh)dpo,  (4.4.25)

where in the last equality we have used symmetry of the semmand the Leib-
niz rule forl";. The inequalities (4.4.24) and (4.4.25) imply the follogrimound

[ Tathtoghiauo < e & [T0Vap, — 2 2 [ry(nt bt )apo.
(4.4.26)
Using this one arrives at

/4e colt/rl h%,hi)) duq,:Zc/l'l(f,f)duq,,

which completes the proof of (4.4.13) whére C; is strictly bounded below.

To considerf € CY, apply the inequality (4.4.13) to the functidg = 2+,
noting that™ 1 (f¢, f¢) < T1(f, f), and use monotone convergence. Another use of
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localization and dominated convergence is used to comibleteroof for arbitrary
fe LZ([JCD) with [ (f, f) < oo, O

The setup with M a compact Riemannian manifold

We now consider the version of Corollary 4.4.19 applyingi$etting of a com-
pact connected manifol of dimensiorm equipped with a Riemannian metgc
and volume measune, see Appendix F for the notions employed.

We let® be a smooth function okl and define

1
Ho (dX) = Ze_q’(X)dIJ(X)

as well as the operatdfy such that for all smooth functiors f € C*(M),
Ha(1.Zoh) = po(nZoT) = - [ g(gradf gradh)due.
We have, for allf € C*(M),

Zof =Af —g(gradd, gradf),

whereA is the Laplace—Beltrami operator. In terms of a local orthromal frame
{Li} we can rewrite the above as

Zo=Y (LF-OuLi— (Lio)L),

wherel is the Levi-Civita connection.

Remark 4.4.23For the reader familiar with such language, we note thatgallo
coordinates,

m . m
ZLo=Y ¢'00;+ 5 bla,
PRRAPR

with

b(x) = e°¥ 5 0; (&7 /detg.)g) )
]
We will not need to use this formula.

Givenf,h e C*(M) we define(Hessf,Hesdh) € C*(M) by requiring that

(Hessf,Hessh) = Z(Hessf)(Li,Lj)(Hessh)(Li, Lj)
]

for all local orthonormal framesL,; }.
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We definel , for n > 0, as in (4.4.10). In particulaF,; andl, are given by

(4.4.7) and (4.4.8). We havg(f,h) = g(gradf,gradh) or equivalently
ri(f,h)= Z(Lif)(Lih)
|

in terms of a local orthonormal framg;}. The latter expression fdr; may be
verified by a straightforward manipulation of differentigderators. The expres-
sion forl", is more complicated and involves derivatives of the megrieflecting
the fact that the Levi-Civita connection does not presdned ie bracket. In other
words, the curvature intervenes, as follows.

Lemma 4.4.24 (Bochner-Bakry-Emery)
Mo(f, f) = (Hessf,Hessf) + (Ric+ Hessb)(grad f,grad f).

(See Appendix F for the definition of the Ricci tensor Ri¢).)

Proof Fix p € M arbitrarily and let|, denote evaluation gt. LetLy,...,Lyn be
an orthonormal frame defined neae M. Write Oy, Lj = 5, CK L, whereCK =
g(0yLj,Lk). We assume that the franjk; } is geodesic ap, see Definition F.26.
After exploiting the simplifications made possible by useafeodesic frame, it
will be enough to prove that

F2(f,f)lp = Y ((LiL )2+ LiLj®)(Lif)(LF)) [p
y

+ 3 (LG LGN Dl @427)
L1,

To abbreviate writeh = Li® + 5, Cl,. By definition, and after some trivial ma-
nipulations of differential operators, we have
1
Fo(f,1) = 5 (G- AL DL 1) = (Li(LF - AL) (L )
1]

= Y (L2 4 (L L)L+ Lilki, L] + L ALD (L ).
1)

We havelL, Lj] = 54 (Cf —C¥ )Lk becausél s torsion-free. We also haye;, Lj]|p =
0 becaus€L;} is geodesic ap. It follows that

[Li,LjlLiflp = O,
LilLi,Lj]flp = Z(Licil}—LiCﬁ)(kaﬂp,

(L, AL Tl = Z(LJCLH' LiLi®)(Li f)(Lj )] p.
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We haveg(OyLj,Lx) +9(Lj, O Lk) = Cikj +C,L = 0 by orthonormality of{L;}
and thus

> (L, L)L f)fp=— Zk(LiCﬁ)(ka)(Lj f)lp-

] i,
Therefore, after some relabeling of dummy indices, we cantkat equation
(4.4.27) holds. O

Rerunning the proofs of Theorem 4.4.18 and Lemma 2.3.3tfthis, not wor-
rying about explosions, since the process lives on a conmpaweifold, and replac-
ing throughout the spacg?;, (R™) by Cy (M), we deduce from Lemma 4.4.24 the
following.

Corollary 4.4.251f for all x € M and ve TxM,
(Ric+ Hessb)x(v,v) > ¢ 1gy(v,v),

then g satisfies the (LSI) (4.4.13) with constant ¢, and furtheraioy differen-
tiable function G on M,

o (IG - / G(X) o (dX)| > 5) < 2670 /2FupT1(G0) (4.4.28)

Applications to random matrices

We begin by applying, in the setiy = R™ andu =Lebesgue measure, the gen-
eral concentration inequality of Corollary 4.4.19. Bgy € j‘fN{m we write
AP = [ A% (i, ) [T (i),
i<] i
for the product Lebesgue measure on the entries on-anceahewdiagonal of

XN, Where the Lebesgue measure @ris taken as the product of the Lebesgue
measure on the real and imaginary parts.

Proposition 4.4.2@ etV € C7,, (R) be a strictly convex function satisfying (k) >
clforallx e Randsomec- 0. LetB=1or 3 =2, and supposeﬁ(is arandom

matrix distributed according to the probability measure

L NVOn) @By
ZV

N
Let Ry denote the law of the eigenvalu@s, --- ,An) of X. Then, for any Lips-
chitz function f; RNSR,

_ Ncs?
P'\\I/ (|f(/\1);)\N)_P,\\|/f|>5) <e @
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Note that iff (Ag, -+, An) = & SN g(A), then| |y = V2N gl

Proof Takem=N(N—-1)3/2+N. Leth: jf,\fﬁ) — R™ denote the one-to-one
and onto mapping as defined in the beginning of Section 2afid JetV be the
function onR™ defined by tv (X) =V (h(X)). Note that tiXx2 > ||h(X)||*>. For
X,Y € %ﬂN@ we have

tr(V(X) =V(Y) = (X=Y)V'(Y)) = gllh(x) —h(Y)||?

by (4.4.3), and hence Hegs> cl,. Now the functionf gives rise to a function
f(X) = f(A1,...,An) on R™, where theA; are the eigenvalues &f 1(X). By
Lemma 2.3.1, the Lipschitz constants oand f coincide. Applying Corollary
4.4.19 yields the proposition. O

We next apply, in the setup of compact Riemannian manifalus,general
concentration inequality of Corollary 4.4.25. We study cemtration on orthog-
onal and unitary groups. We I€(N) denote theN-by-N orthogonal group,
andU (N) denote theN-by-N unitary group. (In the notation of Appendix E,
O(N) = Un(R) andU(N) = Un(C).) We letSU(N) = {X € U(N) : detX = 1}
andSQN) = O(N) N SU(N). All the groupsO(N), SQN), U(N), andSU(N)
are manifolds embedded in MgtC). We consider each of these manifolds to
be equipped with the Riemannian metric it inherits from Mat), the latter
equipped with the inner produt-Y = trXY*. It is our aim is to get concen-
tration results fotO(N) andU (N) by applying Corollary 4.4.25 t&Q(N) and
SU(N).

We introduce some general notation. Given a compact g&uet v denote
the unique Haar probability measure Gh Given a compact Riemannian mani-
fold M with metricg, andf € C*(M), let |f|# m be the maximum achieved by
g(gradf, gradf)¥/2 on M.

Although we are primarily interested BQN) and SU(N), in the following
result, for completeness, we consider also the Lie gld@pN) = Uy(H) C
Maty (H).

Theorem 4.4.27 (Gromov)Let 3 € {1,2,4}. Let
Gn = SQN),SU(N),USpN)
according a8 = 1,2,4. Then for all fe C*(Gy) andd > O we have
(B(N+2) ,1) 52

B A
Vo (|f— vy f| >8)<2e Mren (4.4.29)
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Proof Recall from Appendix F, see (F.6), that the Ricci curvaturé&g is given
by

Ric(Gn) (X, X) = (M - 1) (X, X) (4.4.30)

for x € Gy andX € Tx(Gn). Consider now the specialization of Corollary 4.4.25
to the following case:

o M = Gy, which is a connected manifold;

e g = the Riemannian metric inherited from Mgi), with F = R, C, H accord-
ingasB =1,2,4;

e L = the volume measure dvl corresponding tg;

e ®=0and (hencelp = Vg, .

Then the corollary yields the theorem. O

We next deduce a corollary with an elementary charactertwdhies not make
reference to differential geometry.

Corollary 4.4.28Let 3 € {1,2}. Let Gy = O(N),U(N), according as3 = 1,2.
Put SGy = {X € Gy : detX = 1}. Let f be a continuous real-valued function on
Gn which, for some constant C and all X € Gy satisfies

[f(X) = F(Y)] < Ctr(X =Y)(X =Y)")¥2. (4.4.31)
Then we have
sup |ve f — / F(Y X)dvsg, (Y)] < 2C, (4.4.32)
XeGy
and furthermore
B(N4+2)_1 52
veu (1100 [ (v )dveq, () 2 8) <26 = @43y

forall & > 0.

For the proof we need a lemma which records some group-ttiesirericks. We
continue in the setting of Corollary 4.4.28.

Lemma 4.4.29Let Hy C Gy be the subgroup consisting of diagonal matrices
with all diagonal entries equal td except possibly the entry in upper left. Let
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HY, C Gn be the subgroup consisting scalar multiples of the identigr any
continuous real-valued function f onGput

(SHX) = /f(YX)deCN(Y),
TH) = [ 1(xZ)dv, (@),
(T'H(X) = /f(XZ)deh(Z).

Then we have TS+ ST f= vg f. Furthermore, if3 =2 or N is odd, then we
have TSf=STf =vg, f.

Proof It is clear thatT S= ST. SinceGy = {XY: X € SG, Y € Hy}, and Haar
measure on a compact group is both left- and right-invariaifdllows thatT S f

is constant, and hence thi6 f = v, f. The remaining assertions of the lemma
are proved similarly. O

Proof of Corollary 4.4.28 From (4.4.31) it follows thatf — T f| < 2C. The
bound (4.4.32) then follows by applying the previous lemkiva.turn to the proof
of (4.4.33). By mollifyingf as in the course of the proof of Lemma 2.3.3, we
may assume for the rest of this proof thlat C*(Gn). Now fix Z € Hy and
definefz € C*(SGy) by fz(Y) = f(Y 2), noting thatvsg, fz = (Sf)(Z) and that
the constanC bounds|fz| # sg,. We obtain (4.4.33) by applying (4.4.29) fo
and then averaging ovérc Hy. The proof is complete. O

We next describe a couple of important applications of Gargl4.4.28. We
continue in the setup of Corollary 4.4.28.

Corollary 4.4.30 Let D be a constant and let\pDy, € Maty be real diagonal
matrices with all entries bounded in absolute value by D. Edie a Lipschitz
function onR with Lipschitz constanf | ». Set fX) = tr(F (Dy + XDnX*)) for
X € Gy. Then for every > 0 we have
B(N+2) 2
(%2 - 1)Ns )

V f—vg, f| > ON) <2exp| —
(€N (| GN |7 )7 p( 16D2||F|Eg

Proof To abbreviate we writgX|| = (tr X X*)1/2 for X € Maty(C). ForX,Y € Gy
we have

[£(X) = f(Y)| < V2N|F|| &

XD X* =Y DyY*|| < 2v2ND|X - Y|

Further, by Lemma 4.4.29, sindef = f, we havevg, f = Sf. Plugging into the
Corollary 4.4.28 we obtain the result. O
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In Chapter 5, we will need the following concentration réfa non-commutative
polynomials.

Corollary 4.4.31Let X% € Maty(C) fori =1,... .k be a collection of nonrandom
matrices and let D be a constant bounding all singular valoEthese matrices.
Let p=p(ty,...,t:2) be a polynomialin k-2 noncommuting variables with com-
plex coefficients, and for X U(N), define {X) = trp(X,X*,Xy,...,X). Then
there exist positive constantg N Ng(p) and c= c(p, D) such that, for any > 0
and N> No(p).

oy (If = Vo F| > ON) < 267N, (4.4.34)

Proof We may assume without loss of generality thatt;, - - -tj, for some indices
i1,...,ig€{1,...,k+2}, and also thal > ¢. We claim first that for alX € U(N),

w f = / (Y X)dvsug (Y) = (SH(X). (4.4.35)

For some integea such thata| < ¢ we havef (€9X) = d29f(X) for all 6 € R
andX € U(N). If a=0, thenSf= vy, f by Lemma 4.4.29. Otherwise, if
a> 0, thenvy( f =0, but alsoS =0, becausd (e?/NX) = e?™/Nf(X) and
e?a/N| e SU(N). This completes the proof of (4.4.35).

It is clear thatf is a Lipschitz function, with Lipschitz constant depending
only on/ andD. Thus from Corollary 4.4.28 in the cage= 2 and the equality
wun) f = Sfwe obtain (4.4.34) fop=t;, - - -tj, with No = £ andc = ¢(¢, D), which
finishes the proof of Corollary 4.4.31. O

Exercise 4.4.3Prove Lemma 2.3.2.

Hint: follow the approximation ideas used in the proof of Theodeth17, replac-
ingV by an approximatioW; (x) = [V (X+ £€z)u(d2) with u the normal distribu-
tion.

Exercise 4.4.33n this exercise, you provide another proof of Propositich26
by proving directly that the law

N 1 NsNovon b
R (dAr,- - An) = =& NIV () o
=

_Z\,\ﬂ

on RN satisfies the (LSI) with constariNc)~X. This proof extends to th@-
ensembles discussed in Section 4.5.
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i) Use Exercise 4.4.32 to show that Theorem 4.4.18 extentietoase where
s B
®(A)=N ZV()\i) -3 ;IogMi —Ajl.
i= iZ£]

(Alternatively, you may prove this directly by first smoathid.)
(i) Note that

B BN 2 k£
Hesi—Ei; log|Ai — Aj| ) = { B (M~ Aj)2 otherwise,

is a nonnegative matrix, and apply Theorem 4.4.18.

4.5 Tridiagonal matrix models and the 3 ensembles

We consider in this section a class of random matrices tlatradiagonal and

possess joint distribution of eigenvalues that generéliezeclassical GOE, GUE
and GSE matrices. The tri-diagonal representation has solventages, among
them a link with the well-developed theory of random Schiogér operators.

4.5.1 Tridiagonal representation g8 ensembles

We begin by recalling the definition gf random variables (witth degrees of
freedom).

Definition 4.5.34The density orfR

ol-t/2yt—15-%%/2
T

is called they distributionwith t degrees of freedom, and is denopged

Here, (-) is Euler's Gamma function, see (2.5.5). The reason for theeria that
if t is integer andX is distributed according tg;, thenX has the same law as

\ /z}zl Eiz whereé; are standard Gaussian random variables.

Let & be independenti.i.d. standard Gaussian random variableer@ mean
and variance 1, and lef ~ x;g be independent and independent of the vari-
ables{¢}. Define the tri-diagonal symmetric matrbty € Maty(R) with en-
triesHn (i, j) = 0 if |i — j| > 1, Hn(i,i) = +/2/B& andHn(i,i +1) = W-i/\/B,

i =1,...,N. The main result of this section is the following.
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Theorem 4.5.35 (Edelman-Dumitriu) The joint distribution of the eigenvalues
of Hy is given by

Ca(B)B(A)Pe a3, (4.5.1)

where the normalization constani@3) can be read off2.5.11)

Before proceeding with the proof of Theorem 4.5.35, we penfan preliminary
computation, that will prove Theorem 4.5.35 in c@se- 1 and will also turn out
useful in the main body of the proof.

Proof of Theorem 4.5.35 - = 1. Let Xy be a matrix distributed according to
the GOE law (and in particular, its joint distribution of eigvalues has the density
(2.5.3) with3 = 1, coinciding with (4.5.1)). Sefn = Xn(1,1)/+/2, noting that
due to the construction in Section 2.5&},, is a standard Gaussian variable. Let
X,Sl’l) denote the matrix obtained froXy by striking the first column and row,
and etz ; = (Xn(1,2),...,Xn(1,N)). Then,Zy_; is independent o)K,E‘l’l) and
&n. Let Hy be an orthogonal — 1-by-N — 1 matrix, measurable oa(Zn-1),
such thatidnZy_1 = (][ Zn-1]|2,0,...,0), and setYy_1 = ||Zn_1]|2, noting that
Yn-1 is independent ofy and is distributed according tgy_1. (A particular
choice ofHy is theHouseholder reflectdry = 1 —2uu’ /||ul|3 whereu = Zy_; —

[Zn-1l2(1,...,0).) Let
1 0

Then, the law of eigenvalues by Xy H,E is still (4.5.1), while

V26N Yno1 One2
YN
HNXNH'E: " XN-—1 ’

On—2

where Xy_1 is again distributed according to the GOE, and is independén
&én andYy_j. lterating this constructiol — 1 times (in the next step, with the
Householder matrix correspondingX®_1), one concludes the proof (wifB =
1). O

We proceed with proving some properties of the eigenvalndsigenvectors
of tri-diagonal matrices. Recall some notation from Setfdb: 2y denotes the
collection of diagonaN by N matrices with real entries7J denotes the subset
of 9y consisting of matrices with distinct entries, aa§® denotes the subset
of matrices with decreasing entries, that4§° = {D € 24 : Dij > Di,1j:+1}.
Recall also tha??/,\(,l) denotes the collection & by N orthogonal matrices, and
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let %,\El“ denote the subset 67,\53 consisting of matrices whose first row has all
elements strictly positive.

We parametrize tridiagonal matrices by two vectors of lerigtand N — 1,
a=(a,...,an) andb = (by,...,bn_1), so thatifH € ij(” is tri-diagonal then
H(i,i) = an—j+1 andH(i,i+1) = bn_i. Let 9 C %ﬂ,\fl) denote the collection of
tri-diagonal matrices with all entries ofstrictly positive.

Lemma 4.5.36The eigenvalues of any & .7y are distinct, and all eigenvectors
v=(vq,...,w) of H satisfy that y # 0.

Proof The null space of any matrid € .7} is at most one dimensional. Indeed,
supposéHv = 0 for some non-zero vecter= (vi,...,Vn). Because all entries of
b are non-zero, it is impossible thet = O (for then, necessarily alk = 0). So
supposer; # 0, and therv, = —ay/bny-_1. By solving recursively the equation

bN_iVi—1+an—iVi = —bn—i—1Vig1, i =2,... . N—1, (4.5.2)

which is possible because all entriesloéire non zero, all entries ofare deter-
mined. Thus, the null space of aiy/€ Zy is one dimensional at most. Since
H—Al € 94 for any A, the first part of the lemma follows. The second part fol-
lows because we showed that i 0 is in the null space dfl — A, itis impossible

to havev; = 0. O

Let H € 9, with diagonalsa andb as above, and writel = UDUT with
D € 2%° andU = |V%,...,wN] is orthogonal, such that the first row bf, de-
notedv = (vi,...,Vv}'), has nonnegative entries. (Note that|, = 1.) Write
d=(D11,...,Dnn). LetAf = {(X1,...,Xn) 1 X1 > X2... > Xy} and let

St={v=(vi,...,w) €RN: ||v]2=1, v > 0},

(Note thatAy; is similar toAn, except that the ordering of coordinates is reversed.)

Lemma 4.5.37The map

(a,b) — (d,v) 1 RN x RNV 5 A x SN2 (4.5.3)
is a bijection, whose Jacobian J is proportional to
A(d)
I T (4.5.4)
1= 1

Proof That the map in (4.5.3) is a bijection follows from the prodéfLemma
4.5.36, and in particular from (4.5.2) (the méhv) — (a,b) is determined by
the relationrH = UDU".



308 4, ME GENERALITIES

To evaluate the Jacobian, we recall the proof of fhe 1 case of Theorem
4.5.35. LetX be a matrix distributed according to the GOE, consider the tr
diagonal matrix with diagonala,b obtained fromX by the successive House-
holder transformations employed in that proof. Wre= UDU* whereU is
orthogonal,D is diagonal (with elementd), and the first ronu of U consists
of nonnegative entries (and strictly positive except ontaofeneasure 0). Note
that by Corollary 2.5.4u is independent oD, and by Theorem 2.5.2, the den-
sity of the distribution of the vectofd,u) with respect to the product of the
Lebesgue measure df, and the the uniform measure @5‘;1 is proportional
to A(d)e*ii'ildiz/“. Using Theorem 4.5.35 and the first part of the lemma, we
conclude that the latter (when evaluated in the variahlb¥is proportional to

2 2 N—1 N—-1
Je s F st g |-| bl = Je S/ |—l o,
i= i=

The conclusion follows. O
We will also need the following useful identity.
Lemma 4.5.38With notation as above, we have the identity
Micy b
A(d) = it 1 (4.5.5)
MLivh
Proof Write H =UDUT. Lete; = (1,0,...,0)T. Letw! be the first column of
UT, which is the vector made out of the first entries/bf...,v". One then has

N-1
rlb: = defey,Hey,...,HN1e;] = defe;,UDU Tey,...,UDN1UTg]
i=

+defw?, Dwt, ..., DN twl] = +A(d) ﬁ\/'l.

Because all terms involved are positive by constructiom;ttlis actually a+, and
the lemma follows. O

We can now complete the
Proof of Theorem 4.5.35 - genergB > 0. The density of the independent vectors
aandb, together with Lemma 4.5.37, imply that the joint densityatndv with

respect to the product of the Lebesgue measur&fpand the uniform measure
onS~tis proportional to

N-1 iB—1__BsN 2
J rlbi e 42i=19 (4.5.6)
i=
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Using the expression (4.5.4) for the Jacobian, one has

N-1 N-1 \ P N \A1
Jlubzﬁ_le(d)(Elb}) = A(d)P <.|1\/1> ,

where (4.5.5) was used in the second equality. Substitini(§5.6) and integrat-
ing over the variableg completes the proof. O

4.5.2 Scaling limits at the edge of the spectrum

By Theorem 4.5.35, Corollary 2.6.3 and Theorem 2.6.6, wenktiat Ay /v/N,
the maximal eigenvalue dfy/+/N, converges to 2 al — . It is thus natural
to consider the matridy = Hy — 2v/Nly, and study its top eigenvalue. For
B =124, we have seen in Theorems 3.1.4 and 3.1.7 that the top eilyensf
NY/6Hy converges in distribution (to the Tracy-Widom distributis). In this
section, we give an alternative derivation, valid for @Jlof the convergence in
distribution, although the identification of the limit domset involve the Tracy-
Widom distributions.

One of the advantages of the tridiagonal representatiorhebfiem 4.5.35 is
that one can hope that scaling limits of tridiagonal magioaturally relate to
(second order) differential operators. We begin by prowgdi heuristic argument
that allows one to guess both the correct scale and the fothredimiting oper-
ator. From the definition of variables witht degrees of freedom, such variables
are asymptotically (for large) equivalent to\/t + G/+/2 whereG is a standard
Gaussian random variable. Considfar as an operator acting on column vectors
W= (,...,Un)". We look for parameters, y such that, if one writes = [xN°]
and Y, = W(x) for some “nice” function¥, the action of the top left corner of
NYHy on y approximates the action of a second order differential apeonW.
(We consider the upper left corner because this is whereffkgiagonal terms
have largest order, and one expects the top of the spectrinm telated to that
corner.) Toward this end, expand to a Taylor series up to second order, and
write Yne1 ~ Pn = N"TW (x) + N~29W"(x) /2. Using the asymptotic form gf
variables mentioned above, one gets after neglecting smalt terms that, for
a < 1 andxin some compact subset Bf, ,

(NYANW)(n) ~ NYHY/2=2a97 () (4.5.7)
1
4 /ﬁNV (2G<nl> +GP + ngjl) W(x) — XNV 12

where{Grq)}, i = 1,2, are independent sequences of i.i.d. standard Gaussian va
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ables. Itis then natural to try to represé}ﬂ) as discrete derivatives of indepen-
dent Brownian motions: thus, &%, Wy denote standard Brownian motions and
(formally) write G{Y = N-2/2W/, G{? = N~9/2W/, with the understanding that a
rigorous definition will involve integration by parts. Suibsting in (4.5.7), and
writing By = (W +V_VX)/\/§, we obtain formally

y-a/2g
+ A B - xne 2w, (4.5.8)
VB

where (4.5.8) has to be understood after an appropriagratten by parts against
smooth test functions. To obtain a scaling limit, one thezdsedo takexr, y so that

(NVHNL[J)(n) ~ Ny+l/272aq_,//(x)

I VAL MV S, SN SV
A A RS
In particular, we recover the Tracy-Widom scaling, and exfiee top of the spec-
trum of N¥/6Hy to behave like the top of the spectrum of the “stochastic Airy
operator”
_ & 2 o

HB = W — X+ WBX
The rest of this section is devoted to providing a precisend&fn of Hg, devel-
oping some of its properties, and proving the convergentieefop eigenvalues
of N¥/6Hy to the top eigenvalues dfig. In doing so, the convergence of the
quadratic forms associated with/6Hy toward a quadratic form associated with
Hg plays an important role. We thus begin by providing someyaitall machin-
ery, that will be useful in controlling this convergence.

(4.5.9)

On smooth functions of compact support(@ ), introduce the bilinear non-
degenerate form

(1.9 = [ F00g 00dx+ [ (@407 00g00dx

Define %, as the Hilbert space obtained by completion with respediédniner
product(-, ). (and norm|| f||.. = 1/(f, f).). Because of the estimate

[F00 = fWI < VIX=VIII I+, (4.5.10)

elements ofZ, are continuous functions, and vanish at the origin. Funtinep-
erties of.Z, are collected in Lemma 4.5.43 below.

Definition 4.5.39A pair (f,A) € %, x Ris called areigenvector—eigenvalue pair
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of Hg if || f[|2 =1 and, for any compactly supported infinitely differenteafinc-
tion ¢,

p /Ow o(x) F (x)dx = /()oo[(p”(x)f(x) —x@(x) f (x)]dx (4.5.11)

_2 [/ qd(x)f(x)Bxdx+/ qo(x)Bxf’(x)dx] :

VB Lo 0
Remark 4.5.40(4.5.11) expresses the followingf, A ) is an eigenvector-eigenvalue
pair of Hg if Hgf = A f in the sense of Schwarz distributions, where we under-
standf (x)B; as the Schwarz distribution that is the derivative of thetiooous

function f (x)Bx — [ By f'(y)dy.

Remark 4.5.41Using thatf € .%,, one can integrate by parts in (4.5.11) and
express all integrals as integrals involviggonly. In this way, one obtains that
(f,A) is an eigenvector-eigenvalue pairteg if and only if, for Lebesgue almost
everyx and some constaf, f’'(x) exists and

f’(x):C+/OX()\ +9)f(9)d6—Bxf(x)+/0XBgf’(6)d9. (4.5.12)

Since the right side is a continuous function, we concludéefthcan be taken con-

tinuous. (4.5.12) will be an important tool in deriving pesfpies of eigenvectors-

eigenvalues pairs, and in particular the nonexistenceméigenvector-eigenvalue
pairs sharing the same eigenvalue.

The main result of this section in the following.

Theorem 4.5.42 (Ramirez, Rider and Virag)Fix B > 0and letA] > A} ;> ...
denote the eigenvalues ofHFor almost every Brownian pathBfor each k> 0,
the collection of eigenvalues Bifs possesses a well defined-Kst largest element
A Further, the random vector X°(Al ; —2¢/N)%_, converges in distribution
to the random vectofA)_.

The proof of Theorem 4.5.42 will take the rest of this sectibis divided into
two main steps. We first study the operatty by associating to it a variational
problem, and prove, see Corollary 4.5.45 and Lemma 4.5.lbibthat the (dis-
crete) eigenvalues ¢f g are discrete, can be obtained from this variational prob-
lem, and the associated eigenspaces are simple. In a sdepndve introduce a
discrete quadratic form associated wiik = N¥/®Hy and prove its convergence
to that associated withi g, see Lemma 4.5.50. Combining these facts will then
lead to the proof of Theorem 4.5.42.
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We begin with some preliminary material related to the spate

Lemma 4.5.43Any f € %, is Holder(1/2)-continuous and satisfies
XA F) <2 f]le, x>1 (4.5.13)

Further, if { fn} is a bounded sequencedt. then it possesses a subsequence that
converges to some f i, in the following senses: (i)nf—2 f, (i) f, —
weakly in 12, (iii) f, — f uniformly on compacts, (ivl,f— f weakly in.%,.

Proof The Holder continuity statement is a consequence of (@)5.The latter

also implies that for any functiohwith derivative inL?, | f (y)| > (| fO)]—Iy=X|l f’Hz)
+

and in particular, for any,

£2(x) < 2|/ f[l2][ '[|2- (4.5.14)

(Indeed, fixx and consider the se&¥ = {y: |y — x| < f2(x)/4(/f'||3}. On A,
If(y)| > [f(x)|/2. Writing || f[|3 > [, f2(y)dythen gives (4.5.14).) Sindgf |2 >

[ (1+x)f2(x)dx > z ;" f2(x)dx, applying the estimate (4.5.14) on the function
f(2)1yox yields (4.5.13).

Points (ii) and (iv) in the statement of the lemma follow frahe Banach-
Alaoglu theorem (Theorem B.9). The point (iii) follows frotme uniform equi-
continuity on compacts of the sequenfgethat is a consequence of the uniform
Holder estimate. Together with the uniform integrabikityp, [ xf2(x)dx < oo,
this gives (i). O

The next step is the introduction of a bilinear form.&f associated with s.
Toward this end, note that if one interpret$igg for ¢ smooth in the sense of
Schwarz distributions, then it can be applied (as lineactional) again ong,
yielding the quadratic form

@, =19 B+ VR0 s [“Baogax (@519

We seek to extend the quadratic form in (4.5.15) to function&,. The main
issue is the integral

2 [ B9 (9dx= [ Bu(p(x?)dx.

Since it is not true thaBy| < C/x for all largex, in order to extend the quadratic
form in (4.5.15) to functions inZ,, we need to employ the fact thBy is itself
regular inx. More precisely, define

— X+1
X
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For ¢ smooth and compactly supported, we can wBje= By + (Bx — B_X) and
integrate by parts to obtain

| Bato0?dx=— [ ¢Pxdx+2 [ (Be—BIpXI# (x)dx.
0 0 0
This leads us to define

(@0 = (4.5.16)

163+ V500015~ [ a2 [ R 9y

where

Q= (BY)' =Bxy1—Bx, R(=Bx—Bx. (4.5.17)

This quadratic form extends t&’,.

Lemma 4.5.44a) For eache > 0 there exists a random constant C (depending on
B, € and B only) such that

4 VIR
4 lQdVIRI

VB x CHVx =
b) The quadratic forn{-,-)n, of (4.5.16)extends to a continuous symmetric bi-
linear form on.%, x .%,: there exist a (random) constant,Glepending on the
Brownian path Bonly, such that almost surely,

(4.5.18)

1
SIFIE=CIITIE < (F, Fhmy <CIIIFII2. (4.5.19)

Proof For part a), note that
|Q«| VIR« < Zpyg +Zpy 11,

whereZz; = SURc(o,1) |Biry —Bi|. The random variabled; are i.i.d. and satisfy
P(Z > t) < 4P(G >t) whereG is a standard Gaussian random variable. From
this and the Borel-Cantelli lemma, (4.5.18) follows.

We turn to the proof of b). The sum of the first two terms in théirdeéon
of (f,f)n, equals|f||2— | f[|5. By the estimate (4.5.18) 0@ with & = 1/10,
the third term can be bounded in absolute value| by?/10+ C4|| f||3 for some

(random) constanE; (this is achieved by upper boundi@1+ /x) by C; +
x/10). Similarly, the last term can be controlled as

e 1 1 1
/ (C+ VRO () dX < CI ][]l + = FIIZ < S 12+ Call 15
0 10 10
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Combining these estimates (and the fact {tfdt. dominated f||») yields (4.5.19).
O

We can now consider the variational problem associatedthvitlquadratic form
<-,->HB of (4.5.16).

Corollary 4.5.45The infimum in the minimization problem

= inf f, f 4.5.20
0 fef*l.HfH2:1< RLE ( )

is achieved at some ¢ %, and (f,—/\o) is an eigenvector-eigenvalue pair for
Hﬁ, with —Ag = Aq.

We will shortly see, c.f. Lemma 4.5.47, that the minimizeGiarollary 4.5.45 is
unique.

Proof By the estimate (4.5.19), the infimum in (4.5.20) is finite.t £&}» be a
minimizing sequence, that jsfy||2 = 1 and(fy, fn>HB — No. Again by (4.5.19),
there is some (random) constéhso that|| f,||. < K for all n. Write

(o g = 1 Foll2— 1ol — % [ utiwan-2 [ R 000

Let f € Z, be a limit point off, (in all the senses provided by Lemma 4.5.43).
Then, 1= ||f4||]2 — || f||2 and hencg| f||> = 1, while liminf]|| fo||« > || f|l«. Fix
€ > 0. Then, by (4.5.18), there is a random variaklsuch that

< €lfall- -

% [/XOOQanZ(x)dx—Z/: Rfn(X) frﬁ(x)dx}

The convergence df, to f uniformly on [0, X] together with the boundedness of
|| |« then imply that

(f, )rg < Bminf (fo, fohu, + €K = Ao+ K.

Sincee is arbitrary, it follows from the definition of\o that (f, f>HB = No, as
claimed.

To see thaf f,—/\o) is an eigenvector-eigenvalue pair, fix> 0 andg smooth
of compact support, and sét? = (f + @) /|| f + £¢||> (reducee if needed so
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thatg # f/¢€). Then,
<f£’ f£>Hp - <f7 f>Hp

_ _2s<f,f>HB/O°°f(x)qo(x)dx+2e/o (£ ()@ (X) + xF(X) (x) )dx
_% { /0 " Qe f ()dx— /O ) RX[(p(x)f(x)]’dx} +O(e?).

Thus, a necessary condition fbrto be a minimizer is that the linear mterm in
the last equality vanishes for all such smooth and compaaghportedp. Using
thatg is compactly supported, integrate by parts the term inng/@ and rewrite
in terms ofBy, and that(f, f>HB = N\o, one gets from this condition thaf, —Ag)

satisfies (4.5.11).

Finally, we note that by (4.5.11) and an integration by paftgg,A) is an
eigenvector-eigenvalue pair then for any compactly sugpasmoothp,

M [T omamdx= [[0 00900 —xexgldx  (45.21)
0 0
_% { [ egtQax- [ Rx[q,(x)g(x)],dx} |

Take a sequendem } of smooth, compactly supported functions, so that> gin
Z.. Applying the same argument as in the proof of Lemma 4.5.44 concludes
that all terms in (4.5.21) (withg, replacing@) converge to their value with
replacingy. This implies thatg, g)HB = —A||gll3, and in particular that < —Ao.
Since the existence of a minimizéto (4.5.20) was shown to imply thaf, —Ag)
is an eigenvector-eigenvalue pair, we conclude that in-falgd = Ag. O

Remark 4.5.46 The collection of scalar multiples of minimizers in Corojla
4.5.45 forms a linear subspag&. We show that’7 is finite dimensional: in-
deed, let{ f,} denote an orthogonal (ib?) basis of.s#, and suppose that it is
infinite dimensional. By Lemma 4.5.44, there is a constastich that| fn||. < C.
Switching to a subsequence if necessary, it follows from iem.5.43 thatf,
converges to soméin L2, with || |2 = 1, and in factf € /4. But on the other
hand,f is orthogonal to alff, in 2 and thusf ¢ 73, a contradiction.

We can now repeat the construction of Corollary 4.5.45 itideky. Fork > 1,

with 7%, denoting the ortho-complement&f;_; in L2, set

Ny = inf (f, f>HB . (4.5.22)
fe 2| fll=1fesnt

Mimicking the proof of Corollary 4.5.45, one shows that thérhum in (4.5.22)



316 4, ME GENERALITIES

is achieved at somé € .%,, and(f,—/y) is an eigenvector-eigenvalue pair for
Hg, with —/A\x = A¢. We then denote by the (finite dimensional) linear space
of scalar multiples of minimizers in (4.5.22). It followsahthe collection of
eigenvalues oHp is discrete and can be orderedias> A1 > ---.

Our next goal is to show that the spacgg are one dimensional, i.e. that each
eigenvalue is simple. This will come from the analysis 06(42). We have the
following.

Lemma 4.5.47For each given CA and continuous function.Bthe solution to
(4.5.12)is unique. As a consequence, the spa#gsre all one-dimensional.

Proof Integrating by parts, we rewrite (4.5.12) as

£/(x) =C+ (A +x) /Xf'(e)ola—/X f’(G)dG—BX/X f’(@)d6+/XBgf’(9)d6.

° ° ° °  (45.23)
By linearity, it is enough to show that solutions of (4.5.28hish wherC = 0.
But, for C = 0, one gets that for some boundé&{x) = C'(A,B.,x) with C'(x)
increasing inx, |f'(x)| < C' [5|f'(6)|d6. An application of Gronwall's lemma
shows thatf’(x) = O for all positivex. To see that’ is one dimensional, note
that if f satisfies (4.5.12) with consta@f thencf satisfies the same with constant
cC. O

Another ingredient of the proof of Theorem 4.5.42 is the espntation of the
matrix Hy := N¥/®Hy as an operator of,. Toward this end, define (fore R..)

XN1/3
x) = N6 E[N ]H i 4.5.24
yN,l() B Z N(a)v ( )

[XNY/3)
yna(x) = 2N"Y6 Z (VN —Hn(i,i+1)). (4.5.25)

Standard estimates lead to the following.

Lemma 4.5.48There exists a probability space supporting the procesggsé y
and two independent Brownian motiong Bj = 1,2, such that with respect to the
Skorohod topology, the following convergence holds alsosly:

2 ] .
YN () = \/;Bx,j +x2(1 -1)/2, j=12.

In the sequel, we work in the probability space determinetddiyma 4.5.48, and
write By = By 1 + Bx 2 (thus defining naturally a version of the operaty, whose
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relation to the matricely needs clarification). Toward this end, we consider the
matricesHy as operators acting d&™ equipped with the norm

Hwm:ngpm+n—mnhw4@iwmhw4@iwm,

where we se¥(N + 1) = 0. Write (v,w)n2 = N~Y33N v(i)w(i) and let||v|n 2
denote the associated norm BN. Recall the random variablé$ appearing in
the definition of the tri-diagonal matriky, see Theorem 4.5.35, and motivated
by the scaling in Theorem 4.5.42, introduce

P = 2N*1/6\/N—iEY,i,
n ( \/B N-i)

1
yoo= 2N"YE = (EVai —Yaoi).

VB

Itis straightforward to verify thag; > 0 and that for some constaxindependent
of N,

i Ki
—— K< < — . 4.5.26
K\/N K<ni< N + K ( )

Also, with w? = /2/BN-Y6s5k | & andw,? = 5 , %, we have that for any
€ > 0 there is a tight sequence of random varialaigs satisfying

sup i — w2 < 6iNTYB 4 ke (4.5.27)
i<keitNL/3

We now have the following analogue of (4.5.19).

Lemma 4.5.49There exists a tight sequence of random variables g (N), i =
1,2,3, so that for all N and v,

cuVIR. — c2llVIlRi2 < — (v Anvinz < es|IVIR..

Proof Using the definitions, one gets (settimdN + 1) = 0)

—(,HwW)ne = Nmi( (i+1) —v(i))®+2N" 1/621'7' (i+1)

\/7 1/GZI\/2 ()& + 2N~ 1/Gzlyv v(i+1)

= S+S-S+S. (4.5.28)
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One identifiess; with the first term inf|v|% ,. Next, we have

i’?iv(i)v(i +1) < \/iniv(i)z - iniV(i +1)2

and thus, together with the bound (4.5.26), we have $h& bounded above by
a constant multiple of the sum of the second and third ternﬂs”ﬁ’*. Similarly,
we have from the bounalb > —(a— b)?/3+ a2/4 that

N 1 1. K
niV(l)V(l+1)2—§f7(Vi+1—V|) += f7|V2> (Vi+1—Vi)2+@'Vi2—ZVi2,

and using again (4.5.26) we conclude that
2 2 2
S+S 2 3V~ vz, (4.5.29)
for an appropriate constactk ).

We turn next toSs. Write Swd) = N~%/3[w I(()Nl/g —w}, j =1,2. Summing
by parts we get

S

.z<w:i>1—wsl>—awsl>>w<i>+.25wfl>“<i>

1/3 N (N (1) Wy ] (2
N™ w,” —w™) | (vi(i4+1) — 5W
i; z:Zrl ! I Z\
= %114-83’2. (4.5.30)
Using (4.5.27) we find that

N
|Ssal < .21|V2(i +1) = V()| /&iN"Y3 4 Kk e

< \/Ewl/éi(v(iﬂ)—v(i)) % i(eiNZ/g’—FKN,le/g’)Vz(i)
< ﬁnvnﬁ,*ﬂjgnvné.

Applying again (4.5.27) to estimafg » we conclude that

1
1Ss| < (VE+&)IVIIR. + (%H)KN.SIIVH%-
A similar argument applies t&. Choosinge small, and combining with the
estimate (4.5.29) then concludes the proof of the lemma. O

Because the family of random variables in Lemma 4.5.49 ist tigny subse-
quence{Ny} possesses a further subsequefiig} so that the estimates there
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hold with fixed random variableg (now independent dil). To prove Theorem
4.5.42, it is enough to consider such subsequence, whidh, seime abuse of
notation, we continue to denote by

Each vector € RN can be identified with a piecewise constant functigiby
the formulafy(x) = v([NY¥3x]) for x € [0, [N?3]] and f,(x) = O for all otherx.
The collection of such functions (for a fixéd) forms a closed linear subspace of
L?:= L%(R, ), denoted_2N, andHy acts naturally or.?N. Let 2y denote the
projection fromL2 to LN  L2. Then,Hy extends naturally to an operator bf
by the formulaHy f = HyZn f. The relation between the operatétg andHp
is clarified in the following lemma.

Lemma 4.5.50) Let fy € L>N and supposenf— f weakly in 2, so that N/3( fiy (x+
N-1/3) — fy(x)) — /(x) weakly in [2. Then, for any compactly supportex

(@.Fn )2 = (@, @)ng - (4.5.31)

b) Let fy € LN with || fn||n.« < ¢ and||fn||2 = 1. Then there exists an ¢ .%,
and a subsequenceN- « so that f, — f in L2 and for all smooth, compactly
supportedp, one has

<¢7HANk ka>2 —k—o0 <(p’ f>HB .

Proof The first part is an exercise in summation by parts that we.offotsee
the second part, pick a subsequence such thatfoamdN®/3( fy (x+N~1/3) —
fn(x)) converge weakly in.? to a limit (f,g), with f(x) = fé g(s)ds(this is pos-
sible becausd fn||n« < ). An application of the first part of the lemma then
completes the proof. O

We have now put in place all the analytic machinery neededderdo provide
the Proof of Theorem 4.5.42roof of Theorem 4.5.42Write ny x = NY8(AY | —
2V/N). Then,nn « is thekth top eigenvalue ofly. Let VN .k denote the associated
eigenfunction, so thaffy,|l2 = 1. We first claim that) := limsupnn < Ax.
Indeed, ifn, > —o0, one can find a subsequence, that we continue to dendte by
so that(Nn.1,---,Nnk) — (&1,...,& = Nk). By Lemma 4.5.49, foj = 1,... k,
[vn,jlIn,« are uniformly bounded, and hence, on a further subsequépgeson-
verge inL? to a limit fi, ] = 1,...,N, and thefj’s are eigenvectors dfig with
eigenvalue at leasjx. Since thef; are orthogonal in.2 and the spacest] are
one dimensional, it follow thaky > ny.

To see the reverse implication, that will complete the pre@fuse an inductive
argument. Suppose thag j — Aj andfy,; — fjin L2forj=1,...,k—1, where
(fj,Aj) is the jth eigenfunction-eigenvalue pair fétg. Let (fy,Ax) be thekth
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eigenfunction-eigenvalue pair fétz. Let f be smooth and of compact support,
so that|| fy — f¢||. < €, and set

k—1

fuk=Pnfic = Y (Wi PN -

j—1
Since |lw,jlIn,« < ¢ for some fixedc by Lemma 4.5.49, ang nf¢ — fy, |2
is bounded by & for N large, it follows that|| fy x — Pn f|In,« < ce for some
(random) constard. Using again Lemma 4.5.49, we get that

_ (P (PN EE AN E)
liminf > liminf —————— = liminf
N—0o Nk = N—oo <fN.k, fN.k> N—oo <@N fk‘g7 PN fk£>

+3(e),
(4.5.32)
wheres(g) —¢_0 0. Applying (4.5.31), we have that

im (PNEANNS) = (£ FEm, -

Substituting in (4.5.32), we get that

(1, T H,
[ fill2

where agairs (&) —¢_0 0. This implies, after taking — 0, that

+9(¢),

liminf ny x >
N—oo ’

liminf Nk > Ak
N— o0

The convergence of,,, — fk follows from point b) of Lemma 4.5.50. 0

4.6 Bibliographical notes

The background material on manifolds that we used in Seetibrcan be found
in [Mil97] and [Ada69]. The Weyl formula (Theorem 4.1.28)rche found in
[Wey39], without appealing explicitly to the co-area forlauTrheorem 4.1.8. A
general version of the latter is due to Federer and can bedlfoufFed69], see
also [Sim83] and [EvG92] for a less intimidating descriptio

The physical motivation for studying different ensemblésamdom matrices
is discussed in [Dys62e]. We note that the Laguerre and Jacsembles oc-
cur also through statistical applications (the latter uriie name MANOVA, or
multivariate analysis of variance), see [Mui81].

Our treatment of the derivation of joint distributions ofjenvalues was influ-
enced by [Due04] (the latter relies directly on Weyl's foleguand [Mat97]. The
book [For05] is an excellent recent reference on the deonaif joint distribu-
tions of eigenvalues of random matrices belonging to varensembles; see also
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[Meh91] and the more recent [Zir96]. Note however that thheudar ensembles
COE andCSEdonotcorrespond random matrices drawn uniformly from the uni-
tary ensembles as in Proposition 4.1.6. A representatiearghic approach to
the study of the latter, that also gives central limit th@esdor moments, is pre-
sented in [DiS94] and further developed in [DIEO1]. The glsaBon contained

in Remark 4.1.7 is motivated by the discussion in [KaS99}. rRore on the root
systems mentioned in Remark 4.1.5 and their link to the Wigbjration formula,
see [Bou05, Chapter 9, Section 2].

The theory of point processes and the concept of Palm mesaappdy to much
more general situation than we have addressed in Sectio®4aod treatise of
the theory is contained in [DaVJ88]. Our exposition builadstbe treatment in
[Kal02, Chapter 11].

Although we have not emphasized is, point proces8es R whose associated
differences sequencg$ (see Lemma 4.2.42) are stationary and with finite mean
marginal, are called cyclo-stationary. It is a general,faete [Kal02, Theorem
11.4], that all cyclo-stationary processes are in oner®-orrespondence with
non-zero stationary simple point processes of finite intgn& the Palm recipe.

Determinantal point processes where studied in [Mac7%,ad80 the survey
[Sos00]. The representation of Proposition 4.2.20, as agelhe observation that
it leads to a simple proof of Corollary 4.2.21 and of the CLTGafrollary 4.2.23
(originally proved in [Sos02a]), is due to [HOKPV06]. Sesathe forthcoming
book [HOKPV09]. The Janossi densities of Definition 4.2 /7determinantal pro-
cesses were studied in [BoS03], see [Sos03] for the Pfaffiacegses analogue.

The argument in the proof of Proposition 4.2.30 was sugdessteus by T.
Suidan. Lemma 4.2.50 appears in [Bor99]. Lemma 4.2.52 entélom [GeV85].
A version valid for continuous time processes was provelibean [KaM59]. Re-
lation between non-intersection random walks, Browniariiong, and queuing
systems was developed in [OcY01], [OcY02], [KoOR02], [O8p0There is a
bijection between paths conditioned not to intersect amthicetiling problems,
see [Joh02], C. Krattenthaller [Kra90] and referencesdineithat therefore re-
lates tiling problems to determinantal processes. Theéioelavith spanning trees
in graphs is described in [BuP93]. Finally, two dimensiodelerminantal pro-
cesses appear naturally in the study of zeroes of randongtamfinctions, as
was discovered in [PeVO05], see the forthcoming [HOKPV09].

The description of eigenvalues of the GUE as a diffusion gsecthat is The-
orem 4.3.2, was first stated by Dyson [Dys62a]. McKean [McK®3.23] con-
sidered the symmetric Brownian motion and related its eigleres with Dyson’s
Brownian motion. A more general framework is developed iolRW86] in the
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context of Brownian motions of ellipsoids. The relationvween paths condi-
tioned not to intersect and and the Dyson motion is studi@8iBO05], [DoO05].
The ideas behind Lemma 4.3.6 come fro@rm[OZ]. A version of Lemma 4.3.10
can be found in [RoS93]. WheBi= 1,2, 1 in that lemma is the asymptotic limit
of the spectral measure ¥\ (0) + HNA(t). It is a special case of free convolu-
tion (of the lawu and the semi-circular law with variantethat we shall describe
in Chapter 5. A refined study of the analytic properties o€ ftenvolution with a
semi-circular law, that greatly expands on the results imir& 4.3.15, appears in
[Bia97h].

A weak limit of the rescaled process of eigenvalues tosihe procesgin the
bulk) and theAiry procesgat the edge). The Airy process also appear as limits
of various combinatorial problems. For details, see [P{J02W03] or [Joh05]
for the Airy process, and [AdIO5], [AdvMO5]. Other processecur in the study
of rescaled versions of the eigenvalues processes of athdom matricesr. In
particular, the Laguerre process arises as the scalingdintie low-lying eigen-
values of Wishart matrices, see [Bru91], [KoOO01] and [Deim@nd has the in-
terpretation of Bessel processes conditioned not to ieters

The use of stochastic calculus as in Theorem 4.3.20 to pienvieat limit theo-
rems in the context of Gaussian random matrices was intextlindCab01]. This
approach extends to the study of the fluctuations of wordsof(br more) inde-
pendent Wigner matrices, see [Gui02] who considered ddimi&theorems for
words of a Gaussian band matrix and deterministic diagoa#lices.

Proposition 4.3.23 is due to [CaGO01]. It was completed infolldarge devi-
ation principle in [GuZ02] and [GZ04]. By the contractionmriple (Theorem
D.7), it implies also the large deviations principle fq§(1), and in particular for
the empirical measure of eigenvalues for the sum of a Gau®digner matrixxXy
and a deterministic matrif&y whose empirical measure of eigenvalues converges
and satisfies (4.3.23). Féy = 0, this recovers the results of Theorem 2.6.1 in
the Gaussian case.

As pointed out in [GuZ02](see also [Mat94]), the large dewizs for the empir-
ical measure of the eigenvaluesAj + Xy are closely related to Itzykson-Zuber-
Harish-Chandra integrals, also called spherical integre¢n by

'l(\JZ)(A’ D) — /eBTNtF(UDU*A)dn}(\IB)(U),

where the integral is with respect to the Haar measure on ttreo@onal group
(whenf = 1) and Unitary group (whefi = 2). These integrals appeared first in
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the work of Harish Chandra [Har56] who proved that wifies 2

det (eN)1<i j<n)
Mi<j(@ —aj) [i<j(di —dj)
when(di)1<i<n (resp.(a)i<i<n) denote the eigenvalues Df(resp.A). ltzykson
and Zuber [1tZ80] rederived this result, proved it using leat equation, and gave
some properties dff) (A,D) asN goes to infinity. The integraléf) (A,D) are also
related to Schur functions, see [GuMO5].

12(A,D) =

Concentration inequalities have a long history, we ref@céal01] for a modern
and concise introduction. Theorem 4.4.13 is taken from [B}Zwhere analo-
gous bounds are derived, via Talagrand’s method [Tal9@]thfe case in which
the entries of the matriXy are bounded uniformly bg/+/N for some constant
c. Under boundedness assumptions, concentration inegadiitr thes-largest
eigenvalue are derived in [AIKV02]. The proof of Klein’s Lena 4.4.12 follows
[Rue69, Page 26].

In [GuZzO0Q] it is explained how Theorems 2.3.5 and 4.4.4 altove to obtain
concentration results for the empirical measure, with @espo the Wasserstein
distance

d(u,v) = sup |/fdu—/fdv|, H,v € M1(R).
il flleo <L fll £ <1
(d(p,v) is also called the Monge-Kantorovich-Rubinstein distarsee the his-
torical comments in [Dud89, Page 341-342]).

Concentration inequalities for the Lebesgue measure omaotrtonnected
Riemannian manifold were first obtained, in the case of thesn in [Lév22],
and then generalized to arbitrary compact connected Ripimamanifold of di-
mensionn with Ricci curvature bounded below by — 1)R? for someR > 0
in [GrMS86, p. 128]. Our approach in section 4.4.2 followkBeaand Emery
[BaE85], who introduced the criterion that carries their nanTé®e ergodicity of
R invoked in the course of proving Theorem 4.4.18, see (4)4dgies not depend
on the BE criterion and holds in greater generality, as a@qunsnce of the fact
thatl" vanishes only on the constants, see [Bak94]. In much of eatrrent, we
follow [AnBC 100, Ch. 5], [GuZ03, Ch. 4], and [Roy07], which we recommend
for more details and other applications.

Concentration inequalities for the empirical measure angest eigenvalue of
Hermitian matrices with stable entries are derived in [HBKO

The first derivation of tri-diagonal matrix models for tffeHermite and La-
guerre ensembles is due to [DUEOZ2]. These authors used ithelsrio derive CLT
results for linear statistics [DUEQ6]. Our derivation kows also from [Par80, Ch.
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7]. Soon after, other three and five-diagonal models fo3ikacobi and circular
ensembles were devised in [KiN04], explicitly linking teettheory of orthogonal
polynomials on the unit circle and the canonical matrix fafunitary matrices
introduced in [CaMVO03]. The book [Sim05a] and the surveynj8¥] contains
much information on the relations between the coefficiemthe three term re-
cursions for orthogonal polynomials on the unit circle widtspect to a given
measure (the Verblunsky coefficients) and the CMV matridd€aMV03]. In
this language, the key observation of [KiNO4] is that theBlensky coefficients
corresponding to Haar-distributed unitaries are indepahdSee also [FOR06],
[KiNO7] and [BoNRO8] for further developments in this ditemn.

The derivation in Section 4.5.2 of the asymptotics of thepiglues of th§-
ensembles at the edge is due to [RaRV06], who followed a canjeof Edelman
and Sutton [EdS07]. (In [RaRV06], tail estimates on the tgemevalue are de-
duced from the diffusion representation.) The results @fR06] are more gen-
eral than we have exposed here in that they apply to a large oFari-diagonal
matrices, as long as properly rescaled coefficients coruergrownian motion.
Analogous results for the “hard edge” (as in the case of theboeigenvalue
of Wishart matrices) are described in [RaR08]. A major ahadke is to identify
the Tracy-Widom distributions (and thg8ranalogues) from the diffusion in The-
orem 4.5.42. The description of the process of eigenvatludise bulk involves
a different machinery, see [VaVv07] (where it is called “Brgan carousel”) and
[KiS086].



)
Free probability

Citing D. Voiculescu;Around 1982, | realized that the right way to look at certain
operator algebra problems was by imitating some basic plodlig theory. More
precisely, in noncommutative probability theory a new kifidhdependence can
be defined by replacing tensor products with free productstais can help un-
derstand the von Neumann algebras of free groups. The duitgsevolved into a
kind of parallel to basic probability theory, which should talled free probability
theory.

Thus, Voiculescu’s first motivation to introduce free prbllity was the analy-
sis of the von Neumann algebras of free groups. One of hisalestiservations
was that such groups can be equipped with tracial statesdalled traces), which
resemble expectations in classical probability, wherbeagptroperty of freeness,
once properly stated, can be seen as a notion similar to @mtlgmce in classical
probability. This led him to the statement

free probability theory=noncommutative probability tlmge free independence.

These two components are the basis for a probability themrgdncommuta-
tive variables where many concepts taken from probabhigpty such as the no-
tions of laws, convergence in law, independence, ceniréll theorem, Brownian
motion, entropy, and more can be naturally defined. Forimtstathe law of one
self-adjoint variable is simply given by the traces of itsyeos (which generalizes
the definition through moments of compactly supported podityameasures on
the real line), and the joint law of several self-adjoint commutative variables
is defined by the collection of traces of words in these vémbSimilarly to the
classical notion of independence, freeness is defined giceelations between
traces of words. Convergence in law just means that the ofaey word in the
noncommutative variables converges towards the right.limi

325
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This chapter is devoted to free probability theory and softis consequences
for the study of random matrices.

5.1 Introduction and main results

The key relation between free probability and random mesriwas discovered
by Woiculescu in 1991 when he proved that the trace of any wonddependent
Wigner matrices converges toward the trace of the correipgrword in free
semi-circular variables. Roughly speaking, he proveddiewing (see Theorem
5.4.2 for a complete statement).

Theorem 5.1.1Let (Q,P) be a standard probability space and plbe positive
integers. Let X‘ Q- jf,\fﬁ), 1<i < p, be afamily of independent Gaussian
Wigner matrices following the (rescaled) GOE or GUE. Thar, dny integer
k>1landi,... ik € {1,...,p}, N-tr(X['---XN) converges almost surely (and
in expectation) as N> o to a limit denotedo(P (X, ---X;,). o' is a linear
form on noncommutative polynomial functions which is chtleelaw of p free
semi-circular variables

Laws of free variables are defined in Definition 5.3.1. Thessnancommutative
laws which are defined uniquely in terms of the laws of theifalales, that is, in
terms of their one-variable marginal distributions. In ®fem 5.1.1 all the one-
variable marginals are the same, namely, the semi-cirtauarThe statement of
Theorem 5.1.1 extends to Hermitian or real symmetric Wignatrices whose
entries have finite moments, see Theorem 5.4.2. Anothenginte deals with
words that include also deterministic matrices whose lawerges, as in the
following.

Theorem 5.1.2Let 8 = 1 or 2 and let(Q,P) be a standard probability space.

Let DN = {DN}<i<, be a sequence of Hermitian deterministic matrices with

uniformly bounded spectral radius, and &t = {XN}1<i<p, XN : Q — &P,

1<i < p, be self-adjoint independent Wigner matrices whose entrave zero

mean and finite moments of all order. Assume that for anyipesiiteger k and

i1,...,ike {1,...,p}, N"'tr(Df --- D}Y) converges to some numbe(D;, - -- D;, ).
Then, for any positive integérand polynomial functionQj, P)1<i</,

%tr (QuDM)P(XM)Qa(DN) -+ P (X))
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converges almost surely and in expectation to a limit deshote

T(Q1(D)PL(X)Q2(D)---Py(X)).

Here, 1 is the law of p free semi-circular variables, free from the collection of
noncommutative variabld3 of law p1.

(See Theorem 5.4.5 for the full statement, and the proof.)

Theorems 5.1.1 and 5.1.2 are extremely useful in the stutgnafom matrices.
Indeed, many classical models of random matrices can b&wgs some polyno-
mials in Wigner matrices and deterministic matrices. Thithe case for Wishart
matrices or, more generally, for band matrices (see Exesé&ist.14 and 5.4.16).

The law of free variables appears also when one considetlsmamatrices fol-
lowing Haar measure on the unitary group. The following swarizes Theorem
5.4.10.

Theorem 5.1.3TakeDN = {DN},<j<pasin Theorem 5.1.2. L&tN = {UN} 1<
be a collection of independent Haar-distributed unitarytriteas independent
from {DN}1<i<p, and set(UN)* = {(UN)*}1<i<p. Then, for any positive integer
¢, and any polynomial function®;, R)1<i<¢,

,\|liLT'IOo %U‘ (Ql(DN)Pl(UN7 (UN)*)QZ(DN) . Pg(UN, (UN)*))
=1(Q1(D)P(U,U")Q2(D)---P(U,U")) as,

wherert is the law of p free variabled = (U, ...,Up), free from the noncommu-
tative variable®D of law u. The law of i, 1 <i < p, is such that

(WU -1%) =0, T(U")=T1((U")") = Lno.

Thus, free probability appears as the natural setting tdystine asymptotics of
traces of words in several (possibly random) matrices.

Adopting the point of view that traces of words in severalncat are funda-
mental objects is fruitful because it leads to the study afies@eneral structure
such as freeness (see Section 5.3); freeness in turnsfi@shie analysis of con-
vergence of moments. The drawback is that one needs to esmaiate general
objects than empirical measures of eigenvalues convetgingrds a probabil-
ity measure, namely, traces of noncommutative polynonimatandom matrices
converging towards a linear functional on such polynomizdfied a tracial state.
Analysis of such objects is then achieved using free prdibatnols.

In the first part of this chapter, Section 5.2, we introdueegétup of free prob-
ability theory (the few required notions from the theory gleoator algebras are
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contained in Appendix G). We then define in Section 5.3 th@erty of freeness
and discuss free cumulants and free convolutions. In Seétié, which can be
read independently of the previous ones except for the ighiser of the limit-
ing quantities in terms of free variables, we show that themgotics of many
classical models of random matrices satisfy the freenegsepty, and use that
observation to evaluate limiting laws. Finally, Sectiob Gises free probability
tools to describe the behavior of spectral norms of noncotative polynomials
in independent random matrices taken from the GUE.

5.2 Noncommutative laws and noncommutative probability spces

In this section, we introduce the notions of noncommutadéiwes and noncommu-
tative probability spaces. An example that the reader shke¢p in mind con-
cernsN x N matrices(My, ...,Mp); a natural noncommutative probability space
is then the algebra dfl x N matrices, equipped with the normalized trateltr,
whereas the law (or empirical distribution) @1, ..., Mp) is given by the collec-
tion of the normalized traces of all words in these matrices.

5.2.1 Algebraic noncommutative probability spaces and $aw

Basic algebraic notions are recalled in Appendix G.1.

Definition 5.2.1 A noncommutative probability spaéga pair(</, @) wheres/
is a unital algebra ovef andg is a linear functional : o —C so thatp(1) = 1.
Elements € o/ are callechoncommutative random variables

Let us give some relevant examples of noncommutative pitityadpaces.

Example 5.2.2

(i) Classical probability theoryLet (X, %, u) be a probability space and set
of =L"(X,%,u). Take @ to be the expectatiop(a) = [y a(x)u(dx).
Note that for anyp < =, the space&P(X, %, ) are not algebras for the
usual product. (But the intersectifn -, LP(X, %, 1) is again an alge-
bra.) To consider unbounded variables, we will introduterlthe notion
of affiliated operators, see Subsection 5.2.3.

(i) Discrete groups.Let G be a discrete group with identigyand lets” =
C(G) denote the group algebra (see Definition G.1). Tek® be the
linear functional onz’ so that for allg € G, ¢(g) = 1g—e.
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(iv)

v)
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Matrices. Let N be a positive integer and = Maty (C). Let(-,-) denote
the scalar product o8N and fixv € CN such thatv,v) = 1. We can take
@ on <7 to be given byg,(a) = (av,v), or by gy (a) = N~tr(a).

Random matrices. Let (X, %, u) be a probability space. Defing/ =
L*(X, u,Maty(C)), the space ol x N-dimensional complex random ma-
trices withu-almost surely uniformly bounded entries. Set

N
(@)= [ rEx)u(Ex) = %i; [@we.au@. 621

where here the are the standard basis vectorsdN. Alternatively, one
can consider, witlv € CN so that(v,v) = 1,

w(a) = /)((a(x)v,v)u(dx). (5.2.2)

Bounded operators on a Hilbert spadeet H be a Hilbert space with inner
product(-,-) andB(H) be the set of bounded linear operatorstbnWe
set forv € H so that(v,v) = 1 anda € B(H),

@ (a) = (avv).

The GNS construction discussed below will show that thisrgXa is in a
certain sense universal. It is therefore a particularlyangmt example to
keep in mind.

We now describe the notion ¢dws of noncommutative variables. Hereaftér,
denotes a subset B, andC(X;|i € J) denotes the set of polynomials in noncom-
mutative indeterminatesX }icy, that is, the set of all finit€-linear combinations
of words in the variableX; with the empty word identified to & C; in symbols,

CX] =

m
CXified) = {10+ 3 UX-- X ;e Cme N,ike ).
=

C(X) denotes the set of polynomial functions in one variable.

Definition 5.2.3Let {a; }icj be a family of elements in a noncommutative proba-
bility space(.«7, @). Then, thedistribution (or law) of {a;}ic; is the mapu,y,;
C(X|i € J) — C such that

Hiayic, (P) = @(P({ai}tics)) -

This definition is reminiscent of the description of compasupported proba-
bility measures (on a collection of random variables) by nseaf their (mixed)



330 5. REE PROBABILITY

moments. Since linear functionals @rX;|i € J) are uniquely determined by their
values on words, --- X, (i1,...,ik) € J, we can and often do think of laws as
word-indexed families of complex numbers.

Example 5.2.4Example 5.2.2 continued.
(i) Classical probability theonyif a € L*(X, %, u), we get by definition that

Ha(P) = [ P(@()d(x)

and soy; is (the sequence of moments of) the lanwaafnderyu (or equiv-
alently the push-forwardyu of i by a).

(i) Discrete groups. Let G be a group with identity and takep(g) = 1g—e.
Fix {gi}1<i<n € G". The lawy = 4, ,, has then the following descrip-
tion: for any monomiaP = X;, X, - - - X, we haveu(P) =11if gj, --- g, =
e, andu(P) = 0 otherwise.

(iii) One matrix. Letabe anNx N Hermitian matrix with eigenvalugg, ..., An).
Then, we have for all polynomiaR € C[X],

1 1 N
Ha(P) = Ntr(P(a)) =N ';P()\i)-

Thus, 45 is (the sequence of moments of) the spectral measuag arid
thus (in effect) a probability measure &n

(iv) One random matrix. In the setting of Example 5.2.2, part 4, af:
X—>e}f,\‘(’3), for B =1 or 2, has eigenvaluéai(x),...,An(X))xex, We have

N
wP@) = [P@EEEDI=T [POu(oy

— P, (5.2.3)

Thus, 5 is (the sequence of moments of) the mean spectral measare of
(v) Several Matrices(Setting of Example 5.2.2, parts 3 and 4.) If we are given
{ai}ics € Maty(C) so thatey = & for all i € J, then forP € C(Xi|i € J),

Ha}ie; (P) i= N"1r (P({ai}ics))

defines a distribution of noncommutative variablegs,),_; is called the
empirical distribution or law of the matriceqa; }ic;. Note thatifJ = {1}
anday is self-adjoint us, can be identified, by the previous example, as the
empirical distribution of the eigenvaluesaf. Observe that if théa }ic;

are random and with the notation of Example 5.2.2, part 4, ag define
their ‘quenched empirical distributiom‘l{a‘.(x)}iEJ for almost allx, or their
‘annealed empirical distributiory’ i x);.,dH (X).
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(vi) Bounded operators on a Hilbert spadeet H be a Hilbert space antl a
bounded normal linear operator bhwith spectrumo(T) (see Appendix
G, and in particular Section G.1, for definitions). Accoglio the Spec-
tral Theorem (Theorem G.6), } is the spectral resolution df, for any
polynomial functionP € C[X],

P(T)= | _ PA)dX(A).
o(T)
Therefore, withv € H so that(v,v) = 1 we find that

WPT) = (T = | POAX(A)wY).
Hence, the law ofl € (B(H),@,) is (the sequence of moments of) the
compactly supported complex measd(g (A )V, V).
(vii) Tautological exampleLet o = C(X;|i € J) and letp € &/’ be any linear
functional such thaip(1) = 1. Then(«, @) is a noncommutative proba-
bility space andp is identically equal to the lawx;y; ;-

It is convenient to have a notion of convergence of laws. #asiest to work
with the weak topology. This leads us to the following definition.

Definition 5.2.5Let (2, ), N € NU{0}, be noncommutative probability spaces,
and Iet{aiN}iEJ be a sequence of elementsa. Then,{ai"‘}iej converges in law
to {& }icy if and only if for all P € C{Xi|i € J),

l\||i£>noo u{aiN}ieJ(P) = u{aim}iEJ(P)'

We also say in such a situation tr{aiN}iEJ converges in moments {&° }ic,.

Since a law is uniquely determined by its values on mononiatee noncom-
mutative variabless, the notion of convergence introduced here is the same as
“word-wise” convergence.

The tautological example mentioned in Example 5.2.4 urdees the point
that the notion of law is purely algebraic and for that reasmnbroad to capture
any flavor of analysis. We have to enrich the structure of a&caomtmutative prob-
ability space in various ways in order to put the analysikbd begin to see
what sort of additional structure would be useful, consttiercase in whicld is
reduced to a single element. Then a laws simply a linear functionad € C[X]’
such thatr (1) = 1, or equivalently a sequence of complex numlzers= a(X")
indexed by positive integers Consider the following question.
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Does there exist a probability measyren the real line such that(P) = [ P(x)u(dx) for
allP e C[X]?

This is a reformulation in the present setup of the Hambung@ment problem.
It is well-known that the problem has an affirmative solutiband only if all the
momentsay, are real, and furthermore the matrices ., {jj‘:lo are positive defi-
nite for alln. We can rephrase the latter conditions in our setup as fell@iven
P=y;aX €C[X], & € C, putP* = y;a'X!. Then the Hamburger moment prob-
lem has an affirmative solution if and onlydf(P*P) > 0 for all P € C[X]. This
example underscores the important role played by positi@ur next immedi-
ate goal is, therefore, to introduce the notion of positivitto the setup of non-
commutative probability spaces, through the concept eéstandC*-probability
spaces. We will then give sufficient conditions, see Prdjmosb.2.14, for a linear
functionalt € C(X|i € J)’ to be writteng(P({a;}ic3)) = T(P) for all polynomi-
alsP e C(X|i € J), where{a }icj is a fixed family of elements of @*-algebras’
andgis a state on'.

5.2.2 C*- probability spaces and the weak-* topology

We first recallC*-algebras, see Appendix G.1 for detailed definitions. Wenel
strict our discussion throughout to unitail-algebras (an@€*-subalgebras) with-
out further mentioning it. Thus, in the following, @ -algebra< is a unital
algebra equipped with a norfn || and an involutiorx so that

2
Ixyil < X[yl lla*all = jal]*.

Recall thate7 is complete under its norm.

An elementa of < is said to beself-adjoint(respectivelynormal) if a* = a
(respectivelya*a = aa"). Let .o, (respectively,e) denote the set of self-adjoint
(respectively, normal) elements of.

Example 5.2.6The following are examples @*-algebras.

(i) Classical Probability theory. If X is a Polish space, the spacBéX)
andCy(X), of C-valued functions which are, respectively, bounded and
bounded continuous, are uniGil-algebras when equipped with the supre-
mum norm and the conjugation operation. Note however treaspace
Co(R) of continuous functions vanishing at infinity is in general a (uni-
tal) C*-algebra, for it has no unit.

(i) Classical Probability theoryTake(X, %, u) a measure space and sét=
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L*(X, i), with the norm
[|f|| = ess sug f(x)].

(iii) Matrices. An important example is obtained if one takes= Maty(C).
It is aC*-algebra when equipped with the standard involution

(A)ij =Aji, 1<i,j<N

and the operator norm given by the spectral radius.

(iv) Bounded operators on a Hilbert spacehe previous example generalizes
as follows. TakeH a complex Hilbert space, and consider@ghe space
B(H) of linear operator3 : H — H which are bounded for the norm

ITllgy = sup |[Tef|n.
llelln=1
Here, the multiplication operation is taken as composititine adjoinfT *
of T € B(H) is defined as the unique elementB{H) such that{Ty,x) =
(y, T*x) for all x,y € H, see (G.3).

Part (4) of Example 5.2.6 is, in a sense, generic:@mglgebrass is isomorphic
to a subC*-algebra ofB(H) for some Hilbert spackl (see e.g. [Rud91, Theorem
12.41]). We provide below a concrete example.

Example 5.2.7Let u be a probability measure on a Polish spXce The C*-
algebraeZ = L®(X, i) can be identified as a subset®H) with H = L?(X, ) as
follows. For allf € L*(X, i), we define the multiplication operatbt; € B(H)
by Mig= f-g (whichisinH if g€ H). ThenM mapsL®(X, ) into B(H).

In C* -algebras, spectral analysis can be developed. We reeallAppendix
G.2) that the spectrum of a normal operaddn a C*-algebra< is the compact
set

sp(a) ={A € C: Ae—aisnotinvertible} c {ze C:|Z7 < |a|}.

The same functional calculus we encountered in the confextadrices can be
used inC* -algebras, for such normal operatarsSuppose that is continuous
on sfa). By the Stone-Weierstrass theorefrgan be uniformly approximated on
sp(a) by a sequence of polynomiaﬂﬂ in aanda*. Then, by part 3) of Theorem
G.7, the limit

f(a) = lim p/(a,a")

n—oo

always exists, does not depend on the sequence of appraxirmeand yields an
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element ofe7. It can thus serve as the definition bf a€ & — f(a) € </ (one
may alternatively use the spectral theorem, see Section G.2

Remark 5.2.8The smallestC*-subalgebraz; C <7 containing a given self-adjoint
operatorais given by.e/a = {f(a) : f € C(sp(a))}. Indeed,oz; contains{p(a) :

p € C[X]}, and so by functional calculus, contaifi§(a) : f € C(sp(a))}. The
conclusion follows from the fact that the latter i€&algebra. The norm onrz,

is necessarily the spectral radius by Theorem G.3. Obshkatghis determines
an isomorphism o€(sp(a)) into «7 that preserves linearity and involution. It is
a theorem of Gelfand and Naimark (see e.g. [Rud91, Theoref8)lthat if a
C* -algebrae is commutative then it is isomorphic to the algeB(x) for some
compactX; we will not need this fact.

To begin discussing probability, we need two more conceptsfirst is posi-
tivity and the second is that of a state.

Definition 5.2.9Let («, || - ||, *) be aC*-algebra.
(i) An elementa € <7 is nonnegativédenoteda > 0) if a* = a and its spec-
trum sga) is nonnegative.
(i) A stateis alinear mapp : & — C with ¢(e) = 1 andg(a) > 0ifa> 0.
(iii) A state istracial if p(ab) = ¢(ba) foralla,be «.

It is standard to check (see e.g. [Mur90, Theorem 2.2.4}) tha
{ac«:a>0}={aa":ac o}. (5.2.4)

Example 5.2.10An important example is7 = C(X) with X some compact space.
Then, by the Riesz Theorem B.12, a state is a probability oreasX.

C*- probability spaces

Definition 5.2.11A quadruple(«, || - ||, *, @) is aC*-probability spacef (<, || -
|I,*) is aC*-algebra andp is a state.

As a consequence of Theorem 5.2.24 below, the law of a farmilgralom vari-
ables{a; }icj in aC*-probability space can always be realized as the law of nando
variables{b;}icj in aC*-probability space of the forB(H), || - ||, *,a+— (av,V)),
whereH is a Hilbert space with inner produgt-), || - || is the operator norm, and
v € H is a unit vector.

We show next how all cases in Example 5.2.2 can be made to fitetfieition
of C*- probability space.
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Example 5.2.12Examples 5.2.2 and 5.2.4 continued.

(i) Classical probability theoryLet (X, %, u) be a probability space and set

(ii)

(iii)

o =L"(X, A, ). Letp(a) = [y a(x)u(dx) be the expectation operator.
In this setup, us¢d = L%(X, 2%, u), consider eacla € o7 as an element
of B(H) by associating to it the multiplication operatvl,f = af (for

f € H), and then writep(a) = (Ma1,1). </ is equipped with a structure
of C*-algebra as in part 1) of Example 5.2.6. Note thati$ self-adjoint,

it is just a real-valued element &f°(X, £, u), and the spectrum dfl, is

a subset ofess-infexa(x), ess-sup-ya(x)]. The spectral projections are
then given byE(A) = Mlaflm) for anyA in that interval.

Discrete groupsLet G be a discrete group. Consider an orthonormal basis
{Vg}gec Of £2(G), the set of SUMF 4. CgVy With cq € C andy |cg|? < co.
/2(G) is equipped with a scalar product

<g§GCngvg;CéVg> = gécgc? )

which turns it into a Hilbert space. The action of eagke G on (2(G)
becomesA (9')(¥4CgVg) = T 4CyVyg: Yielding the left regular represen-
tation determined bys, which defines a family of unitary operators on
?(G). These operators are determinedX(g)vi = Vgn. TheC*- algebra
associated with this representation is generated by tharyroperators
{A(9)}gea, and coincides with the operator-norm closure of the linear
span of{A(g) }q4cc (the latter contains any sufficgA (g) wheny |cg| <

®). It is in particular included irB(¢2(G)). Take as trace the function
@(a) = (ave, Ve) Wheree € Giis the unit. In particulap(y 4 bgA (g)) = be.
Random matricesln the setting of part (4) of Example 5.2.2, consider
o/ = L*(X, u,Maty(C)). The function

N
(@) = [ rEx)u(Ex) = %i; [@xe alu@, 625

on </ is a tracial state. There are many other states7grior any vector
ve CN with ||v|| = 1,

@(@) = [(@uvdu()

is a state.

Let us now consider the set of laws of variab{es}icj defined on &*- prob-
ability space.
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Definition 5.2.13Let (7, || - ||,*) be aC*-algebra. Then, define?,, = .4, .| .
to be the set oftateson <7, i.e. the set of linear forma& on .27 so that for all
positive elemend € o7,

a(a) >0, a(l)=1. (5.2.6)

(By Lemma G.11, a state automatically satisfiea|| < 1.) Note that by either
Lemma G.11 or (5.2.4), Equation (5.2.6) is equivalent to

a(bb*)>0 Vbe «, a(l)=1. (5.2.7)

In studying laws of random variablés; }icj in aC*-algebras/, we may restrict
attention to self-adjoint variables, by writing for any <7, a=b+ic with b =
(a+a")/2 andc = i(a* — a)/2 both self-adjoint. Thus, in the sequel, we restrict
ourselves to studying the law of self-adjoint elements.igwof this restriction,
it is convenient to equifC(X|i € J) with the unique involution so thaf; = X,
and, as a consequence,

We now present a criterion for verifying that a given linaardtional orlC(X;|i € J)
represents the law of a family of (self-adjoint) random &hles on som€*-
algebra. Its proof follows ideas that are also employedérptitoof of the Gelfand—
Naimark—Segal construction, Theorem 5.2.24 below.

Proposition 5.2.14L et J be a set of positive integers. Fix a constart R < co.
Let the involution orC(X;|i € J) be as in(5.2.8) Then there exists a'Calgebra
of = o/ (R,J) and a family{a }ic; of self-adjoint elements of it with the following
properties:

(@) supy llaill <R.

(b) < is generated bya, }icj as a C-algebra.

(c) For any C-algebra# and family of self-adjoint elements;}ic; of it
satisfyingsup.; [|bi|| < R, we havd|P({ai}ics)|| > ||P({bi}ics)| for all
polynomials RPe C(X|i € J).

(d) Alinear functionala € C(X;|i € J)’ is the law of{a; }ic; under some state
Te.#yifandonlyifa(l) =1,

(X, -+ X )| < R (5.2.9)

for allwords X, ,..., X, anda(P*P) > Ofor all P € C(X|i € J).
(e) Under the equivalent conditions stated in paid}, the stater is unique,
and furthermore is tracial if a(PQ) = a(QP) for all P,Q € C(X;|i € J).
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Points (a), (b), (c) of Proposition 5.2.14 imply that for ab¥~algebra? and
{bi}ics as in point (c), there exists a unique continuous algebraomoonphism
o/ — 98 commuting withx sendinga; to bj for i € J. In this sense& is the
universal example of @*-algebra equipped with aR-boundedl-indexed family
of self-adjoint elements.

Proof To abbreviate notation, we write
A=C(Xli€Jd).

First we constructy and{a; }ic; to fulfill the first three points of the proposition
by completingA in a certain way. FOP = P({Xi}icj) € A, put

IPllracs = sup [[P({bi}ica)ll, (5.2.10)
Z.{bities
where4 ranges over alC*-algebras andb; }icj ranges over all families of self-
adjoint elements o2 such that sup; ||bi|| < R. Put

Now the function|-||z ;- is & seminorm on the algebed. It follows thatL is

a two-sided ideal of and that|-[|g ;- induces on the quotiert/L a norm.
Furthermoref|PP*||g 5 ¢ = ||P|\§z.;|,c*v and hence|P*(|g ;¢ = [Pllgyc- for all

P € A. In particular, the involutios passes to the quotieAfL and preserves the
norm induced by|-[|g ;c-- Now completeA/L with respect to the norm induced
by ||-llrsc+» @and equip it with the involution induced B+ P*, thus obtaining
aC*-algebra. Call this completioy’ and leta; denote the image of; in .« for

i € J. Thus we obtainz and self-adjoin{a; }ic; fulfilling points (a), (b), (c).

Since the implication (d}£) is trivial, and point (e) is easy to prove by approxi-
mation arguments, it remains only to prove (@) GivenP =y c;¢ € A, where
the summation extends over all wor€l$n the X; (including the empty word) and
all but finitely many of the coefficients € C vanish, we define

IPllrg =) g |REF < o,

where ded denotes the length of the woéd One checks thdiP|; ; is a norm
on A and further, from assumption (5.2.9),

la(P)[ < [Pllrs. PE€A. (5.2.11)

ForP € AandQ € A satisfyinga (Q*Q) > 0 we define

aQ(P) = 7"; gf Q?) ,
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and we set
1/2
[Plg = sup aq(P'P)
QeA
a(Q*Q)>0
By the continuity ofa with respect td|- ||rJ, see (5.2.11), and Lemma G.22, we
have thai|P||s < ||P*P||%{J2. In particular|Xi||« < Rforalli e J.

We check thalf-|| , is a seminorm o satisfying||P*P||, = ||P||§ forallPeA.
Indeed, forA € C, ||AP||a = |A|-||P||a by definition. We verify next the sub-
additivity of || - [|¢. Sinceag is a nonnegative linear form ok, we have from
(G.6) that forany§ T € A,

[aQ((S+T)*(S+THIY? < [ag(S'S)IM? + [ag(T*T)M2,
from which||S+T||a < ||S||a + ||T ||« follows by optimization oveg.

To prove the sub-multiplicativity of - ||, note first that by the Cauchy—Schwarz
inequality (G.5), foQ,S,T € Awith a(Q*Q) > 0, ag(T*S'ST) vanishes it (T*T) =
0. Then, assumin{jT || > O,

IST|Z2 =  sup ao(T*S'ST) (5.2.12)

QeA
a(Q*Q)>0

2712
= oup arQ(S'S)ag(T™T) < [ISi[alTla-
S
a(Q*T*TQ)>0
Sinceag is a nonnegative linear form, we now have thafy is a seminorm on
A

To verify that |[TT*|l¢ = ||T||%, note that by the Cauchy—Schwarz inequal-
ity (G.5) andag(1) = 1, we have|ag(T*T)|? < ag((T*T)?), hence||T||3 <
IT*T||la. By (6.2.22),|T*T|la < ||T|lal|T*||a and therefore we get thl |5 <
| T*|la. By symmetry, this implie§T*[|a = || T|la = | T*T||¥?, as claimed.

Using again the quotient and completion process which wd tseonstruct
</, but this time using the seminorfh||,, we obtain aC*-algebraZ and self-
adjoint elementgb; }ic; satisfying sup.; | bi|| < Rand||P||, = ||P({bi}ic)|| for
P € A. But then by point (c) we havéP|, < ||P|lrac+ for P € A, and thus
|a(P)| < ||P|lracs- Let T be the unique continuous linear functional .@hsuch
thatt(P({ai}ics)) = a(P) for all P € A. Sincea (P*P) > 0 forP € A, it follows,
see (5.2.7), that is positive and hence a state on The proof of point (d}&) is
complete. O

Example 5.2.159Examples 5.2.2 continued.
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(i) Classical Probability. The setM;([-R,R]) of probability measures on
[~R R] can be recovered as the s#t g (1))

(i) Matrices. The study of noncommutative laws of matricgs }icj in
Maty (C) with spectral radii bounded bR reduces, by the remark fol-
lowing (5.2.7), to the study of laws of Hermitian matricesr fhe latter,
the noncommutative law df matrices whose spectral radii are bounded

The examples above do not accommodate laws of unboundedblesi We will
see in Section 5.2.3 that such laws can be defined using tienradt affiliated
operators.

Weak-* topology

Recall that we endowed the set of noncommutative laws vétivéiak-* topology,
see Definition 5.2.5.

Corollary 5.2.16 For N € N, let {aiN}ieJ be self-adjoint elements of & Cproba-
bility space(.a, || - [|n, *N, @ ). Assume that for all B C(X|i € J), en(P(aN,i €
J)) converges to some(P). Let R> 0 be given, withe/ (R, J) the universal C-
algebra and{a; }ic; the elements of it defined in Proposition 5.2.14.

(i) If supcynflallln < R, then there exists a collection of statgg, (¢ on
</ (R,J) so that, for any Re C({X|i € J),
Un(P({aitics)) = v(P({a'}ica)) .  W(P({ai}ics)) = a(P).
(ii) If there exists a finite R so that for allkN and all (ij)1<j<k € J¥,
a (X, X )| < R (5.2.13)
then there exists a statp on </ (R,J) so that, for any Re C({X;|i € J),
Y(P({aitics)) = a(P).

Proof By the remark following Proposition 5.2.14, there exist fore N C*-
homomorphisméw : </ (R,J) — o4 so thatall = hy(a) and the statajy =
o o hy satisfiespy (P({aN}ies)) = Un(P({a }ies)) for eachP € C(Xi|i € J). By
assumptionyin (P({ai})) convergestar (P), and thuga (P)| < ||P({a }icJ)|| (the
norm here is the norm on/(R,J)). As a consequence, extends to a state on
</ (R,J), completing the proof of the first part of the corollary.

The second part of the corollary is a direct consequencerbélpaf Proposition
5.2.14. O
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We remark that a different proof of part 1) of Corollary 5&2.dan be given
directly by using part d) of Proposition 5.2.14. A differgamoof of part 2) is
sketched in Exercise 5.2.20.

Example 5.2.17Examples 5.2.2, parts 3 and 4, continued.

(i) Matrices. Let{MJN}J'EJ € Maty(C) be a sequence of Hermitian matrices
and assume that there exists R finite so that

Iir,\rl1sup|u{,v|JN}jEJ (X, - %) < RE.

Assume thzam{,v,N}jeJ (P) converge as N goes to infinity to some lion{P)
]

for all P € C(X|i € J). Then, there exist noncommutative random vari-
ables{a; }jc; in a C*-probability space so thata= &/ and{MJN}jEJ con-
verge in law to{a; } je3.

(i) Random matrices.Let (Q, %, u) be a probability space. For ¢ J, let
MJN(w) € %”N@ be a collection of Hermitian random matrices. If the re-
quirements of the previous example are satisfied for almibstvae Q,
then we can conclude similarly th@MJN(w)}jeJ € Maty(C) converges
in law to some{al(w)}jes. Alternatively, assume one can show the con-
vergence of the moments of products of elements {M}?‘u(w)}j@, in
LY(u). In this case, we endow the @lgebra(Maty (C), || - ||n, *) with the
tracial stategy = N~ otr. Observe thaty is continuous with respect
to |[M|% := esssupM(w)||«, but the latter unfortunately may be infinite.
However, if we assume that for ajl € J, (n\l(Mi'\l‘ e Mi';') converges as N
goes to infinity tax (X, - - - X;, ), and that there exists R o so that for all
ijed,

a(xil"'xik)| < Rk,

then it follows from Corollary 5.2.16 that there exists atsi@, on the uni-
versal C-algebrac/ (R, J) and element$a; }icy € <7 (R, J) so that{ MN(w) }ie
converges in expectation {@; }icy, i.e.

’\Ilim an(PIMN(w),i € ) = g (P(ai,i €J)) YPeC(Xl|icd).
This example applies in particular to collections of indegdent Wigner
matrices.

The space#,, possesses a nhice topological property that we state next. Th
main part of the proof (which we omit) uses the Banach-Aladdieorem (The-
orem B.9).
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Lemma5.2.18Let(«,| - ||,*) be a C-algebra, withe/ separable. Then#,, is
compact and separable, hence metrizable.

Thus, on#,,, sequential convergence determines convergence.

As we next show, the construction of honcommutative lawauhghat any
one-dimensional marginal distribution is a probabilityasere. This can be seen
as a variant of Riesz’s Representation, Theorem B.12.

Lemma5.2.19Let (| -||,*) be aC-algebra andu a state on(.«, || - ||, *). Let

F € o/, F =F*. Then, there exists a unique probability meagure= M;(R) with
moments X¢ur (dx) = u(FX). The support ofir is included in[—||F ||z, ||F ||.»]-
Further, the mapu — ug from .#,, furnished with the weak-* topology, into
M1(R), equipped with the weak topology, is continuous.

Proof The uniqueness ofir with the prescribed properties is a standard con-
sequence of the bourlg(F¥)| < |\F||E{. To prove existence ofir, recall the
functional calculus described in Remark 5.2.8 which presids with a magp —
f(F) identifying theC*-algebraC(sp.y (F)) isometrically with theC*-subalgebra
ok C o/ generated byr. The composite map — u(f(F)) is then a state on
C(sp~(F)) and hence by Example 5.2.10 a probability measursmpn(F) C
[—|IF |l lIFIl]- Itis clear that this probability measure has the momergs pr
scribed forug. Existence ofur € .#1(R) with the prescribed moments follows.
Abusing notation, forf € Cp(R), let f(F) = g(F) € o/ whereg = f|s,_ () and
note thatug (f) = [ fdur = u(f(F)) by construction. Finally, to see the claimed
continuity, if we take a sequengé € .#,, converging tqu for the weak-* topol-
ogy, for anyf € Cy(R), pf(f) converges tqur (f) asn goes to infinity since
f(F) € «/. Thereforeu — e is indeed continuous. O

Exercise 5.2.20n the setting of Corollary 5.2.16, show, without using pirof
Proposition 5.2.14, that under the assumptions of part 2hefcorollary, there
exists a sequence of statglg on </ (R+ 1,J) so thatyn(P) converges tax (P)
for all P € C(X|i € J). Conclude that is a state on#' (R+1,J).

Hint: setfr(X) =xA (R+1) Vv (—(R+1)), and definea{“’R = fr(@M). Using the
Cauchy-Schwarz inequality, show trmt(P({qN’R}iEJ)) converges tax (P) for
all P € C(X;|i € J). Conclude by applying part 1) of the corollary.

5.2.3 W*- probability spaces

In the previous section, we considered noncommutativegiitity measures de-
fined onC*-algebras. This is equivalent, in the classical settinggtining proba-



342 5. REE PROBABILITY

bility measures as linear forms on the set of continuous Bedrfunctions. How-
ever, in the classical setting, it is well known that one cafiret probability
measures as linear forms, satisfying certain regularityd@mns, on the set of
measurablebounded functions. One can define a generalization to themot
measurable functions in the noncommutative setting.

If one deals with a single (not necessarily bounded) sgliiatioperatorb, it
is possible by the spectral theorem G.6 to defitle) for any functiong in the
setB(sp(b)) of bounded, Borel-measurable functions oftsp This extension is
such that for any,y € H, there exists a compactly supported meagu,{ga(which
equals(xpx,y) if xp is the resolution of the identity df, see Appendix G.2) such
that

(abixy) = [ o@dudy(@). (5.214)

In generalg(b) may not belong to th€*-algebra generated Hy it will however
belong to a larger algebra that we now define.

Definition 5.2.21 A C*-algebrae’ C B(H) for some Hilbert spacél is avon
Neumann algebréor W*-algebra) if it is closed with respect to the weak operator
topology.

(Weak operator topology closure means that— b on a neta if for any fixed
x,y € H, (bgXx,y) converges tdbx y). Recall, c.f. Theorem G.14, that in Defini-
tion 5.2.21, the requirement of closure with respect to teakwperator topology
is equivalent to closure with respect to the strong opetajmology, i.e., with the
previous notation, tb,x converging tdoxin H.)

Definition 5.2.22 A W*-probability spaceis a pair (<7, ¢) where o/ is a W*-
algebra, subset d8(H) for some Hilbert spaceél, and ¢ is a state that can be
written asg(a) = (a&, &) for some unit vecto€ € H.

Example 5.2.23

(i) We have seen in Remark 5.2.8 that tHea@yebra.«#, generated by a self-
adjoint bounded operator b on a separable Hilbert space Hxacdy
{f(b),f € C(sp(b))}. It turns out that the von Neumann algebra gener-
ated by b ise, = {f(b), f € B(sp(b))}. Indeed, by Lusin’s theorem B.14,
for all x,y € H, for any bounded measurable function g, there exists a se-
quence g of uniformly bounded continuous functions converginqyj{g
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probability to g. Since we assumed that H is separable, welnaa diag-
onalization argument, assume that this convergence hotdslifx,y € H
simultaneously. Therefore, the above considerations shatg,(b) con-
verges weakly to (¢p). Thus, the weak closure of}, contains.et,. One
sees that#, is a von Neumann algebra by the double commutant theorem
G.13 and the Spectral Theorem G.7.

(i) As a particular case of the previous example (take b to beitjte mul-
tiplication operator by a random variable with lay), L*(X, ) can be
identified as a W-algebra. In fact, every commutative von-Neumann al-
gebra on a separable Hilbert space H can be represented’@Xx 1) for
some(X, %, ). (Since we do not use this fact, the proof, which can be
found in [Mur90, Theorem 4.4.4], is omitted.)

(iii) An important example of a Walgebra is BH) itself which is a von-
Neumann algebra since it is trivially closed.

We saw in Proposition 5.2.14 sufficient conditions for agininctional orC(X|i € J)
to be represented by a state i@aalgebra(.«Z, || - ||, *). The following Gelfand—
Naimark—Segal construction gives a canonical way to remteke latter as states
onB(H) for some Hilbert spackl.

Theorem 5.2.24 (Gelfand—Naimark—Segal constructionl.et a be a state on
a unital C*-algebra(«,|| - ||,*) generated by a countable fami{g; }ic; of self-
adjoint elements. Then, there exists a separable HilbextspH, equipped with
a scalar product-,-), a norm-decreasing-homomorphismr: </ —B(H) and a
vectoré, € H so that

(@) {m(a)é1: ac &} isdensein H.
(b) Set@y (x) = (&1,x&1) forx € B(H). Then, for all a ine7,

a(a) = gu(m(a)).

(c) The noncommutative law §8;}icj in the C'-probability space
(<, -||,*,a) equals the law of 1i(a) }icy in the W-probability space
(B(H). @).

(d) LetW+({ai}ics) denote the von-Neumann algebra generated by
{m(&):i€J}inB(H). If a is tracial, so is the restriction of the statg
to W*({& }icy)-

Proof of Theorem 5.2.24Let Ly = {f € &/|a(f*f) = 0}. As in the proof of
Proposition 5.2.14, 4 is a left ideal. Itis closed due to the continuity of the map
f — a(f*f). Consider the quotient spacé” := &/ \ Ly. Denote by¢ : a+— &,
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the map frome into 7. Note that by (G.6)a (x"y) depends only 0dy, &, and
put

E &) =alxy), [[&lla = (Ea&)?,

which defines a pre-Hilbert structure er”. Let H be the (separable) Hilbert
space obtained by completing® with respect to the Hilbert norh- || 4.

To construct the morphism, we considers as acting onzZ? by left multipli-
cation and define, faa € & andb € &7

n(a)ép =& e 7.
By (G.7),
||r(a)&p||5 = ||€abl|5 = a(b*a*ab) < |[al|?a(b*b) = ||a]|?||&(3 .

and thereforet(a) extends uniquely to an element B{H), still denotedri(a),
with operator norm bounded bjg||. rris ax-homomorphism from# into B(H),
that is rr(ab) = m(a)ri(b) and ri(a)* = m(a*). To complete the construction, we
takeé; as the image undér of the unit ine.

We now verify the conclusions (a)-(c) of the theorem. Parth@ds sinceH
was constructed as the closure{of(a)é; : a € «/}. To see (b), observe that
forallae o7, (&1, m(a)&1) = (&1,&a) = a(a). Finally, sincerris a morphism,
n(P({aiticy)) = P({m(a)}ica), which together with part (b), shows part (c).

To verify part (d), note that part b) implies that b € <7, a(ab) = g, (11(ab)) =
@ ((a) (b)), and thus, ifa is tracial, one getgy (11(a) (b)) = @ (1(b)1(a)).
The conclusion follows by a density argument, using the Kagky Density Theo-
rem G.15 to first reduce attention to self-adjoint operaaoistheir approximation
by a net, belonging tar( <), of self-adjoint operators. O

The norm-decreasinghomomorphism constructed by the theorem is in gen-
eral not one-to-one. This defect can be corrected as follows

Corollary 5.2.251n the setup of Theorem 5.2.24, there exists a separabletilb
§paceI:|, a norm-preserving-homomorphi§nfr: «/ — B(H) and a unit vector
& € H such that for all & <7, a(a) = (f1(a)&, &).

Proof By Theorem G.5 there exists a norm-preservingomomorphisnvt,, :
o/ — B(H,.) butH, might be nonseparable. Using the separabilitysfit is
routine to construct a separable Hilbert spBige_ H., stable under the action of
&/ via T, so that the induced representatign < — B(Hp) is a norm-preserving
x-homomorphism. Then, withr: &7 — B(H) andé&; as in Theorem 5.2.24, the
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direct sumit= 1o @ 11: &/ — B(Ho @ H) of representations and the unit vector
& =06 & € Hod H have the desired properties. O

We will see that the stat@, of Theorem 5.2.24 satisfies additional properties
that we now define. These properties will play an importalg o our treatment
of unbounded operators in subsection 5.2.3.

Definition 5.2.26Let <7 be a von Neumann algebra.

e A statet on.« is faithful iff T(xx") =0 impliesx=0.
¢ A state one is normaliff for any monotone decreasing to zero ragtof
nonnegative elements of’,

inft(ag) =0.
n (ag)

The normality assumption is an analogue in the noncommvetagitup of the reg-
ularity assumptions on linear functionals on measurahtetians needed to en-
sure they are represented by measures. For some consegjoénoemality, see
Proposition G.21.

We next show that the Gelfand-Naimark-Segal constructiloava us, if o is
tracial, to represent any joint law of noncommutative valea as the law of ele-
ments of a von Neumann algebra equipped with a faithful nbstade. In what
follows, we will always restrict ourselvesW*- probability spaces equipped with
a tracial statep. The properties we list below often depend on this assumptio

Corollary 5.2.27 Let a be a tracial state on a unital Galgebra satisfying the
assumptions of Theorem 5.2.24. Then, the tracial sggt®n W*({a; }icj) of
Theorem 5.2.24 is normal and faithful.

Proof We keep the same notation as in the proof of Theorem 5.2.2Ahédm by
showing thaty, is faithful onW*({a }icj) C B(H). Takex € W*({a; }icj) so that
@ (xX*X) = 0. Then, we claim that

xm(a)é1 =0, forallae «. (5.2.15)

Indeed, we have

(xm(a)éa,xm(a)éa) = (&1, 7M@) "X x7(a)é1)

P (11(8)"XXTI(@)) = ¢ (XTT(R) TT(@7)X") ,

EAT

where we used in the last equality the fact tipgtis tracial onW*({a; }icj). Be-
causert is a morphism we have(a)mn(a*) = r(aa“), and because the operator
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norm of ri(aa*) € B(H) is bounded by the norifaa’|| in <7, we obtain from the
last display

Ixmr(@) 1| = (&1, xm(@a’)x*&1) < [|a@’]| ¢ (x'x) =0,

completing the proof of (5.2.15). Sine&a)¢; is dense irH by part 1) of Theorem
5.2.24,and € B(H), we conclude that§ =0 for all ¢ € H, and thereforg =0,
completing the proof thafy, is faithful in W*({a }icj). By using Proposition
(G.21) withx the projection onto the linear vector space generate§ bwe see
thatqy is normal. O

Laws of self-adjoint operators

So far, we have considered bounded operators. However,apiications to
random matrices in mind, it is useful to consider also unldedroperators. The
theory incorporates such operators via the notion of atitiaperators. Let/ be
aW* -algebra, subset &&(H ) for some Hilbert spackl.

Definition 5.2.28A densely defined self-adjoint operatéron a Hilbert spacél
is said to beffiliated to.«7 if for any bounded Borel functiofi on the spectrum of
X, f(X) € &. A closed densely defined operaors affiliated with.<7 if its polar
decompositiory = uX (see Lemma G.9) is such that </ is a partial isometry
andX is a self-adjoint operator affiliated witt¥. We denote byz7the collection
of operators affiliated withy .

(Here, f(X) is defined by the spectral theorem G.8, see Section G.2 failslgt

It follows from the definition that a self-adjoint operabiis affiliated with.o/
iff (1+2zX)~1X € .o for one (or equivalently allg € C\R. (Equivalently, iff all
the spectral projections &f belong toe.) From the double commutant theorem
G.13, this is also equivalent to say that for any unitary afeu in the commutant
of &7, uXu = X.

Example 5.2.29 ety be a probability measure dR, H = L?(u) and.«Z = B(H).
Let X be the left multiplication by x with law, that is X f:= xf, f € H. Then X
is a densely defined operator, affiliated with

We define below the noncommutative laws of affiliated opesadmd of poly-
nomials in affiliated operators.

Definition 5.2.30Let (<7, T) be aW*- probability space and |8t be a self-adjoint
operator affiliated withe7. Then, thdaw ur of T is the unique probability mea-
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sure onR such thatr (u(T)) = fu(A)dur(A) for any bounded measurable func-
tion u. The associated distribution functionfs (x) := Fy; (X) := pr((—00,x]),
xeR.

(The uniqueness qit follows from the Riesz Representation Theorem, Theorem
B.12.) The Spectral Theorem, Theorem G.8, implies&x) = (X7 ((—,X]))

if xt is the resolution of the identity of the operaibi(this is well defined since
the spectral projectoyr ((—,x]) belongs toz).

Polynomials of affiliated operators are defined by the foilfmpalgebraic rules:
(A+B)v:= Av+ Bvfor anyv € H belonging to both the domains AfandB, and
similarly, (AB)v := A(Bv) for v in the domain oB such thaBvis in the domain
of A. One difficulty arising with such polynomials is that in geale they are
not closed, and therefore not affiliated. This difficulty igean be overcomed
by an appropriate completion procedure, which we now descrGiven av*-
algebragr equipped with a normal faithful tracial statgintroduce a topology by
declaring the sets

N(g,0) = {a€ o : for some projectiop € <7, ||lap|| < &,T(1—p) < 5}

and their translates to be neighborhoods. Similarly, ohice neighborhoods id
by declaring the sets

O(g,8) = {h e H : for some projectiop € <7, ||ph|| < £,7(1— p) < 5}

to be a fundamental system of neighborhoods, i.e. theislates are also neigh-
borhoods. Lets be the completion of vector spaeg with respect to the uni-
formity defined by the system (e, d) of neighborhoods of origin. Le# be the
analogous completion with respect to the system of neigidmdsO(e, d). A
fundamental property of this completion is the followingdnem, whose proof,
which we skip, can be found in [Nel74].

Theorem 5.2.31 (Nelsonpuppose” is a von Neumann algebra equipped with a
normal faithful tracial state.

(i) The mappings e~ a*, (a,b) — a+Db,(a,b)— ab,(h,g) — h+g,(a,h) —
ah with ab € & and hg € H possess unique uniformly continuous exten-
sions to<7 andH.

(i) Tobe o/ associate a multiplication operator jMwith domainZ(Mp) =
{h e H :bheH}, by declaring Mh = bh for he 2(My). Then M, is a
closed, densely defined operator affiliated with with My = My:. Fur-
ther, if ac <7, then there exists a unique@z?so that a= M.
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The advantage of the operatdvk, is that they recover an algebraic structure.
Namely, while ifa,a € </ then it is not necessarily the case that & or ad
belong toe’, however ifa = Mp anda’ = My thenMp,y andMyy are affiliated
operators, that equal the closureMf + My andMpMy (see [Nel74, Theorem
4]). Thus, with some standard abuse of notatior; & ;z7,i =1,...,k we say
that forQ € C(Xi|1 <i <Kk), Q(Ty,...,Tk) € &/, meaning that witil; = My, we
haveMq(q, ,...a,) € .

The assumption of the existence of a normal faithful trastiale ensures Prop-
erty G.18, which is crucial in the proof of the following pragition.

Proposition 5.2.32Let (<7, 1) be a W- probability space, subset of(B) for
some separable Hilbert space H. Assume thista normal faithful tracial state.
Let Qe C(X|1 <i < k) be self-adjoint. Let1l ..., Tx € o be self-adjoint, and let
Q(Ty,...,Tk) be the self-adjoint affiliated operator described follog/ifiheorem
5.2.31. Then, for any sequenceaf bounded measurable functions converging,
as n goes to infinity, to the identity uniformly on compactsatb ofR, the law of
Q(un(T1),...,un(Tk)) converges to the law of @u, ..., Tk).

The proof of Proposition 5.2.32 is based on the two follonangiliary lemmas.

Lemma 5.2.33Let («/,T) be as in Proposition 5.2.32. LetF--, Ty be self-
adjoint operators in=Z, and let Qe C(X|1 <i <k). Then there exists a constant
m(Q) < o, such that for any projections;p - - , px € « so that T =Tip; € « for
i=1,2,---,k, there exists a projection p such that

e Q(Ty,--, Tp=Q(T{,---, Ty)p,
e 7(p) > 1-m(Q)max<i<k(1—1(pi)).

Note that part of the statement is tla{T,--- , Ty)p € «7. In the proof of Propo-
sition 5.2.32, we use Lemma 5.2.33 with projectigns= pi' := xv,([—n,n]) on
the domain of thd;’s that ensure thafT;, - - -, T,) belong to’. Since such pro-
jections can be chosen with traces arbitrarily closed teehyina 5.2.33 will allow
us to define the law of polynomials in affiliated operators bysity, as a conse-
guence of the following lemma.

Lemma 5.2.34Let (<, 7) be as in Proposition 5.2.32. Let X be two self-adjoint
operators ineZ. Fix € > 0. Assume that there exists a projectios p7 such that
pXp= pY p andr(p) > 1— ¢ for somee > 0. Then,

suplFx (x) —Fv(x)| < .

XeR
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Note that the Kolmogorov-Smirnov distance
dks(H, V) 1= max|Fyu(x) — Fy(X)|
xeR

dominates the Levy’s distance &y (R) defined in Theorem C.8. Lemma 5.2.34
shows that, withX,Y, p, € as in the statemendk s(Lix, tiy) < €.

Proof of Lemma 5.2.33The key to the proof is to show thatdf € ;z7andp isa
projection, then there exists a projectigpsuch that

17(q) > 1(p) andZq= pZq. (5.2.16)

With (5.2.16) granted, we proceed by induction, as folloket.§ € < and pi be
projections so the} = Sp; € «7, i = 1,2. (To prepare for the induction argument,
at this stage we do not assume that®ieare self-adjoint.) Writg12 = p1 A p2.

By (5.2.16) (applied witlp = p1o), there exist two projectiongandq’ such that
P12S10 = S10, P12Sd = Sq. Setp:=p1Ap2AgAd. We have thapp = p
andg'p = p, and thusS;p = S¢'p. The range of5,q belongs to the range ¢f
and ofp, (becaus®:1,$q = Sq). Thus,

Sp=S0p=p1SAp= p1Sp = P1SP2P. (5.2.17)
Therefore,
SiSp =SSP, (5.2.18)

where (5.2.17) was used in the last equality. Note that gaheoequality is that
the image ofS;p is in the domain ofS; and soSS;p € «/. Moreover,7(p) >
1—4maxt(1— p;) by Property G.18. We proceed by induction. We first detail
the next step involving the produsiS,S3. SetS= S,S; and letp be the projection
asin (5.2.18), so thé@p= S,S;p € .«/. Repeat the previous step now wittand
S1, yielding a projectiom so thaiS; $,S3pg= S, S,S;pa. Proceeding by induction,
we can thus find a projectiopf so thatS; ---S,p' = S; - -- §,p’ with § = Sp; and
T(p) > 1—2"maxt(1— p;). Similarly, (Si+...+S)q = (S, +...+S,)q if
g = p1APpz2--- A pn. Iterating these two results, for any given polynon@ahwe
find a finite constann(Q) such that for an{f;/ = Tipi with T(p;) > 1—¢, 1<i <Kk,
there existp so thatQ(Ty,..., Ty)p=Q(T{,...,T))pandt(p) > 1—m(Q)e.

To complete the argument by proving (5.2.16), we write thiEapdecompo-
sition (1 — p)Z = uT (see G.9), with a self-adjoint nonnegative operafos
|(1— p)Z| andu a partial isometry such thatvanishes on the ortho-complement
of the range off . Setq=1— u*u. Noting thatuu* < 1— p, we haver(q) > 1(p).
Also,qT = (1—u*u)T = 0 implies thafl q= 0 sinceT andq are self-adjoint, and
therefore(1— p)Zq=0. O
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Proof of Lemma 5.2.34We first claim that, given an unbounded self-adjoint op-
eratorT affiliated to.«# and a real numbet, we have

Fr(x) =sup{t(q) :q" = =qe «, qTqe «, qTq<xq}.  (5.2.19)

More precisely, we now prove that the supremum is achieved fo- with the
projectorsyr ¢(X) = x7((c,X]) provided by the spectral theorem. At any rate, it is
clear that~r (x) = T(x7((—,X])) is a lower bound for the right side of (5.2.19).
To show thatFr(x) is also an upper bound, consider any projecter.« such
thatt(r) > Fr(x) with rTr bounded. Putj = x7((—,X]). We haver(r) > 1(q).

We haver(r —rAQ) =1(rvg—q) > 1(r) — 7(q) > 0 using Proposition G.17.
Therefore we can find a unit vectere H such that{rTrv,v) > x, thus ruling out
the possibility that (r) belongs to the set of numbers on the right side 0f(5.2.19).
This completes the proof of the latter equality.

Consider next the quantity

Frp(X) =sup(t(q): " =g =q€ 7, qTqe o, qTq< xq,q < p}.
We claim that
Fr(x) —& <Frp(X) <Fr(x). (5.2.20)

The inequality on the right of (5.2.20) is obvious. The loweuality we get by
takingg = gt ¢(x) A p on the right side of the definition & ,(x) with c large and
using Proposition G.17 again. Thus, (5.2.20) is proved.

To complete the proof of Lemma 5.2.34, simply note fhap(x) = Fv,p(X) by
hypothesis, and apply (5.2.20). O

Proof of Proposition 5.2.32PutT." := Tip{" with p' = x7,([—n,n]). Define the

.....

5.2.33, we can find a projectig such that
X":=p"Q(T{,..., T p" = p"Q(T1,..., k) p" = p"Mgp"
andt(p") > 1—m(Q)max t(1— x1.([-n,n])). By Lemma5.2.34,

,,,,,

implying the convergence of the law @ T/, ..., T,") to the law ofMq. Since also
by constructiorp]'T; p' = wW"(Tj) with w"(x) = x1x <, We see that we can replace
noww" by any other local approximatiaff! of the identity since the difference

X" — p"Q(u(Ta),...,u"(Ti)) p"

is uniformly bounded bgsup, -, [w" — u"|(x) for some finite constarnt= c(n, sup, <, [W"(X)|, Q)
and therefore goes to zero whe't{x) approaches the identity map pan,n]. O
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5.3 Free independence

What makes free probability special is the notion of fresntbait we define in
Section 5.3.1. It is the noncommutative analogue of inddpeae in probability.
In some sense, probability theory distinguishes itselfnfiategration theory by
the notion of independence and of random variables whichrerdasis to treat
problems from a different perspective. Similarly, free lpability differentiates
from noncommutative probability by this very notion of fresss which makes it
a noncommutative analogue of classical probability.

5.3.1 Independence and free independence

Classical independence of random variables can be defini inoncommuta-
tive context. We assume throughout thiat, @) is a noncommutative probability
space. Supposgs }ici is a family of subalgebras of7, each containing the
unit of «#. The family is calledindependentf the algebras« commute and
®(ag---an) = @(a) - @(an) for & € i) with i # j = k(i) #K(j). This is the
natural notion of independence when considering tensatymts, as is the case
in the classical probability examplé® (X, £, 1).

Free independence is a completely different matter.

Definition 5.3.1Let {.<7j } j<| be a family of subalgebras o, each containing
the unit of.«7. {<j} el are calledfreely independerif for any aj € ;) with
k(j) #k(j+1), j=1,...,n—1, so thatp(aj) = 0, it holds that

(p(al...an) =0.

Letr, (mg)1<k<r be integer numbers. The s&b , -, Xm, p)1<p<r Of NONCOM-
mutative random variables are called free if the algebrag gienerate are free.

Note that in contrast to the classical notion of independerepetition of indices
is allowed provided they are not consecutive; thus, freepetidence is a truly
noncommutative notion. Note also that it is impossible ted@= 1 in Definition
5.3.1 because of the conditigria;) = 0.

Observe that we could have assumed thvaias well as all members of the
family {7 }ici areW*-algebras. In that situation, & is a family of generators
of theW*-algebracs, then thaN*-subalgebrag.«# }ic| are free iff the families of
variables{ i }ic| are free.

Remark 5.3.2
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(i) Independence and free independence are quite diffehedéed, letX,Y
be two self-adjoint elements of a noncommutative probigtsiiace <7, @)
such thatp(X) = @(Y) = 0 but@(X?) # 0 andg(Y?) # 0. If X,Y commute
and are independent

PXY) =0, @XYXY)=(X*)e(Y?) #0,

whereas itX,Y are free, themp(XY) = 0 butp(XY XY) =0.

(i) The interest in free independence is that if the subdalge<s are freely
independent, the restrictions @fto the.o# are sufficient in order to com-
pute @ on the subalgebra generated by.&ll To see that, note that it is
enough to compute@(aiaz - - an) for a € ;) andk(i) # k(i + 1). But,
from the freeness condition,

o((a1 — @(a)1) (a2 — @(az)1)--- (an— @(an)1)) = 0. (6.3.1)

Expanding the product (using linearity), one can indudyieemputep(a; - - - an)
as a function of lower order terms. We will see a systematig iogper-
form such computations in Section 5.3.2.

(i) The law of free sets of noncommutative variables is atowous func-
tion of the laws of the sets. For example, ¥o§ = (Xyp, -+ ,Xmp) and
Yp=(Y1p, -, Ynp) be sets of noncommutative variables for epathich
are free. Assume that the law Xf, (respectively,Yp) converges ap
goes to infinity towards the law of = (Xg,---,Xm) (respectively,Y =
(Y1, Yn)).

a) If the setsX andY are free, then the joint law @, Y ) converges to
the joint law of (X, Y).

b) If instead the joint law ofXp,Y ) converge to the joint law ofX,Y),
thenX andY are free.

(iv) If the restriction ofg to each of the subalgebrés }ic, is tracial, then the
restriction ofg to the algebra generated By# }i¢ is also tracial.

The proof of some basic properties of free independenceatteainherited by
subalgebras is left to Exercise 5.3.8.

The following are standard examples of free variables.

Example 5.3.3

(i) Free products of groupgContinuation of Example 5.2.2, part 2) Suppose
G is a group which is the free product of its subgro@ysthat is every
element inG can be written as the product of elements in @&, and
0102---On # €wheneveg; € G \ {e} andi(j) #i(j +1) forall j.
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In this setup, we may take ag theW*-algebra generated by the left requ-
lar representatioA (G), see Example 5.2.12, part 2), and may take the
traceg defined in that example. Take also as thethe W*-algebra gen-
erated by the left regular representatidr{&;). This coincides with those
operatorsy 4 cgA (g) with ¢(g) = 0 for g £ G; that form bounded opera-
tors. Now, ifa € o4 andg(a) = 0 thence = @(a) = 0. Thus, ifay € )
with @(a) = 0 andk(i) # k(i + 1), the resulting operator corresponding
to a;---an, denotedy 4CyA (g), satisfiescg # 0 only if g=g1---gn for
g € Gy \ e In particular, sincegs ---gn # € we have thate =0, i.e.
@(a1---an) = 0, which proves the freeness of th&¢. The converse is also
true, that is ife4 associated with subgrouf® are free then the subgroups
are algebraically free.
Fock spaces.Let H be a Hilbert space and define tB®ltzmann-Fock
space as

T =PH". (5.3.2)

n>0

(Here,H®® = C1 where 1 is an arbitrary unit vector ). .7 is itself a
Hilbert space (with the inner product determined from theeinproduct

in H by (G.1) and (G.2)). If is an orthonormal basis iH, then.7 has
an orthonormal basis given HyL} and the direct sums of elements of the
forme, ®---®8a;,.

Forh € H, definel(h) to be the left creation operatdith)g=h®g. On
the algebra of bounded operators.@h denoted”(.7), consider the state
given by thevacuum ¢(a) = (al,1).

We show next that the famil{¢(e), ¢* (&)} is freely independentitZ (7 ), @).
Here, ¢ .= (*(&), theleft annihilationoperator, is the operator adjoint to
li:={(g),and(1=0,

e, 6,0 -6,=705,6,0 @8,
because, fog € .7 with (n— 1)th term equal t@y_1,
(8, 26,0 6,00 = (6,06, 6,6®0-1)
= 5i1<32®"'3n79n—1>~

Note that even though/; is typically not the identity, it does hold true that
£ ¢ = §;l with | the identity in#(.7). Due to that, the algebra generated
by (4, 4;,1) is generated by the ternd(¢/)P, p+q> 0, andl. Note also
that

@G (6)P) = ((¢7)P1,(6)71) =0,
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since at least one gb,q is nonzero. Thus, we need only prove that if
pk"’Qk > O! ik # ik+11

_ (p(éiqll(grl)PlgiqZZ(grz)Pz . .gi‘q:(gi*‘n)pn) =0.

But necessarily iZ # 0 theng; = O (for otherwise a terng, pops out
on the left of the expression which will then be annihilatedhie scalar
product with 1). Thusp; > 0, and then one must hage = 0, implying
in turnpz > 0, etc., up topn > 0. But since(4} )1 = 0, we conclude that
Z=0.

In classical probability one can create independent rangorables by forming
products of probability spaces. Analogously, in free ptolitg, one can create
free random variables by forming free products of nonconative probability
spaces. More precisely, {7}, ¢;)} is a family of noncommutative probability
spaces, one may construct a noncommutative probabilityespd, ¢) equipped
with injectionsi; : «/; — 7 such thatg; = @oi; and the imagek (.«}) are free
in.of.

We now explain the construction of free products in a simgdifsetting suf-
ficient for the applications we have in mind. We assume eacitoromutative
probability spacé.c7j, ¢;) is aC*-probability spaceg; is separable, and the fam-
iy {(«%,q)} is countable. By Corollary 5.2.25, we may assume i#atis a
C*-subalgebra oB(H;) for some separable Hilbert spakk, and that for some
unit vector{j € Hj we haveg; (a) = (adj, {j) for all a € <. Then the free prod-
uct («7, @) we aim to construct will be &*-subalgebra oB(s#) for a certain
separable Hilbert spac#’, and we will have for some unit vectdr e 7 that
p(a)=(al,() forallac «.

We construc(%ﬂ {) as thefree producbf the palrs(H,,ZJ) Toward that end,
given f € Hj, let f—(f, Z;)j € Hj and putH; = {f:fe Hj}. Then, for a unit
vector{ in some Hilbert space which is independenj gbut

)=Clo@| @ HyeH, -oH;|. (5.3.3)
n>1 jlsz;yéjn
117)

Let »# be defined similarly but without the restrictign = j. Note that all the
Hilbert spaces’(]) are closed subspaces.#f. We equipB(.¢°) with the state
1= (ar (al,{)), and hereafter regard it as a noncommutative probabildgesp

We need next for each fixefito define an embedding &(H;) in B(J¢).
Toward that end we define a Hilbert space isomorphignH; @ 7 (j) — 4 as
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follows, whereh; denotes a general elementhbf.
(@] q,
(i@ (hj®hj,®---®hj) hj, ®hj,®---@hy,,
hj®(hjl®hj2®"-®hjn) hj®hjl®hj2®"'®hjn.
Then, givenT € B(H;), we definer(T) € B(¢) by the formula
wherel ,,(j) denotes the identity mapping o#’(j) to itself. Note thatr is a
norm-preserving-homomorphism oB(H;) into B(#"). The crucial feature of
the definition is that fof # j1 # j2 # -+ # jm,
() (hjy -+ ) (5.3.4)
= @(THh, @ @hj,+(T{) @hj@---@hj,

11T 11

We have nearly reached our goal. The key point is the follgwin

Lemma 5.3.4In the noncommutative probability spa@®(.7#’), 1), the subalge-
brasm (B(Hj)) are free.

The lemma granted, we can quickly conclude the constructidime free product
(«, @), as follows. We taker to be theC*-subalgebra oB(.#’) generated by
the imagesr; (<7j), @ to be the restriction of to <7, andi; to be the restriction of
T to «7]. It is immediate that the imagég <) are free in(<7, @).

Proof of Lemma 5.3.4Fix j1 # j» # --- # jm and operator§y € B(H;,) for
k=1,...,m Note that by definitiort (5 (Tx)) = (Telje, {j,). PutTi = T —
(T Cii)ji» Wherelj, denotes the identity mapping bf, to itself, noting that
r(njk(f'k)) = 0. By iterated application of (5.3.4) we have

1, (T2) - 7 ()¢ = (2j,) © - @ (Tndjn) € Hjy @ Hj, © - © Hjp.
Since the space on the right is orthogonad fave have
(1 (T1) -+ - Thjy (Tm)) = 0.
Thus theC*-subalgebragg (B(Hj)) are indeed free iB(.7) with respect to the

stater. O

Remark 5.3.5In point 1 of Example 5.3.3 the underlying Hilbert space pged
with unit vector is the free product of the pa(n(é?(Gi),veGi ), while in point 2, it
is the free product of the pait¢p;,_,Ce™", 1).
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Remark 5.3.6The free product<, ¢) of a family { (<7}, ¢;) } can be constructed
purely algebraically, using just the spa¢eg , ¢;) themselves, butitis less simple
to describe precisely. Giveme <7}, putd =a— ¢;(a)1y, and/, = {&:a€ #}.
At the level of vector spaces

o =Cly® ( D JZ{oj1®"'®eQ{°jm> .
j1#i2##im

The injectionij : &/j — 4/ is given by the formula
ij(a)=g@lydac (Cld@éyoj co
and the stat@ is defined by
oLs) =1 ¢(Fye-©d,)=0

Multiplication in <7 is obtained, roughly, by simplifying as much as possiblenvhe
elements of the same algebzq are juxtaposed. Since a rigorous definition takes
some effort and is not needed, we do not describe it in detail.

Exercise 5.3.7n the setting of part 2 of Example 5.3.3, show that fomadl N,
2
o[l +0)" = %/ X'/ 4 — x2dx.
-2

Hint: Expand the left hand side and show tipéfP1¢P2 ... ¢Pn) = 0, withp; =1 or

*, vanishes unlesg' ; 11 =51 ; 1,—.. Deduce that the left hand side vanishes
whenn is odd. Whem is even, show that only the indicéps,-- - , pn) such that
the path(Xj = Xi_1+ 1p-1— 1p=+)1<i<n, With Xo = 0, is a Dyck path contributes
to the expansion. Conclude by using Section 2.1.3.

Exercise 5.3.81) Show that if{.<4}ic| are freely independent subalgebras and
if one partitionsl into subsetql;}cJ, then the subalgebras generated#y=
{a4,i €lj} are freely independent. 2) Show that freeness is presenast (weak

or strong) closures. That is, suppds€, @) is aC* (W*)- probability space, and
let <7 be freely independent subalgebras that are closed undsution and that
contain the unit ofe7. Prove that th&€* (W*) -subalgebras generated by th$
still form a freely independent family it , @).

5.3.2 Free independence and combinatorics

The definition 5.3.1 of free independence is given in termghefvanishing of
certain moments of the variables. It is not particularlyyeshandle for com-



5.3 FREEINDEPENDENCE 357

putation. We explore in this section the notion of cumulaitich is often much
easier to handle.

Basic properties of non-crossing patrtitions

Whereas classical cumulants are related to moments via asuimre whole set

of partitions, free cumulants are defined with the help of-oorssing partitions

(recall Definition 2.1.4). A pictorial description of nomessing versus crossing
partitions was given in figure 2.1.1.

Before turning to the definition of free cumulants, we neecktéew key prop-
erties of non-crossing partitions. It is convenient to defior any finite nonempty
setJ of positive integers the s&tC(J) to be the family of non-crossing partitions
of J. This makes sense because the non-crossing property ofigopas well-
defined in the presence of a total ordering. Also, we definmtnvalin J to be
any nonempty subset consisting of consecutive elemedts@iena, me NC(J)
we say that refinesrt if every block of g is contained in some block af, and
in this case we writer < 1. ForJ = {1,...,n}, we simply writeNC(n) = NC(J).
The unigue maximal element bC(n), namely{{1,...,n}}, we denote byl,.

Property 5.3.9For any finite nonempty familyrz }ic; of elements of N@) there
exists a greatest lower bounde375 € NC(n) and a least upper boundic;7t €
NC(n) with respect to the refinement partial ordering.

We remark that greatest lower bounds and least upper bonrdgadset are auto-
matically unique. Below we will write Simpljic 12,75 = TR AT andVie g 2, 7§ =
mV .

Proof It is enough to prove existence of the greatest lower boyaght, for then
VieaTh can be obtained asyck ok where{di}kek is the family of elements of
NC(n) coarser tham for all i € J. (The family{ oy} is nonempty sincé, belongs
to it.) Itis clear that in the refinement-ordered family df@rtitions of{1,...,n}
there exists a greatest lower bourtdor the family {75 }icj. Finally, it is routine
to check thattis in fact non-crossing, and henme= Ajc;7s. O

Remark 5.3.10As noted in the proof above, far, o € NC(n), the greatest lower
bound ofrrando in the posefNC(n) coincides with the greatest lower bound in
the poset of all partitions of1,...,n}. But the analogous statement about least
upper bounds is false in general.

Property 5.3.11Let 11 be a non-crossing partition of a finite nonempty set S of
positive integers. Let:S...,S, be an enumeration of the blocks af For i =



358 5. REE PROBABILITY

1,...,m letrg be a partition of § Then the partitionJ" ; 75 of S is non-crossing
if and only if 75 is non-crossing for&1,...,m.

The proof is straightforward and so omitted. But this propéears emphasis
because it is crucial for defining free cumulants.

Property 5.3.121f a partition 17 of a finite nonempty set S of positive integers is
non-crossing, then there is at least one block \ft@fhich is an interval in S.

Proof Let W be any block ofrr, let W > W be the interval irS bounded by the
least and greatest elementd@fand putS =W\ W. If S is empty, we are done.
OtherwiseS is a union of blocks oft, by the non-crossing property. Lat be the
restriction ofrrto S. By induction on the cardinality db, some block/ of 17’ is
an interval ofS, henceV is an interval inSand a block ofrt. O

Free cumulants and freeness

In classical probability, moments can be written as a sum pasgitions of clas-
sical cumulants. A similar formula holds in free probakilxcept that partitions
have to be non-crossing. This relation between momentsraedcfimulants can
be used to define free cumulants, as follows.

We pause to introduce some notation. Suppose we are givelfeatiom { ¢y, :
«/" — C}py_, of multilinear functionals on a fixed complex algebed. We
definex({a }icy) € C for finite nonempty setd of positive integers, families
{ai}icy Of elements ofez and T € NC(J) in two stages: first we writd = {i; <
-+ <im} and define/({ai}ic) = lm(aiy,- .-, aiy); then we definé({a }ics) =
HVené({ai}iEV)'

Definition 5.3.13Let (<, @) be a noncommutative probability space. Thee
cumulantsare defined as a collection of multilinear functionals

kn: /" —C (neN)
by the following system of equations:

qo(alan) — z kn(a]_’--- 7an) (535)
meNC(n)

Lemma 5.3.14The free cumulants are well-defined.

Proof We defineg:({a; }icj) € C for finite nonempty setd of positive integers,
families {a; }icy of elements ofer and € NC(J) in two stages: first we write
J={i1 <--- <im} and definqic;a = &, - -- &, then we definep:({a }ics) =
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Mver®iev @). If the defining relations (5.3.5) hold, then, more gengravle
must have

n(ar..a) = 5 Ko(ar....an) (5.3.6)
oeNC(n)

o<T
foralln, (ay,...,an) € @™ andme NC(n), by Property 5.3.11. Since every partial
ordering of a finite set can be extended to a linear orderimgsystem of linear
equations (5.3.6), for fixed and(ay,...,an) € &", has (in effect) a square tri-
angular coefficient matrix with 1's on the diagonal, and leeaanique solution.
Thus, the free cumulants are indeed well-defined. O

We now turn to the description of freeness in terms of cumtslawhich is
analogous to the characterization of independence by @antsih classical prob-
ability.

Theorem 5.3.19 et (<7, @) be a noncommutative probability space and consider
unital subalgebras#, ..., om C /. Then,oA, ..., @y are free if and only if for
alln >2and for all 3 € ;) with 1< j(1),...,j(n) <m,

kn(aa,...,an) =0 if there existl <,k < nwith j(I) # j(k). (5.3.7)

Before beginning the proof of the theorem, we prove a reshitiwexplains
why the description of freeness by cumulants does not reariy centering of
the variables.

Proposition 5.3.16_et (<, @) be a noncommutative probability space and.a. ,a, €
/. Assume > 2. If thereis i {1,...,n} so that a= 1, then

kn(as,...,an) =0.
As a consequence, forn2, and any a,...,a, € &,

kn(ag,...,an) = kn(aa — @(a1),a2 — @(a2),. .., @8 — @(an)).

Proof We use induction om > 2. To establish the induction base, fo= 2 we
have, sincé; (a) = ¢(a),

p(anaz) = Ka(a1,a2) + @(a1) p(az)

and so ifay = 1 orap; = 1, we deduce, sincg(1) = 1, thatkx(ai,a) = 0. For
the rest of the proof we assume timat 2. By induction we may assume that for
p<n-—1,kp(by,...,by) =0 if one of theb; is the identity. Suppose now that
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a=1. Then

@(@---an) =kn(az,...,an)+ ) Kn(as,...,an) (5.3.8)
T
where by our induction hypothesis all the partitiamgontributing to the above
sum must be such thét} is a block. But then, by the induction hypothesis,

kﬂ(alv"'aan) = Z kﬂ(alv"'aaiflvai+lv"'aan)
nei(:f(n) meNC(n—1)
m£1n

@(ar--- 81841 an)
®(a1--an) —ka(as,...,an)

where the second equality is due to the definition of cumaland the third to
(5.3.8). As a consequence, becagg@e;---a_18:1---an) = @(a1---an), we
have proved thaty(ay, ...,a,) = 0. |

Proof of the implication < in Theorem 5.3.15.We assume that the cumulants
vanish when evaluated at elements of different algebfas. . , o, and consider,
for a € o) with j(i) # j(i+1) foralli € {1,...,n— 1}, the equation

¢((ar—(ar))-- (an—@(an))) = > kn(as,...,an).
meNC(n)

By our hypothesisk;; vanishes as soon as a blockioéontains 1< p, g < nso that
i(p) # j(q). Therefore, since we assumg) # j(p+1) forallpe {1,...,n—
1}, we see that the contribution in the above sum comes frontipag 1 whose
blocks cannot contain two nearest neighbiggsp+ 1} foranyp e {1,...,n—1}.
On the other hand, by Property 5.3.12must contain an interval if1,...,n},
and the previous remark implies that this interval must béhefformV = {p}
for somep € {1,...,n— 1}. But thenk;; vanishes sinck; = 0 by centering of the
variables. Therefore, ifforx p<n—1,j(p) # j(p+1), we get

¢((a— @(a1)) -~ (an—@(an))) =0,
and hencep satisfies (5.3.1). O

The next lemma handles an important special case of thedatfgh=- in
Theorem 5.3.15.

Lemma 5.3.17If @, ..., 9, are free, then for i 2,

kn(as,...,an) = 0 ifaj € g with j(1) # j(2) # - #i(n).  (5.3.9)
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Proof We proceed by induction om> 2. We have

0 = o((as—¢(a))-(an—@(an))) (5.3.10)

kn(ar — @(a1),...,an— @(an))
meNC(n)

= z kﬂ(a].v"'aan)v
neNC(n)

mhas no singleton blocks

where the second equality is due to Proposition 5.3.16 amdahishingk; (a —
¢(a)) = 0. To finish the proof of (5.3.9) it is enough to prove that thstIsum
reduces tdq(a, . ..,an). If n= 2 this is clear; otherwise, for > 2, this holds by
induction onn, using Property 5.3.12. O

The next lemma provides the inductive step needed to finspithof of Theo-
rem5.3.15.

Lemma5.3.18Fixn>2and a,...,a) € . Fix1<i<n-—1andleto € NC(n)
be the noncrossing partition all blocks of which are singtet except fofi,i+1}.
Then for alln € NC(n— 1) we have that

kp(as,...,&@i4+1,...,8n) = z kn(ag,...,an). (5.3.11)

meNC(n)
nvo=n

Proof Fix { € NC(n—1) arbitrarily. It will be enough to prove equality after
summing both sides of (5.3.11) ovgr< {. Let

f:{1,....,n} - {1,...,n—-1}

be the unique onto monotone increasing function such fiiat= f(i+1). Let
{' € NC(n) be the partition whose blocks are of the fofm*(V) with V a block
of {. Summing the left side of (5.3.11) on< { we getq, (ay, ..., a4 1,...,an)
by (5.3.6). Now summing the right side of (5.3.11)pr< { is the same thing as
replacing the sum already there by a sum averNC(n) such thatt < ¢’. Thus,
summing the right side of (5.3.11) ovgr< {, we get,(a,...,a,) by another
application of (5.3.6). But clearly

q)Z(a-lv"' aa'iai+la'~~7an) = q)Z’(alv"' ,an),
Thus (5.3.11) holds. O

Proof of the implication = in Theorem 5.3.15.Forn > 2, indicesj(1),..., j(n) €
{1,...,m} such that{j(1),...,j(n)} is a set of more than one element, and
Ay fori=1,...,m, assuming, ..., om are free ina with respect top, we
have to prove thakn(as,...,a,) = 0. We proceed by induction om> 2. The
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induction basen = 2 holds by (5.3.9). Assume for the rest of the proof that
n > 2. Because of (5.3.9), we may assume there exist§1,...,n— 1} such
thatj(i) = j(i+1). Leto € NC(n) be the unique partition all blocks of which are
singletons except for the blodk,i + 1}. In the special casg = 1,_1, equation
(5.3.11) after slight rearrangement takes the form

kn(@,...,an) =kn-1(aq,...,&@+1,-...a0)— ) Kn(aw,...,an). (5.3.12)
1n#meNC(n)
mvo=1p

In the present case the first of the terms on the right vanishé@sduction onn.
Now eachrir € NC(n) contributing on the right is of the formr= {V;,Vi;1} where

i €V, andi+1eV,;. Since the function — j(i) cannot be constant both on
V; and onV;, 1 lest it be constant, it follows that every term in the sum o fer
right vanishes by induction om We conclude that,(a,...,an) = 0. The proof
of Theorem 5.3.15 is complete. O

Exercise 5.3.1%Prove that

ks(ar,a2,a3) = @(arazaz) — @(a1)p(azas) — P(a1as)P(az)
—(a1az)(as) +2¢(a1) p(az) p(ag) -

5.3.3 Consequence of free independence: free convolution

We postpone giving a direct link between free independendeandom matrices
in order to first exhibit some consequence of free indepetel@iten described as
free harmonic analysisWe will consider two self-adjoint noncommutative vari-
ablesa andb. Our goal is to determine the law aft- b or of abwhena, b are free.
Since the law of a,b) with a,b free is uniquely determined by the laysg of a
and, of b (see part 2 of Remark 5.3.2), the law of their sum (respdgtipeod-
uct) is a function ofuy and u, denoted byu, B 1y (respectivelyu, X uy). There
are several approaches to these questions; we will deilafipurely combina-
torial approach based on free cumulants and then mentiolyahraic approach
based on the Fock space representations (see Example2h.3[Bese two ap-
proaches concern the case where the probability meagyrggs have compact
support (that i andb are bounded). We will generalize the results to unbounded
variables in Section 5.3.5.
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Free additive convolution

Definition 5.3.20Let a, b be two honcommutative variables in a noncommutative
probability spacé.«7, @) with law g, Uy, respectively. Ifa, b are free, then the law
of a+ bis denotedus B L.

We usekn(a) = kn(a,...,a) to denote the'™ cumulant of the variable.

Lemma 5.3.21L et a b be two bounded operators in a noncommutative probability
space(«/, @). If aand b are free, then for all ix 1,

kn(a+b) = kn(@) + kn(b).

Proof The result is obvious fon = 1 by linearity ofk;. Moreover, for alin > 2,
by multilinearity of the cumulants,

kn(a+b) = Zj kn(€1a+ (1—&1)b,...,eqa+ (1 — &)b)
&§=0,1
= kn(a)+kn(b),

where the second equality is a consequence of Theorem 5.3.15 O

Definition 5.3.22For a bounded operatarthe formal power series
Ra(2) = § kny1(a)Z"

is called theR-transform of the law 5. We also writeRy,, := R, sinceR, only
depends on the lay;.

By Lemma 5.3.21, thé&k-transform is to free probability what the log-Fourier
transform is to classical probability in the sense that liriear for free additive
convolution as stated by the next corollary.

Corollary 5.3.23 Let a b be two bounded operators in a noncommutative proba-
bility space(«, @). If a and b are free, we have

Ruafiu, = Rua + Ry,

where the equalities hold between formal series.

We next provide a more tractable definition of tReransform in terms of the
Stieltjes transform. Lett : C[X] — C be a distribution in the sense of Definition
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5.2.3 and define the formal power series

Gu(2) = %u(x”)z—“‘“) : (5.3.13)

Let K, (2) be the formal inverse 0B, i.e. Gy (Ku(2)) =z Theformal power
series expansion &, is

l 0
z n=1
Lemma 5.3.24Let u be a compactly supported probability measure. For i

integer, G, = k, and so we have equality in the sense of formal series

Ru(2) =Ku(2—-1/z
Proof Recall the generating function of the cumulants as the fopmaer series

Cad =1+ ke(@)?

with my(a) := p(a"). We will prove that
Ca(zMa(2)) = Ma(2). (5.3.14)
The rest of the proof is pure algebra since
Ga(?) 1= Gy (2) = 2 Ma(z ), Ra(2) 1= 2 H(Ca(d) - 1)
then givesC4(Ga(2)) = zGa(2) and so by composition bigs,
ZRi(2) +1=Ca(2) = ZKa(2).

This equality proves that, = C, for n > 1. To derive (5.3.14), we will first show
that

(@) = Z T k@m@-m@. (65315
s=1i1,...,is€{0,1,....n—s}

i14--+is=n—s
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With (5.3.15) granted, (5.3.14) follows readily since

00

Ma(2) = 143 my(a)Z’
n=1
© n
nzlsziil--_-.,iseg,l ,,,,, n—s} s(2)zm, (2) ()
i1+ +Hs=n-s

S
1+ S k(27 @im(a)) = Ca(ZMa(2)).
s=1 i=
To prove (5.3.15), recall that by definition of the cumulants

my(a) = z kn(a).
meNC(n)

Given a non-crossing partitiam= {V4, ...,V } € NC(n), writeVy = (1,vp,...,Vs)
with s= V4| € {1,...,n}. Sincerm is non-crossing, we see that for ahy
{2,...,r}, there existk € {1,...,s} so that the elements & lie betweenvy
andvi.1. Herevs; 1 = n+ 1 by convention. This means thatdecomposes into
V; and at moss other (non-crossing) partitiorf, .. ., . Therefore

kr[ S kskﬁ-l ce kﬁg

If we letiy, denote the number of elementsiipg we thus have proved that

m(a) = 3 k(@) kry () - - k7 (@)
RN i
= ;ks(a)_ 2 M@ m(a),

i >0

where we used again the relation (5.3.5) between cumuladtsrements. The
proof of (5.3.15), and hence of the lemma, is thus complete. O

We now digress by rapidly describing the original proof ofr@ary 5.3.23
due to Voiculescu. The idea is that since laws only dependsi@ments, one
can choose a specific representation of the free honcomreutatriablesa, b
with given marginal distribution to actually compute thw/laf a+ b. A standard
choice is then to use left creation and annihilation opesade described in part 2
of Example 5.3.3. Let” denote the Fock space described in (5.3.2)@nrd/(g),

i = 1,2, be two creation operators GA.
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Lemma 5.3.25Let (aj,,i = 1,2,j € N) be complex numbers and consider the
operators on7

a =4+ agil + Zlaj'igij’ i=12.
J:

Then, denoting in sho® = | for i = 1,2, we have that

agtax=(01+05)+ Uj’lﬁi—k aj’zﬁé (5.3.16)
&I,
and
ag=(i+ Y ajali+ Z)a,-ze{ (5.3.17)
=0 i=

possess the same distribution in the noncommutative pitityapace(.7, (-1,1)).

In the above lemma, infinite sums are formal. The law of the@ated operators
is still well defined since thé/})j>m will not contribute to moments of order
smaller tharM; thus, any finite family of moments is well defined.

Proof We need to show that the tracés1,1) and ((a; + a)*1,1) are equal
for all integer number&. Comparing (5.3.16) and (5.3.17), there is a bijection
between each term in the sum definifag + a2) and the sum definings, which
extends to the expansionsagand(al + az)k. We thus only need to compare the
vacuum expectations of individual terms; f(agl, 1) they are of the fornZ :=
(011012 ... 0371, 1) wherew; € {,1}, whereas the expansion ¢fa; + ap)¥1,1)
yields similar terms except théf has to be replaced b§f + /5 and some of the
¢} by 3. Note however thaZ # 0 if and only if the sequencen,ws, ..., Wy is

a Dyck path, i.e. the walk defined by it forms a positive eximrghat returns

to O at timen (replacing the symbot by —1). But, since(/; +£5)6 = 1 = {;¢;
fori = 1,2, the value oZ is unchanged under the rules described above, which
completes the proof. O

To deduce another proof of Lemma 5.3.21 from Lemma 5.3.25ex¢ show
that the cumulants of the distribution of an operator of thref

a=/l"+ Z)ajéj,
=
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for some creation operatdron .7, are given byk; = a;,1. To prove this point,
we compute the moments af By definition,

n
@11 = ((r+3 ajtd | 1,1)
120
= z ASORILLR 1) Gy i)
i(1),...,i(n)e{-1,0,....n—1}
where forj = —1, we wrote/* for ¢1, denoted_; = 1 and observed that mixed
moments vanish if somigl) > n. Recall now tha{/'(V) ... /(W1 1) vanishes ex-
ceptif the patHi(1),...,i(n)) forms a positive excursion that returns at the origin
attimen, i.e.

i(1)+---+i(m) >0 forall m<n, andi(1)+---+i(n) =0. (5.3.18)

(Such a path is not in general a Dyck path since(ifip),1 < p < n) may take
any values infl—1,0,...,n—1}.) We thus have proved that

(a”l, 1> = z di(1) - Adi(n) - (5.3.19)
i(1),....i(n)e{-1,....n—1},
Tpeqi(P>03]_4i(p)=0

Define next a bijection between the set of intedé), . .., i(n)) satisfying (5.3.18)
and non-crossing partitioms= {Vy,...,V; } by i(m) = |Vi| — 1 if mis the first el-
ement of the block/, andi(m) = —1 otherwise. To see it is a bijection, being
given a partition, the numbei$(1),...,i(n)) satisfy (5.3.18). Reciprocally, be-
ing given the numberéi(1),...,i(n)), we have a unique non-crossing partition
m= (Vi,...,V) satisfying|Vi| = i(m) + 1 with mthe first point ofv;. It is drawn
inductively by removing block intervals which are sequenggindices such that
{i(m) = p,i(m+k) = —1,1 < k < p} (includingp = 0 in which case an interval
is {i(m) = 0}). Such a block must exist by the second assumption in (5.3.18
Fixing such intervals as blocks of the partition, we can reethe corresponding
indices and search for intervals in the corresponding subsk{i(k),1 <k <n}.
The indices irSalso satisfy (5.3.18) so that we can continue the constnucitil

no indices are left.

This bijection allows us to replace the summation overitkgsin (5.3.19) by
summation over non-crossing partitions and find
@LL)= Y oy Oyt

1=(V1,...,Vr)

Thus, by the definition (5.3.5) of the cumulants, we dedues tor alli > 0,
ai_1 = ki, with k; theith cumulant. Therefore, Lemma 5.3.25 is equivalent to the
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additivity of the free cumulants of Lemma 5.3.21 and the ofghe analysis is
similar.

Example 5.3.26 Consider the standard semicircle law(dx) = o(x)dx. By
Lemma 2.1.3 and Remark 2.4.2,

z—VZ2-4

Ga(2) = 5

Thus, K(z) = z 1 +z. In particular, the R-transform of the semicircle is the
linear function z, and summing two (freely independent)i-sgmcular variables
yields again a semi-circular variable with a different vamice. Indeed, repeating
the computation above, the R-transform of a semicircle sighport[—a, a] (or
equivalently with covarianca?/2) is az/2. Note here that the linearity of the
R-transform is equivalent ta,ka) = 0 except if n= 2, and k(a) = a?/2 = @(a?).

Exercise 5.3.271) Letu = 3(8,1 + &_1). Show thatG(z) = (- 1)~'zand

V14+422-1

Ru(2) = 57

with the appropriate branch of the square root. Deducedhaf,(z) = vz — i
Recall that ifo is the standard semicircle lago (x) = o(x)dx, Gg(x) = 1(z—
v/Z2 — 4). Deduce by derivations and integration by parts that

1
z—X

%(1— 2Guzu(2) = / 0 (x)dx

Conclude thaju H u is absolutely continuous with respect to Lebesgue measure
and with density proportional to,l.»(4 — xz)—%.

2) (Free Poisson) Let > 0. Show that if one takepn(dx) = (1— Aﬁ)c$o+ %60,,

pi" converges to a limip whoseR-transform is given by

Aa
l1-az

Deduce thap is the Pastur-Marthenko law given Af> 1, by

p(dx) = p(dx) = ﬁ\/M a2 — (x— a(A +1))2dx,

andforA <1,p=(1—-A)%+Ap.
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Multiplicative free convolution

We consider again two bounded self-adjoint opera#obsin a honcommutative
probability spacé.e/, ) with laws pz andpy, but now study the law cdib, that is
the collection of momentég((ab)"),n € N}. Note thatab does not need to be a
self-adjoint operator. In the case whegés tracial, anda self-adjoint positive, we
can however rewrite((ab)") = qo((a:?L baz )") so that the law oéb coincides with
the spectral measure afba? whenb is self-adjoint. However, the following
analysis of the family{ ¢((ab)"),n € N} holds in a more general context where
these quantities might not be related with a spectral measur

Definition 5.3.28Let a,b be two noncommutative variables in a noncommutative
probability spacé.«7, @) with laws u; anduy, respectively. Ifaandb are free, the
law of abis denotedus X iy,

Denote bym, the generating function of the moments, that is the formalgyo

series
Ma(2) = Y 9@")7 =Ma(2) - 1.

m>1

When ¢(a) # 0, my is invertible as a formal power series. Denoterby! its
(formal) inverse. We then define

Definition 5.3.29Assumeg(a) # 0. TheS-transformof ais given by

S(2) = $:(2) = T Zmy(2)

z

We next prove that th&transform plays the same role in free probability that
Mellin’s transform does in classical probability.

Lemma 5.3.30Let a b be two free bounded operators in a noncommutative prob-
ability space(«7, @), so thatg(a) # 0, g(b) # 0. Then

Si(2) = S(9S(2).
See Exercise 5.3.31 for extensions of Lemma 5.3.30 to theevehere eithep(a)
or ¢(b) vanish.

Proof The idea is to use the structure of non-crossing partitiomslate the gen-
erating functions ofp((ab)"), ¢((ab)"a) and@(b(ab)");

Man(2) = Z}fp((ab)”)zn, M(2) = Z}fp(d(Cd)”)ZT
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where(c,d) = (a,b) or (b,a). Remark first that from theorem 5.3.15,

o((ab)") = ¢(abab --ab)
= Z kn(a,b,...,a,b)
eNC(2n)
= > ks ()krg (b).
meNC(1,3,...,2n—1)meNC(2,4,...2n)
m UrpeNC(2n)
The last formula is symmetric ia,b so that even ifp is not tracial,@((ab)") =
¢@((ba)") for all n> 1. We use below the notatio#? (odd) and &?(ever) for the
partitions on the odd, respectively, even, positive integeix the first block/; =
{V1,...,Vs} in the partitionrg. We denote by, ... ,\Ws the intervals between the
elements oW1 U {2n}. Fork=1,...,s, the sum over the non-crossing partitions
of W correspond to a worb(ab)'k if |Wk| = 2ik + 1 = w1 — vk — 1. Therefore,
we have

pab)) = Skia) I k|f|l T kn(Okn@

. m e (odd), €7 (even
ix=0 mUMENC({1,..., 2 +1})

ﬁl(p(b(ab)ik). (5.3.20)

I
N5
&
&

i1+~~i~k+;0:n—s
Now, we can do the same fg(b(ab)") by fixing the first blockV/; = (v1,...,Vs)

in the partition of theb’'s (on the odd numbers); the corresponding first intervals
are{Vvi +1,vi,;1 — 1} for k < s— 1 (representing the words of the forfab)'xa,
with iy = 271(vis 1 — W) — 1, whereas the last intervfs + 1, 2n+ 1} corresponds

to a word of the form{ab)'o with ig = 2-1(2n+ 1 — vs). Thus, we get fon > 0,

ob(ab) = S leald) 5 ollab)) [{otabal). (320

ix=>0

Setca(2) := Yn>1kn(a)Z". Then, summing (5.3.20) and (5.3.21) yields the rela-
tions

Map(z) = 1+ Ca(ZMgb(Z))a
_ a s __ Mab(z) a
Moo@) = 3 Phea(BMan(@ME(27 = Zi oron(2ME(@).
SinceMgp = Mpa, We deduce that
_ ZMgb(z)Mga(z)

Mab(2) — 1 = ca(zM3(2)) = Co(2Ma(2)) = Mab(2)
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which yields, noting that,, ¢, are invertible as formal power series sirkgéa) =
¢(a) # 0 andk (b) = @(b) # 0 by assumption,

Ca*(Map(2) — )¢, (Man(2) — 1) = ZMan(2) (Man(2) — 1) - (5.3.22)
Finally, remark that from the equality (5.3.14) (note heratic; = C; — 1), if
m, = My — 1, then

Ma(2) = Ca(Z(1+Ma(2)) = ¢ 7(2) = (1+2)M(2) = 2S4(2).
Therefore, (5.3.22) implies
ZS(29%(2) = (1+2)2my (2) = ZSw(2),

which completes the proof of the lemma. O

Exercise 5.3.31n the case whera is a self-adjoint operator such thata) = 0
buta # 0, definemgl, the inverse ofn,, as a formal power series ifz. Define
the StransformS,(z) = (z 1 + 1)m;%(2) and extend Lemma 5.3.30 to the case
whereg(a) or ¢(b) may vanish.

Hint: Note that@(a?) # 0 so thatmy(2) = @(a2)Z + ¥ m>3@(a™)z™ has formal
inversem; 1(2) = @(a2)~2,/z+ (@(a®) /2¢(a2)2)z+- - which is a formal power
series in,/z.

5.3.4 Free central limit theorem

In view of the free harmonic analysis that we developed inpte¥ious sections,
which is analogous to the classical one, it is no surprisestiamdard results from
classical probability can be generalized to the noncomtivetsetting. One of the
most important of such generalizations is the free ceritral theorem.

Lemma 5.3.32Let {a }icy be a family of free self-adjoint random variables in
a noncommutative probability space with a tracial stgte Assume that for all
keN,

sup|p(a)| < e. (5.3.23)
i

Assumep(a;) = 0, p(a?) = 1. Then,

1 N
NN

converges in law as N goes to infinity to a standard semicad&ibution.
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Proof Note that by (5.3.23) the cumulants of words in s are well defined
and finite. Moreover, by Lemma 5.3.21, for al>> 1, we have

N a 1
ko) = 3 kol =) = —
P k; PVNTNEY
Since, for eaclp, {kp(a)};> ; are bounded uniformly i, we get forp > 3,

Iim k(%) = 0.

N
Kp(a).
1

Moreover, sincep(a) = 0,¢(a?) = 1, for any integer numbeN, k;(Xy) = 0
whereas(Xn) = 1. Therefore, we see by definition 5.3.13 that formd N,

{ 0if pis odd,

lim (%) = #{mme NC(p), 7T pair partitior}

N—oo
Here, we recall that a pair partition is a partition whoseckiohave exactly two
elements. The right side corresponds to the definition ofrtbments of the semi-
circle law, see Proposition 2.1.11. O

5.3.5 Freeness for unbounded variables

The notion of freeness was defined for bounded variable®psigy all moments.
It naturally extends to general unbounded variables thémkse notion ofaffili-
ated operatorslefined in Section 5.2.3, as follows.

Definition 5.3.33Self-adjoint operator§X; }1<i<, affiliated with a von Neumann
algebrags are calledreely independenor simply free, iff the algebras generated
by {f(X) : f bounded measuraljle-i<, are free.

Free unbounded variables can be constructed in a noncornivelspace, even
though it is not possible anymore to represent these vasaid bounded opera-
tors, so that standard tools such as the GNS Representatieorem 5.2.24) do
not hold directly. However, we can construct free affiliatagiables as follows.

Proposition 5.3.34Let (uy,..., Hp) be probability measures oR. Then, there
exist a W- probability space«7, 1) with T a normal faithful tracial state, and
self-adjoint operatorg X }1<i<p which are affiliated withe7, with laws i, 1 <

i < p, and which are free.

Proof Sete/ = B(H;) with H; = Lz(ui) and construct the free produ#f as in the
discussion following (5.3.3), yielding@"-probability spacé.e7, ) with a tracial
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stateg and a morphisnit such that the algebrdsi(.#)).1<i<p are free. By the
GNS construction, see Proposition 5.2.24 and Corollary23,2ve can construct
a normal faithful tracial state on a von Neumann algebr# and unbounded
operators(ay, . .., ap) affiliated with 2, with marginal distribution(1, ..., 4p).
They are free since since the algebras they generate aréhfyeethatp andt
satisfy the relations of Definition 5.3.1 according to Rek&aB.2). O

From now on we assume that we are given a Hilbert sphaes well as a
W+*-algebraz C B(H) and self-adjoint operators affiliated withé*-algebras .
The law of affiliated operators is given by their spectral suga and, according
to Theorem 5.2.31 and Proposition 5.2.32{1f}1<i<k are self-adjoint affiliated
operators, the law d®({Ti }1<i<k) is well defined for any polynomiaD.

We have as an immediate corollary.

Corollary 5.3.35Let {Ti}1<i<k € </ be free self-adjoint variables with marginal
distribution { 14 }1<ij<k and let Q be a self-adjoint polynomial in k noncommuting
variables. Then, the law of @Ti}1<i<k) depends only of li}1<i<k and it is
continuous in these measures.

Proof of Corollary 5.3.35. Let uy : R — R be bounded continuous functions so
thatun(x) = x for x| < nandun(x) = 0 for |x| > 2n. By Proposition 5.2.32, the
law of Q({Ti }1<i<k) can be approximated by the law@Qf {un(T;) }1<i<k). To see
the claimed continuity, note that ﬁip — Ui converges weakly ag — o for i =
1,...,k thenthe sequencéaip} are tight, and thus for eagh> 0 there exists an
M independent op so thatu”({x: [x| > M}) < &. In particular, withT,” denoting
the operators corresponding to the measm‘ésit follows that the convergence of
the law of Q({un(T;") }1<i<k) to the law ofQ({T,"}1<i<k) is uniform in p. Since
for eachn, the law ofQ({un(T,")}1<i<k) converges to that o®({un(Ti) }1<i<k),
the claimed continuity follows. O

Free harmonic analysis can be extended to affiliated opstate to laws with
unbounded support. We consider here the additive free datimo. We first show
that theR-transform can be defined as an analytic function, at leastrijuments
with large enough imaginary part, without using the exiseeaf moments.

Lemma 5.3.36Let u be a probability measure dR. Fora,3 >0, letl; g C C*
be given by

Fap={z=x+iyeC":|x| <ayy>p}.
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Put, for ze C\R,

Gu(2) ::/%{du(x), Fu(2) = 1/Gu(2). (5.3.24)

Foranya > Oande € (0,a), there exist$3 > 0 so that

(i) Fyisunivalentor, g.
(i) Fu(Fqp) containslq_, g(11¢)- In particular, the inverse of i denoted
.t satisfies B Tg_¢ gaie)—Tap-
(iii) Fytis analytic only_¢ g(1¢)-

Proof Observe thak, is analytic on", g and

H !
oot @=-1
In particular, the latter shows th#,(z)| > 1/2 onT4 g for B large enough.
We can thus apply the implicit function theorem (also knowrhis context as
the Lagrange inversion theorem) to deduce fats invertible, with an analytic
inverse. The other claims follow by noting ttfat is approximatly the identity for
B sufficiently large. O

Definition 5.3.37Let ', g be as in Lemma 5.3.36. We define theiculescu
transformof onl, g as

WD) =F 2~z
For 1/zc T4 g, we define theRk-transformof p asRy(2) := (pu(%).

By Lemma 5.3.36, foB3 large enoughg, is analytic on, g. As the following
lemma shows, the analyticity extends to a full neighborhafadfinity (and to an
analyticity of R, in a neighborhood of 0) as soon @ss compactly supported.

Lemma 5.3.38If u is compactly supported and| is small enough, then ,Rz)
equals the absolutely convergent seffgs o kn+1(a)2".

Note that the definition dB, given in (5.3.24) is analytic (in the upper half plane),
whereas it was defined as a formal power series in (5.3.13)keMer, whenu is
compactly supported arms large enough, the formal series (5.3.13) is absolutely
convergent and is equal to the analytic definition (5.3.@4jch justifies the use

of the same notation. Similarly, Lemma 5.3.38 shows thafdhmal Definition
5.3.22 ofR;, can be strengthened into an analytic definition wpea compactly
supported.
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Proof Let u be supported ifi—M, M] for someM < «. Then observe thab,,
defined in (5.3.13) can be as well defined as an absolutelyecgimg series for
|zl > M, and the resulting function is analytic in this neighbortiobinfinity. R,
is then defined using Lemma 5.3.36 by applying the same puvees in Lemma
5.3.24, but on analytic functions rather than formal series O

By Property 5.3.34, we can always construct a Hilbert sphice tracial state
¢, and two free variable®X1, X») with law p; and iy respectively affiliated with
B(H). By Corollary 5.3.35, we may define the law Xf + X, which we denote

1B o

Corollary 5.3.39 Let 113 and u» be probability measures dR, and lety = p; H
2. For eacha > 0, we havey, = @, + @, in Iy g for B sufficiently large.

Proof The proof is obtained by continuity from the bounded vaegalgase. In-
deed, Lemmas 5.3.23 and 5.3.24, together with the last pbibéemma 5.3.36
show that Corollary 5.3.39 holds when and p, are compactly supported. We
will next show that

if U, converge tqu in the weak topology, then there exist
a, > 0 such thatg,, converges tag, uniformly on (5.3.25)
compacts subsets b, g .

With (5.3.25) granted, pudy” = i ([—n, n])‘ll‘x‘gndui, note thaty" converges
to y; fori = 1,2, and observe that the lguf' B 15 of un(X1) + un(X2), with Xq, Xo
being two free affiliated variables, convergesuoH t, by Proposition 5.2.32.
The convergence of),n to ¢, on the compacts of somie, g for u = i, L2
and p1 B o, together with the corollary applied to the compactly supgmis”,

implying
Py = Qup + Pp s
yield the corollary for arbitrary measurgs

It remains to prove (5.3.25). Fix a probability measprand a sequence"”
converging tou. Then,F, converges td, uniformly on compact sets @* (as
well as its derivatives, since the functiofg, are analytic). SincéF), (2)| > 1/2
onl 4 g for B sufficiently IargeJFﬁn(z)| > 1/4 uniformly innlarge enough fozin
compact subsets 6f, g for B sufficiently large. Therefore, the implicit function
theorem asserts that there exas{3 > 0 such thaf, has a right inversEL;l on
I g, and thus the function§p,,,n € N, ¢,) are well defined analytic functions
on 4 g and are such thap,,(z) = o(z) uniformly in n as 2| goes to infinity.
Therefore, by Montel's theorem, the fami{yp,,,n € N} has subsequences that
converge uniformly on compacts bf, g. We claim that all limit points must be
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equal tog, and hencey,, convergestagy, onl", g. Indeed, assumg,, converges
to @ on a compacK C 'y g. We have

Fu(e@d+2) -2 = |Fu(9(2)+2) - Fu, (@, (2) +2)|

IFu(9(2) +2) — Fu(u, (2) +2)|

+[Fu(P; (2 +2) — Fu, (@, (2 +2)]-

The first term in the right side goes to zerojagoes to infinity by continuity oF,
and the second term goes to zero by uniform convergenlég]jobn My - (Note

that P, (2) is uniformly small compared t{z| so thatz+ P, (2),j €N, stays in
a,g-) Thus,z+ @is arightinverse oF,, thatisg = ¢. O

The study of free convolution via the analytic functiops (or Ry) is useful
in deducing properties of free convolution and of free inélyi divisible laws
(whose definition is analogue to the classical one, with é@esolution replacing
classical convolution). The following lemma sheds lighttba special role of the
semicircle law with respect to free convolution. For a meague M1(R), we
define the rescaled measuxg% € M1(R) by the relation

X
,f :/f —)du(x) forall bounded measurable functidén
(1) = [ F(5)dux

Lemma 5.3.40Let u be a probability measure dR, so that(u,x?) < . If
Hyr B2 =, (5.3.26)
V2 V2

thenyu is a scalar rescale of the semicircle law.

(The assumption of finite variance in Lemma 5.3.40 is supauiu see Section
5.6. The statement we present has the advantage of pogsasdiort proof.)

Proof Below, we consider the definition of Voiculescu’s transfarfiu, see Defi-
nition 5.3.37. We deduce from (5.3.26) that
(P,J(Z) = 2@%; (2)
V2

But
Gy, , (2 =V26u(vV2)) = qu(2) = V2@, (2/V2),
V2

V2

and so we obtain

w(z/V2) =V2@u(2). (5.3.27)
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When(u,x?) < o then, forzwith large imaginary part, since

Gul(2) = <1+ L —<“;§2> + o(|mz|—2)> ,

we get

<“7X2> — <IJ,X>2
2z

From (5.3.27) and (5.3.28), we deduce first tfatx) = 0 and then that &Sz — oo,

2@, (z) converges tdu,x?) /2. Since 5.3.27 implies thaty, (z) = 2"2¢, (2"/?2),

it follows by lettingn go to infinity thatzgy (2) = (u,x?)/2, for all zwith Oz # 0.

From Example 5.3.26, we conclude thatis a scalar rescale of the semicircle
law. O

(2 = (U, %) + +o(|077Y). (5.3.28)

Exercise 5.3.41 et € > 0 andp,(dx) be the Cauchy law

e 1

Pl = i 2

Show that foze C*, Gy, (z) = 1/(z+i¢€) and soRy, (z) = —i€ and therefore that
for any probability measurg onR, Gugmp, (2) = Gu(z+i€). Show by the residue
theorem thaG.p, (z) = G, (z+i€) and conclude thagt H pe = [+ pg, i.e the free
convolution by a Cauchy law is the same as the standard astimol

5.4 Link with random matrices

Random matrices played a central role in free probabilitgesiVoiculescu’s sem-
inal observation that independent Gaussian Wigner matigoaverge in distri-

bution as their size goes to infinity to free semi-circularatales (see Theorem
5.4.2). This result can be extended to approximate any lafreefvariables by

taking diagonal matrices and conjugating them by indepethdieitary matrices

(see Corollary 5.4.11). In this section we aim at presentiege results and the
underlying combinatorics.

Definition 5.4.1A sequence of noncommutative random variables

({aNYics)nen

in noncommutative probability spacé, *, @\ ) is calledasymptotically fredf it
converges in law aBl goes to infinity to some noncommutative random variables
{ai}ies in @ noncommutative probability spa¢a, x, ), where{a; }ic; are free.
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In other words, for any integer numbgiand anyiy,...,ip € J,
Jim o (ayaf, ) = (ai, - aiy)

and the noncommutative variablasi € J, are free in(A, x, @).

We first prove that independent (not necessarily Gaussiagh&¥ matrices are
asymptotically free.

Theorem 5.4.2Let (Q,P) be a standard probability space and plbe positive
integers. Lef3 = 1 or 2, and let ){\‘ Q- %”N(B), 1<i < p, be afamily random
matrices such that X/+/N are Wigner matrices. Assume that for attRY,
sup sup sup E[XN(m ()] < ok < oo, (5.4.1)
NeN1<i<pl<m</<N
that(XN(m,£),1<m</¢<N,1<i< p)areindependent, and tha{EN (m, ¢)] =
0and E[XN(m, )7 = 1.

Then, the empirical distributioriy := HE i of {%xiN}lgigp con-
verges almost surely and in expectation to the law of p freei-sé&rcular vari-
ables. In other words, the matriCéS\/l—N)(iN}lgigp, viewed as elements of the non-
commutative probability spad¢®laty (C), x, ﬁtr) (respectively(Maty (C), *, E[ﬁtr])),
are almost surely asymptotically free (respectively, gsptically free) and their

spectral measures almost surely converge (respectivetyerge) to the semicir-
cle law.

In the course of the proof of this theorem, we shall prove tileing useful
intermediate remark, which in particular holds when onlg omatrix is involved.

Remark 5.4.3Under the hypotheses of Theorem 5.4.2, except that we onlyne
E[|[XN(m,1)|?] < 1, for all monomialgy € C(X;,1 < i < p) of degreek normalized
so thatg(l,1,...,1) =1,

lim sup|E [Bn(a)]| < 2°.

N—oo

Proof of Theorem 5.4.2. We first prove the convergence Bffiy]. The proof
follows closely that of Lemma 2.1.6 (see also Lemma 2.2.Béciase of complex
entries). We need to show, for any monongiglXi }1<i<p) = X, - - - Xi, € C(Xi|1 <

i < p), the convergence of

EliN(@) =t 3 T (5.4.2)
J

NIx
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wherej = (j1,..., k) and
Ty = E (X (1, 20X} (j2, Ja) -+ X (Jir 1)) -
(Compare with (2.1.10).) By (5.4.1‘)7,1- is uniformly bounded by.

We use the language of section 2.1.3. Consider the closed wet w; =
jadotsj1 and recall that its weight v) is the number of distinct letters in.
Let Gy = (Vw, Ew) be the graph as defined in the proof of Lemma 2.1.6. As there,
we need to find out which set of indices contributes to theitepdrder of the sum
in the right side of (5.4.2). Loosely speakinﬁ, vanishes more often when one
has independent matrices than when one has always the sanie fdance, the
indices corresponding to grap@g which are not trees will be negligible. We will
then only consider indices corresponding to graphs whiehiraes, for whicIT_j
will be easily computed. Recall from the proof of Lemma 2.(6€e also Lemma
2.2.3 for complex entries) that

0] ﬂ vanishes if each edge By, is not repeated at least twice (im;'\'j >2
for eache € Ey;). Hence, wtwj) < §+ 1 for all contributing indices.
(i) The number ofN-words in the equivalence class of a gividaword of
weightt isN(N—1)---(N—t+1) <N
(i) The number of equivalence classes of clodéadvordsw of lengthk + 1
and weight such thalNY > 2 for eache € E is bounded by < KX,

Therefore,

< Y Nigdk < C(KN?E,

t<

> T
jwg <§
and considering (5.4.2), we deduce

2

/T — 5

NFE <C(kNL, (5.4.3)
jwg=5+1

T

where the sefj : wt; = 'Q‘ + 1} is empty ifk is odd. This already shows thatkfis
odd,

lim E[fn(a)] = 0. (5.4.4)
If kis even, recall also that if ity ) = §+ 1, thenGy, is a tree (see an explana-
tion below Definition 2.1.10) and (by the cited definitiom) is a Wigner word.
This means that each (unoriented) edg&qf is traversed exactly once in each
direction by the walkj; --- jkj1. Hence,T; will be a product of covariances of
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the entries, and therefore vanishes if these covarianges/etwo independent
matrices. Also, whem, < 1, 'FJ will be bounded above by one and therefore
limsupy_... [E[in()]| is bounded above by .1| < 2%, where, as in Def-
inition 2.1.10, %4 x/2,1 denotes a set of representatives for equivalence classes
of Wigner words of lengttk + 1, and (hence)#j x/>.1| is equal to the Catalan

numberk/2—1+l (kl/(z)- This will prove Remark 5.4.3.

We next introduce a refinement of Definition 2.1.8 needed twlleathe more
complicated combinatorics of monomials in several indeleah\Wigner matrices.
(Throughout, we consider the set = {1,...,N} and omit it from the notation.)

Definition 5.4.4 Let q = q({Xi }1<i<p) = Xi, --- X, € C(X|1 <i < p) be given,
wherek is even. Letw =s;---&Si1, i1 = S1 be any Wigner word of length
k+ 1 and letGy be the tree associated ta We say thatw is g-colorableif
for j,¢ =1,...,k, equality of edgegs;j,sj+1} = {s/,S/+1} of the treeG,, implies
equality of indices (“colors”); =i,. With, as above¥?j,».1 denoting a set of
representatives for the equivalence classes of Wignersvofdengthk + 1, let
V/lfk/erl denote the subset gfcolorable such.

By the previous considerations, each indgezontributing to the leading or-
der in the evaluation of[fin(q)] corresponds to a tre8y,, each edge of which
is traversed exactly once in each direction by the walk- jj1. Further, since
EDGN(L, 2)Xi’;f (2,1)] = 1,_y, anindey contributes to the leading orderBffin(q)]
if and only if it the associated Wigner wovg is g-colorable, and hence equivalent
to an element o/ Therefore, for ever,

kk/2+1
Jim Elin(@)] = 7zl (5.4.5)
Moreover, trivially
Xk
|ch.1k/2+l| < |Wk.kl/2+1| = |Wk,k/2+l|- (5-4-6)

Recall that# /1 is canonically in bijection with the s&tC; (k) of non-crossing
pair partitions of’% = {1,...,k} (see Proposition 2.1.11 and its proof). Similarly,
for g =X, --- X%, the set’%;’/kf‘k/zle is canonically in bijection with the subset of
NG, (k) consisting of non-crossing pair partitiomsof % such that for every
block {b,b’} € mone hasy = iy. Thus, we can also write

dimElin@] = 5> ] Ly

meNG (k) (b)em

where the product runs over all blockb, b’} of the pair-partitionrr. Recalling
thatkn(a) = 1n—> for semi-circular variables by Example 5.3.26 and (5.3n38),
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can rephrase the above as

Jlim E[fn ()] n@%@kn(a{p--.ya{k),
with k; = 0 if 7ris not a pair partition ank(a;,aj) = 1j—j. The right side corre-
sponds to the definition of the moments of free semi-circudaiables according
to Theorem 5.3.15 and Example 5.3.26. This proves the cgewmee ofE[{i\] to
the law ofmfree semi-circular variables.

We now prove the almost sure convergence. Continuing totadapdeas of
the (first) proof of Theorem 2.1.1, we follow the proof of Lemrd.1.7 closely.
(Recall that in Lemma 2.1.7, we proved that the variancélgf X<) is of or-
derN—2. As in Exercise 2.1.16, this was enough, using Chebysheegual-
ity and the Borel-Cantelli Lemma, to conclude the almosestonvergence in
Wigner's Theorem, Theorem 2.1.1.) Here, we study the vadasf fiy(q) for
ad(Xq,...,Xp) = X, - -- X, which is given by

Var(iin(@) = Elfn(@) ~ EIin@I = ez Ty (547)
I
with

TJHJ" = E[Xil(jb j2)- "xik(jka Jl)xlk(Jllv J/Z) ) )<|1(J/k7 Jll)]
—EXi (j1,J2) - X, (ko JO)IEX (515 §2) - - X3y (ks §1)]

where we observed thak (q) = fin(q*). We consider the senteneg; = (j1--- jkj1, J1]5- - 1)
and its associated grarﬁh,vj‘j, = (ij,anwj,jf)- As in the proof of Lemma 2.1.7,

T vanishes unless each edgeEmJ‘j, appears at least twice and the grém;jl‘j,

is connected. This implies that the number of distinct elaisién V\,\,j‘j, is not

more thark+ 1, and it was further shown in the proof of Lemma 2.1.7 that the

case where it is equal to+ 1 never happens. Hence, there are at rkalifferent

vertices and so at moBK possible choices for them. Thus, singe is uniformly

bounded by 2y, we conclude that there exists a finite constek} such that

Var(iin(@) < -

By Chebyshev’s inequality we therefore find that

P(mN(X'lx'k) - E“]N(xllxlk)” > 5) < %

The Borel-Cantelli Lemma then yields that

'\Ilian“]N(Xil : xlk) _E[[’\IN(XH : Xlk)” =0, as.
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We next show that Theorem 5.4.2 generalizes to the case ph@uoilials in-
cluding some deterministic matrices.

Theorem 5.4.5Let3 = 1 or 2and let(Q,P) be a standard probability space. Let
DN = {DN}1<i<p be a sequence of Hermitian deterministic matrices and Yt
{XN}cicp, XN Q — jf,\fﬁ), 1 <i < p, be matrices satisfying the hypotheses of
Theorem 5.4.2. Assume that
1 1
D:= —tr(|DN*)k 4.

ﬁg&rg%s“p,\,tr(l i | )k <o, (5.4.8)
and that the law oDN in the noncommutative probability spa¢®laty(C), *,
ﬁtr) converges to a noncommutative lgw Then, we have the following.

(i) The noncommutative variabl%%xN andDN in the noncommutative prob-

ability space(Maty (C),*, E [ﬁtr]) are asymptotically free.
(i) The noncommutative variabl%%xN andDN in the noncommutative prob-
ability space(Maty (C), *, ﬁtr) are almost surely asymptotically free.
In particular, the empirical distribution o{ﬁx’\', DN} converges almost surely

and in expectation to the law ¢X,D}, X andD being freeD with law y and X
being p free semi-circular variables.

To avoid repetition, we follow a different route than thaedsn the proof of
Theorem 5.4.2 (even though similar arguments could be dped). We de-
note byC(Dj, X|1 <i < p) the set of polynomials i{Dj, X }1<i<p, by [in (re-
spectively, un) the quenched (respectively, annealed) empirical digioh of
{DN,N"2XN} = {DN,N~2XN} 1i<p given, forq € C(Di, X |1 <i < p), by
(@) = o (q(ﬁ oY), (@) i~ Elin(a)

=N ik , : .
To prove the convergence §fin hnen We first show that this sequence is tight
(see Lemma 5.4.6), and then show that any limit point sasidfie so-called
Schwinger-Dyson, or master loop, equation which has a en&plution (see
Lemma5.4.7).

Lemma 5.4.6For R,d € N, we denote b (X;,Di|1 <i < p)rg the set of mono-
mials inX := {X }1<i<p andD := {D; }1<i<p with total degree in the variables
(respectivelyD) less than R (respectively, d). Under the hypotheses ofrétreo
5.4.5, except that we only require thaf{EN(m,1)|?] < 1, assuming without loss
of generality that D> 1, we have that for any ® € N,

sup lim sup]| an (q)| < D92R. (5.4.9)
0eC(X;,Dj|1<i<p)rg N—e
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As a consequencéfin(q),q € C(X;,Di|1 < i < p)rd}nen is tight as aCC(RA)-
valued sequence, with(R,d) denoting the number of monomials@{X;, Dj|1 <
i < P)Rd-

We next characterize the limit points §fin(q),q € C(X,Di|1 <i < p)rd }NeN-
To this end, led be the noncommutative derivative with respect to the vigiab
X; which is defined as the linear map frdii{X;, D;|1 <i < p) to C(X;,Dj|1 <i <
p)©2 which satisfies the Leibniz rule

APQ=0dPx (12Q)+ (P 1) x 4Q (5.4.10)

anddXj =1-j1®1,D; =0®0. (Here A BxC®D =AC®BD). If gis a
monomial, we have
aq= gL ®0
0=01X 02
where the sum runs over all possible decompositiortpasa X .

Lemma 5.4.7Under the hypotheses of Theorem 5.4.5, for ary RN,

(i) Any limit point{7(q),qe C(X,Di|1<i < p)ra}nen of {fin(q),q€ C(X;,Di|1<
i < p)rd}nen satisfies the following boundary and tracial conditions

Tlc(pij1<i<piog = Hlcoiji<i<poqr T(PQ) = T(QP) (5.4.11)

where the last equality holds for all monomial€Psuch that PG C(X;,D;|1 <
i < p)rd- Moreover, for all ic {1,...,m} and all ge C(X;,Di|1 <i <
M)r-14, We have

1(Xq) =T1®1(4Q). (5.4.12)

(i) There exists a unique solutioftr4(q),q € C(X;,Di|1 <i < p)rg} t0
(5.4.11)and(5.4.12)

(iii) Sett to be the linear functional ol€(X;,Di|1 <i < p) so thatt(q) =
Trd(0) for ge C(X,Di|1 <i < p)rg, any Rd € N. Thent is character-
ized as the unique solution of the system of equafferdsll)and(5.4.12)
holding for g Q,P € C(X;,Di|1 <i < p). Further, 1 is the law of p free
semi-circular variables, free with variablg®; }1<i<, possessing law.

Note here that) € C(X;,Di|1 <i < p)rg implies thatg;,g> € C(X,Di|1 <i <
p)ra for any decomposition of into g1 X;gz. Therefore, equation (5.4.12) which
is given by

T(Xq) = qz%qz T(1)7(q)
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makes sense for anye C(X;,Di|1 <i < p)r_14 if {T(0),q€ C{X;,Di|1<i <
P)rd} is well defined.

Remark 5.4.8The system of equations (5.4.11) and (5.4.12) is often medieo
in the physics literature as tf8chwinger-Dysoror master loopequation.

We next show heuristically how, wheiix"}1<i < are taken from the GUE, the
Schwinger-Dyson equation can be derived using Gaussiegretion by parts, see
Lemma 2.4.5. Toward this end, we introduce the derivadive (07, —idn,)/2
with respect to the complex variaktte= 0z + il0z, so thatd,z= 1 butd,z= 0.
Using this definition for the complex variab¥N (¢,r) whent # r, (and otherwise
the usual definition for the real variab¥' (¢, ¢)), note that we have

d)g”(z,r)xi'/\l (0r") =810 0y (5.4.13)

Lemma 2.4.5 can be extended to standard complex Gaussiablesr as intro-
ducedin (4.1.2), by

/ 9,1 (z7)e W dz= / 7f(z7)e ¥ dz. (5.4.14)

Here,dzis the Lebesgue measure 6hdz= d0zddz Applying (5.4.14) with
z=XN(m, ¢) for m= ¢ andf (XN) a smooth function of XN}, <, of polynomial
growth along with its derivatives, we have

E DM (Em) (X)) = E [Bum) f X)) - (5.4.15)

Using Lemma 2.4.5 directly, one verifies that (5.4.15) &iillds form = £. (One
could just as well take (5.4.15) as the definitiorﬂgn(m’[).) Now let us consider

(5.4.15) with the special choice df= P(%, DV)(j,k), whereP € C(X;,Dj|1 <

i <p)andj,ke {1,--- ,N}. Some algebra reveals that, using the notatibm
B)(im, k) = A(j, m)B(¢,k),

IyN(me) (P(XN,DV)) (j,k) = (aP(XN,DN)) (jm,¢k). (5.4.16)
Together with (5.4.15), and after summation oyer mand¢ = k, this shows that
E[An(XP) — N ® fin(6iP)] = 0.

We have thus seen that, as a consequence of Gaussian iictedmatparts, iy
satisfies the master loop equation in expectation. In ocderdve thajy satisfies
asymptotically the master loop equation, that is, Lemmarg) it is therefore
enough to show thdly self-averages (that is, it is close to its expectation). The
latter point is the content of the following technical lemmdaich is stated in the
generality of Theorem 5.4.5. The proof of the lemma is pas#lountil after we
derive Theorem 5.4.5 from the lemma.
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Lemma 5.4.9Let q be a monomial if£(X;,Di|1 < i < p). Under the hypotheses
of Theorem 5.4.5, except that we only require thaXE (m,1)|?] < 1, we have the
following for anye > 0.
1) For any positive integer K,
limsupN~¢  max E[|q(X—N DMY(i,j)K =0 (5.4.17)
N—sco 1<i<j<N VN’ ’ ' o

2) There exists a finite constan{} such that for all positive integer N,

~ — C
£ (@)~ (@) < o (5.4.18)

We next give the proof of Theorem 5.4.5, with Lemmas 5.4.86,75and 5.4.9
granted.

Proof of Theorem 5.4.5.By Lemmas 5.4.6 and 5.4.7un(q),q € C(X,Di|1 <

i < p)rd} is tight and converges to the unique solutfar 4(q),q € C(X,Dj|1 <

i < p)ra} Of the system of equations (5.4.11) and (5.4.12). As a caresezg,
Trd(q) = Tr ¢ (q) for ge C(X,Di|1<i < p)r » R>R andd > d’, and we can
definet(q) = trq(q) for g€ C(X;,Di|1 <i < p)rg. This completes the proof of
the first point of Theorem 5.4.5 singeis the lawp free semi-circular variables,
free with {D; }1<i<p with law u by Lemma 5.4.7(3).

The almost sure convergence asserted in the second par tfigbrem is a
direct consequence of (5.4.18), the Borel-Cantelli lemmé the previous con-
vergence in expectation. O

We now prove Lemmas 5.4.6, 5.4.7, and 5.4.9.

Proof of Lemma 5.4.6.We prove by induction oveR a slightly stronger result,
namely that for alR, d € N, with |g| = \/q(,

1
T

sup sup limsup| i (Jgl")| T < D92R. (5.4.19)

r>0qeC(X.Di|1<i<p)rg N—
If R=0, this is obvious by (5.4.8). WhdR= 1, by using (G.10) twice, for any
qe CX,Dil1<i<p)ia,

1 1
T T

P r d = r
lun(lal)|T <D lrggéluN(lxl)l ;

which yields (5.4.19) since by Remark 5.4.3r, i 2p for somep € N,

ik

limsup| A (%[7)[F < limsup|in((X)2®)|% < 2.

N— oo N—oo

We next proceed by induction and assume that (5.4.19) isuppue R = K — 1.
We writeq = ¢'Xjp(D) with p a monomial of degreéandq’ € C(X;,Dj|1 <i <
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P)k—1,d—¢- By (G.10) and the induction hypothesis, we have for a0
. _ 1 — 1 - 1 C1nd-
||E15UP|IJN(|Q|r)|' < D Jan (%[22 | (|77 < 2D2¢ 1D,

which proves (5.4.19) foK = R, and thus completes the proof of the induction
step. Equation (5.4.9) follows. O

Proof of Lemma 5.4.9Without loss of generality, we assume in what follows that
D > 1. If gis a monomial inC(X;,Dj|1 <i < p)rg, and if Amax(X) denotes the
spectral radius of a matriX ande the canonical orthonormal basis®¥,
XN N XN P g XN
d(—=,D")(i, )| = [(e1,d(—=,DV)ej)| <D2=1% [T Amax(—=)"
9 DM DI =@ a(.DY)e)| T A )
wherey; (respectivelyd;) is the degree ofj in the variableX; (respectivelyD;)
(in particulary yy <Randy d; <d). As a consequence, we obtain the following
bound, for any even positive integeand anys > 1,
Ella* DM, ) < D[] Ema o o1
VN 1<i<p VN
P xN % 1
< DMTTE{ tr((5h )k } < DKINSE { in((X)R L °
< e {w iy} < ot (AN
where the last term is bounded uniformly by Lemma 2.1.6 (see Exercise
2.1.17 in the case where the variances of the entries arediedusy one rather
than equal to one, and recall tHat> 1) or Remark 5.4.3.

Choosings large enough so thé < & completes the proof of (5.4.17). Note
that this control holds uniformly on all Wigner matrices lwitormalized entries
possessingsRmoments bounded above by some value.

To prove (5.4.18) we consider a lexicographical or@éf,1 <r < pN(N +
1)/2) of the (independent) entri¢X (i, j),1 <i < j <N,1 <k < p) and denote
by Zx = o{X",r <k} the associated sigma-algebra. By convention we denote by
2o the trivial algebra. Then, we have the decompaosition

N-+1)/2
Ara

PN(
O == E[|fin(q) — pin(q)[*] = ; (5.4.20)

with

B = E[|E[fin(0)[Z] — E[in(q) | Zr—1] ).

By the properties of conditional expectation and the indejeace of theX", we
can write/A, = E[|&|?] with

O = E[I]N (Q)|zf]()~<r’xr_lv e ’Xl) - E[ﬁN(QMZF](Xr’Xr_lv s ’Xl)
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and(X",X") identically distributed and independent of each other d¢for’
r.If X' =X{(i,j) forsomese {1,..., p} andi, j € {1,...,N}?, we denote by}
the interpolatiorXj := (1 —y)X" + yX'. Taylor's formulathen gives

1
& = [ OEN(Q@IZIGX .. XYy

1 /1 P -1 1
= =75 [ %X E[(get)(j,1)[Z ] (X}, X", ..., X )dy
N3/2 0 VQZQ%%QZ Y
1 1 _
b [X S Ellaa) i, )IE) 0. X T XYy,
N3/2 0 Vq Q%%QZ Y

where the sum runs over all decompositiongjaifito g1 Xsdz. Hence, we obtain
that there exists a finite consta®q) such that

() / N v N 2
A < —F (I (k. 0)[?|(d20) (—=, D) (¢, k) [*]dly,
r W (k/;q (qZ;sqz( ) \/_
Ik

with XN the p-tuple of matrices where th@, j) and(j,i) entries of the matris
were replaced by the mterpolatm{) and its conjuguate and\ (i, j) = XN (i, j) —
XN(i,j). We interpolate again with thp-tuple XN where the entrleéi, j) and
(j,i) of the matrixs vanishes to obtain by the Cauchy-Schwarz inequality and
independence kN with YN(i, ),

N
a < S o (Bl g DMk )
()(I)OT(N)
N xN
+ [ Bl (DM 60— (@) 2. DMk ) oy
~/ N
< 99 3 (Bl 2 DY) (e

(kO)=(i, )or( 0
N N

(G (2= f )(k,@—(qquxj—fN,DN)(k,é)F] (5.4.21)

XN 1
+/ DN j)— —L pN k,e“zd),
|(02012) )30 1) (%%)(m )(k.0)[*]2 dy
for some finite constar@(q)l,é(q)z. To control the last two terms, consider two
p-tuple of matricesxN and XN that differ only at the entrie§, j) and (j,i) of
the matrixs and putYN(i, j) = XN(i,j) — XN(i,j). Letq be a monomial and
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1<k £ <N. Then, if we seX)} = (1— y)XN+yXN, we have

N N

Aq(k.0) == Q(%DN)(M) —Q(%DN)(M)

v (m,n) / Xy o
=- N)(k;m)p2(—%=, DY) (n, )dy.
<m.n>(z_—(;.1> VN F%(SPZ ‘/N
or (i
Using (5.4.17), we deduce that for ali> 0, for anye > 0,
lim N2N~¢ max max E[|Aq(k,¢)|']=0. (5.4.22)

N—o0 1<i,j<N1<k,/<N

As a consequence, the two last terms in (5.4.21) are at mastdefN—1*¢ and
summing (5.4.21) over, we deduce that there exists finite constaits)s, C(q)4
so that

O
C(q)3 & ( XN N 2 1+e
S E qul)(_vD )(|7])| ]+N
N3 &Zlq %(SQZ \/N
C(q)s & C(q)4
- Un(02019103) + :
N? szlq J1Xs02 o N2

Using again (5.4.17), we conclude that

C(a)

N

O

Proof of Lemma 5.4.7To derive the equations satisfied by a limiting paipg of
Un, note that the first equality of (5.4.11) holds since we asslithat the law of
{Di’\‘}lgigp converges tq, whereas the second equality is verifiedipyfor each
N, and therefore by all its limit points. To check thgiy also satisfies (5.4.12),
we write

_ 1 XN
pn(Xiq) = EXN(is i2)da(==.D")(j2, i)l = ¥ ligs,, (5.4.23)
N372 11,122 1 VN v

01,62

wherel; (respectively/,) denotes the number of occurrences of the @qﬁyjl, i2)
(respectivelyxiN(jz, j1)) in the expansion of in terms of the entries oXN. 1y
in the right side of (5.4.23) vanishes by independence antédaeg. To show that
the equation (5.4.15) leading to the master loop equati@pjgoximately true,
we will prove thaty s, r,)(0,1) 1.4, 1S Negligible.
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We evaluate separately the different terms in the right sid.4.23). Con-
cerninglo 1, we have

1 XN XN
lo1= = Elo(—=,D)(j1,j1)%2(—=,DV)(j2,j2)],
N2 ngq:q%(ifh VN VN

whereXN is the p-tuple of matrices whose entries are the sam¥é™sexcept that
XN(j1,j2) = XN(j2,j1) = 0. By (5.4.22), we can replace the matri¢é® by XN
up to an error of ordeNZ ¢ for anye > 0, and therefore

log = qzq%quE[I:lN(%)le(QZ)]+0(1)

ZQ Elin(au)]E[fn(02)] +0(1) (5.4.24)
=X

where we used (5.4.18) in the second equality.

We similarly find that

1 N XN XN

AL TR

so that replacing by XN as above shows that

l10=

1_
l10= NIJN(QME) +0(1) =Now O, (5.4.25)

where (5.4.9) was used in the limit, and we again used gt- - - X; )" =X, - -- X, .
Finally, with (¢1,¢5) # (1,0)or(0,1), we find that
1

I i I(] 7. )
e NZ"'MHZZ_1 Q=Q1><itlzz"><iQk+1J§2; (2.12:)
with
o _ XN XN
I(j1,]2,0) == E[ql(m)(0(1)70(2))---qk+1(\/—N)(0(k+ 1),0(1))],

where we sum over all possible mags {1,...,k+1}—{j1, j2} corresponding
to the occurrence of; (respectivelyf,) times the oriented edggs, j») (respec-
tively, (j2,]j1))- Using Holder’s inequality and (5.4.17) we find that theabis

at most of ordeN‘ﬁi?“ for anye > 0. Combined with (5.4.24) and (5.4.25),
we have proved that

Jlim (EN (Xiq) — q=(%Qq2 EN(ql)ﬁN(qZ)> =0. (5.4.26)
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Since ifq e C(X;,Di|1 <i < p)r_1.d, @aNyas, o such thaty = g1 X0 also belong
to this set, we conclude that any limit poirgq of H{A&N DN} oo restricted to
? YN OFiTl<i<p

C(Xi,Di|1 <i < p)rg satisfies (5.4.12).

Since (5.4.12) together with (5.4.11) defines uniquéR) for anyP € C(X;,Dj|1 <
i < p)rg by induction over the degree Bfin theX;, it follows thatuy converges
asN goes to infinity towards a law which coincides withrr g on C(X;,Dj|1 <
i < p)rgforallR,d > 0. Thus, to complete the proof of part 1) of Theorem 5.4.5,
it only remains to check that is the law of free variables. This task is achieved
by induction: we verify that the trace of

Q(X,D) = qu(X)p1(D)d2(X) p2(D) - - - pk(D)) (5.4.27)

vanishes for all polynomialg, p; such thatr (pi(D)) = 1(qj(X)) =0,i >1,j > 2.
By linearity, we can restrict attention to the case whgre; are monomials.

Let deg (Q) denote the degree @fin X. We need only consider dgQ) > 1.
If degy (Q) = 1 (and thuQ = py(D)X; p2(D)) we haver(Q) = 1(X;pzp1(D)) =0
by (5.4.12). We continue by induction: assume &) = 0 whenever deg(Q) <
K and 7(pi(D)) = 1(q;(X)) =0, i >1,j > 2. Consider nowQ of the form
(5.4.27) with deg(Q) = K and 1(q;(X)) = 0,j > 2, t(pi) = 0,i > 1. Using
traciality, we can writer(Q) = 1(Xq) with deg¢(q) = K — 1 andq satisfies alll
assumptions in the induction hypothesis. Applying (5.%.4 find thatr(Q) =
Y q=axqe T(01)T(02), whereq; (respectivelyg) is a product of centered polyno-
mials except possibly for the first or last polynomials in¥ie. The induction hy-
pothesis now yields that(Xiq) = ¥ q—q,xq, T(d1)7(d2) = 0, completing the proof
of the claimed asymptotic freeness. The marginal distidbudf the {X; }1<i<p is
given by Theorem 5.4.2. O

We now consider conjugation by unitary matrices followihg Haar measure
Pu(n) on the sety (N) of N x N unitary matrices (see Theorem F.13 for a defini-
tion).

Theorem 5.4.10LetDN = {DN},i -, be a sequence of Hermitian (possibly ran-
dom) Nx N matrices. Assume that their empirical distribution cages to a
noncommutative law. Assume also that there exists a deterministic B such
thatforallke N, allN € N,

%tr((DiN)Zk) <D* as.
LetUN = {UN}1<i<p be independent unitary matrices with Haar Iy, inde-
pendent from{DN}1<i<p. Then, the subalgebragN generated by the matrices
{UN, (UN)*}1<i<p, and the subalgebr&N generated by the matric§®N} i<,
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in the noncommutative probability spa@ddaty (C), *, E[%tr]) (respectively(Maty (C), *, ﬁtr))
are asymptotically free (respectively, almost surely gaptically free). For all ie

{1,...,p}, the limit law of {UN, (UN)*} is given as the element o/ y+)
such that

ollll2
T(UU*—1)?) =0, T(U") =1((U")") = 1nho0.
We have the following corollary.

Corollary 5.4.11 Let {DN}1<i<p be a sequence of uniformly bounded real di-
agonal matrices with empirical measure of diagonal elem@unverging tqu;,
i=1,...,p respectively. Le{UiN}lgigp be independent unitary matrices follow-
ing the Haar measure, independent frg®N }1<i<p.

(i) The noncommutative variablg&NDN(UN)*}1i<p, in the noncommuta-

tive probability spacéMaty (C), x,E[£1r]) (respectively,
(Matn (C), *, ﬁtr)) are asymptotically free (respectively, almost surelynasy
totically free), the law of the marginals being given by ths.

(i) The spectral distribution of p+ Un D’Z\‘U,Q converges weakly almost surely
to uy B up as N goes to infinity.

(i) Assume that Bis nonnegative. Then, the spectral distribution}') 2UyDYU;; (DY) 2
converges weakly almost surelyigX L, as N goes to infinity.

Corollary 5.4.11 provides a comparison between indeperel@respectively,
standard convolution) and freeness (respectively, frewalation) in terms of
random matrices. ID} andDY are two diagonal matrices whose eigenvalues are
independent and equidistributed, the spectral meaSlIDQ' efD’g‘ convergesto a
standard convolution. On the other extreme, if the eigetoveof a matrixA) are
‘very independent’ from those of a matmg‘ in the sense that the joint distribution
of the matrices can be written as the distributior(&f,UNAY(UN)*), then free
convolution will describe the limit law.

Proof of Theorem 5.4.10 We denote byiy := DN UM, (UN) 11 the joint em-
pirical distribution of{DN,UN, (UN)*}1<i<p, considered as an element of the al-
gebraic dual ofC(X;,1 <i < n) with n = 3p, equipped with the involution such

that(AXi, -+ Xi,)* = AX - X if

Xoa=Xai2,1<i<p, Xg_1=Xg,1<i<p.
The norm is the operator norm on matrices. We may and willrasghatD > 1,
and then our variables are bounded uniformlyfhyHence,fIy is a state on the

universalC*-algebra« (D, {1, - ,3n}) as defined in Proposition 5.2.14 by an ap-
propriate separation/completion constructionddi;,1 <i < nj. The sequence
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{E[in]}nen is tight for the weak-* topology according to Lemma 5.2.1&nide,
we can take converging subsequences and consider theiplimts. The strat-
egy of the proof will be to show, as in the proof of Theorem B,.4hat these
limit points satisfy a Schwinger-Dyson (or master loop) &ipn. Of course, this
Schwinger-Dyson equation will be slightly different frolretequation obtained in
Lemma 5.4.7 in the context of Gaussian random matrices. Mewi will again
be a system of equations defined by an appropriate noncortiveutigrivative,
and will be derived from the invariance by multiplication the Haar measure,
replacing the integration by parts (5.4.15) (the latterlddae derived from the
invariance by translation of the Lebesgue measure). Wealgth show that the
Schwinger-Dyson equation has a unique solution, implyfrgy ¢onvergence of
(E[fn],N € N). We will then show that this limit is exactly the law of freerisa
ables. Finally, concentration inequalities will allow wsextend the result to the
almost sure convergence ffiy } nen-

e Schwinger-Dyson (or master loop) equationWe consider a limit point
of {E[fin]}nen. Becausgin((Ui(Ui)* —1)%) = 0 andin(PQ) = fin(QP) for any
Q,P e C(D;,U;,Ui*|1 <i < p), almost surely, we know by taking the larydimit
that

T(PQ =1(QP), T((UiUf-1)*)=0,1<i<p. (5.4.28)

Sincer is a tracial state by Proposition 5.2.16, the second equiali{5.4.28)
implies that, in theC*-algebra(C(D;,U;,U;* |1 <i < p),*,] - ||z), UiU;* = 1 (note
that this algebra was obtained by taking the quotient WiRh t(PP*) = 0}).

By definition, the Haar measum, ) is invariant under multiplication by a
unitary matrix. In particular, if € C(D;,U;,U;*|1 <i < p), we have for alk,| €
{1,...,N},

& [ (P(D1.€%U;.U7e ™)) (k)dpyn (Us) -+~ dpygn) (Up) = O
for any antihermitian matrice®; (B = —B;), 1<i < p, sinced® € U(N). Taking

Bi = 0 except fori = ip andB;, = 0 except at the entrigg},r) and(r,q), we find
that

[ (@aPY{DLULU hacicp) () dpy  (U) - dpu (Up) = O
with ¢ the derivative which obeys the Leibnitz rules

4(PQ = GPx1®Q+P®1x4dQ,
au; = 1j=iuj®1’diuj*:_1j=i1®U'*,
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where we used the notatidA® B) (kr, gl) := A(k,r)B(q,l). Takingk=r andg=1
and summing over, q gives

E [N ® fin(P)] = 0. (5.4.29)

Using inductively (on the numbgr of independent unitary matrices) Corollary
4.4.31, we find that for any polynomiBle C(D;,U;,U; |1 <i < p), there exists a
positive constant(P) such that

(|trP({DN UN, (UMY }acicp)) — EUP| > 8) < 26 CP)

and therefore
2
c(P)’

Writing giP = z’j‘":l P; ® Q; for appropriate integeM and polynomiald®,Q; €
C(Di,U;,U* |1 <i < p), we deduce by the Cauchy-Schwarz inequality that

|E [(in — E[w]) @ (i — E[En]) (GP)]]

M
Z (BN —E[An]) (Py) (BN — E[EN])(Q))]

E[|trP — EtrP|?] <

IN

11
C(Pj) "¢(Qj)

IN

— max max{

— 0.
N2 1<j<p S

We thus deduce from (5.4.29) that
Jim E[fin] @ E [fin] (9P) =
Therefore, the limit point satisfies the Schwinger-Dyson equation
TOT(3P)=0 (5.4.30)

forallie {1,...,p} andP € C(D;,U;,U" |1 <i < p).

e Uniqueness of the solution (6.4.30) Let T be a solution to (5.4.28) and
(5.4.30), and leP be a monomial irC(D;,U;,U*|1 <i < p). We show by induc-
tion over the total degre of P in the variabled); andU;* that 7(P) is uniquely
determined by (5.4.28) and (5.4.30). Note thaPi€ C(Di|1<i < p), 1(P) =
H(P) is uniquely determined. P € C(D;,U;,U*|1 <i < p)\C(Dj|1 <i < p) is
a monomial, we can always writgP) = 1(QU;) or 7(P) = 1(U;*Q) for some
monomialQ by the tracial property (5.4.28). We study the first case stwnd
being similar. Ift(P) = 1(QU),

3 (QU) =adQx 12U+ (QU)®1
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and so (5.4.30) gives

T(QU) = —-TeT1(@Qx1ay;)
= - T(QU)T(QU)+ 5 T(Q)T(Q),
Q=QUiQ2 Q=Q1Y;" Q2
where we used that(U;*Q.U;) = 1(Q2) by (5.4.28). Each term in the right side is
the trace under of a polynomial of degree strictly smaller andU;* thanQUj.
Hence, this relation defines uniquelyy induction. In particular, taking = U;"
we getforalln> 1,

=}

T(UMT(UP =0,

k=1

from which we deduce by induction thatU") = 0 for all n > 1 sincet(UP) =

1(1) =1. Moreover, ag is a stater (U;")") = t(((Ui)")*) =Tt(U") =0forn> 1.

e The solution is the law of free variabldsis enough to show by the previous
point that the joint lawu of the two freep-tuples{U;,U;" }1<i<p and{Dj}1<i<p
satisfies (5.4.30). So take = UiTBl---Uir;”Bp with someBy’s in the algebra
generated byDj }1<i<p andn; € Z\ {0} (where we observed that* = U;"%). We
wish to show that for ali € {1,..., p},

U ® U(éP) =0. (5.4.31)

Note that by linearity, it is enough to prove this equalityamip (B;j) = 0 for all j.
Now, by definition, we have
Nk
ap = > UlBy -+ BraUl @ U B+ UPBp
kig=I,ng>01=1
nkfl

-y %uijlsl.--sk_lui—'®Uink+'Bk.--u{;PBp.
kig=I,ng<0 I=

Taking the expectation on both sides, sim&(él}) =0andu(Bj)=0foralli#0
and j, we see that freeness implies that the trace of the rightsidishes (recall
here that in the definition of freeness, two consecutive efgsihave to be in
free algebras but the first and the last element can be in the algebra). Thus,
U@ u(aP) =0 which proves the claim. O

Proof of Corollary 5.4.11The only point to prove is the first. By Theorem 5.4.10,
we know that the normalized trace of any polynonah {UNDN(UN)*}1<i<p
converges ta (P({UiDjU; }1<i<p)) with the subalgebras generatedfty, U;" } 1<i<p
and{Dj}1<i<p free. Thus, if

P({Xi}1<i<p) = Qu(Xiy) -+ Qu(X,),  withip g #ip, 1<E<k-1
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andt(Q¢(X;,)) = 1(Q(Dj,)) = 0, then
T(P{UiDiUi }a<i<p)) = (Ui, Qu(Di )Uj; - - Ui, Qe(Di )Uyy ) = O,
sincet(Q,(Dj,)) = 0 andt(U;) = 1(U;") = 0. O

Exercise 5.4.12Extend Theorem 5.4.2 to the self-dual random matrices con-
structed in Exercise 2.2.4.

Exercise 5.4.13n the case where thB;’s are diagonal matrices, generalize the
arguments of Theorem 5.4.2 to prove Theorem 5.4.5.

Exercise 5.4.14TakeDN(ij) = 1 li<jan) the projection on the fir§orN] indices
andXN be anN x N matrix satisfying the hypotheses of Theorem 5.4.5. Wjth
the identity matrix, set

ZN = DXN(Iy—DN) + (In—DN)XNDN
0 fo[aN],[aN]
= < (fo[(XN].[C{N])* 0 >

with XN=ONLaNT the corner(XN)1<i<any [anj+1<j<n Of the matrixXN. Show
that (ZN)? has the same eigenvalues as those of the Wishart maftig :=
XN—[aNL[aN] (X N—[aNL[aN]y+ with multiplicity 2, plus N — 2[aN] zero eigenval-
ues (ifa > 1/2 so thatN — [aN] < [aN] ). Prove the almost sure convergence of
the spectral measure of the Wishart mai¥:% by using Theorem 5.4.5.

Exercise 5.4.1%Continuing in the setup of Exercise 5.4.14, takec Mat(q to
be a self-adjoint matrix with converging spectral disttibn. Prove the almost

sure convergence of the spectral measure of the Wisharixmatr
fo[(XN].[C{N]TNT’\T(fo[aN].[C{N])*.

Exercise 5.4.16Take (0 (p,q))o<p,g<k—1 € Mk(C) and put
i} (N) = o (p,a) 1 jpn<i<pronyg For0< p,g<k—1.

(aN/K <j<[(a+IN/K
TakeXN to be anN x N matrix satisfying the hypotheses of Theorem 5.4.5 and
putyy = N-Zg; (N)XN. LetAN be a deterministic matrix in the noncommutative
probability spacéMy(C) andDN be the diagonal matrix did@/N,2/N,...,1).
Assume thatAN, (AN)*, DN) converge in law towards, while the spectral radius
of AN stays uniformly bounded. Prove thatN +AN)(YN 4+ ANY* converges in
law almost surely and in expectation.
Hint: Show thatYN = 5, _; .. & ZNXNEN with some projection matricg &N, ENV, i e
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Show the convergence in law ¢{=N,5N),_;_o, AN, (AN)*} by approximating
the projectioniiN by functions ofdN. Conclude by using Theorem 5.4.5.

Exercise 5.4.1Another proof of Theorem 5.4.10 can be based on Theorem 5.4.2
and the polar decomposititi]' = G'J-\‘(Gg\‘(G'j\‘)*)*% with G a complex Gaussian
matrix which can be written, in terms of independent sejbed Gaussian Wigner
matrices, ag} = XN +iXN.

(i) Show thatUN foIIows the Haar measure.

(ii) Approximating G (G (G}')*)~ 3 by a polynomial in(XN,XN)1<j<p, prove
Theorem 5.4.10 by using Theorem 5.4.5.

Exercise 5.4.18tate and prove the analogue of Theorem 5.4.10 wheUﬁhe
follows the Haar measure on the orthogonal gr@(pl) instead of the unitary

groupU (N).

5.5 Convergence of the operator norm of polynomials of indegndent GUE
matrices

The goal of this section is to show that not only do the tradegotynomials
in Gaussian Wigner matrices converge to the traces of patyals in free semi-
circular variables, as shown in Theorem 5.4.2, but thattbisergence extends to
the operator norm, thus generalizing Theorem 2.1.22 andcisee2.1.27 to any
polynomial in independent Gaussian Wigner matrices.

The main result of this section is the following.

Theorem 5.5.1Let (X, - ,X}N) be a collection of independent matrices from
the GUE. Le{(S;,--- ,Sy) be a collection of free semi-circular variables in &-C
probability spacg., g) equipped with a faithful tracial state. For any noncom-
mutative polynomial B C(Xg,- - ,Xnﬁ we have

N

VN TUN

On the left, we consider the operator norm (largest singedéire) of theN x N
random matrixp(%,...y%), whereas on the right, we consider the norm of
P(Si1,...,Sn) in the C*-algebra.”. The theorem asserts a correspondence be-
tween random matrices and free probability going conslagriaeyond moment
computations.

I|m (IP (

)II =[P(S,-.Sn)ll as.

Remark 5.5.2If (<7, 1) is aC*-probability space equipped with a faithful tracial
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state, then the norm of a noncommutative random varebles can be recovered
by the limit formula

la = Jim T((aa") )= (5.5.1)

However, (5.5.1) fails in general, because the spectruma’otan be strictly larger
than the support of the law afa*. We assume faithfulness and traciality in Theo-
rem 5.5.1 precisely so that we can use (5.5.1).

We pause to introduce some notation. Ket (Xy, ..., Xn). We often abbrevi-
ate using this notation. For example, we abbreviate thers&@ttQ(Xy, ..., Xm) €
C({Xy,---,Xm) to Q(X) € C(X). Analogous “boldface” notation will often be used
below.

Theorem 5.5.1 will follow easily from the next propositiomhe proof of the
proposition will take up most of this section. Recall th5X) is equipped with
the unique involution such thaf* = X; fori = 1,...,m. Recall also that thdegree
of Q = Q(X) € C(X) is defined to be the maximum of the lengths of the words in
the variables appearing irQ.

Proposition 5.5.3Let XN := (XN,...  XN) be a collection of independent ma-
trices from the GUE. LeS:= (S,---,Sn) be a collection of free semi-circular
variables in a C-probability space(.#,0). Fix an integer d> 2 and let P=
P(X) € C(X) be a self-adjoint noncommutative polynomial of degre@. Then,
foranye > 0, P(%), for all N large enough, has no eigenvalue at distance larger
thane from the spectrum of (), almost surely.

We mention the state and degree bound in the statement of the proposition
because, even though they do not appear in the concluseyfjgure prominently
in many formulas and estimates below. We remark that sincadta (5.5.1) is
not needed to prove Proposition 5.5.3, we do not assuméfkigss and traciality
of . Note thescale invarianceof the proposition: for any constapt> 0, the
conclusion of the proposition holds férif and only if it holds foryP.

Proof of Theorem 5.5.1(Proposition 5.5.3 granted). We may assume ha
self-adjoint. By Proposition 5.5.3, usii{S)* = P(S),

N
Iimsup||P(X—)|\ < (spectral radius dP(S)) + £ = |P(9)||+¢&, as,

N—oo \/N

for any positives. Using Theorem 5.4.2, we obtain the bound

¢ o1 XN o i XN
o(P(S)") = N“anﬁtr(P(ﬁ) ) < Illrmgf ”P(W)” , a.S..
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By (5.5.1), and our assumption thatis faithful and tracial,

xN 1
liminf |P(==)| > supa(P(S)%)\)Z = ||P(S)||, as.,
minf || (\/N)Hf@? (P(S7) IP(S)Il

which gives the complementary bound. O

We pause for more notation. Recall that given a complex numhéz and(z
denote the real and imaginary partzofespectively. In general, we let/Adenote
the unit of a unital complex algebe#. (But we letl,, denote the unit of MafC).)
Note that for any self-adjoint elemeatof a C*-algebra</, andA € C such that
OA > 0, we have thati— A1, is invertible and||(a— A1) 7| < 1/0A. The
latter observation is used repeatedly below.

ForA € CsuchthaflA > 0, with P € C(X) self-adjoint, as in Proposition 5.5.3,
let

gA)=d"(A) = o((P(S-A1s)"h), (5.5.2)
oN(A)=oR(A) = Eltr((P(x—N)—MN)_l) (5.5.3)
P q N . 5.

Bothg(A) andgn(A) are analytic in the upper half-plag&A > 0}. Furtherg(A)
is the Stieltjes transform of the law of the noncommutatamdom variabld(S)
underg, andgn(A) is the expected value of the Stieltjes transform of the eicedir

distribution of the eigenvalues of the random maﬁ(%). The uniform bounds

1 1
—_— < — 5.
oM< 5+ Il < 35 (5.5.4)
are clear.

We now break the proof of Proposition 5.5.3 into three lemmas

Lemma 5.5.4For any choice of constantg @&y, > 0, there exist constants\c1, ¢, C3 >
0 (depending only on P g¢and g) such that the following statement holds:

For all integers N and complex numbeks if
N > max(No, (c5)~Y/%t), |OA| <cp, and N < OA < ¢, (5.5.5)

then

A - RO < s

(5.5.6)
Now for anyy > 0 we haveyg"*(yA) = g°(A) andyg!l (yA) = gR(7). Thus,
crucially, this lemma, just like Proposition 5.5.3sisale-invariant for anyy > 0,
the lemma holds foP if and only if it holds foryP.
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Lemma 5.5.5For each smooth compactly supported funciprR — R vanishing
on the spectrum of@ls) there exists a constant c depending onlygmend P such
that|[E§ tr(P(XN))| < & for all N.

Lemma 5.5.6With ¢ and P as abovelimpy_.. N3 - ltr(p( (T)) = 0, almost
surely.

The heart of the matter, and the hardest to prove, is Lemmd.5The main
idea of its proof is thdinearization trick which has a strong algebraic flavor. But
before commencing the proof of that lemma, we will preseantéverse order) the
chain of implications leading from Lemma 5.5.4 to Proposith.5.3.

Proof of Proposition 5.5.3(Lemma 5.5.6 granted). L& = sp(P(S)), and write
Df = {ye R:d(y,D) < €}. Denote byfiy the empirical measure of the eigenval-

ues of the matriP(i}—%). By Exercise 2.1.27, the spectral radii of the matri o
fori =1,...,mconverge almost surely towards 2, and therefore theresexift
nite constanM such that limsug_ ., fIn([—M, M]¢) = 0 almost surely. Consider a
smooth compactly supported functign R — R equal to one oiD?)°N[—M, M]
and vanishing oD#/2 U [—2M, 2MI¢. We now see that almost surely for laye
no eigenvalue can belong (B#)°, since otherwise,

Strg(P (Xf = [o0dinx =Nt >N S,

in contradiction to Lemma5.5.6. a

Proof of Lemma 5.5.6(Lemma 5.5.5 granted). As before, Igt, denote the
empirical distribution of the eigenvaluesl@(%). Letd; be the noncommutative
derivative defined in (5.4.10). Lé;(iN([’k) be the derivative as it appearsin (5.4.13)
and (5.4.15). The quantity ¢(x)dfiy(x) is a bounded smooth function o
satisfying

1 XN o XN
F / AN (X) = — (0 P) (2= g (P(= 5.5.7
Nk [ P)din(X) N%((I )(\/N)W/( (\/N))))k,z (5.5.7)
where we letA® BﬁC = BCA Formula (5.5.7) can be checked for polynomial
@, and then extended to general smogthy approximations. As a consequence,
with d bounding the degree &f as in the statement of Proposition 5.5.3, we find
that
coh 1 XN
D/ x)d — d-2 4 —tr( P(E— 2)
10 [ e()din(x)[5 < 221”\/—” G4 (m))l
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for some finite constar@ = C(P). Now the Gaussian Poincaré inequality
Var(f(XN)) < cE; |Oyni gy FOXN)? (5.5.8)
must hold with a constart independent ofN and f since all matrix entries

xN(¢,r) are standard Gaussian, see Exercise 4.4.6. Consequengygfy suffi-
ciently smalle > 0, we have

\mr/¢xdnmm>chmD/¢umm«mﬁ>

< 2chl\F /(p’ (x)2dfin (%)
2E( 2-21 5.5.9
+WW'»¢ZMr” L ) (559)
2cCm N
< Z0Te( [ /00t + 191

for a constan€’ = C/(¢g), where we use that

X
Vi<p<o, su — <o 5.5.10
<p thr (5.5.10)

by Lemma 2.6.7. But Lemma 5.5.5 implies tHat/ ¢/ (x)?dfin(X)] is at most
of orderN~—2 since ¢/ vanishes on the spectrum B{S). Thus, the right side
of (5.5.9) is of ordeM~**¢ at most whenp vanishes on the spectrum BfS).
Applying Chebyshev’s inequality, we deduce that

|/(P (x)dfin (X /(0 Ydin(x))| > i%) < C/NE-4te

for a finite constan€” = C”(P,&,¢). Thus, by the Borel-Cantelli Lemma and
Lemma 5.5.5 @(x)dfin(X) is almost surely of ordeX—3 at most. O

Proof of Lemma 5.5.5(Lemma 5.5.4 granted). We first briefly review a method
for reconstructing a measure from its Stieltjes transforet W : R? — C be

a smooth compactly supported function. RW(x,y) = m1(d +id,)¥(x,y).
Assume thatdW(x,0) = 0 anddW(x,0) = 0. Note that by Taylor’s theorem
d¥(x,y)/ly| is bounded forty| # 0. Let u be a probability measure on the real
line. Then we have the following formula for reconstructimdrom its Stieltjes
transform:

D/ dy/de( awxy ) /wto (dt). (5.5.11)

This can be verified in two steps. One first reduces to the pasedy, using
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Fubini's theorem, compact support¥fx,y) and the hypothesis that
[OWOOY)I/[t = x—iy| < [WOLY)I/Iy]

is bounded foy > 0. Then, letting(x,y)| = /X2 + y2, one uses Green’s theorem
on the domaif{0 < € < |[(x,y)| < R, y> 0} with Rso large that¥ is supported in
the disk{|(x,y)| < R/2}, and withe | 0.

Now let ¢ be as specified in Lemma 5.5.5. dtbe a large positive integer,
later to be chosen appropriately. Choose the arbitrarytaots) in Lemma 5.5.4
so thatg is supported in the interval-cp,cy]. Choosecy > 0 arbitrarily. We
claim that there exists a smooth functigh: R? — C supported in the rectangle
[—Co,Co] X [—Ch,Ch] such that¥(t,0) = ¢(t) and dW(x,y)/|y/M is bounded for
ly| # 0. To prove the claim, pick a smooth functign: R — [0,1] identically
equal to 1 near the origin, and supported in the intefval, c;]. One verifies
immediately that/(x,y) = M, L—i(p("') (X)w(y)y’ has the desired properties. The
claim is proved.

As before, letiiy be the empirical distribution of the eigenvaluesFtﬁfé—%).
Let i be the law of the noncommutative random varia®(8). By hypothesigp
vanishes on the spectrumBfS) and hence also vanishes on the support.dBy
(5.5.11) and using the uniform bound

e -am 1| <o,

VN

we have
E [@ain = E [@ain- [ou(dy
co —+00 __
0[] @y @ntcriy) - glx+iy)dz

Letcs = c4(M) > 0 be a constant such that

sup [oW(xy)|/lyM < ca.
(x,y)€[—Co,C0] x (0,cH]

Then, with constantsly, c;, ¢, andcz coming from the conclusion of Lemma
5.5.4, for allN > N,

o ,N& o [C
E / pdfin| < 2c4 / / yMtdxdy-+ % / / *YM-Sdxdy,
—cp /0 —Cp /0

where the first error term is justified by the uniform bound(®). WithM large
enough, the right side is of ordbr2 at most. O

We turn finally to the task of proving Lemma 5.5.4. We need foshtroduce
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suitable notation and conventions for handling block-aegosed matrices with
entries in unital algebras.

Let 7 be any unital algebra over the complex numbers. LeflMat/) denote
the space dk-by-k’ matrices with entries im7, and write Mag(.«7 ) = Maty k(7).
Elements of Maty (<) can and will be identified with elements of the tensor
product Mag (C) ® <7. In cases itself is a matrix algebra, say Mat(%),
we identify Maf o (Mat, (%)) with Maty v, (%) by viewing each element of
the latter space aslkaby-k' array of blocks each of which is afby-¢’ matrix.
Recall that the unit of7 is denoted by 1, but that the unit of Ma{C) is usually
denoted byt,,. Thus, the unitin Maf(«7) is denoted by, ® 1.

Suppose that/ is an algebra equipped with an involution. Then, given a matr

ac Matc (<), we definea* € Mat,k(27) to be the matrix with entrie&@*); ; =

a’j‘,i. Suppose further tha¥’ is aC*-algebra. Then we use the GNS construction
to equip Mag, (<) with a norm by first identifyingeZ with aC*-subalgebra of
B(H) for some Hilbert spacel, and then identifying Mat.,(<7) in compatible
fashion with a subspace &(H’,H¥). In particular, the rules enunciated above
equip Mah(.«7) with the structure oC*-algebra. That structure is unique because
aC*-algebra cannot be renormed without destroying the prypjea’|| = ||a]|°.

We define thelegreeof Q € Maty,,(C(X)) to be the maximum of the lengths of
the words in the variable§ appearing in the entries f. Also, given a collection
X = (Xg,...,%m) Of elements in a unital complex algehbed, we defineQ(x) €
Maty. (<) to be the result of making the substituti®n= x in every entry ofQ.

Given fori = 1,2 alinear maf; : Vi — W, the tensor produdg ® T, : V1 @V, —
W, @ Ws of the maps is defined by the formula

(MeT)(AL®A) =Ti(A1) @ T2(A2), A € V.

For example, giverA € Mat (<) = Mat(C) ® Maty(C), one evaluatesidy ®
ﬁtr)(A) € Mat(C) by viewing A as ak-by-k array of N-by-N blocks and then
replacing each block by its normalized trace.

We now present the linearization trick. It consists of twetpaummarized in
Lemmas 5.5.7 and 5.5.8. The first part is the core idea: itribescthe spectral
properties of a certain sort of patterned matrix with estifreaC*-algebra. The
second part is a relatively simple statement concernirtgfiaation of a noncom-
mutative polynomial into matrices of degreel.

To set up for Lemma 5.5.7, fix an integge> 2 and letky, ..., ky. 1 be positive
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integers such thdy = kg, 1 =1. Putk=k; +---+Kkg. Fori=1,...,d, let

Ki:{1+Zka,...,zka}c{l,...,k} (5.5.12)

a<i a<i

and putKy,; = K;. Note that{1,...,k} is the disjoint union 0oKj, ...,Kq. Let.&/
be aC*-algebra and for=1,...,d, lett; € Maty ., (<) be given. Consider the
block-decomposed matrix

T= e Mat(</) (5.5.13)
ta-1
ta

wherefor =1,...,d, the matrix; is placed in the block with rows (resp., columns)
indexed byK; (resp. K1), and all other entries af equal Oc «#. We remark that
the GNS-based procedure we used to equip each matrix spaeg (8 with a
norm implies that

d
T = max]t]|. (5.5.14)
: A0 :
Let A € C be given and pul\ = 0 € Mat(C). Below we write/ =
k-1

A®1l,, A =A1l, and more generallf = { ® 1., for any { € Mat(C). This
will not cause confusion, and is needed to compress notation

Lemma 5.5.7Assume thayt--ty — A € & is invertible and let ¢ be a constant
such that

¢ > (L+d[TIN* 2@+ ||t ta—=A)H).
Then the following hold:

(i) T—Aisinvertible, the entry ofT —A)~tin the upper left equald; - - - tg —
AL and|[(T-A)1| <c.

(i) For all ¢ € Mat(C), if 2¢||{|| < 1, then T—A — { is invertible and
[T-A=F=T-N <2 <.
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Proof Putt>; =t; - - -ty. The following matrix identity is easy to verify.

[ A —t 1
1 -t t>o 1
1 g1 t>g-1 1
L —tg 1 t>d 1
1 —t
11 i, A—t1--ty
1
1 g1
| 1 !

Here we have abbreviated notation even further by writirgl}, ® 1,,. The first
matrix above i\ — T. Call the next two matrice8 andB, respectively, and the
lastD. The matrice®\ andB are invertible sincé — Iy is strictly lower triangular
andB — Iy is strictly upper triangular. The diagonal matiXxis invertible by the
hypothesis that; -- -ty — A is invertible. ThusA — T is invertible with inverse
(N—T)~1 = AD1B~1. This proves the first of the three claims made in point (i).
Fori,j=1,...,dletB~1(i, j) denote the&k; x K; block of B~1. It is not difficult
to check thaB~1(i, j) = 0 fori > j, B71(i,i) = Iy, andB~(i,j) =t---tj_4 for

i < j. The second claim of point (i) can now be verified by directuakdtion,
and the third by using (5.5.14) to bourjé|| and||B~*||. Point (ii) follows by
consideration of the Neumann series expansiofilfor (T —A)~1)~1. O

The second part of the linearization trick is the following.

Lemma 5.5.8Let Pe C(X) be given, and let & 2 be an integer bounding the
degree of P. Then there exists an integer h and matrices

Vi € Mati«n(C(X)), Va,...,Vyg_1 € Maty(C(X)), V4 € Matnx1(C(X))

of degree< 1 such that P=V; - -- V.

Proof We have
P= Z) z CIL ,Irx'l "xlr
=1 i=1

for some complex constam*.{ti . Let{P"})_, be an enumeration of the terms
on the right. Leta| ) e Maty,(C ) denote the elementary matrix with entry 1 in
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position(i, j) and 0's elsewhere. Then we have a factorization
1 : \ 1
P’ = (el e V) (e o Vg) - (e e Vi) o)

for suitably chosen}” € C(X) of degree< 1. TakeV; = Zvef\’,”) AVASRVES

Sy es,r?;,n) @VY fort=2,..,d-1 andVg =y, ef,r?’ll) ®VY. ThenVy,...,Vy have
all the desired properties. O

We continue to prepare for the proof of Lemma 5.5.4. For teegkthis section
we fix a self-adjoint noncommutative polynomile C(X) and also, as in the
statement of Proposition 5.5.3, an integer 2 bounding the degree &f. For
i=1,....d, fix i € Mat«k_, (C(X)) of degree< 1, for suitably chosen positive
integersky, ... ,Kyy1, such thatP = Vi ---Vy. This is possible by Lemma 5.5.8.
Any such factorization serves our purposes. Pstk; + - - - + kg and letK; be as
defined in (5.5.12). Consider the matrix

Vi

L= € Mat (C(X)), (5.5.15)
Vi-1

Vd

where, fori = 1,...,d, the matrixV; occupies the block with rows (resp., columns)
indexed by the se&K; (resp. Ki1), and all other entries df equal Oc C(X). Itis
convenient to write

m
L=a® 1<c<x>+Za4 ®Xi, (5.5.16)
i=

for uniquely determined matrices € Mat(C). As we will see, Lemma 5.5.7
allows us to use the matrice's\)j—%) andL(S) to “code” the spectral properties of

P(%) andP(S), respectively. We will exploit this coding to prove Lemm& 3.

We will say that any matrix of the forrh arising fromP by the factorization
procedure above isdrlinearizationof P. Of courseP has manyd-linearizations.
However, the linearization constructionssale invarianin the sense that for any
constanty > 0, if L is ad-linearization ofP, theny!/9L is ad-linearization ofyP.

Put

)8d-8, (5.5.17)

w© XN
a1 = SUpgE(l1+d||L(—
! lej ( H (\/N)

m
a = HaoH+,ZHa4H2, (5.5.18)
i=

az = (1+d|L(9))%2. (5.5.19)
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Note thata; < « by (5.5.10). We will take care to make all our estimates below
explicitin terms of the constants (and the constamtappearingin (5.5.8)), in an-
ticipation of exploiting the scale invariance of Lemma 8.&8nd thel-linearization
construction.

We next present the “linearized” versions of the definiti|$.2) and (5.5.3).

ForA € C such thatiA > 0, letA = { )\0 hfl } € Mat(C). We define
GA) = (id®@0)((L(S —A®1,)"Y, (5.5.20)
N
Gn(A) = E(idm%tr)((l.(\);—ﬁ)—A®|N)*1), (5.5.21)

which are matrices in MgtC).

The next two lemmas, which are roughly parallel in form, give basic prop-
erties ofGn(A) andG(A ), respectively, and in particular show that these matrices
are well-defined.

Lemma 5.5.9(i) For A € C such thatOA > 0, Gn(A) is well-defined, depends
analytically onA, and satisfies the bound

1

IOV < ax(1+ ). (5.5.22)
(i) The entry of Gy(A) in upper left equalsg(A).
(iif) We have
m cor1a2 1.4
It (A—20)Gu(A) + 5 alu(A)atn(h)| < g2+ 5p)* (6529
i=

where c is the constant appearing(#.5.8)

We call (5.5.23) th&schwinger-Dyson approximatioindeed, a?N goes to infin-
ity, the left hand side of (5.5.23) must go to zero, yieldingyatem of equations
which is closely related to (5.4.12). We remark also thaftuef of (5.5.23) fol-
lows roughly the same plan as was used in Section 2.4.1 toRyvef #2 of the
semicircle law.

Proof As before, lete,, = e;\f;N € Maty(C) denote the elementary matrix with
(¢,r) entry equal to 1, and O’s elsewhere. Givera Maty,(C), let

AlL,r] = (idk @ trv) ((Ik @ & ¢)A) € Ma(C),

so thatA =y, Al/,r] @ &,,. (Thus, within this proof, we viewA as anN-by-N
array ofk-by-k blocksA[¢,r].)



5.5 CONVERGENCE OFOPERATORNORMS 407

SinceA is fixed throughout the proof, we drop it from the notationtte extent
possible. To abbreviate, we write

Ry = (L(XN) A@IN) L Hy = (ide® 1tr)RN =

- \/N N ’ N = k N -

From Lemma 5.5.7(i) we get an estimate

N
3 Ruliil

Zl-

)24-2(1 4 i) (5.5.24)

xN
<
IRl < (1l =

N
which, combined with (5.5.17), yields assertion (i). Froemhma 5.5.7(i) we also
get assertion (ii).

Assertion (iii) will follow from an integration by parts as i(5.4.15). Recall
that 2 _N((g.wxi'/\l(é/,r/) = d’ilézvglérvr/. We have fon & {:l_7 .. ,m} andg,ng/’r/ c
{1,--- N},

By e RAIT 0] = —%RN[r’,r]a@RN[e,e’]. (5.5.25)
Recall thaEa&N(r.g)f(xN) =EXN(,r)f(XN). We obtain
1 ! . " _ N i

Now left-multiply both sides of (5.5.26) by, and sum o, £ = ¢/, andr =/,
thus obtaining the first equality below.

m N
-3 Elababh) = Elidee Gi((L(7g) 200 WRY
= Elide® 1) (kI + (A 20) © )R
= I+ (A—ag)Gn(A).

The last two steps are simple algebra. Thus the left side.bf48) is bounded by
the quantity

2 2 2 2
< (Z Il ~ERIE < o3 [aI°)E 3 ],
I ] i,0r

AN =

E[_ia(HN — EH)ai(Hy — EHy)]

A

where at the last step we use once again the Gaussian Roineguiality in the
form (5.5.8). For the quantity at the extreme right underekjgectation, we have
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by (5.5.25) an estimate

1

NE tr (Ru[¢', rlaiRn [, 1R [C. r] & R I 1]")

RN
1 2 4
< (X lalPRl®.
The latter, combined with (5.5.17), (5.5.18), and (5.5.2#jshes the proof of

(5.5.23). O

We will need a generalization @(A ). For anyA € Mat(C) such thal (S) —
A®1y is invertible, we define

G(A) = (ide® 0)((L(S) —A®15) 7).
Now for A € C such thaiG(A) is defined G(A) is also defined and
c”;({A 0 D:G()\). (5.5.27)
0 Ik

Thus, the functiorG(A) should be regarded as an extensioiGoA ). Let & be
the connected open subset of @) consisting of all sums of the form

A O
[ 0 It ]*Z
where
1
A eC, { eMay(C), OA >0, 2a3|{||(1+ ﬁ) <1. (5.5.28)

Recall that the constant; is specified in (5.5.19).

Lemma 5.5.10(i) For A € C such thatfA > 0, G(A) is well-defined, depends
analytically onA, and satisfies the bound

IG(A)| < KPag(1+ %). (5.5.29)

(ii) The entry of GA ) in upper left equals @ ).
(iii) More generally,G(A) is well-defined and analytic fok € &, and satisfies the
bound

~(|A O 1 1
G({ 0 hey }H) —GWH < 2a(1+ 5r)?l| < Kas(1+ 55)

(5.5.30)
for A and{ asin(5.5.28)
(iv) If there exists\ € & such that\ — ag is invertible and the operator

(L(S)—a0®1y)((A—a0) ' ®1y) € Mat () (5.5.31)
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has norm< 1, then
lk+ (A —ag)G(A) + Zf;G(/\)a;G(/\) =0 (5.5.32)
forall A e 0.

In particular, G(A) is by (5.5.32) invertible for all\ € ¢. As we will see in
the course of the proof, equation (5.5.32) is essentiallgfarmulation of the
Schwinger-Dyson (master loop) equation (5.4.12).

Proof Let us specialize Lemma 5.5.7 by takibg= Vi(S) fori =1,...,d and
henceT = L(S). Then we may takerz(1+1/0A)~! as the constant in Lemma
5.5.7. We note also the crude bouf{itk ® o)(M)|| < k?|M|| for M € Mat(.7).
By Lemma 5.5.7(i) the operatt(S) — A® 1~ is invertible, with inverse bounded
in norm byaz(1+1/0A)~! and possessingP(S) — A1)t as its entry in up-
per left. Points (i) and (i) of Lemma 5.5.10 follow. In viewf the relation-
ship (5.5.27) betweeé(/\) andG(A), point (i) of Lemma 5.5.10 follows from
Lemma 5.5.7(ii).

It remains only to prove assertion (iv). Since the operZsét connected, and
G(A) is analytic ong, it is necessary only to show that (5.5.32) holds foraih
the nonempty open subset @fconsisting ofA for which the operator (5.5.31) is
defined and has norra 1. Fix suchA now, and letM denote the corresponding
operator (5.5.31). Put

bi = ai(A—ag) " € Maty(C)
fori=1,...,m. By developing
(L -A®1y) "t =—((A—a0) t®@Lly)(Ik® 1y —M) T,

as a power series M, we arrive at the identity

(o)

e+ (A —a0)G(A) = — [zadk@o)(w“).
/=0

According to the Schwinger-Dyson equation (5.4.12),

bi (idk ® 0) (SM’) = by i (idk ® o) (MP~ b (idy @ o) (M P)
p=1

whence, after summation, we get (5.5.32). O

Remark 5.5.11In Exercise 5.5.15 we indicate a purely operator-theowesig to
prove (5.5.32), using a special choiceG3fprobability space.
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Lemma 5.5.12Fix A € C and a positive integer N such th&tA > 0 and the

right side of (5.5.23)is < 1/2. PutA = [ /2) | 0 ] € Mat(C). Then Gy(A) is
k-1
invertible and the matrix
m
An(A) = —Gn(A) t+ag— Za;GN(A)aa (5.5.33)
i=
satisfies
AN A< 2092 00 L a1 a s s D). (5.5.34)
N = N2 OA St I

where c is the constant appearing(#.5.8)
Proof Let us write
m
I+ (A —ag)Gn(A) + ZaiGN()‘)aiGN()‘) =en(A).
i=

By hypothesig|en(A)| < 1/2, hencely — en(A) is invertible, henceGy(A) is
invertible, and we have an algebraic identity

AN<A>—A=<|k—eN(A>>1eN<A><A—ao+iaieN<A>ao.

We now arrive at estimate (5.5.34) by our hypothésig(A )| < 1/2, along with
(5.5.23) to bound ey (A ) || more strictly, and finally (5.5.18) and (5.5.22). O

We record the last trick.
Lemma 5.5.13Let zw € Mat(C) be invertible. If
m m m 2
zt4 Za@za =w 1+ ;aawa@ , and ||z]|{|w]| leaill <1,
i= i= i=
then z=w.

Proof Suppose that # w. We havew—z= y{", za(w— z)aw after some alge-
braic manipulation, whence a contradiction. O

Completion of the proof of Lemma 5.5.4By the scale invariance of Lemma
5.5.4 and of thel-linearization construction, for any constant 0, we are free to
replaceP by yP, and hence to replace the linearizatlohy y*/9L. Thus, without
loss of generality, we may assume that

1
a1 <2, 02<1—8, as < 2. (5.5.35)
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The hypothesis of Lemma 5.5.10(iv) is then fulfilled. Moregsely, withA =

0 lx1
< 1. Consequently, we may take the master loop equation @&.toBgranted.

[ 0 ] the matrix/\A — ag is invertible, and the operator (5.5.31) has norm

Now fix co, ¢ > 0 arbitrarily. We are free to increasg, so we may assume
that

co> 3. (5.5.36)
We then pickNp andc; so that:

If (5.5.5) holds, then
the right side of (5.5.23) isc 1/2, and
the right side of (5.5.34) ist 5% (1+ ;).

Suppose now that andA satisfy (5.5.5). Thein(A) is well-defined by formula
(5.5.33) becaus@y(A) is invertible, and moreover belongs#d We claim that

G(AN(A)) =Gn(A). (5.5.37)
To prove (5.5.37), which is an equality of analytic funcgafA, we may assume
in view of (5.5.36) that
OA > 2. (5.5.38)

Putz= Gy(A) andw = G(An(A)). Now
1z <3
by (5.5.22), (5.5.35) and (5.5.38), whereas
Iwl <6

by (5.5.29), (5.5.30), (5.5.35) and (5.5.38). Applying 8ehwinger-Dyson equa-
tion (5.5.32) along with (5.5.35), we see that the hypothesé.emma 5.5.13 are
fulfilled. Thusz = w, which completes the proof of the claim (5.5.37). The claim
granted, for suitably chosem andcs, the bound (5.5.6) in Lemma 5.5.4 holds by
(5.5.30) and (5.5.34), along with Lemma 5.5.9(ii) and Len®r@®10(ii). In turn,
the proofs of Proposition 5.5.3 and Theorem 5.5.1 are cample O

In the next two exercises we sketch an operator-theorgpioagh to the Schwinger-
Dyson equation (5.5.32) based on the study of Boltzmanrk-Epace (see Exam-
ple 5.3.3).

Exercise 5.5.14 et T, T and S be bounded linear operators on a Hilbert space.
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Assume thafl is invertible. Assume thatr is a projector and letr- = 1 — mbe
the complementary projector. Assume that

msrt=Sand ' Tt = Tt S=mt.
Then we have
m=nT (T -TSTm=m(T-TSTnT 1m. (5.5.39)

Hint: Use the block matrix factorization

a bl [1 bdl][a-bdl 0 1 0
c d| |0 1 0 d||dl 1
in the Hilbert space setting.

Exercise 5.5.15 et V be a finite-dimensional Hilbert space with orthonormal
basis{e},. LetH = @} ,V*' be the corresponding Boltzmann-Fock space, as
in Example 5.3.3. Let € V=0 € H be the vacuum state. EqUBgH ) with the state
@p=(a—(avv)). Fori=1,...,m, let{ =g ®- € B(H) be the raising operator
previously considered, which we now call thedt raising operator because we
will also consider theight raising operator; = -® & € B(H). Fori=1,...,m
puts = ¢ + ¢ and recall thas,, ..., sy are free semi-circular elementsiiH).
Puts=(s1,...,5m).

() Fora =1,...,m, show thatrgrq = 1gy) and g = rqfg is the orthogonal
projection ofH onto the closed linear span of all worgls® - - - @ g, with terminal
lettere, equal toey.

(ii) Let p € B(H) be the orthogonal projection &f ontoV°. Show that we have
an orthogonal direct sum decompositidn= @z H.

(iii) Verify the relations

ST = OuplaSly, ToSfa = GaTb="rgSTh (5.5.40)

holding fori,a,8=1,....m.

(iv) Identify Mat(B(H)) with B(H¥). LetL =ap+ ™, & ® X € Mat(C(X)) be
of degree 1. Fix\ € Mat(C) such thafl = L(s) — A® g € B(H¥) is invert-
ible. Putm=ly® m € B(HX) andS= ™, (k)T Y(Ik@r}) € B(HX). Put
G(A) = (idk ® @)(T~1). Use (5.5.39) and (5.5.40) to verify (5.5.32).

5.6 Bibliographical Notes

For basics in free probability and operators algebras, Wedren Voiculescu’s
St. Flour course [Voi00b] and on [VODN92]. A more combindabapproach
is presented in [Spe98]. For notions of operator algebrashndre summarized
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in the Appendix G, we used [Rud91], [DuS58], [Mur90], [Li92Ped79] and

[Dix69]. For affiliated operators, we relied on [BeV93] andus58], and on

the paper [Nel74]. (In particular, the remark following Dufiion 5.2.28 clarifies

that the notion of affiliated operators in these referencéscide.) Section 5.3.2
follows closely [Spe03]. Many refinements of the relatiobween free cumulants
and freeness can be found in the work of Speicher, Nica anglockers, see the
memoir [Spe98] and the recent book [NiS06] with its bibliaghny. A theory

of cumulants for finite dimensional random matrices wadated in [CaCO06].

Subjects related to free probability are also discussellércollection of papers
[Voi97].

Free additive convolutions were first studied in [Voi86] §BdV92] for bounded
operators, then generalized to operators with finite vagam[Maa92] and finally
to the general setting presented here in [BeV93]. A detatady of free convo-
lution by a semi-circular was done by Biane [Bia97b]. Fressnfer rectangular
matrices and related free convolution were studied in [BGThe Markovian
structure of free convolution (see [Voi00a] for a basic d&tibn) was shown in
[Voi93] and [Bia98a, Theorem 3.1] to imply the existence afraquesubordina-
tion function F: C—C such that

o forallze C\R, Gaip(2) = Ga(F(2)),

e F(C") cC* F(z) =F(2), O(F(2) > O(z) forze C™ andF(iy)/iy—1 asy
goes to infinity while staying itR.

Note that according to [BeV93, Proposition 5.2], the seceetdbf conditions on
F are equivalent to the existence of a probability measuva R so thatF = F,
is the reciprocal of a Cauchy transform. Such a point of view actually serve
as a definition of free convolution, see [ChGO08] or [BeBO7].

Lemma 5.3.40 is a particularly simple example of infiniteisibility. The as-
sumption of finite variance in the lemma can be removed by robsgthat the
solution of (5.3.26) is infinitely divisible, and then usif@eV93, Theorem 7.5].
The theory of free infinite divisibility parallels the clasal one, and in particu-
lar, a Lévy-Khitchine formula does exist to characterizénitely divisible laws,
see [BeP00], [BaNT04]. The former paper introduces the @éct-Pata bijec-
tion between the classical and free infinitely divisible $a{see also the Boolean
Bercovici-Pata bijection in [BNO8]). Matrix approximatis to free infinitely di-
visible laws are constructed in [BeGO05].

The generalization of multiplicative free convolution tffile@ted operators is
done in [BeV93], see also [NiS97].

The relation between random matrices and asymptotic fesenas first estab-
lished in the seminal article of Voiculescu [Voi91]. In [\@i, Theorem 2.2], he
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proved Theorem 5.4.5 in the case of Gaussian random matnckdiagonal ma-
trices{DN}1<i<p, Whereas in [V0i91, Theorem 3.8], he generalized this tesul
independent unitary matrices. In [Voi98b], he removed tirenker hypothesis on
the matrice DN}1<i<p, to obtain Theorem 5.4.5 for Gaussian matrices and The-
orem 5.4.10 in full generality (following the same ideas mgkercise 5.4.17).
An elegant proof of Theorem 5.4.2 for Gaussian matrices void combinato-
rial arguments appears in [CaC04]. Theorem 5.4.2 was egtktudnon Gaussian
entries in [Dyk93b]. The proof of Theorem 5.4.10 we presémddows the char-
acterization of the law of free unitary variables by a SclyginDyson equation
given in [Voi99, Proposition 5.17] and the ideas of [CoMGOB}her proofs were
given in terms of Weingarten functions in [Col03] and with anecombinatorial
approach in [Xu97]. For uses of master loop (or Schwingesddy equations in
the physics literature, see e.g. [EyB99] and [Eyn03].

Asymptotic freeness can as well be extended to other models as joint
distribution of random matrices with correlated entries§85] or to determin-
istic models such as permutation matrices [Bia95]. Bian@9Bb] (see also
[SniOB],[BiaOl]) showed that the asymptotic behavior ofedsd Young diagrams
and associated representations and characters of the $si;mgneups can be ex-
pressed in terms of free cumulants.

The study of the correction (central limit theorem) to Thear5.4.2 for Gaus-
sian entries was performed in [Cab01], [MiS06]. The gerieatibn to non Gaus-
sian entries, as done in [AnZ05], is still open in the gena@commutative
framework. A systematic study and analysis of the limitimyariance was un-
dertaken in [MiNO4]. The failure of the central limit theongfor matrix models
whose potential has two deep wells was shown in [Pas06].

We have not mentioned the notion of freeness with amalgamatrhich is a
freeness property where the scalar-valued state is raptacan operator-valued
conditional expectation with properties analogous to doorthl expectation from
classical probability theory. This notion is particulariptural when consider-
ing the algebra generated by two sub-algebras. For instdnedree algebras
{Xi}1<i<p @as in Theorem 5.4.5 are free with amalgamation with resjpeitiet al-
gebra generated by the; }1<i<p . We refer to [VoiO0ODb] for definitions and to
[ShI98] for a nice application to the study the asymptoticthe spectral measure
of band matrices. The central limit theorem for the trace ofemh moments of
band matrices and deterministic matrices was done in [Gui02

The convergence of the operator norm of polynomials in iedelent GUE ma-
trices discussed in Section 5.5 was first proved in [HaTOH}je(norms of the lim-
iting object, namely free operators with matrix coefficemwere already studied
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in [Leh99].) This result was generalized to independentices from the GOE
and the GSE in [Sch05], see also [HaST06], and to Wigner oh&visnatrices
with entries satisfying the Poincaré inequality in [CaROIf was also shown in
[GuSO08] to hold with matrices whose laws are absolutelyicoous with respect
to the Lebesgue measure and possess a strictly log-coneas#yd The norm of
long words in free non-commutative variables is discusag&arO7a]. We note
that a byproduct of the proof of Theorem 5.5.1 is that thelt@ggetransform of
the law of any self-adjoint polynomial in free semicircutandom variables is
an algebraic function, as one sees by applying the algetyraiiterion [AnZ08b,
Theorem 6.1], to the Schwinger-Dyson equation as expréssed form (5.5.32).
Proposition 5.5.3 is analogous to a result for sample camad matrices proved
earlier in [BaS98a)].

Many topics related to free probability have been left oubum discussion. In
particular, we have not mentioned free Brownian motion dmdd in [Spe90],
which appears as the limit of the Hermitian Brownian motioithwsize going
to infinity [Bia97a]. We refer to [BiS98b] for a study of thelaged stochastic
calculus, to [Bia98a] for the introduction of a wide classpobcesses with free
increments and for the study of their Markov properties Anq02] for the intro-
duction of stochastic integrals with respect to processtgsfree increments, and
to [BaNTO02] for a thorough discussion of Lévy processes laéndy laws. Such
a stochastic calculus was used to prove central limit tredre[Cab01], large
deviations results, see the survey [Gui04], or convergeffidee empirical dis-
tribution of interacting matrices [GuS08]. In such a nonoamative stochastic
calculus framework, inequalities such as the Burkholdavi® Gundy inequality
[BiS98b] or the Burkholder-Rosenthal inequalities [JuXB8ld.

Another important topic we did not discuss is the notion ekfentropy. We
refer the interested readers to the reviews [V0i02] and Qigl}. Voiculescu de-
fined several concepts for an entropy in the noncommutagitteos First, the so-
called microstates entropy was defined in [Voi94], analagphoto the Boltzmann-
Shanon entropy, as the volume of the collection of randonriogst whose em-
pirical distribution approximates a given tracial stateec@nd, in [Voi98a], the
microstates-free free entropy was defined by following dimitesimal approach
based on the free Fisher information. Voiculescu showed@OB] that in the
case of one variable, both entropies are equal. Followireygeldeviation and
stochastic processes approach, bounds between thesetapiencould be given
in the general setting, see [CaG01] and [BiCGO03], providitigng evidence to-
ward the conjecture that they are equal in full generalitysiBes its connections
with large deviations questions, free entropies were usektfine in [Voi94] an-
other important concept, namely the free entropy dimensidris dimension is



416 5. REE PROBABILITY

related withL2-Betti numbers [CoS05], [MiS05], and is analogous to a fibdi-
mension in the classical setting [GuS07]. A long standingj@cture is that the
entropy dimension is an invariant of the von Neumann algetinéch would settle
the well known problem of the isomorphism between free griagpors [Voi02,
section 2.6]. Free entropy theory has already been usedtk® seme important
guestions in von Neumann algebras, see [V0i96], [Ge97]98Fer [Voi02, sec-
tion 2.5]. In another direction, random matrices can be &oieft way to tackle
guestions concerninG*-algebras or von Neumman algebras, see e.g. [Voi90],
[Dyk93a], [Rad94] [HaT99], [Haa02], [PoS03], [HaT05],#3T06], [GuISO7] or
[HaS09].

The free probability concepts developped in this chaptet,ia particular free
cumulants, can also be used in more applied subjects sueteasinmunications,
see [LiTVO1] or [TuVv04].



Appendices

A Linear algebra preliminaries

This appendix recalls some basic results from linear alelle refer the reader
to [HoJ85] for further details and proofs.

A.1 ldentities and bounds

The following identities are repeatedly used. ThroughAuB,C,D denote arbi-
trary N by N matrices. We then have

A B A 0 1 A1B
1dem#°det[c D} - det({c D—CA‘lB] [0 1 D

= detA-defD - CA'B]. (A.1)
where the right hand of (A.1) is set to OAfis not invertible.

The following lemma, proved by multiplying on the right g} — zI) and on
the left by(X — A—zl), is very useful

Lemma A.1 (Matrix inversion) For matrices XA and scalar z, the following
identity holds if all matrices involved are invertible:
(X—A-z)1-(X—z)t=X-A-z)tAX—2zI)"1.
Many manipulations of matrices involve their minor. Thes| = {iy,...,ij} C
{L,...,my, 3= {j1,...,jj} € {L,...,n}, and for anm by n matrix A, setA ; to

be the|l| by |J| matrix obtained by erasing all entries that do not belongroa
with index froml and a column with index frord. That is,

Ag(LK) =AxL k), T=1,...01, k=1,...,]J].

417
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Thel,J minor of Ais then defined as dat ;. We have the

Theorem A.2 (Cauchy-Binet Theorem)Suppose A is an m by k matrix, B a k
by n matrix, C= AB, and, with r< min{m,k,n}, set 1= {iy,...,i;} C {1,...,m},

J={j1,...,jr} € {1,...,n}. Then, letting#; x denote all subsets ¢fl, ..., k} of
cardinality r,
detC 5 = z detA x detBk ;. (A.2)
Ke Ak

We next provide a fundamental bound on determinants.

Theorem A.3 (Hadamard’s inequality) For any column vectorsyy...,Vv, of
length n with complex entries, it holds that

n n

detlvy... vy < ViTVi < N2 Vil -
M N

A.2 Perturbations for normal and Hermitian matrices

We recall that a normal matri& satisfies the relatioAA® = A*A. In particular,
all matrices in}f,\fﬁ), B =1,2, are normal.

In what follows, we let|Al2:= /5 ; |A(i, j)|? denote théFrobeniusnorm of
the matrixA. The following lemma is a corollary of Gersgorin’s circlestirem.

Lemma A.4 (Perturbations of normal matrices) Let A be an N by N normal
matrix with eigenvalueg;, i =1,...,N, and let E be an arbitrary N by N matrix.
I_Aetf\ be any eigenvalues of AE. Then, there is an¢ {1,...,N} such that
A=Al < [[E]2.

For Hermitian matrices, more can be said. Recall that for artitmn matrixA,
we letA1(A) < A2(A) <... < An(A) denote the ordered eigenvaluesfofwe first
recall the

Theorem A.5 (Weyl'sinequalities)Let AB € ij(Z). Then, foreachk {1,...,N},
we have

A(A) +M1(B) < A(A+B) < A(A) + Mn(B). (A3)

A useful corollary of Weyl's theorem is the
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Corollary A.6 (Lipschitz continuity) Let AE € %”,\‘(a. Then,
[A(A+E) = A(A)| < [IE]l2- (A.4)

Corollary A.6 is weaker than Lemma 2.1.19, which in its Hetram formulation,
see Remark 2.1.20, actually implies that under the samergsmns,

ZI)\k(AJr E) —AA) < [IEJZ. (A.5)

We finally note the following comparison, whose proof is lthge the Courant-
Fischer representation of the eigenvalues of Hermitiamiosst

Theorem A.7Let Ae %”N(a and ze CN. Then, forl <k <N -—2,
MAL£27) < Ms1(A) < Aea(A+22). (A.6)

A.3 Noncommutative Matrix_P-norms

GivenX € Maty,¢(C) with singular valuegty > --- > iy > 0, wherer = min(k, ¢),

and a constant ¥ p < o, one define themoncommutative ?-norm of X by
1/p . .

IX[lp = (SI_y #P) P if p < o0 @nd[X ||, = limp oo X, = 1.

Theorem A.8 The noncommutative’lnorms satisfy the following.

X = 11X 1 = [IXT] - (A7)

[UX|l, = [IX][, for unitary matrices Ue Mat(C). (A.8)

tr(XX*) = [|X|5. (A.9)
r 1/p

Xllp = <Zl|xi.i|p> forl1<p<oo. (A.10)
i=

|||/ is @ norm on the complex vector spadat,(C).  (A.11)

Properties (A.7), (A.8) and (A.9) are immediate conseqasrtd the definition.
A proof of (A.9) and (A.11) can be found in [Sim05b, Prop. 2.6T&m. 2.7]. It
follows from (A.10) that ifX is a square matrix then

Xy = [tr(X)] - (A.12)

For matricesX andY with complex entries which can be multiplied, and expo-
nents 1< p,q,r < « satisfying% +% = 1 we have thexoncommutative Blder
inequality

XYl < [IX[plYllg- (A13)
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(See [SimO5b, Thm. 2.8].)

A.4 Brief review of resultants and discriminants

Definition A.9 Let
P=P(t) = S atl = an m(t—ai), Q=Q(t) = S byt] = bn [ (t—Bj).
el 2ot =l

be two polynomials where thes, b's, a’s and3’s are complex numbers, the lead
coefficientsa, andb, are nonzero, andis a variable. Theesultantof P andQ is
defined as

RIP.Q) = ahb[] [ (a1~ A1) =[] ar) = (~1™eR [ P(Ay).
I=1]= i= =

The resultanR(P, Q) can be expressed as the determinant of the n)-by-(m+
n) Sylvester matrix

am ... ag

Here there are rows ofa’s andmrows ofb’s. In particular, the resultaf(P, Q)
is a polynomial (with integer coefficients) in tla®s andb’s, and hence depends
only on thea’'s andb’s, and does so continuously.

Definition A.10 Given a polynomiaP as in Definition A.9, theliscriminantof P
is defined as

D(P) — <—1>m<m—l>/2R<P,FV>=<—1>m<m-1>/2ﬁp'(ai>

= a1 (a—ap (A.14)

1<i<)<n

We emphasize th&@(P) depends only on tha's and does so continuously.
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B Topological Preliminaries

The material in Appendices B and C is classical. These appesdre shame-
lessly borrowed from [DeZ98].

B.1 Generalities

A family 1 of subsets of a se®” is atopologyif 0 € 1, if 2" € 1, if any union
of sets oft belongs tor, and if any finite intersection of elements pbelongs
to 7. A topological space is denotéd?”, 7), and this notation is abbreviated to
4 if the topology is obvious from the context. Sets that belomg are called
open sets Complements of open sets arlesed sets An open set containing a
pointx € 2 is aneighborhoof x. Likewise, an open set containing a subset
A C Z is a neighborhood oA. Theinterior of a subseA ¢ 2", denoted??, is
the union of the open subsetsAfTheclosureof A, denoted, is the intersection
of all closed sets containindy. A point p is called araccumulation poinof a set
A C Z if every neighborhood op contains at least one point & The closure
of Alis the union of its accumulation points.

A basefor the topologyr is a collection of sets7 C 1 such that any set from
T is the union of sets iny. If 11 and 1, are two topologies oi?", 1 is called
stronger (or finer) tham,, and1, is called weaker (or coarser) thanif 1, C 13.

A topological space islausdorffif single points are closed and every two dis-
tinct pointsx,y € 2" have disjoint neighborhoods. It regular if, in addition,
any closed seff C 2" and any poink ¢ F possess disjoint neighborhoods. It is
normalif, in addition, any two disjoint closed sek, F, possess disjoint neigh-
borhoods.

If (2°,11) and (#/, 1) are topological spaces, a functidn: 2" — % is a
bijectionif it is one-to-one and onto. It isontinuousf f‘l(A) e 11 foranyAe 1.
This implies also that the inverse image of a closed set iseclo Continuity is
preserved under compositions, i.efif 2" — # andg: % — % are continuous,
thengo f : 2 — % is continuous. If bothf and f~1 are continuous, thef is
a homeomorphisgrand spaces?”, % are called homeomorphic if there exists a
homeomorphisni : 2" — %'

A function f : 2" — R is lower semicontinuoug@ipper semicontinuoQisf its
level sets{x e 2 : f(x) < a} (respectively{xe 2 : f(x) > a} ) are closed
sets. Clearly, every continuous function is lower (uppemgontinuous and the
pointwise supremum of a family of lower semicontinuous fiorts is lower semi-
continuous.
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A Hausdorff topological space ompletely regulaif for any closed seF C
& and any poink ¢ F, there exists a continuous functidn 2~ — [0,1] such
thatf(x) =1 andf(y) =0forally e F.

A coverof a setA C 2" is a collection of open sets whose union conta#ing
set iscompacif every cover of it has a finite subset that is also a cover. Atice
uous image of a compact set is compact. A continuous bijetitween compact
spaces is a homeomorphism. Every compact subset of a Héfusgiogical
space is closed. A set jge-compactf its closure is compact. A topological
space idocally compacif every point possesses a neighborhood that is compact.

Theorem B.1A lower (upper) semicontinuous function f achieves its imimn
(respectively, maximum) over any compact set K.

Let (Z°,1) be a topological space, and letc 2". Therelative (or induced)
topology onAis the collection of setd 1. The Hausdorff, normality, and regu-
larity properties are preserved under the relative topplBgrthermore, the com-
pactness is preserved, i.B.C Ais compact in the relative topology iff it is com-
pact in the original topology. Note, however, that the “closedness” property is
notpreserved.

A nonnegative real functiod: 2" x 2" — R is called ametricif d(x,y) =0 <
x=Yy,d(x,y) =d(y,x), andd(x,y) < d(x,z) +d(zy). The last property is referred
to as thetriangle inequality. The seBy 5 = {y: d(x,y) < &} is called theball of
centerx and radiug®. The metric topology of2” is the weakest topology which
contains all balls. The se¥” equipped with the metric topology isnaetricspace
(Z°,d). Atopological space whose topology is the same as someatgbology
is calledmetrizable Every metrizable space is normal. Every regular space that
possesses a countable base is metrizable.

A sequencey, € 2" convergeso x € 2 (denotedx, — X) if every neighbor-
hood ofx contains all but a finite number of elements of the sequdnmgp. If
2, % are metric spaces, thdn 2~ — % is continuous ifff (xn) — f(x) for any
convergent sequencg — X. A subsetA C 2 of a topological space isequen-
tially compactf every sequence of points lihas a subsequence convergingto a
pointin 2.

Theorem B.2A subset of a metric space is compactiiff it is closed and se iy
compact.

A setAC Z isdensdfits closure isZ". A topological space iseparabldf it
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contains a countable dense set. Any topological space tisgepses a countable
base is separable, whereas any separable metric spaceggssae€ountable base.

Even if a space is not metric, the notion of convergence omjaesee may
be extended to convergence filters such that compactness, “closedness,” etc.
may be checked by convergence. Filters are not used in this Ade interested
reader is referred to [DuS58] or [Bou87] for details.

LetJ be an arbitrary set. Le2” be the Cartesian product of topological spaces
Zj, 1.e., 2 =1T1; Zj. Theproduct topologyn 2" is the topology generated by
the base;Uj, whereU; are open and equal t&] except for a finite number
of values ofj. This topology is the weakest one which makes all projestion
pj : & — Zj continuous. The Hausdorff property is preserved underymsits
and any countable product of metric spaces (with metxic, -)) is metrizable,
with the metric onZ" given by

0

Z 1 dn(PnX, pny)
20 1+ dn(prX, pry)

Theorem B.3 (Tychonoff) A product of compact spaces is compact.

Let (J,<) be a partially ordered right-filtering set, i.e., for every € J, there
exists ak € J with i <k and j < k. The projective systenof Hausdorff topo-
logical spaceg?j consists of these spaces and for eaghj, a continuous map
pij - %) — %, satisfying the consistency conditiopg = pjj o pjk if I < j <Kk,
wherepi is the identity map o&. Theprojective limit2" of the systen{#j, pij ),
denoted?” = Jim %, is the subset of the topological product sp&ce- M;<3%,
consisting of the elements= (y; )<, which, for alli < j, satisfy the consistency
conditionsy; = pij(yj). The topology onZ" is the topology induced by the prod-
uct topology on?Z. The canonical projectiong; : 2~ — %] are the restrictions
of the coordinate projections frod# to #j, and are continuousZ” is a closed
subset o7 and is Hausdorff. The coIIectio{ij‘l(Uj) cUjC %jisopertis a
base for the topology o2".

The notion of projective limits is inherited by closed set$us, a closed set
F C 2 is theprojective limitof Fj C %] (denoted:F = |im F;), if pij(Fj) C F
foralli < j andF = N p; *(F)).
jed

Theorem B.4A projective limit of non-empty compact sets is non-empty.
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B.2 Topological Vector Spaces and Weak Topologies

A vector spacever the reals is a se¥” that is closed under the operations of
addition and multiplication by scalars, i.e.xify € 2", thenx+y e 2" andax €

Z for all o € R. All vector spaces in this book are over the realg¢opological
vector spacés a vector space equipped with a Hausdorff topology thatandhe
vector space operations continuous. Thavex hullof a setA, denoted c@A), is
the intersection of all convex sets containifigThe closure of c@) is denoted
Co(A). co({xq,...,Xn}) IS compact, and, iK; are compact, convex sets, then the
set cc(UiNzl Kj) is closed. Alocally convextopological vector space is a vector
space that possesses a convex base for its topology.

Theorem B.5Every (Hausdorff) topological vector space is regular.

A linear functionalon the vector spacg’ is a functionf : 2 — R that satisfies
f(ax+ By) = af(x) + Bf(y) for any scalarsx,3 € R and anyx,y € 2". The
algebraic dualof .2, denoted2”, is the collection of all linear functionals on
Z . Thetopological dualof 2, denotedZ™*, is the collection of all continuous
linear functionals on théopologicalvector spaceZ’. Both the algebraic dual
and the topological dual are vector spaces. Note that whéhesalgebraic dual
may be defined for any vector space, the topological dual neagidfined only
for a topological vector space. The product of two topolagjiector spaces is
a topological vector space, and is locally convex if eacthefdoordinate spaces
is locally convex. The topological dual of the product spactne product of the
topological duals of the coordinate spaces. A%etC 2" is calledseparatingf
for any pointx € 27, x #£ 0, one may find ah € J# such thah(x) # 0. It follows
from its definition that2™’ is separating.

Theorem B.6 (Hahn—Banach)Suppose A and B are two disjoint, non-empty,
closed, convex sets in the locally convex topological vespace 2. If A is
compact, then there exists ancf 2™ and scalarsa, 8 € R such that, for all
xeA yeB,

f(x) <a<p<f(y). (B.1)

It follows in particular that if 2" is locally convex, then2™ is separating. Now
let 5 be a separating family of linear functionals &ti. The .7#-topologyof

Z is the weakest (coarsest) one that makes all element§ @bntinuous. Two
particular cases are of interest:

(a) If 72 = 27", then theZ *-topology onZ" obtained in this way is called the
weak topologyf 2. Itis always weaker (coarser) than the original topology on
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Z.

(b) Let Z" be a topological vector space (not necessarily locally erpvEvery
x € 2" defines a linear functional on 2™ by the formulafy(x*) = x*(x). The
set of all such functionals is separating®i*. The 2 -topology of 2 * obtained
in this way is referred to as theeak topologyof 27*.

Theorem B.7 Suppose?” is a vector space an@ C 2" is a separating vector
space. Then th& -topology makes? into a locally convex topological vector
space withZ™ = %,

It follows in particular that there may be different topoiog) vector spaces with
the same topological dual. Such examples arise when thmakigpology on%Z"
is strictly finer than the weak topology.

Theorem B.8 Let 2" be a locally convex topological vector space. A convex
subset ofZ" is weakly closed iff it is originally closed.

Theorem B.9 (Banach—Alaoglu)letV be a neighborhood 6fin the topological
vector space?’. Let K= {x* € 2™ : |x*(x)] <1, ¥xeV}. Then K is weak
compact.

B.3 Banach and Polish Spaces

A norm || - || on a vector space?” is a metricd(x,y) = ||x— || that satisfies
the scaling propertjja (x—y)|| = a||x—y|| for all a > 0. The metric topology
then yields a topological vector space structurezin which is referred to as a
normedspace. The standard norm on the topological dual of a norpeces?”
is [[X*[| 2 = sURy <1 X" (X)], and therj|x|| = supjy-||,,.. <1 X" (x), forallx € 2.

A Cauchy sequende a metric space?” is a sequence, € 2 such that for
everye > 0, there exists ahl(g) such thatd(x,,xm) < € for anyn > N(¢) and
m> N(g). If every Cauchy sequence " converges to a point it?”, the metric
in 2 is calledcomplete Note that completeness is not preserved under home-
omorphism. A complete separable metric space is calledliah space. In par-
ticular, a compact metric space is Polish, and an open swlbsePolish space
(equipped with the induced topology) is homeomorphic to isRspace.

A complete normed space is calle®anachspace. The natural topology on a
Banach space is the topology defined by its norm.

A setB in a topological vector spacg” is boundedf, given any neighborhood
V of the origin in 2", there exists ag > 0 such thaf{ax:x € B,|a| < &} C V.
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Hausdorff
Regular
Loc. Compact = Completely Regular < Hausdorff

T Top. Vector Space
T Normal T
f ()
T Metric Locally Convex
T T Top. Vector Space
f Complete 1
T Metric = Banach
f
T Polish < Separable Banach
f 1)

Compact <= Compact Metric

Fig. A0.1. Dependencies between topological spaces.

In particular, a seB in a normed space is bounded iff gup||X|| < . A setBin

a metric space?’ is totally boundedf, for every d > 0, it is possible to cove
by a finite number of balls of radiu¥ centered irB. A totally bounded subset of
a complete metric space is pre-compact.

Unlike in the Euclidean setup, balls need not be convex intaicspace. How-
ever, in normed spaces, all balls are convex. Actually, tileviing partial con-
verse holds.

Theorem B.10A topological vector space is normable, i.e., a norm may be de
fined on it that is compatible with its topology, iff its omgias a convex bounded
neighborhood.

Weak topologies may be defined on Banach spaces and thelogiged duals. A
striking property of the weak topology of Banach spaceseadlst that compact-
ness, apart from closure, may be checked using sequences.

Theorem B.11 (Eberlein-Smulian) Let 2" be a Banach space. In the weak
topology ofZ", a set is sequentially compact iff it is pre-compact.

B.4 Some elements of analysis

We collect below some basic results tying measures andiéursobn locally com-
pact Hausdorff spaces. In most of our applications, the tlyidg space will be
R. A good reference that contains this material is [Rud87].
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Theorem B.12 (Riesz Representation theoremlet X be a locally compact
Hausdorff space, and Iét be a positive linear functional onX). Then, there
exists ag-algebra.# in X which contains all Borel sets in X, and there exists a
unigue positive measuye on .# which representé in the sense that

/\f:/ fdu  forevery fe Ce(X).
X

We next discuss the approximation of measurable functigrisilce” functions.
recall that a functiosis said to be simple if there are measurable 8etand real
constantsai)i<i<n such thas= 3 ; aila,.

Theorem B.13Let X be a measure space, and letX — [0, ] be measurable.
Then, there exists simple functigisg) >0 on X suchthad <s; <s--- <g < f
and %(x) converges to (x) for all x € X.

The approximation of measurable functions by continuowesas often achieved
using the following.

Theorem B.14 (Lusin) Suppose X is a locally compact Hausdorff spacea
positive Borel measure on X. Let@AX be measurable witlu(A) < o, and
suppose f is a complex measurable function on X, wit) £ 0 if x ¢ A. Then,
for anye > O there exists a g C¢(X) such that

X T00 #9()}) <e.
Furthermore, g can be taken such tisafg .« |9(X)| < supex | f(X)].

C Probability measures on Polish spaces
C.1 Generalities

The following indicates why Polish spaces are conveniemmiandling measur-
ability issues. Throughout, unless explicitly stated othige, Polish spaces are
equipped with their Boret-fields.

Theorem C.1 (Kuratowski) Let >3, be Polish spaces, and let:&; — 25 be
a measurable, one-to-one map. LetEZX; be a Borel set. Then(E;) is a Borel
setins.

A probability measuren the Borelo-field %5 of a Hausdorff topological space
> is a countably additive, positive set functipnwith (X)) = 1. The space of
(Borel) probability measures an is denotedV;(Z). WhenZX is separable, the
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structure ofM;(Z) becomes simpler, and conditioning becomes easier to handle
namely, letz,%; be two separable Hausdorff spaces, anduldéte a probability
measure onf%, %s). Letm: ~ — Z; be measurable, and let= po m 1 be the
measure ogs, defined byv(Ey) = pu(m1(Ey)).

Definition C.2 A regular conditional probability distribution giverr (referred to
asr.c.p.d.) is a mapping € ¥; — u% € M1(Z) such that:
(1) there exists a sét € #s, with v(N) =0, and for eaclw;, € 31\N,

({0 : (o) # 01}) = 0;
(2) for any se€ € %5, the mapoy — H?(E) is %5, measurable and

H(E) = zlu"l(EW(dol) :

Itis property (2) that allows for the decomposition of measu In Polish spaces,
the existence of an r.c.p.d. follows from:

Theorem C.3LetZ, >, be Polish spacegi € M1 (%), andrr: £ — 33 a measurable
map. Then there exists an r.c.pf?. Moreover, it is unique in the sense that any
other r.c.p.d.i°t satisfies

v({oy: % # u%}) =0 .
Another useful property of separable spaces is their behawider products.

Theorem C.4Let N be either finite or N= o,
(a) |_|iN=l‘@z C (%ﬂiNzlz .
(b) If = is separable, thep\ ; Zs = By s -

We now turn our attention to the particular case wheige metric (and, when-
ever needed, Polish).

Theorem C.5Let> be a metric space. Then apye M1(Z) is regular.

Theorem C.6Let X be Polish, and leju € My(Z). Then there exists a unique
closed set ¢ such thatu(C,) = 1and, if D is any other closed set witi(D) =1,
then G, C D. Finally,

Cy={0ez:0eU® = puU°)>0}.
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The selC,, of Theorem C.6 is called theupportof u.

A probability measurg: on the metric spack is tight if for eachn > 0, there
exists a compact sé&t; C Z such thalu(K,C,) < n. A family of probability mea-
sures{ g} on the metric spacg is called atight family if the setK, may be
chosen independently of.

Theorem C.7Each probability measure on a Polish spaces tight.

C.2 Weak Topology

Wheneverz is Polish, a topology may be defined b (%) that possesses nice
properties; namely, define theeak topologyn M; (Z) as the topology generated
by the sets

Upss = {V € My(3) : |/zq0dv—x| <3},
whereg € Cy(Z), 0 > 0 andx € R. If one takes only functiong € C,(Z) that are

of compact support, the resulting topology is ttague topology

HereafterM;(Z) always denotebl; (Z) equipped with the weak topology. The
following are some basic properties of this topologicakspa

Theorem C.8LetZ be Polish.

(1) My1(%) is Polish.
(2) A metric compatible with the weak topology is theviz metric:

d(u,v)=inf{d: u(F) <v(F°)+3 VF C X closed.

(3) M1(%) is compact if is compact.
(4) Let E C Z be a dense countable subset>of The set of all probability
measures whose supports are finite subsets of E is densg).M

(5) Another metric compatible with the weak topology is the tliitz bound-
ed metric:

du(u.v) = sup | [ fdv— [ faul, (C.1)
z

fesy Y2

where.7| is the class of Lipschitz continuous functions3 — R, with
Lipschitz constant at mogtand uniform bound.

The spacéVl;(X) possesses a useful criterion for compactness.
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Theorem C.9 (Prohorov)Let 2 be Polish, and lef € M1(Z). Thenl is compact
iff [ is tight.

SinceM; (Z) is Polish, convergence may be decided by sequences. Thwiia
lists some useful properties of converging sequence jix).

Theorem C.10 (Portmanteau theorem)Let 2~ be Polish. The following state-
ments are equivalent:

(1) Hn— pasn—co.

(2) Vg bounded and uniformly continuourgm /gdun = / gdu.

(3) VF C Z closed, limsuppn(F) < u(F).

n—oo
(4) VG C X open, Iinmiorolf Un(G) > u(G).
(5) VA € %5, which is a continuity set, i.e., such thatA\A®) = 0, limp_.c
Hn(A) = U(A).

A collection of functions? C B(Z) is calledconvergence determinirfgr M (%)
if

lim /zgdunz/zgdu, YgEY = ln—noow U.

nN—oo

ForZ Polish, there exists a countable convergence determimilhgction of func-
tions forM; () and the collectiod f (X)g(y) }  gec, () IS cOnvergence determining
for My(22).

Theorem C.11Let X be Polish. If K is a set of continuous, uniformly bounded
functions onZ that are equicontinuous on compact subset& othen i, — u
implies that

limsupsu |/Zq0dun—/zq)du|}:0.

n—oo (PEK

The following theorem is the analog of Fatou’s lemma for nueas. It is proved
from Fatou’s lemma either directly or by using the Skoroheygkesentation theo-
rem.

Theorem C.12Let X be Polish. Let f: £ — [0,] be a lower semicontinuous
function, and assumg, — y. Then

Iiminf/fdunz/fdu.
n—oo 5 5
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D Basic notions of large deviations

This appendix recalls basic definitions and main resultargfd deviations theory.
We refer the reader to [DeS89] and [DeZ98] for a full treatinen

In what follows,X will be assumed to be a Polish space (that is a complete sep-
arable metric space). We recall that a functfornX — R is lower semicontinuous
if the level setg[x: f(x) < C} are closed for any consta@t

Definition D.1 A sequencépin)nen Of probability measures o satisfies darge
deviation principlewith speeday (going to infinity withN) and rate function iff

| : X—[0, ] is lower semicontinuous (D.1)
o1 .
For any open séd C X, Ilmnf n logun(0) > — |gf l. (D.2)
. 1 .
For any closed sdt C X, lim supa logun(F) < —|rF1fI. (D.3)
N—oo

When it is clear from the context, we omit the reference tosieed or rate func-
tion and simply say that the sequenfen} satisfies the LDP. Also, iky are
X-valued random variables distributed accordingitg we say that the sequence
{xn} satisfies the LDP if the sequen{gn } satisfies the LDP.

Definition D.2 A sequencépin)nen Of probability measures o satisfies aveak
large deviation principléf (D.1) and (D.2) hold, and in addition (D.3) holds for
all compact setf C X.

The proof of a large deviation principle often proceeds bgsthe proof of a weak
large deviation principle, in conjuction with the so-cdllexponential tightness

property.

Definition D.3 (a) A sequencéLy )nen Of probability measures oX is exponen-
tially tight iff there exists a sequenc ), .y of compact sets such that

Iimsuplimsup% log un (Kf) = —oo.

L—o  N—ow

(b) A rate functionl is goodif the level sets{x € X : I (x) < M} are compact for
allmM > 0.

The interest in these concepts lies in the
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Theorem D.4 (a) ([DeZ98, Lemma 1.2.18])f {un} satisfies the weak LDP and
it is exponentially tight, then it satisfies the full LDP, atié rate function | is
good.

(b) ([Dez98, Exercise 4.1.10H) { un } satisfies the upper bound (D.3) with a good
rate function I, then it is exponentially tight.

A weak large deviation principle is itself equivalent to #simation of the prob-
ability of deviations towards small balls.

Theorem D.5Let .« be a base of the topology of X. For everngA7, define
o1
Na = —Illrmgf an logun(A)

and

[(X)= sup Aa.
Aca/ :xeA

Suppose that for all ¢ X,
[(x)= sup {—IimsupiloguN(A)}
Aca/xeA N—owo AN

Then,uy satisfies a weak large deviation principle with rate funotio
Letd be the metric irX, and seB(x,0) = {y € X : d(y,x) < &},
Corollary D.6 Assume that for all x X

—I(x) := IimsuplimsupiIoguN(B(x,é))
5—0 N—oo a'N

1
= liminfliminf —| B .
iminfligninf - ogun(B(x,9))

Then,uy satisfies a weak large deviation principle with rate funatio

From a given large deviation principle one can deduce lagg@tion principle for
other sequences of probability measures by using eithesatealled contraction
principle or Laplace’s method.

Theorem D.7 (Contraction Principle) Assume that the sequence of probability
measuregln)nen 0N X satisfies a large deviation principle with good rate func
tion 1. Then, for any function FX—Y with values in a Polish space Y which is
continuous, the imagéFfiun)nen € M1(Y)N defined as Eun(A) = poF~1(A)
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also satisfies a large deviation principle with the same dpmed rate function
given for any y¢ Y by

J(y) =inf{l(x) : F(x) = y}.

Theorem D.8 (Varadhan's Lemma)Assume thafun)nen Satisfies a large devi-
ation principle with good rate function I. Let FX—R be a bounded continuous
function. Then,

jim —+ log [ eNF®duy(x) = sup{F(x) —1(x)}.

N—o ay xeX
Moreover, the sequence

un(dX) = ;eawmdu,q(x) € My(X)

JeNFOdun(y)

satisfies a large deviation principle with good rate funaotio

J(x) = 1(x) = F(x) —sup{F(y) = 1(y)}.

yeX

Laplace’s method for the asymptotic evaluation of integnahich is discussed
in Section 3.5.1, can be viewed as a (refined) precursor toréneD.8 in a nar-
rower context. In developing it, we make use of the followatgmentary result.

Lemma D.9 (Asymptotics for Laplace transforms)Let f: R, — C posses poly-
nomial growth at infinity. Suppose that for some expoment —1 and complex
constant B,

f(t) = At +0(t 1 ast] 0.
Consider the Laplace transform
F(x) = / f(t)e >t
0

which is defined (at least) for all realx 0. Then,

Blroa+1 1
F(x) = )((a+1 )+O(xa+2> as x7 eo.

Proof In the special casé(t) = Bt® we haveF(x) = Brx(,ﬁ{l), and hence the

claim holds. To handle the general case we may assumdtaad. Then we
have [y e ™ f(t)dt = O[5t +le tXdt) and [;° e ™f (t)dt decays exponentially
fast, which proves the lemma. O

Note that if f(t) has an expansion in powet%, t?*1, t9+2 and so on, then
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iterated application of the claim yields an asymptotic exgdan of the Laplace
transformF (x) at infinity in powersx ~1, x"9-2, x~~3 and so on.

E The skew fieldH of quaternions, and matrix theory over F

Whereas the reader is undoubtedly familiar with the figddand C, the skew
field H of quaternions invented by Hamilton may be less familiar.give a brief
account of its most important features here. Then, Withlenoting any of the
(skew) fieldsR, C or H, we recount (without proof) the elements of matrix theory
overlF, culminating in the spectral theorem (Theorem E.11) ancbitsllaries. We
also prove a couple of specialized results (one concermiojggiors and another
concerning Lie algebras of unitary groups) which are waltkn in principle but
for which references “uniform ifi” are not known to us.

Definition E.1 The fieldH is the associative (but hot commutativi@jalgebra
with unit for which 1,i, j, k form a basis oveR, and in which multiplication is
dictated by the rules

i?=j?=k?=ijk = —1. (E.1)

Elements ofH are calledquaternions Multiplication in H is hot commutative.
However every nonzero element Ef is invertible. Indeed, we hav@+ bi +

¢ +dk)~! = (a—bi — ¢ —dk)/(a? + b? + ¢+ d?) for all a,b,c,d € R not all
vanishing. Thudl is askew field that is, an algebraic system satisfying all the
axioms of a field except for commutativity of multiplication

Remark E.2 Here is a concrete model for the quaternions in terms of oestri
Note that the matrices

o S1 LA ) ol

with complex number entries satisfy the rules (E.1). Itdal$ that the map

athbitqtdk | &P c+d

| —Cc+di a—bi] (,b,c.dER)

is an isomorphism ofl onto a subring of the ring of 2-by-2 matrices with entries
in C. The quaternions often appear in the literature identifigtl two-by-two
matrices in this way. We do not use this identification in thosk.

For every
x=a+bhi+c+dkeH (ab,c,deR)
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we define
IX| = Va2+b2+c2+d2, x*=a—bi—c—dk, Ox=a.

We then have

X+

* * X"
X2 =3¢, Ixyl = X Iy]l, ()" =y*x", Ox= —5— Oxy=Dyx

for all x,y € H. In particular, we have 1 = x* /||x|| for nonzerax € H.

The space of all real multiples ofd H is a copy ofR and the space of all real
linear combinations of 1 anidis a copy ofC. ThusR andC can be and will be
identified with subfields ofl, and in particular bothandi will be used to denote
the imaginary unit of the complex numbers. In short, we tHykC andH as
forming a “tower”

RcCcCH.

If x e C, then||x|| (resp.,x*, 0x) is the absolute value (resp., complex conjugate,
real part) ofx in the usual sense. Furth¢x,= x*j for all x € C. Finally, for all
nonrealk € C, we have{y € H | xy=yx} = C.

E.1 Matrix terminology overF, and factorization theorems

Let Matp«q(IF) denote the space gi-by-q matrices with entries iff. Given
X € Matp,q(IF), let X;j € F denote the entry oK in row i and columnj. Let
Matpyxq = Matpq(R) and Mah(F) = Matyn(F). Let Opxq denote thep-by-q
zero matrix, and let = Op,p. Letl, denote then-by-n identity matrix. Given
X € Matyyq(IF), let X* € Matg, p(F) be the matrix obtained by transposiXgnd
then applying “asterisk” to every entry. The operatin— X* is R-linear, and
furthermorg(XY)* = Y*X* for all X € Matp.q(F) andY € Matq (IF). Similarly,
we have(xX)* = X*x* for any matrixX € Matp.q(F) and scalax € IF. Given
X € Maty(IF), we define tX € F to be the sum of the diagonal entriesxafGiven
X,Y € Matpyq(F), we setX-Y = OtrX*Y, thus equipping Mat.q(IF) with the
structure of finite-dimensional real Hilbert space (Euetid space). Given ma-
tricesX € Mat, (F) fori =1,...,¢, let diagXy,...,X;) € Maty,1....n, (F) be the
block-diagonal matrix obtained by stringing the given riza&tsX; along the diag-
onal.

Definition E.3 The matrixej = e,(jp’q> € Matpxq with entry 1 in rowi and column
j and O’s elsewhere is called alementary matrix
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The set
{ugj [lue Fn{1,i,j,k}, &j € Maty«q}

is an orthonormal basis for Mgtq(IF).

Definition E.4 (1) Let X € Mat,(IF) be a matrix. It isinvertible if there exists
Y € Mat,(F) such thaty X = I, = XY. Itis normalif X*X = XX*. Itis unitary

if X*X =1,=XX*. ltis self-adjoint(resp.,anti-self-adjoin} if X* = X (resp.,
X* = —=X). Itis upper triangular(resp.,lower triangular) if Xjj =0 unless < j
(resp.j > j).

(2) A matrix X € Maty(F) is monomialif there is exactly one nonzero entry in
every row and in every column; if moreover every entryxois either O or 1, we
call X apermutation matrix

(3) A self-adjointX € Maty(FF) is positive definitéf v*Xv > 0 for all nonzero
vV € Maty1(F).

(4) A matrix X € Mat,(F) is aprojectorif it is both self-adjoint and idempotent,
i e, if X*=X=X>2

(5) AmatrixX € Matp,q(IF) is diagonalif Xj =0 unless = j. The set of positions
(i,i) fori=1,...,min(p,q) is called thelmain) diagonabf X.

The group of invertible elements of MAF) is denoted GL(F), while the sub-
group of GLy(F) consisting of unitary matrices is denoted(B). Permutation
matrices in Mat belong to U (F).

We next present several factorization theorems. The firebiained by the
Gaussian elimination method.

Theorem E.5 (Gaussian elimination)_et X € Matp.q(F) have the property that
forall v e Matg,1(F), if Xv=0, then v= 0. Then p> q. Furthermore, there exists
a permutation matrix = Maty(F) and an upper triangular matrix & Maty(F)
with every diagonal entry equal tb such that PXT vanishes above the main
diagonal but vanishes nowhere on the main diagonal.

In particular, for squard, B € Maty(IF), if AB= Ip, thenBA= I It follows also
that GLy(F) is an open subset of MdfF).

The Gram—-Schmidt process gives more information wheng.

Theorem E.6 (Triangular factorization) Let Qe Mat,(FF) be

self-adjoint and positive definite. Then there exists awaigpper triangular ma-
trix T € Mat,(F) with every diagonal entry equal tosuch that TQT is diagonal.
Further, T depends smoothly (i.e., infinitely differenljdlon the entries of Q.
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Corollary E.7 (UT factorization) Every Xe GLn(F) has a unique factorization
X =UT where Te GLn(F) is upper triangular with every diagonal entry positive
and U € Un(F).

Corollary E.8 (Unitary extension) If V € Mat,.«(IF) satisfies VV = I, then
n > k and there exists & U, (F) agreeing with V in the first k columns.

Corollary E.9 (Construction of projectors) Let p and q be positive integers. Fix
Y € Matp.q(F). Put n=p+q. Write T"(Ip+YY*)T = I, for some (unique)
upper triangular matrix Te Maty(IF) with positive diagonal entries. Thdh =

| TT TT*Y
L YTTE YTTYY
M € Maty(F) such thatir M = p and the px p block in upper left is invertible is
of the formM = M(Y) for unique Y& Matp q(IF).

rney) € Maty(TF) is a projector. Further, every projector

E.2 The spectral theorem and key corollaries

A reference for the proof of the spectral theorem in the uiilfancaselF = H is
[FaPO03].

Definition E.10 (Standard Blocks)An C-standard blocks any element of MafC) =
C. An H-standard blocks any element of MatC) = C with nonnegative imag-
inary part. AnR-standard blockis either an element of Mat= R, or a ma-
trix { _g 2 ] € Mat, with b > 0. Finally, X € Mat,(F) is F-reducedif X =
diag(By,...,By) for somelF-standard blocks;.

Theorem E.11 (Spectral Theorem).et X € Maty(F) be normal.

(i) There exists U= Un(F) such that UXU isF-reduced.

(i) FixU € Un(F) andF-standard blocks B ..., B, such that U XU = diag(By, . .., By).
Up to order, the Bdepend only on X, noton U.

Corollary E.12 (Eigenvalues)Fix a self-adjoint Xe Mat,(IF).

(i) There exist Uc Un(F) and a diagonal matrix D= Mat, such that D=U*XU.
(i) For any such D and U, the sequence of diagonal entries of Drayea in
nondecreasing order is the same.

We call the entries oD the eigenvaluef the self-adjoint matrixX. (When
F =R, C this is the standard notion of eigenvalue.)
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Corollary E.13 (Singular values)Fix X € Matpyq(F).

(i) There exist Uc Up(FF), V € Uy(F) and diagonal De Matp,q such that D=
UXV.

(i) Forany such U, V and D, the sequence of absolute values obd&gntries

of D arranged in nondecreasing order is the same.

(i) Now assume that g q, and that X is diagonal with nonzero diagonal entries
the absolute values of which are distinct. Then for any U, \d Bnas in (i),

U is monomial and \= diag(V',V"), where V € Up(F) and V' € Ug_p(F). (We
simply putV=V'if p=g.) Furthermore, the product U\is diagonal and squares
to the identity.

We call the absolute values of the entrieahesingular valueof the rectangu-
lar matrixX. (WhenF = R, C this is the standard notion of singular value.) The
squares of the singular valuesXfare the eigenvalues &fX or X*X, whichever
has mir{p,q) rows and columns.

E.3 A specialized result on projectors

We present a factorization result for projectors which isclig the discussion of
the Jacobi ensemble in Section 4.1. The daseC of the result is well-known.
But for lack of a suitable reference treating the factoraauniformly in F, we
give a proof here.

Proposition E.14Let0 < p < q be integers and put# p+q. Letln € Mat,(F)
be a projector. Then there existsd&JUn(F) commuting witidiag(l », 0q) such that
U Nu = [ ET 2 } , Where ac Matp, 2b € Matp.q and de Maty are diagonal
with entries in the closed unit intervéd, 1].

a B
B d
Since every element of\JF) commuting with diagl p, 0q) is of the form diagv, w)
for v e Up(F) andw € Ug(F), we may by Corollary E.13 assume tleedindd are
diagonal and real. Necessarily the diagonal entriesasfdd belong to the closed
unit interval[0,1]. For brevity, writea; = &; andd; = dj;. We may assume that
the diagonal entries af are ordered so that(1— &) is nonincreasing as a func-
tion of i, and similarlyd;(1—d;) is nonincreasing as a function ¢f We may
further assume that whenewva(l — a) = a+1(1— a-1) we haveg; < a1, but
that wheneved; (1 —d;) = dj1(1 —dj;1) we haved;j > dj1.

Proof Write I = [ ] , Wherea € Matp(IF), B € Matp.q(FF) andd € Maty(F).
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From the equatiof? = N we deduce thaa(l, —a) = fB* andd(lq—d) =
B*B. Letb € Maty be the unique diagonal matrix with nonnegative entries such
thatb? = B3*. Note that the diagonal entries bfappear in nonincreasing order,
and in particular all nonvanishing diagonal entries areugea together in the
upper left. Furthermore, all entries bbelong to the closed intervid, 1/2].

By Corollary E.13 there existe Up(IF) andw € Uq(F) such thap = v[b Op, (q—p)W.
From the equatiob? = B* we deduce that commutes withh? and hence also
with b. After replacingw by diagV, lq—p)w, we may assume without loss of gen-
erality thatB = [b Op, (q—p)W. From the equation

w*diag(b?, Og_p)w = BB = d(lg—d).

we deduce thatv commutes with dia@, 0g_p).

Let 0<r < p be the number of nonzero diagonal entriesbof Write b =
diag(b,0p—r) whereb € GL;(R). Sincew commutes with dia@,0q4_r), we can
write w = diag W, w') wherew € U, (F) andw € Uq_((F). Then we have8 =

[diag(bW, 0p_r) O (q_p)), and furthewcommutes witfb.

Now write a = diag(d,a’) with & € Mat, anda € Matp_,. Similarly, write
d = diagd,d’) with d € Mat, andd’ € Maty . Both&andd are diagonal with
diagonal entries irf(0,1). Both a andd’ are diagonal with diagonal entries in
{0,1}. We have a block decomposition

1

& 0 bw o
n_| o a 00
wb 0o d o
o 0 0 d

From the equatiof2 = N we deduce thehaw = abw = bw(I, — d), henceai =
W(l, — d), henceaandl, — d have the same eigenvalues, and hence (on account of

the care we took in ordering the diagonal entriea ahdd), we havea= I, — d.
Finally, sinced andw commute, withU = diag(lp, W,lq—r), we haveU MU =

a b
bT d |’ .

E.4 Algebra for curvature computations

We present an identity needed to compute the Ricci curvatutiee special or-
thogonal and special unitary groups, see Lemma F.27 andgbassion immedi-
ately following. The identity is well-known in Lie algebradory, but the effort
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needed to decode a typical statement in the literature istadmpal to the effort
needed to prove it from scratch. So we give a proof here.

Let sun(F) be the set of anti-self-adjoint matricése Maty(F) such that if
F =C, then trX = 0. We equip the real vector spage,(F) with the inner product
inherited from Mai(FF), namelyX -Y = O trXY*. Let[X,Y] = XY =Y Xfor X,Y €
Matn(F), noting thatsun(F) is closed under the bracket operation. Bet 1,2,4
according a¥ =R,C,H.

Proposition E.15For all X € suny(F) and orthonormal baseflq } for sup(FF), we
have

_%Z[[X,La],Lab (B(nfz)—l)x. (E-2)

Proof We havesui(R) = suy(C) = 0, and the caseu; (H) can be checked by
direct calculation with, j, k. Therefore we assume that> 2 for the rest of the
proof.

Now for fixed X € sun(IF), the expressiofiX,L],M] for L,M € suny(F) is an
R-bilinear form onsuy(F). It follows that the left side of (E.2) is independent of
the choice of orthonormal bas{$.,}. We are therefore free to choo$k, } at
our convenience, and we do so as follows. &g Mat, fori,j =1,...,nbe the
elementary matrices. Ford k < nandu € {i,j,k}, let

k n

u : u

DU: jy———— —k + i y D :DI s DU: _— i

k KT 12 ( &+1,k+1 é Q|> K n \/ﬁé i
Forl<i<j<nandue{1,ij,k},let

aj — u'e;

u 1
Ri ==l 5 Ei=Rh Fi=F

i
ij> i

Then
{Bj:1<i<j<n},
{Dx:1<k<n}ju{Ej,Fj:1<i<j<n},
{Dg:1<k<nuedijk}}U{Rj:1<i<j<nue{lijk}},
are orthonormal bases fou,(R), sup(C) andsup(H), respectively.
We next want to show that in proving (E.2), it is enough to édesjust oneX,

namelyX = Ej». We achieve that goal by proving the following two claims:

(I) Given{Lq} andX for which (E.2) holds and any € Uy(TF), again (E.2)
holds for{UL,U*} andUXU*.
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(1) The set{UE;U* |U € Uy(F)} spanssun(FF) overR.

Claim (1) holds because the operatn— U XU* stabilizessu,(F), preserves the
bracketX,Y], and preserves the inner prodXctY. We turn to the proof of claim
(I). By considering conjugations that involve appropei@tby-2 blocks, one can
generate any element of the collectipf}, D{} from Ej». Further, using conju-
gation by permutation matrices and taking linear combamesj one can generate
{Fj,Dg}. Finally, to obtainDy, it is enough to show that digi,0,....,0) can be
generated, and this follows from the identity

diag(1,j)diagi,—i)diag(1,j) ! = diag(i, ).
Thus claim (ll) is proved.

We are ready to conclude. The following facts may be verifigdtbaightfor-
ward calculations:

e E;> commutes witlD} for k > 1 andu € {i,j,k};
e E1p commutes witrFi}j for2<i< j<nandue{1,,j,k};
o [[ExoR{],RY] = —3E12 for 1 <i < j <nsuch that #i,j} N {1,2} = 1 and
ue {1,|,J k};and
E12, F12 F 2] E12, Du Du] =—-2E» forue {I,J,k}

It follows that the left side of (E.2) witlK = Ej» and{L,} specially chosen as
above equalsE; ,, where the constaigtis equal to

%(%-2{3(n—2)+2-2([3—1)) !

Since (E.2) holds witlX = E;» and specially chosefl 4 }, by the previous steps
it holds in general. The proof of the lemma is finished. O

F Manifolds

We have adopted in Section 4.1 a framework in which all grafpratrices we
used were embedded as submanifolds of Euclidean spacehachthe advantage
that the structure of the tangent space was easy to ideRtfycompleteness, we
present in this appendix all notions employed, and prowid8ubsection F.2 the
proof of the coarea formula, Theorem 4.1.8. An inspirationdur treatment is
[Mil97]. At the end of the appendix, in Subsection F.3, weaddluce the language
of connections, Laplace-Beltrami operators, and hessiesesl in Section 4.4. For
the latter we follow [Hel01] and [Mil63].
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F.1 Manifolds embedded in Euclidean space

Given a differentiable functiori defined on an open subset®f with values in
a finite-dimensional real vector space and an indexX., ..., n, we letg; f denote
the partial derivative of with respect to thé" coordinate. Iih= 1, then we write
f'=0.f.

Definition F.1 A Euclidean spacds a finite-dimensional real Hilbert spaée
with inner product denoted bfy,-)e. A Euclidean seM is a nonempty locally
closed subset d&, which we equip with the induced topology.

(A locally closed set is the intersection of a closed set witfopen set.) We refer
to E as theambient spacef M.

We consideR" as Euclidean space by adopting the standard inner product
(X, Y)rn =X-y= 3, XYi. Given Euclidean spac&andF, and amag :U —V
from an open subset & to an open subset &f, we say thaf is smoothif (after
identifying E with R" andF with R¥ as vector spaces ov&rin some way)f is
infinitely differentiable.

Given fori = 1,2 a Euclidean seM; with ambient spac&;, we define the
product M, x M5 to be the subsdtm &my | my € M1, mp € M} of the orthogonal
direct sumg; @ E;.

Let f : M — N be a map from one Euclidean set to another. We sayftlst
smoothif for every pointp € M there exists an open neighborhdddf p in the
ambient space d¥l such thatf |u~m can be extended to a smooth map fronto
the ambient space ™. If f is smooth, therf is continuous. We say thdtis a
diffeomorphismf f is smooth and has a smooth inverse, in which case we also
say thatM andN arediffeomorphic

Definition F.2 (Manifolds) A manifold Mof dimensiom (for short:n-manifold
is a Euclidean set such that every pointMfhas an open neighborhood diffeo-
morphic to an open subset Bf'.

We calln thedimensiorof M and writen = dimM. A diffeomorphism®: T — U
whereT C R" is a nonempty open set aktis an open subset &l is calleda
chartof M. By definitionM is covered by the images of charts. The product of
manifolds is again a manifold. A subdétC M is called asubmanifoldf N is a
manifold in its own right when viewed as a subset of the antlipace oM.

Definition F.3 Let M be ann-manifold with ambient spacE. Let p& M be a
point. A curvey through pe M is by definition a smooth map: | — M where
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I C R is a nonempty open interval, @1, andy(0) = p. We define the tangent
spacelp(M) of M at p to be the subset d& consisting of all vectors of the form
¥y (0) for some curvey throughp € M.

The setl'p(M) is a vector subspace &f of dimensiom overRR. More precisely,
forany char®: T — U and pointg € T such thatb(tp) = p, the vectorga @)(to)
fori=1,...,nform a basis oveR for T,(M). We endowT',(M) with the struc-
ture of Euclidean space it inherits frofn

Let f : M — N be a smooth map of manifolds, and g M. There exists
a uniqueR-linear transformatior'p(f) : Tp(M) — Ty (N) with the follow-
ing property: for every curvg with y(0) = p andy (0) = X € Ty(M), we have
(Tp(f))(X) = (foy)(0). We callT(f) thederivativeof f atp. The magl'p(f)
is an isomorphism if and only if maps some open neighborhoodf M diffeo-
morphically to some open neighborhoodfdfp) € N. If f is a diffeomorphism
andTp(f) is an isometry of real Hilbert spaces for evgrye M, we call f an
isometry

Remark F.4 Isometries need not preserve distances in ambient Eunlisjgzces.
For example{(x,y) € R?\ {(0,0)} : x> +y? = 1} c R? and{0} x (0,2m) C R?
are isometric.

Definition F.5 Let M be ann-manifold, withA C M. We say thaA is negligibleif
for every charth : T — U of M the subse®~1(A) C R" is of Lebesgue measure
zero.

By the change of variable formula of Lebesgue integratiosulasetA C M is
negligible if and only if for everyp € M there exists a chafe: T — U such that
p < U and®~1(A) C R"is of Lebesgue measure zero.

We exploit the change of variables formula to define a volureasuare on the
Borel subsets df1. We begin with the following.

Definition F.6 Let®: T — U be a chart of an-manifoldM. LetE be the ambient
space oM.

(i) The correction factoragg is the smooth positive function oh defined by the
following formula, valid for allt € T:

1]

Oo(t) = \/ let((a®)(1), (9, P)(V))e-
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(if) The chart measurért  on the Borel sets of is the measure absolutely con-
tinuous with respect to Lebesgue measure restrictdd fe, defined by

dlto
dir %

Lemma F.7 Let A be a Borel subset of an n-manifold M, anddetT — U be a
chart such that AC U. Then/t o (P 1(A)) is independent of the chadt.

Since a measure on a Polish space is defined by its (compatskeictions to
open subsets of the space, one may employ charts and Lemraad-défine in a
unique way a measure on a maniféld which we call thezolume measuren M.

Proposition F.8 (Volume measure) et M be a manifold.

(i) There exists a unique measypsg on the Borel subsets of M, such that for
all Borel subsets AC M and charts® : T — U of M we havepy(ANU) =
(1.0(P71(A)). The measurpy is finite on compacta.

(i) A Borel set AC M is negligible if and only ifom(A) = 0.

(iii) For every nonempty open subsetdM and Borel set AC M we havepy (AN

U) =pm(ANU).

(iv) For every isometry f M; — M, of manifolds we havpy, o f =1 = pw,.

(v) For all manifolds M and My we havepm, xm, = Pm; X PM,-

Clearly, prn is Lebesgue measure on the Borel subse®"of

We write p[M] = pm (M) for every manifoldM. We have frequently to con-
sider such normalizing constants in the sequel. We always pM] € (0, .
(It is possible to hav@[M] = o, for examplep[R] = o; but it is impossible to
havep[M] = 0 because we do not allow the empty set to be a manifoldV) i$
compact, thep[M] < co.

“Critical” vocabulary

Definition F.9 Critical and regular points Let f : M — N be a smooth map of
manifolds. Ap € M is acritical pointfor f if the derivativeT ( f) fails to be onto;
otherwisep is aregular pointfor f. We say thatj € N is acritical value of f if
there exists a critical poirg € M for f such thatf (p) = g. Giveng € N, thefiber
f~1(q) is by definition the se{p € M | f(p) = q}. Finally,q € N is aregular
valuefor f if gis not a critical value and the fibér(q) is nonempty.
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Our usage of the term “regular value” therefai@es not conforrto the traditions
of differential topology. In the latter context, a regulawe is simply a point
which is not a critical value.

The following facts, which we use repeatedly, are stramérdly deduced
from the definitions.

Proposition F.10Let f: M — N be a smooth map of manifolds. Lefcjresp.,
Mecrit) be the set of regular (resp., critical) points for f. LegN(resp., Neg) be
the set of critical (resp., regular) values of f.

(i) The set Npg (resp., Myit) is open (resp., closed) in M.

(if) The sets Nt and Neg, beinga-compact, are Borel subsets of N.

Regular values are easier to handle than critical ones.’sSiwebrem allows
one to restrict attention, when integrating, to such values

Theorem F.11 (Sard)[Mil97, Chapter 3] The set of critical values of a smooth
map of manifolds is negligible.

Lie groups and Haar measure

Definition F.12 A Lie group Gis a manifold with ambient space M@F) for some
nandF such thaG is a closed subgroup of GLIF).

This ad hocdefinition is of course not as general as possible but it ipkrand
suits our purposes well. For example, (BF) is a Lie group. By Lemma 4.1.15,
Un(F) is a Lie group.

Let G be a locally compact topological group, e.g., a Lie groupt jLée a
measure on the Borel sets@f We say thap is left-invariantif yA= u{ga|ac
A} for all Borel A C G andg € G. Right-invariance is defined analogously.

Theorem F.13Let G be a locally compact topological group.

(i) There exists a left-invariant measure on G (neitke® nor infinite on com-
pacts), calledHaar measurevhich is unique up to a positive constant multiple.
(ii) If G is compact, then every Haar measure is right-invariaartd has finite
total mass. In particular, there exists a unique Haar prottigbmeasure.

We note that Lebesgue measureRif is a Haar measure. Further, for any Lie
groupG contained in W(FF), the volume measurgs is by Proposition F.8(vi) and
Lemma 4.1.13(iii) a Haar measure.
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F.2 Proof of the coarea formula

Inthe rest of this appendix, we prove the coarea formulagiiéra 4.1.8. We begin
by introducing the notion of -adapted pairs of charts, prove a few preliminary
lemmas, and then provide the proof of the theorem. Lemméasdndl F.19 can
be skipped in the course of the proof of the coarea formuleatmincluded since
they are useful in Section 4.1.3.

Let f : M — N be a smooth map from anmanifold to ak-manifold and assume
thatn > k. Let 71: R" — RK be projection to the first coordinates. Recall that a
chart onM is a an open non-empty sub&t R" together with a diffeomorphism
Y from Sto an open subset of.

Definition F.14 A pair (W:S— U,®: T — V) consisting of a chart ofl and a
chart ofN is f-adaptedf

Scm{T)cR", Ucf V), foWw=dors,
in which case we also say that the openlset M is goodfor f.

The commuting diagram

W

R" O S —- U c M
mol ms | L flu bt
R o T 2 v c N

summarizes the relationships among the maps in questien her

Lemma F.15Let f: M — N be a smooth map from an n-manifold to a k-manifold.
Let pe M be a regular point. (Since a regular point exists, neceifgar > k.)
Then there exists an open neighborhood of p good for f.

Proof Without loss we may assume thdtc R" andN c R¥ are open sets. We
may also assume that= 0 € R" andq = f(p) = 0 RK. Write f = (f1,..., fy).
Letty,...,tn be the standard coordinatesRfi. By hypothesis, for some permuta-
tionoof {1,...,n}, puttingg; = fi fori =1,... . kandg =t, fori=k+1,...,n,
the determinant déjzldjgi does not vanish at the origin. By the inverse func-
tion theorem there exist open neighborhobld$ ¢ R" of the origin such that
(*) = (f1lus-- -, lustowrylus - -5 tom)lu) mapsU diffeomorphically toS. Take
Y to be the inverse ofx). Take® to be the identity map ol to itself. Then
(W, @) is an f-adapted pair of charts and the origin belongs to the imagié of

O
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Proposition F.16Let f: M — N be a smooth map from an n-manifold to a k-
manifold. Let Meg C M be the set of regular points of f. Fix@N such that
f=1(q) N Mreg is nonempty. Then:

(i) Mregn f~1(q) is a manifold of dimension-a k.

(if) For every pe MregN f~1(q) we haveTp(MregN f~1(q)) = ker(Tp(f)).

Proof We may assume th,eg # 0 and hence > k, for otherwise there is noth-
ing to prove. By Lemma F.15 we may assume t#at R" andN c R* are open
sets and thatf is projection to the firsk coordinates, in which case all assertions
here are obvious. O

We pause to introduce some apparatus from linear algebra.

Definition F.17 Let f : E — F be a linear map between Euclidean spaces and let
f*:F — E be the adjoint off. The generalized determinalitf) is defined as the
square root of the determinant bf* : F — F.

We emphasize thal(f) is always nonnegative. If a linear mdp R" — RX is
represented by k-by-n matrix A with real entries, and the Euclidean structures
of source and targeft are the usual ones, théif)? = de AAT). In general, we
haveJ(f) # 0 if and only if f is onto. Note also that if is an isometry, then
J(f)=1.

Lemma F.18Fori=1,2 let fi: EE — F be a linear map between Euclidean
spaces. Letqf® f, . E; @ E; — F1 & F, be the orthogonal direct sum of &nd 5.
Then we have @ ') = J(f)J(f').

Proof This follows directly from the definitions.

Lemma F.19Let f: E — F be a linear map between Euclidean spaces. Let
D C ker(f) be a subspace such that-Dand F have the same dimension. Let
X1,...,% € D+ be an orthonormal basis. Ldl : E — D+ be the orthogonal
projection. Then: (i) 3f)? = def';_; (fx;, fx)). (ii) J(f)? is the determinant of
theR-linear operatorfo f*o f : D~ — D*.

Proof Since(fx, fxj)r = (x,Mf*fx;)r, statements (i) and (ii) are equivalent.
We have only to prove statement (i). Extexd...,X, to an orthonormal basis
of Xg,..., Xk Of E. Letys,...,y, be an orthonormal basis &f. Let A be the
n-by-n matrix with entrieqy;, fx;)e, in which casé" Ais then-by-n matrix with
entries(fx;, fxj)e. Now make the identificationg = R™k andF = R" such a
way thatxy, ..., %k (resp.yi, .. .,yn) becomes the standard basigifi® (resp.,
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R"). Thenf is represented by the matrjA 0], where Oc Mat,.k. Finally, by
definition,J(f)? = defA 0][A0]" = detAT A, which proves the result. 0

Lemma F.20Let f: E — F be an onto linear map from an n-dimensional Eu-
clidean space to a k-dimensional Euclidean space. {xgt" , and {yi}¥ ; be
bases (not necessarily orthonormal) for E and F, respelstiseich that {x;) =i
fori=1,... kand f(x)=0fori=k+1,...,n. Then we have

n n k
I(1)* detlx,x)e = det (x.x)e det(yi,y))e-

Proof Let A (resp. B) be then-by-n (resp. k-by-k) real symmetric positive definite
matrix with entriesAij = (X, Xj)e (resp.,Bij = (i,Yj)r). LetC be the(n—k)-by-
(n—K) block of A in the lower right corner. We have to prove ttigf )> detA =
detCdetB. MakeR-linear (but in general not isometric) identificatioBs= R"
andF = R¥ in such a way thafx }!"_; (respectively{y;}X ,) is the standard basis
in R" (respectivelyR¥), and (hencef is projection to the firsk coordinates.
Let P be thek-by-n matrix with 1's along the main diagonal and O’s elsewhere.
Then we havefx = Px for all x € E. Let Q be the uniquen-by-k matrix such
that f*y = Qyfor all y € F = R¥. Now the inner product oE is given in terms
of A by the formula(x,y)e = x" Ay and similarly (x,y)r = x"By. By definition
of Q we have(Px)TBy = x" A(Qy) for all x € R" andy € RX, hencePTB = AQ,
and henc® = A~1PTB. By definition ofJ(f) we havel(f)? = de{PA"'PTB) =
det PA~1PT) detB. Now decomposd into blocks thus:

A:[a b}, a—PAP', d=C.
c d

From the matrix inversion lemma, Lemma A.1, it follows that/@A—1PT)
= detA/ detC. The result follows. O

We need one more technical lemma. We continue in the setfifdgn@orem
4.1.8. For the statement of the lemma we also fixfaadapted paif¥ : S —
U,®: T — V) of charts. (Existence of such implies that k.) Let 71: R" — RK
be projection to the firdt coordinates. Lefr: R" — R" X be projection to the last
n—k coordinates. Givehe T such that the set

§ = {xeR"¥|(t,x) e U}
is nonempty, the map
W= (x— W(t,x): § = UN T (1))

is chart ofMregN f~1(®(t)), and hence the correction factog,, see Definition
F.6, is defined.
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Lemma F.21Notation as above, for alls S we have
I(Ty(g (F))ow(s) = gy, (7(s)) 0o (T1(s)).

Proof Use Lemma F.20 to calculadgTy s (f)), taking{(di¥)(s) } L, as the basis
for the domain ofl'y(g) (f) and{(a®)(1(s)) }_, as the basis for the range. O

Proof of Theorem 4.1.8:We may assume thateq 7 0 and hence > k, for other-
wise there is nothing to prove. Lemma F.21 expresses theifumg— J(Tp(f))
locally in a fashion which makes continuity dfteq clear. MoreoveMc it = {p €
M| J(Tp(f)) = 0}. Thus the function in question is indeed Borel-measurdbie.
fact it is continuous but to prove that fact requires uglimiulas.) Thus (i) of
the setMcit No contribution is made to any of the integrals under comatitm,
we may assume thid = Mieg. We may assume thtis the indicator of a Borel
subse” C M. By Lemma F.15 the manifolil is covered by open sets good for
AccordinglyM can be expressed as a countable disjoint union of Borel aets e
of which is contained in an open set good forsayM = [JMy. By monotone
convergence we may replageby AN My for some indexa, and thus we may
assume that for some-adapted paif¥: S— U,®: T — V) of charts we have
A C U. We adopt again the notation introduced in Lemma F.21. We hav

Jad(Tp(f))dpm(p) Jo-1() I(Tw(g (f))dlsw(s)
= [ (o2 dls 0 (9) dero(t)
= JUant-1(q 9Ps-1(g)(P))dPn ().
At the first and last steps we appeal to Proposition F.8(ixtvicharacterizes the
measurep.). At the crucial second step we apply Lemma F.21 and Fubini's

theorem. The last calculation proves both the measunabgisertion (ii) and the
integral formula (iii). O

F.3 Metrics, connections, curvature, hessians, and the lage-Beltrami
operator

We briefly review some notions of Riemannian geometry. Altiioin this book
we work exclusively with manifolds embedded in Euclideaacn all formulas in
this subsection can be understood in the general settingeaid&nian geometry.

Let M be a manifold of dimensiom, equipped with a Riemannian metgg
and letu be the measure naturally associated.t®y definition,g is the specifi-
cation for everyp € M of a scalar produdp onTp(M). In the setup of manifolds
embedded in some Euclidean space that we have addpgéd,) is a subspace
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of the ambient Euclidean space, the Riemannian mejris given by the restric-
tion of the Euclidean inner product to that subspace, anddhene measurg
coincides with the measupg, given in Proposition F.8.

LetC*(M) denote the space of real-valued smooth functionslon

Definition F.22 (i) A vector field(on M) is a smooth map frorp € M to Tp(M).
Given a vector fieldX and a smooth functiofi € C*(M), we define the func-
tion X f € C*(M) by the requirement that f(p) = %f(y(t))h:o for any curvey
throughp with y'(0) = X(p).

(i) If X,Y are vector fields, we defirggX,Y) € C*(M) by

9(X,Y)(p) = gp(X(p), Y(P))-
TheLie bracket[X,Y] is the unique vector field satisfying, for dlle C*(M),
X, Y] =X(Y f) = Y(Xf).

(ii) A collection of vector fieldsLy,...,Lmn defined on an open st C M is a
local frameif Li(p),...,Lm(p) are a basis offn(M) for all pc U. The local
frame{L;} is orthonormalif g(L;,L;) = §;.

Definition F.23 (i) For f € C*(M), thegradientgrad f is the unique vector field
satisfyingg(X,gradf) = X f for all vector fieldsX. If {L;} is any local orthonor-
mal frame, then gradl = 5;(L; f)Li.

(i) A connectior] is a bilinear operation associating to vector fieklandY a
vector fielddx Y, such that for anyf € C*(M),

OexY = fOxY, Dx(fY) = fDXY+X(f)Y.

The connectiofl is torsion-freeif OxY — Oy X = [X,Y].
(iii) The Levi-Civita connection is the unique torsion-free connection satigfyi
that, for all vector field,Y, Z,

Xg(Y,Z) = g(0OxY,Z)+g(Y,0OxZ).

(iv) Given a vector fieldX, thedivergencelivX € C*(M) is the unique function
satisfying, for any orthonormal local fran{é; },

divX = z o(Li, [Li, X]).
]
Alternatively, for any compactly supportdde C*(M),

/g(gradf,x)du = —/fdideu.
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(v) The Laplace—BeltrambperatorA on C*(M) is defined byAf = divgradf.
With respect to any orthonormal local frarfile } we have

Af =S L+ > (L, [Li, L)L f.
N

From part (iv) of Definition F.23, we have the classical im&gpn by parts for-
mula: for all functionsg,y € C*(M) at least one of which is compactly sup-
ported,

| algradg.gradwdu = - [ (). 1)

In our setup of manifolds embedded in a Euclidean space,rtient gradf
introduced in definition F.23 can be evaluated at a ppiatM by extendingf,
in a neighborhood op, to a smooth functiorf in the ambient space, taking the
standard gradient of in the ambient space @t and finally projecting it orthog-
onally toTp(M). We also note (but do not use) that a connection gives rigeeto t
notion of parallel transport of a vector field along a curve] @ this language the
Levi-Civita connection is characterized by being torsfoge and preserving the
metricg under parallel transport.

We use in the sequel the symhlolto denote exclusively the Levi-Civita con-
nection. It follows from part iv) of Definition F.23 that fornaector fieldX and a
orthonormal local framéL, }, divX = 5;9(0., X, L), and

29(0xY,2) = Xg(Y.Z)+YJZ X)—Zg(X,Y) (F2)
+9([X.Y1,2) +9(1Z.X].Y) +9(X, [Z.Y])

for all vector fieldsX, Y andZ.

Definition F.24 Given f € C*(M), we define thédessianHesd to be the opera-
tion associating to two vector fieldsandY the function

Hesgf)(X,Y) = (XY —0OxY)f =g(Oxgradf,Y) = Hesgf)(Y,X).

(The second and third equalities can be verified from the iiefinof the Levi-
Civita connection.)

We have Hegd ) (hX,Y) =Hesg f)(X,hY) =hHesg f)(X,Y) forallhe C*(M)
and hencéHesgf)(X,Y))(p) depends onl)X(p) andY(p).
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With respect to any orthonormal local frarfflie }, we have the relations

Hesgf)(Li,Lj) = (LiLj—Oylj)f, (F.3)
Af = S(L2-0uL)f =S Hesgf)(Li,Li).
2 2
In this respect, the Laplace—Beltrami operator @®atractionof the hessian. The
divergence, the hessian and the Laplace—Beltrami opeamaitocide with the usual
notions of gradient, hessian and Laplacian wives- R™ and the tangent spaces
(all of which can be identified witR™ in that case) are equipped with the standard
Euclidean metric.

We are ready to introduce tliemannian curvature tensand its contraction,
theRicci curvature tensor

Definition F.25 (i) The Riemann curvature tensor(R-) associates to vector fields
X,Y an operatoR(X,Y) on vector fields defined by the formula

R(X,Y)Z = Ox(OyZ) — Oy(Ox2Z) — Ok v Z-

(il) The Ricci curvature tensoassociates to vector fieldé andY the function
Ric(X,Y) € C*(M), which, with respect to any orthonormal local frarfig },
satisfies Ri€X,Y) = 3 9(R(X, Li)L;,Y).

We haveR(fX,Y)Z=R(X, fY)Z=R(X,Y)(fZ) = fR(X,Y)Zforall f € C*(M)
and hencgR(X,Y)Z)(p) € Tp(M) depends only oiX(p), Y(p) andZ(p). The
analogous remark holds for RiX,Y) since it is a contraction d®(X,Y)Z.

Many computations are simplified by the introduction of acsaletype of or-
thonormal frame.

Definition F.26 Let p € M. An orthonormal local framégL;} in a neighborhood
of pis said to begeodesiat p if (O Lj)(p) =0.

A geodesic local framéL;} in a neighborhoodl of p € M can always be built
from a given orthonormal local framgKi} by settingLi = 3 ; AjjKj with A
U — Mat, a smooth map satisfying(p) = Im, ATA = I, and (KiAj)(p) =
—0(0OkKj,Kk)(p). With respect to geodesic fram¢k;}, we have the simple
expressions

Hesgf)(Li,Lj)(p) = (LiL; f)(p), Ric(Li,Lj)(p) = (Z LG~ LiCh)(p).
(F.4)
whereCt = g(O,Lj, Li).
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Curvature of classical compact Lie groups

Let G be a closed subgroup and submanifold Gf(Il), where the latter is as
defined in Appendix E. In this situation both left- and rigtanslation inG are
isometries. We specialize now to the cAde= G. We are going to compute the
Ricci curvature ofs and then apply the result to concrete examples. In particula
we will provide the differential geometric interpretatiohProposition E.15.

The crucial observation is that in this situation, “all camggtions can be done
at the identity”, as we now explain. For eaghe T, (G), choose any curvg
throughl,, such that/(0) = X and letX be the vector field whose associated first
order differential operator is given X f)(x) = %f(xy(t))h:o forall f eC*(G)
andx € G. The vector fieldX does not depend on the choiceyof Recall that
[X,Y] =XY-=YXandX- Y =OtrXY* for X,Y € Mat,(F). For allX,Y € Ty, (G)
one verifies by straightforward calculation that

X.Y] € Ty, (G), [X.Y]=[X.Y], g(X,¥) =X-Y.

It follows in particular from dimension considerationsttesery orthonormal ba-
sis{Lq} for Ty, (G) gives rise to a global orthonormal franie, } onG.

Lemma F.27For all X,Y,Z,W € T),(G) we have

vt 1

05Y = SIXY], oRXV)ZW) = —2[[X.Y].Z] W,

and hence

oo 1
Ric(X,X) = _ZZ[[X’LG]’LG] - X, (F.5)
where the sum runs over any orthonormal badig } of T, (G).

Proof By formula (F.2) we havg(CyY,Z) = 1[X,Y]-Z, whence the result after
a straightforward calculation. O

We now consider the special cases- {U € Un(F) | detU =1} for F =R, C.
If F =R, thenG is thespecial orthogonal group S®), whereas iff = C, then
G is the special unitary group SN). Using now the notation of Proposition
E.15, one can show thd, (G) = sun(F). Thus, from (E.2) and (F.5) one gets
for G=SQN) or G = SU(N) that

B(N+2)
——

for every vector fieldX on G, wheref3 =1 for SQN) and3 = 2 for SU(N). We
note in passing that & = Un(C) then RigX, X) =0 for X =ily € Ty (Un(C)),

Ric(X,X) :( —1>g(X,X), (F.6)
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and thus no uniform strictly positive lower bound on the Riemsor exists for
G = UN(C). We also note that (F.6) remains valid 8r= Un(H) and3 = 4.

G Appendix on Operator Algebras
G.1 Basic definitions

An algebra is a vector spaces over a fieldF equipped with a multiplication
which is associative, distributive aidbilinear, i.e., forx,y,z€ o anda € F:

* X(y2) = (xy)z,
o (X+Y)z=Xz+Yyz X(y+2) =Xy+Xz
e a(xy) = (ax)y =x(ay).
We will say thate is unital if there exists a unit elememte </ such thake=
ex= X (eis necessarily unique becauseifs also a unit thee€ = ¢ = ee=¢).

A group algebra KG) of a group(G, *) over a fieldF is the sef{y 4ccag9
ag € F} of linear combinations of finitely many elements®fwith coefficients
in F (aboveag = 0 except for finitely many). F(G) is the algebra oveff with
addition and multiplication

gé agg+ g; bgg = gé(ag +bg)g, <géagg> (gé bgg> = gvéGagbhg xh,

respectively, and with product by a scale§ ycc agg = ¥ gec(bag)g. The unit of
F(G) is identified with the unit of5.

A complex algebras an algebra over the complex fieltl A seminormon a
complex algebraz is a map frome into R™ such that for alk,y € & anda € C,
fax]| = laflixll, x4yl < X[+ [yl il < I - [lyll,

and, if <7 is unital with unite, also||e|| = 1. Anormon a complex algebra/ is a
seminorm satisfying thaitx|| = 0 impliesx = 0 in /. A normed complex algebra
is a complex algebra/ equipped with a nornj.||.

Definition G.1 A complex normed algebrge,||.||) is aBanach algebraf the
norm|| - || induces a complete distance.

Definition G.2 Let ¥ be a Banach algebra.

¢ An involutionon <7 is a map* from ./ to itself that satisfiega+ b)* =
a‘+b*, (ab)* =b*a*, (Aa)* =Aa" (for A € C), (a")* =aand||a*|| = a.



G. OPERATORALGEBRAS 455

e o/ is aC*-algebraif it possesses an involutian— a* that satisfiega*al| =
all?

e Zis a (unital) C*-subalgebraof a (unital)C*-algebra if it is a subalgebra
and, in addition, is closed w.r.t to the norm and the invalutiand contains
the unit).

HereA denotes the complex conjugateafNote that the assumptiofa|| = ||a*||
ensures the continuity of the involution.

The following collects some of the fundamental propertieBanach algebras
(see [Rud9l, pp. 234-235)).

Theorem G.3Let.«7 be a unital Banach algebra and let(@&) denote the invert-
ible elements of7. Then, G<7) is open, and it is a group under multiplication.
Furthermore, for every & <7, the spectrum of a, defined as

spa)={A €C:Ae—x&G()}
is nonempty, compact, and defining the spectral radius
p(a)=sup{|A|: A € sp(a)},
we have that
p(a) = lim a7 = inf |]a"|*/",
(The last equality is valid due to sub-additivity.)

An elementa of &7 is said to beself-adjoint(resp.,normal, unitary) if a* = a
(resp.,a*a = aa", a*a= e = ad"). Note that if.<7 is unital, its unite is self-
adjoint. Indeed, for alk € <7, we havee*x = (X*e)* = x, similarly xe* = x, and
hencee* = e by uniqueness of the unit.

A Hilbert space His a vector space equipped with an inner produet that is
complete for the topology induced by the nofm| := /(-,-).

Let Hy, H, be two Hilbert spaces with inner produgts )n, and(-,-)n, respec-
tively. Thedirect sum H® H, is a Hilbert space equipped with the inner product

<(Xlay1)’ (X2ay2)>H1OH2 = <X17X2>H1 + <y17y2>H2~ (Gl)
Thetensor product H® Hy is a Hilbert space with inner product
(X1 ®@Y1,X @ Y2)HyoH, = (X1, X2)H; (Y1,Y2)H, - (G.2)

Let B(H) denote the space of bounded linear operators on the Hilpades
H. We define the adjoinT* of any T € B(H) as the unique element &(H)
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satisfying
(Txy)=(xT7y) vxyeH. (G.3)

The spacd®(H), equipped with the involutior and the norm

[T llgr) = sup{{Txy)| [IXI| = [lyll = 1},

has a structure df*-algebra, see Definition G.2, ardfortiori that of Banach
algebra. Therefore, Theorem G.3 applies, and we denote(fdy) $ipe spectrum
of the operatofl € B(H).

We have (see [Rud91, Theorem 12.26]) the following.

Theorem G.4Let H be a Hilbert space. A normal & B(H) is

(i) self-adjointiff SgT) lies in the real axis,
(i) unitary iff spT) lies on the unit circle.

The GNS construction (Theorem 5.2.24) discussed in the tegirtan be used
to prove the following fundamental fact (see [Rud91, Theofe.41]).

Theorem G.5For every C-algebra.«/ there exists a Hilbert space Jand a
norm-preserving--homomorphisnm,, : &/ — B(H,,).

G.2 Spectral properties

We next state the spectral theorem. L&tbe ac-algebrain a se®. A resolution
of the identity(on .#) is a mapping

X:#—B(H)

with the following properties:

() x(0)=0,x(Q)=1.
(i) Eachy(w) is a self-adjoint projection.
(i) x(w'Nw’)=x(w)x(w").
(iv) f N’ =0, x(0UW") = x()+ x ().
(v) For everyx € H andy € H, the set functionyxy(w) = (x(w)x,y) is a
complex measure o .

When.# is theo-algebra of all Borel sets on a locally compact Hausdorftspa
it is customary to add the requirement that eggh is a regular Borel measure
(this is automatically satisfied on compact metric spacdd)en we have (for
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bounded operators, see [Rud91, Theorem 12.23], and forumdea operators,
see [Ber66] or references therein).

Theorem G.6If T is a normal linear operator on a Hilbert space H with domai
dense in H, there exists a unique resolution of the ideption the Borel subsets
of sp(T) which satisfies

T :/ Adx ().
sp)

We cally thespectral resolutionf T.

Note that sPT) is a bounded set i € B(H), ensuring thajxy is a compactly
supported measure for ally € H. For any bounded measurable functibron
sp(T), we can use the spectral theorem to defifig) by

£(T) = / FA)dx(A).
(M= Jogr, TA)IXR)
We then have (see [Rud91, Section 12.24]) the following.

Theorem G.7

(i) f— f(T) is a homomorphism of the algebra of all bounded Borel func-
tions on sgT) into B(H) which carries the functiof to |, the identity into
T and which satisfie§(T) = f(T)*.
@) 1M <sup{|f(A)]:A espT)}, with equality for continuous f.
(ii) If fn convergesto f uniformly on ép), || fa(T) — f(T)|| goes to zero as n
goes to infinity.

The theory can be extended to unbounded operators as follawsperator
T onH is a linear map fronH into H with domain of definition2(T). Two
operatorsT, S are equal if2(T) = 2(S) andTx= Sxfor x€ 2(T). T is said
to be closedif for every sequencéxn}neny € 2(T) converging to some € H
such thafT x, converges aa goes to infinity toy, one hax € Z(A) andy = Tx
Equivalently, the graplih, T h)pc () in the direct sumH @ H is closed. T is
closableif the closure of its graph itd @ H is the graph of a (closed) operator.
The spectrum g) of T is the complement of the set of all complex numbers
A such that(Al — T)~! exists as an everywhere defined bounded operator. We
next define thadjointof a densely defined operator if the domainZ(T) of the
operatorT is dense irH, then the domair®(T*) consists, by definition, of all
y € H such that(Tx y) is continuous fox € 2(T). Then, by density of7(T),
there exists a uniqgug € H such thatTx y) = (x,y*) and we then sel*y := y*.
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A densely defined operatdr is self-adjointiff 2(T*) = 2(T) andT* =T. We
can now state the generalization of Theorem G.6 to unbouopletors.

Theorem G.8[DuS58, p. 1192] Let T be a densely defined self-adjoint dpera
Then, its spectrum is real and there is a uniquely determiegdlar countably
additive self-adjoint spectral measuye defined on the Borel sets of the real line,
vanishing on the complement of the spectrum, and relateddy thie equations

_ 2 o
(a) 9(T>—{er|/sm)A dixr(A)xx) < e},
(b) Tx:rm/n Adxr(A).

Another good property of closed and densely defined opexrgébat necessarily
self-adjoint) is the existence offmlar decomposition

Theorem G.9[DuS58, p. 1249] Let T be a closed, densely defined operator.
Then, T can be written uniquely as a productEPA where P is a partial isometry,
i.e. P'P is a projection, A is a nonnegative self-adjoint operatoe closures of
the ranges of A and Tcoincide, and both are contained in the domain of P.

Let &7 be a sub-algebra @(H). A self-adjoint operatol onH is affiliated
with o iff it is a densely defined self-adjoint operator such thatafioy bounded
Borel functionfon the spectrum oA, f(A) € «7. This is equivalent, by the spec-
tral theorem, to requiring that all the spectral projecsi¢r ([n,m]),n < m} be-
long to<Z (see [Ped79, p. 164]).

G.3 States and positivity

Lemma G.10[Ped79, p. 6] An element x of a‘Galgebra A isnonnegativex > 0,
iff one of the following equivalent conditions is true:

(1) xis normal and with nonnegative spectrum.
(2) x = y? for some self-adjoint operator y in A.

(3) xis self-adjoint and|t1—x|| <t foranyt> ||X||.
(4) xis self-adjoint and|t1 — x|| < t for some t> ||x||.

Lemma G.11[Ped79, Section 3.1] Latr be a linear functional on a Galgebra
(,%,]|.|]). Then, the two following conditions are equivalent:

(1) a(x*x) > 0forall x € .

(2) a(x) >0forallx>0in «.



G. OPERATORALGEBRAS 459

When one of these conditions is satisfied, we saydhathonnegative Then,a

is self-adjoint, i.e.or (X*) = a(x) and if &7 has a unitl,|a(x)| < a(1)]|X||.

Some authors use the temositivefunctional where we use nonnegative func-
tional.

Lemma G.12[Ped79, Theorem 3.1.3] i is a nonnegative functional on a*€
algebra.«z, then for all xy € o7,

la(yx)? < a(x'x)a(y"y).

G.4 von Neumann algebras

By Theorem G.5, ang*-algebra can be represented &"ssubalgebra oB(H),
for H a Hilbert space. So, let us fix a Hilbert spa¢eB(H) can be endowed with
different topologies. In particular, thetrong (resp.,weak topology onB(H) is
the locally convex vector space topology associated witfamily of seminorms
{x—||x&]| : & € H} (resp., the family of linear functiona{s—(xn &) : £,n € H}).

Theorem G.13 (von Neumann’s double commutant Theoremlror a subset
. C B(H) that is closed under the involutioh define,

<" :={beB(H):ba=ab, Vac .v}.
Then, a C-subalgebra« of B(H) is a W* -algebra if and only if” = .

We have also the following.

Theorem G.14[Ped79, Theorem 2.2.2] Let¥ C B(H) be a subalgebra that is
closed under the involutiohand contains the identity operator. Then the follow-
ing are equivalent:

() & =4
(i) < is strongly closed.
(i) < is weakly closed.

In particular,&7” is the weak closure of7. The advantage of a von Neumann
algebra is that it allows one to construct functions of omsawhich are not
continuous.

A useful property of self-adjoint operators is their beloavinder closures.
More precisely, we have the following. (See [Mur90, Theore 3] for a proof.)
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Theorem G.15 (Kaplansky Density Theorem)let H be a Hilbert
space and let7 C B(H) be a C-algebra with strong closures. Let.«s,; and Bsa
denote the self-adjoint elements@fand #. Then,

(i) sais strongly dense ifBs,.
(i) The closed unit ball ofz; is strongly dense in the closed unit ball&t,.
(iii) The closed unit ball of7 is strongly dense in the closed unit ball.&f

Von Neumann algebras are classified into three types: 1, dII&fLi92, Chap-
ter 6]. The class ofinite von Neumann algebras shall be of special interest to
us. Since its definition is related with projections projestwe first describe the
latter (see [Li92, Definition 6.1.1] and [Li92, Proposititr8.5]).

Definition G.16 Let <7 be a von Neumann algebra.

e A projectionis an elemenp € <7 such thap = p* = p.

e We say thatp < g if q— p is anonnegativeslement ofe7. We say that
p ~ qif there exists & € &/ so thatp = vw* andg = v*v.

e A projectionp € </ is said to bdinite if any projectionq of .«# such that
g < pandqg~ p must be equal te.

We remark that the relatior in point 2 of Definition G.16 is an equivalence
relation.

Recall that for projectionp, q € B(H), theminimumof p andq, denotedp A q,
is the projection frontH onto pHNgH, while themaximum v qis the projection
from H onto pH+gH. The minimump A g can be checked to be the largest
operator dominated by bofnandq, with respect to the ordet. The maximum
pV g has the analogous least upper bound property.

The following elementary proposition clarifies the analdgstween the role
the operations of taking minimum and maximum of projectiptesy in non-
commutative probability, and the role intersection andoasiplay in classical
probability. This, and other related facts concerninggectipns, can be found in
[Nel74, Section 1], see in particular (3) there. (For sim#iatements, see [Li92].)
Recall the notions of tracial, faithful and normal states Befinitions 5.2.9 and
5.2.26.

Proposition G.17Let (<7, 1) be a W'-probability space, witlt tracial. Let pq e
&/ be projections. Then pg,pvqe o andt(p)+1(q) =T(pAQ)+T(PV Q).

As a consequence of Proposition G.17, we have the following.
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Property G.18 Let (<7, 1) be a W'- probability space, subset of(B) for some
Hilbert space H. Assume thatis a a nhormal faithful tracial state.

(i) Lete >0and pq be two projections in7 so thatr(p) > 1— ¢ andt(q) >
1—¢. Then, withr=pAq,1(r) > 1—2¢.

(i) If pj is an increasing sequence of projections converging wetakiye
identity, thent (p;) goes to one.

(iii) Conversely, if pis an increasing sequence of projections such ttax)
goes to one, then; gonverges weakly to the identity.i.

Proof of Property G.18. The first point is an immediate consequence of Propo-
sition G.17. The second point is a direct consequence of aldynof T while the
third is a consequence of the faithfulness of O

Definition G.19 A von Neumann algebr#/ is finite if its identity is finite.

Von Neumann algebras equipped with nice tracial states rite fion Neumann
algebras, as stated below.

Proposition G.20[Li92, Proposition 6.3.15] Lets be a von Neumann algebra. If
there is a faithful normal tracial state on <7, 27 is a finite von Neumann algebra.

We also have the following equivalent characterizationaimal states on a von
Neumann algebra, see [Ped79, Theorem 3.6.4].

Proposition G.21Let ¢ be a state on a von Neumann algebrain B(H). Let
{¢i }i>0 be an orthonormal basis for H and put forexB(H), Tr(x) = 5i(X{, ).
Then, the following are equivalent:

e @isnormal;
e there exists an operator x of trace class on H such thg) = Tr(xy);
e (@is weakly continuous on the unit ball of .

G.5 Noncommutative functional calculus

We taket to be a linear form on a unital complex algelwaequipped with an
involution x such that for alb € <7,

7(ad@") > 0. (G.4)
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Then, for alla,b € <7, we haver(a*b) = 7(b*a)* and the noncommutative version
of Cauchy—Schwartz inequality, namely
7(a*b)| < T(a*a)ZT(b*b)Z. (G.5)
(See, e.g., [Ped79, Theorem 3.1.3].) Moreover, by an ajmic of Minkowski's
inequality,
((a+b)*(a+b))? < (aa’)? + 1(bb")?. (G.6)

Lemma G.22If 7 is as above and in addition, for some nofim| on 7, |1(a)| <
|lal| for all a € <7, then

|T(b*a*ab)| < ||a*al|T(b*b). (G.7)
Proof By the Cauchy—Schwartz inequality (G.5), the claim is &ivi 7(b*b) = 0.
Thus, fixb € & with t(b*b) > 0. Define
_ 1(b*ab)
®(@) = Tpp) -
Note thatry, is still a linear form ongZ satisfying (G.4). Thus, for aliy,ap € <7,
by the Cauchy—Schwartz inequality (G.5) appliedigta;az),

|T(b*ajazb)|? < T(b*ajaib)T(b*asab).
Takinga; = (a*a)zn anday the uniting? yields

1(b*(a*a)?'b)? < 1(b*(a*a)?""

b)r(b*b).
Chaining these inequalities gives

1(b*(a*a)b) < T(b*(a*a)?'h)? "1(b*b)* 2" < ||b*(a*a)?'b||? "T(b*b)* 2",
Using the sub-multiplicativity of the norm and taking theit asn — oo yields
(G.7). O

We next assume thét?, «, || - ||) is @ von Neumann algebra amé tracial state
on (< ,*). The following non-commutative versions of Holder inelifies can be
found in [Nel74].

Forac </, we denotdal = (aa*)%. We have, fora,b € <7, b a self-adjoint
bounded operator,

[T(ab)| < [[bf[z(la]). (G.8)

We have the non-commutative Holder inequality saying tbaall p,q > 1 such
that 5+ = 1, we have

IT(ab)] < (@ at(Jo|P)?. (G.9)
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More generally, see [FaK86, Theorem 4.9(i)] forralt 0, andp 1 +q1=r"1,

1
r

I7(jabl")| < (jal%at(|blP)? . (G.10)

This generalizes and extends the matricial case of (A.13).

H Stochastic calculus notions

A good background on stochastic analysis, at a level s@iteblour needs, is
provided in [KaS91],[ReY99].

Definition H.1 Let (Q,.#) be a measurable space.

e A filtration .#;,t > 0, is a non-decreasing family of subfields of.#.

e Arandom timeT is a stopping time of the filtratio#, t > 0, if the event
{T <t} belongs to thes-field .% for allt > 0.

e A process Xt > 0, is adapted to the filtratiog if for all t > 0, X is an
F-measurable random variable. In this case, we{s@y%;,t > 0} is an
adapted process

o Let{X;,.Z,t > 0} be an adapted process, so thgi;|] < o« for all t > 0.
The proces$,t > 0 is said to be a4 martingaleif for every 0< s <
t < oo,

E[xtLgs] =Xs.

e Let X, t >0, be anZ martingale, so thaE[X?] < « for allt > 0. The
martingale bracketX)¢, t > 0 of X; is the unique adapted increasing pro-
cess so thax? — (X); is a martingale for the filtratior#.

e If X,t >0, andY;, t > 0, are.%; martingales, theicross-brackets defined
as(X,Y) = [(X+Y)— (X=Y)i|/4.

In case the martingal¥; possesses continuous patkX): equals its quadratic
variation. The usefulness of the notion of bracket of a cardus Martingale is
apparentin the following.

Theorem H.2 (Levy)Let{X, %,t > 0} with Xy = 0 be a continuous, n-dimensional
adapted process such that each component is a contin#fpwsartingale and the
martingale cross brackeiX',X1); = & jt. Then the components Xre indepen-
dent Brownian motions.
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Let X,t > 0 be areal-valued# adapted process, and Bbe a Brownian motion.
Assume thaE[ [y X2dt] < co. Then,

X(dB[ = ||m XTk(BT k+l —BLnk)

r‘l~>oo

exists, the convergence holdsliA and the limit does not depend on the above
choice of the discretization ¢, T| (see [KaS91, Chapter 3)).

One can therefore consider the problem of finding solutiotise integral equa-
tion
t t
=x0+/0 o(xs)dBS+/0 b(Xs)ds (H.1)

with a givenXp, o andb some functions oiR", andB a n-dimensional Brownian
motion. This can be written under the differential form

dX = 0(Xs)dBs+ b(Xs)ds. (H.2)

There are at least two notions of solutions; the strong mwiatand the weak
solutions.

Definition H.3 [KaS91, Definition 5.2.1] Astrong solutiorof the stochastic dif-
ferential equation (H.2) on the given probability sp&@e.%) and with respect to
the fixed Brownian motio8 and initial conditioné is a procesgX,t > 0} with
continuous sample paths so that

(i) X is adapted to the filtratio## given by.% = 0(% U.4"), with
% = 0(Bs,s<t;Xp), 4/ ={NCQ,3G € %, withN C G,P(G) =0}.

(i) PXo=¢&)=1.
(iil) P(Jo(Ibi(Xs)| + |aij (Xs)|2)ds < @) = L for alli, j <n.
(iv) (H.1) holds almost surely.

Definition H.4 [KaS91, Definition 5.3.1] Aveak solutiorof the stochastic differ-
ential equation (H.2) is a paiiX,B) and a triple(Q, .#,P) so that(Q, #,P) is a
probability space equipped with a filtratiaf, B is ann-dimensional Brownian
motion, andX is a continuous adapted process, satisfying (3) and (4) imifien
H.3.

There are also two notions of uniqueness;

Definition H.5 [KaS91, Definition 5.3.4]
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e We say thastrong uniquenessolds if two solutions with common prob-
ability space, common Brownian moti@and common initial condition
are almost surely equal at all times.

e We say thatweak uniquenes®r uniqueness in the sense of probability
law, holds if any two weak solutions have the same law.

Theorem H.6 Suppose that b and satisfy
[b(t,x) =b(t,y)[| +[lot,x) —ot.y)ll < Klx=yl|,

Ib(t,x)[|?+ [lo(t, )| < K21+ [x]%),

for some finite constant K independent of t. Then, thereseaisinique solution
to (H.2), and it is strong. Moreover, it satisfies

i
B[ bt %) dy <.
forall T > 0.

Theorem H.7 Any weak solutiongX',B', Q' .Z' P')i_; , of (H.2) with o = I,
so that

T .
B[ [ bt X)]?d] < e,
forall T <o andi= 1,2, have the same law.
Theorem H.8 (Burkholder—Davis—Gundy inequality) There exists universal con-

stantsAm, Am so that for all me N, and any continuous local martinga(#/;,t >
0) with bracket(A,t > 0),

AmE (AT < E(supMZ™) < ApnE(AT).
t<T

Theorem H.9 (Itd, Kunita—Watanabe) Let f : R—R be a function of clasg?
and let X= {X,.%;;0 <t < o} be a continuous semi-martingale with decompo-
sition
X =Xo+ M+ A,
where M is a local martingale and A the difference of contumsjcaadapted, non-
decreasing processes. Then, almost-surely,
t t
(%) = 100+ [ FOwdMe+ [ F0G)dA

2
+%/ £(Xs)d(M)s, 0<t < o,
0
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Theorem H.10 (Novikov)Let {X,.%:,t > 0} be an adapted process with values
in RY such that

E[et o S < o

forall T € R*. Then, if{WM, %4,t > 0} is a d dimensional Brownian motion, then

t 1 pt0d
M :exp{/O Xu.d\/\(,_é/O zl(xtll)Zdu}
i=
is a.Z-martingale.

Theorem H.11 (Girsanov)Let {X;,.%,t > 0} be an adapted process with values
in RY such that

Ele /o S0l < o
Then, if{W,.%;,P,0<t < T} is ad dimensional Brownian motion,
_ . t
W =W —/ Xlds0<t<T,
0
is a d dimensional Brownian under the probability measure
_ T 1,7 d -
P=ex / AW — = du}p.
PLY, Yoo [ 5 (X)Pdu)
Theorem H.12Let {X,%,0 <t < o} be a submartingale whose every path is

right-continuous. Then for any > 0, for anyA >0

AP(sup % > A) <E[X/].

o<t<rt

We shall use the following consequence

Corollary H.13 Let{X,.%,t > 0} be an adapted process with valuegify, such
that

is uniformly bounded by the constant ALet {W,.%,t > 0} be a d dimensional
Brownian motion. Then for any 0O,
2

t L
P(sup | [ Xu.dW,| >L)<2e %7,
0<t<T JO
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Proof We denote in shoi; = féxu.dV\(J and write forA > 0,
P(sup [|>A) < P(supe™>e4+P(supe™>eh

0<t<T o<t<T ooty
2 A2A
< P( sup M7 JolXuldu > e)\A_zl)
0<t<T
2 A2
+P< sup e =7z Jolul?du > eAAzAT) .
0<t<T

A2t 24y . )

By Theorem H.10M, = e *Y%—% JoI%l*du js 5 non negative martingale. Thus,

By Chebyshev’s inequality and Doob’s inequality

A2AT A2AT A2AT
P( sup M; > eM‘_Z_) <e M T EM] =e M
o<t<T

Optimizing with respect td completes the proof. O

The next statement, an easy consequence of the Dubins-Bzliwee change
identities (see [KaS91, Thm. 3.4.6]), was extended in [R&ib& a much more
general setup than we need to consider.

Theorem H.14 (Rebolledo’s Theorem)et n€ N, and let My be a sequence of
continuous centered martingales with value®Rihwith bracket(My) converging
pointwise (i.e for all t> 0) in L* towards a continuous deterministic functigtt).
Then, for any T> 0, (Mx(t),t € [0,T]) converges in law as a continuous process
from [0, T] into R" towards a Gaussian process G with covariance

E[G(SG(1)] = @(tAS).
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General Conventions

Unless stated otherwise, f@a Polish spaceMi(S) is given the topology of weak
convergence, that makes it into a Polish space.

When we writea(s) ~ b(s), we assert that there exist&s) defined fors > 0 such that
lims_ ¢(s) = 1 andc(s)a(s) = b(s) for s>> 0. We use the notatioa, ~ by, for sequences
in the analogous sense.

a.s., a.e.
i.i.d.
CLT
LLN
LDP

Ho f-1
V7 I”l7 V/

A,V
Prob
—

1a(-), (")
A A0 AC
A\B

Trace(M), t{M)
4

Vi

almost surely, almost everywhere
independent, identically distributed (random aates)
Central Limit Theorem
Law of Large Numbers
Large Deviation Principle
composition of measure and a measurable map
probability measures
the empty set
(pointwise) minimum, maximum

convergence in probability

indicator onA and on{a}

closure, interior and complement Af

set difference

contained in (not necessarily properly)

metric and distance from pointto a setA

determinant oM, thatis3 (o) [ M; o)

where the sum runs over all permutation{df- - -, n}.

the signature of a permutatian

image ofA underf

inverse image of

composition of functions

logarithm, natural base

zero mean, identity covariance standard multitarisormal
order of

probability and expectation, respectively

real line, d-dimensional Euclidean space, (d positivegeiy
integer part of

trace of a matrixM, that isy M; i

transpose of the vector (matrix)

transpose and complex confugate of the vector (matrix)
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set consisting of the point

positive integers

scalar product ifR9

integral of f with respect tqu

functions onSwith continuous (resp., bounded continuous) derivatiyeswrderk
infinitely differentiable functions o (resp., with bounded derivatives)

infinitely differentiable functions o of compact support






