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Abstract
Consider the spherical integral I](f) (Dn,En) = [ exp{Ntr(UDNU*EN)}dmf’:,(U), where m?v denote the
Haar measure on the orthogonal group On when 8 = 1 and on the unitary group Uy when 8 = 2, and Dy, En
are diagonal real matrices whose spectral measures converge to up, . In this paper we prove the existence
and represent as solution to a variational problem the limit 7(%) (up,pr) :=lim N~ 2log IJ(\?)(D ~, En). This
limit appears in so called “matrix models” but also in the evaluation of large deviations of the spectral
measure of generalized Wishart matrices. Our technique is based on stochastic calculus, large deviations,

and elements from free probability.
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1 Introduction and statement of results

1.1 Asymptotics of spherical integrals

Let m?\, denote the Haar measure on the orthogonal group On when 8 = 1 and on the unitary group Uy
when 8 = 2. We shall consider in this paper the following integrals, which we will call spherical integrals,

given, for two N x N matrices Dy and Ey, by
19Dy, Ey) = / exp{Ntr(UDNU* Ex) }dm?,(U).

We will restrict ourselves to the case where Dy and En are symmetric if 8 = 1 and Hermitian if 8 = 2.
Such integrals appear in physics in the so-called matrix models where one is interested in evaluating
integrals of the form
n n n
ZN = /exp{z tI‘V;’(MZ') + Z CY”tI‘(MZM])}Hsz
i=1 i,j=1 i=1
where dM is the Lebesgue measure on the set Hy of N x N Hermitian (or symmetric) matrices and tr

denotes the usual trace on the set My of N x N matrices: tr(A) = Zi\; Ay;. Tt turns out that such an
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evaluation, even for the first term in the large N asymptotics, is highly non trivial. We refer to [18], [25],
[26] and [10] for research in this direction. As already noticed by [8], [25], when a;; is null if j # i + 1, it is
enough to obtain the first order asymptotics of the spherical integrals as the spectral measures of Dy and
EN converge in order to estimate Zy as N goes to infinity.

Thus, if for a N x N matrix A with eigenvalues (ay,---,an) we denote by g = (1/N) Zil 0q; the
spectral measure of A, one wishes to investigate the large N limit of N2 log IJ(Vﬁ) (Dy, En) when the spectral
measures ﬂgN and ﬂgN converge weakly towards the probability measures up and pg respectively.

The very same question arises when one studies the large deviations properties of the spectral measure
of Gaussian sample covariance matrices XTX™* with T a general positive definite matrix whose spectral
distribution converges as the size of the sample goes to infinity. The limiting spectral measure for such
matrices is well known, see [19], [21], and the evaluation of the large deviations properties for them was
actually the original motivation for this paper. The solution to this problem is described in Section 1.2
below.

Recall that by a formula due to Harish-Chandra, and used in this context by Itzykson and Zuber, see

[17, Appendix 5], whenever the eigenvalues of Dy and E are distinct then

IJ(\?) (DN, En) = det {(Z(?D]\;l))g((gf;\[(])} ,

where A(Dy) = [[;;(Dn(j) — Dn () and A(En) = [];;(En(j) — En(4)) are the VanderMonde determi-
nants associated with Dy, Enx. Although this formula seems to solve the problem, it is far from doing so, due
to the possible cancellations appearing in the determinant. Only particular cases can be handled, notably
the (trivial) case where one of Dy or E is a multiple of the identity, or the case where Dy (i) =1+ i/N,
implying up([1,z + 1)) = = for z € (0,1), in which case algebraic manipulations involving VanderMonde

determinants yield
1 — eEn(H)—En (i) )

(En(j) — En(i)) -

1Y (D, En) = Cn exp@NtrEN) [ | (

i<j

Obviously, the asymptotics of N2 log IJ(\?) (Dn, En) may easily be read off the above formula in this case.
Our approach to the evaluation of the above asymptotics is based on the theory of large deviations (we
refer to [9] for background on large deviations). It is somewhat related to the formal derivation of the same
asymptotics in [16], although both the language and methods differ. The key point is to relate the evaluation
of the spherical integrals with the deviations of the law of the spectral measure of a Gaussian Wigner matrix
with non degenerate initial data. Namely, let ]P%N be the law of the spectral measure of W + Dy for a
N x N Gaussian Wigner matrix W with real (resp. complex) entries if 5 =1 (resp. § = 2) (thatisa N x N
symmetric (resp. Hermitian) matrix with centered Gaussian entries of covariance N~!); for any measurable

subset A of the set M;(IR) of probability measures on IR, ]P%N is given by

P = (2t [ e T eraxy

;‘&N cA

with dX n the Lebesgue measure on the set of Hermitian (8 = 2) or symmetric (8 = 1) matrices.



Let d denote a distance on the space of probability measures on IR, compatible with the weak topology.
The main outcome of our large deviations analysis, see Corollary 1.6 below, is that if Dy is a sequence of

uniformly bounded operators, then for any probability measure p in M (RR),
llﬁ)l lim 1nf — log]P (d(ﬂ%N,,u) <) = %1&)1 lim sup logIP (d(ﬂ%N,u) <68) =—Jz(pp, 1),

with a function Ja(-,-) given in terms of the solution of an appropriate variational problem, see (1.6). The

main result of this paper is then the following consequence:

Theorem 1.1 Assume the existence of a compact subset K of IR such that supp ﬁﬁN C K for oll N € IN.
Moreover, suppose that ﬂgN (x2) is uniformly bounded (in N ). Suppose that ﬂgN and ﬂgN converge weakly
towards pg and pp respectively. Then,

. 1 . 1
I@mmma:;@jﬁmy@@mﬂm=—hmmma+hwm—Eg&ﬁmm+§/ﬁwmm
oo 14 1

where, for any p € M1(IR),
1w = 5 [ adu(@) - 5 [ 1og]o ~ yldu(a)duto)

1.2 Large deviation for the spectral measure of Gaussian sample covariance

matrices

Sample covariance matrices (or Wishart matrices) are matrices of the form
*
YN,M = XN,MTMXN,M .

Here, Xy ar is an N x M matrix with centered real or complex i.i.d. entries of covariance N ~1 and Ty is
an M x M Hermitian (or symmetric) matrix. These matrices are often considered in the limit where M /N
goes to a constant & > 0. Let us assume that M < N, and hence a € [0,1], to fix the notations. Then,
Yn,m has N — M null eigenvalues. Let (A1,---, Aa) be the M non trivial remaining eigenvalues and denote
M =M1 Z,Ai1 0x;- In the case where Tps = I and the entries of Xy, as are Gaussian, Hiai and Petz [12]
proved that the law of 4™ satisfies a large deviation principle. We generalize this result to positive definite
matrices Ty whose spectral measures converge, while keeping the hypothesis of Gaussian entries. In fact,

when dealing with Gaussian entries, we have the following formula for the joint law of the eigenvalues

1 B(N— _ —177
do (M, ) = ZTH|A,._A,-|ﬁHA3‘N M+1)—1 / e~ BT U DO g (U) [T 1a>0dAs
Ty i<j
1 B(N_M+1)—
= ZTHM,-—AJ-WH,\,?‘N MO (DO, 2Ta) ™) [ 1az0dAs
Tn i<y

with D(A) the M x M diagonal matrix with entries (A, --- , Aar) and, as before, 8 = 1 if the entries of X n s
are real, 8 = 2 if they are complex. Zf,(TM) is the normalizing constant such that aﬁ',f has mass one. This
formula can be found in [13, (58) and (95)].

From this formula, the asymptotics of the spherical integrals found in the previous section and Laplace

methods as developed in [1] (or [12]), one can easily obtain the following theorem



Theorem 1.2 Assume that (T, M € IN) is a sequence of matrices with eigenvalues (t}1,--- ,t}) such that
a) There exist p >n > 0, such that for each M and each 1 <i < M, n <tM < p.
b) As M tends to infinity, ﬂTMM = % Ef‘il 5t§\/1 converges towards a probability measure ur.
Then, the law of ™M under Uf,f satisfies a large deviation principle with the speed M? and the good rate
function Ws : My(IRT) — R™ given by

W) = 5 [1ogls — yl du@)duty) - Sa™ = 1) [log)du(e) ~ 19 o 22) )~ m

with

m = Vezé?fm{g [ 108l — sl dvl@ravty) - o~ = 1) [logla)dn(@) — 1) ur o (22) ).

Here, ur o (22)~ ! is the law of (2z)~! under ur, that is the law given, for all bounded measurable function
f by )
pr o (2) (1) = [ £ )dur (o)

The proof, as we mentioned above, is straightforward. Indeed, one notices that our assumptions on Ty
imply that TMl has uniformly bounded spectrum with converging spectral measure so that Theorem 1.1

applies and hence that the techniques of [1] yield
NP | 8
ljlén_}l&f e log Zy,, > —m.

Therefore, since
1P (D), (2Ta) ™) < e 8 iz,

and finding, following the techniques of [1], a finite constant C' such that

: -2 B
hﬁljgopM logZ(zp)_lI <C,

we conclude by Chebyshev’s inequality that for any L € R™,

1
lim sup e log af/l(ﬂM(a:) >L)=—(4p) 'L+C +m.

M —o0

As a consequence, af,, o (1

M)—1 is exponentially tight and one can apply again Theorem 1.1 and the ideas
of [1] to obtain the convergence of M 2 log Z@M towards —m and then the weak large deviation principle for
ohr o (M)

of the above weak large deviation principle and exponential tightness (see [9, Lemma 1.2.18]).

! with rate function Ws. The fact that W is a good rate function is now a direct consequence

1.3 Large deviations

We describe in this section our main large deviations results. Our analysis follows and improves the ideas of
[6] where large deviations estimates were obtained for the spectral process of Hy(-) + Dy with a Hermitian
(resp. symmetric) Brownian motion constructed as Wigner matrices but with Brownian motion entries (see
Sections 2 and 3 for details). To understand this point of view, consider the measure valued process given

by Y = ﬂﬁN(t) +p, s an element of the space C([0,1], M;1(IR)) of continuous measure-valued processes

4



furnished with the topology generated by the weak topology on M;(IR) and the uniform topology on [0, 1].

C([0,1], My (IR)) is a Polish space with respect to the distance given by

D(p,v) == sup d(u,vt)
t€[0,1]

with d the Wasserstein (also called the Monge-Kantorovich-Rubinstein) distance on M (IR) given by

d(p,v) == mpl/fmt /f¢4

[flle<1

where
‘f(w) - 1) ‘ |

Iflle = sup |£(a)| + sup | D=

zER w,yER

We shall establish a large deviation principle for the law of 4~ with a good rate function defined as follows.

We set, for any f,g € Cf’l(R x [0,1]), any s <t € [0,1], and any v. € C([0, 1], M1(IR)),

S5t (v /fwt@t /fms@s
/ /Buf 2, u)dvy (z)du — —/ //8 of(@u) = O f(y, )duu(a:)duu(y)du,

t
<fig>t, = / / B, (2, 0) By gz, w)dvy(z)du,

and

_ 1

5%y, f) = 8% (v, f) — 3 < LE>Y .
Set, for any probability measure p € M;(R),

S ( ) +00, if W 7é M,
v) = _ )
# SOL(y) := SUD 021 (R [o,1]) SUPo<s<i<1 Set(v, f), otherwise.

We often make the following assumption on the sequence D y:

Assumption 1.3

For both 8 =1 and 8 = 2, our main large deviations result is:

Theorem 1.4 1) For any pn € M1(IR), S, is a good rate function on C([0,1], M1 (IR)).
2) Assume Assumption 1.3. Then,
a) For any closed set F C C([0,1], M1(IR))

11msupN log P (N € F) < —gjrelgsup(’/)-

N—>oo

(1.1)

(1.2)

(1.3)



b) Denote

A={vec(0,1], Mi(R)); In>0, sup v(|z|**") < 00.}
t€[0,1]

Then, for any open subset O € C([0,1], M1(RR)),

NP | N 8 .
l}wélofmlogﬂj(ﬂ. €0) > _§V€18£ASHD(V)'

The main observation needed in order to relate this theorem with spherical integrals is that Hpy(1)
is in fact a Gaussian Wigner matrix so that ]P%N can be seen as the law of the spectral measure ¥ of
Hy(1) + Dy. Henceforth, as a consequence of the contraction principle of large deviations theory, see [9,
Theorem 4.2.1], we obtain from Theorem 1.4 the

Theorem 1.5 Assume Assumption 1.3. Then, for any probability measure p € M1 (IR),

1
—lim ginf{SuD (v) : veAd,p) <d} <limliminf mlog P%N (d(@X . p) < 90) (1.4)

6—0 6—0 N—oo

o 1 " B .
< limlimsup 7 log Py, (d(AXy, 1) <0) < =5 inf{S,, (1)s21 = i}

Observe here that, because A is not closed, it is not clear whether the left hand side of (1.4) should be equal
to —inf{S,,(v.) : v € A,v; = p} or not.
Finally, we shall prove in Theorem 4.1 below that, when up is compactly supported,

}irr(l)inf{SuD (v): veAd,p) <o} =inf{S,, (v.);1n = p} (1.5)
—
implying together with Theorem 1.5 that

Corollary 1.6 Assume Assumption 1.3 with a compactly supported up. Then, for any probability measure
u € Mi(R), N—2log ]Pf)N (d(p% . 1) < 8) converges as first N goes to infinity and then & goes to zero
towards the quantity —Ja(pup, u) given by

T, ) = 5 0 {8, (v );n = ). (1.6)

We refer to Section 6 for a discussion of candidates for the minimizing path in (1.6).

We remark that in the context of random matrix theory, it is natural to consider also the symplectic
ensemble, where the matrix considered are quaternion matrices, and 3 = 4, see [17]. To keep this article
within reasonable length, we do not treat this case in details here, except for mentioning that the methods

carry over to that case too.

The organization of this paper is as follows; in the next section we tackle the heart of the paper, namely
the proof of Theorem 1.4 where we consider Hermitian Brownian motions. The generalization to symmetric
Brownian motions is done in Section 3. We prove Corollary 1.6 in section 4. Equipped with these preliminar-
ies, we then relate in Section 5 the deviations of Wigner matrices with the asymptotics of spherical integrals,
and prove Theorem 1.1. In Section 6, we discuss the relation between our variational problem which gives
the value of Jg to the one appearing in [16]. The discussion of matrix models will be the subject of another

research.



2 Large deviation for the law of the spectral process of the Her-

mitian Brownian motion

The Hermitian Brownian motion H” starting from the origin is defined as the Markov process (Hn (t)) R+
with values in the space H of Hermitian matrices of dimension N and complex Brownian motions entries

so that

_tAs
- N

Explicitly, we can construct the entries {H}\’,’ t),t > 0,(3,5) € {1,.,N }} via independent real valued

. . 5 \1<k<I<N
Brownian motions (8,5, Bk1)1<i<j<n by

E[HY (t)HE ()] 843

ﬁ(ﬁk,z + iﬁk,l); if k<1

Hjlifl = ﬁ(ﬂl,k — Z'El,k), ifk>1
B, itk =1.

Let Dy be a matrix in Hy with eigenvalues (d;)i<i<n € RN, and set Xn(t) = Dy + Hn(t). Let

(AN (t))1<i<n be the (real-valued) eigenvalues of Xn(t) and define the spectral empirical process by

N [0,1] — M (R)
to— g = TN S -
We shall prove in this section Theorem 1.4 in the case § = 2. This theorem is rather close to [6, Theorem
1.1] where the authors considered the case up = dy. However, the lower bound is here much sharper than in
[6] and actually this highly non trivial sharpening is the main object of this section. We shall first present
the key to our approach: It0’s calculus. Then, we shall obtain the large deviation upper bound and study

the rate function Sy, . Finally, we investigate the large deviation lower bound.

2.1 It0’s calculus

It was proved in [6, Section 2.1] that 4V satisfies an It6’s formula when ﬂgN = §o. This assumption is in
fact clearly irrelevant and one can apply exactly the same arguments to check it for general ﬂgN. Then,
with the notations of (1.1) and (1.2), we have

Theorem 2.1 ([6, Lemma 1.1]) For any N € IN, any f € Cg’l(R x [0,1]) and any s € [0,1),

(SN, f),s <t < 1) is a bounded martingale with quadratic variation

. 1 N
< S5 (N, f) >= el <ff>5 -

The restriction to functions f € Cf’l(lR % [0,1]) was not due to technical reasons but only motivated by the

goal to achieve in [6]. For our needs, we slightly generalize this formula to functions of the form

Fla,t) = My typa 1) (2.1)

k=0



with times 0 =ty < t1,-- ,tn < th41 = 1 and twice continuously differentiable functions f; with uniformly
bounded first and second derivatives (note that we do not want to impose a boundedness restriction on the
frh).

For p. € C([0,1], M1 (IR)) such that sup;joq wi(2?) < 0o, pe(fr) is well defined for any k € {0,--- ,n}

and t € [0,1]. Hence, we can extend S** for such processes as follows

n

Ss’t(/J/,f) — ZsthsAt,tk+1Vs/\t(M’ fk)

k=0
Observe that for a given N € IV, sup;¢q 1 Al (z%) < oo almost surely so that S*¢(al, f) is well defined. We

claim that

Corollary 2.2 For any N € IN, any f of the form (2.1) and any s € [0,1), (S**(aN,f),s <t<1) isa

bounded martingale with quadratic variation

A 1 o
< Ss’.(,U/Naf) >t: m < faf >g,t .

Further, for any g € Cf’l(fR x [0,1]) and any 0 < s <t <1,

A 5./~ 1 AN
< Ss,.(MNJfLS ,(/J’N7g) >= m < fag >.I:,t -

Proof. Note first that we can approximate any function of type (2.1) by a sequence
fP(@,t) =35 Micpty turn [ fr () with functions f € C¢(IR) such that

e On |$| Spa for k € {07 o an}a f]f(xat) = fk(x)a

¢ On |z|>p+1and k€ {0,---,n}, fi(=,t) = fr((p + 1)sgn(x)).

e Onp<|z|<p+1landke{0,---,n}, ff(z,t) is smooth and pointwise bounded by c|z| + d with ¢,d
such that fy(z) < c|z| +d for all k € {1,---,n}. Further, its first and second space derivatives are
uniformly bounded by M := 2supye o,...n} (102 ficlloo + 103 fie ()] |oo)-

With such a choice of approximation, it is not difficult to verify that, for any 0 < s <t <1

E[|S**(a"N, f) — SN, )] < 16 s E [3) [(c|z] + d) 1 5)>p)"]
u€|0,

+ 4M? sup E [a)[d5,)] -
ue[O,l]

Hence, since for all given N € IN, sup,,cjo,1) IE [y [|#]*]] < 00, we conclude that for any s, € [0,1],

lim B [|S™(iY, ) - S* (@Y, )] =o.

p—o0

Further,

E[< 8 (@Y, f) = S (@™, f?) >] < M? sup E [fiy [Z2)>p)]]
u€el0,1



goes as well to zero as p goes to infinity. Thus, since for any p € IN and k € {1,--- ,n},

(SeVientirntVisnter (BN | f7) ¢ > 5) are martingales such that
< Ssvtk/\tk+1,.vtk/\tk+1 (ﬂN7f]§)7 Sthl/\t1+1,.Vt1/\tz+1 (ﬂN, flp) >= 0’ if k 75 l,

the proof of the lemma is complete.

O

Remark 2.3: Note here that the condition sup;¢(g 1 pt(z?) < oo is not in fact necessary to define S%*(u, f)
with f of the form described in (2.1). For instance, assume that

n

f(mJ U) = Z ﬂue[tk,tk+1[ck$ + g($7 U)
k=0

with finite constants ¢y and g € C*' (IR x [tg, tg11[) for all k € {0,--- ,n} such that sup,co 17 e (g(-,1)?) < 00
and g(-,t) has bounded spatial derivatives. Then, under the additional assumption that pu; = P xv; for P a

Cauchy law and a process v. satisfying sup;c(o 1) vt (x?) < oo, we can set for any s,t € [ty, tgy1], k € {0,---n},

S, f) = S (1, 9) + ek (ne(z) — vs(2)) (2.2)

and S*!(u, g) is well defined. Further, Corollary 2.2 holds for such functions whatever is the initial condition

Dy since its entries are finite.

2.2 Large deviation upper bound

From the previous Ité’s formula, one can deduce as in [6] a large deviation upper bound for the measure
valued process ¥ € C([0,1], Mi(IR))). To this end, we shall make the following assumption on the initial
condition Dy ;

(H)

Cp:= sup fip (log(z* +1)) < oo,
NelN

implying that (ﬁgN,N € IN) is tight. Moreover, ﬂgN converges weakly, as N goes to infinity, towards a
probability measure pp.

Then, we shall prove, with the notations of (1.1)-(1.3), the following

Theorem 2.4 Assume (H). Then
(1) Sup is a good rate function on C([0,1], My (IR)).
(2) For any closed set F' of C([0,1], M1(IR)),

1
li —logP (N € F) < —inf S )
im sup 7 log (i ) <= inf S, (v)

The proof is very similar to that given in [6, Sections 2.2, 2.3, 2.4]. However, some arguments have to be
changed since we do not assume that sup . ]NﬂgN (x?) < o0o. Since these arguments shall be important in
our derivation of the lower bound, we shall detail them below. The parts of the proof which are identical to
that given in [6] will be either merely sketched or omitted.

We first prove that S,,,, is a good rate function. Then, we show that exponential tightness hold and then

obtain a weak large deviation upper bound, these two arguments yielding (2).



2.2.1 Study of the rate function

Let us first observe that S, () is also given, when vy = pup, by

s,t 2
Sup@) =2 sup sup S F)

_ 2.3
fecf’l(Rx[O,l]) 0<s<t<1 < f: f >'s,,t ( )

Consequently, S,,, is non negative. Moreover, S,,, is obviously lower semi-continuous as a supremum of
continuous functions. Hence, we merely need to check that its level sets are contained in relatively compact
sets. For Ky and C,, compact subsets of M;(IR) and C([0, 1], IR), respectively, set

K(K) = {v € C([0,1], Mi(R)), v, € K ¥t € [0,1]}

and

C(C, f) ={v € C([0,1], M1 (RR)), (t — v (f)) € C}.

With (fn),,cpv @ family of bounded continuous functions dense in the set C.(IR) of compactly supported
continuous functions, and K s and C,, compact subsets of M;(IR) and C([0, 1], IR), respectively, recall (see
[6, Section 2.2]) that the sets
K=k (N €Cont)
nelN

are relatively compact subsets of C([0,1], M1(IR)). Indeed, the elements of [, . pvC(Chr, fn) can easily be
seen to be tight by a standard diagonalization procedure with limit points in C([0, 1],C.(IR)"), where C.(IR)’
denotes the algebraic dual of C.(IR). If they also belong to K(Ks), their limit points can be seen to belong
to C([0,1], M1 (IR)).

Following the above description of relatively compact subsets of C([0,1], M;(IR)), and the well known
characterizations of compact subsets of M;(IR) and C([0,1], IR), to achieve our proof, it is enough to show
that, for any M > 0,

e1) For any integer m, there is a positive real number LY so that for any v € {S,, < M},

sup vs(|z| > L)) <

1
—. 2.4
0<s<1 m ( )

#2) For any integer m and f € CZ(IR), there exists a positive real number 6% so that for any v € {S,, <
M},

sup |ne(f) —vs(f)| <

1
—. (2.5)
|t—s|<oM m

To prove (2.4), we consider, for § > 0, f5(z) = log (z2(1+dz%)~' +1) € C;''(R x [0,1]). We observe
that
C:= sup [0 fs]lc + sup ||a§f6||oo
0<6<1 0<5<1

is finite and, for ¢ € (0, 1],
0.15(x) ~ 0.5s) | _ .,

r—y -
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Hence, (2.3) implies, by taking f = fs in the supremum, that for any 6 € (0,1], any ¢t € [0,1], any
p. € {Sup < M},

pe(fs) < po(fs) + 2Ct + 2CV M.

Consequently, we deduce by the monotone convergence theorem and letting § decrease to zero that for any
JURS {SND <M }7

sup pe(log(z® +1)) < pp(log(z® + 1)) +2C(1 + VM).
tel0,1]

Chebycheff’s inequality and hypothesis (H) thus imply that for any p. € {S,, < M} and any K € R™,

Cp +2C(1 + VM)
su z| > K) <
tE[Ol?l] w2 K) < log(K? +1)

which finishes the proof of (2.4).
The proof of (2.5) again relies on (2.3) which implies that for any f € C2(R), any pu. € {S,, < M} and
any 0<s<t<1,

le(f) = (] < 1103 Flloolt = 81 + 21100 f 1| VM /[t — 5. (2.6)

2.2.2 Exponential tightness
Here, we shall prove that

Lemma 2.5 For any integer number L, there exists a finite integer number Ny € IN and a compact set Kp,
in C([0,1], M1(IR)) such that VN > Ny,

P(iN € K5) < exp{—LN?}.

Proof. In view of the previous description of the relatively compact subsets of C([0, 1], M;(IR)), we need to
show that

e a) For every positive real numbers L and m, there is an Ny € IV and a positive real number My, ,, so
that VN > Ny
P( sup i (2] 2 My ) > ) < exp(~LN?)
0<t<1 m
e b) For any f € CZ(IR), for any positive real numbers L and m, there exists an Ny € IN and a positive
real number 0z, 5 such that VN > Ny

i A 1
P(‘t_sf;g’m’f i (f) = i3 () > E) < exp(—LN?)

The proof of the second point is exactly the same as that given in [6, Lemma 2.16]; we shall omit it here.

(a) is slightly different since the initial data here plays a role and we describe its proof below.

11



Let us first note that Chebycheff’s inequality implies that

1
AN SMY < — — o (1 2 1 1)). 2.7
o2, 7 12 M) S gy 2, 7 Conte” + 1) 0

Denote by try the normalized trace; try(A) = % Eil Aji. Then, by the definition of g%, for any s € [0,1],
iy (log(z® + 1)) = try log ((Hn(s) + Dn)? +1). (2.8)

Remark that if A, B € Hy are such that 0 < A < B (in the sense that for any u € N, 0 << u, Au ><<
u, Bu >),
trx(log(4)) < trw (log(B)).

Indeed, if A, B are two self-adjoint matrices with eigenvalues A} < 2% < ... < AY (resp. \; < 3 < ... <
AY) such that A < B, then, for any i € {1,---,N}, A} < Ay, and the monotonicity of logz proves the
claim. Therefore, since (Hy(s) + Dy)? + Iy < 2Hy(s)* + 2D% + I, (2.8) implies that for s € [0, 1],

N (log(z® +1)) < log2+ trylog(Hn(s)? + Dy +1). (2.9)

Now,
1
trnlog(Hn(s)2 + D% +1) = trnlog(D% +1) + / datrn log(aHn(s)? + D% + 1)da
0
1
= trylog(Dy +1) + / try (Hn(s)(aHn(s)? + Dy + 1) ' Hy(s)) da
0

1
< trylog(D% +1) + / trx (Hx(s)(@Hy (s)? + 1) Hy(s)) da
0
= trylog(D% + 1) + try log(Hy(s)? + 1).

As a consequence, (2.9) gives, with hypothesis (H) and the concavity of x — logz,

sup fiY (log(z® +1)) < log2+Cp+ sup log (1 +try((Hn(s))?)) . (2.10)
5€[0,1] 5€[0,1]

Now, note that Chebycheff’s inequality yields for any K € R™,

) ( sup ten((Hn(s))?) zK) < eIV Eled Yis oo P9 R Posea B (40)
s€[0,1]

where we have used that for n < 1/2, by Désireé André’s reflection principle,

B(exp(n sup F(5)) < 2 Blexp(n0 (1)) =2(1 - 2n) .

12



Using this estimate with (2.7) and (2.10) shows that with Lo :=1log2 + Cp, any § > 0,

P| sup gl(lz|>L)>6] < P | sup trn((Hn(s)?) > (L2 +1)°e 20 -1
s€[0,1] s€l0,1]

2 —
< 9% e NH(LP+1)’emFo -1}

which completes the proof of (a). U

2.2.3 Weak large deviation upper bound
We here summarize the main arguments giving the weak large deviation upper bound.

Lemma 2.6 For every process v in C([0,1], M1(IR)), if Bs(v) denotes the open ball with center v and radius
§ for the distance D, then

- 1 .

glm lim sup N2 log P(i™ € B;s(v)) < =S, ()

-0 Nooo

Proof. Note first that, since ﬂgN converges weakly towards up, for any 6 > 0, any N large enough,

d(iy ) < ensuring that

1
lim lim sup

- N —_ —
Yim lim sup 7 logP(i" € B;(v)) = —o0

if vp # up. Hence, we shall assume hereafter that vy = pp. We shall follow the ideas developed in [15] and
[6]. To this end, we define a family of positive super-martingales {(;V’S, fEe Cf (IR x [0,1])}, equal to 1 at
t = s, thanks to Lemma 2.1: we set, for t > s > 0,

()

exp (NS Y ) - 5 < 1.0 >34
= e (VSN £)).

Let v € C([0,1], M1(IR)) and f € Cf’l(R x [0,1]); then Chebycheff’s inequality implies that for any 0 < s <
t<1

. ¢ ()
]P(p, EB(V,5)) = E[lﬁNeB(u,é)CN,s(t)]
f
< sup exp(—Nzgs’t(V',f)>
v'€B(v,d)
- on(ow_ gt 570.09),

Notice that if f belongs to Cf (R x[0,1]), the function v/ — S*t(v/, f) is continuous. Thus, for any function
fe€ Cg’l(ﬂ% x [0,1]), we deduce
- 1 .
lim lim sup 77 InP(a" € Bs(v)) < =S (v, f).
oo

We conclude by taking the supremum over the functions f and the times 0 < s <t < 1. O

13



2.3 Large deviation lower bound

In this section we shall prove a large deviation lower bound estimate in the case where . satisfies,
(A) for some >0,

sup ([>T < oo.
te(0,1]

We shall further strengthen (H) by assuming
(H’) (H) holds and

sup try(D3%) < oo.
NelN

Theorem 2.7 Assume that (H’) holds. Then, for any p. € C([0,1], M1(IR)) satisfying (A),

R | N
lim lim inf e log P(D(aN, 1) <6) > =S, (1) -

6—0 N—oo

A lower bound was already obtained in [6, Section 2.4] but for processes . satisfying a much less transparent
condition, and further possessing fixed initial conditions at 0. Here, we shall generalize this result by using
several approximations. The proof is hence rather technical and actually far from straightforward. It is the
most difficult part of this paper.

The key to the theorem is to approximate the measure valued process fi”V. To this end, we introduce a
matrix Cy in H y with real-valued eigenvalues (¢;)1<i<n such that the spectral measure gy = (1/N) Efil Oc;
converges towards the Cauchy law P(dz) = 7~ !(2% + 1) 'dz. Further, we choose the entries {c;} such that

limsup 2 ((log(z* + 1))?) < 0. (2.11)

N—oo
Moreover, we assume that for any € > 0, the limit distribution of Dy + eC} is the free convolution Pe D
(see [2]) where we have denoted by P.(dz) = er 1(z? + €2) ldz the Cauchy law with parameter e. Note
that, because P, is the Cauchy law, it has been remarked (see [2, Section 7]) that PepD is just the usual
convolution P, xpup. The couple (Cn, D) can be constructed as follows, once the eigenvalues (c;)1<i<n and
(di)i<i<n of Cn and Dy satisfying (2.11) and (H’) have been given. Let ¢ps(z) = 2V (—M)AM and denote
(5N’M,5N,M) the N x N diagonal matrices with entries (¢ar(ci))i<i<n and (¢ar(d;))1<i<n respectively
(here, (d;)1<i<n denotes the spectrum of Dy). Let Uy be a N x N unitary matrix following the Haar
measure m%; on the unitary group and define (Cn ar, Dn,ar) = (UJ"{,G’N,MUN,EMM). Since (Cj'N,M,f)N,M)
are uniformly bounded operators, [23, Pg. 328-330] insures that (Cw,a, Dn ) are asymptotically free.
Therefore, the limit distribution of Dy v + €Cnar is Pe o d)E_I&ID o qﬁ;}. Further, with d denoting the

Wasserstein distance,

N

2 2
~N ~N ~N 2\\2
d(icy o ficy) < 3 ; Lieg>m < WNCN[(IOg(I +z%))°]

so that (2.11) results with

li dipy. i ) =o.
Mgnwlslelgv (iCy o ficy) =0

Similarly, (H) implies that lim s SUPNelN'd(ﬁgN i) =0, and both (H) and (2.11) imply that

14



B0 700 SUP e WA 5 rrteCn ar> Dy o tcCn o) = 0- Consequently, by uniformity on N € IV, Pe°¢€_1\}1,uD°
¢j_ul converges as M goes to infinity towards PeuD and we can choose M = My so that the limit dis-
tribution of Dy, vy + €Cn My 18 Pe,uD. We then set (Cn,Dn) := (Cn My, Dn,my ). Clearly, this new
choice still verifies (2.11) and (H’). We assume in the following that such a construction has been made,
independently of the Hermitian Brownian motion to come next, and work with such a given realization of
the Un’s (hence with quenched (Cn, Dy)).

We then introduce, for € > 0, the following approximation X§; of the matrix-valued process Xy
va(t) = XN(t) +eCny = HN(t) + Dy +eCy.

We denote by fi™V>¢ the empirical process of the eigenvalues of X§. The central lemma in the proof of

Theorem 2.7 is the following

Lemma 2.8 For anye > 0, for any p. € C([0,1], M;(IR)) satisfying Assumption (A) and such that S, (@) <
00, for any § > 0, )
l}ylgélof ﬁ IOgP (ﬂN’E € B(Pe * M, 5)) Z _SPe*[,LD (PE * ll’)

Note that Lemma 2.8 and Theorem 2.4 yield already the following

Corollary 2.9 For any € > 0, for any closed subset F' of C([0, 1], M1(IR)),

lijgnjélop %logP(ﬂ?\”e € F) < —inf{Sp..up (v),v € F}.
Further, for any open set O of C([0,1], M1(IR)),

lg\rlrlglof % log P (i€ € O) > —inf{Sp.uu, (v),v € O,v = Pe * p, p satisfies (A) and Sy, (n) < 00}.
To deduce Theorem 2.7 from Lemma 2.8, we shall need the following two auxiliary lemmas. First,
Lemma 2.10 For any € >0, any p. € C([0,1], M1(IR)) such that S, (p) < oo,

SPorun (Pe* 1) < Spp (1)-
And secondly
Lemma 2.11 Consider, for L € IR", the compact set Ky, of M;(IR) given by
K1 = {p € Mi(R); p(log(z® + 1)) < L}.
Then, on KN(K1) = yeo {104 € Ke} N {i € K1}},
DN, ) < F(N,€)

where

lim sup lim sup f(N,¢) = 0.

e—0 N—oo
In the next paragraph, we shall deduce Theorem 2.7 from Lemmas 2.8, 2.10 and 2.11. Lemma 2.8 will be

proved in the next subsection. Lemmas 2.10 and 2.11 will be the subject of the two last paragraphs.
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2.3.1 Proof of Theorem 2.7

Following Lemma 2.5 and its proof, we deduce from hypothesis (H’) and (2.11) that for any M € R", we
can find Ly € R such that for any L > Ly,

OiugllP(ICﬁv (K1)°) < e~ MN?, (2.12)

Fix M > S,,(p) +1and L > Lys. Let § > 0 be given. Next, observe that P, * p. converges weakly towards

1. as € goes to zero and choose consequently € small enough so that D(P, x p,p.) < %. Then, write

v

. . o 1)
P (II’N € B(/L,(S)) P (D(MNaM) < gaﬂ.N’e € B(Pe * ., g):Kﬁv(KL)>

v
Wl

P (i € BP . 3) ) - PICY (2)) = P (DG, ) >
I—1I—-11II.

KN ()

(2.12) implies, up to terms of smaller order, that

IT < e~ N?*(Sup (W+1)

Lemma 2.11 shows that IIT = 0 for € small enough and N large, while Lemmas 2.8 and 2.10 imply for any

n >0, N large and e > 0
I> e N?Speuup (Pexp)=N>n 5 ,~N°Sup, (0)—Nn_

Theorem 2.7 is proved. O

2.3.2 Proof of Lemma 2.8

In this section, we are given a process p. € {S,, < oo} and a threshold € > 0. We set uf := P, * pu; for
t € [0,1]. By Lemma 2.10, Sp, «pu,, (1°) < 0o and thus S (u€) = Spapup (1€) < 0o . The main advantage of
u¢ (in comparison with p ) is that its marginals possess bounded densities. However, we shall later need also
some additional time regularity of this process. Hence, we shall in a first step approximate p¢ by smooth
polygonal approximations . Once this is done, we shall study the processes u* and show that the lower

bound obtained in [6, Section 2.4], applies in small neighborhood of ;**, hence proving the lemma.

Step 1 : Time approzimations We shall see that if 0 =¢; < t2 < ... <t, =1 with ¢t; = (i — 1)A and if we
set, for ¢ € [tg, tpt1],

€,A € (t - tk) € €
/J’t = /J/tk + A [/J’tk+1 - l‘l’tk]a
then,
lim S (u%) = S () (2.13)

Observe first that since pu¢® converges weakly to u¢ as A goes to zero, the lower semi-continuity of S%!
implies that
lim inf $%1 (u&2) > SO ().
mir (n%) = 5% (k)
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Now, recall that, since S%!(u€) is finite, Riesz’s theorem implies that there exists h¢ with

/01/ (8wh;(x))2du§(x)du < 00

inf / 1 / (00 f(x, u) — Dol ()2 dpi. (z)dus = 0 (2.14)

feck(IRx[o,1]) Jo

so that

and for any f € C;"'(RR x [0, 1]),

SO (e, f) = / [ 0hi@)0. 1o w)di ). (2.15)

Further,

SO (u //éwf du;du. (2.16)

It will be convenient to also recall that, using the continuity of u — uf and (2.15), one has that for any time

independent smooth function g(-),

tot1 th+1
Hirer (9) — 115, (9 / /6h )0z g(x)dps(z)ds + = /t // P dus( )dps (y)ds . (2.17)

Let Hye (z) = PV [(z — y)~'dus(y) (the occurrence of the principal value is due to the fact that while
(0z fe(x) — By fi(y))/(x —y) is bounded continuous, [ dus(x)d, fi(y)/(x—y) is not defined except as principal
value). Then, separating the double integral in (2.17) using the definition of principal value and Fubini’s

theorem,

tht1
b0 =0 (0) = [ [(@hi(a) + Hyg(@)0ug(a)ds (). (2.18)

Consequently, for t € [tg, tg,1][, writing pf(dz) = p§(z)dz and using g(z) = f(¢, ) to obtain the first equality,

tht1

Bp(f(t,) = i (Bef(t, ) + A7 pE[(Hyg + 0:h5)0: £(t,-)]ds

th

up B Oef (t7)) + g™ Do F (1) (H jen + 85 5™))

where

tet1 Hll/€ 8zh/z z d B
ftkA((pgk 1(2_';) (@))p(@)du Hy; (x) - (t Atk) (Hys, () = Hyg (2)). (2.19)

0, hy™ (x)
[ — PED)

Then, by definition of S%1(-),

SO (g / / B, he (2)) 2™ () du (2.20)
with equality if

inf /1 /(O:Ef(;c,u) — 0 h52 (2))2dps ™ (z)du = 0.

frec(IRx[o,1]) Jo
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Note that, since pi = Pe * py,

w@l =1 [ Gl < 5.

is uniformly bounded, as well as

. [ e 1 1
) —/;mduu( )< —

Also, for a given z, p5,(z) # 0. Finally, by continuity of u — p,, for any given z, u — pf (z) and u — Hy¢ (2)
are continuous. We can precise these continuity statement as follows. Note that since S%!(u) is finite, we
can use (26) with f( ) = (E(zy)2y_2_62 and f( ) W
bounded derivatives ( independently of the given x but depending on € # 0 ), that

for fixed z, to obtain, as both have uniformly

sup sup |p (@) — p5(@)| < c()VA,  sup sup|Hu (2) — Hye (@) <c(VA  (2.21)

lu—v|<A @ lu—v|<A =
for a finite constant c(e). Further, since u. € C([0, 1], M1 (RR)), we know that for M large enough, all u € [0, 1],

Consequently,

€ €
2 (SuPye[—M,M] (z—y)?+ 62) 2m ((|z] + M) + €)
Thus, with (2.21), we find a finite constant ¢'(€) such that for any f = f,(-) and any k € {1,--- ,n},
fett fu ) ps, (z)du 1 Lt
L St 1 [ ] <
A(pt’e + A [ptk+1 - ptk]) tr
Applying the above estimate with f,(x) = 0;h{(2) or fy, = Hy. (z), we deduce first that uniformly on &,

tet1
H,. (z) + 0,15 () pf, () du e
S (Hye ( t) t (@)pu(@)du (l/ (OphS, () + H,e (:v))du>
Apg, + ( ;’“)[piHl = Pi]) A u

te41
s+ VD) (5 [ (@ai)] + g @) )

pulz) 2 (2.22)

c(e)(1+ aﬁ)\/Z% - | fulz)|du.

tr

Then, using (2.21) to estimate the second term in the definition of 0,h** and the uniform bound on H,

we obtain

te+1
6wh:’A( A Z ]'tE[tk,tk+1] / 8wh2(.'17)du

tht1
<0((1+2?) [ the tmm/ |6whg(z)|du+1]. (2.23)

Consequently, for any n > 0,

/ / (OB
A~ +"A

AN
_
+
S
P

v
-
h
—

>
»#-:»-A

+

3
>
o

+

3

(0xhE)2dus,du + O(A>™)
]

<201+ O(A2M)) SO (1) + O(A2) (2.24)



To finish the proof of the result, we shall prove that h.e’A(:U) is well controlled for large x.
To see this, note that, since S, (x) is finite and pp has finite second moment, we can prove as in [6,
Lemma 2.9] that

sup fiy(2?) < oc.
u€[0,1]

We claim that it implies that there exists a finite constant C' = C(€) so that

sup (@) < . (2.25)
u€[0,1] z
Indeed,
2
9 € T
€ I d

z°ps, (x) 71_‘/7(”:_11)2%_62 fhu (y)

and
€ z2 z?

flz,y) == <Cle)(1+y%),

€
(@ -y?2+€) = 7 (& —y)? +e) a=yrersy
implying (2.25). As a consequence of (2.22) and (2.25), we deduce that there exists a finite constant C’(¢)

IN

so that for x big enough,

sup Z(a) < C'(e).
u,ve[0,1] Py

Therefore, for z big enough, for any test function f,

S fupty(x)du
A(ps, + S ps  —p5])

Thus, since Hy. is uniformly bounded, we find a finite constant C so that for = big enough, for t € [tg,tr11),

1 te41

< C'(C)Z )
k

|fuldu.

tht1
B ho™ (z)| < ¢ Bph, () du + C.
t A u

23

Hence,

1
/ / (kSR @)2dus (o)du
0 [—A_Z+’77A_I+T’]C

1 1
<O ([ ] o @@ i [ (A, A
0 [7A_I+T’,A_z+7l]c 0
This, together with (2.19) and (2.24), yields

lim S%'(u&2) < lim SO (u&, hS2) < %1 (uf). (2.26)
A—0 A—0

Step 2 : Study of the field &>

Let us recall that the condition of [6, Section 2.4], under which a lower bound was obtained for &2 is

that h&* belongs to CZ (R x [0,1]) and that 8,h®* has a Fourier transform decreasing exponentially fast
at infinity. We shall in this paragraph study h®® and show that it nearly satisfies these hypotheses. In the
next step, we shall precise the arguments of [6] to show that the properties of h©?, even though slightly
different from that assumed in [6, Section 2.4], still guarantee the lower bound.

We summarize the properties of h¢* in the following
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Lemma 2.12 Assume that for any t € [0,1], p satisfies assumption (A). Then, for any e,A > 0, any
u € [0,1],

n—1

hZ’A(ZC) = Z IIuE[tk,tk+1[h::7A (IL', U)

k=1

with functions h;’A(x,u) of the form
hZ’A(w,u) = afz + b (u) log(z® + 1) + gZ’A(:U, u)

with finite constants ay, continuously differentiable functions b4 (-) and functions g;’A € CZ’I(R X [thy tht1])-
Further, for all k € {1,---,n — 1}, all x € R and all w € [ty, try1[, there exist functions lZ’A and o finite

constant C such that

0.1z (wyu) = af + [ U (€ upde

for any u € [tg,try1[ and any k € {1,--- ;n — 1},
192 (&, u)| < Ce 318l (2.27)
k

Proof. To study h*“, we shall first obtain an alternative formula (compare with (2.19)). More precisely,

observe that he2 is also given by the weak equation
So1( / /a hEA ()0, f (2, u)duS™ (x)du (2.28)
for any f € Cf’l(R x [0,1]). Observe that du&® (z) = p52 (z)dz with, when u € [tg, tgy1],

PZ’A(JJ) == / m(dutk (y) + u;—tkd(utwl - /“Ltk)(y))‘

™

By (2.28), reducing again to integration over u € [tg, tg+1[, it holds that for almost every such u, and every

time independent smooth function f,

6u/f(x) da:—/é) F@)0A @)[H oa () + 0,55 (@))der

Hence, for almost every such u,

/f )Pl (@ ”k /6f 2)[H, g () + 0.0 (2))dr,

and the last equality extends by continuity to every u € [tg, trt1). But then, integrating by parts, we obtain

mmﬂmz—mm%m*/mmw—mmw@—m¢@> (2.29)

almost everywhere, and then everywhere by continuity.

From (2.29), we first note that

(1) u — 8,h5”(x) is differentiable for any z (note that for any given z, u — p$™(x) is continuously
differentiable and bounded below by a positive constant) except at the t’s.

2) & — 0,h52(x) is C* for any u due to the regularization by the Cauchy kernel.
u
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(3) Let us show that 9,h5® and 82hSA are uniformly bounded when p, satisfies (A) for any u. By
continuity of z,u — 9;h$”(z) and z,u — 82h5A (), it is enough to bound sup,, [02h? | and sup,, |02h54
outside of a fixed compact set, chosen below equal to [—1,1].

Remark first that

[ i@ =€ [T [ [ BRI, ) )4 (2:30)

Since [ p;’ﬁl (z)dz = [ p;’cA (z)dz = 1, the integration over z' can be taken on (—oco, ) when z < 0 so

that we can always assume that |z'| > |z|. Moreover , when z' # 0, and for any y,y' € R,

(22" -y -y )y -y
(@' —y)* + ) ((a' —y')* +€2)
o Qo e )
(1 =2(y/2") + (y2 + €2)/(2")2) (1 = 2(y'/2") + ((v')? + €2)/ (')?)
2(z) 7 (14+322") ' (w+y) + F=y,9)) (v — o)

with

' no_ (1-Q22")"'(y+y")) 1 n—1 '
I&.99) = TG/ + P T )@ - 2ty o) T (@) @) L @) ).

It is not difficult to see that for § small enough, we can find a finite constant C(4, €) such that for any triple
(z',y,y') such that |y/z'| <4, |y'/z'| <4, |2'| > 1,

|f(=',y,9")| < C(6,€) ((y/2") 2 + (¥'/2")7?) . (2.31)
Further, for any triple (z',y,y'),
@) < @+ 1+ L)+ 1+ 202+ 1)
e = x! z! 2 ! x!
so that for any n > 0, any (z',y,y’) such that |y| > d|2’|

C(e) (|7 + [2']"(|=']* + 1) (jy] + |y']) + |2 [**+7)
Cled,m) (ly + y1"(ly[* + )yl + [y']) + ly|*+7)
C'(e,0,m) (1 + [y)°*" @ + [y')°*" (2.32)

' ["7| f (2", y,y")]

IANIN A

'

with finite constants C(¢), C(e,d,n) and C' (e, d,n). By symmetry, the same estimate holds when |y'| > d|z
and therefore we conclude with (2.31) that for any n € (0, 1], there exists a finite constant ¢(e, ) such that
for any |z'| > 1 and any y, ¢/,

/[ £ (2,9, 5)] < elesm) L+ )™ (1 + [y (2.33)
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In the sequel, we always assume that p satisfies (A), take n € (0, 1], write ¢;(e,n) for finite constants which

depend on € and 7 only. Then, for any |z| > 1, any u € [tg, trt1[, any k € {1,--- ,n},

D@ = 15[ [ [@) ), s, 0

2
< ———cole sup / 1+ [y dpy x| 3
G o(€;m) (ue[m] L+ [y duu(y) | =]

and
< . el 3e
/ P, =PIy = —— (1 ®) = Bs @) + 5 (0 (47) = s (87) + 1) (@) (2.34)
Similarly, one gets that for any |z| > 1, any u € [tg, trt1],
6A G 2e u — tg 9
Py (x) = g S (l’l’tk (y) + T(/’Ltk+1 W) — b, (?/))) +el)(2) (2.35)

with a function £ satisfying sup|,>1 uefo,1] 162 (2)] < ea(e, m)|x|~3~". From (2.34) and (2.35), we conclude
that for |z| > 1,

@@ [ i, = i)y = L s (2.30)
+A7! (3(utk W) = Bt 7)) — 26, () — Bt (1)) (e, () + %tk(utw () — b, (y))) at
+e{) (x)

where, as above, Sup |, >1,4e[0,1] e ()| < es(e,m)|z|~1~". Similarly, we find that
H ca (z) =z + e (2)
with a function ) such that sup|,|>1 4efo,1) e ()| < ca(e, n)|z|~2. Thus, (2.29) implies that for all [z| > 1,
0,0 () = —0upy® () + (2192 (0)0up%® (y) — 30uu% ™ (v?) = 1) 27" + 6 () (2.37)

with a function €® such that

sup e ()] < s (e, )] TN (2.38)
2l 21,ue(0,1]

Consequently, sup,, ,c[o,1] |0:h2| < 00, and, by a similar (and easier!) argument, SUD, ue0,1] |92h5A| < 0.

Letting
12 y) — p 1 )
ay = 0l (y) = u(v) T )
be(u) = 2u%R(Y)8upd (y) — 30up™ (%) — 1
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we find that for some finite constants C},, hS2 is of the form
ho2(z) = Cr + afx + by (u) log(z? + 1) + ¢5° (x)

with a function g52(z) € Cf’l(ﬂ% X [tk,tk+1[) going to zero at infinity faster than |z|~", uniformly with
respect to the time variable. Observe that the Cy’s are irrelevant here since S**(u?, f) does not depend
on them for any f € CZ ’I(R x [0,1]). Hence, we choose them equal to zero. It remains to prove the last part

of the lemma. From the above,

A _ oA _opAy T
Note that
T _ . \—1
m = §R(£L' + /LE)

can be written for € > 0 as

Further, observe that 9,h$? can be extended as an analytic function on Q = {z : € > $(z) > —¢}. Indeed,
the definitions of pf(z) and H,: (x) extend immediately as analytic functions on €, and further pf,(-) does
not vanish on Q. Consequently, 8,¢5 (z) is well defined and extends as an analytic function on Q. Thus,
for any € € R,

0526 = = / i€ 9, g

= /’Ez 6’589 Az +ie')dz.
2

Observe that we can extend the study of the asymptotics of 8,g5> to the complex line {z + ie’,z € R}
to see that 8,952 (z + i€') decreases as |z + i€'| "1~7 at infinity. Hence, 8,95 (z + ie') € L'(dz) and the
uniformity in time of our estimate of the function £® extends to the complex line {z + i€,z € R}. This
shows that, when € < e,

C(€,e,A) := sup /|6wgu (z +i€')|dz < .
u€[0,1]

Therefore,
10,952(6)] < / 10,95 (¢ + i€)|dze—< < O(€, e, A)e ¢

Finally, 9, g5 decreases at infinity like |#|~'~" so that it belongs to L' (IR)NL?(IR). Thus, the representation
theorem yields -
0.9:%(w) = [ 0,42 ()¢

—_

which, with the above estimate of 0, gfjA completes the proof of the lemma. [l

Step 3: Proof of Lemma 2.8

We shall here present the main steps of the proof, leaving only a few technical points for the next (and

last) step.
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Let

AN = {Xn €C([0,1], Hn); Xn(t) = eCn + Wn(t), sup trxnWa(u) < M}.
u€[0,1]

Write now, with §' < (§/2), and for A small enough,

P (7™ € B(u,5)) >
P ({ﬂN’f € B(u2, 6"} N {X5 € AM };eNZS"’l<ﬂ”"h€’A)e*N25°’l<ﬂ”’ih€”*>) . (2.40)

Here, SO (iV¢, h©?) is defined as in Corollary 2.2. Defining S%'(u¢, h©?) as in remark 2.3, we shall prove
in the next step that, if D(N, 2,8, M) = {w : {X§w) € AMYn {a™Nc € B(us?,8)}},

limsup sup sup |SOL(aMe, heR) — SOM(ps heR)| = 0. (2.41)
0'—=0 N—ocoweD(N,us2,6",M)

As a consequence, (2.40) shows that for any 5 > 0, for N large enough and ¢’ small enough,

P (¥ € B(uS,8)) > e NEVWIRHinp (D(N,/f’A,ff',M);eNZSO’l(ﬂNEE’hE’A))' (2.42)

Denote IPj.,a the probability measure on Hy given by
Pea(dXs) = N S7HETSRONDP xS,
Then, (2.42) gives for N large enough
P ({3 € B(u,0)) > e NS W4 (P o (4N € B(ut,8')) = Phea (Xi € (4Y)°)) . (243)

We first show that Ppe.a (X§ € (A¥)) is negligible when M is large enough. In fact, because 9,h¢2 is

uniformly bounded according to Lemma 2.12, we find a finite constant C' such that
dPjes )\’
/ (#) dP < Ce“N’ (2.44)

whereas, by exponential tightness of Lemma 2.5 (see its proof and (H’)), for any L > 0, there exists M (L)
so that for M > M (L),
P ((A%)c) < e—2LN*

Hence, Cauchy-Schwarz’s inequality gives for M > M (L + C),
Phea (X§ € (A¥)°) < VCe IV (2.45)
We shall now prove that for any §' > 0,

lim Pyea (i€ € B(ut?,d")) = 1. (2.46)

N—oo

By (2.44), assumptions (A) and (H’), and Lemma 2.5, we first observe that the law of ™€ under IPpc.a
is exponentially tight and hence tight. Let us show that it admits a unique limit point. Girsanov’s theorem

shows that IPj.,a is the weak solution of

dZ(t) = dHn () + (9:h5 ™) (Zn (1))dt (2.47)
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with initial data Zx(0) = Dy + eCn. In fact, eventhough not needed here, one can remark (see the proof of
Theorem 4.1) that for any given N, since 9, hE’A is a Lipschitz operator function according to Lemma 2.12,
(2.47) admits a unique solution.

Consequently, we can show as in [6] (see Lemma 2.1) that for any f € Cf’l(ﬂ% x [0,1]), for any s € [0,1),
M0 = 554G ) = [ [ st @)

AN, e
is a martingale for ¢ € [s,1] with quadratic variation N=2 < f, f >4 going to zero as N goes to infinity.

Henceforth, any limit point v of i™>¢ under Py a satisfies the equation
St (v, f) =< £, >V, (2.48)

Further, according to the construction of Cx and Dy, vy = Pe*pug. One can prove that this equation admits

a unique solution following the proof of [6, Lemma 2.9]. Indeed, take f(z,t) := €A% in (2.48) and denote by

L:(A\) = [ €**dvy () the Fourier transform of v;. Then, we find, with the notations of Lemma 2.12, that for

t e [0 = tl,t2],
Lo\ = / / L4(aN Ly ((1 = a)N)dads + i\ / ( SO+ / Lo(h+ N)EA (N, s)dx) ds.
(2.49)

Multiplying both sides of this equality by e~% Al gives, with £5(X) = e~ 51X £;(N),
L) = L5 — —/ / £ (aNLE (1 — a)\)dads
t
+ QX / (@ﬁ;(x) + / E;(/\+/\’)e3|*“'|3|*l§’A(/\’,s)d)\’) ds. (2.50)
0

Therefore, if v,7' are two solutions with Fourier transforms £ and £ respectively and if we set A{(R) =
sup|x<r [£{(A) — LE(N)|, we deduce from (2.27) and (2.50) (see [6], proof of Lemma 2.6, for details) that

there exists a finite constant C such that
A§(R) < / AS(R)ds + 2tRe™ 4.

By Gronwall’s lemma, we deduce that

Af(R) < 2Re e 't
and thus that A§(oco) = 0 for t < 7 = (2 /4C) Aty. By induction over the time, we conclude that Af(co) =0
for any time t < t5, and then any time ¢ < 1, and therefore that v = . Thus, since u©* already satisfies
this equation by the definition of h>®, we conclude that jiN>¢ converges towards pu* under IP,..a. Hence,
(2.46) is proved.

(2.43), (2.45) and (2.46) shows that for any > 0, any A > 0 small enough,

NP | N G A pe,A
lim inf > log P (€ € B(u¢,8)) > =8 (%, h%) — .
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Letting A | 0, and then 7 | 0, we get, with (2.13), Lemma 2.8.
Step 4 : Proof of the technical result (2.41) In this last part, to prove (2.41), we have to deal with the fact

that h%® is unbounded and actually growing with z at infinity, which is not integrable with respect to

the Cauchy law. This appears to be a real problem when dealing with the convergence of ﬂév ’e(hZ’A).
However, one can observe that our rate function only depends on differences i (h"™) — Al (h&2) where
these singular terms cancel, and hope that S%!(a™€, h&?) will converge towards S (u¢, he*) defined as in
Remark 2.3.

Since k&2 is of the type of functions described in Remark 2.3, we consider more generally such functions

here. Hence, let
n

f(z,u) = Z Moty trpn[ChT + g, )
k=0

with finite constants ¢, and g € C*'(IR X [tg,tr41[) for all k € {0,---,n} such that sup,cp 1] pe(97) < o0
and g; has bounded spatial derivatives. For K € R, set

x if |z] < K -1,
fr(z) =< K—-1/2 if |z| > K,
fK is smooth in between with first and second derivatives bounded by one.
Let

fK($7 U) = Z Hue[tk,tk+1[cka($) + g(x, u)
k=0
We first prove that for any p. = p * v. with a probability measure p such that sup, u;(9?) < oo and a

probability measure valued process v, such that sup,¢(o 1) ¥ (22) < o0,

Jim S, fre) = 8O (., f) (2.51)

where we have used the notations of Remark 2.3 and S%! is defined as in Corollary 2.2. Note first that for

all s,t € [ti, tet1l;

z) — 8u k()
T—y

. N
S*H ., fx) =S¥ (p.,g) — c—k/ fhu ® uu(a””fK(

2 Jdu + ci (ut(fK) —us(fK)) =I-II+1II

Observe that since p. € C([0,1], M;(IR)) has tight marginals and 8, fx is null except for |z| € [K — 1, K]
where it can be chosen bounded by one, IT goes to zero as K goes to infinity.

Now, let us consider III.

T T = p(Fe) — s (i) = / (@ = ) Moo <xe1 Dy s i1 A (@) (y)dp(z) + TV (2.52)
Clearly,

lim [ (@ = )1 g <o By <o (2) vy (3)dp() = mi(z) = v4(2).

K—oo

Moreover, IV is bounded by
V = / |fK(m +2z)— fK(y + 2 (g4 21 <K—1}n{|zt+z|<K—1}}edve (2)dvs (y)dp(2)

< /lw — Y|yt 2| <K -1} |42 <K —1}} Ve () dvs (y)dp(2)

26



where we have used that fK is Lipschitz with Lipschitz constant bounded by one. Hence, Cauchy-Schwarz’s

inequality gives

[IV[* < /|m_y|2th($)st(y)/1[{{\?J+z|5K71}0{|w+z|gKfl}}Cth(m)st(y)dp(z) (2.53)

where the first term is uniformly bounded according to our assumption and the second goes to zero as K
goes to infinity by tightness of (p x v4,t € [0,1]). Hence, (2.52) shows that
dim (i) = o)) = (@) = vs())
—00
which completes the proof of (2.51). Note here that this convergence is uniform on processes v. such that
SUPyeo,1] Yt (#?) < M for M € IR". Hence, we see similarly that, uniformly on N,
lim sup [SOM (A" (w), fx) — SO (™¢(w), f)] =0

K—)oowEAM
if sup sup,,¢ AM SUD;[0,1] S gfdﬂiv *“(w) is finite. We assume this last property below. But for any K € R*,
lim sup  [S¥M(w, fr) = SO (S, fx)| = 0
6—0 d(p,peA)<s
and therefore we can conclude that
sup SO (AN (W), £) = SO (R, )| < sup [SOM (AN (w), f) = SO (AN (w), fx)|
wED(N,ps2 8", M) weAM
+ ]SO (1o, fr) = SOH (R, f)]

+ sup |SO,1(N7fK)_SO’I(MC,A7fK)|
d(p,peA)<é’

goes to zero as §' goes to zero.

To complete the argument and apply this result to f = h©* one only need to notice that log(z? + 1)
is such that supy sup,eau sup;¢o,1] J (log(z* + 1))2dj ¢ (w) is finite. This is easily obtained following the
lines of the proof of Lemma 2.5 under assumption (2.11).

Hence, we proved

limsup sup sup |SO’1(,&N’E, heAY) — So’l(;f,he’A)| =0. (2.54)
0’0 N-—ooweD(N,usA,6',M)

Noting that v —< h&?®, h&4 s,¢ 1s continuous since 9, he® was proved to be bounded piecewise continuous,
we extend (2.54) to S%!, which completes the proof of (2.41).

2.3.3 Proof of Lemma 2.10

This result is part of a more general theorem of [7] showing that free convolution (which is equivalent to
usual convolution in the case of a Cauchy variable) always reduces the entropy. However, the proof is here
easier so that we describe it completely. It is easy to check (see [7] or the remark in the proof of Lemma
(2.6) after (2.24) in [6]), that for any € > 0 and any f € C{(R),

//f p— Y 4P, « u(x)dP. * ply //P*f x_P*f() @)dn(y) -
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Consequently,

1t
SN P xv) = sup (SOY(P. v, f) — —/ /(6351”(3L’,u))2clP6 * vy (z)du)
feckt(IRx[o,1]) 2 Jo

1
swp (S w P f) =5 [aRG) [ [0nf@ =20 @)

secgt (RxJo,1])

/dP (2) su (S° (v, t 0 f) — 1/1 /(6 t. o f(z,u)) dvy(z)du)
€ fecg’l(-ﬂgx[()’l]) y vz 2 o rvz b u

IA

where t, o f(z) = f(z — z) and we have used the fact that S%!(v, f) is a linear functional of f. Noting that

1
sup (8™ (w,tz0 f) — ! / / (Bst= o f(@,u))>dvy(z)du)
frecy' (IRx[o,1]) 2 Jo

= sup (So’l(u, - %/0 /(&;f(x,u))Qqu(a:)du)

fecy(IRx[o0,1))

for any z € IR, we conclude
SO (P, xv) < 8% (v). (2.56)
so that, since S%!(v) is also lower semi continuous, for v so that S(v) < oo,

lig)l SOY(P, xv) = 8% (v) (2.57)

Note here that this is not true for S itself since S(P, *x v) = 400 for € # 0 as P, x vy # vy = po-

2.3.4 Proof of Lemma 2.11

Step 1 : compactly supported measure approzimation Recall that (c;)1<i<n denotes the eigenvalues of Cy.

For M > 0, we set

By = {Z : |C,’| > M} = {jl;"' 7j\BM|}'

Define
C; if 4 Q/ BM

Cnom(iyi) =

(6 7) { 0 otherwise.

Construct C'n,mr as Cp, replacing only Cn by (NZ'N, M (see the discussion at the beginning of the section). Let
XM (t) = Hy(t) + Dy + €Cnur

s€y

and denote /liv M its spectral measure. Then,

DM, i) < eM.
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In fact, for any continuously differentiable function f, any ¢ € [0, 1],

e M () = A ()

€

1
/ try (fI(XN(t) + OAECN,M)CN,M) da
0

< ——2:kA/|<mJ(&ﬂ)+%mem>Ma

i1€EBM

eM/ (tI‘N(fI(XN(t)+a€CN,M)2))
0

[N

do.

IA

Extending this inequality to Lipschitz functions, we deduce that

e M) = i (D < NIfllceM

which gives the desired estimate on D(a™-¢M V).

Step 2 : Tightness Observe that , under assumption (2.11), for any M € R™",

sup trN((log(CNM +1))%) < sup try((log(C% +1))?) < 00
NelN NelN

which insures, in view of the proof of Lemma 2.5, that, on KN (K1), the family of the marginals {4 "™, M e
IR U {00} }4¢[o,1] is tight. In particular, we find a compact set K of M;(IR), independent of ¢, such that for
allt €[0,1] and M € RY,

areMe Ky e e K.

Step 8 On the compact set K7, the Wasserstein distance is equivalent to the distance

di(uv)= sup ‘/fdv—/fdu‘-
[1F]l<1,ft

Write
| B
X5 ) = X3M@) +ez cjiejien.
Now, let A1, ..., Ax denote the eigenvalues of X5™ (¢) and Al,..., AL that of XM (t) + ecj, ej, €] . Then,

by Lidskii’s theorem (see [14, Theorem 6.10]),
A <AL < X < AN < AR

h ANeMl

Thus, for any increasing Lipschitz function f, we get, wit the spectral measure of Xf\’,M ) +

[ saaet = [ gagesss

4
~N,e,M ~N,e,M,1
di (i iy ) < N

€cj, €j, ejrl,
f()‘maw) — f()‘min)
N

2 4
< — < =
< < llle + < <lflle

ensuring that

Repeating this operation |Bys| times we conclude

“N.,e,M ~N. _ 4Bum
dl(lj/i\[7 7M7l”’év,)g |N |
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But Chebycheff’s inequality yields
B
% = /1[\z|2Mdﬂg(x)

Ty [ (osle? + )i @)

giving finally, according to condition (2.11), a finite constant C such that

C
~IN,e,M ~N,
dy(fiy ™, fig G)Sm-

Steps 1-3 give the lemma by taking first € | 0 and then M 1 oo. ]

3 Large deviation for the law of the spectral process of the sym-

metric Brownian motion

The symmetric Brownian motion S is defined as the Markov process (Hn (t)),c g with values in the space
Sy of symmetric matrices of dimension N and real Brownian motions entries. We can construct the entries

{Sf\’,j (t),t >0,(i,5) € {1,..,N}} via independent real valued Brownian motions (8;,;)1<i<j<n by

71+6k:l5k 1,kvi
\/N ALEVE-

We let (XEN) (t),1 < i < N) be the eigenvalues of Sy (t) + Dy and iV be their empirical process. We

k.l _
Sy =

shall prove now Theorem 1.4 for g = 1.
In fact, the proof of this theorem for 8 = 1 follows the case 8 = 2 once one obtains the following It0’s

formula for v

Lemma 3.1 ([6, Lemma 3.1]) For every f € Cf’l(R x [0,1]),

[s@oa = [ 1o + [ un(sneasne) + [ / 0, (, ) djiY ds

//6fa:s$_i)f(y, ) 5 o) () + //amfa:sdus()

Furthermore, the martingale bracket for fg try (f'(Sn(s); 8)dSn(s)) is given by

(/O.trN(f (Sn(s);8)dSn(s))): = N2/ /6 f(Sn(s),8))*d? il (x)ds.

The above It6’s formula is very similar to that obtained in Theorem 2.1 for the Hermitian Brownian motion.
The only differences are an error term (see the last term in It6’s formula) which will not change either the
analysis of the large deviation or the result, and the quadratic variation of the martingale which is twice

what it was for the Hermitian Brownian motion. From this last fact, the analysis of the previous section
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shows that the rate function governing the deviations of i is given, when [} converges towards up, for
any v € C([0, 1], M1 (IR)) so that vy = up,

Sp,(v) = sup sup  {S¥'(v, f)— < f,f >0}
Ossst<l pec21(IRx[0,1])
1 1 1
= 5 sup sup  {S™ (v, f) = 5 <, F >0} = 58w ()

2 0<s<1<1 pecaa(IRx (o)

where in the second line we have only performed the homothety f — (1/2)f. Hence, Theorem 1.4 for 8 =1

is a direct consequence of the proof of Theorem 1.4 for 8 = 2 and Lemma 3.1. [l

4 Study of the minimizer: proof of (1.5) and Corollary 1.6

In this section, we prove the following theorem, yielding (1.5) and hence Corollary 1.6:

Theorem 4.1 Assume that pup is compactly supported. Then,
i inf (S, (v); v € A, (v, 1) < 9} = inf {8, (0); 24 = ).
Proof. Let us first observe that of course, since S, is a good rate function,
1%ighinf{SuD (v.); ve A d,p) <9} > Igi_anoinf{S“D (v); d(vi,p) < 9} =inf{S,, (v.); v1 = p}

so that we only need to prove the opposite inequality. Now, let v° € C([0,1], M;(IR)) be such that v{ = pu
and
inf{Sup ()i 01 = 1} > Sy (VF) = 6 = SO (1) = 6

for some § > 0. Of course, ¥ = up. We shall prove that, up to a small error, S%!(v%) can be bounded
below by $%1(7%¢4) with 7%¢A a compactly supported process with initial law equal to up and 7 as
close as wished to p. To construct the process %%

, recall that we saw in Lemma 2.10 that, for any € > 0,
SOLWE) > SOL(P, +1P). (4.1)

Moreover, we can also perform the time regularization of the first step of Section 2.3.2 to find a %% such
that

inf{S,, v );v1 = u} > SO P*R) —§ - A (4.2)
and llg’e’A =P, x uD,yf’e’A = P, * u. Further, we saw in the second step of Section 2.3.2 (see (2.28) that
v564 is described as the unique solution of the so-called free Fokker-Planck equation given by

t
0.t = 8, f(, 8)0, KO (z, s)dpsd 4.
(fo) A,/ f(@,5) (2, 8)dpsds (4.3)

with a field 8,h%¢?(z, s) described in Lemma 2.12. Now, let us consider a free probability space (A, 7) and
the algebra Asq of self adjoint possibly unbounded operators affiliated to A. Consider a bounded operator
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D with law up and a free Brownian motion S, free with D, in (A4, 7). Let C. be an unbounded operator of

A,q with Cauchy law P, C, free with S and D. Then, we consider the free equation
dY o8 = dS, + 9B R (V)8 + Co )t
with bounded initial data Y;)‘s’e’A = D. Observe that, by Lemma 2.12, the field 8,h%%? is of the form
O h®o% (z,8) = ah + /eigwl,‘z’e’A(§,s)d§, 8 € [tkyteta]
with, for any s € [ty,tgs1[ and any k € {0,--- ,n},
170 (€, 8)] < Ce 3
for a finite constant C. In particular, thanks to Duhamel’s formula, for ¢ € [ty, tx+1], for any X, Y € A,

1

||6wh6’€’A(X + Ce,t) _ 6zh6’f’A(Y + Ce,t)” < /li’E,A(f,U)”g/ eiaﬁ(X+Ce)(X _ Y)ei(lfa)E(Y+Ce)da||d£
0

KX =Y,

IN

with a finite constant K. As a consequence, we can check that Y942 exists and is uniquely defined. Indeed,

considering the sequence Y° = D, Y§* = D,
Ay, = dSy + 8,hA (Y™ + C., t)dt,
we see first that for all n € IV,

sup [|V"|| < [[D][+ sup [|Sell+ sup [|0:h%2(,1)]]oo < 00
tef0,1] t€f0,1] tef0,1]

ensuring that for all n € IV, Y™ is uniformly bounded, and then that
t
WP el < K et - s
0

ensuring that Y” is a Cauchy sequence in A, which is strongly closed. Its limit Y € A satisfies the desired

equation. Observe also that

A
sup [[Y;"|| <[IDI| +2+ sup [|9:h* 4 (1)l < 00 (4.4)
1] t€(0,1]
Further, uniqueness can be obtained by similar Picard arguments. We refer to [4] for similar results.

We claim that X&¢A = Y562 4 O, has time marginals XO©® with law %%, ¢ € [0,1]. In fact, it is
not hard to see that it satisfies the same free Fokker-Planck equation (4.3) with same initial data. Hence,

d,6,A

since it was proved below (2.48) that the solution to (4.3) is unique and that v satisfies the very same

equation, we conclude that Xf ©A has distribution uf ©a
We proceed using the free Itd calculus as developed in [3], whose notations we borrow. For any f(z) =

[ e®®du(€) with [ |€|2d|p|(€) < oo, we can follow [3, Proposition 4.3.4], to see that

t t t
FEPR) = FYvPo) + / Do f(Y244)4dS, + / Dof (Y220, hA (XA, 5)ds+ / (r@I)Lf(YIR)ds
0 0 0

32



with, for any 4, B,C € A, A® B§C = ACB, and, if we identify CJ(RR*) with CJ(IR) ® C)(IR),

L;(y) and Lf(z,y) = 8z o Dof(z,y).

DOf(mJy) = T —

Taking the trace on both sides of this equality, we see that the law 17,§s B of Yf’e’A satisfies the free Fokker-

Planck equation
SOt( 6eAf //6f$S)K6€A( )dﬁéeA( )d

with K&¢A = 1(9,h®A (X554, 5)|[Y.94A) the L?(7) projection of 9,h%4? (XA ) on the algebra gener-
ated by Y42, Consequently, we find that

1
R I Y A (GRS B
0

1
- . /0 T((DL A (XPD 5))?)ds

1
> 5 [ @A (x3ed Iy ies s
0

1 ! 7,0,€ €
= 5 [ P uEsesas
0
> SO,l('ﬁé,e,A)_ (4_5)

Thus, we have constructed a law 7%¢* such that
~d,6,A __
LB = UD-
is uniformly compactly supported (see (4.4)), and therefore belongs to A.
° So,l(yﬁ,e,A) > SO,I(D’(S,G,A)_
e For any ¥ > 0, we can choose € > 0 small enough so that D(v><2, 7%¢4) < /2. Indeed, this is a direct

° ";.é,e,A

consequence from the previous observation that X%¢4 = Y&&A 4 O, has distribution v%¢* (see Lemma 4.2
at the end of the section).
From (4.2) we thus deduce that for any € > 0,

inf{S,,(v);m =p} > S A)—§5-A
2 SO,I(;&,e,A) 5—A
> inf{S,,(v); ve A dy,p) <9} -0-A (4.6)

where we have chosen above € > 0 small enough so that also d(v>¢, i) = d(P, * p, p) < (9/2) .
We can finally let 6, A and ¥ (and therefore €) going to zero to conclude that

inf{S,, (v.);v1 = p} > limsupinf{S,, (v.); v € A, d(v1,p) < ¥}.
¥—0

The proof is complete, except for the:
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Lemma 4.2 Let (A,7) be a non-commutative probability space and C. € ,Ksa be an operator with Cauchy
distribution P.. Then, there exists functions g : R* — R*, such that 9-(€) =e50 0 and, for all Lipschitz

function f, ||f]lc <1,
IT(f(Y + Ce)) = 7(f(Y))] < gy (€)-

Further, if v > ' then g, > g.

Proof. Note first that by density it is enough to prove the result for functions of Ci (IR). Let n € (0,1) and
f € C(IR) be fixed. Throughout, we let K, denote a constant, which depends on 7 only, and whose value
may change from line to line. We consider, for £ > 0

f(z)

O W

Observe that
n

[Fal@) = F@)| < Kl llow (51211
Thus, for all Y € (A,7), ||Y]| < M,

T (F(Y +Co) = 7 (fulY + C)| < Eyllflleok™ (M + [C)T)
so that for any M € R,

sup sup |7 (f(Y +Co)) =7 (fu(Y + C))| < Knual| fllock™? (4.7)
Y E(A,r),||Y]|<M e€[0,1]

where K, ps is a constant depending on 7, M only, monotone nondecreasing in M, and whose value may
again change from line to line.
Further, since f € C}(RR), f. € C{(IR) and we have

F(FulY +C) — fo(Y)) = / T (fL(Y + aC.)C.) do. (43)
o (=) («)
) — iz _ nrzf(z
fu(=) (1+&22)1/2 (1 4 ga2)"3*
ensuring

Wk

2@ < (171 + T4l ) 14 ) 02

Consequently, for any a > 0, since for any self adjoint operators A, B, |[7(AB)| < 7(|4||B|),

e

PGy +aCC! < (17 e + S5l ) (04 w7+ aC)2(C]). (49)

Now, using that for ||Y|| < M,
(¥ +aC)? > ((alCel — M)*)?,
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we arrive at

r(+ s +aco?)RIl) < (@ ((alcid - M) C)
E/ 1 |z]

7| T+22 (L+ r(eala] — M)F)2)172

€ ||

= d -

w[ws% 1+ 20t ran 2> 2 || (eala])?

2¢ 2M 2e
= Zlogl+ (/) + ———.
™ og(1+( 17e )+ m(v/kM)"

dz

on/2
dz

Hence, using this control in (4.8) and (4.9), we find that

7l + €)= ()] < Ko (I + D5l ) (4 1 = logde (410)

With (4.7), we conclude that

T +00) = (GO < Kyl + Ko (171 + 2850 ) 04— Toge
(4.11)

which goes to zero as € goes to zero if we take kK = k(e) = e. U

5 Around spherical integrals: proof of Theorem 1.1

We will assume throughout this section, the existence of a compact subset K of IR such that supp ﬂgN cK
for all N € IN. Further, we shall suppose that 4% (2?) is uniformly bounded, and therefore pup(2?) is finite
by lower semi-continuity of u — u(z?).

Our starting point is the observation that if ()\ )i<i<n denotes the eigenvalues of En, then for any J > 0,

/ T [ INE = AP 1O (D, Ew) Hd)\
d(ﬂg 7NE)<6

i<j

_ AMaB ) / ~Ntr(UENU"— DN)2H|)\E )\E|'BHd>\EdmN(U)
d(pg,, nE)<d

i<j

N2 .N 2 .
T SN (d(ugN(l),uE) < 5) .
Recall that by Corollary 1.6, we have that when pp is compactly supported,

AN
glighlr\%glf log]PDN (d(NXNu):NE) < 6) (5.1)

1 ~N
= 16%1 hr]gTsup N2 S log P, (d(NXN(l)alJfE) < 5) = —Js(1p, LE) ;

with a good rate function Jg(up,-). Further, if we let

1) = 5 [ #*duta) - 5 [1ogls —ylduta)duty),
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it was proved in [1] that

1
lim —=logZy = inf 1 .
Jlim 5 log Zy e 5(1)

Moreover, since we assumed that Dy has uniformly bounded eigenvalues, there is a constant D such that

N~2log I (D, En) < DA, (jz]) < D/, (a?).

Thus,

e 2 2y, (@) IAF— )\E|ﬁI(5)(DN En) [TdrE < / 77“EN ?) IAF— )\Elﬁ dX\F
/ﬁgN (22)>L E H ay . (@2)>L zI:IJ H
for L > 4D?. Tt follows by the exponential tightness proof in [1] that

1
lim hmsupN—log/N ) e~ #EN(W )H|)\E )\E|ﬂHd)‘E =—00,
fi z2)>L

L—oo
N—oo i<j

and therefore, combining the last two displays,

lim lim liminf —

log/ e Tz 2 HEN("‘” ) ,\E )\E 'BI(ﬂ)(DN,EN d/\E
Ltoo 6J0 Ntoo N2 Ay ue) <6l (z2)<L H| | H

i<j

1
= limliminf — log / 5 gy (%) NE - XTI (Dw, Ex) [] dAF
510 Ntoo N2 (N 7NE)<(5 zI:IJ H

and similarly for the limsup term. We next claim that

~Tg(up) + Jim limlim inf 1og I¥) (Dy, Ex)

inf
310 Ntoo d(uEN,uE)<6,uE (z2)<L N2

1
= 11m11m1nf—210g/ e T Safy )H|)\E )\E|ﬁI(B)(DN,EN Hd)\E
N* 7 Jaay, e)<s

510 Ntoo
i<J
1 - B) E
= hmhmsup—log/ e T ”Ezv(w ) |)\E )\E|ﬁI( (DN, En) | | dN;
00 Nroo NPT Jaad umy<s ,1;[] H
= —Ig(ug)+ hm hmhmsup sup log I(ﬁ)(DN,EN). (5.2)

610 Ntoo d(alup)<did (@<L N2

Indeed, the arguments in [1] yield (5.2) with inequality (<) signs replacing the first and third equality signs.

On the other hand, we have the following lemma, whose proof we postpone to the end of this section:

Lemma 5.1 Assume that there exists dpmas € IR such that for any integer number N, ﬂgN (1{‘$|dew}) =
0. Then, there exists a function g : [0,1] x R — IR", depending on pg only, such that g(8,L) =5 0 for
any L € RY, and, for E’N,EN such that

/ e’ dfig, (x) + / e*dp () <L, (5.4)
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it holds that

limsup | = log =“—7—%| < g(4,L)
N—oo N2 IJ(\'?)(DN,EN)
By Lemma 5.1, we conclude that for all L € R
1 (8) ; 1 (8)
sup —logIy’(Dn,EN) < inf — logIN/(Dn,EN) + gn(d, L),
a@y,, e <o, y<p N2 a(aY, ) <Oy ()<L N2 07

where gn (0, L) —5_,0 0 uniformly in N. From here, equality in (5.2) is clear and, if we let

: 1 e 1
I®(up, pg) = 11r£Tsolip 7 log I (Dy, En) = 111r\§1T1£f Nz log I (Dn, En),

(5.1) implies that

. 1
® (up, puE) = _Jﬂ(,UDaNE) + Iﬁ(,UE) — inf I,B(,U) + 5 /-’172d,UD(-"7)7 (5.5)
neM; (IR) 2

completing the proof of Theorem 1.1. O

Proof of Lemma 5.1: Take ﬂgN and ﬂgN satisfying (5.3) and (5.4) with L € R and § > 0. Fix §' > 0
and then M = M(8') < L/5' A %L such that

[ loltas @, + i) <5 (56)

Observe that (§', M) exists for ¢ small enough, only case of interest to us. Next, fix a partition of the interval
[—M, M] to intervals {4;};cs (with | 7| < 2M/¢") such that |A;| € [¢',26'] and the endpoints of A; are

continuity points of pug. Denote
j]‘ = {l : EN(%) € Aj}, jj = {l : EN(N) S AJ} .
By (5.3),

lue(A;) — LI /NT + |pe(4;) — L] /N[ < 4.

We construct a permutation o : {1,... ,N} = {1,...,N} as follows: first, if |I;| < |I;| then I, := I},
whether if |I;| > |I;| then |1:J| = |I;| while fj C I;. Then, choose and fix a permutation o such that UN(fj) C
i, and denote Jp = Ujaw (I;). Note that |76] = X lon (1) = [T Al | = ¥, 151 - (51 - 115 A0 50
that, since |I;| —|I;| < 0N and #{j : |I;| # 0} < (2M/d'), |Jo| > > 1| =26MN/§" > 3 |I;|=6'N/M , and
thus | J§| < 2N¢'/M. Next, note the invariance of Ij(f)(DN, Ey) to permutations of the matrix elements of
Dy. That is,

19Dy, Ex) = / exp{Ntr(UDNU* Ex)}dm5 (U) = / exp{N > u3, D (kk) En (ii) }dm?, (U)
i,k

/ exp{N S 12 D (kk) By (o (i) (i) iy (U
i,k
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But, with dmax = maxy |Dy(kk)| bounded uniformly in N,

N1 Z w3 DN (kk)En(on(i)on (i)

i,k
= NI Z Z ukaN(kk‘)E_'N(O'N(i)O'N(i)) + Nt Z Z ungN(kk)EN(O'N(i)O'N(i))
i€do k igJo k
< ONTUY Dl Dn(RR)EN (i) + N1 Y Y S ui D (k) (En (on ())on () — En (id))
i€Jo k i€Jo k
AN ud D (kk) En (o ()N (1) (1 my (o (o ()< + 11 Bx(on ()on ()5 M)
i¢Jo k
= N7' ) ui Dy (kk)En(id) + £+ €2 + &5
i€Jo k

Since |En(on(i)on (i) — En(ii)] < 26" and 3,12, = 1, & < 2dmaxd’. Moreover,
& < dmaxMHi ) ¢ jO}l/N < 2dmax(sl
and, by (5.6), we have &5 < dmaxd’. Hence, we have proved

N> " ud Dn(kk) En(on (D)on (i) < N78 S " uf, Dy (kk) En (i) + 5dmaxd'-
i,k i€Jo k

Repeating the argument in order to replace ) ;. ;. >, w2 Dy (kk)En(ii) by ik w2 Dy (kk)En (ii), we

conclude that

N> Dy (kk)En(on(i)on (i) < N2 uf, Dy (kk) En (i1) + 10dmaxd’ .
i,k ik

Since ¢’ is arbitrary, and the reverse inequality is obtained by interchanging the role of Ex and EN, we are
done. ]

6 Concluding remarks

We conclude with some comments on the relation of our variational problem, in the case § = 2, to the one
obtained by [16]. Indeed, suppose that up,p possess densities with respect to Lebesgue measure that we
denote by po, p1, and further assume that the minimizer to the variational problem in (1.6) is achieved by a

path v. € C([0,1]; M; (IR)) with density p., which is smooth enough to satisfy the equation

SOy, f) = / t / deh(m,u)d; f (x, u)dvy (x)du ,Yf € Cy' (IR x [0,1]), (6.1)
0

for some nice field h(z,t) (see [6, Section 2.4] for a discussion of assumptions on the field h that ensure the
uniqueness of solutions to (6.1)). Denoting k(z,t) = d,h(x,t), it is easy to check that (6.1) is equivalent to

the statement

Oipi(x) = —0u(p(x, ) (Hp)(2,1)) — Oz (k(x, t)p(x, 1)), (6.2)
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where Hp denotes the Stieljes transform of p:

(Fp@,t) = [ plu,t)dy.

In this case, Corollary 1.6 tells us that

1 1
I (up, p) = 2 inf{/ /k(x,t)2p(:c,t)da:dt : p(-,-) satisfies (6.2) for some nice field h}, (6.3)
0
where the infimum is taken over fields h. The Euler-Lagrange equation for the variational problem (6.3)
reads
i k(z,t)?
O | k(z,t) +k(z,)(Hp)(z,t) + (H(kp))(2,2) + —— =0.
Defining
Lo, = [ logls ~ylp(w Oy + [ k).,
one finds that
k(z,t)
0ll(z,t) = —k(z, ) (Hp)(2,1) — —5— — (H(p(Hp)))(2,1) -
Using the relation (see [22, Th. IV])
7r2 2 _ 1 2
= ol t)? = S(HpP(,0) — H(p(Hp)) (1),
and the relation
O ll(z,t) = (Hp)(x,1) + k(z, 1), (6.4)

we conclude that )

1
Oll(,t) = -5 (0 1L(x,1)* + (1)’
Together with (6.2), which in view of (6.4) can be rewritten as
atp(ma t) = _aﬂv (p(m, t)@zH(a:, t)) )

we thus recover the Hamilton-Jacobi equations of [16, Pg. 810].
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