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Abstract. We present a somewhat homomorphic encryption scheme
that is both very simple to describe and analyze, and whose security
(quantumly) reduces to the worst-case hardness of problems on ideal lat-
tices. We then transform it into a fully homomorphic encryption scheme
using standard “squashing” and “bootstrapping” techniques introduced
by Gentry (STOC 2009).

One of the obstacles in going from “somewhat” to full homomorphism
is the requirement that the somewhat homomorphic scheme be circular
secure, namely, the scheme can be used to securely encrypt its own se-
cret key. For all known somewhat homomorphic encryption schemes, this
requirement was not known to be achievable under any cryptographic
assumption, and had to be explicitly assumed. We take a step forward
towards removing this additional assumption by proving that our scheme
is in fact secure when encrypting polynomial functions of the secret key.
Our scheme is based on the ring learning with errors (RLWE) assumption
that was recently introduced by Lyubashevsky, Peikert and Regev (Euro-
crypt 2010). The RLWE assumption is reducible to worst-case problems
on ideal lattices, and allows us to completely abstract out the lattice in-
terpretation, resulting in an extremely simple scheme. For example, our
secret key is s, and our public key is (a,b = as+ 2¢e), where s, a, e are all
degree (n — 1) integer polynomials whose coefficients are independently
drawn from easy to sample distributions.

1 Introduction

Fully-homomorphic encryption is one of the most sought after goals of mod-
ern cryptography. In a nutshell, a fully homomorphic encryption scheme is an
encryption scheme that allows evaluation of arbitrarily complex programs on
encrypted data. The problem was first suggested by Rivest, Adleman and Der-
touzos [36] back in 1978, yet the first plausible construction came thirty years
later with the breakthrough work of Gentry in 2009 [14, 15] (although, there has
been partial progress in the meanwhile; see, e.g., [21,12, 30, 6]).

The cornerstone of Gentry’s construction is the notion of a “somewhat ho-
momorphic” encryption scheme — namely, an encryption scheme that allows
evaluation of a class of functions below some complexity threshold. Specifically,



his construction of a somewhat homomorphic encryption scheme allows the ho-
momorphic evaluation of any (arithmetic or Boolean) function whose polyno-
mial representation has bounded degree. He then showed how to “bootstrap”
from a sufficiently powerful somewhat homomorphic encryption scheme into a
fully homomorphic encryption scheme. To construct a somewhat homomorphic
encryption scheme, Gentry harnessed the power of ideal lattices — a sophisti-
cated algebraic structure with many useful properties. Specifically, he was able
to reduce the security of his somewhat homomorphic encryption scheme to the
worst-case hardness of standard problems (such as the shortest vector problem)
on ideal lattices [15].3

Gentry’s construction is quite involved — the secret key, even in the private-
key version of his scheme, is a short basis of a “random” ideal lattice. Generating
pairs of public and secret bases with the right distributions appropriate for the
worst-case to average-case reduction is technically quite complicated, and sig-
nificant effort has been devoted recently to this issue [38,16]. We will present
a scheme where key generation is simply sampling a random degree-(n — 1)
polynomial with coefficients in Z,. Furthermore, all parts of our scheme can be
described in elementary terms, with no reference to ideals.

A parallel line of work that utilizes ideal lattices in cryptography dates back
to the NTRU cryptosystem [22]. The focus of this line of work is to use ideal
lattices for efficient cryptographic comstructions. The added structure of ideal
lattices, compared to ordinary lattices, makes their representation more succinct
and enables fast computation. Starting with the work of Micciancio [28], there
has been an ongoing effort [31, 23, 32,25, 24] to come up with very efficient con-
structions of various cryptographic primitives whose security can formally be
reduced to the hardness of short-vector problems in ideal lattices. A recent work
along these lines, which serves as an essential stepping stone for this work, is
that of Lyubashevsky, Peikert and Regev [26].

Lyubashevsky et al. [26] present the ring learning with errors (RLWE) as-
sumption, which is the “ring counterpart” of Regev’s learning with errors as-
sumption [34]. Roughly speaking, the assumption is that given polynomially
many samples over a certain ring of the form (a;, a;s + e;), where s is a random
“secret ring element”, a;’s are uniformly random in the ring, and e; are “small”
ring elements, an adversary cannot distinguish this sequence of samples from
random pairs of ring elements. They show that this simple to state assumption
can be (very efficiently) reduced to the worst case hardness of short-vector prob-
lems on ideal lattices. They also construct a very efficient ring counterpart to
Regev’s [34] public-key encryption scheme, as well as a counterpart to the iden-
tity based encryption scheme of [17] (using the basis sampling techniques of [39]).
The description of the scheme is very elegant since, as explained above, RLWE
is stated without directly referring to lattices (similarly to the LWE assumption
and ordinary lattices).

3 The specific variant of the (approximate) shortest vector problem, as well as the
specific approximation factor, are irrelevant for the current discussion.



A natural question that comes out of these two lines of work is whether one
can get the best of both worlds, namely the expressive functionality on the one
hand, and the simplicity and efficiency on the other. We show that indeed this
can be done — we construct a somewhat homomorphic encryption scheme based
on RLWE and thus inherit the simplicity and efficiency, as well as the worst case
relation to ideal lattices. Furthermore, our scheme enjoys key dependent message
security (KDM security, also known as “circular security”) — namely, the scheme
can securely encrypt polynomial functions (over an appropriately defined ring)
of its own secret key. This property, while interesting in its own right,* carries
special significance in the context of homomorphic encryption as we explain next.

All known constructions of fully homomorphic encryption employ a “boot-
strapping” technique, which enforces the public key of the scheme to grow lin-
early with the maximal depth of evaluated circuits. This is a major drawback
with regards to the usability and the efficiency of the scheme. However, the size
of the public key can be made independent of the circuit depth if the somewhat
homomorphic scheme can securely encrypt its own secret key. Achieving circular
secure somewhat homomorphic encryption has been, thus, an interesting open
problem® which we resolve in this paper. Unfortunately, the circular security
we can prove is with respect to the representation of the secret key as a ring
element, where bootstrapping requires circular security with respect to the bit-
wise representation of the secret key (to be precise: the bitwise representation of
the “squashed” secret key). However, since prior to this work it was not known
whether somewhat homomorphism can co-exist with any form of circular secu-
rity, we view this property as a significant first step towards removing the above
assumption.

We also show how to transform this into a fully homomorphic encryption
scheme, following Gentry’s blueprint of “squashing” and “bootstrapping”.6 Al-
ternatively, applying techniques from a followup work [10], “squashing” can be
avoided at the cost of relying on a “sparse” version of RLWE that is not known
to reduce to worst case problems.

Lastly, we remark that our scheme is (additive) key-homomorphic, a prop-
erty which recently found applications to achieving security against related-key
attacks [3].

We elaborate more on the properties of our scheme below.

4 In some ranges of parameters, we improve upon the best known based on any lattice
assumption, see Section 1.1.

5 Of course, one can just assume that some scheme is circular secure and hope that
it is correct. This has indeed been the solution so far.

5 Although our somewhat homomorphic encryption scheme assumes only the hard-
ness of ring LWE (which can be based on the worst-case hardness of ideal lattice
problems), the squashing step adds another assumption, namely the hardness of
the sparse subset sum problem. This is completely analogous to what happens in
Gentry’s work.



1.1 Our Results and Techniques

We present a public-key encryption scheme under the polynomial LWE (PLWE)
assumption, which is a simplified version of the aforementioned RLWE. We show
that our scheme is both somewhat homomorphic and circular secure. The for-
mer means that bounded complexity functions can be evaluated on encrypted
data. The latter means that non-trivial functions of the secret key (including
the secret key itself) can be securely encrypted by our scheme. Finally, we show
how fully homomorphic encryption can be obtained by bootstrapping, using
“Gentry-style” squashing. We also mention how squashing can be traded for a
sparse variant of PLWE using techniques from a follow-up work. Details follow.

The Assumption. We formally define the polynomial learning with errors as-
sumption (PLWE), which is a simplified version of [26]’s RLWE assumption. We
emphasize that PLWE is implicit in [26] and we just make it explicit. In par-
ticular, using the results of [26], the hardness of PLWE can be based on the
worst-case hardness of ideal lattice problems.

In the standard parameter setting, we consider the polynomial ring R, =
Zgy[z]/ (™ + 1), where n is a power of 2, namely the ring of all integer polyno-
mials of degree (n — 1) and coefficients in Z,. Addition and multiplication over
this ring are defined modulo (™ +1, ¢). The PLWE assumption in this setting is
that it is hard to distinguish polynomially many samples from the distribution
(a;, a;s+e;) and the same number of samples from the distribution (a;, u;), where
s, the a;’s and the u;’s are uniform in R, and the e;’s are “noise polynomials”
whose coeflicients are sampled (independently) from a narrow Gaussian (which
we refer to as the noise distribution x). An important observation is that the
assumption still holds if s is sampled from the noise distribution y rather than
the uniform distribution (this is the “Hermite normal form” of the assumption).

The resemblance to standard learning with errors is apparent, especially when
noticing that the additive group of R, and Zj are isomorphic (as vector spaces,
obviously multiplication in the latter is undefined). The new aspect of PLWE
is the use of multiplication in R, in the place of inner product, which results
in a larger amount of pseudo-randomness generated per sample. Rather than
obtaining just one element in Z,, as in standard LWE, we here obtain n such
elements.

The PLWE problem, in some parameter settings, is reducible to the worst case
hardness of “short vector problems” in ideal lattices. This is a straightforward
consequence of [26]. Specifically, we require that ¢ is a sub-exponential prime and
that there is a sub-exponential gap between the ¢ and the standard deviation of
the Gaussian error (used to sample the coefficients of the e;’s described above).
These parameters translate to the worst-case hardness of approximating the
shortest vector problem to within a (slightly) sub-exponential approximation
factor, using (slightly) sub-exponential algorithms. We note that the best (ideal)
lattice algorithms run in time roughly 2*/* to come up with a 2¥-approximation
of shortest vectors (where k is a “tunable” parameter of the algorithm).



The Basic Scheme. Our somewhat homomorphic encryption scheme is so simple
that the best way to present it is to spell it out. We first present the symmetric-
key variant of the scheme and then explain how to transform it into a public-key
scheme.

To generate the (symmetric) key for our scheme, we sample s &y (in fact,

if we only care about homomorphism and not KDM security, sampling s & R,

is sufficient). Encryption is performed by sampling a & R, and e & x and
outputting the ciphertext ¢ = (cp,c1) where ¢; = —a and ¢g = as + 2e +
m. The message m resides in the ring of polynomials with binary coefficients
Ry = Zs[x]/ (x™ + 1) (which is isomorphic to {0,1}" but, as one might guess,
has additional structure that will be used for homomorphism). To decrypt the
ciphertext ¢ = (¢g,c1), one computes ¢y + ¢18 (mod 2). Note that we slightly
deviate from the standard notation for LWE based schemes for reasons that will
be apparent below.

The correctness of the scheme is apparent, and security follows from the
PLWE assumption by noting that (a,as + 2e) is indistinguishable from (a,u),
where v is uniform (the additional factor of 2 is not a problem, since 2 is invert-
ible in Z,). The ciphertext, thus, is indistinguishable from one that carries no
information on the message.

A Public-Key Scheme. We obtain a public-key encryption scheme using a variant
of the construction of [26]. Notice that in order to encrypt with our symmetric
scheme, we only need the ability to generate pairs of the form (a,as 4 2¢). We
show that given one such pair, it is easy to re-randomize and generate as many of
them as we want. Given (a,b = as+2e), we consider the tuple (a' = av+2¢’,0’ =
bv + 2¢”"), where v, e’ <& x, € & X', where ¥/ is a noise distribution like , only
with larger standard deviation. It holds that ¥ = asv + 2(ev + €”) = a’s +
2(ev+e€” —€'s). If the standard deviation of e” is sufficiently large, it holds that

Y & a's+2¢”. In addition, o is computationally indistinguishable from uniform
(even for an adversary who knows s). Therefore (a’,b’) are computationally
indistinguishable, even given the secret key, from an appropriately distributed
pair that can be used for encryption. Security is not affected because the original
pair (a,b) posted as the public key is computationally indistinguishable from
being independent of s.

Somewhat Homomorphic Scheme. Achieving additive homomorphism is simple,
via coordinate-wise addition: caaqa = ¢+ ¢’ = (¢o + ¢, c1 + ¢)) = ((a + a')s +
2(e+e )+ (m+m'),—(a+a")), which decrypts properly so long as the error does
not “blow up”. It is multiplicative homomorphism that requires careful handling.
The intuition is that multiplying together the ¢y elements of 2 ciphertexts should
create an element that depends on the product of the messages. Writing it down,
we indeed see that cg - cfy = —aa’s? + (coa’ + cha)s + 2(2ee’ +em’ + €'m) +mm/,
which almost looks like a legitimate ciphertext, except for the term —aa’s?,
which contains a high power of s. The key observation is that we can make this

ciphertext decryptable at the expense of adding an element to the ciphertext.



Our new ciphertext will be cpuit = (Cmult,0, Cmult, 1, Cmult,2), Where cmuly2 =
€16h, Cmult,1 = €€y + €41, Cmuls,0 = Coc. In other words, since we know that
m+2e = ¢g+ c1s and m' + 2¢/ = ¢f + ¢}s, then it holds that (m + 2e) -
(m’ +2¢') = (co + c18) - (¢ + ¢} s). We can open the parenthesis on the right
hand side symbolically (without knowing s), and come up with Cyyt such that
(co+c18) - (ch + c8) = Cmult,0 + Cmult, 18 + Cmuie, 252 Note that all of the above
can be computed from ¢, c’. To decrypt a 3 element ciphertext ¢ = (co, ¢1, ¢2),
the decryption process will be ¢y + ¢15+ co5? (mod 2). It is important to notice
that ciphertexts of all lengths can be again added and multiplied, where addition
results in a ciphertext of the maximal length of its operands and multiplication
results in a ciphertext of length sum of operands minus 1.

The limiting factor on the number of homomorphic operations is the growth
of the error term. We start with a sub-exponential ratio between the modulus
q and the elements of e. In order to decrypt correctly, we need this ratio to be
more than 2. Making the calculations (see Section 3), the total degree of the
evaluated function (represented as a polynomial) needs to be less than n¢ for
some constant ¢ (additions are relatively negligible).

The restriction on the error also limits the total length of a ciphertext: A
decryptable ciphertext can have no more than n¢ elements (recall that the num-
ber of elements in a ciphertext and the degree of homomorphic operations are
closely related). We denote this limit on the maximal degree by D.

KDM Security. The KDM properties of our scheme take after ideas from the
work of Applebaum, Cash, Peikert and Sahai [2], who showed KDM security
(w.r.t. linear functions) for Regev’s LWE based scheme, and from the work of
Malkin, Teranishi and Yung [27], who showed KDM security w.r.t. polynomials of
the secret key (treated as integer) based on the decisional composite residuosity
assumption.

To see that our scheme can encrypt non-trivial functions of its own secret key,
consider the ciphertext ¢ = (as + 2e + s, —a) which “looks like” an encryption
of the secret key s.” If we define a’ = a + 1, however, we have that ¢ = (a’s +
2e, —a’ + 1). We notice that (a’,a’s + 2e¢) is exactly a PLWE instance, so it is
computationally indistinguishable from (a’,u), where v’ is uniform. We have

that ¢ ~ (u',—a’ + 1), which is a completely uniform pair. This methodology
is easy to extend to any linear function of s and for any polynomial number of
ciphertexts.

We now revisit our previous claims that the aforementioned ¢ “looks like”
an encryption of s. In fact, s, drawn from y, does not necessarily lie in the
message space of the scheme, Ry, so the above statement is possibly meaningless!
There are two ways to resolve this difficulty. One is to observe that choosing the
parameters correctly, our c is statistically indistinguishable from an encryption
of s (mod 2), which is a non-trivial function of the secret key. Alternatively,
and perhaps more satisfactory, is replacing the coefficient 2 in our scheme by a

7 In fact, there is an important discrepancy between ¢ and a legal encryption of s, but
we will ignore it for this part of the discussion and return to it later.



larger prime ¢, such that with all but negligible probability, s € R;. This enables
achieving KDM security w.r.t. linear functions over the ring R;.

To obtain KDM security for higher degree polynomials, we use a technique
similar to that of [27]. We focus on quadratic functions for the sake of concrete-
ness: We change our encryption algorithm so that encryption of a message m is
performed in 2 stages: First, we compute a ciphertext as in our previous scheme
(a1s+ 2e1 +m, —ay), but then, rather than sending —ay as a part of the cipher-
text, we encrypt it too and obtain (ags+2es — a1, —asz). The final ciphertext will
be ¢ = (co,c1,c2) = (a15 + 2e1 + m,ass + 2e2 — a1, —asz). To decrypt, we first
extract —ay (plus some noise) from ¢y, ¢1, and then use this noisy —a; to decrypt
co and extract m. The decryption process here involves more noise than our stan-
dard scheme, but an appropriate choice of parameters enables correct decryption.
Now let us consider ¢ = (cg, c1, c2) = (a15+2e1 + 52, azs +2ez — ay, —as). Defin-
ing a] = ay+s, ay = ax+1, we have that ¢ = (a|s+2e1, ahs+2es —a), —ah+1).
Applying PLWE twice, we have that ¢ is computationally indistinguishable from
a tuple of uniform ring elements.

By repeating the above process, we can securely encrypt degree D polynomi-
als using ciphertexts of length D. We notice that similar considerations apply in
this case and in the case of the somewhat homomorphic scheme defined above,
and indeed the decryption process in the two cases is very similar.

We further remark that our scheme can be proven to be KDM®™ secure
w.r.t. the same class of polynomial functions. Namely, even in the case where
there is a polynomial number, v, of users, encrypting functions of each other’s
secret keys, our scheme remains secure. However, this property is less relevant
for homomorphism and we refer the reader to Section 4.1 for details. Achieving
KDM®) security w.r.t. super-constant degree polynomials of the secret key was
not known under any lattice assumption.

Full Homomorphism Using Squashing. One way to obtain a fully homomorphic
scheme is to use Gentry’s “bootstrapping” and “squashing”. First, we notice
that, as in all previously known somewhat homomorphic encryption schemes,
the decryption circuit of our basic scheme has higher degree than can be homo-
morphically evaluated. Thus we use the by now established technique of posting,
along with the public key, a sequence of elements that “hide” the secret key as
a sparse subset sum. This enables reducing the complexity of decryption as we
describe below.

We consider the vector s = (1,s,...,s”) € R(?“ which contains all powers
of the secret key s that are relevant for decryption. Note that to decrypt a
ciphertext vector ¢ = (cg,...,cp), one needs to compute Zio cist = (c,s),
where the “inner product” is over the ring R,, and then take the result mod 2.

We post, along with the public key, a sequence of vectors z1, ..., 2z, € RqD +1
that are uniformly sampled conditioned on the existence of a small set L C [m)]
sit. |[L| = n® and Y ,.;z; = s. The new secret key, therefore, is the set L
(represented as a binary incidence vector over {0,1}"). The encryptor then,
along with the ciphertext vector ¢, also posts 7; = (c, ), for all £ € [m]. The
decryption task reduces to computing > ,.; 7 and taking the result modulo



2. As can be verified, this process, expressed as a polynomial over the bits of
the incidence vector, has degree ~ n?. If we choose § < ¢ (recall that n€ is
the maximal degree that can be evaluated), we have that the decryption circuit
is shallow enough to be homomorphically evaluated. This is sufficient for the
“bootstrapping” procedure a la Gentry.

As explained above, in order to use the bootstrapping method to obtain a
public key whose size does not depend on the evaluated circuit, it is necessary
to provide the evaluator with an encryption of the secret key of the somewhat
homomorphic scheme. This requirement refers to the secret key of the squashed
scheme, namely to the bits of the incidence vector of L. As we explained above,
our KDM security proof does not extend to this case.

Full Homomorphism Using Sparse-PLWE. We mention a different way to achieve
full homomorphism, as an alternative to squashing. In a followup of this paper,
[10] introduced a “re-linearization” technique which they use to construct a fully
homomorphic scheme based on the standard LWE assumption. One can verify
that the re-linearization technique can be applied to PLWE as well — namely, a
ciphertext ¢ = (cg, . .., cp) can be “re-linearized” to a ciphertext ¢ = (¢g, ¢1) that
is, in turn, decrypted in the same way. The decryption circuit thus becomes ¢y +
c15 (mod 2) and its complexity depends on the number of non-zero coefficients
in the polynomial s € R,. If we sampled s from a distribution over n’-sparse
polynomials, namely ones that have at most n® non-zero coefficients, then the
decryption complexity will reduce in a similar manner to squashing. For this
method to work, one needs to explicitly assume that PLWE is secure even when
using such sparse s. Although the hardness of such assumption has not been
thoroughly explored, we are not aware of an approach for breaking it either.

An Application: Private Information Retrieval. Our somewhat homomorphic
encryption scheme can be used to construct a very efficient private information
retrieval protocol [11,18] with almost logarithmic communication complexity,
and security under worst-case hardness assumptions. While any (appropriate)
somewhat homomorphic encryption scheme can be used to construct a PIR pro-
tocol (in particular, the scheme of [14]), our construction from ring LWE results
in a particularly efficient and elegant PIR scheme. Due to space constraints, we
do not provide a detailed explanation in this extended abstract.

1.2 Other Related Works

The only known candidate for fully homomorphic encryption, aside from Gen-
try’s aforementioned scheme (and a variant thereof [38]), was presented by van
Dijk, Gentry, Halevi and Vaikuntanathan [13]. Their scheme works over the inte-
gers and relies on a new assumption which roughly states that finding the great-
est common divisor of many “noisy” multiples of a number is computationally
hard. They cannot, however, reduce their assumption to worst case hardness.
The efficiency of implementing Gentry’s scheme also gained much attention.
Smart and Vercauteren [38], as well as Gentry and Halevi [16] conduct a study



on reducing the complexity of implementing the scheme, specifically the key
generation process. We note that the key generation process in this work is
simpler and does not require generating lattice bases.

Candidate KDM secure encryption schemes in the standard model (i.e. with-
out random oracles) started with the work of Boneh, Halevi, Hamburg and Os-
trovsky [7] who presented a scheme based on the decisional Diffie-Hellman as-
sumption that can securely encrypt linear combinations of the bits of its secret
key. The aforementioned work of [2] showed a similar result based on LWE, where
now the linear functions were over the components of the secret key, that reside
in the space Z, for some prime p. Later, Brakerski and Goldwasser [8] showed
KDM security for linear functions based on a class of assumptions they refer to
as “subgroup indistinguishability assumptions”, which includes quadratic resid-
uosity and decisional composite residuosity. The domain of the functions varied
by the assumption. A number of works [4,9, 1] showed that KDM w.r.t. linear
functions can be extended to more complex functions. The work of [27] takes a
different path by treating the secret key as an element in a ring (integers modulo
a composite, in their case), an approach we adopt here as well.

In a followup work, [10] showed that fully homomorphic encryption can be
achieved from the classical LWE assumption, without referring to ideal lattices
and without squashing. Some of their techniques can also be applied to PLWE
(e.g. to achieve full homomorphism via sparse polynomials as we describe above).

1.3 Notation

Let D denote a distribution over some finite set S. Then, d < D is used to
denote the fact that d is chosen from the distribution D. When we say d & s,
we simply mean that d is chosen from the uniform distribution over S.

The ring of polynomials over the integers (i.e. symbolic polynomials with
integer coefficients) is denoted Z[z]. Given a degree n polynomial f(x), the ring
Z[z]/ (f(x)) is the ring of all polynomials modulo f(z). The ring of polynomials
with coefficients in Z, is denoted Z,[z] and Z,[z]/ (f(x)) is defined analogously
to above. For additional background in algebraic number theory, we refer the
reader to to [40].

We denote scalars in plain (e.g. ) and vectors in bold (e.g. v). A norm of
a vector is denoted by ||v|| and always refers to {o: ||v|| = max; |v;|. The norm
of a polynomial ||p(z)] is the norm of its coefficient vector. More generally, we
use the standard isomorphism between degree (n — 1) polynomials in Z[z] and
vectors in Z", given by the vector of coefficients, that allows to treat the two
objects interchangeably: the vector p will indicate the vector of coefficients of
p(x). We explicitly mention when we use this isomorphism.

We let the distribution Dz~ , to indicate the n-dimensional discrete Gaussian
distribution. To sample a vector x € Z™ from this distribution, sample y; € R
from the Gaussian of standard deviation r and set x;:= |y;|, where |-] represents
rounding to the nearest integer. Using the isomorphism mentioned above, we
treat Dzn , as a distribution over integer degree n polynomials. Note that in



this work we only need spherical Gaussian distributions, in which the standard
deviation over each dimension is the same.

2 The Ring LWE Problem, and Variants

In this section, we describe a variant of the “ring learning with errors” (RLWE)
assumption of Lyubaskevsky, Peikert and Regev [26], that we call polynomial
LWE (or, PLWE). This assumption is in fact implicit in [26], and can be thought
of as a special case of their general RLWE assumption. Fortunately, for the pa-
rameters of interest to us, it follows from [26] that breaking the PLWE assumption
leads to an algorithm to solve worst-case ideal lattice problems. Our motivation
in working with the PLWE assumption is due in part to our desire to keep the ex-
position elementary, but is also dictated by the particular choice of the message
encoding in our encryption schemes. See Section 2.1 for a detailed comparison,
and the statement of the worst-case to average-case reduction for PLWE.

The PLWE assumption is analogous to the (by now standard) “learning with
errors” (LWE) assumption, defined by Regev [34, 35] (generalizing the learning
parity with noise assumption of Blum et al. [5]). In the PLWE assumption, we
consider rings R = Z[z]/(f(z)) and R, = R/qR for some degree n integer
polynomial f(z) € Z[z] and a prime integer ¢ € Z. Note that R, = Zq[x]/ (f(x)),
i.e. the ring of degree (n — 1) polynomials with coefficients in Z,. Addition in
these rings is done component-wise in their coefficients (thus, their additive group
is isomorphic to Z" and Zj respectively). Multiplication is simply polynomial
multiplication modulo f(z) (and also g, in the case of the ring Ry).

Thus an element in R (or Ry) can be viewed as a degree (n — 1) polynomial
over Z (or Zg). As we mentioned in Section 1.3, we represent such an element
using the vector of its coefficients. For an element a(x) = ag + a1z + ... +
an—12"" 1 € R, we let ||a|| = max |a;| denote its £, norm.

The PLWE;/ 4, assumption is parameterized by an integer polynomial f(z) €
Z[x] of degree n (which defines the ring R = Z[z]/ (f(x))), a prime integer ¢ € Z
and an error distribution y over R.® We require that y is efficiently sampleable
in our representation, namely that it is efficient to sample the coefficients of the
polynomial representing the sampled element.

Let s & R, be a uniformly random ring element. The assumption is that
given any polynomial number of samples of the form (a;,b; = a;-s+e;) € (Ry)?,
where a; is uniformly random in R, and e; is drawn from the error distribution
X, the b;’s are computationally indistinguishable from uniform in R,. If the
number of samples that the distinguisher obtains is limited by ¢ = ¢(k), then
we call this assumption PLWE%?LX. Our formal definition below presents the
hermite normal form of the assumption, where the secret s is sampled from the
noise distribution x rather than being uniform in R,. This presentation is more
useful for the purposes of this paper and it turns out that to be equivalent to
the original one, up to obtaining one additional sample [2, 26].

8 To be precise, n(x), ¢(x) are functions of the security parameter x and {f.(z)} and
{x«} are ensembles of polynomials and distributions respectively.



Definition 1 (The PLWE Assumption - Hermite Normal Form). For
all k € N, let f(z) = fu(x) € Z[x] be a polynomial of degree n = n(k), let
g = q(r) € Z be a prime integer, let the ring R = Z[z|/ (f(z)) and Ry = R/qR,
and let x denote a distribution over the ring R.

The polynomial LWE assumption PLWEy , . states that for any £ = poly(k)
it holds that .

{(ai,ai - s +ei)Yicig = {(ai,ui) bie

where s is sampled from the noise distribution X, a; are uniform in Ry, the “error
polynomials” e; are sampled from the error distribution x, and finally, the ring
elements u; are uniformly random over R,.

When we require the indistinguishability to hold given only £ samples (for
()
fax:

Note that we define the PLWE assumption as a decisional assumption. One
could also define the search assumption which requires an adversary to find
s € Ry, given any polynomial number of samples (a;, a; - s +¢;). The search and
decisional assumptions are equivalent for some range of parameters, as shown by
[26]. We focus here on the decisional assumption since that is the most natural
for cryptographic applications.

some £ = poly(k) ), we denote the assumption by PLWE

Scaling the noise. It is very useful in our schemes to generate the PLWE samples
as (a;,a; - s+ t-e;), where a;,s,¢e; are as above and t € Zy. This variant is
equivalent to PLWE just by virtue of ¢ and ¢ being relatively prime as stated
below. The proof is straightforward and is omitted.

Proposition 1. Let f(z),q and x be as in Definition 1. Let t = t(x) € Z;

9

(thus t and q are relatively prime). Then for any { = poly(k), the PLWES

assumption implies that,

{(ai,ai-s+1t-ei)}ic ~ {(ai, ui) bieqy -

where a;, s,e; and u; are as in Definition 1.

2.1 Choice of Parameters

Our results rely on a specific choices of the polynomial f(x), the modulus g,
and the error distribution y. The parameter choices are dictated by the search-
to-decision reduction of [26], as well as our choice of message encoding in the
encryption scheme (which seems necessary to achieve homomorphic properties).
In particular, setting s as our security parameter, we assume that:

— We set f(z) = 2™ + 1, where n = 2U1°8#1=1 (this polynomial is also denoted
®,,, (), where m = 2n; see below). Since n € (k/4, ], all asymptotics can be
stated in terms of n. For the knowledgable reader we mention that f(z) =
®,,(z) is the m'™ cyclotomic polynomial.

In addition, the fact that f(z) = ™ 4+ 1 means that multiplication of ring
elements does not increase their norm by too much (see lemmas below).

— The error distribution x is the discrete Gaussian distribution Dz ,. for some
r > 0. A sample from this distribution defines a polynomial e(x) € R.



Some Useful Facts. We present some elementary facts about the Gaussian er-
ror distribution, and multiplication over the ring Z[z]/ (z™ + 1). The first fact
bounds the (Euclidean and therefore, the ¢,) length of a vector drawn from
a discrete Gaussian of standard deviation r by r/n. The second says that the
statistical distance between two Gaussian distributions with the same standard
deviation r (but different centers) is proportional to A/r, where A is the dis-
tance between their centers. The third and final fact says that multiplication in
the ring Z[x]/ (®,,(z)) increases the norm of the constituent elements only by a
modest amount.

Lemma 1 (see [29], Theorem 4.4). Let n € N. For any real number r =
w(\/m), we have Prw‘_DZ”,T[HxH > r,«\/ﬁ] < 9-ntl

Lemma 2 (see [20], Lemma 3). Let n € N. For any real number r = w(y/logn),
and any ¢ € Z", the statistical distance between the distributions Dgzn , and
Dyzn ¢ is at most ||cl||/r.

Lemma 3 (see [23,14]). Let n € N, m = 2n, and let f(z) = @,,(z) = 2" + 1
and let R = Z[x]/ (P (x)). For any s,t € R, ||s-t (mod D, ()| < v/n||s]]-]|t]],
and [|s -t (mod @, (2))|loc < - [Is]oo - [[t]]oo-

The Worst-case to Average-case Connection. We state a worst-case to average-
case reduction from the shortest vector problem on ideal lattices to the PLWE
problem for our setting of parameters. The reduction stated below is a special
case of the results of [26].

Theorem 1 (A special case of [26]). Let « be the security parameter. Let
k € N and let m = 2U°8%1 be a power of two. Let ®,,(x) = ™ + 1 be the m'™"
cyclotomic polynomial of degree n = o(m) = m/2. Let r > w(y/logn) be a real
number, and let ¢ = 1 (mod m) be a prime integer. Let R = Z[x]/ (P (2)).
Then:

— There is a randomized reduction from 2<0°8™) . (q/r)-approzimate R-SVP
to PULWEg,, 4. where x = Dgn , is the discrete Gaussian distribution. The
reduction runs in time poly(n, q).

— There is a randomized reduction from (nq/r) - (n(£ +1)/log(n(f + 1)))'/4-
approximate R-SVP to PLWE((QM%X where x = Dzn , is the discrete Gaussian
distribution. The reduction runs in time poly(n,q,¢).?

3 A Somewhat Homomorphic Encryption Scheme

We present a somewhat homomorphic encryption scheme with message space
R, = Z¢[x]/ (f(x)) for some integer ¢ = ¢(x). The homomorphism will be over
this ring. For the sake of concreteness, we advise the reader to think of t = 2

9 For the interested reader, we remark that the term (£ 4 1) replaces the original £
of [26] due to our choice to define PLWE in hermite normal form.



as a running example. We describe our scheme in the symmetric case in Sec-
tion 3.1 and then describe the public-key variant in Section 3.2. The transition
to full homomorphism via squashing and bootstrapping is fairly standard and is
omitted due to space limitations.

3.1 The Symmetric Scheme

Let x denote the security parameter. Our scheme is parameterized by a prime
number ¢ and a prime ¢ € Z;, a degree n polynomial f(z) € Z[x], and an error
distribution x over the ring R, = Z,[z]/ (f(x)). The parameters n, f,¢ and x
are public and we assume that given x, there are polynomial-time algorithms
that output f and ¢, and sample from the error distribution y. An additional
parameter of the scheme is an integer D € N that is related to the maximal
degree of homomorphism allowed (and to the maximal ciphertext length). This
is not a “free” parameter, and is determined by f,q,x in the analysis of the
scheme.

— SH.Keygen(1%): Sample a ring element s & x and set the secret key sk:=s.
Define the secret key vector as s:=(1,s,s%,...,s") € RqD“, which is effi-
ciently computable given s and will be used in the decryption process.

— SH.Enc(sk, m): Recall that our message space is R;. Namely, we encode our
message as a degree n polynomial with coefficients in Z;.

To encrypt, sample (a,b = as+te) € Rg, where a < Ryande & x- Compute

co:=b+m € R, and cii=—a

and output the ciphertext c:=(co,c1) € Rg.
An important note is that the encryptor only uses the key s in order to sample
(a,b). This will be important when we present our public-key scheme, where
we will show that the public key enables sampling from this distribution
without direct access to s.
While the encryption algorithm only generates ciphertexts ¢ € Rﬁ, homo-
morphic operations (described below) might add more elements to the ci-
phertext. Thus the most generic form of a decryptable ciphertext in our
scheme is ¢ = (c¢p, . .., cq) for d < D. We remark that, as we will show below,
“padding with zeros” does not effect the ciphertext. Namely (co,...,cq) =
(coy---5¢4,0,...,0).

— SH.Eval(p(&1,...,&),(c1,...,¢c¢)): We show how to evaluate an ¢-variate
polynomial p : R — R;. To this end, we show how to homomorphically
add and multiply two elements in R;.

e Given two ciphertexts ¢ = (co,...,cq) and ¢’ = (¢, ..., ;) (we assume
w.l.o.g that they have the same length, e.g. by padding), output the
ciphertext caqq = c+¢ = (co + ¢, ..., ca+¢})) € Rg“, as an encryp-

tion of the sum of the underlying messages. Namely, addition is done
by coordinate-wise vector addition of the ciphertext vectors. Note that
addition does not increase the number of elements in the ciphertext vec-
tors.



e Given two ciphertexts ¢ = (cg,...,cq) and ¢’ = (cf,...,c)) (here we
do not pad with zeros), an encryption of their product is computed as
follows.

Let v be a symbolic variable and consider the expression (Zj:o (:ﬂﬂ) .

(Z?/:O cgvi> (over R,). We can (symbolically, treating v as an unknown

variable) open the parenthesis to compute ¢, ..., é+a € Ry such that
forall v € R,

d d d+d’
E civ' | - E cv' | = g éiv' .
i=0 i=0 i=0
The output ciphertext is cyut = (Coy - - - 5 Cdpar)-

We claim that if ¢ is an encryption of a message m € R; and ¢’ is an
encryption of m’ € Ry, then these two operations generate ciphertexts that
decrypt to m + m’ and mm/, respectively, where arithmetics is over R;.

— SH.Dec(sk, c): Recall that the general form of a decryptable ciphertext is
w.lo.g c=(co,c1,...,cp) € RPT, e.g. by padding.
To decrypt, we first compute (c,s) = Zi’;o ¢;s" € Ry, which can be inter-
preted as inner product over RqD‘H, and output m = (c,s) (mod t) as the
message.
Note that the condition for correct decryption is that the ¢, norm of the
polynomial (c,s) is smaller than ¢/2.

We note that for the sake of the symmetric key somewhat homomorphic
encryption scheme, the secret key s can be chosen uniformly at random. Choosing
s from the error distribution is important both in the public-key variant as well
as for KDM security.

We state the correctness and security below. Proofs are omitted from this
extended abstract.

Theorem 2. Let x = Dz, be the discrete Gaussian noise distribution with
standard deviation r. The scheme described above is a somewhat homomorphic
encryption scheme capable of evaluating £-variate degree-D polynomials over Ry,
as long as M - (trn'-®)P < q/2, where M is the {o, norm of the polynomial (i.e.
its mazimal coefficient).

Theorem 3. Let n,q, f(z) be as in the scheme, let r = poly(n) and ¢ = 2"
for some 0 < € < 1. Then, the scheme allows evaluation of degree-O(nc/logn)
polynomials with at most 20" /1°87) terms and is secure under the worst-case
hardness of approximating shortest vectors on ideal lattices to within a factor of

o).

3.2 Public-Key Encryption

There is a number of ways to go from symmetric-key to public-key somewhat
homomorphism. The work of Rothblum [37] provides a generic though inefficient



way to go from homomorphic symmetric to public key encryption. Alternatively,
one can use re-randomization via the leftover hash lemma (as used in Regev’s
LWE based scheme). However, the greatest efficiency is achieved using a method
that appears in the full version of [26] and due to space limitations will be the
only one discussed here.

Recall that in order to encrypt with our symmetric scheme, we only need the
ability to generate pairs of the form (a,as + te). We show that given one such
pair (with smaller noise parameter), it is easy to re-randomize and generate as
many of them as we want.

Concretely, we show that given one sample (a,b = as+te), where the noise e
comes from a distribution x, we can generate as many additional samples as we
would like, without knowing s, but with noise coming from a distribution x’ of
greater standard deviation. To be even more precise, we will generate samples
that are computationally indistinguishable from the desired distribution, even
given the secret key s, under the PLWE%;X assumption. This is sufficient for
all of our purposes since in all scenarios we consider (including KDM security)
the randomness used to generate these samples is not revealed to any entity
(including the decryptor). The re-randomization lemma follows.

Lemma 4. Let f,q,x = Dz» ,» be parameters for PLWE and let t be co-prime to
q. Let X' = Dyn v, with r’ > owllogn) .y Let s v e, & X, a,a’ & Ry, €’ &y,

b = as + te, then under the PLWE&}?I X assumption,

(s, (a,b), (av +te',bv + te")) ~ (s, (a,b),(a’',a's + te")) .

Proof. Denote a@ = av + te’ and 8 = bv + te’’. Then it holds that 8 = (as +
te)v + te” = as + t(e” + ev — €’s). By Lemma 1 and Lemma 2, it holds that

e +ev—es el Namely
(s, (a,b), (av + te', b + te”)) = (s, (a,b), (a, as + te’)) .

However, (s,a,a) = (s,a,av + te’) o (s,a,a’) by PLWEY _ and the result fol-

)
frax
lows.

Therefore, to achieve a public key scheme, the following changes need to be
made in our scheme. Let x, x’ be as above.

1. In the key generation, in addition to the secret key sk = s & X, a public key
pk = (ag, bo = aps + teg) is output. Where ag & Ry, e & X-

2. In the encryption algorithm, instead of using (a, as + te), the encryptor will
use (agv + te’, bov + te”), where v, e’ & x and €’ & /.

As a side note we remark that for all applications except KDM security, it is
sufficient to generate (a,as + te) where the error e is not distributed according
to the correct error distribution. Generating such “skewed” samples is easier and
improves the parameters of the scheme. We omit the details.



4 Key Dependent Message (Circular) Security

We show that our somewhat homomorphic scheme from Section 3 (using a suffi-
ciently large parameter t) is KDM secure w.r.t. linear functions of the secret key,
over the ring R;. We further show that changing just the encryption algorithm,
allows for KDM security w.r.t. degree-d polynomials. An interesting interplay
between KDM security and somewhat homomorphism allows the key generation
and even the decryption circuit to stay unchanged. We note that even though
we change the encryption algorithm, the ciphertexts of the resulting scheme can
still undergo homomorphic operations (although a little fewer than before). Let
us elaborate a bit more about the connection between homomorphism and KDM
security.

Assume that we can prove that our basic scheme, as is, is secure w.r.t. linear
functions of the secret key, then somewhat homomorphism implies that we can
generate encryptions of degree d < D polynomials of the secret key, by taking
encryptions of the secret key and e.g. multiplying them together to generate
quadratic polynomials, multiply by constants, add more terms etc. The above
implies a very weak form of KDM: that it is possible to generate secure cipher-
texts that decrypt to the right function of the secret key. To show full KDM, we
need to present an encryption algorithm that produces indistinguishable cipher-
texts whether it encrypts functions of the secret key or the constant message 0.
Not surprisingly, we accomplish this by modifying the encryption algorithm to
generate ciphertexts that look a lot like the one generated by homomorphism.
Specifically, to be secure against degree-d polynomials, our encryption algorithm
will generate (d+ 1)-element ciphertexts (contrast this with the encryption algo-
rithm of the somewhat homomorphic encryption scheme in Section 3, that gen-
erates ciphertexts with just two non-zero ring elements). Our techniques borrow
from a recent work of Malkin et al. [27]. We describe our scheme in the symmet-
ric key setting only, noting that the public key variant applies to here as well.
Due to space limitations, we do not provide proofs in this section. The formal
definition of KDM security is omitted as well (see e.g. [7]).

We define P; = Py[R:] to be the class of all degree d polynomials over Ry,
i.e. all functions of the form p(z) = E?:o a;2°, where a; € R; and arithmetics
is over R; as well.

The Scheme. Let k denote the security parameter. Our scheme is parameterized
by the same parameters as our somewhat homomorphic scheme from Section 3:
The primes ¢,t € Zj, a degree n polynomial f (z) € Z[z], and an error distribu-
tion x over the ring Ry = Z4[z]/ (f(z)). As before, there is the maximal degree
parameter D. An additional parameter d < D determines the class of functions
for which KDM security holds. The message space is R;.

— KDM.Keygen(1*): As we explained above, the key generation is identical to
that of our basic scheme SH.Keygen: The secret key is generated as s & X-
(Note that we will set x to be a Gaussian distribution with small enough
parameter r < t such that with all but negligible probability s € R;)



— KDM.Enc(sk,m): To encrypt a message m € R, we generate the ciphertext
¢ = (co,...,cq) € RET as follows.

We generate d pairs {(a;,b; = a;s + te;)}iepq), where a; & Ry, e; &y (X'

will be set with noise parameter much larger than x) and set:
co=br+m; vie[d—l]' ci =bit1—a;; Cq = —Qq .

This encryption algorithm coincides with our basic scheme when d = 1.
While we analyze the correctness of the scheme separately, let us justify our
encryption algorithm by noting that for our ciphertext it holds that

d
Zcisi =b+m+ Z (bip1 — a;) s — ags®
i=0

i€[d—1]
=m+ Z bist Tt — Z a;s"
1€[d] i€[d]
=m+ Z (bi — a;s)s'™*
1€[d]
:m+t~Zeisi_1 . (1)
i€[d]

— KDM.Dec(sk, c): The decryption algorithm is identical to the basic scheme
and in fact is able to decrypt ciphertexts that were originally generated by
the encryption algorithm of our KDM scheme above, and then underwent
somewhat homomorphic operations. Recall that the general form of a de-
cryptable ciphertext is, w.l.o.g, ¢ = (co,c1,...,¢p) € R{?“. To decrypt, we
first compute (c,s) = Zio ¢;s' € Ry, and output m = (c,s) (mod t) as the
message.

Parameter Setting. Let us now describe a plausible parameter setting for our
scheme. As usual, we will set f(z) = ®,,(z) (where n = 2l°8%1=1 "and m = 2n)
and our error distributions will be Gaussian x = Dgn ., X' = Dgn 0 for r, 1/
defined next. Our ¢ needs to be super-polynomial as implied by the selection
below.

We set 7 = 290987 6 be a super-polynomial function, and ' = 2w(ogn) . pd,
We note that the 7¢ factor is so that x’ can “swallow” degree d polynomials over
X-

The parameter ¢ is chosen so that ¢ > ry/n (i.e. a sample from x resides in
R with all but negligible probability) and on the other hand, for correctness,
t < gwllogn) . p—d .

We conclude that in our parameter setting, the scheme supports KDM func-
tions of degree d ~ (logq — logt — O(1))/w(logn) = logq/w(logn), for some
super-logarithmic w(logn). Security will be based on PLWEs,, q.r

We next state correctness in light of this parameter setting. (We remark that
we can somewhat improve efficiency with a more aggressive parameter setting;
we choose to present the concrete setting above for simplicity).



Lemma 5. Consider the parameters of our scheme as defined above. Then for
all m € Ry it holds that

Pr[KDM.Dec(s, KDM.Enc(s, m)) # m] = negl(x) ,

where the probability is taken over the choice of s and over the randommness of
KDM.Enc.

The KDM(l)-security of our scheme is stated below.

Theorem 4. Our scheme is KDM%) -secure under the PLWEg, . assumption.

4.1 KDM®™ Security

We proceed to show that our scheme is KDM®)-secure for any polynomial v.
We use a methodology introduced by [7] and used by all following KDM® con-
structions: The v secret keys associated with the v users are simulated by one
“real” secret key. The secret key of each specific user is obtained by offsetting the
“real” secret key by a known (to the challenger) amount. The offset can be done
without knowing the real key and the offset keys look like appropriately gener-
ated keys. This enables using the same techniques as for KDM™W. We present
a variant of this argument where the offset is drawn from a distribution that
“swallows” the real secret key. A formal statement follows, the proof is omitted.

Towards formally stating our scheme, we introduce an additional distribution
and parameter. For the purpose of the proof, we will need to sample our keys
from an even narrower distribution as before. We denote this distribution by
X" = ng,rw and require that r* = 27«01°87) . Namely that it is “swallowed”
by our “normal” secret key distribution. One can verify that such r* can be
chosen without affecting the other parameters of the scheme.

Theorem 5. Our scheme is KDng—secure under the PLWEg, 4~ assump-
tion, for any v = poly(k).
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