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1 Classical complexity classes

We shall assume familiarity with basic computational complexity theory, and standard
complexity classes. Recall that P C NP C PSPACE C EXPTIME. Of these, the
only inclusion that is known to be strict is that of P in EXPTIME. Namely, there are
problems in EXPTIME that provably do not have polynomial time algorithms.

Recall also the notions of hardness and completeness with respect to a complexity
class. Ignoring some of the finer distinctions of complexity theory, we shall say that
a problem (a.k.a. language) m (such as 3-colorability) is hard for complexity class C'
(such as NP) if for any problem 1 in C' (such as satisfiability), every instance of 1)
can be reduced in polynomial time to an instance of w. A problem 7 is complete for
Cif m € C' and 7 is hard for C.

It follows that every problem complete for EXPTIME has no polynomial time
algorithm. It is not known whether the same holds for NP-complete problems (the
famous P versus NP question).

2 Dominant strategies

For games in normal form, dominant strategies (when they exist) can be found in
polynomial time, by exhaustive search over all strategies. The question of computing
dominant strategies becomes more interesting for games that have succinct represen-
tations. Here we shall survey some know results concerning two player games, and
specifically games in which the payoffs are win/lose (and the complement for the other
player). In some games, ties will be allowed (e.g., if the game does not end).

There is a well developed area of combinatorial game theory that we shall not
address in this course. See more details in [Conway01, BCGO01], for example.

Tasks in program verification are sometimes presented as games. These games
often are played on a finite directed graph, and may continue for infinitely many
moves. (We use here the word mowve in a sense that is sometimes referred to as turn.)
Winning conditions for games that continue for infinitely many moves often relate to
the set of nodes that are visited infinitely often. See [Thomas02] for example.



Games play an important role in computational complexity as well, because several
important complexity classes have complete problems that are games (and hence
these games capture the essence of these complexity classes). A well known result
in this respect relates to the notion of alternation [CKS81]. Alternation may be
thought of as a game of perfect information between two players played on a board
of size n. An important result in [CKS81] is that alternating PTIME is PSPACE and
alternating PSPACE is EXPTIME. This combines two sets of results. One is that
computing winning strategies for any such game can be done in polynomial space
if the game is limited to a polynomial number of moves, and in exponential time if
the game can continue for exponentially many moves. (The games cannot continue
for longer without cycling.) The other is that there are such games where PSPACE
or EXPTIME (respectively) is necessary. An example of a PSPACE-complete game
is generalized geography. An example of an EXPTIME-complete game is generalized
chess. This last result helps explain the apparent intractability of playing chess
perfectly even on an 8 by 8 board.

The exponential time algorithm that computes optimal strategies involves con-
structing an exponential size graph of all possible positions of the game (where the
position may include also the move number, bounded by the total number of possible
positions, so as to avoid cycling), and labelling positions as win/lose/tie by backward
induction.

We mention here an open question related to games of perfect information.

Parity games. The game graph is a directed bipartite graph. Vertices are num-
bered from 1 to n. A token is placed on a starting vertex. Players alternate in moving
the token along an outgoing edge from its current location. If a player cannot move,
he looses. If the game continues indefinitely, then the winner is the first player if
the highest numbered vertex that is visited infinitely often has an even number, and
the other player otherwise. It is known that determining which player has a winning
strategy is in NP coN P, but not known whether it is in P. (See entry in Wikepedia,
for example.)

3 Pure Nash

For games in normal form, a pure Nash equilibrium (if it exists) can be computed
in polynomial time by trying out all strategy profiles, and for each of them checking
whether any player has an incentive to deviate. Hence also here, the main inter-
est is in computing a pure Nash equilibrium for games given under some succinct
representation.

A well known example is the stable matching (a.k.a. stable marriage) problem.
There are n men and n women. Every man has a preference ordering over the women,
and every woman has a preference order over the men. The goal is to find a perfect
matching (each man matched to exactly one woman) that is stable in the following
sense: their is no pair of man and woman that are not matched to each other, but pre-



fer each other over the partners matched to them. Gale and Shapley [GaleShapley62]
showed that a stable matching always exists, and provided a polynomial time algo-
rithm for finding a stable matching.

First, let us present a multiplayer game that captures the notion of a stable match-
ing. The players are the men. Each man has n possible strategies, where a strategy
of a man is to propose to a woman. The payoft of a man is computed as follows. If
he is the highest ranked man among the men who proposed to the same woman that
he proposed to, the woman accepts him and then he gets a numerical payoff equal to
the rank of the woman in his own preference list (n for highest ranked woman, 1 for
lowest ranked woman). Else his payoff is 0.

We show that stable matching correspond exactly to the Nash equilibria of the
above game. Every stable matching M corresponds to a collection of pure strategies
in which each man proposes to the woman that is matched to him under M. No
man has incentive to unilaterally deviate from this profile of strategies, because by
stability of M whatever other higher ranked woman he will propose to prefers here
current partner, and hence his payoff will drop to 0. Similar arguments show that
every Nash equilibrium corresponds to a stable matching. (Remark: we are dealing
here only with pure Nash equilibrium. Mixed Nash equilibria are not of interest for
us here, because the payoff functions do not correspond to utility functions.)

The algorithm of [GaleShapley62] for finding a stable matching proceeds in rounds.
At the beginning of every round, some of the men are engaged and some are free.
Initially, all men are free. The following describes a single round.

1. Every free man proposes to the woman ranked highest on his preference list,
and becomes engaged.

2. Every woman rejects all her offers except the one made by the man ranked
highest on her list.

3. Any man whose offer got rejected removes the rejecting women from his pref-
erence list, and becomes free again.

The algorithm ends when all men become engaged, at which point every man is
matched to the woman whom he is engaged to.

Theorem 3.1 The algorithm described above produces a stable matching.

Proof: We say that a woman becomes engaged at the first round in which she
receives a proposal. Observe that once a woman becomes engaged, she remains en-
gaged throughout the run of the algorithm, though the man to which the woman is
engaged may change to a man higher on her preference list. If at some point, all
men are engaged, the algorithm ends in a matching. As long as some man is free,
the algorithm continues. Every woman is somewhere on every man’s preference list,
hence if any man ever exhausts his preference list, then all women must be engaged.



As it cannot be that two women are engaged to the same man, all men are engaged
as well. This implies that the algorithm must end with a matching.

The matching output by the algorithm is stable because every man already tried
proposing to all women higher on his preference list than the woman to which he is
matched, and every one of them already had a proposal from a more preferable man
at the time, and hence also at the end of the algorithm. O

It is known and not hard to prove that the stable matching produced by the above
algorithm is optimal from the point of view of the men. For every man, in every other
stable matching, the woman he is matched to is not ranked higher in his preference
list than the woman he is matched to under the above algorithm. For women, the
opposite holds — there is no worse stable matching.

This stable matching algorithm is used in assigning graduating medical students to
hospitals in the United States. Hospitals make offers to the students, and the students
reject all but their best offer. Hence this system favors the hospitals’ preferences over
those of the students.

We remark that given that the algorithm is publicly known, a new game arises.
In this game, every man and every woman supplies a preference list, the outcome of
the game is the matching produced by the stable matching algorithm, and the payoft
for a player is the rank (in the player’s original list, which need not necessarily be
the supplied list) of the partner assigned to the player. An interesting question is
whether the players have incentives to play truthfully in this game. Namely, is it
always to the benefit of a player to report his or her true preference list, or may the
player win a better partner (from the player’s point of view) by reporting a different
preference list? It can be shown that the ‘men proposing” version of the Gale-Shapley
algorithm is truthful for men, but not truthful for women. One of the goals of the
area of mechanism design is to design games in which players have incentives to reveal
their true preferences. Note that if players do not report their true preferences for
the stable matching algorithm, then the matching produced might not be stable with
respect to their true preferences.
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