
Greedy algorithms and Matroids

Uriel Feige
Department of Computer Science and Applied Mathematics

The Weizman Institute
Rehovot 76100, Israel

uriel.feige@weizmann.ac.il

1 Greedy algorithms

When searching for the optimal solution to a problem that has many feasible solutions,
search may progress in one of several ways, depending on the structure of the problem. As
a rough and incomplete classification, these are three of the major approaches:

1. Exhaustive search: Searches through all feasible solutions, or through a large frac-
tion of them (where “large fraction” is a term that may depend on the context).
Used for problems that have very little structure, or for which the structure is poorly
understood. For example, for finding maximum cliques in graphs.

2. Dynamic programming: Searches through a very small fraction of the feasible solution.
Typically, dynamic programming is an iterative algorithm. At each irteration, a small
(polynomial size) set of partial solutions is maintained, one of which is known to lead
to the optimal solution. In the next iteration, members of the set are extended based
on information from other members of the set. At the last step, the optimal solution
is chosen from the set. To keep the sizes of the sets small, the problem needs to have
sufficient structure so that all partial solutions can be grouped into a small number
of equivalent classes. For example, subset sum with polynomial weights.

3. Greedy: This may be viewed as the ultimate form of dynamic programming, in which
only one partial solution is maintained. The problem needs to have much more struc-
ture for this approach to work. For example, minimum spanning trees.

Remark: There are other commonly used search strategies, such as branch and bound.
Also, sometimes the method of finding the optimal solution involves ingredients that do not
have intuitive explanations as search procedures. For example, finding triangles in graphs
using fast matrix multiplication.

We shall study several problems that can be solved to optimality in polynomial time
using the greedy algorithm.

1

1.1 Independent sets in interval graphs

Let there be a collection of events, where event i is to start at time si and end at time
ti. Two events are conflicting if their time intervals overlap. We wish to schedule as many
mutually nonconflicting events as possible in the same room.

In graph theoretic terms, we can think of each event as a vertex and two conflicting
events have an edge between them. This is an interval graph, and we wish to find the
maximum independent set in such a graph. The interval representation of this graph is
given to us.

The following greedy algorithm works:

1. Sort all events in increasing order of their end time ti.

2. Iteratively, pick the first event in the (remaining list), and remove from the list all
events that overlap with it.

Remark: If the list does not contain two events such that the time interval of one
completely contains the time interval of the other, then sorting by si gives the same order
as sorting by ti.

To see that the algorithm works, let A = a1, a2, . . . be the sequence of events scheduled
by the algorithm, and let O = o1, o2, . . . be the sequence of events scheduled by the optimal
solution. As there may be more than one optimal solution,we take the optimal solution
which has the longest prefix in common with the greedy solution. We claim that necessarily,
A = O. For the sake of contradiction, suppose otherwise. Let i be the first index in which
ai 6= oi (or for which oi exists and ai does not, if the A sequence is a prefix of the O
sequence). Consider now a schedule O′ identical to O, except that oi is replaced by ai. As
ai starts after ai−1 = oi−1 ends, and as ai ends before oi does, this is still a legal schedule.
As it schedules as many jobs as O but has a longer prefix in common with A, we have a
contradiction.

1.2 Scheduling jobs so as to minimize sum of completion times

There is a collection of jobs. Job i has length li and weight wi. We wish to schedule the
execution of the jobs with no overlaps. Let ti be the time at which job i finishes according
to the schedule. Then the penalty associated with job i is witi, and we wish to minimize∑
witi.
We shall develop a greedy algorithm for this problem by first considering how the proof

of optimality may look like, and then deriving the algorithm from the proof.
Consider two schedules, S and S′, that are identical except that the order of two jobs i

and j that are consecutive in S is flipped in S′. Then simple manipulations show that the
total cost of both schedules is the same, except for one term: a term wjli in S is replaced
by wilj in S′. If we assume that S is the optimal schedule, then we have wjli ≤ wilj , which
implies wi/li ≥ wj/lj .

This suggests the following algorithm.

1. Sort all jobs in order of decreasing ratios wi/li (also called density).

2

2. Execute jobs in the sorted order.

To see that this algorithm generates an optimal schedule, consider any other schedule.
It must have two consecutive jobs i and j with wi/li < wj/lj . Then by flipping the order
of i and j we get a less costly schedule, which is a contradiction.

1.3 Matroids

For certain classes of optimization problems, we have a characterization of the conditions
under which the naive greedy algorithm produces the optimal solution. Matroids are a well
known characterization of this form.

Let S = {e1, . . . , en} be a finite set, and let F ⊂ 2S be a collection of subsets of S, called
independent sets. We say that F is hereditary if it is closed under taking subsets. That is,
if X ∈ F and Y ⊂ X, then Y ∈ F . For example, if S is the set of vertices in a graph and
F is the collection of all independent sets in the graph, then F is hereditary.

Let c : S → R+ be a cost function on the elements of S. We wish to find X ∈ F that
maximizes

∑
e∈X c(e). A greedy algorithm may construct X as the final set in a sequence

X0, X1, . . . as follows:

1. Initially, X0 = φ.

2. Xi+1 is a set in F of cardinality i + 1 that contains Xi (if such a set exists). Equiv-
alently, let ej be an element in S \ Xi of maximum value among of c(ej) those for
which Xi

⋃
{ej} ∈ F . Then Xi+1 = Xi

⋃
{ej}, if such an ej exists.

(A more efficient implementation will first sort all elements e in order of decreasing
weight c(e).)

For the hereditary family of independent sets in graphs, this greedy algorithm will fail to
find a maximum independent set. (For example, consider a star in which the middle vertex
has slightly higher cost then any of the other vertices.) But there are hereditary families
for which the greedy algorithm produces the optimal solution, regardless of the particular
cost function c. These are known as matroids.

Definition 1 A hereditary family F of sets is a matroid if for all X,Y ∈ F , if |X| > |Y |
then there is some e ∈ X \ Y such that Y

⋃
{e} ∈ F .

The maximal independent sets of a matroid are called bases.

Proposition 1 All bases of a matroid have the same cardinality, called the rank of the
matroid.

Proof: By the matroid property, an indendent set in F is maximal if and only if there
is no set of larger cardinality in F . 2

Remark: the terminology for matroids comes from terminology for matrices. Consider
all columns of a matrix. Then we can define the following matroid. Independent sets
correspond to sets of linearly independent columns. Bases correspond to those sets of
columns that form a basis for the column subspace of the matrix. The rank of the matrix
is the rank of the associated matroid.

3

Theorem 2 The naive greedy algorithm optimizes over a hereditary family F for every cost
function c iff F is a matroid.

Proof: Assume that F is not a matroid, and let X,Y ∈ F be such that |X| > |Y | and
for every e ∈ X \Y , Y

⋃
{e} 6∈ F . Define a cost function c that is negligible on S \ (X

⋃
Y),

equal to 1+1/|X| for each e ∈ Y , and equal to 1 on the remaining members of X. Then the
greedy algorithm will choose Y , for a total cost of c(Y). But choosing X is strictly better,
by the inequalities below:

c(Y) = |Y |(1 +
1

|X|
) = |Y |+ |Y |

|X|
< |Y |+ 1 ≤ |X| ≤ c(X).

Assume now that F is a matroid. Observe that the maximum X must be a basis
(because element costs are positive), and that the greedy algorithm must also produce a
basis. Let e1, e2, . . . ek be the elements chosen by the greedy algorithm. Let f1, f2, . . . fl be
the elements of any arbitrary basis, and assume that they are sorted in descending order.
Then necessarily c(ei) ≥ c(fi) for every i. For the sake of contradiction, suppose otherwise.
Let j be the least index with c(fj) > c(ej). Then also c(fi) > c(ej) for all i < j. Let
X = {f1, . . . , fj} and Y = {e1, . . . ej−1}. Then X,Y ∈ F and |X| > |Y |. Hence Y can be
extended by some member of X \Y , which is a more greedy choice than ej . This contradicts
the assumption that e1, e2, . . . ek is the output of the greedy algorithm. 2

A well known example of matroids is that of the forests of a graph, known as a graphic
matroid. For a graph G(V,E), the set S is E, and X ∈ F if the edges of X do not close a
cycle. It is easy to see that F is hereditary. To see that the matroid property holds, observe
that the number of connected components in the graph G(V,X) is exactly |V |− |X|. Hence
if |X| > |Y |, there are less connected components in G(V,X) then in (V, Y), and hence at
least one edge in X connects different connected components of Y , and hence does not close
a cycle in G(V, Y).

If G is connected, then the bases of the forest matroid are the spanning trees of G,
and the greedy algorithm above produces a maximum weight spanning tree. To find a
minimum weight spanning tree, the similar algorithm can be run in which edges are sorted
in order of increasing rather than decreasing cost. Analogous to the proof of theorem 2 and
using its notation, we will have that c(ei) ≤ c(fi) for every i. This algorithm for finding
minimum spanning trees is known as Kruskal’s algorithm, though it was already described
by Borouvka in the 1920’s.

4

