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1 The geometry of linear programs

In Lecture 1 we presented linear programs from a linear algebra point of view. The use of a
geometric representation helps build intuition about linear programming. This is easiest to
visualize in two dimensions (when there are only two variables, or only two constraints), and
still manageable in three dimensions. Much of the low dimension intuition is also true in
higher dimensions, and can be formalized and applied for linear programs with an arbitrary
number of dimensions.

1.1 Two variables or two constraints

The constraints of a linear program with two variables in canonical form can be drawn as
half-planes, and the feasible region as an intersection of half-planes. The objective function
can be represented either as a vector pointing in its direction, or as equivalue lines.

The vertices will correspond to bfs for the linear program. A degeneracy is the result
of three constraints intersecting at a point on the boundary of the feasible region. In two
dimensions, one of these constraints is redundant (does not change the feasible region).
However, in d ≥ 3 dimensions one may have a degeneracy (d + 1 or more constraints
intersecting on the boundary) in which no constraint is redundant. For example, the top
vertex in a (3-dimensional) pyramid with a rectangular basis is the intersection of four
planes, but removing any one of them would destroy the pyramid.

For linear programs in standard form, the two-dimensional representation above be-
comes uninteresting. There can be at most two equality constraints, and the feasible region
degenerates to a point.

When there are two constraints in standard form, each column of the matrix A (which
corresponds to a variable) can be viewed as a point in the plane. The vector b is another
point in the plane. A feasible solution is two vectors that can be added (with nonnegative
coefficients) to give the point b. (In canonical form, a feasible solution is a set of vectors
that can be added to give a point in the quarter plane to the right and above b.) There
is a degenerate solution if a single vector points in the direction of b. (More than n − m
variables can be set to 0.)

1.2 Some standard terminology

Though geometric intuition in low dimensions is helpful also for higher dimensions, it might
sometimes be misleading. The issue of degeneracies discussed above is one such example.
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Here we present geometric terminology and relate it to concepts from linear algebra. This
will allow us to turn geometric intuition into formal proofs.

• Convex combination. A point x ∈ Rn is a convex combination of points x1, . . . , xt
if there are some λi ≥ 0 with

∑t
i=1 λi = 1 such that x =

∑t
i=1 λixi.

• Convex set. A set S is convex if for every two points x, y ∈ S, every convex combi-
nation of them is in S. The intersection of convex sets is a convex set.

• Convex hull. Given a set of points, the set of all their convex combinations forms
their convex hull. The convex hull is a convex set.

• Linear supspace. A linear (vector) subspace in Rn is a set of vectors closed under
addition and under multiplication by scalars. Equivalently, it is the set of solutions
to a system of homogeneous linear equations Ax = 0. It is a convex set.

• Dimension. The dimension of a linear space is the maximum number of linearly
independent vectors that it contains. It can be shown that this is equal to n minus
the rank (number of linearly independent rows) of the matrix A above.

• Affine subspace. For a vector v ∈ Rn and vector space S ∈ Rn, the set {v+s|s ∈ S}
is called an affine subspace. It has the same dimension as S. Equivalently, an affine
subspace is the set of solutions to a set of linear equations Ax = b, where A defines
the vector space S, and b = Av. The dimension of a set T ∈ Rn is the dimension of
the minimal affine subspace containing it. In particular, the dimension of the set of
solutions to a linear program in standard form (with linearly independent constraints)
is at most n−m.

• Affine independence. k + 1 vectors y1, . . . , yk+1 in Rn are affinely independent if
the k vectors (yi − yk+1) for 1 ≤ i ≤ k are linearly independent.

• Simplex The convex hull of k + 1 affinely independent vectors in Rn is called a
k-dimensional simplex.

• Hyperplane. For a vector a ∈ Rn, a ̸= 0, and b ∈ R, the set of points x satisfying
aTx = b is called a hyperplane. It is an affine subspace of dimension n− 1.

• Halfspace. The set of points satisfying aTx ≥ b is a halfspace. Hyperplanes and
halfspaces are convex. Observe that a hyperplane is the intersection of two halfspaces.

• Polyhedron. The intersection of finitely many halfspaces is a polyhedron. It follows
that the set of constraints of a linear program defines a polyhedron which is the region
of feasible solutions. It is a convex set.

• Bounded set. A set S is bounded if for some scalar c, xTx ≤ c for all x ∈ S.

• Polytope. A polyhedron P that is bounded is a polytope.

• Supporting hyperplane, face. Let P be a polytope of dimension d in Rn, HS a
halfspace supported by hyperplane H. If f = P

∩
HS is contained in H and not equal

to P , then f is a face of P and H is a supporting hyperplane or P .
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• Facet, edge, vertex. A facet is a face of dimension d − 1. An edge is a face of
dimension 1. A vertex is a face of dimension 0. Equivalently, we can define a vertex
of a polytope (or polyhedron) P as point x ∈ P such that for some vector c ∈ Rn,
cTx < cty for every y ∈ P − {x}. The equivalence between the two definitions can be
seen by taking c to be the normal of H at x, pointing inwards towards the polytope.

• Extreme point. An extreme point of a polyhedron P is a point x ∈ P such that
there are no other two points y, z ∈ P such that x is a convex combination of them.

Recall that in Lecture 1 we defined basic feasible solutions for linear programs in stan-
dard form. In the homework assignment this was generalized to any linear program, where
we define a BFS as a feasible solution for which n linearly independent constraints are tight
(including nonnegativity constraints).

Lemma 1 For a polyhedron P and a point x ∈ P , the following three statements are
equivalent.

1. x is an extreme point of P .

2. x is a vertex of P .

3. x is a basic feasible solution.

Proof: We shall prove the lemma for an LP in standard form. The proof for an LP in
general form is left as homework.

BFS implies vertex. This is essentially Lemma 1 from Lecture 1.
Vertex implies extreme point. If w is a vertex, then for some vector c, cTx is uniquely

minimized over P at w. If w were not extreme, then we could write w = λy + (1− λ)z for
some y, z ∈ P − {w} and 0 < λ < 1, and then for either y or z, their inner product with c
would be smaller. A contradiction.

Extreme point implies BFS. We show that not BFS implies not extreme. Let w =
(w1, . . . , wn) ∈ P not be a BFS. Let x+ be the set of nonzero variables in w, and let A+ be
the columns of A that correspond to the nonzero variables. The columns in A+ are linearly
dependent (as w is not a BFS). Hence there is a nonzero solution to A+x+ = 0. Call it
d+. Let d be a vector that agrees with d+ on the variables of x+, and is zero elsewhere.
Consider the points y = w + ϵd and z = w − ϵd, where ϵ is chosen small enough to ensure
that y ≥ 0 and z ≥ 0. Both y, z ∈ P , and w = y/2+ z/2, showing that w is not an extreme
point. 2

Another useful way of characterizing a polytope is as the convex hull of all its vertices.

Lemma 2 For a polytope P of dimension d, every point in it is the convex hull of at most
d+ 1 of its vertices.

Proof: (Sketch.) The proof is by induction on d. The base case (dimension 0, a single
vertex) is trivial. For the inductive step, we need the following facts:

1. Every polytope has a vertex. (We have seen something similar in Lecture 1 – the
existence of basic feasible solutions for LPs in standard form.)
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2. Every face of a polytope is a polytope of lower dimension. (The face satisfies a linear
equality that is not satisfied by some points in P .)

Take an arbitrary point x ∈ P . Take an arbitrary vertex v of the polytope. Follow the
line from v through x (this portion must lie entirely within the polytope) until is hits a
face of P (which it must do, as the polytope is bounded) at a point z. Then x is a convex
combination of v and z. By induction, z is a convex combination of at most d vertices,
showing that w is a convex combination of at most d+ 1 vertices. 2
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