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1 Linear programming duality

1.1 The diet problem revisited

Recall the diet problem from Lecture 1. There are n foods, m nutrients, and a person (the
buyer) is required to consume at least bi units of nutrient i (for 1 ≤ i ≤ m). Let aij denote
the amount of nutrient i present in one unit of food j. Let ci denote the cost of one unit of
food item i. One needs to design a diet of minimal cost that supplies at least the required
amount of nutrients. This gives the following linear program.

minimize cTx
subject to
Ax ≥ b
x ≥ 0

Now assume that some other person (the seller) has a way of supplying the nutrients
directly, not through food. (For example, the nutrients may be vitamins, and the seller
may sell vitamin pills.) The seller wants to charge as much as he can for the nutrients,
but still have the buyer come to him to buy nutrients. A plausible constraint in this case
is that the price of nutrients is such that it is never cheaper to buy a food in order to get
the nutrients in it rather than buy the nutrients directly. If y is the vector of nutrient
prices, this gives the constraints AT y ≤ c. In addition, we have the nonnegativity constrain
y ≥ 0. Under these constraints the seller wants to set the prices of the nutrients in a way
that would maximize the sellers profit (assuming that the buyer does indeed buy all his
nutrients from the seller). This gives the the following dual LP:

maximize bT y
Subject to
AT y ≤ c
y ≥ 0

As one can replace any food by its nutrients and not pay more, one gets weak duality,
namely, the dual provides a lower bound for the primal. Weak duality goes beyond the diet
problem and holds even if A, b, c have some entries that are negative. That is, for every pair
of feasible solutions to the primal and dual LPs we have:

bT y ≤ (Ax)T y = xTAT y ≤ xT c = cTx (1)

In particular, weak duality implies that if the optimal value of the primal is unbounded then
the dual is infeasible, and if the optimal value of the dual is unbounded, then the primal is
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infeasible.
Assume that there is a pair of solutions x∗ and y∗ for which the values of the primal

and dual LPs are equal, namely cTx∗ = bT y∗. Then necessarily both x∗ and y∗ are optimal
solutions to their respective LPs. In economics, the vector y∗ is refereed to as shadow prices.
These optimal solutions need to satisfy the inequalities of (1) with equality. This gives the
following complementary slackness conditions:

(Ax∗ − b)T y∗ = 0 (2)

(c−AT y∗)Tx∗ = 0 (3)

Condition (2) has the following economic interpretation. If a certain nutrient is in
surplus in the optimal diet, then its shadow price is free (a free good). Condition (3) can
be interpreted to say that if a food is overpriced (more expensive than the shadow price of
its nutrients) then this food does not appear in the optimal diet.

1.2 Derivation of dual for standard form

Consider a (primal) linear program in standard form.
minimize cTx
subject to
Ax = b
x ≥ 0

Let us derive a lower bound on its value. The lower bound is obtained by removing the
constraints Ax = b, and replacing them by a charging mechanism for violated constraints.
There is a price yi for one unit of violation of constraint Aix = bi. The following lower
bound is valid for every vector y of prices (because feasible solutions of the primal LP give
the same value for this new LP):

minimize (over x) cTx+ yT (b−Ax)
subject to
x ≥ 0

Rearranging the objective function, one gets:
minimize (over x) yT b+ (cT − yTA)x

Unless cT − yTA ≥ 0T , this lower bound can be made −∞, and hence useless. So we shall
restrict attention to y satisfying yTA ≤ cT . (Under this restriction, we still have a lower
bound, because for every y, the above expression is a lower bound, as we are minimizing
over x rather than over y.)

If we now remove the nonnegative (cT −yTA)x from the objective function, we still have
a lower bound. Moreover, this lower bound no longer depends on x, so we may remove the
minimization over x, and the constraints x ≥ 0. Hence for every y satisfying yTA ≤ cT , yT b
is a lower bound on the primal LP. What is the best (highest) lower bound that we can get
by this approach? This is simply the solution to the dual LP:

maximize (over y) bty
subject to
AT y ≤ c
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Observe that complementary slackness condition (3) can be extracted from the above de-
velopment. Complementary slackness condition (2) is trivially true for LPs in standard
form.

1.3 Strong duality

If the primal is feasible and its optimal solution is bounded, then the lower bound given by
the dual is tight. Namely, the value of the dual is equal it this case to value of the primal.
We shall show this for LPs in standard form.

The proof we give is based on the stopping condition for the simplex algorithm. Re-
call that at that point XB = B−1b, and the reduced costs are nonnegative, namely cj −
cTBB

−1Aj ≥ 0, or in matrix notation:
cT − cTBB

−1A ≥ 0T .
The complementary slackness condition (3) suggests that for the basic variables, the corre-
sponding constraints in the dual are tight. This leads us to suggest the following solution
to the dual: yT = cTBB

−1. Then
yTA = cTBB

−1A ≤ cT

satisfying the constraints of the dual. Hence y is a feasible solution to the dual. Its value
is:

bT y = yT b = cTBB
−1b = cTBxB = cTx,

implying that the lower bound is tight.

1.4 LPs in general form

The following table explains how to obtain the dual of a primal LP that is in general form.
Here Aj denotes a row of matrix A and Aj denotes a column.

min cTx max bT y

Aix ≥ bi i ∈ I+ yi ≥ 0

Aix = bi i ∈ I= yi free

xj ≥ 0 j ∈ J+ yTAj ≤ cj

xj free j ∈ J= yTAj = cj

Note that the dual of the dual is the primal. (Verifying this is left as homework.)
Weak and strong duality apply also in this case. More specifically, if the optimum to

the primal is bounded, then so is the optimum to the dual, and vice versa. If the optimum
to one of the LPs is unbounded, then the other is not feasible. It may also happen that
neither one of them is feasible, as can be shown by the following example:

minimize −x1 + 2x2
subject to
x1 − x2 = −1
−x1 + x2 = 2

Coincidently, its dual happens to be the same (up to replacing minimize by maximize):
maximize −y1 + 2y2
subject to
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y1 − y2 = −1
−y1 + y2 = 2

1.5 A geometric view of the dual

Consider the primal LP and suppose that it is feasible and that the optimal solution is
bounded.

minimize cTx
subject to
Ax ≥ b

Its dual is:
maximize bT y
subject to
AT y = c
y ≥ 0
In a feasible solution to the dual, c is expressed as a positive combination of the rows

of A. The rows of A are the normals to the hyperplanes defining the primal LP, pointing
into the polyhedron. Considering the optimal basic feasible solution to the primal, the
rows of A corresponding to tight constraints define a vertex of the polyhedron. A positive
combination of the normals to these tight constraints gives a feasible solution to the dual.

There can be many different collection of constraints (hyperplanes) whose positive com-
bination gives c. However, a given combination need not correspond to a vertex of the
primal polyhedron, as the intersection point of the corresponding hyperplanes might lie
outside the polyhedron. Hence a basic feasible solution for the dual need not correspond
to a vertex of the primal polyhedron, and need not correspond to a feasible solution of the
primal.

In the optimal solution to the dual, we get more (value for the objective function) by
including those normals with highest values of b. Intuitively, those are the constraints
that are hardest to satisfy in the primal, and hence the intersection of their corresponding
hyperplanes does define a vertex of the primal polyhedron.

Given that c = AT y corresponds to a vertex (BFS) x, we wish to determine the objective
value cTx = yTAx at this BFS. For row i (corresponding to a column at the support of
the dual solution) we have Aix = bi, as the corresponding constraint is tight at the vertex.
Hence we get that the value of the primal LP at the vertex is yT b, which indeed is the value
of the dual.

1.6 Some easy consequences of duality

Using duality it is a simple matter to show that the following problem is in NP
⋂
coNP :

Given a minimization LP, does it have a feasible solution of value at most k?
A witness for this statement is a feasible solution to the LP with value at most k. A
refutation is a solution for the dual of value higher than k. Both solutions have complexity
polynomial in the input size.

We can also show that finding a feasible solution to an LP is essentially as hard as
finding the optimal solution (when the optimum is bounded). Given an LP, consider a new
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LP composed of all constraints of the dual and the primal, and the additional constraints
that both objective functions must have equal value. Its size is polynomially related to the
size of the original LP. A feasible solution to this new LP is an optimal solution to the
original LP.

1.7 Farkas’ lemma

Farkas’ lemma states that given a system of equation Ax = b for which we seek a nonnegative
solution (meaning x ≥ 0), then either the system has a solution, or (and this is an exclusive
or) there is the following type of explanation for the insolvability of the system: there is
some vector y such that yT b > 0, but yTA ≤ 0.

Geometrically, this vector y is a normal to a hyperplane that separates b from the
columns of A.

To prove Farkas’ lemma we use the following LP primal-dual pair (though it would be
fair to note that historically, Farkas’ lemma predated LP duality).

minimize 0Tx
subject to
Ax = b
x ≥ 0

and
maximize bty
subject to
ytA ≤ 0
If the primal is feasible, its optimal value is 0, which upper bounds the dual, refuting

the second alternative.
If the primal is not feasible, then the dual must be unbounded (because it is feasible,

taking y = 0), proving the second alternative.

1.8 The minimax theorem

A simple example of a two-person zero-sum game is “stone, paper, scissors” (which I suppose
is the translation of “even niyar umisparaim”). In such games, there are two players. Each
player has a set of possible moves, and both players move simultaneously (without prior
knowledge of the other player’s move). A payoff matrix (known to both players) specifies
the payoff to the column player as a function of the two moves. The payoff to the row player
is −A. (The gain of one player is equal to the loss of the other).

What is the best move in such a game? In general, there is no best move. The payoff
that results from a move changes based on the move of the other player. If one player knows
the move of the other player, then it is easy for him to play the game optimaly. The question
is how to play the game when one does not know the move of the other player. Clearly,
keeping your own move secret from the other player is important. The “mathematical” way
of generating secrets is via randomness, and this calls for a randomized strategy, or in game
theory terminology, amixed strategy. What should this strategy optimize? The conservative
view is to seek a strategy that carries the least amount of risk. Namely, whatever the move
of the other player is, the expected payoff is maximized. This is a maxmin approach:
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maximize (over your choice of moves) the minimum (over all possible moves of the other
player) expected payoff.

Finding the optimal mixed strategy can be formulated as a linear program. Let A be a
payoff matrix for the column player whose columns specify moves for the maximizing player
and rows specify moves for the minimizing player. The payoff matrix to the row player is
then −A. Let x be a vector of probabilities for the possible moves of the maximizing player.
Then we have the following LP:

maximize v (the maxmin payoff)
subject to
1Tx = 1 (the probabilities sum up to 1),
Ax ≥ v (for every move of the row player, the expected payoff is at least v),
x ≥ 0 (probabilities are nonnegative).
For the minimizing player, let y be the vector of probabilities for his possible moves.

Then we have:
maximize u (the maxmin payoff)
subject to
1T y = 1 (the probabilities sum up to 1),
−AT y ≥ u (for every move of the column player, the expected payoff to the row player

is at least u),
y ≥ 0 (probabilities are nonnegative).
The famous minimax theorem of Von Neumann says that the values of the optimal

conservative mixed strategies for the two players are equal (to the negative of each other).
The mixed strategies are in equilibrium. Each player can tell the other player his own
mixed strategy (which is not the same as revealing your move in advance), and still, no
(conservative) player will have an incentive to change his own mixed strategy.

The proof of the minimax theorem is a simple consequence of linear programming du-
ality. (Historically, the minimax theorem was proved before LP duality.) To see this,
observe that v and u are variables. Change the main constraint for the column player to
−Ax+ v ≤ 0. For the row player, change the objective function to minimize −u, and the
main constraint to −AT y − u ≥ 0.

The complementary slackness conditions say that a move has probability 0 unless it is
optimal against the strategy of the other player.

Another point worth noticing is that the support of the mixed strategy of each player
need not be larger than the number of moves available to the other player (as the optimum
is attained at a vertex).

1.9 Yao’s Principle

A randomized algorithm can be viewed as a distribution over deterministic algorithms.
The success probability (or expected running time) of a randomized algorithm is its success
probability over a worst case input. Yao’s principle (an immediate application of the mini-
max theorem) says that there is a worst case distribution over inputs such that the average
success probability of the best deterministic algorithm over this distribution is equal to the
success probability of the best randomized algorithm over the worst case input. This prin-
ciple is often used in order to prove lower bounds for randomized algorithms. One exhibits
a distribution on which no deterministic algorithm does well.
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1.10 Total unimodularity

Definition 1 A matrix is totally unimodular if each square submatrix of it has a determi-
nant that is either 0,1, or -1.

Lemma 1 For an LP in standard form, if A is totally unimodular and A and b are integral,
then all vertices of the polytope are integer. It particular, for every linear objective function,
if the optimal solution is bounded then it is integer (though the optimal value of the objective
function need not be integer).

Proof: Consider the constraints that are tight in the optimal solution, and let xB be
the basic variables that correspond to them. Then xB = B−1b. Recall that Cramer’s rule
shows that xj = detBj

detB where Bj denotes here the matrix B with column j replaced by b.
By Cramer’s rule and total unimodularity of A, xB is integer. (xN = 0.) 2

Lemma 1 extends also to LPs that are not in standard form (that contain inequalities
instead of equalities). A simple way of observing this is by adding a slack variable to each
inequality so as to make it an equality. This adds a column with a single nonzero entry to
the constrain matrix, and such a column cannot disrupt total unimodularity.

1.11 Vertex cover

We shall use LP duality in a natural way to develop a polynomial time algorithm for vertex
cover on bipartite graphs.

The vertex cover polytope is the convex hull of all vertex covers. If we could characterize
it by a polynomial number of linear constraints then we could solve vertex cover.

Vertex cover can be formulated as:
minimize

∑n
i=1 vi subject to:

vi + vj ≥ 1, for each edge (vi, vj),
vi ∈ {0, 1}, for each vertex vi.

NP-hardness of vertex cover implies that integer programming is NP-hard.
We relax the integer program to a linear program by replacing the vi ∈ {0, 1} constraints

by nonnegativity constraints vi ≥ 0. The gap between the value of the optimal solution for
the integer program and its relaxed fractional program is known as the integrality gap.

The fact that it is arbitrarily close to 2 can be seen on a clique. The fact that it is no
worse than 2 can be seen by rounding fractional values of 1/2 and above to 1.

The dual of the linear program is as follows:
maximize

∑
{(i,j)∈E} yij subject to:∑

{j|(i,j)∈E yij ≤ 1, for every vertex i,
yij ≥ 0, for each edge (i, j).
This can be viewed as a relaxation of the matching integer program. In general, it does

not define the matching polytope. For example, on a triangle a fractional solution may give
each edge a value of 1/2, giving value higher than the maximum matching.

Let us analyse the structure of solutions to the dual LP. By summing up all constraints,
we see that the value of the optimal solution is at most n/2 (because each edge is counted
twice). A basic feasible solution is supported by at most n edges.

Proposition 2 The matching LP has a half integral optimal solution.
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Proof: Consider a basic feasible solution. Consider an arbitrary connected component
with respect to the positive edges in this bfs. If it has k vertices, then it must have at most
k nonzero edges. (Otherwise, find a bfs of a smaller LP that contains only these vertices
and edges.) If it has a vertex of degree 1, include its edge in the solution, and remove all
edges connected to its endpoint. The value of the solution does not decrease. If all vertices
are of degree 2, then the connected component is a cycle. Give each edge value 1/2. 2

Corollary 3 In a bipartite graph, the above matching LP has an optimal integer solution.

Proof: All cycles are of even length. Replace by alternating 0 and 1. 2

Hence to solve the dual LP in case of a bipartite graph, one can just run a combinatorial
algorithm for maximum matching. Does the primal LP also have an optimal solution that
is integer in bipartite graphs? If yes, then we can find the value of the minimum vertex
cover just by running a matching algorithm.

The matrix of constraints considered in this section is the vertex-edge incidence matrix.

Proposition 4 The vertex-edge incidence matrix in bipartite graphs is totally unimodular.

Proof: Consider a square submatrix. If it has a 0 column or row, then its determinant
is 0. So we can assume that each row and column contain at least one 1 entry. If there is a
row (or column) with exactly one 1 entry, remove this row and the column on which the 1
lies. The determinant changes only by a multiplicative factor of ±1. Eventually, either the
determinant is seen to be ±1, or every column has exactly two 1 entries, implying that
also every row has exactly two 1 entries. So the matrix represents a collection of disjoint
cycles. Each cycle must be of even length. Sum up the rows corresponding to one side of
the bipartization, and subtract the rows corresponding to the other side. One gets the 0
vector, implying that the rows are linearly dependent and the submatrix has determinant 0.
2

It follows that the vertex cover LP has optimal integer solutions on bipartite graphs.
Let us derive such a solution from a maximum matching. By the equality of the value of
the objective functions, we should have one vertex per matched edge.

By complementary slackness, an unmatched vertex cannot be in the vertex cover. Hence
the other endpoint of every edge incident with it must be in the vertex cover. By the other
complementary slackness condition, if there is a matched edge touching a vertex in the
vertex cover, its other end point cannot be in the vertex cover. Continuing this way, we
classify some vertices as boing in every minimal vertex cover, some vertices as not being
in any minimal vertex cover. When we can no longer continue with this classification,
what remains is a subgraph in which all vertices are matched. In it, take one side of the
bipartization.

1.12 The max-flow min-cut theorem

The vertex-arc incidence matrix of a directed graph has vertices as its rows, arcs as its
columns, and for arc e = (i, j), its column has +1 in row i, −1 in row j, and 0 elsewhere.
The proof of the following proposition is left as homework.

Proposition 5 The vertex-arc incidence matrix of a digraph is totally unimodular.
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In the max flow problem, there is a directed graph with nonnegative capacities bij on
its edges. One has to send a maximum flow from vertex 1 to vertex n, obeying capacity
constraints and preservation of flow. Namely, one seeks the solution to the following linear
program:

maximize xn1
subject to:∑

j xij − xji = 0 for all 1 ≤ i ≤ n,
xij ≤ bij for all i, j. Here xn1 is not constrained.
xij ≥ 0 for all i, j.

Proposition 6 If all capacities are integer, then the maximum flow is integer.

Proof: We can add nonnegative slack variables to obtain constraints xij + zij = bij .
The resulting constrain matrix is totally unimodular. 2

In the min-cost flow problem, one has to route f units of flow from v1 to vn. Every edge
has a cost cij per sending one unit of flow through it. The above LP can be modified by
adding the constraint xn1 = f , and changing the objective function to minimize

∑
cijxij .

Again we find that when f is integer, then the minimum cost flow is integer (though its
cost need not be integer, if the cij are noninteger).

The dual of the max-flow LP can be seen to be as follows. We associate a variable yi
with every vertex and yij with every arc except for (n, 1). One gets:

minimize
∑

bijyij
subject to
yn − y1 ≥ 1
yij + yi − yj ≥ 0
yij ≥ 0.
Again, total unimodularity applies, and the optimal solution is integer. It is interesting

to observe that in fact in every BFS all variables have values in {0, 1,−1}. This follows
from observing that when applying Cramer’s rule, not only the denominator but also the
numerator is totally unimodular. Together with the nonnegativity constraints this implies
that all yij are in {0, 1}. Let us observe that the optimal value of the LP is not affected by
adding the constraint yi ≥ 0 for every vertex vi (because the yi are not part of the objective
function, and all constraints remain satisfied if a fixed constant is added to all yi). Hence
without loss of generality we may assume that we have an optimal basic feasible solution that
satisfies these additional nonnegativity constraints, which by total unimodularity (adding
nonnegativity constraints does not affect total unimodularity) has also all its yi variables
in {0, 1}.

Now consider a directed cut in the graph, where on the one side V0 we have the vertices
with yi = 0 (which includes vertex v1), and on the other side V1 we have vertices with yi = 1
(which includes vertex vn). The constraints of the LP imply that only edges from V0 to V1

need have yij = 1, whereas all other edges have yij = 0. Hence the value of the LP is equal
to the value of a directed cut between v1 and vn. As the LP is a minimization problem, it
gives the minimum directed cut. Hence strong LP duality implies the well known theorem
that the maximum flow is equal to the minimum cut.
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