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Abstract

The known NP-hardness results imply that for many combinatorial
optimization problems there are no efficient algorithms that find an op-
timal solution, or even a near optimal solution, on every instance. A
heuristic for an NP-hard problem is a polynomial time algorithm that
produces optimal or near optimal solutions on some input instances,
but may fail on others. The study of heuristics involves both an al-
gorithmic issue (the design of the heuristic algorithm) and a concep-
tual challenge, namely, how does one evaluate the quality of a heuris-
tic. Current methods for evaluating heuristics include experimental
evidence, hand waving arguments, and rigorous analysis of the per-
formance of the heuristic on some wide (in a sense that depends on
the context) classes of inputs. This talk is concerned with the lat-
ter method. On the conceptual side, several frameworks that have
been used in order to model the classes of inputs of interest (includ-
ing random models, semi-random models, smoothed analysis) will be
discussed. On the algorithmic side, several algorithmic techniques and
principles of analysis that are often useful in these frameworks will be
presented.

1 Introduction

Given a computational problem, it is desirable to have algorithms that pro-
duce optimal results, are efficient (polynomial time), and work on every
input instance. For many combinatorial problems, this goal is too ambi-
tious, as shown by the theory of NP-completeness. Hence one should set
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goals that are more modest. Approaches that are tried and have firm theo-
retical foundations include approximation algorithms (relax the optimality
requirement) and fixed parameter tractability (refine the efficiency require-
ment). We shall discuss a different approach, that of heuristics, that relaxes
the universality requirement. Here we define a heuristic to be a polynomial
time algorithm that produces optimal results on typical inputs. The notion
of a typical input is rather fuzzy, and a major conceptual challenge of the
study of heuristics is to give this notion a rigorous meaning.

Some of the research goals of the study of heuristics are the following:

• Explain the apparent success of known heuristics.

• Come up with good heuristic ideas.

• Match heuristics to problems.

• Investigate fundamental limitations of the heuristic methodology.

If we wish to perform a mathematically rigorous study of heuristics, we
may want to ask our selves how does one prove that a certain heuristic is
good, and likewise, how does one prove that a certain heuristic is bad.

Here we use the following approach. One should first provide a rigorous
definition of what the concept of typical input means. Given such a definition
(for example, suppose that in some context, a typical graph can be assumed
to be a planar graph), one is no longer dealing with the fuzzy notion of
heuristics, but with the familiar notion of worst case analysis of algorithms.
It will often be the case that we shall model a typical input as an input
chosen at random from some well defined distribution. We remark that
also in this case (of average case analysis), we will typically be performing
worst case analysis. The reason for this is that usually analysis of algorithm
in random models breaks down into two parts. One first establishes that
random inputs are likely to have a certain property P (e.g., random graphs
are likely to have very strong expansion properties), and then one shows an
algorithm that work on every input that has property P .

2 Some theoretical frameworks

We sketch some theoretical frameworks that have been suggested in order
to model typical inputs.
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2.1 Random inputs

A good example is the Gn,p model of random graphs.
An interesting algorithmic result [7] in this model is that there is a

polynomial time algorithm that with high probability finds Hamiltonian a
cycle in a random graph, even when p is so small such that the minimum
degree in the graph is 2. (When the minimum degree is below 2, then
certainly the graph does not have a Hamiltonian cycle.)

On the other hand, there are other NP-hard problems (such as max-
clique) for which no polynomial time algorithm is known to produce optimal
results on a random graph.

2.2 Planted solution models

When the random model seems too difficult, it may be useful to consider a
planted solution model. For example, one can plant a clique of large size k
in a random graph, and ask how large k can be so that a polynomial time
algorithm can detect it. It is known that k = Ω(

√
n) suffices [2].

2.3 Semi-random models, monotone adversaries

Given a specific random model (or planted solution model), there is danger
that algorithms designed for the model will suffer from ”over-fitting”, and
would not work under a slightly different model. To add robustness to
algorithms, one may consider semi-random models, first suggested by Blum
and Spencer [6].

Here is an example of what the author considers to be over-fitting. When
k À √

n log n, the vertices of a planted k-clique almost surely are those of
highest degree in an otherwise random graph. An algorithm may select the
k highest degree vertices and check if they form a clique.

A specific version of semi-random models is that of the monotone adver-
sary [10]. For example, in the planted clique model, the monotone adversary
is allowed to remove arbitrarily many non-clique edges. The degree based
algorithm no longer works. Still, more sophisticated algorithms based on
semidefinite programming do work, up to k = Ω(

√
n) [11].

2.4 Smoothed analysis

This model was advocated by Spielman and Teng [18]. The idea is to take an
arbitrary input, but then to make a random perturbation to the input. This

3



may capture well situations where in a typical numerical input, the low order
bits are random. Such a model was used in order to offer an explanation for
the practical success of the simplex algorithm [18]. For NP-hard problems,
it was shown that problems that have fully polynomial time approximation
schemes are typically solved in polynomial time on smoothed instances [3].

2.5 Stable inputs

In some applications (such as clustering), the interesting inputs are those
that are stable in the sense that a small perturbation in the input does not
change the combinatorial solution. Bilu and Linial [5] define the notion
of stable inputs, and present algorithms that solve NP-hard cut problems
whenever the input instance is (highly) stable.

2.6 A comparison

In smoothed analysis, one first picks an arbitrary (worst case) instance. This
instance defines a certain region in instance-space (all input instances that
can be derived by small perturbations from the original instance). Then, a
random input is chosen in this region.

In the monotone adversary model, first an instance is chosen at random,
which then defines a region (all instances reachable from the original instance
by monotone changes). Thereafter, an arbitrary (worst case) input is chosen
in this region.

Hence in a sense, the difference between smoothed analysis and monotone
adversary is mainly in the order of quantifiers (forall followed by random
versus random followed by forall). In this respect, the monotone adversary
model is more difficult.

For stable inputs, the regions in instance-space are determined by the
combinatorial solution, rather than by the instance representation. A worst
case region is picked, and within it, a worst case input, provided that it is
far from the boundary of the region.

3 Algorithmic techniques

Common techniques for designing heuristics in some of the models presented
above include detecting statistical irregularities induced by an optimal solu-
tion, the use of approximation algorithms, and ”hill climbing” once a near
optimal solution is found, using the fact that in many of these models near
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optimal solutions are necessarily of small Hamming distance from the opti-
mal solution.

3.1 Random 3SAT

We will use the well known problem of 3SAT to demonstrate some of the
past rigorous work on analysis of heuristics. We shall consider a random
3CNF input formula f with n variables and m clauses, with m À n. The
expected number of satisfying assignments for f is (1−1/23)m ·2n, implying
that when m À n the formula is unlikely to be satisfiable.

We shall consider two tasks. One is to search for a satisfying assignment
when the formula happens to be satisfiable. The other is to prove non-
satisfiability for non-satisfiable formulas (refutation). We remark that for
worst case analysis, refutation and search are strongly related (when a search
procedure stops without finding a satisfying assignment, this serves as a
refutation). For heuristics, we shall see that search and refutation may
require very different algorithms.

3.2 Searching for a solution

There are algorithms that appear to very quickly find satisfying assignments
in random formulas [8], and it would be very interesting to support this
empirical finding by rigorous analysis. We are not able to do so at the
moment. Here we present some results that can be proved rigorously.

When m À n log n, then if the formula happens to be satisfiable, the
satisfying assignment is likely to be unique. It then can be shown that
the distribution on random satisfiable formulas can be approximated by the
following distribution in the planted solution model.

Pick at random an assignment a to the variables. Choose clauses at
random, discarding clauses not satisfied by a, until m clauses are reached.
When m À n log n, it is likely that a is the unique satisfying assignment.

The planted solution a induces some easily detectable statistical prop-
erties. For every variable x, in every clause C that contained x and was
discarded, the polarity of x in C disagreed with its polarity in a. Set x
according to the polarity that agrees with the majority of the occurrences
of x in f . When m À n log n, it is likely that this algorithm recovers a.

We now consider the more difficult case of m = d · n for some large
constant d. In this case the distribution generated by the planted model
is no longer known to be statistically close to that of random satisfiable
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formulas. The reason is that the planted model favors formulas with many
satisfying assignments. We shall present an algorithm that works in the
planted model. It is not known whether this algorithm also extends to the
model of random satisfiable formulas.

Given the formula f , start with an initial assignment a(0) that is simply
the majority vote assignment (breaking ties arbitrarily). A linear fraction of
the variables (exponentially small in d) are likely to be set in disagreement
with a, and a linear fraction of clauses are likely not to be satisfied by a(0).
We now move to a satisfying assignment by a ”hill climbing” procedure.
The procedure described here is taken from [13], and its analysis is based
on [1, 14]. The procedure itself is a considerable simplification of the proce-
dures described in [1, 14]. This simplification was achieved by following the
methodology of considering semi-random inputs (a monotone adversary is
allowed to add arbitrary clauses in which all three literals are set in agree-
ment with a), which forces one to make algorithms more robust, and often
helps clean away aspects of the algorithm that rely on too detailed statistical
properties of the input distribution.

The hill climbing algorithm works it iterations. In each iteration, a local
search is performed in order to improve the current assignment. Let a(j)
denote the assignment at iteration j, and let T (j) be the set of clauses
satisfied by a(j).

Pick an arbitrary clause C not satisfied by a(j). Find the assignment
closest (in Hamming distance) to a(j) that satisfies the sub-formula T (j)∪C.
Increment j and repeat.

The algorithm obviously finds a satisfying assignment. The only question
is how fast.

To analyse the complexity of a single iteration, we let h(j) denote the
Hamming distance between a(j) and a(j +1). Since a(j +1) can be reached
from a(j) by iteratively flipping variables in currently arbitrary unsatisfied
clauses in T (j) ∪ C, it follows that the time per iteration is at most 3 ·
2h−1nO(1), which is polynomial when h = O(log n).

The main technical lemma is that with high probability, in all iterations,
h < O(log n). Hence the algorithm works in polynomial time. The proof of
this lemma shows that with high probability, f has a core with properties
as defined below, and that the algorithm works on every formula that has
such a core.

A variable x for which a(0) = a is a core variable if flipping it makes at
least one clause in T (0) not satisfied, and every assignment in which x is
flipped that satisfies T (0) requires flipping a linear number of other variables.
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Probabilistic analysis shows that removing the core variables and simplifying
the random formula f , it is likely to decompose into small sub-formulas of
size O(log n), on disjoint sets of (non-core) variables.

In any formula (and initial assignment a(0)) that has such a core one
has the following property. An iteration can be completed by O(log n) flips
of non-core variables. Moreover, as long as h = O(log n), no core variable
will accidently be flipped, and hence the above property is maintained in all
iterations.

3.3 Refutation

If a formula is not satisfiable, the heuristic presented above takes exponential
time to detect this. Hence we need a different heuristic for refutation.

A general approach for refutation may use approximation algorithms.
When m À n, every assignment satisfies roughly 7m/n clauses of a ran-
dom formula. An algorithm for approximating max-3SAT within a ratio
better than 7/8 would refute most dense 3SAT formulas. Unfortunately,
approximating max-3SAT (in the worst case) beyond 7/8 is NP-hard [16].

Turning the above algorithm around, we may ask what are the conse-
quences of the hypothesis that there is no polynomial time algorithm for
refuting dense random 3CNF formulas. This would imply that one cannot
approximate max-3SAT within a ratio better than 7/8, which is a known
(but very difficult) NP-hardness result. Many other hardness of approxima-
tion results would follow [9], some of which are currently not known to have
NP-hardness analogues. The above hypothesis (regardless of its correctness)
seems to be a good rule of thumb for conjecturing hardness of approxima-
tion results. Many of its predictions (with weaker constants) can be proved
assuming that NP does not have sub-exponential algorithms [17].

So how does one refute random 3CNF formulas? When m > n2 one can
do the following. There are roughly 3n clauses containing the variable x1.
It suffices to refute the sub-formula f1 containing these clauses. Substitute
x1 = 0 and simplify f1 to a 2SAT formula. This is a random formula with
roughly 3n/2 clauses, and hence is unlikely to be satisfiable. 2SAT can be
decided in polynomial time. Repeating the above argument with x1 = 1
refutes f1.

As m gets smaller, refutation gets harder. The best algorithms known
for refuting random 3SAT [12] require m > cn3/2 (where experimentation
shows that one can take c = 2.5). These algorithms are based on pair-wise
statistical irregularities and eigenvalue computations. This approach was
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initiated in [15] for 4SAT. We sketch this approach.
Consider a random 4SAT formula f with m À n2 clauses. In a satisfying

assignment a, at least half the variables are negative. (A complimentary
argument handles the case that at least half of the variables are positive in
a.) Let S be the set of variables negative in a. observe that there cannot be
a positive clause in f whose four variables are in S. Construct a graph G
on N =

(n
2

)
vertices, in which every pair of variables is a vertex, and every

positive clause (xi ∨ xj ∨ xk ∨ xl) contributes an edge ([xixj ], [xkxl]). If f is
satisfiable then S induces an independent set of size N/4. Hence to refute
f it suffices to show that G has no independent set of size N/4. But when
f is random, the graph G is random, and the condition m À n2 implies
that G has a large linear number of edges. Such graphs do not have large
independent sets. Moreover, this can be certified efficiently by eigenvalue
techniques (or by semidefinite programming, using the theta function of
Lovasz).

In combination with some additional ideas, the above approach extends
to refuting random 3SAT formulas with m > cn3/2 clauses for large enough
c [12]. It is not know how to refute random 3SAT formulas with less than n3/2

clauses. In particular, it is known that when m is much smaller than n3/2,
resolution would take exponential time [4], and that certain semidefinite
programming approaches (reducing 3SAT to independent set on a graph
with 7m vertices, and computing the theta function of the resulting graph)
would not work.

4 Summary

We presented some rigorous models in which one can study heuristics. We
presented some algorithmic results in these models (the presentation was
biased towards algorithms that the author is more familiar with). There are
also hardness results for some of these models, showing that under certain
settings of the parameters of the model, no heuristic will work. This is
beyond the scope of this presentation, but see [10] for example.

Two points that we wish to make is that in principle, it is possible to
study heuristics in a mathematically rigorous way, and that once this is
done, the design of heuristics may require quite sophisticated algorithmic
ideas and supporting mathematical analysis. But perhaps the main point is
that the rigorous study of heuristics is still a young and wide open research
area.
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