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Abstract

We prove semi-logarithmic inapproximability for a maximization problem calledunique coverage: given
a collection of sets, find a subcollection that maximizes the number of elements covered exactly once. Specif-
ically, we proveO(1/ logσ(ε) n) inapproximability assuming thatNP 6⊆ BPTIME(2nε

) for someε > 0. We
also proveO(1/ log1/3−ε n) inapproximability, for anyε > 0, assuming that refuting random instances of
3SAT is hard on average; and proveO(1/ log n) inapproximability under a plausible hypothesis concerning
the hardness of another problem, balanced bipartite independent set. We establish matching upper bounds up
to exponents, even for a more general (budgeted) setting, giving anΩ(1/ log n)-approximation algorithm as
well as anΩ(1/ log B)-approximation algorithm when every set has at mostB elements. We also show that
our inapproximability results extend to envy-free pricing, an important problem in computational economics.
We describe how the (budgeted) unique coverage problem, motivated by real-world applications, has close
connections to other theoretical problems including max cut, maximum coverage, and radio broadcasting.

1 Introduction

In this paper we consider the approximability of the following natural maximization analog of set cover:

Unique Coverage Problem.Given a universeU = {e1, . . . , en} of elements, and given a collection
S = {S1, . . . , Sm} of subsets ofU . Find a subcollectionS ′ ⊆ S to maximize the number of
elements that areuniquely covered, i.e., appear in exactly one set ofS ′.

We also consider a generalized form of this problem that is useful for several applications (detailed in Section 2):

Budgeted Unique Coverage Problem.Given a universeU = {e1, . . . , en} of elements, and a profit
pi for each elementei; given a collectionS = {S1, . . . , Sm} of subsets ofU , and a costci of each
subsetSi; and given a budgetB. Find a subcollectionS ′ ⊆ S, whose total cost is at most the budget
B, to maximize the total profit of elements that areuniquely covered, i.e., appear in exactly one set
of S ′.

Motivation. Logarithmic inapproximability for minimization problems is by now commonplace, starting in
1993 with a result for the celebrated set cover problem [39], which has since been improved to the optimal
constant [17] and to assume justP 6= NP [44], and has been used to prove other tight (not necessarily log-
arithmic) inapproximability results for a variety of minimization problems, e.g., [32, 24, 12]. In contrast, for
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maximization problems,log n inapproximability seems more difficult, and relatively few results are known.
The only two such results of which we know are(1 + ε)/ ln n inapproximability for domatic number unless
NP ⊆ DTIME(nO(log log n)) [20], and1/ log1/3−ε n inapproximability for the maximum edge-disjoint paths
and cycles problems unlessNP ⊆ ZPTIME(npolylog n) [5, 45]. Although these problems are interesting, they
are rather specific, and we lack a central maximization problem analogous to set cover to serve as a basis for
further reduction to many other maximization problems.

The unique coverage problem defined above is a natural maximization version of set cover which was brought
to our attention from its applications in wireless networks. In one (simplified) application, we have a certain
budget to build/place some transmitters at a subset of some specified set of possible locations. Our goal is to
maximize the clients that are “covered” by (i.e., are within the range of) exactly one transmitter; these are the
clients that receive signal without interference; see Section 2.1 for details. Another closely related application
studied much earlier is the radio broadcast problem, in which a message (starting from one node of the network)
is to be sent to all the nodes in the network in rounds. In each round, some of the nodes that have already received
the message send it to their neighbors, and a node receives a message only if it receives it from exactly one of
its neighbors. The goal is to find the minimum number of rounds to broadcast the message to all the nodes;
see Section 2.5 for details. Therefore, every single round of a radio broadcast can be seen as a unique coverage
problem. These applications along with others are studied in more detail in Section 2.

Known results. To the best of our knowledge, there is no explicit study in the literature of the unique coverage
problem and its budgeted version. However, the closely related radio broadcast problem has been studied ex-
tensively in the past, and implicitly include anΩ(1/ log n) approximation algorithm for the basic (unbudgeted)
unique coverage problem; see Section 2.5 for details.

Concurrently and independently of our work, Guruswami and Trevisan [27] study the so called 1-in-k SAT
problem, which includes the unique coverage problem (but not its budgeted version) as a special case. In particu-
lar, they show that there is an approximation algorithm that achieves an approximation ratio of1/e on satisfiable
instances (in which all items can be covered by mutually disjoint sets).

Our results. On the positive side, we give anΩ(1/ log n)-approximation for the budgeted unique coverage
problem. We also show that, if each set has a boundB on the ratio between the maximum profit of a set and
the minimum profit of an element, then budgeted unique coverage has anΩ(1/ log B)-approximation. Section 4
proves these results.

The main focus of this paper is proving the following inapproximability results. We show that it is hard
to approximate the unique coverage problem within a factor ofΩ(1/ logσ n), for some constantσ depending
on ε, assuming thatNP 6⊆ BPTIME(2nε

) for someε > 0. This inapproximability can be strengthened to
Ω(1/ log1/3−ε n) (for any ε > 0) under the assumption that refuting random instances of 3SAT is hard on
average (hardness of R3SAT as in [18]). The inapproximability can be further strengthened to1/(ε log n) for
someε > 0, under a plausible hardness hypothesis about a problem called Balanced Bipartite Independent Set;
see Hypothesis B.9. Section 3 (and Appendix B) proves all of these results.

Our hardness results have other implications regarding the hardness of some well-studied problems. In par-
ticular, for the problem of unlimited-supply single-minded (envy-free) pricing, a recent result [26] proves an
Ω(1/ log n) approximation, but no inapproximability result better than APX-hardness is known. As we show
in Section 2.2, our hardness results for the unique coverage problem imply the same hardness-of-approximation
bounds for this version of envy-free pricing. For the radio broadcast problem, as we discuss in Section 2.5,
there is essentially a gap ofΩ(log n) between the approximation and inapproximability factors (O(log2 n) vs.
Ω(log n)). We believe that our technique to prove hardness of unique coverage may shed some light on how to
obtain a hardness of approximation beyondΩ(log n) for this problem.
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More generally, there are many maximization problems for which the best known approximation factor is
Ω(1/ log n)—see, e.g., [26, 8, 40]—and it is not known whether anΩ(1)-factor approximation is possible. Often
(as indeed is the case with unique coverage) these problems naturally decompose intoΘ(log n) subproblems,
where at least anΩ(1/ log n) fraction of the optimum’s value comes from one of these subproblems. In isolation,
each subproblem can be approximated up to a constant factor, leading to anΩ(1/ log n)-approximation algorithm
for the whole problem. It may appear that this isolation approach is too naı̈ve to give the best possible approxi-
mation, and that by a clever combination of the subproblems, it should be possible to get anΩ(1)-approximation
algorithm. Our hardness results show to the contrary that such intelligent combination can be hard, in the sense
that the näıve isolation approach cannot be substantially improved, and suggest how one might obtain better
hardness results for these problems.

2 Applications and Related Problems

2.1 Wireless Networks

Our original motivation for the budgeted unique coverage problem is a real-world application arising in wireless
networks.1 We are given a map of the densities of mobile clients throughout a service region (e.g., the plane with
obstacles). We are also given a collection of candidate locations for wireless base stations, each with a specified
building cost and a specified coverage region (typically a cone or a disk, possibly obstructed by obstacles). This
collection may include multiple options for base stations at the same location, e.g., different powers and different
orientations of antennae. The goal is to choose a set of base stations and options to build, subject to a budget on
the total building cost, in order to maximize the density of served clients.

The difficult aspect of this problem (and what distinguishes it from maximum coverage—see Section 2.4)
is interference between base stations. In the simplest form, there is a limitk on the number of base stations
that a mobile client can reasonably hear without conflict between the signals; any client within range of more
thank base stations cannot communicate because of interference and thus is not serviced. More generally, a
mobile client’s reception is better when it is within range of fewer base stations, and our goal is to maximize total
reception. To capture these desires, the instance specifies thesatisfactionsi of a client within range of exactly
i base stations, such thats0 = 0 ands1 ≥ s2 ≥ s3 ≥ · · · ≥ 0. The goal is to choose a set of base stations
and options, again subject to the budget constraint, in order to maximize the total satisfaction weighted by client
densities.

When allsi’s are equal then we just have the maximum coverage problem (Section 2.4). Whens1 = 1
andsi = 0 for all i 6= 1, this problem can be formulated as a budgeted unique coverage problem, by standard
discretization of the density map. More generally, for any assignment ofsi’s, the problem can be formulated as
a generalization of budgeted unique coverage, thebudgeted low-coverage problem. In this problem, we are also
given satisfication factorssi for an element being covered exactlyi times, zero fori = 0 and non-increasing for
i > 0, and the goal is to maximize the total satisfication, i.e., the sum over all elements of the product of the
element’s profit (here, density) and its satisfication factor (the appropriatesi). We show that our approximation
algorithms for the budgeted unique coverage problem apply more generally to the budgeted low-coverage prob-
lem, yielding anΩ(1/ log n)-approximation wheren is the total number of options for base stations. Of course,
our lower bounds also apply to the budgeted low-coverage problem, proving that this approximation factor is
tight up to the constant in the exponent.

While similar problems about base-station placement have been considered before, very few works consider
maximization forms of the problem, which is the focus of this paper. Lev-Tov and Peleg [38] consider the

1The application arises in the context of cellular networks at Bell Labs. The problem we consider here is a somewhat simplified
theoretical formulation of this application. In the real application, the interference patterns are more complicated, but this problem seems
to be the cleanest theoretical formulation.
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following very specialized form of the problem: base stations are unit disks in the plane, and the goal is to
maximize the number of uniquely receiving clients. For this problem they give annO(

√
n)-time algorithm, where

n is the number of candidate disks. In the application of interest, we believe that it is more natural to allow
clients to be covered more than once, but reduce (or eliminate) the satisfication of these clients; this removal of
an artificial constraint may enable substantially better solutions to the problem. Other work [30, 21, 7] solves the
problem of assigning powers to base stations such that, when each client prefers its unique preferred base station,
we do not violate the capacities of the base stations, provided the number of clients is at most the total capacity
of the network.

2.2 Envy-Free Pricing

Fundamental to “fair” equilibrium pricing in economics is the notion of envy-free pricing [46, 25]. This concept
has recently received attention in computer science [1, 26], in the new trend toward an algorithmic understanding
of economic game theory; see, e.g., [13, 14] for related work.

The following version of envy-free pricing was considered in [26]. A single seller pricesm different items,
each with a specified quantity (limited or unlimitedsupply). Each ofn buyers wishes to purchase a subset of
items (abundle), and the seller knows the maximum price that each buyer is willing to pay for each bundle (the
valuation). A buyer’sutility is the difference between the valuation and the price of the bundle (sum of the prices
of the items in the bundle) as sold to the buyer. The seller must choose the item prices and which bundles are
sold to which buyers in such a way that isenvy-free: each buyer should be sold a bundle that has the maximum
utility among all bundles. The goal is to maximize the seller’sprofit, i.e., the total price of the sold bundles.

Among other results, Guruswami et al. [26] give anΩ(1/(log n + log m))-approximation algorithm for the
unlimited-supplysingle-mindedbidder problem, where each buyer considers only one particular bundle and
buys it if the cost is less than the valuation. They also give a constant-factor hardness-of-approximation result
for this problem, via a reduction from max-cut. Single-minded bidders were considered before in the context of
combinatorial auctions and mechanism design [6, 42, 37]. The unlimited-supply assumption in combination with
single-mindedness simplifies the problem, as the notion ofenvydoes not play a role in this case. The general
version of the envy-free pricing problem is of course at least as difficult as this special case.

We now show that unlimited-supply single-minded (envy-free) pricing is as hard to approximate as the unique
coverage problem. The reduction is as follows. Each setSi in the collection maps to an itemIi. Each element
ei of the universeU maps to a buyerbi. Buyerbi has a valuation of1 for one bundle, namely, the set of itemsIj

that correspond to setsSj containing the elementei. In this context, every price assignment is envy-free, because
we have unlimited supply for each item so the seller can always sell each buyer its desired bundle (if the buyer
wants). Because the valuations are all1, we can assume that all prices are between0 and1. By randomized
rounding (see Lemma A.1), we can assume that all prices are either0 or 1, at a loss of a constant factor in profit.
In this case, each buyerbi will buy its bundle precisely if at most one item is priced at1, and the rest of the items
are priced at0. If all items in a bundle are priced at0, then the seller makes no profit; if exactly one item is priced
at 1 and the rest are priced at0, then the seller profits by1. Thus the effective goal is to assign prices of0 or 1
in order to maximize the number of bundles for which exactly one item is priced at1, which is identical to the
original unique coverage problem.

Therefore our hardness-of-approximation results apply to unlimited-supply single-minded (envy-free) pricing
and establish semi-logarithmic inapproximability.

2.3 Max-Cut

Recall the max-cut problem: given a graphG, find a cut(S, S), whereS ⊆ V (G) andS = V (G) − S, that
maximizes the number of edges with one endpoint inS and the other endpoint inS. The max-cut problem can
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be seen to be equivalent to a special case of the unique coverage problem, in which every element is in exactly
two sets. Simply view every vertex as a set and every edge as an element.

Max-cut has a 0.87856-approximation [23] and is 0.942-inapproximable [28]. From these results one can
immediately obtain constant-factor hardness for unique coverage, but in this paper we show that unique coverage
is in fact much harder.

2.4 Maximum Coverage

Our budgeted unique coverage problem is also closely related to thebudgeted maximum coveragevariation of
set cover: given a collection of subsetsS of a universeU , where each element inU has a specified weight and
each subset has a specified cost, and given a budgetB, find a subcollectionS′ ⊆ S of sets, whose total cost is at
mostB, in order to maximize the total weight of elements covered byS′. For this problem, there is a(1− 1/e)-
approximation [29, 32], and this is the best constant approximation ratio possible unlessP = NP [17, 32]. At
first glance, one might expect the greedy(1 − 1/e)-approximation algorithm to work for unique coverage as
well: the only difference between the two problems is whether we count elements that are covered (contained in
at least one set) or uniquely covered (contained in exactly one set). However, the natural greedy algorithm can
be very bad for unique coverage,2 and in fact we show that the (in)approximability of the two problems is quite
different.

2.5 Radio Broadcast

The unique coverage problem is closely related to a single “round” of theradio broadcastproblem [9]. This
problem considers aradio network, i.e., a network of processors (nodes) that communicate synchronously in
rounds. In each round, a node can either transmit to all of its neighbors in an undirected graph (representing
the communicability between pairs of nodes), or not transmit. A node receives a message if exactly one of its
neighbors transmits a message in the round; otherwise the messages are lost because of radio interference. In the
radio broadcast problem, initially one node has a message, and the goal is to propagate this message to all nodes
in the network.

Radio broadcast is one of the most important communication primitives in radio networks, and the prob-
lem has been studied extensively in the literature. In summary, the current best algorithms for approximating
the minimum number of rounds are a (multiplicative)O(log2 n)-approximation [11, 9, 34, 33] and an additive
O(log2 n)-approximation [22]. Alon, Bar-Noy, Linial, and Peleg [3] show that, even for graphs with diameter 3,
Ω(log2 n) rounds can be necessary. The problem has also been considered in the context of distributed algorithms
[36, 35] and low-energy ad-hoc wireless networks [4]. Elkin and Kortsarz prove a lower bound of inapproxima-
bility of a (multiplicative)Ω(log n) [15] and an additiveΩ(log2 n) [16] assumingNP 6⊆ BPTIME(nO(log log n)).

The unique coverage problem (but not the budgeted version) can be considered as a single round of a greedy
algorithm for the radio broadcast problem, which maximizes the number of nodes that receive the message in
each step. Specifically, consider the bipartite subgraph where one side consists of all nodes that currently have
the message and the other side consists of all nodes that do not yet have the message. In one round of the greedy
algorithm, the goal is to find a subset of nodes in the first side to transmit in order to maximize the number of
nodes in the second side that (uniquely) receive the message. This problem is equivalent to unique coverage,
viewing nodes on the first side as sets and the nodes on the second side as elements of the universe.

2A counterexample for a natural class of greedy algorithms is the collection of setsSi = {i, k + 1, k + 2, . . . , n} for i = 1, 2, . . . , k,
with an infinite budgetB. Consider a greedy algorithm that repeatedly chooses a set to add to the cover, according to some (arbitrary)
rule, with one of two stopping conditions: either when the budget is exhausted, or when the number of uniquely covered elements would
go down. Then the approximation ratio isΘ(1/n) with the first stopping condition ifk = 2, and with the second stopping condition if
k = n− 2.
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One implication of the radio broadcasting work on unique coverage is an implicitΩ(1/ log n)-approximation
algorithm for the (unbudgeted) unique coverage problem. Namely, there is a randomized broadcasting algorithm
that, in each round, guarantees transmission to anΩ(1/ log r) fraction of ther neighbors of nodes that currently
have the message. Becauser is an obvious upper bound on the number of successful transmissions of the
message, this result is anΩ(1/ log r) = Ω(1/ log n) approximation in this special case. See, e.g., [9].

To avoid the possibility of misunderstanding, let us point out that the known hardness-of-approximation re-
sults for radio broadcast [15, 16] do not give (neither explicitly nor implicitly) any useful hardness-of-approximation
result for the unique coverage problem (not even a constant factor). Likewise, our hardness-of-approximation re-
sults for the unique coverage problem do not by themselves imply any new hardness-of-approximation results for
radio broadcast. However, they do introduce a component that may be useful in future hardness-of-approximation
results for the radio broadcast problem, as they show that the greedy broadcast policy might need to lose a semi-
logarithmic factor already in a single round (a fact not used in [15, 16]).

3 Inapproximability

In this section we prove that it is hard to approximate unique coverage within a factor ofΩ(1/ logc n) for some
constantc, 0 < c ≤ 1. Our main result is a general reduction from a variation of Balanced Bipartite Independent
Set (BBIS) problem (defined below) to the unique coverage problem. From this reduction and the known hardness
results for BBIS, we can derive anO(1/ logc n) hardness for unique coverage. Under a plausible assumption
about the hardness of BBIS, this bound can be improved toO(1/ log n).

We consider the natural graph-theoretic model of the unique coverage problem. Define the bipartite graph
H(V ∪W,F ) with a vertexvi ∈ V for every setSi ∈ S and a vertexwj ∈ W for every elementej ∈ U , and
with an edgef = (vi, wj) ∈ F precisely ifej ∈ Si. Then the unique coverage problem asks to find a subset
V ′ ⊆ V such that the subgraph induced byV ′∪W has the maximum number of degree-1 vertices inW . We call
the degree-1 verticesuniquely coveredby the vertices inV ′.

Definition 3.1 Given a bipartite graphG(A ∪ B,E) with |A| = |B| = n, the Balanced Bipartite Independent
Set (BBIS) problem asks to find the largest value ofk such that there are setsA′ ⊆ A and B′ ⊆ B with
|A′| = |B′| = k where the subgraphG′ of G induced byA′ ∪B′ is an independent set.

As detailed below, this problem has known hardness results. In order to prove hardness of the unique coverage
problem, we define a variation of BBIS. Then we give a reduction from this variation of BBIS. Before stating the
main result, we need to define what we mean by an(a, b)-BIS (Bipartite Independent Set). LetG(A ∪B,E) be
a given a bipartite graph. If the subgraphG′ induced byA′ ⊆ A andB′ ⊆ B, with |A′| = a and|B′| = b, is an
independent set then we call it an(a, b)-BIS.

Definition 3.2 Given bipartite graphG(A ∪ B,E) with |A| = |B| = n, and given parametersγ, γ′, δ, andδ′

satisfying0 < γ′ < γ ≤ 1 and0 ≤ δ < δ′ ≤ 1, theBBIS(γ, γ′, δ, δ′) problem is to distinguish between two
cases:

1. Yes instance:G has an(nγ , n/ logδ n)-BIS.

2. No instance:G has no(nγ′ , n/ logδ′ n)-BIS.

The main theorem of this section is the following:

Theorem 3.3 There is a polynomial probabilistic reduction from BBIS to the unique coverage problem with the
following properties. Given a bipartite graphG(A ∪ B, E) with |A| = |B| = n and given parametersγ, γ′,
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δ, andδ′ satisfying0 < γ′ < γ ≤ 1 and0 ≤ δ < δ′ ≤ 1, the algorithm constructs in randomized polynomial
time an instanceH(V ∪W,F ) of unique coverage with|W | = Θ((γ − γ′)n log n) and |V | = n satisfying the
following two properties:

1. If G is a Yes instance ofBBIS(γ, γ′, δ, δ′), thenH has a solution of sizeΩ((γ − γ′)n log1−δ n).

2. If G is a No instance ofBBIS(γ, γ′, δ, δ′), thenH has no solution of sizeO(max{(γ−γ′)n log1−δ′ n, n}).

Corollary 3.4 Assuming thatBBIS(γ, γ′, δ, δ′) is hard for constantsγ, γ′, δ, δ′, we get a hardness of approxi-
mation within a factor ofΩ(1/ logδ′−δ n) for unique coverage.

Next we show how the known hardness results for BBIS can be used to derive explicit hardness results for
unique coverage. In particular, the following theorems follow from Theorem 3.3. (see Appendix B for the
proofs).

Theorem 3.5 Let ε > 0 be an arbitrarily small constant. Assuming thatNP 6⊆ BPTIME(2nε
), it is hard to

approximate the unique coverage problem within a factor ofΩ(1/ logσ n) for some constantσ = σ(ε).

Under a different complexity assumption, we can prove the same hardness result with an explicit value forσ:

Theorem 3.6 Assuming that refuting random instances of 3SAT is hard on average (hardness of R3SAT as in
[18]), unique coverage is hard to approximate within a factor ofΩ(1/ log1/3−σ n) for an arbitrarily small con-
stantσ > 0.

Under a stronger (yet plausible) hardness assumption (see Appendix B for details), we close the gap between
the approximation factor and the hardness of approximation, up to the constant multiplicative factor, by proving
anO(1/ log n)-hardness result for unique coverage.

Theorem 3.7 Assuming a specific hardness of factorΩ(nε) for BBIS for some constantε > 0 (Hypothesis B.9),
it is hard to approximate the unique coverage problem within a factor ofΩ(1/ log n) where the constant in theΩ
term depends onε.

3.1 Reduction from BBIS to Unique Coverage

Construction: Consider an instance ofBBIS(γ, γ′, δ, δ′): a bipartite graphG(A ∪ B, E) with |A| = |B| = n,
and parametersγ, γ′, δ, andδ′ with 0 < γ′ < γ ≤ 1 and0 ≤ δ < δ′ ≤ 1. We construct a graphH(V ∪W,F ) as
an instance of unique coverage as follows.

First we construct a random graphG′(A′ ∪B′, E′) whereA′ is a copy ofA andB′ is a copy ofB. For every
a ∈ A′ andb ∈ B′ we place the edge(a, b) in E′ with probability1/nγ . So the expected degree of every vertex
in G′ is n1−γ .

Now to constructH, let V be a copy ofA. Then withγ′′ = γ−γ′
7 , createp = γ′′ log n copies ofB, named

W1, . . . , Wp. We define a bipartite graphHi(V ∪Wi, Fi), for every1 ≤ i ≤ p, and at the endH =
⋃p

i=1 Hi.
Note that|V | = n and|W | = pn. The set of edgesFi (in Hi) consists of the union of two edge sets: (i) the edges
of the random graphG′ induced on the verticesV ∪Wi (V asA′ andWi asB′), plus (ii) the edges of another
random graphGi whereGi is defined recursively as follows. Initially,G1 is G induced onV ∪W1. For every
i ≥ 2, Gi is obtained fromGi−1 by deleting every edge independently with probability1

2 . The edges ofG′ in Hi

are calledtype-1 edgesand the rest of the edges ofHi (which come fromGi) are calledtype-2 edgesof Hi.
Proof overview: Here is the general idea of the proof. We will show that the number of vertices uniquely

covered by type-2 edges (edges that were originally inG) in this instance isO(n). So let us focus on the vertices
uniquely covered by type-1 edges (i.e., edges from the random graphG′ in eachHi).
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First suppose thatG is a Yes instance, i.e., it has a(nγ , n
logδ n

)-BIS, sayA∗∪B∗ (with A∗ ⊆ A andB∗ ⊆ B).

Because the expected degree of every vertex inG′ is n1−γ , the expected number of type-1 edges coming out of
A∗ (in G′) is n, and because these edges are selected at random, we expect a fraction of1/e of the vertices inB′

(in G′) and in particular a fraction of1/e of the vertices inB∗ to have degree1. This implies that the type-1
edges in eachHi uniquely cover a linear number of vertices ofB∗ (at least in expectation), i.e., it gives a solution
of sizeΩ( n

logδ n
) in Hi. BecauseH =

⋃p
i=1 Hi andp = γ′′ log n, we have a total ofΩ(γ′′n log1−δ n) vertices

uniquely covered by type-1 edges.
Now suppose thatG is a No instance, i.e., it has no(nγ′ , n/ logδ′ n)-BIS. We will show that, although we

delete edges to constructGi from Gi−1, the last (and most sparse) graphGp will not have “too large” a bipartite
independent set with high probability. This property will be used to show that, in every graphHi, the number of
vertices uniquely covered by type-1 edges in any solution ofH is at mostO(n/ logδ′ n) with high probability.
Thus, the total number of vertices uniquely covered inH (by type-1 or type-2 edges) in any solution is at most
O(γ′′n log1−δ′ n + n) with high probability. Becauseδ′ ≤ 1, this creates a hardness gap ofΩ(1/ logδ′−δ n).

Proof of Theorem 3.3:Now we give the details of the proof. We use the following simplified version of the
Chernoff bound:

Lemma 3.8 (Chernoff bound) For independent0/1 random variablesX1, . . . , Xn, X =
∑n

i=1 Xi, µ = E[X],
and any0 < δ < 1, we have

Pr[|X −E[X]| > δµ] ≤ e−δ2µ/3.

Lemma 3.9 The number of vertices uniquely covered by type-2 edges in any solution toH is O(n) with high
probability.

Proof: Let b ∈ B be an arbitrary vertex (inG) and assume thatw1, . . . , wp are its corresponding vertices in
W1, . . . , Wp. Consider any subsetV ′ ⊆ V . Assuming thatV ′ is a solution to unique coverage, we compute
the probability that exactlyi vertices out ofw1, . . . , wp are uniquely covered by type-2 edges (of the vertices
of V ′). Assume thatj is the first index for whichwj is uniquely covered by a type-2 edge andwj , . . . , wj+i−1

are the copies that are uniquely covered by a type-2 edge. Because every edge is deleted with probability1
2 from

Gt to Gt+1 (for 1 ≤ t < p), the probability that a single edge survivesi rounds is2−i. Let Xb be the number
of copies ofb (from w1, . . . , wp) that are uniquely covered by a type-2 edge (by the vertices ofV ′) and define
X =

∑
b∈B Xb. Therefore,

E[X] =
∑

b∈B

E[Xb] = n
p∑

i=1

i

2i
≤ 3n.

Using the Chernoff bound (Lemma 3.8), we obtain

Pr[X ≥ 6n] ≤ e−4n.

Because there are2n subsetsV ′, a union bound shows that the probability that, for at least one of those sets, the
number of vertices inW that are uniquely covered by type-2 edges is≥ 6n is at most2n · e−4n ≤ e−Ω(n). This
completes the proof of the lemma. 2

Completeness:Suppose thatG is a Yes instance, i.e., it has a(nγ , n/ logδ n)-BIS, say,A∗ ∪ B∗ where
A∗ ⊆ A andB∗ ⊆ B. Assume thatV ′ andW ′

i are the subsets of vertices inHi andA′′ andB′′ are the subsets of
vertices inG′ corresponding toA∗ andB∗, respectively. BecauseGi is obtained fromG by deleting edges, there
are no type-2 edges inV ′ ∪W ′

i in Hi (for any1 ≤ i ≤ p). Therefore, every vertexw ∈ W ′
i (for all values of

1 ≤ i ≤ p) has degree1 if and only if the corresponding vertexw ∈ B′′ (in G′) has degree1. For everyw ∈ B′′,

8



let Xw be a0/1 random variable that is1 if and only if w ∈ B′′ has degree1 (and sow is uniquely covered by a
type-1 edge inHi for all 1 ≤ i ≤ p). With X =

∑
w∈B′′ Xw,

E[X] =
∑

w∈B′′
Pr[Xw = 1]

= |B′′| ·
(
|A′′|
1

)
· 1
nγ

(
1− 1

nγ

)|A′′|−1

≥ |B′′|
e

≥ n

e logδ n
.

A simple application of the Chernoff bound shows thatPr[X ≤ n
6 logδ n

] ≤ e−Ω(n/ logδ n). Therefore, if we

select the subset of vertices inV (in H) corresponding toA∗ (in G) then, with high probability, there are at least
p · n

6 logδ n
= Ω(γ′′n log1−δ n) vertices inW uniquely covered (by type-1 edges). Thus, we have proved the

following:

Corollary 3.10 If G is a Yes instance thenH has a unique cover of sizeΩ(γ′′n log1−δ n).

Soundness:Suppose thatG is a No instance, i.e., it has no(nγ′ , n/ logδ′ n)-BIS. Our goal is to show that,
with high probability, every solution to unique coverage forH has sizeO(max{γ′′n log1−δ′ n, n}). Because by
Lemma 3.9 the number of vertices uniquely covered by type-2 edges isO(n), we only need to prove that, with
high probability, the number of vertices uniquely covered by type-1 edges is at mostO(γ′′n log1−δ′ n).

Consider any solution to unique coverage forH. By construction of theHi’s, it is easy to see that, for
every vertexb ∈ B (in G), if the corresponding vertex inWi is uniquely covered by a type-1 edge inHi, then
all the corresponding vertices ofb in the Wj ’s, for i ≤ j ≤ p, are also uniquely covered by a type-1 edge.
Therefore, if we prove that the number of vertices uniquely covered by type-1 edges inHp is upper bounded
(with high probability) byO(n/ logδ′ n), then becausep = γ′′ log n, we obtain the claimed upper bound for the
total number of vertices uniquely covered by type-1 edges.

Suppose thatV ′ ⊆ V andW ′ ⊆ Wp are such that all the vertices inW ′ are uniquely covered byV ′, and the
edges that cover them are all type-1 edges. It is easy to see thatV ′∪W ′ must be a bipartite independent set inGp

(otherwise there is some type-2 edge incident to some vertexw ∈ W ′ and thereforew is not uniquely covered).

Lemma 3.11 If V ′ ∪ W ′ (with V ′ ⊆ V and W ′ ⊆ Wp) is a bipartite independent set inGp, then with high
probability, either|V ′| < n(γ+γ′)/2 or |W ′| < 2n/ logδ′ n, i.e.,Gp has no(n(γ+γ′)/2, 2n/ logδ′ n)-BIS.

Proof: Suppose thatV ′ ⊆ V andW ′ ⊆ Wp satisfy|V ′| = n(γ+γ′)/2 and|W ′| = 2n/ logδ′ n. PartitionV ′ into
q = n(γ−γ′)/2 subsetsV ′

1 , . . . , V
′
q , each of sizenγ′ . Let A∗i andB∗ (1 ≤ i ≤ q) be the subset of vertices of

A andB (in G) corresponding toV ′
i andW ′, respectively. Consider the subgraph ofG induced byA∗i ∪ B∗.

Because|A∗i | = nγ′ , |B∗| = 2n/ logδ′ n, and becauseG has no(nγ′ , n/ logδ′ n)-BIS, it follows that at least
n/ logδ′ n vertices inB∗ must be connected to the vertices inA∗i . Therefore, the total number of edges in the
subgraph induced byB∗∪⋃q

i=1 A∗i is at leastq ·n/ logδ′ n = Ω(n1+(γ−γ′)/2/ logδ′ n). BecauseG1 = G, V ′∪W ′

forms an independent set inGp only if all of theseΩ(n1+(γ−γ′)/2/ logδ′ n) edges are deleted whileGp is created.
Because in creatingGi+1 from Gi, edges are deleted with probability1

2 , we have

Pr[V ′ ∪W ′ is an independent set inGp] ≤ (1)

(1− 2−p)Ω(n1+(γ−γ′)/2/ logδ′ n).
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The number of such subsetsV ′ ∪W ′ is
(

n

n(γ+γ′)/2

)(
n

2n/ logδ′ n

)
. (2)

Thus, using (1) and (2), the expected number of bipartite independent setsV ′ ∪ W ′ with |V ′| = n(γ′+γ)/2

and|W ′| = 2n/ logδ′ n in Gp is at most

(1− 2−p)Ω(n1+(γ−γ′)/2/ logδ′ n)

(
n

n(γ+γ′)/2

)(
n

2n/ logδ′ n

)

≤ (1− n−(γ−γ′)/7)Ω(n1+(γ−γ′)/2/ logδ′ n) ·
(

en

n(γ+γ′)/2

)n(γ+γ′)/2

·
(

en

2n/ logδ′ n

)2n/ logδ′ n

≤ e−Ω(n1+(γ−γ′)/2−(γ−γ′)/7/ logδ′ n) · eO(n(γ+γ′)/2 log n) · eO(n log log n/ logδ′ n)

≤ e−Ω(n1+(γ−γ′)/3) · eO(n/ logδ′/2 n)

≤ e−Ω(n1+(γ−γ′)/3).

Therefore, with probability1 − e−Ω(n1+(γ−γ′)/3), for every bipartite independent setV ′ ∪ W ′ of Gp, either
|V ′| < n(γ+γ′)/2 or |W ′| < 2n/ logδ′ n, i.e.,Gp has no(n(γ+γ′)/2, 2n/ logδ′ n)-BIS. 2

Lemma 3.12 With high probability, for everyHi (1 ≤ i ≤ p), the number of vertices uniquely covered by type-1
edges is at mostO(n/ logδ′ n).

Proof: Clearly, for every vertex uniquely covered by a type-1 edge inWi, its corresponding copy is also uniquely
covered (by a type-1 edge) inWj for everyi ≤ j ≤ p. So let us focus on the number of vertices uniquely covered
by type-1 edges inHp. For every pair of subsetsV ′ ⊆ V andW ′

p ⊆ Wp, if W ′
p is uniquely covered inHp

(by V ′), then there existsW ∗
p ⊇ W ′

p such thatV ′ ∪W ∗
p is a(|V ′|, |W ∗

p |)-BIS in Gp. By Lemma 3.11, with high

probability, either|W ∗
p | < 2n/ logδ′ n or |V ′| < n(γ+γ′)/2. Trivially in the former case the number of vertices

uniquely covered inHp (and therefore in everyHi6=p) is at mostO(n/ logδ′ n). So assume that|V ′| < n(γ+γ′)/2

(and of course|W ∗
p | ≤ n). In this case, we show that, with high probability,|W ′

p| ≤ O(n1−(γ−γ′)/2), which is

clearlyO(n/ logδ′ n). Consider an arbitrary vertexw ∈ W ∗
p and letXw be a0/1 random variable that is1 if and

only if w is incident to exactly one type-1 edge. WithX =
∑

w∈W ∗
p

Xw,

E[X] =
∑

w∈W ∗
p

Pr[Xw = 1]

=
∑

w∈W ∗
p

(
|V ′|
1

)
· 1
nγ

(
1− 1

nγ

)|V ′|−1

< n · n(γ+γ′)/2 · 1
nγ

≤ n1−(γ−γ′)/2.

Using the Chernoff bound,

Pr[X ≥ 2n1−(γ−γ′)/2] ≤ e−Ω(n1−(γ−γ′)/2).

This bound shows that, with high probability,|W ′
p| ≤ O(n1−(γ−γ′)/2) as desired. 2
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Corollary 3.13 If G is a No instance then every solution to unique coverage forH has size at mostO(max{γ′′n log1−δ′ n, n}).

Proof: From Lemma 3.12 and becausep = γ′′ log n, it follows that, with high probability, the number of vertices
uniquely covered by type-1 edges is at mostO(γ′′n log1−δ′ n). Combining this bound with Lemma 3.9 shows
that, ifG is a No instance (i.e., has no(nγ′ , n/ logδ′ n)-BIS), then the size of any solution to unique coverage for
H is at mostO(max{γ′′n log1−δ′ n, n}). 2

Proof of Theorem 3.3:Follows easily from Corollaries 3.10 and 3.13 and the assumption thatBBIS(γ, γ′, δ, δ′)
is hard. 2

4 Approximation Algorithms

4.1 Ω(1/ log n)-Approximation

In this section we develop our main approximation algorithm, proving tightness of our inapproximability results
up to the constant in the exponent:

Theorem 4.1 There is anΩ(1/ log ρ) = Ω(1/ log n) approximation algorithm for the budgeted unique coverage
problem, whereρ is one more than the ratio of the maximum number of sets in which an element appears over
the minimum number of sets in which an element appears.

Proof: First we find an(1 − 1/e)-approximate solutionS ′ to the maximum coverage problem with the same
universe, profits, sets, costs, and budget [32]. Because the total profit of uniquely covered elements is always at
most the total profit of all covered elements, the optimum solution valueOPT to the unique coverage problem
must be at most the optimum solution value to the maximum coverage problem. Thus the total profit of covered
elements inS ′ is within an1 − 1/e factor of an upper bound onOPT. Symbolically, ifp(S) denotes the total
profit of elements in setS and

⋃S ′ denotes the union
⋃

S∈S′ S, thenp(
⋃S ′) ≥ (1− 1/e)OPT.

We cluster the elements in
⋃S ′ into lg ρ groups as follows: an element is ingroup i if it is covered by

between2i and2i+1 − 1 sets. The groupi∗ with the most total profit must have at least a1/ lg ρ fraction of
p(

⋃S ′) ≥ (1 − 1/e) OPT. Now we randomly discard sets fromS ′, keeping a set with probability1/2i∗ . We
claim that, in expectation, the resulting collectionS ′′ uniquely covers a constant fraction of the elements in
groupi∗, which isΩ(OPT / lg ρ).

Fix an elementx in group i∗, and suppose that it was coveredd times inS ′, 2i∗ ≤ d ≤ 2i∗+1 − 1. The
probability thatx is covered exactly once byS ′′ is (d/2i∗)(1 − 1/2i∗)d−1. (There is a factor ofd for the choice
of which set coversx, a1/2i∗ probability that this set is kept, and a1− 1/2i∗ probability that each of thed− 1
other sets is discarded.) By our bounds ond, the probability thatx is covered exactly once byS ′′ is at least

(1− 1/2i∗)2
i∗+1 ≥ 1/e2.

The expected total profit of elements covered exactly once byS ′′ is at least
∑{px/e2 | x in group i∗}, which

is 1/e2 times the total profit of elements in groupi∗, which we argued is at least(1− 1/e)OPT / lg ρ. Therefore
the expected profit of our randomized solution is at least(1/e2 − 1/e3)OPT / lg ρ = Ω(OPT / lg ρ).

We can derandomize this algorithm by the standard method of conditional expectation [41]. For each set
in S ′, we decide whether to keep it inS ′′ by trying both options, and choosing the option that maximizes the
conditional expectation of the total profit of elements in groupi∗ uniquely covered byS ′′. The conditional
expectations can be computed easily in polynomial time according to the analysis above. 2

The approximate solution computed by this algorithm is not only within anΩ(1/ log n) factor of the optimal
unique coverage, but also within anΩ(1/ log n) of the optimal maximum coverage. As a consequence, we also
obtain anΩ(1/ log n)-approximation for the practical problem of budgeted low-coverage described in Section
2.1.
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4.2 Approximation with Bounded Set Size

In this section we consider the unique coverage problem with a boundB on the maximum set size, or more
generally, the budgeted unique coverage problem with a boundB on the ratio between the maximum profit of a
set and the minimum profit of an element. In both cases we obtain an approximation ratio ofΩ(1/ log B), which
our inapproximability results show is tight up to the constant in the exponent in the caseB = n.

Theorem 4.2 There is anΩ(1/ log B)-approximation algorithm for instances of the budgeted unique coverage
problem in which the minimum element profit is1 and the total profit of every set is at mostB.

Proof: As before, we first find an(1 − 1/e)-approximate solutionS ′ to the maximum coverage problem with
the same universe, profits, sets, costs, and budget [32]. As argued in the proof of Theorem 4.1,p(

⋃S ′) ≥
(1 − 1/e)OPT. wherep(S) denotes the total profit of elements in setS,

⋃S ′ denotes the union
⋃

S∈S′ S, and
OPT denotes the optimum solution value to the unique coverage problem.

We modifyS ′ to be minimal by removing any sets that do not uniquely cover any elements. Thus the set
of covered elements remains the same, so the same upper bound onOPT holds. LetX be the set of elements
covered by exactly one set ofS ′. BecauseS ′ is minimal, each set must uniquely cover at least one element inX,
so|X| ≥ |S ′|. Because every element has profit at least1, p(X) ≥ |X| ≥ |S ′|.

If p(
⋃S ′) ≤ 2|S ′| ≤ 2p(X), thenS ′ is already anΩ(1)-approximate solution to the budgeted unique

coverage problem. Ifp(
⋃S ′) > 2|S ′|, then we claim that the total profit of elements covered at mostB times by

S ′ is at leastp(
⋃S ′)/2. Otherwise, the elements covered more thanB times byS ′ would be at leastp(

⋃S ′)/2,
and thus the total profit of the sets would satisfy

∑
S∈S′ p(S) > Bp(

⋃S ′)/2 > B|S ′|, contradicting that every
set inS (and thusS ′) has total profit at mostB. Now we apply Theorem 4.1 above to the elements covered
at mostB times byS ′, for which ρ ≤ B. Thus we obtain anΩ(1/ log B)-approximation for this subproblem,
whose optimal solution value is at least(1− 1/e)OPT /2. 2

We note that the unique coverage problem when every set has cardinality at mostB = 3 and every element
appears in exactly two sets (ρ = 1), then the problem is exactly max-cut in maximum-degree-3 graphs, so the
problem is APX-hard even in this restricted case [43, 2].
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A Randomized Rounding for Envy-Free Pricing

In this section we prove the necessary lemma about randomized rounding needed in Section 2.2 for the reduction
from unique coverage to unlimited-supply single-minded envy-free pricing.

Lemma A.1 In the setting of single-minded envy-free pricing, suppose all valuations are1. Then there is a price
assignment that uses prices of just0 and1 and whose profit is within a constant factor of optimal.

Proof: Consider the optimal assignment of pricespi to itemsIi. If any pricepi is larger than1, we set it to1 at
no cost. Now we round by setting the new pricep′i of item Ii to 1 with probabilitypi/2 and to0 otherwise. We
claim that, ifui =

∑
Ij∈Bi

pj < 1 (i.e., the optimal solution profitsui from buyerbi), then the probability that
the seller profits1 from buyerbi is at leastui/(2e).

The probability that the seller profits1 from buyerbi, who desires bundleBi, is
∑

Ij∈Bi
(pj/2)

∏
Ij 6=Ik∈Bi

(1−
pk/2). This quantity can be rewritten as

∏
Ik∈Bi

(1−pk/2)
∑

Ij∈Bi
(pj/2)/(1−pj/2). Because

∑
Ij∈Bi

pj ≤ 1/2,
it is easy to show that the quantity is minimized when all of thepj ’s, Ij ∈ Bi, are equal. Thus the probability of
profit from bi is at least(1− ui/2|Bi|)|Bi|(ui/2)/(1− ui/2|Bi|). Because1− x ≥ e−2x for 0 ≤ x ≤ 1/2, this
probability is at leaste−uiui/2 ≥ e−1ui/2 as claimed.

Thus the expected total profit in the modified solution is at least
∑

i ui/(2e), which is1/(2e) times the profit
of the optimal solution. We can derandomize this algorithm by the standard method of conditional expectation
[41]; see the proof of Theorem 4.1. 2

B Proving Specific Hardness Results for Unique Coverage

In this section we prove Theorems 3.5, 3.6, and 3.7. In order to prove these theorems, we will prove some
hardness results forBBIS(γ, γ′, δ, δ′) and then combine them with Theorem 3.3.

Recently, two hardness results for BBIS were proved by Feige [18] and Khot [31] under different complexity
assumptions. Feige [18] proved a constant factor hardness result for BBIS under the complexity assumption that
refuting random instances of 3SAT is hard on average (see [18] for more details):

Theorem B.1 [18] For everyε > 0 and a given bipartite graphG(A ∪ B, E) with |A| = |B| = n, deciding
between the following two cases is hard, under the complexity assumption that refuting random instances of 3SAT
is hard on average:

1. G has a BBIS of size at least(1
4 − ε)n,

2. Every BBIS ofG has size smaller than(1
8 + ε)n.

More recently, Khot [31] proved a similar result, for some (unspecified) constantsα andβ instead of(1
4 − ε)

and(1
8 + ε), respectively, but under a more plausible assumption that NP problems do not have subexponential

time algorithms. More specifically, he proved the following PCP theorem:
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Theorem B.2 [31] For everyε > 0 there is an integerd = O(1
ε log(1

ε )) such that the following holds: there is
a PCP verifier for SAT instances of sizen such that:

1. The proofΠ for the verifier has size2nε
.

2. The verifier queries a setQ of sized bits fromΠ.

3. Every query is uniformly distributed overΠ.

4. Completeness: If SAT is a Yes instance,Π is a correct proof, andΠ0 is the set of 0-bits in the proof (it
contains half the bits from the proof), then:

Pr[Q ⊆ Π0] ≥ (1−O(
1
d
))

1
2d−1

,

where the probability is taken over the random tests of the verifier.

5. Soundness: If SAT is a No instance andΠ∗ is any set of half the bits fromΠ then:

Pr[Q ⊆ Π∗] =
1
2d
±O(

1
220d

).

A direct application of Theorem B.2 implies the following (see [31])3:

Theorem B.3 Let ε > 0 be an arbitrary constant andd = O(1
ε log(1

ε )). Consider an instanceΦ of SAT withn
variables. Letα = 3

4
1

2d−1 andβ = (1− 1
25d )α. We can construct a bipartite graphG(A ∪B,E) as an instance

of BBIS from the PCP verifier of Theorem B.2 with|A| = |B| = N whereN = 2nε
such that the following hold:

• Yes instance:If Φ is a Yes instance thenG has a BBIS of sizeαN .

• No instance:If Φ is a No instance then no BBIS ofG has sizeβN .

Corollary B.4 Assuming thatNP 6⊆ BPTIME(2nε
), it is hard to distinguish between the Yes and No cases in

the above theorem.

In order to get a hardness forBBIS(γ, γ′, δ, δ′), we need a stronger version of Theorem B.3. For this, we
boost the gap in Theorem B.3 using the standard technique of graph products (see for example [19, 10]). Note
that Theorem 1.2 in [31] amplifies the gap in Theorem B.3 using the same technique. However, we require a gap
which is asymmetric with respect to the sizes of sets selected on different parts, i.e., the bipartite independent
set is not necessarily balanced. In particular, the gap created on one side (sayA) is polynomial whereas the gap
created on the other side (that isB) is polylogarithmic. Our proof is very similar to that of Theorem 1.2 in [31].
We need the following definition for our proof.

Definition B.5 For a bipartite graphG(A ∪ B,E) and integersKA, KB ≥ 2 the bipartite graphG(KA,KB) is
defined as follows:

• Vertex set ofGKA,KB is A′ ∪ B′, whereA′ ∩ B′ = ∅, A′ = AKA , andB′ = BKB , i.e.,A′ andB′ are the
sets of allKA-tuples fromA and allKB-tuples fromB, respectively.

• Two vertices(a1, . . . , aKA
) ∈ A′ and (b1, . . . , bKB

) ∈ B′ are adjacent inG(KA,KB) if and only if
∀i, j, 1 ≤ i ≤ KA, 1 ≤ j ≤ KB, (ai, bj) ∈ E.

3Khot defines the bi-clique problem and proves this theorem for bi-clique.
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Suppose thatG(A ∪ B, E) is a bipartite graph with|A| = |B| = N , 0 < α < 1 is a constant, andKA,KB

are integers such that
1

αKA
,

1
αKB

∈ O(N). (3)

LetG∗(A∗∪B∗, E∗) be a random subgraph ofGKA,KB (A′∪B′, E′) with |A∗| = |B∗| = M whereM = N3

and every vertex ofGKA,KB is selected uniformly at random but with different probabilities forA′ andB′.

Lemma B.6 If G(A ∪B, E) has a BBIS of sizeαN then w.h.pG∗ has a(1
2αKAM, 1

2αKBM)-BIS.

Proof: Let AI ⊆ A andBI ⊆ B be subsets that form a BBIS of sizeαN in G. Clearly, the subgraph ofGKA,KB

induced onAKA
I ∪ BKB

I is an independent set. Because the vertices ofG∗ are selected randomly, each vertex
of A∗ belongs toAKA

I with probabilityαKA . Also, each vertex ofB∗ belongs toBKB
I with probabilityαKB .

Therefore,E[|A∗ ∩AKA
I |] = αKA |A∗| andE[B∗ ∩BKB

I ] = αKB |B∗|. Using the Chernoff bound and (3):

Pr
[
|A∗ ∩AKA

I | ≤ 1
2
αKA |A∗|

]
≤ 2−Ω(N2).

Similarly, with high probability,|B∗ ∩ BKB
I | ≥ 1

2αKB |B∗|. Therefore, with high probability,G∗ has a
(1
2αKA |A∗|, 1

2αKB |B∗|)-BIS. 2

Lemma B.7 If G(A ∪ B, E) has no BBIS of sizeβN then, with high probability,G∗ does not have any
(2βKAM, 2βKBM)-BIS.

Proof: First, note that every maximal bipartite independent set ofGKA,KB is of the formAKA
I ∪ BKB

I where
AI ∪BI is a bipartite independent set inG. Consider a fixed maximal bipartite independent set ofGKA,KB , say
AKA

I ∪ BKB
I . Either |AKA

I | < βKANKA or |BKB
I | < βKBNKB . Without loss of generality, assume|AKA

I | <

βKANKA . Because the element inA∗ andB∗ are selected uniformly randomly:E[|A∗ ∩ AKA
I |] < βKA |A∗|.

Using the Chernoff bound:
Pr

[
|A∗ ∩AKA

I | ≥ 2βKA |A∗|
]
≤ 2−Ω(N2).

Almost identical argument applies if|BKB
I | < βKBNKB . Because there are at most2O(N) possible maximal

bipartite independent sets inG, using union bound, the probability of having a(2βKA |A∗|, 2βKB |B∗|)-BIS in
G∗ is in o(1). 2

Let Φ be an instance of SAT and letε > 0 be an arbitrary small constant. Defined, α, β, andG(A∪B, E) as
in Theorem B.3, with|A| = |B| = N . Also letM = N3, KA = − (1−γ) log M

log α , andKB = − δ log log M
log α , for some

constants0 < γ, δ < 1. Construct the graphGKA,KB and the random subgraph of itG∗(A∗ ∪ B∗, E∗) where
|A∗| = |B∗| = M as explained above. By Theorem B.3 and Lemmas B.6 and B.7 it follows that:

1. If Φ is a Yes instance then, by Theorem B.3,G has a BBIS of sizeαN . So, by Lemma B.6, with high
probability,G∗ has a(1

2αKAM, 1
2αKBM)-BIS. By definition ofKA andKB, this is a(Mγ

2 , M
2 logδ M

)-BIS

in G∗.

2. If Φ is a No instance then, by Theorem B.3,G has no BBIS of sizeβN . So, by Lemma B.7, with high
probability,G∗ has no(2βKAM, 2βKBM)-BIS. With` = logα(β/α), γ′ = γ−`(1−γ), andδ′ = δ(1+`),
this means that, with high probability,G∗ has no(2Mγ′ , 2M

logδ′ M
)-BIS.

Therefore, we have proved the following amplified version of Theorem B.3.
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Theorem B.8 LetG(A∪B,E) be a given bipartite graph with|A| = |B| = n, together with an arbitrary small
constantε > 0, andd = O(1

ε log(1
ε )), α = 3

4
1

2d−1 , β = (1 − 1
25d )α. Furthermore let0 < γ′ < γ ≤ 1 and

0 ≤ δ < δ′ ≤ 1 be such thatδ is any constant and with̀= logα(β/α): γ′ = γ − `(1− γ), andδ′ = δ(1 + `).
Then it is hard to distinguish between the following two cases unlessNP ⊆ BPTIME(2nε

):

1. G has a(nγ

2 , n
2 logδ n

)-BIS.

2. G has no(2nγ′ , 2n

logδ′ n
)-BIS.

Proof of Theorem 3.5: Given a bipartite graphG(A ∪ B, E) with |A| = |B| = n as an instance of bipartite
independent set and parametersε, α, β, δ, γ, δ′, andγ′ as in Theorem B.8 we constructH(V ∪ W,F ) as
explained in the proof of Theorem 3.3. We chooseδ = 1

1+` where` = logα(β/α). Thereforeδ′ = 1 and by
Corollaries 3.10 and 3.13 unlessNP ⊆ BPTIME(2nε

) it is hard to approximate unique coverage within a factor
of Ω(1/ logδ′−δ n). Becauseδ′ − δ = `

1+` and` is a function ofε, this completes the proof of the theorem.2

Proof of Theorem 3.6: If our starting point to prove Theorem B.8 is Theorem B.1 instead of Theorem B.3 the
we haveα = 1

4 − ε andβ = 1
8 + ε, and` = 1

2 + ε′ whereε′ = ε′(ε) is a constant. Then the same argument as in

the proof of Theorem 3.5 proves a hardness ofO(1/ log
1/2+ε′

1+1/2+ε′ n) which isO(1/ log
1
3
−σ n) for someσ = σ(ε).

2

We now turn to the proof of Theorem 3.7. It is based on the following hypothesis.

Hypothesis B.9 Given a bipartite graphG(A ∪ B, E) with size|A| = |B| = n as an instance of BBIS and for
absolute constants1 ≥ γ > γ′ > 0 it is hard to distinguish the following two cases:

1. G has an(nγ , Ω(n))-BIS.

2. G has no(nγ′ , n/ log n)-BIS.

Now we show how Hypothesis B.9 would imply anO(1/ log n)-hardness for unique coverage.

Proof of Theorem 3.7:Given a bipartite graphG(A ∪ B, E) with size|A| = |B| = n and1 ≥ γ > γ′ > 0 we
constructH(V ∪W,F ), the instance of unique coverage, as in reduction of Theorem 3.3.

• If G has an(nγ , Ω(n))-BIS thenH has a unique coverage of sizeΩ((γ−γ′)n log1−δ n) with δ = 0, which
is Ω(n log n).

• If G has no(nγ′ , n/ log n)-BIS then every unique coverage solution forH has size at mostO((γ −
γ′)n log1−δ′ n) with δ′ = 1, which isO(n).

This implies that, assuming Hypothesis B.9, it is hard to distinguish between the two cases above, and hence hard
to approximate unique coverage within a factor ofΩ(1/ log n). 2

The authors suspect that Hypothesis B.9 will be difficult to refute in the near future. The BBIS problem
appears to be at least as hard to approximate as maximum independent set in general graphs. (This is not a
theorem, but merely an empirical observation concerning currently known approximation algorithms.) For the
latter problem, despite extensive work, no known polynomial-time algorithm can distinguish between graphs with
independent sets of sizeΩ(n/k) and graphs with no independent set of sizen1/k, wherek is some sufficiently
large constant. It is plausible (though not certain) that any refutation of Hypothesis B.9 would lead to major
improvements in the approximation ratio for maximum independent sets in general graphs.
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