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Abstract

We prove semi-logarithmic inapproximability for a maximization problem calleidue coveragegiven
a collection of sets, find a subcollection that maximizes the number of elements covered exactly once. Specif-
ically, we proveO(l/log"(E) n) inapproximability assuming th&P ¢ BPTIME(2"") for somes > 0. We
also proveO(l/logl/"‘*6 n) inapproximability, for any= > 0, assuming that refuting random instances of
3SAT is hard on average; and pro@1/logn) inapproximability under a plausible hypothesis concerning
the hardness of another problem, balanced bipartite independent set. We establish matching upper bounds up
to exponents, even for a more general (budgeted) setting, givitif Bhlog n)-approximation algorithm as
well as an(2(1/ log B)-approximation algorithm when every set has at ni®gtlements. We also show that
our inapproximability results extend to envy-free pricing, an important problem in computational economics.
We describe how the (budgeted) unique coverage problem, motivated by real-world applications, has close
connections to other theoretical problems including max cut, maximum coverage, and radio broadcasting.

1 Introduction
In this paper we consider the approximability of the following natural maximization analog of set cover:

Unique Coverage Problem Given a universé/ = {ey, ..., e, } of elements, and given a collection
S = {S1,...,S5n} of subsets of/. Find a subcollectios’ C S to maximize the number of
elements that areniquely covered.e., appear in exactly one set&f.

We also consider a generalized form of this problem that is useful for several applications (detailed in Section 2):

Budgeted Unique Coverage ProblemGiven a universé/ = {ey,...,e,} of elements, and a profit
p; for each element;; given a collectiorS = {54,...,S,,} of subsets ot/, and a cost; of each
subsetS;; and given a budgeB. Find a subcollectio’ C S, whose total cost is at most the budget
B, to maximize the total profit of elements that amgquely coveredi.e., appear in exactly one set
of §'.

Motivation. Logarithmic inapproximability for minimization problems is by now commonplace, starting in
1993 with a result for the celebrated set cover problem [39], which has since been improved to the optimal
constant [17] and to assume just# NP [44], and has been used to prove other tight (not necessarily log-
arithmic) inapproximability results for a variety of minimization problems, e.g., [32, 24, 12]. In contrast, for
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maximization problemslog n inapproximability seems more difficult, and relatively few results are known.
The only two such results of which we know are+ ¢)/Inn inapproximability for domatic number unless

NP C DTIME(nCUeglegn)y [20], and1/ log'/*~¢ n inapproximability for the maximum edge-disjoint paths

and cycles problems unled® C ZPTIME(nP°ben) [5, 45]. Although these problems are interesting, they

are rather specific, and we lack a central maximization problem analogous to set cover to serve as a basis fo
further reduction to many other maximization problems.

The unique coverage problem defined above is a natural maximization version of set cover which was brought
to our attention from its applications in wireless networks. In one (simplified) application, we have a certain
budget to build/place some transmitters at a subset of some specified set of possible locations. Our goal is t
maximize the clients that are “covered” by (i.e., are within the range of) exactly one transmitter; these are the
clients that receive signal without interference; see Section 2.1 for details. Another closely related application
studied much earlier is the radio broadcast problem, in which a message (starting from one node of the network’
is to be sent to all the nodes in the network in rounds. In each round, some of the nodes that have already receive
the message send it to their neighbors, and a node receives a message only if it receives it from exactly one c
its neighbors. The goal is to find the minimum number of rounds to broadcast the message to all the nodes
see Section 2.5 for details. Therefore, every single round of a radio broadcast can be seen as a unique coveral
problem. These applications along with others are studied in more detail in Section 2.

Known results. To the best of our knowledge, there is no explicit study in the literature of the unique coverage
problem and its budgeted version. However, the closely related radio broadcast problem has been studied e
tensively in the past, and implicitly include &1(1/log n) approximation algorithm for the basic (unbudgeted)
unique coverage problem; see Section 2.5 for details.

Concurrently and independently of our work, Guruswami and Trevisan [27] study the so callédSAR-
problem, which includes the unique coverage problem (but not its budgeted version) as a special case. In particu
lar, they show that there is an approximation algorithm that achieves an approximation fiaticoof satisfiable
instances (in which all items can be covered by mutually disjoint sets).

Our results. On the positive side, we give &n(1/logn)-approximation for the budgeted unique coverage
problem. We also show that, if each set has a balinoh the ratio between the maximum profit of a set and
the minimum profit of an element, then budgeted unique coverage Hadl dog B)-approximation. Section 4
proves these results.

The main focus of this paper is proving the following inapproximability results. We show that it is hard
to approximate the unique coverage problem within a factdr@f/ log” n), for some constant depending
on e, assuming thaNP ¢ BPTIME(2"") for somes > 0. This inapproximability can be strengthened to
Q(l/logl/?"a n) (for anye > 0) under the assumption that refuting random instances of 3SAT is hard on
average (hardness of R3SAT as in [18]). The inapproximability can be further strengtheh#ed ez n) for
somees > 0, under a plausible hardness hypothesis about a problem called Balanced Bipartite Independent Set
see Hypothesis B.9. Section 3 (and Appendix B) proves all of these results.

Our hardness results have other implications regarding the hardness of some well-studied problems. In par
ticular, for the problem of unlimited-supply single-minded (envy-free) pricing, a recent result [26] proves an
(1/logn) approximation, but no inapproximability result better than APX-hardness is known. As we show
in Section 2.2, our hardness results for the unique coverage problem imply the same hardness-of-approximatio
bounds for this version of envy-free pricing. For the radio broadcast problem, as we discuss in Section 2.5,
there is essentially a gap 6f(logn) between the approximation and inapproximability facta@pgl¢g? n) vs.
Q(logn)). We believe that our technique to prove hardness of unique coverage may shed some light on how to
obtain a hardness of approximation beydéhdog ) for this problem.



More generally, there are many maximization problems for which the best known approximation factor is
Q(1/logn)—see, e.g., [26, 8, 40]—and it is not known whethefdm)-factor approximation is possible. Often
(as indeed is the case with unique coverage) these problems naturally decompd@3@dgto) subproblems,
where at least afd(1/ log n) fraction of the optimum’s value comes from one of these subproblems. In isolation,
each subproblem can be approximated up to a constant factor, leading tb/dog n)-approximation algorithm
for the whole problem. It may appear that this isolation approach is five ha give the best possible approxi-
mation, and that by a clever combination of the subproblems, it should be possible tafét@pproximation
algorithm. Our hardness results show to the contrary that such intelligent combination can be hard, in the sens
that the néve isolation approach cannot be substantially improved, and suggest how one might obtain better
hardness results for these problems.

2 Applications and Related Problems

2.1 Wireless Networks

Our original motivation for the budgeted unique coverage problem is a real-world application arising in wireless
networks! We are given a map of the densities of mobile clients throughout a service region (e.g., the plane with
obstacles). We are also given a collection of candidate locations for wireless base stations, each with a specifie
building cost and a specified coverage region (typically a cone or a disk, possibly obstructed by obstacles). This
collection may include multiple options for base stations at the same location, e.g., different powers and different
orientations of antennae. The goal is to choose a set of base stations and options to build, subject to a budget ¢
the total building cost, in order to maximize the density of served clients.

The difficult aspect of this problem (and what distinguishes it from maximum coverage—see Section 2.4)
is interference between base stations. In the simplest form, there is & lionitthe number of base stations
that a mobile client can reasonably hear without conflict between the signals; any client within range of more
thank base stations cannot communicate because of interference and thus is not serviced. More generally,
mobile client’s reception is better when it is within range of fewer base stations, and our goal is to maximize total
reception. To capture these desires, the instance specifisatibfactions; of a client within range of exactly
i base stations, such thaf = 0 ands; > so > s3 > --- > 0. The goal is to choose a set of base stations
and options, again subject to the budget constraint, in order to maximize the total satisfaction weighted by client
densities.

When all s;'s are equal then we just have the maximum coverage problem (Section 2.4). AVhenl
ands; = 0 for all 7 # 1, this problem can be formulated as a budgeted unique coverage problem, by standard
discretization of the density map. More generally, for any assignmentsothe problem can be formulated as
a generalization of budgeted unique coveragebtiugeted low-coverage problerm this problem, we are also
given satisfication factors; for an element being covered exactliimes, zero foi = 0 and non-increasing for
1 > 0, and the goal is to maximize the total satisfication, i.e., the sum over all elements of the product of the
element’s profit (here, density) and its satisfication factor (the appropgiaté/e show that our approximation
algorithms for the budgeted unique coverage problem apply more generally to the budgeted low-coverage prob
lem, yielding an2(1/ log n)-approximation where is the total number of options for base stations. Of course,
our lower bounds also apply to the budgeted low-coverage problem, proving that this approximation factor is
tight up to the constant in the exponent.

While similar problems about base-station placement have been considered before, very few works conside
maximization forms of the problem, which is the focus of this paper. Lev-Tov and Peleg [38] consider the

1The application arises in the context of cellular networks at Bell Labs. The problem we consider here is a somewhat simplified
theoretical formulation of this application. In the real application, the interference patterns are more complicated, but this problem seems
to be the cleanest theoretical formulation.



following very specialized form of the problem: base stations are unit disks in the plane, and the goal is to
maximize the number of uniquely receiving clients. For this problem they givé’a¥")-time algorithm, where

n is the number of candidate disks. In the application of interest, we believe that it is more natural to allow
clients to be covered more than once, but reduce (or eliminate) the satisfication of these clients; this removal of
an artificial constraint may enable substantially better solutions to the problem. Other work [30, 21, 7] solves the
problem of assigning powers to base stations such that, when each client prefers its unique preferred base statio
we do not violate the capacities of the base stations, provided the number of clients is at most the total capacity
of the network.

2.2 Envy-Free Pricing

Fundamental to “fair” equilibrium pricing in economics is the notion of envy-free pricing [46, 25]. This concept
has recently received attention in computer science [1, 26], in the new trend toward an algorithmic understanding
of economic game theory; see, e.g., [13, 14] for related work.

The following version of envy-free pricing was considered in [26]. A single seller price#ferent items,
each with a specified quantity (limited or unlimitedpply. Each ofn buyers wishes to purchase a subset of
items (abundlg, and the seller knows the maximum price that each buyer is willing to pay for each bundle (the
valuation). A buyer’sutility is the difference between the valuation and the price of the bundle (sum of the prices
of the items in the bundle) as sold to the buyer. The seller must choose the item prices and which bundles are
sold to which buyers in such a way thatesvy-free each buyer should be sold a bundle that has the maximum
utility among all bundles. The goal is to maximize the sellprifit, i.e., the total price of the sold bundles.

Among other results, Guruswami et al. [26] give@fl/(log n + log m))-approximation algorithm for the
unlimited-supplysingle-mindedbidder problem, where each buyer considers only one particular bundle and
buys it if the cost is less than the valuation. They also give a constant-factor hardness-of-approximation result
for this problem, via a reduction from max-cut. Single-minded bidders were considered before in the context of
combinatorial auctions and mechanism design [6, 42, 37]. The unlimited-supply assumption in combination with
single-mindedness simplifies the problem, as the notioenef/does not play a role in this case. The general
version of the envy-free pricing problem is of course at least as difficult as this special case.

We now show that unlimited-supply single-minded (envy-free) pricing is as hard to approximate as the unique
coverage problem. The reduction is as follows. EachSsét the collection maps to an itef}. Each element
e; of the universd/ maps to a buyel;. Buyerb; has a valuation of for one bundle, namely, the set of iteds
that correspond to sefs containing the elemen. In this context, every price assignment is envy-free, because
we have unlimited supply for each item so the seller can always sell each buyer its desired bundle (if the buyer
wants). Because the valuations arelallve can assume that all prices are betweemd1. By randomized
rounding (see Lemma A.1), we can assume that all prices are @ithdr, at a loss of a constant factor in profit.

In this case, each buyeér will buy its bundle precisely if at most one item is priced aand the rest of the items
are priced ab. If all items in a bundle are priced @f then the seller makes no profit; if exactly one item is priced
at 1 and the rest are priced @t then the seller profits by. Thus the effective goal is to assign priceair 1

in order to maximize the number of bundles for which exactly one item is pricégdvelich is identical to the
original unique coverage problem.

Therefore our hardness-of-approximation results apply to unlimited-supply single-minded (envy-free) pricing
and establish semi-logarithmic inapproximability.

2.3 Max-Cut

Recall the max-cut problem: given a gragh find a cut(S, S), whereS C V(G) andS = V(G) — S, that
maximizes the number of edges with one endpoint iand the other endpoint if. The max-cut problem can



be seen to be equivalent to a special case of the unique coverage problem, in which every element is in exactl
two sets. Simply view every vertex as a set and every edge as an element.

Max-cut has a 0.87856-approximation [23] and is 0.942-inapproximable [28]. From these results one can
immediately obtain constant-factor hardness for unique coverage, but in this paper we show that unique coverag
is in fact much harder.

2.4 Maximum Coverage

Our budgeted unique coverage problem is also closely related touttgeted maximum coveragariation of

set cover: given a collection of subsétf a universe’/, where each element iii has a specified weight and

each subset has a specified cost, and given a bugldatd a subcollectiors” C S of sets, whose total cost is at
mostB, in order to maximize the total weight of elements coveredhyFor this problem, there is@ — 1/¢)-
approximation [29, 32], and this is the best constant approximation ratio possible pniedsP [17, 32]. At

first glance, one might expect the greedy— 1/e)-approximation algorithm to work for unique coverage as
well: the only difference between the two problems is whether we count elements that are covered (contained ir
at least one set) or uniquely covered (contained in exactly one set). However, the natural greedy algorithm car
be very bad for unique coverad@nd in fact we show that the (in)approximability of the two problems is quite
different.

2.5 Radio Broadcast

The unique coverage problem is closely related to a single “round” ofetie® broadcastproblem [9]. This
problem considers eadio network i.e., a network of processors (nodes) that communicate synchronously in
rounds. In each round, a node can either transmit to all of its neighbors in an undirected graph (representing
the communicability between pairs of nodes), or not transmit. A node receives a message if exactly one of its
neighbors transmits a message in the round; otherwise the messages are lost because of radio interference. In i
radio broadcast problem, initially one node has a message, and the goal is to propagate this message to all nod
in the network.

Radio broadcast is one of the most important communication primitives in radio networks, and the prob-
lem has been studied extensively in the literature. In summary, the current best algorithms for approximating
the minimum number of rounds are a (multiplicativ@jlog?® n)-approximation [11, 9, 34, 33] and an additive
O(log? n)-approximation [22]. Alon, Bar-Noy, Linial, and Peleg [3] show that, even for graphs with diameter 3,
Q(log? n) rounds can be necessary. The problem has also been considered in the context of distributed algorithm
[36, 35] and low-energy ad-hoc wireless networks [4]. Elkin and Kortsarz prove a lower bound of inapproxima-
bility of a (multiplicative)(log n) [15] and an additivé(log? n) [16] assumingNP ¢ BPTIME (nC(loglogn)),

The unique coverage problem (but not the budgeted version) can be considered as a single round of a greec
algorithm for the radio broadcast problem, which maximizes the number of nodes that receive the message ir
each step. Specifically, consider the bipartite subgraph where one side consists of all nodes that currently hav
the message and the other side consists of all nodes that do not yet have the message. In one round of the gree
algorithm, the goal is to find a subset of nodes in the first side to transmit in order to maximize the number of
nodes in the second side that (uniquely) receive the message. This problem is equivalent to unique coverage
viewing nodes on the first side as sets and the nodes on the second side as elements of the universe.

2A counterexample for a natural class of greedy algorithms is the collection oS sets{i, k +1,k+2,...,n}fori =1,2,...,k,
with an infinite budgeB. Consider a greedy algorithm that repeatedly chooses a set to add to the cover, according to some (arbitrary)
rule, with one of two stopping conditions: either when the budget is exhausted, or when the number of uniquely covered elements would
go down. Then the approximation ratio@1/n) with the first stopping condition it = 2, and with the second stopping condition if
k=n—2.



One implication of the radio broadcasting work on unique coverage is an infp(ititlog n)-approximation
algorithm for the (unbudgeted) unique coverage problem. Namely, there is a randomized broadcasting algorithrr
that, in each round, guarantees transmission Q@ log r) fraction of ther neighbors of nodes that currently
have the message. Becausé an obvious upper bound on the number of successful transmissions of the
message, this resultis &1{1/logr) = Q(1/logn) approximation in this special case. See, e.qg., [9].

To avoid the possibility of misunderstanding, let us point out that the known hardness-of-approximation re-
sults for radio broadcast [15, 16] do not give (neither explicitly nor implicitly) any useful hardness-of-approximation
result for the unique coverage problem (not even a constant factor). Likewise, our hardness-of-approximation re-
sults for the unique coverage problem do not by themselves imply any new hardness-of-approximation results for
radio broadcast. However, they do introduce a component that may be useful in future hardness-of-approximatiot
results for the radio broadcast problem, as they show that the greedy broadcast policy might need to lose a sem
logarithmic factor already in a single round (a fact not used in [15, 16]).

3 Inapproximability

In this section we prove that it is hard to approximate unique coverage within a fadigi pfog®n) for some
constant, 0 < ¢ < 1. Our main result is a general reduction from a variation of Balanced Bipartite Independent
Set (BBIS) problem (defined below) to the unique coverage problem. From this reduction and the known hardnes:t
results for BBIS, we can derive an(1/log®n) hardness for unique coverage. Under a plausible assumption
about the hardness of BBIS, this bound can be improved(1g' log n).

We consider the natural graph-theoretic model of the unique coverage problem. Define the bipartite graph
H(V UW,F) with a vertexv; € V for every setS; € S and a vertexv; € W for every element; € U, and
with an edgef = (v;, w;) € F precisely ife; € S;. Then the unique coverage problem asks to find a subset
V! C V such that the subgraph inducedyU W has the maximum number of degréeeertices inl¥. We call
the degree- verticesuniquely coveredby the vertices if/”’.

Definition 3.1 Given a bipartite grapiG(A U B, E) with |A| = |B| = n, the Balanced Bipartite Independent
Set (BBIS) problem asks to find the largest valué @fuch that there are setd” € A and B’ C B with
|A’| = |B’| = k where the subgrapti” of G induced byA’ U B’ is an independent set.

As detailed below, this problem has known hardness results. In order to prove hardness of the unique coverag
problem, we define a variation of BBIS. Then we give a reduction from this variation of BBIS. Before stating the
main result, we need to define what we mean byan)-BIS (Bipartite Independent Set). L&A U B, F) be
a given a bipartite graph. If the subgraghinduced byA’ C A andB’ C B, with |A’| = a and|B’| = b, is an
independent set then we call it &n b)-BIS

Definition 3.2 Given bipartite graph=z(A U B, E) with |A| = |B| = n, and given parameters, v/, §, and¢’
satisfyingd < v < v < 1land0 < § < ¢ < 1, theBBIS(y,7/,4,4") problem is to distinguish between two
cases:

1. Yes instance:G has an(n”, n/ log® n)-BIS.
2. Noinstance:G has no(n?’,n/log® n)-BIS.

The main theorem of this section is the following:

Theorem 3.3 There is a polynomial probabilistic reduction from BBIS to the unique coverage problem with the
following properties. Given a bipartite grapfi(A U B, E) with |A| = |B| = n and given parameters, +/,



d, andd’ satisfyingd < v/ < v < 1and0 < § < § < 1, the algorithm constructs in randomized polynomial
time an instance? (V U W, F) of unique coverage witiV| = ©((y — 7")nlogn) and|V| = n satisfying the
following two properties:

0

1. If G'is a Yes instance @&BIS(v,+/, 6, "), thenH has a solution of siz((y — ' )nlog' = n).

2. If Gis a No instance dBBIS(v,~/, 4, 8"), thenH has no solution of siz€ (max{(y—~")nlog' =" n,n}).

Corollary 3.4 Assuming thaBBIS(v,+/, 4, ¢’) is hard for constantsy,~', ¢, ¢, we get a hardness of approxi-
mation within a factor of(1/ log? ~° n) for unique coverage.

Next we show how the known hardness results for BBIS can be used to derive explicit hardness results for
unique coverage. In particular, the following theorems follow from Theorem 3.3. (see Appendix B for the
proofs).

Theorem 3.5 Lete > 0 be an arbitrarily small constant. Assuming tHéP ¢ BPTIME(2"™"), it is hard to
approximate the unique coverage problem within a factdr@f/ log” n) for some constant = o ().

Under a different complexity assumption, we can prove the same hardness result with an explicit value for

Theorem 3.6 Assuming that refuting random instances of 3SAT is hard on average (hardness of R3SAT as in
[18]), unique coverage is hard to approximate within a factofxfi / log1/3‘” n) for an arbitrarily small con-
stanto > 0.

Under a stronger (yet plausible) hardness assumption (see Appendix B for details), we close the gap betwee
the approximation factor and the hardness of approximation, up to the constant multiplicative factor, by proving
anO(1/log n)-hardness result for unique coverage.

Theorem 3.7 Assuming a specific hardness of facftn®) for BBIS for some constaat> 0 (Hypothesis B.9),
it is hard to approximate the unique coverage problem within a factér(af/ log n) where the constant in the
term depends oa.

3.1 Reduction from BBIS to Unique Coverage

Construction: Consider an instance ®&BIS(~,~',d,d'): a bipartite grapiG(A U B, E) with |A| = |B| = n,
and parameters, 7/, 6, andd’ with 0 < v/ <y < 1and0 < § < ¢’ < 1. We construct a grapH (VU W, F) as
an instance of unique coverage as follows.

First we construct a random graphi(A’ U B’, E’) where A’ is a copy ofA and B’ is a copy ofB. For every
a € A’ andb € B’ we place the edgg:, b) in E’ with probability1/n7. So the expected degree of every vertex
inG'isn'~7.

Now to constructH, let V' be a copy ofd. Then withy” = V‘TW' createp = +” logn copies of B, named
Wa,...,W,. We define a bipartite grapH;(V U W;, F;), for everyl < i < p, and at the end! = |J}_, H;.
Note thatV'| = n and|W| = pn. The set of edges; (in H;) consists of the union of two edge sets: (i) the edges
of the random grapl&’ induced on the verticeB U W, (V as A’ andW; as B’), plus (ii) the edges of another
random grapltz; whereG; is defined recursively as follows. Initiallg;; is G induced onV U W7. For every
i > 2, G; is obtained fromG&,;_; by deleting every edge independently with probabigtyThe edges of’ in H;
are calledype-1 edgeand the rest of the edges Hf (which come from;) are calledype-2 edgesf H;.

Proof overview: Here is the general idea of the proof. We will show that the number of vertices uniquely
covered by type-2 edges (edges that were originally)iin this instance i€)(n). So let us focus on the vertices
uniquely covered by type-1 edges (i.e., edges from the random @raipreachH;).

7



First suppose thaf is a Yes instance, i.e., it haga’, lOngn)-BIS, sayA* U B* (with A* C AandB* C B).
Because the expected degree of every verteX'iits n'! =7, the expected number of type-1 edges coming out of
A* (in G") is n, and because these edges are selected at random, we expect a fractioofdhe vertices in3’

(in G") and in particular a fraction of /e of the vertices inB* to have degreé. This implies that the type-1
edges in eaclif; uniquely cover a linear number of vertices®f (at least in expectation), i.e., it gives a solution
of sizeQ(log’gn) in H;. Because! = |J/_, H; andp = 4" logn, we have a total of2(y"n log! =% n) vertices
uniquely covered by type-1 edges.

Now suppose thati is a No instance, i.e., it has f@"’, n/ log® n)-BIS. We will show that, although we
delete edges to construGt from G;_1, the last (and most sparse) gra@h will not have “too large” a bipartite
independent set with high probability. This property will be used to show that, in every gfaphe number of
vertices uniquely covered by type-1 edges in any solutioi a§ at mostO(n/ log® n) with high probability.
Thus, the total number of vertices uniquely coveredirfby type-1 or type-2 edges) in any solution is at most
O(~"nlog" =% n + n) with high probability. Becaus& < 1, this creates a hardness gagitfi / log® —° n).

Proof of Theorem 3.3: Now we give the details of the proof. We use the following simplified version of the
Chernoff bound:

Lemma 3.8 (Chernoff bound) For independen®/1 random variablesX, ..., X, X =1, X;, p = E[X],
and any0 < § < 1, we have ,
Pr|X — B[X]| > o] < e /%

Lemma 3.9 The number of vertices uniquely covered by type-2 edges in any solutiérig@ (n) with high
probability.

Proof: Letb € B be an arbitrary vertex (id-) and assume thaty, ..., w, are its corresponding vertices in
Wi,...,W,. Consider any subsét’ C V. Assuming that’’ is a solution to unique coverage, we compute
the probability that exactly vertices out ofws, ..., w, are uniquely covered by type-2 edges (of the vertices
of V’). Assume thaj is the first index for whichw; is uniquely covered by a type-2 edge angl ..., w11

are the copies that are uniquely covered by a type-2 edge. Because every edge is deleted with péabability
Gy t0 Gyyq (for 1 < t < p), the probability that a single edge surviviesounds is27%. Let X} be the number

of copies ofb (from wy, . .., wp) that are uniquely covered by a type-2 edge (by the verticds’pand define

X =Y e Xp. Therefore,

p .
EX] = 3 E[X,)] = nZ% < 3n.
beB =1

Using the Chernoff bound (Lemma 3.8), we obtain
Pr[X > 6n] < e 1",

Because there at¥ subsetd/’, a union bound shows that the probability that, for at least one of those sets, the
number of vertices ifi¥ that are uniquely covered by type-2 edgezign is at most” - e~ < ¢~ This
completes the proof of the lemma. O

Completeness: Suppose that? is a Yes instance, i.e., it has(a”,n/log’ n)-BIS, say,A* U B* where
A* C AandB* C B. Assume that”’ andIV/ are the subsets of verticesiy andA” and B” are the subsets of
vertices inG’ corresponding tol* and B*, respectively. Becausg; is obtained fronG' by deleting edges, there
are no type-2 edges Wi’ U W/ in H; (foranyl < i < p). Therefore, every vertex € W/ (for all values of
1 <1 < p) has degreg if and only if the corresponding vertex € B” (in G’) has degreé. For everyw € B”,



let X, be a0/1 random variable that is if and only if w € B” has degreé (and sow is uniquely covered by a
type-1 edge infd; forall 1 <i <p). With X =3 cp» Xu,

EX] = > Pr[X,=1]
weB"

_ . (A _1(1_1)"“”"1
1 nY nY

’B”| S n

e o elog‘sn'

v

A simple application of the Chernoff bound shows tRatX < 610’;5”] < e~ Un/log’n)  Therefore, if we

select the subset of verticeslin(in H) corresponding tol* (in GG) then, with high probability, there are at least
= Q(v'nlog'~° n) vertices inW uniquely covered (by type-1 edges). Thus, we have proved the

n
p 6 Io'g‘S n
following:

Corollary 3.10 If G is a Yes instance theli has a unique cover of siZ&(~"n log'

Soundness:Suppose that? is a No instance, i.e., it has n{m',n/ 1og5/ n)-BIS. Our goal is to show that,
with high probability, every solution to unique coverage fdhas sizeD (max{y"n log' = n, n}). Because by
Lemma 3.9 the number of vertices uniquely covered by type-2 eddge&iis we only need to prove that, with
high probability, the number of vertices uniquely covered by type-1 edges is atifigst log1‘5' n).

Consider any solution to unique coverage fér By construction of theH;'s, it is easy to see that, for
every vertexb € B (in G3), if the corresponding vertex iW; is uniquely covered by a type-1 edge#f, then
all the corresponding vertices éfin the W;’s, for i < j < p, are also uniquely covered by a type-1 edge.
Therefore, if we prove that the number of vertices uniquely covered by type-1 edggsisnupper bounded
(with high probability) byO(n/ log® n), then becausg = " log n, we obtain the claimed upper bound for the
total number of vertices uniquely covered by type-1 edges.

Suppose that’ C V andW’ C W, are such that all the vertices W’ are uniquely covered by’, and the
edges that cover them are all type-1 edges. Itis easy to selé’that’”” must be a bipartite independent seGp
(otherwise there is some type-2 edge incident to some verteX?’ and thereforev is not uniquely covered).

Lemma 3.11If V' U W' (with V' C V andW’ C W,) is a bipartite independent set ii,,, then with high
probability, either|V'| < n(+7)/2 or |[W’| < 2n/log® n, i.e.,G, has no(n("*7)/2 2n/10g® n)-BIS.

Proof: Suppose that” C V andW’ C W, satisfy|V’| = n(*+7)/2 and|W’| = 2n/log® n. PartitionV’ into

q = n0=7)/2 subsets},..., V], each of sizex”. Let A7 andB* (1 < i < q) be the subset of vertices of
A and B (in G) corresponding td’/ and W', respectively. Consider the subgraph®induced byA; U B*.
BecausdA*| = n?, |B*| = 2n/log” n, and becaus& has no(n',n/log® n)-BIS, it follows that at least
n/ logy n vertices inB* must be connected to the verticesAii. Therefore, the total number of edges in the
subgraph induced big* UL, A% is atleasy-n/log® n = Q(n't(=7)/2/10g% n). Becaus&; = G, V'UW’
forms an independent setd#, only if all of theseQ(n!'+(1=7)/2 /10g" 1) edges are deleted whi@, is created.
Because in creating; 1 from G;, edges are deleted with probabil%ywe have

Pr[V' U W' is an independent set @,] < 1)
(1- Q—P)Q(n”“*“)/?/log“/ n).



The number of such subsété U W' is

<n(7+v’)/ 2) <2n /log? n) : 2)

Thus, using (1) and (2), the expected number of bipartite independerit’setsV”’ with [V/| = n(7'+7)/2
and|W’| = 2n/log” nin G, is at most

_ 9=\t 108 ) [ 1 n
(1-27%) (n(vﬂ’)/?) <2n/log5' n)

, n(r+v)/2 2n/ log‘sl n
< (1= G TyR O 2 gy €n -
- n(v+7)/2 2n/log? n

Q=) /2=(=7)/7 [10g% ) . eo(n('y-!—'/)/? logn) | ,O(nloglogn/ log® n)

<

< e,Q(nH-(w—w')/ii) . eO(n/ log‘sl/2 n)
/

< e_Q(n1+<’Y*’Y )/3)'

Therefore, with probabilityl — e~ U g every bipartite independent st U W’ of G,,, either
V| < nOt/2 o [W'| < 2n/log® n, i.e.,G, has no(n+1)/2 2n/log® n)-BIS. 0

Lemma 3.12 With high probability, for everyd; (1 < i < p), the number of vertices uniquely covered by type-1
edges is at mosb(n/ log® n).

Proof: Clearly, for every vertex uniquely covered by a type-1 eddéjnits corresponding copy is also uniquely
covered (by a type-1 edge) i; for every: < j < p. So let us focus on the number of vertices uniquely covered
by type-1 edges irf,. For every pair of subsetg’ C V andW, C W,, if W} is uniquely covered inf,

(by V'), then there exist®/; 2 W, such that’’ U W, is a(|V'[,|[W,])-BIS in G},. By Lemma 3.11, with high
probability, eitherl V| < 2n/log® n or [V'| < n(1+7)/2, Trivially in the former case the number of vertices
uniquely covered i, (and therefore in everff;.,) is at mostO(n/ log? n). So assume that’’| < n(1+7)/2
(and of coursél;*| < ). In this case, we show that, with high probabiliti,| < O(n'~0=7)/2), which is
clearlyO(n/log® n). Consider an arbitrary vertex e W, and letX,, be a0/1 random variable that i if and
only if w is incident to exactly one type-1 edge. With= ZweW; X,

EX] = ) Pr[X,=1]
weWy
/ 1 1 [V'|—1
= (‘Z')w(l‘w)
weWy n n

S e Y
nYy
< (=72

Using the Chernoff bound,
PI"[X > 2n1_(7_'Y,)/2] < e—Q(nlf(’Y*’Yl)ﬂ).

This bound shows that, with high probabilit§i’| < O(n!~(7=7)/2) as desired. O
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Corollary 3.13 If G'is a No instance then every solution to unique coveragéffbas size at mog? (max{~"n logl_‘;/ n, 7
Proof: From Lemma 3.12 and becayse- 7" log n, it follows that, with high probability, the number of vertices
uniquely covered by type-1 edges is at mOsty'n log!—? n). Combining this bound with Lemma 3.9 shows

that, if G is a No instance (i.e., has 18", n/ log? n)-BIS), then the size of any solution to unique coverage for

H is at mostO (max{~"nlog! =% n,n}). O

Proof of Theorem 3.3:Follows easily from Corollaries 3.10 and 3.13 and the assumptioBtBdtS (v, ~/, 4, ')
is hard. O

4  Approximation Algorithms

4.1 Q(1/logn)-Approximation

In this section we develop our main approximation algorithm, proving tightness of our inapproximability results
up to the constant in the exponent:

Theorem 4.1 There is arf2(1/ log p) = ©(1/ log n) approximation algorithm for the budgeted unique coverage
problem, whereg is one more than the ratio of the maximum number of sets in which an element appears over
the minimum number of sets in which an element appears.

Proof: First we find an(1 — 1/e)-approximate solutios’ to the maximum coverage problem with the same
universe, profits, sets, costs, and budget [32]. Because the total profit of uniquely covered elements is always &
most the total profit of all covered elements, the optimum solution valR& to the unique coverage problem

must be at most the optimum solution value to the maximum coverage problem. Thus the total profit of covered
elements inS’ is within an1 — 1/e factor of an upper bound 0c@PT. Symbolically, ifp(S) denotes the total

profit of elements in se and|J S’ denotes the uniop g S, thenp(US’) > (1 — 1/e) OPT.

We cluster the elements iy S’ into 1g p groups as follows: an element is group i if it is covered by
between2’ and2*! — 1 sets. The group* with the most total profit must have at least Alg p fraction of
p(US’) > (1 — 1/e) OPT. Now we randomly discard sets froff, keeping a set with probability/2¢". We
claim that, in expectation, the resulting collectifi uniquely covers a constant fraction of the elements in
group:*, which isQ(OPT /lg p).

Fix an elementz in groupi*, and suppose that it was coverédimes inS’, 2°° < d < 20"t — 1. The
probability thatz is covered exactly once hy” is (d/27)(1 — 1/2"")4=1. (There is a factor ofl for the choice
of which set covers, a1/2"" probability that this set is kept, andla- 1/2"" probability that each of thé — 1
other sets is discarded.) By our boundsdyrthe probability thatr is covered exactly once h§” is at least
(1—1/22"%" > 1/¢2.

The expected total profit of elements covered exactly oncg’lig at least_{p,/e? | = in group i*}, which
is 1/¢? times the total profit of elements in groiiy which we argued is at leagt — 1/¢) OPT / Ig p. Therefore
the expected profit of our randomized solution is at I¢agt> — 1/e3) OPT /lg p = Q(OPT /g p).

We can derandomize this algorithm by the standard method of conditional expectation [41]. For each set
in &', we decide whether to keep it #’ by trying both options, and choosing the option that maximizes the
conditional expectation of the total profit of elements in gretimniquely covered byS”. The conditional
expectations can be computed easily in polynomial time according to the analysis above. O

The approximate solution computed by this algorithm is not only withiféty log n) factor of the optimal
unique coverage, but also within &11/logn) of the optimal maximum coverage. As a consequence, we also
obtain anQ(1/log n)-approximation for the practical problem of budgeted low-coverage described in Section
2.1.
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4.2 Approximation with Bounded Set Size

In this section we consider the unique coverage problem with a béupd the maximum set size, or more
generally, the budgeted unique coverage problem with a béuad the ratio between the maximum profit of a
set and the minimum profit of an element. In both cases we obtain an approximation fatiy &g B), which
our inapproximability results show is tight up to the constant in the exponent in theBcase.

Theorem 4.2 There is arf)(1/ log B)-approximation algorithm for instances of the budgeted unique coverage
problem in which the minimum element profitiand the total profit of every set is at mdst

Proof: As before, we first find afil — 1/e)-approximate solutio’ to the maximum coverage problem with
the same universe, profits, sets, costs, and budget [32]. As argued in the proof of Theorpth)&’), >

(1 —1/e) OPT. wherep(S) denotes the total profit of elements in $et J S’ denotes the uniob) g5 S, and
OPT denotes the optimum solution value to the unique coverage problem.

We modify S’ to be minimal by removing any sets that do not uniquely cover any elements. Thus the set
of covered elements remains the same, so the same upper bowielloholds. LetX be the set of elements
covered by exactly one set 8f. BecauseS’ is minimal, each set must uniquely cover at least one eleme¥it in
so|X| > |S’|. Because every element has profit at ldag{ X ) > | X| > |S'|.

If p(US") < 28| < 2p(X), thenS’ is already arf)(1)-approximate solution to the budgeted unique
coverage problem. [5(JS’) > 2|S’|, then we claim that the total profit of elements covered at masnes by
S’ is atleasp(|J S’)/2. Otherwise, the elements covered more tBatimes byS’ would be at leasp(J S’)/2,
and thus the total profit of the sets would sati$fy,. s p(S) > Bp(US’)/2 > B|S'|, contradicting that every
set inS (and thusS’) has total profit at mosB. Now we apply Theorem 4.1 above to the elements covered
at mostB times byS’, for which p < B. Thus we obtain af(1/ log B)-approximation for this subproblem,
whose optimal solution value is at leg$t— 1/¢) OPT /2. 0

We note that the unique coverage problem when every set has cardinality aBmo8tand every element
appears in exactly two setg & 1), then the problem is exactly max-cut in maximum-deg@egaphs, so the
problem is APX-hard even in this restricted case [43, 2].
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A Randomized Rounding for Envy-Free Pricing

In this section we prove the necessary lemma about randomized rounding needed in Section 2.2 for the reductio
from unique coverage to unlimited-supply single-minded envy-free pricing.

Lemma A.1 In the setting of single-minded envy-free pricing, suppose all valuationk dfeen there is a price
assignment that uses prices of jdsind 1 and whose profit is within a constant factor of optimal.

Proof: Consider the optimal assignment of prigggo itemsI;. If any pricep; is larger thanl, we set it tol at
no cost. Now we round by setting the new prigeof item I; to 1 with probability p; /2 and to0 otherwise. We
claim that, ifu; = leeBi pj < 1 (i.e., the optimal solution profits; from buyerbd;), then the probability that
the seller profitd from buyerb; is at leastu; /(2¢).

The probability that the seller profitsfrom buyerb;, who desires bundlB;, is 3=, g, (p;/2) I11,21,e8,(1—
pr/2). This quantity can be rewritten &, ¢ g, (1-px/2) X1,e,(p;/2)/(1—p;/2). Because_; cp, p; < 1/2,
it is easy to show that the quantity is minimized when all of this, I; € B;, are equal. Thus the probability of
profit fromb; is at leas(1 — u; /2| B;|)! %l (u;/2) /(1 — u;/2|B;]). Becausd — z > e~2* for 0 < x < 1/2, this
probability is at least~“iu; /2 > e~'u;/2 as claimed.

Thus the expected total profit in the modified solution is at I8ast; /(2¢), which is1/(2¢) times the profit
of the optimal solution. We can derandomize this algorithm by the standard method of conditional expectation
[41]; see the proof of Theorem 4.1. O

B Proving Specific Hardness Results for Unique Coverage

In this section we prove Theorems 3.5, 3.6, and 3.7. In order to prove these theorems, we will prove some
hardness results f@BIS(v,~', 4, 0") and then combine them with Theorem 3.3.

Recently, two hardness results for BBIS were proved by Feige [18] and Khot [31] under different complexity
assumptions. Feige [18] proved a constant factor hardness result for BBIS under the complexity assumption tha
refuting random instances of 3SAT is hard on average (see [18] for more details):

Theorem B.1 [18] For everye > 0 and a given bipartite grapltz(A U B, E) with |A| = |B| = n, deciding
between the following two cases is hard, under the complexity assumption that refuting random instances of 3SA
is hard on average:

1. G has a BBIS of size at leag} — ¢)n,

2. Every BBIS of3 has size smaller thaft + ¢)n.

More recently, Khot [31] proved a similar result, for some (unspecified) consteensl 3 instead of(% —€)
and(é + ¢), respectively, but under a more plausible assumption that NP problems do not have subexponential
time algorithms. More specifically, he proved the following PCP theorem:
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Theorem B.2 [31] For everye > 0 there is an integed = O(2 log(%)) such that the following holds: there is
a PCP verifier for SAT instances of sizesuch that:

1. The proofll for the verifier has size™".

2. The verifier queries a sé} of sized bits fromII.
3. Every query is uniformly distributed ovér.
4

. Completeness: If SAT is a Yes instaridds a correct proof, andly is the set of 0-bits in the proof (it
contains half the bits from the proof), then:
1 1

Pr[@Q C Tlo] > (1 - O(g))ﬁa

where the probability is taken over the random tests of the verifier.
5. Soundness: If SAT is a No instance dnhdis any set of half the bits frofi then:

1 1

A direct application of Theorem B.2 implies the following (see [1])

Theorem B.3 Lete > 0 be an arbitrary constant and = O(2 log(1)). Consider an instancé of SAT withn

variables. Lety = 3 v and 8 = (1 — 5i7)o. We can construct a bipartite graph(A U B, E) as an instance

of BBIS from the PCP verifier of Theorem B.2 witj = |B| = N whereN = 2" such that the following hold:

e Yes instance:lf ® is a Yes instance thad has a BBIS of siza V.

¢ Noinstance:If ® is a No instance then no BBIS Gfhas size3 V.

Corollary B.4 Assuming thaNP ¢ BPTIME(2™), it is hard to distinguish between the Yes and No cases in
the above theorem.

In order to get a hardness f&BIS(v,~',0,d’), we need a stronger version of Theorem B.3. For this, we
boost the gap in Theorem B.3 using the standard technique of graph products (see for example [19, 10]). Note
that Theorem 1.2 in [31] amplifies the gap in Theorem B.3 using the same technique. However, we require a gay
which is asymmetric with respect to the sizes of sets selected on different parts, i.e., the bipartite independen
set is not necessarily balanced. In particular, the gap created on one sidd (saolynomial whereas the gap
created on the other side (that®) is polylogarithmic. Our proof is very similar to that of Theorem 1.2 in [31].

We need the following definition for our proof.

Definition B.5 For a bipartite graphG(A U B, E) and integersi 4, Kz > 2 the bipartite graphG(54.55) js
defined as follows:

e \ertex set ot2%4. K5 j5s A’ U B', whereA’ N B’ = (), A’ = AXa, andB’ = B¥5,i.e.,A’ and B’ are the
sets of allK 4-tuples fromA and all K g-tuples fromB, respectively.

e Two vertices(ay,...,ax,) € A" and (by,...,bx,) € B’ are adjacent inG54-X5) if and only if
Viaja 1< < KA7 1 S] < KB7 (az,bj) € FE.

3Khot defines the bi-clique problem and proves this theorem for bi-clique.
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Suppose thafi(A U B, E) is a bipartite graph withA| = |B| = N, 0 < «a < 1 is a constant, an& 4, Kp

are integers such that
1 1

afa’ oKs
LetG*(A*UB*, E*) be arandom subgraph 6% 4-X5(A'UB’| E') with |A*| = | B*| = M whereM = N3
and every vertex of/4-X5 is selected uniformly at random but with different probabilities Adand B'.

€ O(N). 3)

Lemma B.6 If G(A U B, E) has a BBIS of sizaN then w.h.pG* has a(3a*4 M, 15 M)-BIS.

Proof: Let A; C AandB; C B be subsets that form a BBIS of siaéV in G. Clearly, the subgraph @§4-%5
induced onAf4 U Bf? is an independent set. Because the verticeS oéire selected randomly, each vertex
of A* belongs toAfA with probability o4, Also, each vertex oB* belongs toBfB with probability o5
Therefore E[|A* N AF4|] = o4 A*| andE[B* N Bi*#] = o8| B*|. Using the Chernoff bound and (3):

1
Pr [|A* N AK4)| < A7 < 2~ N,

Similarly, with high probability,| B* N Bf(B\ > %aKB\B*]. Therefore, with high probabilityz* has a
(2af4|A%|, a52|B*|)-BIS. O

LemmaB.7 If G(A U B, E) has no BBIS of sizg N then, with high probability,G* does not have any
(28%a M, 2555 M)-BIS.

Proof: First, note that every maximal bipartite independent se&6f%5 is of the formAf(A U BfB where
A; U By is a bipartite independent set@ Consider a fixed maximal bipartite independent sef 6f#-%5, say
ARA U BEP, Either|AFA| < pEANK4 or |BEP| < gKBNK5, Without loss of generality, assumé}4| <
BKaNKa, Because the element it* and B* are selected uniformly randomiE[|A* N AKA|] < gKa|A%|.
Using the Chernoff bound:

Pr |4 0 AJA] > 2554 ]4%]| < 2700,

Almost identical argument applies iBf*?| < 3% N5, Because there are at ma$t() possible maximal
bipartite independent sets @, using union bound, the probability of having23%4| A*|, 2355 |B*|)-BIS in

G*isino(1). O
Let ® be an instance of SAT and let> 0 be an arbitrary small constant. Defitex, ﬂ andG(AUB, E) as
in Theorem B.3, withA| = |B| = N. Also letM = N3, K4 = —U=18M andk = —1ogloel for some

constant®) < v,6 < 1. Construct the graptv4-X5 and the random subgraph ofGt*(A* U B*, E*) where
|A*| = |B*| = M as explained above. By Theorem B.3 and Lemmas B.6 and B.7 it follows that:

1. If & is a Yes instance then, by Theorem B3has a BBIS of sizex/N. So, by Lemma B. 6 with high
probability, G* has a(3a4 M, X5 M)-BIS. By definition of K4 and K s, this is a(24" )-BIS

in G*.

2 ’ 210 5M

2. If @ is a No instance then, by Theorem B@,has no BBIS of siz@N. So, by Lemma B.7, with high
probability, G* has no(23%4 M, 2355 M)-BIS. With ¢ = loga(ﬁ/a) v =~y—€(1—7),ands’ = §(1+7),
this means that, with high probabilitgs* has no(2M7 ) -BIS.

/
I 1 5

Therefore, we have proved the following amplified version of Theorem B.3.
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Theorem B.8 LetG(AU B, E) be a given bipartite graph with4| = | B| = n, together with an arbitrary small
constante > 0, andd = O(£1log(1)), & = 357+, 8 = (1 — 5i7)a. Furthermore let) < v/ < v < 1 and
0 < § < ¢’ < 1be such thab is any constant and with = log,,(5/a): v = v — £(1 — ), andd’ = §(1 + £).
Then itis hard to distinguish between the following two cases ubi®@ss BPTIME (2™ ):

1. G has a(’, s1ar,)BIS.

2. G has no(2n"', —22—)-BIS.
log‘S n

Proof of Theorem 3.5: Given a bipartite grapli-(A U B, E) with |A| = |B| = n as an instance of bipartite
independent set and parametersy, 3, ¢, v, ¢, and~’ as in Theorem B.8 we construéf(V U W, F') as
explained in the proof of Theorem 3.3. We chodse 1%@ where/ = log,,(5/a). Thereforey’ = 1 and by
Corollaries 3.10 and 3.13 unle¥® C BPTIME(2") itis hard to approximate unique coverage within a factor
of Q(1/log® 9 n). Because’ — § = %_;g and/ is a function ofs, this completes the proof of the theorem.O

Proof of Theorem 3.6: If our starting point to prove Theorem B.8 is Theorem B.1 instead of Theorem B.3 the
we haven = 1 —eandB = § + ¢, andl = £ + &’ wheres’ = ¢/(¢) is a constant. Then the same argument as in

1/2+¢'
the proof of Theorem 3.5 proves a hardnes®¢f/ log1+1/2+<" n) which isO(1/ logéﬁ n) for somes = o(e).
O

We now turn to the proof of Theorem 3.7. It is based on the following hypothesis.

Hypothesis B.9 Given a bipartite grapiG(A U B, E) with size|A| = |B| = n as an instance of BBIS and for
absolute constants > v > +/ > 0 it is hard to distinguish the following two cases:

1. G has an(n?,(n))-BIS.

2. G has no(n"’, n/logn)-BIS.

Now we show how Hypothesis B.9 would imply &1/ log n)-hardness for unique coverage.

Proof of Theorem 3.7: Given a bipartite grapl*(A U B, E) with size|A| = |B| = nandl > v >+ > 0 we
constructH (V U W, F'), the instance of unique coverage, as in reduction of Theorem 3.3.

e If G has ann?,Q(n))-BIS thenH has a unique coverage of si2¢(y —+')n log! ~° n) with § = 0, which
isQ(nlogn).

e If G has no(n”',n/logn)-BIS then every unique coverage solution fr has size at mosP((y —
v Ynlog" =% n) with & = 1, which isO(n).

This implies that, assuming Hypothesis B.9, it is hard to distinguish between the two cases above, and hence har
to approximate unique coverage within a factofXf / logn). O

The authors suspect that Hypothesis B.9 will be difficult to refute in the near future. The BBIS problem
appears to be at least as hard to approximate as maximum independent set in general graphs. (This is not
theorem, but merely an empirical observation concerning currently known approximation algorithms.) For the
latter problem, despite extensive work, no known polynomial-time algorithm can distinguish between graphs with
independent sets of sif&n/k) and graphs with no independent set of si2é*, wherek is some sufficiently
large constant. It is plausible (though not certain) that any refutation of Hypothesis B.9 would lead to major
improvements in the approximation ratio for maximum independent sets in general graphs.
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