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Abstract

We prove that the Maximum Balanced Complete Bipartite Subgraph (BCBS) problem is
hard to approximate within a factor of 2(log n)δ

for some δ > 0 under the plausible assumption
that 3-SAT �∈ DTIME

(
2n3/4+ε

)
for some ε > 0. We also show that it is NP -hard to

approximate the BCBS problem within a constant factor under the assumption that it is
NP -hard to approximate the maximum clique problem within a factor of n/2c

√
lg n for some

small enough c > 0. Furthermore we show that the same hardness of approximation results
holds for the Maximum Edge Biclique problem.

1 Introduction and definitions

A balanced bipartite graph is a bipartite graph in which both partite sets are of the same
cardinality. Let G(U, V, E) be a balanced bipartite graph. A vertex set C in G is called a
biclique if uv ∈ E for all u ∈ C ∩ U, v ∈ C ∩ V . A vertex set C ⊆ G is called a balanced biclique
if C is a biclique and |C ∩U | = |C ∩ V |. The size of a balanced biclique C is defined as |C ∩U |.

In this paper we consider the following problems.

• The maximum balanced complete bipartite subgraph (BCBS) problem is the problem of
finding a maximum balanced biclique in a balanced bipartite graph.

• The maximum edge biclique problem is the problem of finding a biclique with maximum
number of edges in balanced bipartite graph.
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The maximum BCBS problem already appears in the book of Gary and Johnson [GJ79]
(problem GT24) where it is stated that this problem is NP -hard, while the exact reduction
from Clique is described in [Joh87]. Another nice NP -hardness proof for this problem is given
in [ADL+94]. The problem of finding a biclique which contains the maximum number of nodes in
a bipartite graph can be solved in polynomial time via the matching algorithm on the bipartite
edge complement of the graph. The maximum BCBS problem is one of the few problems
still remaining for which we have neither a hardness of approximation result, nor a ‘good’
approximation algorithm. The maximum edge biclique problem was shown to be NP -hard in
[Pee00].

The maximum BCBS problem and the maximum edge biclique problem have applications
in computational biology. Cheng and Church in [CC00] apply those problems for biclustering of
expression data of genes. Specifically they create a bipartite graph in which one side represent
genes and the other side their properties. The goal is to find a maximum balanced biclique or a
maximum edge biclique in such a graph. The maximum BCBS problem is applied in VLSI theory
for PLA-folding [RL88], where PLA-folding is a process used to reduce the size of programmable
logical arrays. For a full description of PLA-folding and it’s connection to the maximum BCBS
problem see for example [RL88, AM99]. An interesting application of the maximum edge biclique
problem to conjunctive clustering is described in [MRS03]. Applications of the maximum edge
biclique problem to manufacturing optimization can be found in [DKST01].

While it is unknown whether the problems defined above are hard to approximate, we think
that this is indeed the case.

Conjecture 1.1. The maximum BCBS and maximum edge biclique problems are hard to
approximate within a factor of O(nε) for some ε > 0.

In [Fei02b] it is shown that conjecture 1.1 is valid under the following assumption

Assumption 1.2. Let ∆ be a sufficiently large constant independent of n. There is no poly-
nomial time algorithm that refutes most 3CNF formulas with n variables and ∆n clauses, and
never wrongly refutes a satisfiable formula.

We will prove that the maximum BCBS and the maximum edge biclique problems are hard
to approximate under the plausible assumption that 3-SAT has no subexponential algorithm.

Theorem 1.3. If maximum BCBS can be approximated within a factor of 2(log n)δ
for every

δ > 0, then 3-SAT can be solved in time 2n3/4+ε
for every ε > 0.
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Theorem 1.4. If maximum edge biclique can be approximated within a factor of 2(log n)δ
for

every constant δ > 0, then 3-SAT can be solved in time 2n3/4+ε
for every constant ε > 0.

In section 2 we show some preliminary results which will be used to prove the theorems
above.

2 Preliminary results

2.1 A generalization of Turan’s Theorem

Definition 2.1. Given a graph G(V, E), we denote by Ck(G) the set of k-cliques in G (for
example C2(G) is the set of edges of G).

The following generalization of the Turan theorem was first proved in [Zyk] and later ,inde-
pendently, by [Sau71].

Theorem 2.1. For all n ≥ p ≥ k, if G(V, E) is a graph on n vertices, without a p + 1-clique,
then

|Ck(G)| ≤
(

p

k

)
·
(

n

p

)k

The special case of theorem 2.1 with k = 2 is the Turan Theorem ([Tur41]).

Corollary 2.2. Let α > 0 be a constant. Let p = αn and k = o(n2/3). If G(V, E) is a graph on
n vertices, without a p + 1-clique, then for large enough n

|Ck(G)| ≤ 2
(

n

k

)
· e k2

2n(1− 1
α)

Proof: In [FS96] (pp. 189) it was proven that as n → ∞ the function Q(n, k) = n!
(n−k)!nk where

k = o(n2/3), satisfies

Q(n, k) = (1 + o(1))e−
k2

2n
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Thus

|Ck(G)| ≤
(

p

k

)
·
(

n

p

)k

by theorem 2.1

=
(

n

k

)
· Q(p, k)
Q(n, k)

= (1 + o(1))
(

n

k

)
e

k2

2n
− k2

2p

= (1 + o(1))
(

n

k

)
· e k2

2n(1− 1
α)

2.2 A variant of the sparsification lemma

The following sparsification lemma was proven in [IPZ01].

Lemma 2.3. For all ε > 0, there is a constant C such that any 3-SAT formula Ψi with n

variables, can be expressed as Φ =
∨t

i=1 Ψi , where t ≤ 2εn and each Ψi is a 3-SAT formula
with at most Cn clauses. Moreover this disjunction can be computed by an algorithm running
in time poly(n)2εn.

We will need the following variant of the lemma above.

Lemma 2.4. For all ε > 0, any 3-SAT formula Ψi with n variables, can be expressed as
Φ =

∨t
i=1 Ψi , where t ≤ 2n3/4+ε

and each Ψi is a 3-SAT formula with O(n3/2) clauses. Moreover
this disjunction can be computed by an algorithm running in time poly(n)2n3/4+ε

.

Proof: The proof of lemma 2.4 is almost identical to the proof the lemma 2.3. Indeed it follows
from setting the following values to the parameters θ1, θ2 which are used by the algorithm stated
in the proof of theorem 1 in [IPZ01]: θ1 = n

1
4 , θ2 = n

1
2 .

3 Proof of Theorem 1.3

We will need the following bounds on binomial coefficients.

Lemma 3.1. For all d, k, n ∈ N,
(
n−d

k

) ≤ (
n
k

)
e−

dk
n
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Proof: (
n − d

k

)
=

(
n

k

)
· (n − k)(n − k − 1) . . . (n − k − d + 1)

n(n − 1) . . . (n − d + 1)

=
(

n

k

)
·
(

1 − k

n

) (
1 − k

n − 1

)
. . .

(
1 − k

n − d + 1

)

≤
(

n

k

) (
1 − k

n

)d

≤
(

n

k

)
e−

dk
n

Lemma 3.2. For all d, k, n ∈ N,
(
n+d

k

) ≤ (
n
k

)
e

dk
n−k

Proof: (
n + d

k

)
=

(
n

k

)
· (n + 1)(n + 2) . . . (n + d)
(n − k + 1)(n − k + 2) . . . (n − k + d)

=
(

n

k

)
·
(

1 +
k

n − k + 1

) (
1 +

k

n − k + 2

)
. . .

(
1 +

k

n − k + d

)

≤
(

n

k

) (
1 +

k

n − k

)d

≤
(

n

k

)
e

dk
n−k

Assumption 1: Maximum BCBS can be approximated in polynomial time within a factor of
2(log n)α

for every constant α > 0.

Definition 3.1. Let G1/2 be the family of graphs on n vertices which satisfy ω(G) ≥ n
2 where

ω(G) is the size of the maximum clique in G. Let G1/2−γ the family of graphs which satisfy
ω(G) ≤ (1

2 − γ)n, where γ > 0.

Theorem 3.3. Let G(V, E) be a graph on n vertices. If assumption 1 holds then for all δ >

0, γ > 0 one can distinguish in time 2n
1
2+δ

whether G ∈ G1/2 or G ∈ G1/2−γ.

Proof: Create a balanced bipartite graph G′(X, Y, E′) with |X| = |Y | =
(
n
k

)
where k = t

1
2
+δ

and t = n
2 in the following way.
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• each vertex x ∈ X corresponds to a different set of k vertices in G.

• each vertex y ∈ Y corresponds to a different set of k vertices in G.

• (x, y) ∈ E′ iff the sets corresponding to x and y are disjoint and the set corresponding to
y induces a clique in G.

If G ∈ G1/2 then G′ contains a balanced biclique of size
(

t
k

)
, since if C is a clique of size t in G

then G′ contains a balanced biclique with all vertices in partite set X which correspond to sets
in V \C and all the vertices in partite set Y which correspond to sets in C. Thus by assumption
1 we can find in G′ some biclique B(Bx, By) of size at least ε

(
t
k

)
where ε = e−tδ . The time it

takes to find such a biclique is polynomial in the size of G′ and that is at most 2n
1
2+2δ

for large
enough n.

Now we will show that if G′ contains a balanced biclique B(Bx, By) of size ε
(

t
k

)
where t = n

2

and ε = e−tδ then G contains a clique of size (1
2−γ)n for any constant γ > 0 and thus G �∈ G1/2−γ

for any γ > 0. Let Vx ⊆ V be the union of the sets corresponding to the vertices in Bx and
Vy ⊆ V be the union of the sets corresponding to the vertices in By. Notice that Vx ∩ Vy = ∅.
Since

|Bx| ≥ ε

(
t

k

)
= e( t ln ε

k
) k

t

(
t

k

)

≥
(

t + t ln ε
k

k

)
by lemma 3.1

we have that |Vx| ≥ t(1+ ln ε
k ). Furthermore by the same argument we have that |Vy| ≥ t(1+ ln ε

k )
and thus t(1 + ln ε

k ) ≤ |Vy| ≤ t(1 − ln ε
k ). Let Gy(Vy, Ey) be the subgraph of G induced by Vy.

This graph contains at least |By| = ε
(

t
k

)
cliques of size k. if ω(Gy) < β|Vy| for some constant

β < 1 then by corollary 2.2 we will have that

|By| ≤ 2
(|Vy|

k

)
· e

k2

2|Vy | (1− 1
β

)

≤ 2
(

t(1 − ln ε
k )

k

)
· e

k2

2t(1− ln ε
k

)
(1− 1

β
)

≤ 2
(

t

k

)
· e−

t ln ε
t−k

+ k2

2t(1− ln ε
k

)
(1− 1

β
)

by lemma 3.2

≤ 2
(

t

k

)
· e2tδ+n2δ(1− 1

β
)/2 as k = t

1
2
+δ and ε = e−tδ

< ε

(
t

k

)
for large enough n
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we got a contradiction and thus G contains a clique of size βt(1 + ln ε
k ) ≥ β(n

2 − 2
√

n) for all
β < 1 and we may conclude that G contains a clique of size β n

2 for all β < 0. We have shown
the if G ∈ G1/2 then G′ contains a balanced biclique of size

(
t
k

)
and if G ∈ G1/2−γ for some γ > 0

then G′ does not contain a balanced biclique of size ε
(

t
k

)
and thus we’re done.

Definition 3.2. Language L ∈ PCP1,β [r, q] if there is a randomized polynomial time algorithm
V which gets as an input a string x, and has access to a witness w, with the following properties:

• Completeness. For every x ∈ L there is a witness w such that V w(x) accepts (with
probability 1).

• Soundness. For every x �∈ L and every w, Pr[V w(x) accepts ] ≤ β.

the verifier V uses up to r random bits in order to list at most q bit locations. Then it queries
w at these q locations and gets back the bit values. Finally, based on the values received, it
decides whether to accept or reject.

We show a reduction from 3-SAT to BCBS. Let Φ be an instance of 3-SAT on n variables.
The reduction has 3 steps, and uses the following theorem which was proven in [BSSVW02].

Theorem 3.4. (Short PCPs). There exist constants β < 1, q < ∞, and a function r(n) =
log n + O(

√
log n log log n) such that SAT ∈ PCP1,β [r, q].

Let Ψ be an arbitrary 3-SAT formula.

1. Using lemma 2.4 express formula Φ as Φ =
∨t

i=1 Ψi, where t ≤ 2n3/4+ε
and each Ψi is a

3-SAT formula with O(n3/2) clauses.

2. Using theorem 3.4 obtain for each Ψi a PCP verifier V ERi which uses r = (3
2 + ε) log n

random bits and queries q bits. Given the PCP verifier V ERi define the corresponding
FGLSS graph Gi(Vi, Ei) (see [FGL+96]) as follows: The vertices of this graph are all
accepting patterns τ = (S, ν). There is an edge between two accepting patterns (S, ν) and
(S′, ν ′) if ν, ν ′ assign the same value to the bits common to S and S′. Thus the graph Gi

contains at most 2r+q = 2qn
3
2
+ε = O(n

3
2
+ε) vertices. Add a clique C of size O(n

3
2
+ε) to

Gi and connect each vertex in C to each vertex in Vi, call the resulting graph G′
i(V

′
i , E′

i).
It’s easy to see that one can choose the size of C in such a manner that ω(G′

i) ≥ 1
2 |V ′

i | if
Ψi is satisfied and ω(G′

i) ≤ (1
2 − δ)|V ′

i | for some constant δ if Ψi is unsatisfiable.

3. Now by theorem 3.3 we can decide in time 2n
3
4+ε

whether ω(G′
i) ≥ 1

2 |V ′
i | or ω(G′

i) ≤
(1
2 − δ)|V ′

i | and thus we are done.
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A linear 3-SAT formula is a 3-SAT formula on n variables which contains O(n) clauses. We
note that if maximum BCBS can be approximated within a factor of 2(log n)δ

for every δ > 0,
then linear 3-SAT can be solved in time 2n1/2+ε

for every ε > 0. Thus maximum BCBS is hard
to approximate within a factor of 2(log n)δ

for some small enough δ > 0 under the assumption
that linear 3-SAT �∈ DTIME

(
2n1/2+ε

)
for some ε > 0.

4 Proof of Theorem 1.4

We will need the following bound on binomial coefficients.

Lemma 4.1. For all d, k, n ∈ N,
(
n−d

k

)(
n+d

k

) ≤ (
n
k

)2

Proof:
(

n − d

k

)(
n + d

k

)
=

(
n

k

)2

· (n − k)(n − k − 1) . . . (n − k − d + 1)
n(n − 1) . . . (n − d + 1)

· (n + 1)(n + 2) . . . (n + d)
(n − k + 1)(n − k + 2) . . . (n − k + d)

=
(

n

k

)2

·
d∏

i=1

n − k − d + i

n − k + i
· n + i

n − d + i

≤
(

n

k

)2

The last inequality follows from the fact that for each i

(n − k − d + i)(n + i) = (n − k + i)(n + i) − d(n + i)

≤ (n − k + i)(n + i) − d(n + i) + kd

= (n − k + i)(n − d + i)

Lemma 4.2. For all d, k, n ∈ N,
(

n − d

k

)(
n + d

k

)
≤ n2k

k!2
· e−kd2/n2
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Proof:(
n − d

k

)(
n + d

k

)
=

(n − d)!
(n − d − k)!k!

· (n + d)!
(n + d − k)!k!

=
(n − d)!

(n − d − k)!(n − d)k
· (n + d)!
(n + d − k)!(n + d)k

· n2k

k!2

(
1 − d2

n2

)k

≤ n2k

k!2

(
1 − d2

n2

)k

≤ n2k

k!2
e−kd2/n2

Lemma 4.3. For large enough n and k = o(n2/3) we have
(

n

k

)
≥ nk

2k!
· e− k2

2n

Proof: (
n

k

)
=

n!
(n − k)!k!

=
n!

(n − k)!nk
· nk

k!

≥ 1
2
e−

k2

2n · nk

k!
(4.1)

Where the last inequality follow from the fact ([FS96], pp. 189) that as n → ∞ the function
Q(n, k) = n!

(n−k)!nk where k = o(n2/3), satisfies

Q(n, k) = (1 + o(1))e−
k2

2n

Assumption 2: Maximum edge biclique can be approximated in polynomial time within a
factor of 2(log n)α

for every constant α > 0.
Recall definition 3.1. Let G1/2 be the family of graphs on n vertices which satisfy ω(G) ≥ n

2

where ω(G) is the size of the maximum clique in G. Let G1/2−γ the family of graphs which
satisfy ω(G) ≤ (1

2 − γ)n, where γ > 0.
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Theorem 4.4. Let G(V, E) be a graph on n vertices. If assumption 2 holds then for all δ >

0, γ > 0 one can distinguish in time 2n
1
2+δ

whether G ∈ G1/2 or G ∈ G1/2−γ.

Proof: Create a balanced bipartite graph G′(X, Y, E′) with |X| = |Y | =
(
n
k

)
where k = t

1
2
+δ

and t = n
2 in the following way.

• each vertex x ∈ X corresponds to a different set of k vertices in G.

• each vertex y ∈ Y corresponds to a different set of k vertices in G.

• (x, y) ∈ E′ iff the sets corresponding to x and y are disjoint and the set corresponding to
y induces a clique in G.

Notice that the construction above is the same construction that we used in theorem 3.3. If
G ∈ G1/2 then G′ contains a biclique with at least

(
t
k

)2 edges, since if C is a clique of size t in G

then G′ contains a balanced biclique with all vertices in partite set X which correspond to sets
in V \C and all the vertices in partite set Y which correspond to sets in C. Thus by assumption
2 we can find in G′ some biclique B(Bx, By) with at least ε

(
t
k

)2 edges where ε = e−tδ . The time

it takes to find such a biclique is polynomial in the size of G′ and that is at most 2n
1
2+2δ

for large
enough n.

Now we will show that if G′ contains a biclique B(Bx, By) with at least ε
(

t
k

)2 edges where
t = n

2 and ε = e−tδ then G contains a clique of size (1
2 − γ)n for any constant γ > 0 and

thus G �∈ G1/2−γ for any γ > 0. Let Vx ⊆ V be the union of the sets corresponding to the
vertices in Bx and Vy ⊆ V be the union of the sets corresponding to the vertices in By. Notice
that Vx ∩ Vy = ∅. Suppose that |Vy| = t + r for some integer r s.t. −t < r < t. First we

shall show that |r| < t4/5. By lemma 4.3 the biclique B contains at least ε
4 · t2k

k!2
· e− k2

t edges.
On the other hand if |Vy| = t + r then |Vx| ≤ t − r so the number of edges in B is at most(
t−r
k

)(
t+r
k

) ≤ t2k

k!2
· e−kr2/t2 (by lemma 4.2). Thus the following inequality should hold

t2k

k!2
· e− kr2

t2 ≥ ε

4
· t2k

k!2
· e− k2

t

≥ t2k

k!2
· e− k2

t
−tδ−4

thus

kr2

t2
≤ k2

t
+ tδ + 4
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and we conclude that

|r| ≤
√

kt +
t2+δ

k
+ 4

t2

k

≤
√

t3/2+δ + t3/2 + 4t3/2

< t4/5

Let Gy(Vy, Ey) be the subgraph of G induced by Vy. Thus Gy is a graph on t+ r vertices, which
contains at least

ε ·
(

t
k

)2

(
t−r
k

)
cliques of size k. if ω(Gy) < β|Vy| for some constant β < 1 then by corollary 2.2 we will have
that the number of k-cliques in Gy denoted by |Ck(Gy)| satisfies

|Ck(Gy)| ≤ 2
(|Vy|

k

)
· e

k2

2|Vy | (1− 1
β

)

= 2
(

t + r

k

)
· e k2

2(t+r)
(1− 1

β
)

≤ 2

(
t+r
k

)(
t−r
k

)
(
t−r
k

) · e k2

4t
(1− 1

β
)

≤ 2

(
t
k

)2

(
t−r
k

) · e k2

4t
(1− 1

β
) by lemma 4.1

≤ 2

(
t
k

)2

(
t−r
k

) · e t1+2δ

4t
(1− 1

β
) as k = t

1
2
+δ

≤ 2

(
t
k

)2

(
t−r
k

) · e t2δ

4
(1− 1

β
)

≤ ε

(
t
k

)2

(
t−r
k

) as ε = e−tδ

we got a contradiction and thus G contains a clique of size β|Vy| ≥ β(t − t4/5) for all β < 1
and we may conclude that G contains a clique of size β n

2 for all β < 0. We have shown the if
G ∈ G1/2 then G′ contains a biclique with at least

(
t
k

)2 edges and if G ∈ G1/2−γ for some γ > 0

then G′ does not contain a balanced biclique of size ε
(

t
k

)2 and thus we’re done.

The rest of the proof follows exactly as in theorem 1.3.
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5 Relations between the approximation hardness of the BCBS

problem and the maximum clique problem

Srinivasan in [Sri00] conjectured that independent set is hard to approximate within a factor
of n/2Ω(

√
log n). In [Kho01] it was proven that independent set is hard to approximate within

a factor of n/2(log n)1−γ
for some γ > 0. Currently the best approximation algorithm for clique

has an approximation ratio of O
(
n(log log n)2/(log n)3

)
[Fei02a]. In this section we prove the

following theorem.

Theorem 5.1. Suppose that BCBS can be approximated within a constant factor, then inde-
pendent set can be approximated within a factor of n/2c

√
lg n for some c > 0 in polynomial

time.

For notational reasons we shall work henceforth with a problem which is equivalent to
the BCBS problems, namely the Balanced Bipartite Independent Set problem (BBIS). Let
G(U, V, E) be a balanced bipartite graph. A vertex set I in G is called a balanced bipartite
independent set if |I ∩ U | = |I ∩ V | and uv �∈ E for all u ∈ I ∩ U, v ∈ I ∩ V . The size of
a balanced bipartite independent set I is defined as |I ∩ U |. The maximum balanced bipartite
independent set (BBIS) problem is the problem of finding a maximum balanced bipartite in-
dependent set in a balanced bipartite graph. Notice that the BBIS and BCBS problems are
equivalent with respect to approximation ratio, as any balanced bipartite independent set in G

corresponds to a balanced biclique in the graph obtained by complementing all the edges and
non edges between the partite sets of G.

5.1 Proof of Theorem 5.1

Let k = 2
√

lg n. Let I(G) denote a maximum independent of graph G.
Let BIS(G) be an algorithm which approximates BBIS within a constant factor on a bipartite
graph G. Notice that as a consequence of theorem 6.1 which is proven in Appendix I we may
assume that algorithm BIS(G) approximates BBIS within a constant factor of 2. Recall that
we define the size of a balanced bipartite independent set to be the size of one of it’s sides.

Definition 5.1. Given a graph G(V, E) where V = {v1, v2, . . . , vn} we denote by B(G) a
bipartite graph G′(X, Y, E′) with |X| = |Y | = n such that

• for all 1 ≤ i < j ≤ n (xi, yj) ∈ E′ ⇐⇒ (vi, vj) ∈ E.

• for all 1 ≤ i ≤ n (xi, yi) ∈ E′.
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We will show an algorithm IND(G) which approximates independent set within a factor of
O(n/k). The first call to the algorithm will be with a graph H on n vertices as an input. We
may assume that H contains an independent set of size at least n/k as if I(H) < n/k then we
get the required approximation ratio trivially.

Algorithm IND(G)

Input: A graph G(V, E) where |V | = n′.
Output: An independent set.

1. if |V | ≤ 8k return an arbitrary vertex of G.

2. Let (X’,Y’) be the balanced bipartite independent set returned by
BIS(B(G)).

3. Set G1 to be the subgraph of G corresponding to the vertices in X ′ and
G2 to be the subgraph of G corresponding to the vertices in Y ′.

4. if |G1| < n′
8k set H = H \ G and restart the algorithm with graph H as

an input.

5. return IND(G1)
⋃

IND(G2).

The idea behind the algorithm is very simple. If a graph G contains an independent set of
size n′/2k then using a 2-approximation approximating for the BBIS problem we can find two
disjoint subgraph G1, G2 in G of cardinality n′/8k each, with no edges between them. Applying
this method recursively on the subgraphs found we can find a ’large’ independent set in G. The
only problem we may have is that some subgraph G′ of G which we encounter does not contain
an independent set of size at least |G′|/2k. We will show later in the formal analysis of the
algorithm that in this case we may remove this subgraph from the original graph and restart
the algorithm with the truncated graph as an input.

Definition 5.2. Let G be a graph with an independent set of size n/t. A vertex induced
subgraph T is called poor if it does not contain an independent set of size |T |/2t.

The following lemma is from [Fei02a].
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Lemma 5.2. Let G be a graph with an independent set of size n/t. Let T1, T2, . . . be arbitrary
disjoint poor subgraphs of G. Let G′(V ′, E′) be the subgraph of G that remains after removing
the poor subgraphs. Then |V ′| ≥ n/2t, and G′ contains an independent set of size at least |V ′|/t.

Let us look at step 4 of algorithm IND. As BIS is a 2-approximation algorithm of BBIS we
have that if |G1| < n/8k then G is a poor graph. Thus each subgraph removed from H in step
4 is a poor graph. We conclude by lemma 5.2 that the inequality |H| ≥ n/2k always holds, and
furthermore that H always contains an independent set of size at least n/2k2. As I(H) ≥ n

2k2

we have that the recursion depth d of algorithm IND on input H satisfies

n

2k2(8k)d
≤ 8k

and thus d ≥ √
lg n−O(1). Since the algorithm returns an independent set of size 2d we get an

independent set of size Ω
(
2
√

lg n
)

and thus we get the required approximation ratio.

We can prove an identical result for the maximum edge biclique problem.

Theorem 5.3. Suppose that the maximum edge biclique problem can be approximated within
some constant factor, then independent set can be approximated within a factor of n/2c

√
lg n for

some c > 0 in polynomial time.

Proof: The proof of this theorem is similar to the proof of theorem 5.1 and thus omitted.

6 Appendix I

In this appendix we will show that BBIS has some of the self improvement properties that the
maximum clique problem has. We will prove this claim by a minor modification of the proofs
of self improvement properties of the maximum clique problem (see for example [AL96]).

Definition 6.1. Let G(X, Y, E) be a bipartite graph. Define the k-th graph product Gk in the
following way. Let Xk be the k-th Cartesian product of X, i.e. each vertex in Xk is denoted
by (x1, x2, . . . , xk) where xi ∈ X for every 1 ≤ i ≤ k. Define Y k in an identical manner.
Let the bipartition of Gk be (Xk, Y k). There is an edge between (x1, x2, . . . , xk) ∈ Xk and
(y1, y2, . . . , yk) ∈ Y k

2 in Gk iff the union of the vertices in both sets is not a bipartite independent
set of G.

Theorem 6.1. If BBIS can be approximated within some constant then it has a polynomial time
approximation scheme (PTAS).
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Proof: Let I(G) be the size of the largest balanced bipartite independent set in a bipartite
graph G(X, Y, E). It is easy to see that I(Gk) ≥ I(G)k. Suppose we have a polynomial time
algorithm which approximates BBIS within a factor of 1

ε for some ε > 0. This algorithm when
applied on Gk will return a balanced bipartite independent set I ′ of size at least εI(G)k with
bipartition (X ′, Y ′). Let m be the largest integer such that X ′ contains at least mk vertices.
There must be a coordinate 1 ≤ i ≤ k such that in the vertices of X ′, written as k-tuples, there
are at least m different elements in coordinate i and each such element corresponds to a vertex
in X. The same also holds for Y ′ (with respect to Y ) and thus we may extract from (X ′, Y ′)
a balanced bipartite independent set of size m in G, i.e. a balanced bipartite independent set
of size ε1/k · I(G) and so we see that we may achieve an arbitrarily good approximation for our
problem.
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