
Experimental Results on

Hamiltonian-Cycle-Finding Algorithms

Gabriel Nivasch

May 9, 2003

1 Introduction

Frieze [1] introduced a heuristic polynomial-time algorithm, Ham, for finding
Hamiltonian cycles in random graphs with high probability. We wanted to see
how this algorithm performs in practice, and whether it could be improved by
modifying it.

For this purpose, we borrowed an idea from an algorithm by Keydar called
SemiHam [2]. SemiHam is a modification of Ham that finds Hamiltonian cycles
in semi-random graphs with high probability. (The notions of random and
semi-random graphs are beyond the scope of this report.)

For simplicity, we call our implementations by the borrowed names Ham
and SemiHam, even though we don’t follow completely the original theoretical
algorithms.

We tested our algorithms on knight’s tour problems. By analogy from chess,
we define a knight as a piece that moves in a board either ±a cells horizontally
and ±b cells vertically, or ±b cells horizontally and ±a cells vertically, for given
a and b. Then, given an m×n rectangular board, we ask whether there exists a
sequence of moves in which a knight visits each cell of the board exactly once,
and then returns to its starting cell. This is the knight’s tour problem.

We denote an instance of this problem by listing its parameters in the form
m×n–(a, b). For example, the classical knight’s tour problem involves a regular
knight and a regular chessboard, and it is denoted 8×8–(1, 2).

A knight’s tour problem corresponds in a trivial way to a Hamiltonian cycle
problem on a graph: Each cell of the board corresponds to a vertex, and each
legal knight move between cells corresponds to an edge. Then a knight’s tour
of the board corresponds to a Hamiltonian cycle in the graph.

Vandegriend in [3] analyzes the knight’s tour problem in some detail. He
gives several existence and non-existence theorems for different parameter val-
ues. He also reports on extensive computer experiments, in which he used
an exhaustive Hamiltonian cycle algorithm. (Our algorithms, in contrast, are
heuristic, as we mentioned). We will compare our results to his.

1

2 The Test Graphs

We wanted to find whether the improvements introduced in SemiHam make it
perform better than the original Ham. So we looked for Hamiltonian graphs
with different levels of difficulty, and for this we turned to knight’s tours. In
order to make the problems more difficult, we also allowed the knight some fake
moves.

Consider coloring the cells of the board alternatingly black and white, like
a regular chessboard. Then, if the knight’s movement is given by (a, b) where
a + b is even, the knight always moves among cells of the same color. Then the
cells of the other color cannot be visited, so the problem has no solution.

On the other hand, if a + b is odd, then the knight always alternates cell
colors. Now choose any number of pairs of white cells, and for each pair of cells
allow the knight to move from one white cell to the other. If the knight uses
any of these moves, he will use up an additional white cell instead of a black
cell, thus creating a surplus of remaining black cells that he will never be able
to balance. Therefore, these additional white-to-white moves do not make the
problem any easier.

These fake moves correspond to fake edges in the corresponding graph—
edges that provably cannot be part of a Hamiltonian cycle. We expected these
fake edges to make the Hamiltonian problems more difficult for our algorithms.
We will see what the actual results were.

We tested Ham and SemiHam on several sets of parameters. The parameters
are the board dimensions m×n, the knight’s move (a, b), and the number of fake
edges f , where 0 ≤ f ≤

(
mn/2

2

)
. For each set of parameters, we ran many trials

and compared the algorithms’ success rates.
Since both algorithms are completely deterministic, as we will describe, we

introduced randomness by choosing the locations of the f fake edges uniformly
at random, and then applying a uniformly random permutation to the vertices
of the graph.

3 The Algorithms

We proceed to describe our implementations of Ham and SemiHam. We start
with Ham.

3.1 Ham

The input to Ham is an N -vertex undirected graph, where the vertices are
numbered 0 through N − 1. The edges are specified by a symmetric N × N
adjacency matrix.

Ham works in stages. For each stage i, for i = 1, . . . , N , the input to the
stage is a path with i − 1 edges, and the output, if the stage is successful, is a
path with i edges. We start at stage 1 with a path that consists just of vertex
0 and no edges. Then we proceed with the next stages in sequence.

2

If we manage to complete stage N , we have found a Hamiltonian path in
the graph. Then comes stage N + 1, in which we try to close the path into a
Hamiltonian cycle. If the final stage is successful, then the found cycle is our
output.

A path is represented by a structure that includes an array v of length N ,
and an integer length that specifies the number of vertices in the path. The
vertices are stored in v[0] through v[length − 1]. We call v[0] the head of the
path, and v[length − 1] the tail.

For convenience, the algorithm keeps track of which vertices are already used
in the path, with a boolean array vertexUsed of length N .

The Stages

Each stage from 1 to N proceeds as follows:
We first build a boolean array externalNbr of length N , which specifies, for

each vertex in the path, the vertex’s smallest neighbor that is external to the
path. If a vertex in the path has no external neighbors, its corresponding entry
in externalNbr is −1. For vertices not in the path, the entry in externalNbr is
undefined.

We first try to extend the path in the most obvious ways:

(E1) If externalNbr of the head is not −1, then we extend the path along the
head to the given external vertex, the external vertex becoming the new
head.

(E2) If externalNbr of the tail is not −1, then we extend the path along the tail
to the given external vertex, the external vertex becoming the new tail.

(E3) If the head and the tail are joined by an edge, so that the current path is
actually a cycle, then we can extend the path as follows:

We examine the path vertices v[0], v[1], . . . sequentially until we find a
vertex v[i] whose corresponding externalNbr entry is t 6= −1. Such a
vertex is guaranteed to exist—otherwise our path would be disconnected
from the rest of the graph.

Once we find i and t, we rearrange the vertices in the following order: t,
followed by v[i], . . . , v[0], followed by v[len− 1], . . . , v[i + 1].

An extension according to (E1) or (E2) is known as a simple extension, and
an extension according to (E3) is known as a cycle extension.

If none of these extensions is possible on the original path, then we proceed to
build new paths by applying rotations to the original path, and further rotations
to the “rotated” paths, until we find a path that can be extended with either
a simple or a cycle extension. All the rotated paths have the same vertices
as the original path—just in a different order—so the arrays vertexUsed and
externalNbr are valid for all of them.

3

The rotations are performed as follows:
We allocate an array of paths pathList, of size MaxPaths, where MaxPaths

is an adjustable parameter. At the beginning, the the original path is stored
at pathList [0]. There are two indices to pathList: listCurr and listLen, which
indicate, respectively, the current path being examined and the total number of
paths on the list. At the beginning, listCurr = 0 and listLen = 1.

We repeat the following steps until we succeed in extending a path, or until
we run out of space in the pathList array:

(S1) Take the path pathList [listCurr], and successively examine its vertices
v[2], . . . , v[length − 2], to see which ones are connected to the head by an
edge. For each such vertex v[i] do the following:

(a) Create a new path in which the order of the vertices is v[i−1], . . . , v[0],
followed by v[i], . . . , v[len− 1].

(b) Add this path to entry pathList [listLen], and increment listLen.

(c) Check if this new path can be extended according to (E1) or (E3)
above.

(S2) Again take the path pathList [listCurr], and now successively examine its
vertices v[1], . . . , v[length − 3], to see which ones are connected to the tail
by an edge. For each such vertex v[i] do the following:

(a) Create a new path in which the order of the vertices is v[0], . . . , v[i],
followed by v[len− 1], . . . , v[i + 1].

(b) Add this path to entry pathList [listLen], and increment listLen.

(c) Check if this new path can be extended according to (E2) or (E3)
above.

(S3) Increment listCurr, and go back to step (S1).

If at any point we succeed in extending a path, then the current stage im-
mediately ends in success. On the other hand, if pathList becomes completely
full, or if there are no more paths to rotate because listCurr = listLen, and
no extension was found, then the current stage—and the whole execution of
Ham—ends in failure.

(Note that Ham wastes some effort in performing rotations that are exact
undoings of previous rotations, thus examining some paths multiple times.)

The final stage N + 1 is almost the same as the preceding stages. First we
check whether the input path is already a cycle. If it isn’t, we perform the
rotations as before, except that for each rotated path we only check whether it
is a cycle or not.

4

3.2 SemiHam

SemiHam works in stages 1 through N + 1 exactly like Ham. At each stage, it
first tries to perform a simple or cycle extension on the path, just as Ham.

However, when it comes to generate the rotations, SemiHam imposes an
additional constraint: pathList can contain at most one path with a given pair
of head and tail endpoints. We enforce this constraint with an N ×N boolean
array pathEnds, which keeps track of which 〈head , tail〉 pairs are already present
in pathList.

Before creating each new path in steps (S1) and (S2) above, SemiHam checks
in pathEnds that the new path’s 〈head , tail〉 pair has not been seen already.

Also, in SemiHam MaxPaths is given the value N2, which provides for more
than enough space for rotations (since the maximum number of rotations is
N(N − 1), because paths with head = tail are not possible).

In order to make the comparison between Ham and SemiHam fair, in Ham
we also let MaxPaths = N2 (even though this gives Ham a small advantage).

Note that, as we have said, both Ham and SemiHam are completely deter-
ministic.

We include in Appendix A our source code for initializing the graph to a
knight’s tour problem, and for the SemiHam algorithm. The Ham algorithm is
obtained through some easy modifications to SemiHam.

4 Experimental Results

We found that, in general, SemiHam always has a higher success rate than Ham
(except when both have a 100% success rate).

For the classical knight’s tour problem (8×8–(1, 2) with no fake edges), both
algorithms have a 100% success rate. The classical knight’s tour problem is
therefore fairly easy.

However, as we increase the number of fake edges from f = 1 to f = 16∗31 =
496, Ham starts to fail with increasing frequency. Sometimes it gets only to stage
64, or even less (see Table 1). Still, the algorithm experiences difficulties only
at the very last stages.

By contrast, SemiHam’s success rate always stays at 100%. This already
shows an advantage of SemiHam over Ham on certain graphs.

We proceeded to try other problems. Vandegriend provides a table (Table
5.16 in [3]) of “ultrahard” knight’s tours that have solutions, but which his
algorithm had difficulty in solving. We took a few entries from this table and
tested them, each with a range of values for f . The results are shown in Table
2.

We see that SemiHam always outperforms Ham. Further, Ham’s perfor-
mance degrades as more fake edges are added. However, SemiHam’s perfor-
mance improves as more fake edges are added! This is certainly a surprising
result. We comment on this in the Conclusion.

5

Ham SemiHam
Fake edges 65 64 63 62− 65

0 1000 0 0 0 1000
1 950 50 0 0 1000

10 770 225 5 0 1000
100 605 361 34 0 1000
200 552 407 40 1 1000
400 487 456 55 2 1000
496 460 470 69 1 1000

Table 1: Latest stage completed on 8×8–(1, 2) (1000 trials).

Board Fake edges Ham SemiHam
3×34–(1, 2) 0 38 88

1 26 86
5 27 95

10 13 93
100 7 100

1275 6 100
9×12–(1, 4) 0 0 34

1 0 48
5 0 66

10 0 76
20 0 83

100 0 82
1431 0 86

7×36–(3, 4) 0 3 10
10 0 37

100 0 62
1000 0 64
7875 0 64

10×11–(1, 4) 0 16 97
1 19 98

10 2 100
1485 0 100

Table 2: Successes in 100 trials.

6

Figure 1: A solution to 9×40–(1, 6)

Board Fake edges Ham SemiHam
9×40–(1, 6) 0 6 78

16110 0 93
13×28–(2, 7) 0 2 98

16471 0 98

Table 3: Successes in 100 trials.

Comparing our results to Vandegriend’s, we observe that there is little cor-
relation between his success rates and ours. For example, in 7×36–(3, 4), Van-
degriend had 4 successes out of 10, while in 10×11–(1, 4), he had only 1 success
out of 10.

Vandegriend also provides another table (Table 5.12 in [3]) with problems
for which his algorithm could not determine whether they have solution or
not (Vandegriend placed a time limit on his exhaustive algorithm). We tried
SemiHam on these instances, and we found that two of them have solution:
9×40–(1, 6) and 13×28–(2, 7). (See Figures 1 and 2.)

Table 3 compares Ham and SemiHam on these two instances, with no fake
edges and all possible fake edges.

Finally, to give an idea of the running times involved, Table 4 gives the
average running time of Ham and SemiHam on the various boards we tested,
with f = 0. We used a 266–MHz Power Macintosh G3. We see that SemiHam,
besides having a higher success rate, is also faster than Ham—especially in
larger boards. (However, with many fake edges SemiHam can become as slow
as Ham; this is not shown in the table.) In any case, the running times of both
algorithms range from milliseconds to seconds, so they are very reasonable.

5 Conclusion

We experimented with two heuristic algorithms for finding Hamiltonian cycles,
which we call Ham and SemiHam. The difference between them is that SemiHam
does not allow paths with repeated pairs of endpoints when performing rota-
tions.

We tested them on knight’s tour problems, to which we added different

7

Figure 2: A solution to 13×28–(2, 7)

Board Ham SemiHam
8×8–(1, 2) 2.1 2.2
3×34–(1, 2) 42 10
9×12–(1, 4) 80 16
10×11–(1, 4) 73 17
7×36–(3, 4) 910 110
9×40–(1, 6) 3080 520
13×28–(2, 7) 3400 700

Table 4: Average running times (milliseconds).

8

numbers of fake edges—edges that provably cannot be part of the solution. We
found that SemiHam always outperforms Ham, in terms of success rate. We also
found that as more fake edges are added, Ham performs worse, but, surprisingly,
SemiHam performs better.

Apparently, the fake edges allow SemiHam to perform more rotations at
certain stages, giving it a greater chance of extending the path. Later on,
SemiHam has little difficulty in getting rid of the fake edges and succeeding.

In fact, Vandegriend [3] (Section 3.4.3) speculated that this could happen.
He suggested that, for heuristic algorithms, initially pruning unnecessary edges
in the graph might prove counterproductive, since those edges might help the
algorithm avoid reaching an early dead-end. This is indeed what happens with
SemiHam.

Given its reasonable success rates and its low running times, our implemen-
tation of SemiHam is a good algorithm for solving knight’s tour problems in
practice. We speculate that it is also good for other classes of Hamiltonian
graphs.

References

[1] B. Bollobas, T. I. Fenner, and A. M. Frieze. An algorithm for finding Hamil-
ton paths and cycles in random graphs. Combinatorica, 7(4):327–341, 1987.

[2] Eran Keydar. Finding Hamiltonian cycles in semi-random graphs. Masters
thesis, Weizmann Institute of Science, 2002.

[3] Basil Vandegriend. Finding Hamiltonian cycles: Algorithms, graphs and per-
formance. Masters thesis, University of Alberta, February 1998.

A Source Code

A.1 Graph Initialization

const int BoardX = 9, BoardY = 40, KnightX = 1, KnightY = 6,

N = BoardX*BoardY, //This better be even

MaxFakeEdges = N/2 * (N/2 - 1) / 2,

NFakeEdges = MaxFakeEdges;

int G[N][N], //The graph

perm[N], pinv[N]; //will hold a random permutation and its inverse

//Generates a random permutation of n elements and its inverse:

void randomPerm(int n, int *a, int *b)

{

int i, r, temp;

for (i=0; i<n; i++)

a[i]=b[i]=i;

for (i=0; i<n; i++)

{

9

r = i + (rand() % (n-i)); //Random location between i and n-1

temp=a[i]; a[i]=a[r]; a[r]=temp;

temp=b[a[i]]; b[a[i]]=b[a[r]]; b[a[r]]=temp;

}

} //randomPerm()

//Returns a random white square:

void randomWhite(int *x, int *y)

{

*x = rand()%BoardX;

if (*x%2==0)

{

*y = rand() % (BoardY/2);

y = 2(*y)+1;

}

else

{

*y = rand() % ((BoardY+1)/2);

y = 2(*y);

}

} //randomWhite()

int Abs(int x) { return x>=0?x:-x; }

//Inits the graph to a knight’s tour problem,

//with a certain number of fake edges to make it more difficult:

void initG()

{

int x1, y1, x2, y2;

randomPerm(N, perm, pinv); //Permute the cells randomly

for (x1=0; x1<BoardX; x1++)

for (y1=0; y1<BoardY; y1++)

{

int from=perm[x1*BoardY + y1];

for (x2=0; x2<BoardX; x2++)

for (y2=0; y2<BoardY; y2++)

{

int to=perm[x2*BoardY + y2];

if ((Abs(x2-x1)==Abs(KnightX) && Abs(y2-y1)==Abs(KnightY))

||(Abs(x2-x1)==Abs(KnightY) && Abs(y2-y1)==Abs(KnightX)))

G[from][to]=1;

else

G[from][to]=0;

}

}

//Add the fake edges (somewhat inefficiently):

for (int added=0; added<NFakeEdges; added++)

{

int r1, r2;

do

10

{

randomWhite(&x1, &y1);

r1=x1*BoardY + y1;

do

{

randomWhite(&x2, &y2);

r2=x2*BoardY + y2;

}

while (r1==r2);

}

while (G[perm[r1]][perm[r2]]);

G[perm[r1]][perm[r2]]=G[perm[r2]][perm[r1]]=1;

}

} //initG()

A.2 SemiHam

struct path {short length, v[N];};

//Inverts a chunk of an array:

void invert(short *a, int s, int t)

{

short temp;

while (s<t)

{ temp=a[s]; a[s++]=a[t]; a[t--]=temp; }

} //invert()

bool pathIsCycle(const path *p)

{ return G[p->v[0]][p->v[p->length-1]]==1; }

//Does the specifiend simple extension to the input path:

void simpleExtendPath(path *p, bool fromHead, int newV)

{

int i, len=p->length;

//Check validity:

if (fromHead) assert(G[p->v[0]][newV]);

else assert(G[p->v[len-1]][newV]);

for (i=0; i<len; i++) assert(p->v[i]!=newV);

if (fromHead)

{

for (i=len; i>0; i--)

p->v[i] = p->v[i-1];

p->v[0]=newV;

}

else //from tail

p->v[len]=newV;

p->length++;

} //simpleExtendPath()

11

//Does a cycle extension to the input path, which is a cycle,

//using the given vertex in the path and the given external vertex.

void cycleExtendPath(path *p, int vtxIndex, int externalVtx)

{

int len=p->length;

assert(pathIsCycle(p));

assert(G[p->v[vtxIndex]][externalVtx]==1);

//Re-arrange vertices:

p->v[len]=externalVtx;

invert(p->v, vtxIndex + 1, len);

invert(p->v, 0, vtxIndex + 1);

p->length++;

} //cycleExtendPath()

//Tries the simple and cycle extensions on the given path.

//p and vertexUsed are input/output parameters.

//externalNbr is an input array which specifies, for each vertex

// in the path, its smallest external neighbor, if it has;

// otherwise -1.

bool tryExtendPath(path *p, bool *vertexUsed, int *externalNbr)

{

int newVtx, i, len = p->length;

//Try head extension:

newVtx = externalNbr[p->v[0]];

if (newVtx != -1)

{

simpleExtendPath(p, true, newVtx);

vertexUsed[newVtx]=true;

return true;

}

//Try tail extension:

newVtx = externalNbr[p->v[len-1]];

if (newVtx != -1)

{

simpleExtendPath(p, false, newVtx);

vertexUsed[newVtx]=true;

return true;

}

//Try cycle extension:

if (pathIsCycle(p))

{

for (i=0; i<len; i++)

{

newVtx = externalNbr[p->v[i]];

if (newVtx != -1)

{

cycleExtendPath(p, i, newVtx);

vertexUsed[newVtx]=true;

return true;

}

12

}

//Cycle with no external neighbors. This shouldn’t happen.

assert(0);

}

return false;

} //tryExtendPath()

//Performs a stage of SemiHam. Returns true if successful.

//The parameter justCloseCycle is true on the last stage.

bool SemiHamStage(path *p, bool *vertexUsed, bool justCloseCycle)

{

int i, j, len = p->length;

bool extended;

//Get the smallest external neighbor for each vertex in the path:

int externalNbr[N];

for (i=0; i<len; i++)

{

int vtx = p->v[i];

externalNbr[vtx]=-1;

for (j=0; j<N; j++)

if (vertexUsed[j]==0 && G[vtx][j])

{ externalNbr[vtx]=j; break; }

}

//Try to extend the input path; or check if it’s a cycle:

if (justCloseCycle)

{

if (pathIsCycle(p))

return true;

}

else

{

extended=tryExtendPath(p, vertexUsed, externalNbr);

if (extended)

return true;

}

const int MaxPahts=N*N;

static path pathList[MaxPaths];

path *currP, *newP;

int listCurr=0, listLen=1;

pathList[0]=*p;

//Keep only one path for each (head, tail) combination.

static bool pathEnds[N][N];

for (i=0; i<N; i++)

for (j=0; j<N; j++)

pathEnds[i][j]=false;

pathEnds[p->v[0]][p->v[len-1]]=true;

//Perform rotations:

while(1)

{

13

if (listCurr >= listLen)

return false; //No more paths to rotate

currP=pathList+listCurr;

int head=currP->v[0], tail=currP->v[len-1];

//Rotate from head:

for (i=2; i < len; i++)

if (G[head][currP->v[i]]

&& pathEnds[currP->v[i-1]][tail]==false)

{

newP = pathList + listLen;

//Add a copy of the current path to the end of the list:

*newP=*currP;

//Perform the rotation on the path copy:

invert(newP->v, 0, i-1);

//Mark the new (head, tail) combination in pathEnds:

pathEnds[newP->v[0]][newP->v[len-1]]=true;

//Try to extend the new path; or check if it’s a cycle:

if (justCloseCycle)

{

if (pathIsCycle(newP))

{

*p=*newP;

return true;

}

}

else

{

extended=tryExtendPath(newP, vertexUsed, externalNbr);

if (extended)

{

*p=*newP;

return true;

}

}

//Increment listLen:

listLen++;

assert(listLen<MaxPaths); //Overflow shouldn’t occur.

}

//Rotate from tail, similarly:

for (i=0; i < len-2; i++)

if (G[tail][currP->v[i]]

&& pathEnds[head][currP->v[i+1]]==false)

{

newP = pathList + listLen;

*newP=*currP;

invert(newP->v, i+1, len-1);

pathEnds[newP->v[0]][newP->v[len-1]]=true;

if (justCloseCycle)

{

if (pathIsCycle(newP))

14

{ *p=*newP; return true; }

}

else

{

extended=tryExtendPath(newP, vertexUsed, externalNbr);

if (extended)

{ *p=*newP; return true; }

}

listLen++;

assert(listLen<MaxPaths);

}

//Increment listCurr:

listCurr++;

} //while 1

} //SemiHamStage()

//The SemiHam algorithm.

//Tries to find a Hamiltonian cycle on the graph G.

//If successful, outputs true and returns the cycle in p.

bool SemiHam(path *p)

{

int len, listLen;

bool wasExtended;

//Initialize path to just vertex 0:

p->v[0]=0;

p->length=1;

//Initialize vertexUsed:

bool vertexUsed[N];

vertexUsed[0]=true;

for (int i=1; i<N; i++)

vertexUsed[i]=false;

//Do stages until path has full length:

for (len=1; len<N; len++)

{

assert(p->length==len);

wasExtended=SemiHamStage(p, vertexUsed, false);

if (!wasExtended)

return false;

}

//Last stage: Try to close the path into a cycle:

assert(p->length==N);

wasExtended=SemiHamStage(p, vertexUsed, true);

if (!wasExtended)

return false;

return true;

} //SemiHam()

15

