
To Sharon and to my parents

i

Contents

1 Introduction 1

1.1 Goals . 2
1.2 Notation and definitions . 3
1.3 The model . 5

1.3.1 Some properties of these graphs 6
1.4 Results . 6
1.5 Related work . 8

2 One shot coloring propagation algorithm 9

2.1 A proof of Theorem 2.1 for constant d 10
2.2 A proof of Theorem 2.1 for d = c (log log n), where c < 2

log(4/3) is a
constant. 12
2.2.1 Sphere caps cover . 13
2.2.2 Geometric proof . 14
2.2.3 Algorithm 1 does not color Gn,k,d when d (n) is too large 16

3 2-Neighborhood Algorithm 16

3.1 Proof plan for Theorem 3.1 . 17
3.2 Proof of Lemma 3.2 . 18
3.3 Proof of Lemma 3.3 . 19
3.4 Proof of Lemma 3.4 . 19
3.5 The existence of a threshold . 20
3.6 Summary . 22

4 Iterative coloring propagation algorithm 22

4.1 Notation . 23
4.2 Analysis of Algorithm 3 . 23

5 Tools 24

5.1 Bounds on the intersection of two sphere caps 24
5.2 Geometric Routing . 28

ii

6 3-Neighborhood Algorithm 29

6.1 Algorithm description . 30

6.2 Proof of Theorem 6.1 . 31

7 Uniquely colorable graphs 33

7.1 Definitions . 33

7.2 Proof of Theorem 7.1 . 33

A Sphere caps cover appendix 36

B Algorithm 2 Appendix 37

C Algorithm 3 Appendix 42

D Intersection of sphere caps appendix 43

D.1 Proof of Lemma 5.4 . 44

E Uniquely colorable graphs Appendix 45

F A note on the dimension range 45

iii

Finding planted k-coloring in vector k-colorable
graphs

By: Roee David
Advisor: Prof. Uriel Feige

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science

Abstract

We consider the following model for generating random 3-colorable graphs.
The vertex set V corresponds to a set of n independent random vectors in Sd,
where Sd denotes the unit sphere in d dimensions. Each v ∈ V is randomly and
independently assigned a color from {1, 2, 3}. These colors are referred as the
planted coloring. Place an edge between u, v ∈ V if and only if the inner angle
between u, v is larger than 120◦ and u, v have different colors. The motivation
for considering this distribution is that it appears to fool the coloring algorithms
with currently best performance guarantees, such as those based on semidefinite
programming.

We design and analyze algorithms for 3-coloring such graphs with high prob-
ability (over the choice of graph). The input to the algorithms is the adjacency
matrix of such a graph (without being given the actual geometric embedding of
the vertices in Sd). The task of 3-coloring the graphs becomes more difficult as
the dimension d grows (though only up to a point, because when the dimension
is very large the graphs have no edges and hence can trivially be 3-colored). Our
algorithms work up to dimension d < 4.93260 log n, which corresponds to average
degree of roughly n0.29.

iv

Acknowledgements

I thank my advisor, Uriel Feige, for being so patient with me, for giving me inspiration
and for his willingness to help at any time.

I thank Sharon for her deep love.

I thank my family and my friends for being there for me.

Lastly, I thank the Weizmann Institute and its staff for creating a great place to study
in.

v

1 Introduction

Given a graph G and a set Col of k-colors, a vertex coloring of G assigns to every vertex
a color from Col. The coloring is legal if and only if no two adjacent vertices are assigned
the same color. A graph is k-colorable if it admits a legal coloring. The smallest k such
that G is k-colorable is called the chromatic number of G, and is denoted by χ (G).
Computing the chromatic number is well known to be NP − hard, see [10]. Therefore
we do not expect to find a polynomial time algorithm for that problem. Likewise, given
a k-colorable graph, finding a legal k-coloring is NP − hard for every k ≥ 3. We call
this last problem the k-coloring problem.

Given that the k-coloring problem is NP-hard, one often considers a relaxed version
of the problem. Given a k-colorable graph and a value k̂ > k, one needs to find in
polynomial time a legal k̂-coloring. Ideally, one would like k̂ to be as close as possible
to k, and the ratio k̂

k
is referred to as the approximation ratio of the algorithm. One of

the first such approximation algorithms colors 3-colorable graphs with at most O (
√
n)

colors, where n is the number of vertices in the graph [15].

The currently best approximation algorithms use Semi Definite Programming (SDP).
For example, the algorithm of [9] colors a 3-colorable graph with O

(
n1/4

)
colors. In

these works, SDP is used in order to solve with high precision and in polynomial time
optimization systems called Vector Programming (see for example [14], chapter 26).
The following vector program is a relaxation of the k-coloring problem.

min k′

s.t. 〈vi, vj〉 ≤ − 1
k′−1 ∀(i, j) ∈ E

〈vi, vi〉 = 1 ∀i ∈ V
vi ∈ Rn

(1.1)

This system embeds every vertex of the graph in the unit hyper sphere in following
way: there exists a threshold angle such that every pair of neighbors have an inner
angle that is larger than the threshold angle. Notice that as k′ gets smaller we get a
larger threshold angle. We can treat (1.1) as a relaxation of the coloring problem since
for k-colorable graphs we have a solution with k′ ≤ k. In the case where k = 3 we can
see it in the following way: consider an equilateral triangle with all its endpoints in the
unit circle. Treating each of its vertices as a vector one can get the following vectors:
[a,−a, 0], [0, a,−a], [−a, 0, a], where a =

√
1
2 . One can see that the inner angle between

1

each pair of these unit vectors is −1
2 = − 1

k′−1 . So we can embed the 3 color classes to
these 3 vectors with all the constraints being satisfied. We call it the naive solution.
Generalizing it for general k is easy, see Karger et al. [9]. Hence for k-colorable graphs,
we have that k′ ≤ k in the optimal solution for (1.1).
Given an optimal solution of (1.1) we try to use the embedding we have to produce a
coloring with a limited number of colors, or in different terminology, we try to find an
algorithm that “rounds” the embedding to a coloring. We note that by (1.1) constraints
every pair of neighboring vertices are far away from each other on the sphere. Using
this observation, one of the rounding algorithms in [9] does the following procedure
iteratively: It randomly picks a sphere cap, considers the induced graph of the vertices
it contains, picks up isolated vertices from that graph and colors them with the same
color (a new color is used in each iteration).
Now let’s look on a different problem. Let χv (G) denote the optimum value of k′ in the
vector program (1.1) for G. We call this value the vector chromatic number of G. One
may ask how large might the ratio χ(G)

χv(G) be? Sadly there are graph families satisfying
χ(G)
χv(G) = n

poly(log(n)) , see [5]. Using the algorithm from [9] on degree bounded graphs (each
vertex degree is bounded by ∆) with χv (G) = k results in a ∆1− 2

k coloring. Can we
hope for better? It turns out that not by much because for any ε there exist graphs
families with χv (G) = k but with χ (G) ≥ ∆1− 2

k
−ε , see [5].

1.1 Goals

The examples in [5] imply that if one is given an optimal solution for (1.1) showing
that χv (G) ≤ 3, this by itself does not suffice in order to compute a 3-coloring (and
not even a k-coloring for values of k nearly as high as ∆ 1

3), simply for the reason that
G might not be 3-colorable. Hence a rounding technique that only uses the fact that a
graph is vector 3-colorable has no hope of producing approximation ratios significantly
better then those of Karger et al. [9]. However, this argument leaves something to be
desired, because there might be rounding techniques that use additional information
beyond the solution to (1.1). In particular, it may use the assumption that the graph is
3-colorable (even though it does not actually know a 3-coloring). The above examples
do not exclude the possibility that given graphs that are actually 3-colorable, SDP
(perhaps augmented with additional algorithmic techniques) can lead to significantly
better approximations than those shown in Karger et al. [9]. The following are questions
that motivate our work.

2

1. Can we find graph families that are 3-colorable (or more generally, k-colorable) for
which current approximation algorithms require a number of colors much larger
than 3? (Recall that the graphs of [5] are not 3-colorable.)

2. As the notion of “current approximation algorithms" is rather vague, we may
rephrase the above question so that it refers only to a well defined specific class of
algorithms. To employ such an approach, we would need to propose a definition
for the class of algorithms that we wish to refer to.

3. Given a family of 3-colorable graphs that may serve as a positive answer for either
of the above two questions (namely, that known algorithms do not perform well
on it), can we design new polynomial time algorithms that do color these graphs
with few colors.

4. Given that we design new algorithms that are tailored for a specific family of
3-colorable graphs, do the ideas that underlie these algorithms extend to coloring
of 3-colorable graphs in general.

We consider a family of graphs that appears to be a good starting point for addressing
these questions, because on this family the algorithm of Karger et al. [9] might use many
colors. This family is parametrized by a notion of dimension. We provide polynomial
time algorithms for coloring graphs from this family for a certain range of parameters.

1.2 Notation and definitions

In this work we shall consider high dimensional objects such as spheres and caps. Given
an object , obj, its surface area is denoted by S(obj) and its volume is denoted by
V (obj). Given a graph G = (V,E) , where V is the vertex set and E is the edge
set, N (v) denotes the set of the neighbors of v ∈ V . Given a graph and a set of
k-colors, a k−coloring of G is an assignment of a color, from the k possible colors, to
any vertex of the graph in such a way that no two vertices with an edge between them
have the same color. The graph chromatic number χ (G) is the smallest k such that the
graph has a k coloring. The set of colors is denoted Col (G) and the color of a vertex
v ∈ V is Col (v). If a random variable X takes values from the set S uniformly we’ll
denote it X ∈R S and if D is some distribution we denote d ∼ D for d chosen by D.
Given a vector v we note that −v is the antipodal vector to v . Let u, v be two unit
vectors then d (u, v) := arccos (utv) i.e d (u, v) is u, v angular distance. When we state

3

upper and lower bounds on some function f of an object we denote them by f̂ , f̌ . We
denote a (n) ≈ b (n) when limn→∞

(
a(n)
b(n)

)
= 1. The initials SDP stand for “semi definite

programming”. Unless otherwise stated, log (x) is the natural base logarithm.

Definition 1.1. (d−Sphere). The d dimensional sphere with radius r is defined as
follows: Sdr = {x ∈ Rd : ‖x‖ = r}, using Euclidean norm. So S2

1 is a unit circle. When
the radius is 1 we omit it.

Definition 1.2. (d−Ball). The d dimensional ball with radius r is defined as follows:
Bdr = {x ∈ Rd : ‖x‖ ≤ r}, using Euclidean norm.

Definition 1.3. (The d−Sphere Surface Area). There is a known formula for the
sphere surface area: S

(
Sdr
)

= 2π
d
2

Γ(d2)r
d−1. where Γ is the gamma function . The Gamma

function is an extension of the factorial function to real numbers. Γ(n) = (n− 1)! .

Throughout, given a sphere Sdr = {x ∈ Rd : ‖x‖ = r}, the term sphere volume will refer
to the volume of the enclosed ball Bdr .

Definition 1.4. (The d−Sphere Volume). There is a known formula for the sphere
Volume: V

(
Sdr
)

= π
d
2

Γ(d2 +1)r
d.

Definition 1.5. (Sphere Caps). Let a ∈[0,1], r ∈ [0, π], l > 0, and ~x ∈ Sd. An a-cap
centered at ~x is defined to be the set Cd

a,l (~x) =
{
~u ∈ Sdl : 〈~u, ~x〉 ≥ a

}
. A cap of angular

radius r is defined to be the set CRd
l (~x, r) =

{
~u ∈ Sdl : d (~u, ~x) ≤ r

}
. When d and r are

known from the context we omit them and usually r = 1.

Definition 1.6. (Sphere Caps RadiusR(Ca)). The radius of a sphere cap is the distance
on the sphere form the center of the cap to the boundary of the cap. It’s easy to see
R(Ca) = arccos(a).

Definition 1.7. (Sphere Cap Measure µ(Ca)). The sphere Cap measure is the relative
surface area of the sphere cap to the surface area of the entire sphere. µ(Ca) = S(Ca)

S(Sdr) .
For example in Sn the measure of C0 is 1

2 .

Fact 1.8. (Bounds on the sphere Cap measure). We use the same bounds as in Feige
and Schechtman [7]: c√

d
(1− a2) d−1

2 ≤ µ(Ca) ≤ 1
2(1− a2) d−1

2 , where c is some constant
independent of d.

4

Fact 1.9. (Bounds on surface area of a sphere cap in dimension d).

S(Cd
a) ≥ V

(
Sd−1√

1−a2

)
.

S(Cd
a) ≤ (1− a)S

(
Sd−1√

1−a1

)
+ V

(
Sd−1√

1−a2

)
.

This fact is easily illustrated in Figure 1

Figure 1: Illustration of Fact 1.9.

1.3 The model

In this section we define families of random geometric graphs, Gn,k,d,G′n,k,d. Let k ≥ 3
be a constant, let d = d(n) be a function of the number of vertices, and let Sd = {v ∈
Rd | ‖v‖ = 1}. The graph distribution G′n,k,d is defined as follows: take n random
vectors [~v1...~vn] each of which is drawn uniformly and independently from Sd (there are
some techniques to do this, for example Knuth [11]), each one corresponds to a vertex
[v1...vn]. Place an edge between two vertices if 〈~vi, ~vj〉 ≤ − 1

k−1 . Now we modify G′ to
obtain G. For each vertex randomly choose a color [1..k] (we call these the original
colors of the graph) with some probability vector ~P and every edge between vertices of
the same color is removed. If it is not stated otherwise then ~P is the uniform probability
vector. G ∈ Gn,k,d denotes that G is created that way.

The modification process can be applied also on arbitrary graphs. In the literature the
original coloring is sometimes called the planted coloring.

5

1.3.1 Some properties of these graphs

First of all G′n,k,d is a distribution of a vector k-colorable graphs and actually it’s the
same that achieved the main results in [5]. The first observation holds because we can
use [~v1...~vn] to form a solution for (1.1), we call it the embedding solution. Note that
Gn,k,d is a distribution of a k-colorable graphs so (1.1) can be solved also with the naive
solution. Suppose we try to use the SDP (1.1) in order to color the graph. Then if the
SDP provides us the embedding solution then the rounding technique of Karger et al.
[9] will use far more than k colors.
Now we give some technical properties of these graphs:

1. Since the density of vertices in the sphere is uniform, then every vertex has
k−1
k

(n− 1)µ
(
C 1
k(n)−1

)
neighbors in expectation. Using some large deviation

bounds one can show that these graphs tend to be almost regular.

2. As the dimension of these graphs is larger the graph has less edges (this follows
by direct calculation of the expression k−1

k
(n− 1)µ

(
C 1
k(n)−1

)
with the provided

lower/upper bounds).

3. Given u ∈ N (v) of some vertex v then Col (u) ∈R Col (G) \ Col (v).

1.4 Results

We provide polynomial time algorithms for coloring G ∈R Gn,3,d with high probability
over the choice of G. All the results that are mentioned here can be generalized for any
constant k. The input for the algorithms is a graph adjacency matrix.
When d gets large the average degree of vertices in the graph gets small. If d ≥
6.95212 log n then our graphs have isolated vertices with high probability (see Sec-
tion F). An interesting question that arises is what is the largest (in terms of asymp-
totic behavior) function of d (n) such that our graphs admit polynomial time coloring
algorithms. We show the following theorem:

Theorem 1.10. Let d = (cGRD − ε) log n, where ε is some small positive constant and
cGRD ≈ 4.93260. Let G ∈ Gn,3,d. Algorithm 4 (see Section 6) legally colors G with high
probability.

Though we believe that ε in Theorem 1.10 can be chosen to be arbitrarily small, we
prove the theorem for the case that ε is a fixed small constant, say ε = 1/10. When

6

d = (cGRD− ε) log n then the expected degree of vertices in G ∈ Gn,3,d is approximately
n0.29.
We also analyze natural algorithms for 3-coloring of random graphs, and show that for
our distribution Gn,3,d they are not as effective as Algorithm 4. Namely, the range of
dimensions d for which they succeed is more limited.
Algorithm 1 samples a small set of vertices, colors them and thereafter deduces a
coloring for the rest of the vertices. The algorithm is similar to the one in Arora et al.
[3].

Theorem 1.11. Let d = c log log n for c < 6.95 and let G ∈ Gn,3,d. Algorithm 1 legally
colors G with high probability.

The analysis uses the fact that sphere caps have a low VC-dimension. Note that when
d = Θ (log log n) then the expected degree of vertices in G ∈ Gn,3,d is c n

(logn)c′
, where

c, c′ > 0 are some constants.
Algorithm 2 is based on finding a threshold t such that any pair of vertices with more
than t common neighbors have the same original color. It is similar to an algorithm
that was presented in Blum and Spencer [4].

Theorem 1.12. Let d = c0
logn

log logn , where c0 is an arbitrary constant smaller than 1,
and let G ∈ Gn,3,d. Algorithm 2 legally colors G with high probability.

Algorithm 3 is based on coloring three carefully chosen vertices by different colors
(rather than choosing these vertices carefully, the algorithm tries all triplets), and
iteratively propagating colors to additional vertices, as long as there are uncolored
vertices whose neighbors are colored by exactly two different colors.

Theorem 1.13. Let d = c0 log n, where c0 is an arbitrary constant smaller than ap-
proximately 1.4426950, and let G ∈ Gn,3,d. Algorithm 3 legally colors G with high
probability.

When d = c0 log n, where c0 is approximately 1.4426950, then the expected degree of
vertices in G ∈ Gn,3,d is approximately n0.79.
The analysis of Algorithm 3 is the basis for the proofs in Section 7 where we show the
following theorem:

Theorem 1.14. Let d = c0 log n, where c0 is an arbitrary constant smaller than approx-
imately 1.4426950, and let G ∈ Gn,3,d. With high probability the only legal 3-coloring
of G is the planted coloring.

7

1.5 Related work

Let G ∈ Gn,p be a random graph with n vertices where an edge between each pair
of vertices is placed independently from other pairs with probability p. Planting a
3-coloring is the following random process: Given a graph G, each vertex is assigned
randomly, independently and uniformly with a color ({1, 2, 3}). Every edge that is
shared by two vertices with the same color is removed. The distribution of graphs from
the plating process applied on G ∈ Gn,p is denoted by Gn,p,3. The expected degree of
each vertex in G ∈ Gn,p,3 is 2

3np. For this discussion we denote the expected degree of
a vertex in a random graph by Deg.
Arora et al. [3] have shown a polynomial time algorithms that colors 3-colorable dense
graphs (every vertex in a dense graph has Ω (n) neighbors) with high probability. This
algorithm also colors G ∈ Gn,p,3 with high probability when p is a constant. One can
show that if p is a function of n that tends to zero as n grows then this algorithm will
not color G. In our model this algorithm performs better, we show that this algorithm
colors G ∈ Gn,3,d with average degree of c n

(logn)c′
, where c, c′ > 0 are some constants.

For more details see Algorithm 1.
Blum and Spencer [4] present algorithms that find (with high probability) a coloring
for G ∈ Gn,p,3. One of these algorithms colors G ∈ Gn,p,3 with high probability, when
p ≥ nε−1/2 for any fixed ε > 0. This algorithm is based on counting paths of length 2
between any two vertices. In our model this algorithm (Algorithm 2) performs worse,
∀ε > 0 this algorithm fails to color G ∈ Gn,3,d with average degree smaller than n1−ε.
Another algorithm that was presented in Blum and Spencer [4] is a generalization of the
former algorithm and it is based on counting paths of different lengths. This algorithm
colors G ∈ Gn,p,3 with high probability, when p ≥ nε−1 for any fixed ε > 0. We did not
try to analyze it due to the poor performance of the former algorithm.
In Alon and Kahale [1] an algorithm that finds (with high probability) a coloring for G ∈
Gn,p,3 is presented, where p = cn−1 for some constant c. The analysis of this algorithm
uses spectral techniques. They proved and used the following fact: almost surely the
adjacency matrix of G ∈ Gn,p,3 has two eigenvalues of value roughly −Deg/2, while
the rest of the eigenvalues have value at least −O

(√
Deg

)
. Moreover, the eigenvectors

corresponding to these highly negative eigenvalues are correlated with the planted 3-
coloring in a way that leads to recovering this 3-coloring. See Proposition 2.1 in Alon
and Kahale [1]. However in our model almost surely the adjacency matrix A of G ∈
Gn,3,d has additional eigenvalues (unrelated to the planted coloring) of value roughly

8

−Deg/2. Consider for example a hyperplane through the origin, and consider the n-
dimensional vector corresponding to the cut induced by the hyperplane. Namely, its
entries are indexed by the vertices of G, and its jth coordinate is either +1 or −1
depending on the side of the hyperplane in which the corresponding vertex lies. It is
not difficult to show that roughly two thirds of the edges of G are cut by the hyperplane,
which using Rayleigh quotient considerations implies the existence of an eigenvalue of
value smaller than −Deg/3. More generally, one may consider the following vector

family {~yj|1 ≤ j ≤ d}, where ~yj (i) =

1 ~vi (j) ≥ 0

−1 ~vi (j) < 0
. If d is O(log n) then all these

vectors are nearly orthogonal to each other. This (with some extra work) can be used
in order to show that A has multiple eigenvalues of value −Ω (Deg). The leading
constant in the Ω notation can be increased either by considering refinements of the
vector family {~yj|1 ≤ j ≤ d} (so that the value of a coordinate depends on the distance
of the corresponding vertex from the hyperplane), or by considering refinements of the
geometric graphs (placing an edge if the inner angel is greater than 135◦ rather than
120◦). Details omitted.

In the Gn,p,3 model Algorithm 3 performs worse than Algorithm 2. One can show that if
p < n−

1
3 then Algorithm 3 does not color G ∈ Gn.p.3 with high probability (as opposed

to Algorithm 2 which colors G ∈ Gn,p,3 if p ≥ nε−1/2). But in our model (Gn,3,d)
Algorithm 3 performs much better than Algorithm 2, see the results section.

We remark that Algorithm 4 was designed specifically to work in the model Gn,3,d, and
uses properties of this model in an essential way. Even relatively small changes in the
model might cause the algorithm to fail. In contrast, Algorithm 3 is more robust and
works for a wider range of models. A formal approach for discussing such robustness
notions is via semi-random models (see Blum and Spencer [4] and Feige and Kilian [6])
but this aspect will not be discussed here.

2 One shot coloring propagation algorithm

In this section we describe an algorithm for coloring G ∈ Gn,k,d. The algorithm is similar
to the one in Arora et al. [3] but the analysis is different. We provide two proofs. The
first proof is of correctness when d is a constant. Basically this proof only uses the
fact that these graphs are dense and the way that the original coloring was created.
The second proof is of correctness when d = Θ (log log n). This proof uses some of the

9

geometric structure that was used to build G ∈ Gn,k,d. One of the geometric structure
properties is that sphere caps of the unit sphere in Rd have a low VC - dimension
(definition will be given in Section 2.2.1).

Algorithm 1
Input: A graph G.
Output: A k -coloring of the graph or a failure message.

1. Sample a random set S of vertices. Each vertex is in S with probability p inde-
pendently from other vertices.

2. For every legal coloring of S.

(a) For every vertex not in S
i. If k − 1 different colors are assigned to its neighbors that are within S

then assign to it the remaining color.
ii. Otherwise color it randomly.

(b) If a correct coloring was found return the coloring and terminate the algo-
rithm.

3. If no correct coloring was found return a failure message.

The running time of the algorithm is O(nk|S|). To keep the running time polynomial
|S| must be of size O (log n). To assure this we can set p = Θ(logn)

n
.

In the next sections we show proofs of the next theorem for various values of d.

Theorem 2.1. Let G ∈ Gn,3,d. Algorithm 1 legally colors G with high probability.

2.1 A proof of Theorem 2.1 for constant d

The proof prerequisites are that the input graph is of type Gn,k,d where d and k are
both constants.

Lemma 2.2. If p = c1 logn
n

, where c1 is a constant then for any arbitrary small γ1 it
holds that (1− γ1) c1 log (n) < |S| < (1 + γ1) c1 log n with high probability

Proof. For each vertex in the graph v we define a random variable

xv =

1 with probability p

0 otherwise

10

Let X = Σv∈V xv. E [X] = pn = c1 (log n). X is distributed like |S|. We can apply the
Chernoff bound:

Pr [X > (1 + γ1)c log n] < e−
c1 lognγ2

1
4

and

Pr [X < (1− γ1)c log n] < e−
c1 lognγ2

1
2

so by union bound the probability that the statement will not hold is smaller then

ε1 = e−
c1(logn)γ2

1
2 + e−

c1(logn)γ2
1

4

It is easy to see that we can set γ1 to be arbitrary small and ε1 tends to zero as n
grows.

Denote by N(v, c) the group of neighbors of v that were originally assigned with color

c and let q =
µ

(
C 1
k−1

)
k

. Observe that q is a constant independent of n. This is because
d and k are constants independent of n. Another lemma that we need is the following:

Lemma 2.3. For any v ∈ G, c 6= col (v) and for any arbitrary small γ2 it holds that
(1− γ2)nq ≤ |N (v, c)| ≤ (1 + γ2)nq w.h.p.

Proof. For each vertex in u 6= v we define a random variable

xu =

1 with probability q

0 otherwise

Let X = Σu∈V/{v}xu. E [X] = qn. X is distributed like |N (v, c)|. We can apply the
Chernoff bound:

Pr [X > (1 + γ2)qn] < e−
qnγ2

2
4

and

Pr [X < (1− γ2)qn] < e−
qnγ2

2
2

so by union bound the probability that the statement will not hold is smaller then

ε2 = n (k − 1)
(
e−

qnγ2
2

4 + e−
qnγ2

2
2

)

11

Set γ2 to be arbitrary small. Recall that q is a constant. Therefore ε2 tends to zero as
n grows.

We prove that for G ∈ Gn.k,d as defined in Section 1.3 the algorithm returns a legal
coloring with high probability. It suffices to prove that once the algorithm finds the
original coloring of S (we can assume it happens because there is an enumeration of all
legal coloring of S) then w.h.p the algorithm finds the original coloring of G.

The probability of failure is at most :

Pr [∃v ∈ V \ S s.t at least one of the Col (G) \ Col (v) colors is missing in S ∩N (v)]

By union bound

Pr [Failure] ≤ n (k − 1) Pr [given v ∈ V \ S the color r ∈ Col (G) \ Col (v) is missing in S ∩N (v)]

By Lemma 2.3

Pr [Failure] ≤ n (k − 1) (1− q (1 + γ2))|S|

If d and k are constants then 1 − q (1 + γ2) = b < 1 is constant. For any ε3 setting
p = 1

n

(
log 1

b
(n (k − 1)) + log 1

b

(
1
ε3

))
gives us :

Pr [Failure] ≤ n (k − 1) (1− q (1 + γ2))
(

log 1
b

(n(k−1))+log 1
b

(
1
ε3

))
(1−γ1)

≤ ε3

Here we use Lemma 2.2 to bound from bellow the size of S. Note that γ1 can be arbitrary
small. So Algorithm 1 fails to color the graph with probability at most ε1 + ε2 + ε3. If d
and k are constants then ε1 + ε2 tends to zero as n grows and ε3 can be arbitrary small.

2.2 A proof of Theorem 2.1 for d = c (log log n), where c < 2
log(4/3)

is a constant.

We assume for simplicity that k = 3 (the proof can be extended to other values of k).
The proof prerequisites are that the input graph is of typeGn,3,d where: d = c (log log n),
where c is some constant satisfying c < 2

log(4/3) . The proof is divided to two parts. In

12

the first part we show a lemma about the number of random sphere caps needed to
cover the sphere with high probability. In the second part we use this fact to show that
the algorithm colors the graph with high probability. We also show that if c > 2

log(4/3)

then the algorithm fails with high probability.

2.2.1 Sphere caps cover

In this section we prove that it is sufficient to sample a small set of sphere caps in order
to get a sphere caps cover. The following definitions and theorem are well known and
we use them later on.

Definition 2.4. (Range Space). A range space is a pair (X,R), where X is a set of
elements and R is a set of subsets of X.

Definition 2.5. (Vapnic and Chervonenkis (VC) Dimension). A range space (X,R)
shatters a set A ⊆ X if for every a ⊆ A there exists r ∈ R such that a = A ∩ r (we say
that r separates a). The VC-dimension of (X,R) is the size of the largest set it can
shatter. We denote it by DV.C ((X,R)).

Definition 2.6. (ε-net). Let (X,R) be a range space and let N ⊆ A ⊆ X. N is an
ε-net for A if ∀r ∈ R such that r ∩ A ≥ εA it holds that r ∩N 6= ∅.

The following theorem is due to Haussler and Welzl [8]:

Theorem 2.7. (ε-net theorem). Let (X,R) be a range space of VC-dimension DV C

and let A ⊆ X. If N is a random subset of A (each element of N is drawn uniformly
and independently) of size larger than max

(
4
ε

log
(

2
γ

)
, 8DV C

ε
log

(
8DV C
ε

))
then N is an

ε-net for A with probability at least 1− γ.

A proof of the last theorem can be found in Alon and Spencer [2].

Corollary 2.8. Consider the range space
(
Sd,

{
Ca (~v) |v ∈ Sd

})
. If N is a ε-net for Sd

and ε = µ (Ca) then ⋃x∈N Ca (x) = Sd.

Proof. For each ~v ∈ Sd there exists x ∈ N such that x ∈ Ca (~v) (by the definition of
the µ (Ca)-net). But in general x ∈ Ca (~v) ⇔ ~v ∈ Ca (x). And because this holds for
each ~v ∈ Sd then ⋃x∈N Ca (x) is a sphere cover.

Lemma 2.9. If a > 0 then DV C

(
Sd,

{
Ca (~v) |v ∈ Sd

})
≤ d.

13

Proof. It is a well known fact that the set of the half-spaces in Rd has VC-dimension
of d + 1, i.e DV C

(
Rd,

{{
x ∈ Rd| 〈x, v〉 ≥ b

}
|v ∈ Rd, b ∈ R

})
= d + 1. Let A be set

of n points in Sd (and hence also in Rd). We show that if the set of sphere caps(
Sd,

{
Ca (~v) |v ∈ Sd

})
shatters A then

(
Rd,

{{
x ∈ Rd| 〈x, v〉 ≥ b

}
|v ∈ Rd, b ∈ R

})
shat-

ters A ∪
{
~0
}
.

If z ⊆ A ⊆ A∪
{
~0
}
then there exists a sphere cap Ca (~v) that separates z therefore in Rd

we can separate z by
{
x ∈ Rd| 〈x,~v〉 ≥ a

}
(note that all the caps in

(
Sd,

{
Ca (~v) |v ∈ Sd

})
cannot contain ~0 since a > 0).

If z ⊆ A ∪
{
~0
}

and ~0 ∈ z then the set
(
A ∪

{
~0
})
/z has a sphere cap Ca (~v) that

separates it. Therefore in Rd we can separate z by
{
x ∈ Rd| 〈x,−~v〉 ≥ −a− ε

}
when ε

is sufficiently small.

This shows that

DV C

(
Sd,

{
Ca (~v) |v ∈ Sd

})
+ 1 ≤ DV C

(
Rd,

{{
x ∈ Rd| 〈x, v〉 ≥ b

}
|v ∈ Rd, b ∈ R

})
and the claim follows.

The following theorem is a corollary of Theorem 2.7, Corollary 2.8 and Lemma 2.9.

Theorem 2.10. Given a sphere cap Sd, a random set of sphere caps Ca (each sphere
cap center point is drawn uniformly and independently) of size larger than

max

(
4

µ (Ca)
log

(
2
γ

)
,

8d
µ (Ca)

log
(

8d
µ (Ca)

))

covers the sphere with probability at least 1− γ.

In appendix A we show a self contained alternative proof of a theorem similar to The-
orem 2.10, but with weaker bounds.

2.2.2 Geometric proof

We show that Algorithm 1 outputs a correct coloring with high probability if k = 3
and d (n) = c (log log n), where c is defined later. Set the size of S to be some large
enough multiple of log n. This is done by setting the appropriate value for p and and
using Lemma 2.2. We omit these details for simplicity.

14

Denote the original color classes red, blue and green. With high probability at least |S|6
vertices out of S are red (similar proof as in Lemma 2.2 and this will hold for for all the
colors with high probability). Denote them Sred. Assume that the algorithm has the
original coloring of S (we can assume it happens because there is an enumeration of all
legal coloring of S). Every v ∈ Sred implies that vertices in N (v) know that they are not
colored with red color. In order that Algorithm 1 will succeed the following property
must hold: every vertex in V/S that is not colored red has a red colored neighbor vertex
in S. If v ∈ Sred then each vertex that is not colored red whose corresponding vector is
in the sphere cap C 1

2
(−~v) will satisfy this property. Let coverred be defined as follows:

⋃
v∈Sred

C 1
2

(−~v)

If coverred covers the whole sphere this property holds. By Theorem 2.10 and Fact 1.8

s = max

 4(
3
4

)c log logn/2 log
(

2
γ

)
,

8c log log n(
3
4

)c log logn/2 log

 8c log log n(
3
4

)c log logn/2

random sphere caps suffice in order to cover the sphere with probability 1− γ. Since

(4
3

)c log logn/2
= (log n)−c log(4/3)/2

then
s = O

(
(log n)c log(4/3)/2 log log n

)
The size of the sampled set should not exceed O (log n) (otherwise Algorithm 1 running
time will not be a polynomial) therefore c log (4/3) /2 < 1 ⇒ c < 2

log(4/3) . One can see
that for these values of c we can set γ to be arbitrary small and (O (log n)) random
sphere caps form a cover with probability 1− γ.

If coverred , coverblue ,covergreen are all covering the sphere then Algorithm 1 will suc-
ceed, so by union bound on all the color classes the probability that Algorithm 1 fails
is at most 3γ.

The proof extends for any constant k. The only thing that changes is the constant c.

15

2.2.3 Algorithm 1 does not color Gn,k,d when d (n) is too large

We showed that if d (n) < 2
log(4

3) (log log n) then Algorithm 1 colors the graph with high
probability. Now we show that if d (n) > 2

log(4
3) (log log n) then Algorithm 1 will fail to

color the graph with high probability. Note that |S| = O (log (n)) otherwise the algo-
rithm’s running time would not be polynomial. We show that if d (n) > 2

log(4
3) (log log n)

and |S| = O (log (n)) then arbitrary v ∈ V/S has no neighbors in S.

Pr [The algorithm fails] = Pr [∃v ∈ V/S such that the algorithm cannot determine its color]

≥ Pr [vi ∈ V/S with no neighbors in S]

≥ (1− µ (a))|S| ≈ e−µ(a)O(1) log(n)

Now we use 1.8 and further observe that for our choice of d and c one has log (n) = e
d
c .

e−µ(a)O(1) log(n) = e−
1
2O(1)(1− 1

2
2)

d−1
2 e

d
c

= e−
1

2O(1) e
log(1−a2) d−1

2 + d
c

≈ e−
1

2O(1) e
d(log(1−a2) 1

2 + 1
c)

d (n) = c′ log (n). If log
(

3
4

)
1
2 + 1

c
< 0 ⇒ c > 2

log(4
3) then the whole term tend to 1,

which means that Algorithm 1 fails with high probability.

3 2-Neighborhood Algorithm

In this section we describe an algorithm for coloring G ∈ Gn,k,d with different parame-
ters. The algorithm is similar to an algorithm in Blum and Spencer [4]. We show the
following theorem

Theorem 3.1. Let d = c0
logn

log logn , where c0 is an arbitrary constant smaller than 1, and
let G ∈ Gn,3,d. Algorithm 2 legally colors G with high probability.

16

Algorithm 2
Input: A graph G.
Output: A k -coloring of the graph or a failure message.

1. Grouping: Let t be a parameter whose value will be determined later. For each
vertex v ∈ V let logical-capv be the set of vertices from G with more than t
common neighbors with v, i.e logical-capv = {u|N (u) ∩N (v) ≥ t}.

2. Merge step: Initially each one of the logical caps is referred to as a group.
Iteratively replace any two groups that intersect by a new group formed by their
union.

3. If after the merging stage the number of disjoint groups is k then color the graph
in the following way: every group has a unique color and a vertex’s color is
determined by the group that it belongs to. If the coloring is valid return the
coloring, otherwise return a failure message.

3.1 Proof plan for Theorem 3.1

Let [v̄1...v̄n] be the random vectors on the sphere used to build G ∈ Gn,k,d and let δ1, δ2

be arbitrary small constants. If t satisfies

(1 + δ2)nk − 2
k

µ
(
C 1
k−1

)
< t < (1− δ1)nk − 1

k
µ̌1 (3.1)

where µ̌1 = µ
(
CR

(
R
(
C 1
k−1

)
− 1

2R (C1−ε)
))

and ε = 1
d2 then with high probability over

of G ∈ Gn.k,d the following two lemmas hold.

Lemma 3.2. For every v ∈ V if ~u ∈ C1−ε (~v) and u has the same color as v in the
original coloring then u ∈ logical-capv.

Lemma 3.3. For every v ∈ V no vertex of G with a different color from that of v is
in logical-capv.

Using Lemma 3.2 and Lemma 3.3 we prove:

Lemma 3.4. The merge stage returns the original coloring.

In Section 3.5 we show that there exists t satisfying Equation 3.1.

17

3.2 Proof of Lemma 3.2

Proof. Let µ1 be the expected fraction of common neighbors of two vertices with an-
gular distance less than R (C1−ε). We show that µ̌1 ≤ µ1. Let ~vi, ~vj be two vec-
tors with angular distance less than R (C1−ε). When d (~vi,~vj) gets larger µ (∩) :=
µ
(
C 1
k−1

(−~vi) ∩ C 1
k−1

(−~vj)
)

gets smaller. Therefore assuming ~vj is on the edge of
C1−ε (~vi) results in a lower bound on µ (∩). µ (∩) is larger than the measure of the
largest sphere cap L that can be placed there. Note that R (L) = R

(
C 1
k−1

)
− 1

2R (C1−ε),
see Figure 2. Therefore k−1

k
µ1 ≥ k−1

k
µ
(
CR

(
R
(
C 1
k−1

)
− 1

2R (C1−ε)
))

= k−1
k
µ̌1.

Let us denote by Pr[Ē] the probability that there exist two vertices in the graph such
that: ~vj ∈ C1−ε (~vi), both of them colored by the same original color and they have less
than t common neighbors. t is smaller than (1 − δ1)nk−1

k
µ̌1 (recall that µ̌1 ≤ µ1). By

Union Bound Pr[Ē] ≤ n2 Pr[Ēi,j] where Ēi,j is the event that: ~vj ∈ C1−ε (~vi), both have
the same original color and they have less than (1− δ1)nk−1

k
µ̌1 common neighbors. By

applying the Chernoff bound it follows that Pr[Ēi,j] ≤ e−Ω(δ2
1
k−1
k
µ̌1n).

The probability that the lemma does not hold is at most err1 =
(
n2e−Ω(δ2

1
k−1
k
µ̌1n)

)
and

in Lemma B.6 we prove that err1 tends to zero as n grows.

.

Figure 2: B,C are the centers of the two big spheres. AC = BD = R(C 1
k−1

), BC =
R (C1−ε) and AD = 2R(L) and also AD = AC + BD − BC. Therefore 2R (L) =
2R

(
C 1
k−1

)
−R (C1−ε).

18

3.3 Proof of Lemma 3.3

Proof. Let vj,vi be two vertices that are colored by different original colors. Let k−2
k
µ2

be the expected fraction of vertices that are common neighbors of vj,vi. If ~vj = ~vi then
µ2 = µ

(
C 1
k−1

)
, therefore µ2 ≤ µ

(
C 1
k−1

)
. Denote by Pr[Ē] the probability that there

are two vertices in the graph such that: they have different original colors and they have
more then t common neighbors. t is larger than (1+δ2)nk−2

k
µ
(
C 1
k−1

)
. By union bound

Pr[Ē] ≤ n2 Pr[Ēi,j] where Ēi,j is the event that: vj, vi have different original colors and
they have more than (1 + δ2)µ2n common neighbors. By applying the Chernoff bound

it follows that Pr[Ē] ≤ n2e
−Ω
(
δ2

2
k−2
k
µ

(
C 1
k−1

)
n

)
.

The probability that the lemma does not hold is at most err2 = n2e
−Ω
(
δ2

2
k−2
k
µ

(
C 1
k−1

)
n

)
and similar proof as in Lemma B.6 can show that err2 tends to zero as n grows.

3.4 Proof of Lemma 3.4

This lemma shows that the merging process works with high probability. The proof
prerequisites is that k is constant. With high probability (1 − err3) the number of
vertices from each color is Θ(n

k
). The proof is similar to that of Lemma 2.2.

Consider the following random graph with Θ(n
k
) vertices: given a sphere Sd each vertex

is a random point (points are drawn uniformly and independently from the sphere
surface area) on it and u ∈ N (v) iff ~u ∈ C1−ε (~v). Followed by the previous lemmas it is
left to prove that performing a merging process on this graph ends with one component
i.e this graph is connected.

Assume towards a contradiction that after the merging process t > 1 groups remain.
Let P be the closest (in terms of angular distance) pair of vertices v1, v2 from different
groups. There exists a cap CR

(
d(vi,1,vi,2)

2

)
, B, centered between them (Area B in

Figure 3) that contains no other vertex of the graph. The event that exist CR
(
d(vi,1,vi,2)

2

)
cap that does not contain vertices is denoted by E.

19

&%
'$
����&%
'$
B

@
@I

A

v1 v2

Figure 3: No vertex can be in A.

Recall that ε = 1
d2 and note that d (v1, v2) > R (C1−ε) = arccos (1− ε). Otherwise v1, v2

are merged together. For each vertex v place a sphere cap centered at ~v with radius r
with the property 2r < arccos (1− ε). If these n

k
caps cover the sphere then there are

no CR
(
d(vi,1,vi,2)

2

)
caps that do not contain vertices (otherwise the sphere caps will not

cover the whole sphere).

Therefore by Lemma 3.5 E occurs with low probability. We conclude that t = 1.

Lemma 3.5. n
k
random caps with radius r < arccos(1−ε)

2 cover the sphere with high
probability.

Proof. By Lemma 2.10

n′ = max

(
4

µ (Ca)
log

(
2
γ

)
,

8d
µ (Ca)

log
(

8d
µ (Ca)

))

random sphere caps are needed in order to cover the sphere with probability 1 − γ,
where a = cos

(
1
2arccos

(
1− 1

d2

))
. If for arbitrary γ it holds that limn→∞

n′
n
k

= 0 then
for large enough n the probability that the lemma does not apply is err4 = γ. This
follows by Lemma B.7.

3.5 The existence of a threshold

By Equation 3.1 it follows that if µ̌1

µ

(
C 1
k−1

) > (1+δ1)
(1−δ2)

k−2
k−1 then there exists a threshold t.

Note that δ1, δ2 are arbitrary small so if µ̌1

µ

(
C 1
k−1

) tends to 1 as n grows then the claim

follows.

Note that µ̌1 = µ
(
CR

(
R
(
C 1
k−1

)
− 1

2R (C1−ε)
))

and ε = 1
d2 . So generally it is clear

that setting ε to be any function that tends to zero fast enough as n grows will suffice

20

to prove that µ̌1

µ

(
C 1
k−1

) tends to 1 as n grows as well. The tradeoff is that this function

cannot go too fast to zero otherwise Lemma 3.4 does not hold.

In order to evaluate µ̌1

µ

(
C 1
k−1

) we could try to use Fact 1.8 directly but the ratio of the

upper bound and the lower bound of the same sphere cap is
√
d. Therefore we use the

following lemma.

Lemma 3.6. If a < b then

S (Ca)− S (Cb) ≤ (b− a)S
(
Sd−1√

1−a2

)
+ V

(
Sd−1√

1−a2

)
− V

(
Sd−1√

1−b2

)
Proof. S (Ca)−S (Cb) can be upper bounded by a cylinder and an annulus. (b− a)S

(
Sd−1√

1−a2

)
is the surface area of the cylinder and V

(
Sd−1√

1−a2

)
−V

(
Sd−1√

1−b2

)
is the area of the annulus.

See Figure 4.

Figure 4: On the left we see a graphical representation of S (Ca) − S (Cb) and on the
right we see a graphical representation of (b− a)S

(
Sd−1√

1−a2

)
+V

(
Sd−1√

1−a2

)
−V

(
Sd−1√

1−b2

)
.

Note that by Fact 1.3 and Fact 1.4 S
(
Sd−1√

1−a2

)
, V

(
Sd−1√

1−a2

)
and V

(
Sd−1√

1−b2

)
have a

closed formula.

The existence of a threshold proof itself is technical and it can be found in the appendix,
Lemma B.1.

21

3.6 Summary

The probability that Algorithm 2 fails is at most err1 +err2 +err3 +err4 and we showed
this tends to zero as n grows.

4 Iterative coloring propagation algorithm

In this section we describe an algorithm for the coloring G ∈ Gn,3,d with d = c log n,
where c is an arbitrary positive constant that satisfies c ≤ c0 = − 1

log(sin(30◦)) ≈ 1.4426950.

The main idea is that given 3 vertices v1, v2, v3 with 3 different original colors we can
infer the color of any vertex u such that ~u ∈ C 1

2
(−~v1) ∩ C 1

2
(−~v2) ∩ C 1

2
(−~v3). This

is because regardless the color of u it will have two neighbors with different original
colors so it must have been assigned with the third color. As ~v1, ~v2, ~v3 are closer then
the measure of C 1

2
(−~v1)∩C 1

2
(−~v2)∩C 1

2
(−~v3) is larger (up to µ

(
C 1

2

)
) and if ~v1, ~v2, ~v3

are too far away then µ
(
C 1

2
(−~v1) ∩ C 1

2
(−~v2) ∩ C 1

2
(−~v3)

)
= 0. By enumerating all

the possible triplets of vertices in the graph we will find three vertices that are roughly
close and they have three different colors in the original coloring. Now we can color
vertices that are in C 1

2
(−~v1) ∩ C 1

2
(−~v2) ∩ C 1

2
(−~v3) and try to find new triplets (with

conditions as before) among them in order to color new vertices.

Algorithm 3
Input: A graph G.
Output: A 3 -coloring of the graph or a failure message.

1. For every triplet of vertices v1, v2, v3 do

(a) Set Col (v1) = 1,Col (v2) = 2 and Col (v3) = 3.
(b) Set the rest of the graph’s vertices as uncolored vertices.
(c) While there exists a vertex v with more than 2 colored neighbors do

i. If the colored neighbors of v have exactly 2 different colors, color v with
the remaining color.

ii. If the colored neighbors of v have 3 different colors abort the while loop.
(d) If all the vertices in G are colored return this coloring.

2. Return a failure message.

22

4.1 Notation

Let Sd be a sphere of radius 1 in Rd, centered at the origin. Fix ε > 0 to be arbitrarily
small and fix 0 < ε′ ≤ 2ε . Let C be the collection of caps Cx centered at x ∈ Sd, each
of radius 30◦ − ε. We assume throughout that ε < π/12.

4.2 Analysis of Algorithm 3

Definition 4.1. Given (d, r), we say that a graph G ∈ Gn,3,d is (r)-dense if every cap
of radius r contains at least one vertex from each color class.

Theorem 4.2. For every d, ε, Algorithm 3 legally colors every (d, 30◦− ε)-dense graph.

Before proving Theorem 4.2 we introduce the following definition.

Definition 4.3. Given (d, ε′) the infinite graph H has as vertices all x ∈ Sd, and (x, x′)
forms an edge if d(x, x′) ≥ 180◦ − ε′ .
Note that since ε′ > 0 then H is connected.

We now prove Theorem 4.2.

Proof. Algorithm 3 will pick three differently colored vertices in the cap Cx for some
x ∈ X. Let y ∈ X be a neighbor of x in H. Then all vertices in Cy will be colored
correctly by Algorithm 3, as any vertex in Cx is at distance at least 180◦−ε′−2(30◦−ε) ≥
120◦ from any vertex in Cy. Hence Cy also has three different colored vertices. The
coloring propagates to all caps in C because H is connected and because the graph is
(d, 30◦ − ε)-dense. As C cover the sphere, the whole graph is legally colored (by the
planted coloring).

It remains to compute for which values of n and d is G ∈ Gn,3,d likely to be dense.
Observe that Theorem 4.2 works for any value of ε > 0, and hence we may let ε tend
to 0. This is equivalent to requiring that every cap of radius 30◦ has vertices from the
three colors.

Lemma 4.4. (Density lemma). Let γ be an arbitrary small constant. If d < − 1
log(sin(30◦)) log n ≈

1.4426950 log n then with probability 1 − 3γ it holds that CR (~x, 30◦) contains vectors
that correspond to vertices from each original color class for every ~x ∈ Sd.

23

Proof. Assume that each color class has n
3 ± o (n) colors. This can be proved using the

Chernoff and the union bounds, we omit the details. If n
3 ± o (n) random sphere caps

CR (30◦) cover the sphere with high probability then by applying the union bound the
following holds for each color class. Every ~x ∈ Sd is contained in some C (~v, 30◦) where
v is in that color class and also ~v ∈ CR (~x, 30◦). It is left to verify that indeed n

3 random
sphere caps C1−ε cover the sphere with high probability. By Lemma 2.10

n′ = max

(
4

µ (CR (30◦)) log
(

2
γ

)
,

8d
µ (CR (30◦)) log

(
8d

µ (CR (30◦))

))

random sphere caps are needed in order to cover the sphere with probability 1− γ. By
Lemma C.1, for arbitrary γ it holds that limn→∞

n′
n
3

= 0.

5 Tools

5.1 Bounds on the intersection of two sphere caps

Given two sphere caps Cb (~v1) , Cb (~v2) at angular distance α < 90◦ between their cen-
ters we would like to estimate µ (∩, α, b) := µ (Cb (~v1) ∩ Cb (~v2)). Denote µ (∩, α) :=
µ
(
∩, α, 1

2

)
. DenoteHb (~vi) := {~x ∈ Rn | 〈~vi, ~x〉 = b}, in other wordsHb (~vi) is the hyper-

plane that defines Cb (~vi). Let x = ~v1+~v2
2 . Let x̄ = cx where c is some scalar satisfying

cx ∈ Hb (~v1) ∩Hb (~v2). For illustration see Figure 5.

Figure 5: The vectors x, x̄, ~v1, ~v2 in the special case where a = b = 1
2 and α = 60◦.

24

To bound µ (∩, α, b) from above we use a sphere cap that encloses the intersection area,
for illustration see Figure 6.

Figure 6: Bounding the intersection of sphere caps with a sphere cap.

Let z1 be the following sphere cap

z1 = C‖x̄‖

(
x̄

‖x̄‖

)

z1 encloses Cb (~v1) ∩ Cb (~v2). Therefore z1 surface area is larger than Cb (~v1) ∩ Cb (~v2)
surface area. Using standard trigonometry it follows that ‖x̄‖ = b

cos(α2) . Fact 1.8 implies
the following lemma.

Lemma 5.1. µ (∩, α, b) ≤ µ (z1) ≤ O (1)
(√

1−
(

b

cos(α2)

)2
)d

We define the complete sphere cap to be sphere cap of Bdr (compared to sphere cap that
was defined before as sphere cap of Sdr).

Definition 5.2. (Complete Sphere Caps). Let a ∈[0,1] and ~x ∈ Sd. A complete a-cap
centered at ~x is defined to be the set CCd

a,r (~x) = {~u ∈ Bdr : 〈~u, ~x〉 ≥ a}. When d and r
are known from the context we omit them and usually r = 1.

25

Figure 7: Illustration of Lemma 5.3

To bound µ (∩, α, b) from below we use the following region:

z2 = Hb (~v1) ∩ CCb (~v2)

Lemma 5.3. The volume of z2 is smaller than the surface area of Cb (~v1) ∩ Cb (~v2).

Proof. z2 is a d − 1 dimensional region which is contained in Hb (~v1) and therefore
∀x ∈ z2 it holds that 〈x,~v1〉 = 0. Let f : z2 −→ Cb (~v1) ∩ Cb (~v2) be defined as
follows f (~x) = ~x + cx ~v1, where c~x is a positive constant satisfying ‖f (~x)‖ = 1. Since
α < 90◦ than it holds that f (z2) ⊂ Cb (~v1) ∩ Cb (~v2). Let ~x1, ~x2 ∈ z2, it holds that
‖~x1 − ~x2‖ ≤ ‖f (~x1)− f (~x2)‖ and the claim follows. For illustration see Figure 7

The proof of the following lemma uses Lemma 5.3 and it can be found in Section D.1.

Lemma 5.4. µ (Cb (~v1) ∩ Cb (~v2)) ≥ O(1)
d

(√
1−

(
b

cos(α2)

)2
)d

Now we show bounds of intersection measure of two sphere caps of different size
Cb1 (~v1) , Cb2 (~v2) at angular distance α < 90◦ between their centers. Denote µ (∩, α, b1, b2) :=
µ (Cb1 (~v1) ∩ Cb2 (~v2)). Let D2 be the plane spanned by ~v1, ~v2. In this work we deal only
with the case that x̄ = Hb1 (~v1) ∩ Hb2 (~v2) ∩ D2 contained in the triangle ~0,~v1, ~v2. Let
R = ‖x̄‖2 and note that R is a function of b1,b2 and α.

26

Figure 8: Cb1 (~v1) and Cb1 (~v1) on the plane D2.

With similar arguments as in the proofs of Lemma 5.1 and in Lemma 5.3 the following
lemma can be proved:

Lemma 5.5. c′′

d1.5

(√
1−R2

)d
≤ µ (∩, α, b1, b2) ≤ c′

(√
1−R2

)d
It is left to calculate R = ‖x̄‖2. We define α1, α2 to be the inner angle between ~x and
~v1, ~v2 and we need to solve the following equations:

1. cos (α1) = b1
R

2. cos(α2) = b2
R

3. α1 + α2 = α

⇒ R = b1

cos
(
α− arccos

(
b2
R

))

⇒ R =
√√√√b2

2 + b2
2 (cotα)2 − 2b1b2

cosα
(sinα)2 + b1

2 1
(sinα)2

The solution can be verified using standard trigonometry, for illustration see Figure 8.

27

5.2 Geometric Routing

We define another type of graphs distribution Ḡ′n,3,d that is related to G′n,3,d.

Definition 5.6. (Ḡ′n,3,d Graph Distribution). The Ḡ′n,3,d graph distribution is defined
as follows: let N be the set of vertices. For each vertex v ∈ N let ~v a vector drawn
uniformly (and independently) from Sd. u ∈ N (v) if and only if ~u ∈ C 1

2
(~v) (rather

than ~u ∈ C 1
2

(−~v) in G′n,3,d).

It will be convenient to use the following definitions for the next section:

Definition 5.7. (K ′n,a,d Graph Distribution). The K ′n,a,d graph distribution is defined
as follows: let N be the set of vertices. For each vertex v ∈ N let ~v a vector drawn
uniformly (and independently) from Sd. u ∈ N (v) if and only if ~u ∈ Ca (−~v) .

K ′n,a,d is related to G′n,a,d. Kn,a,d, K̄
′
n,a,d are defined similarly to the way K ′n,a,d is defined

and they are related to Gn,a,d, Ḡ
′
n,a,d.

A nice property of G ∈ Ḡ′n,3,d that is likely to hold only when d is small enough is the
following:

Definition 5.8. (Geometric Routing). We say that a graph G ∈ Ḡ′n,3,d supports
Geometric Routing if any two vertices u, v ∈ G are either neighbors or u has a neighbor
w strictly closer (in terms of angular distance) to v. We also say that a graph G ∈ G′n,3,d
supports Geometric Routing if the graph Ḡ supports geometric routing, where Ḡ has
the same vertex set as G and u ∈ N (v) if and only if ~u ∈ C 1

2
(~v).

This definition is useful because of the following lemma:

Lemma 5.9. If G ∈ Ḡ′n,3,d supports geometric routing then G is connected.

Proof. The proof follows from Definition 5.8. If G supports geometric routing then for
every two vertices u, v there is a path in G that is connecting them. The path starts
in u. If u is a neighbor of v then the path ends at v. Otherwise the next vertex in
the path is a neighbor of u which is strictly closer (in terms of angular distance) to
v (by Definition 5.8 there exists such a vertex). The rest of the vertices on that path
are defined in a similar manner. Since G is a finite graph then eventually one of the
vertices of the path that was defined is a neighbor of v.

Let cGRD be a constant that satisfies the following: if d < cGRD log (n) then G ∈ Ḡ′n,3,d
supports Geometric Routing with high probability.

28

Lemma 5.10. cGRD ≥ 2
log(3

2) ≈ 4.93260 up to terms that tend to infinity as n grows.

Proof. Let G ∈ Ḡ′n,3,d , where d = c log n. Let u, v be two vertices with angular distance
α. If α > 60◦ then a vertex that satisfying w ∈ N (u) and d (v, w) < d (v, u) could be
placed only at

int = C 1
2

(~u) ∩ CR (~v, d (u, v))

The measure of int is lower bounded by µ (∩, 60◦). The expectation of the number

of vertices in this region is E = (n− 2)µ (∩, 60◦) ≈ n c′′√
d

(√
1−

(
1

2 cos(30◦)

)2
)d

=

n c′′√
d

(√
2
3

)d
. By using similar calculation as in Section F one can show that if 1 +

log
(

2
3

)
c
2 > 0 ⇒ c < 2

log(3
2) ≈ 4.93260 then E is some polynomial of n. By apply-

ing the union bounds on each pair of vertices and by applying the Chernoff bounds
one can show that G supports geometric routing with high probability and therefore
cGRD ≥ 2

log(3
2) ≈ 4.93260.

In the analysis of Algorithm 4 (that we present next) we use the following lemma:

Lemma 5.11. Let G ∈ G′n,3,d. If d < cGRD log n then G is connected with high proba-
bility.

Proof. Let u, v be any two vertices of G. If d (~u,~v) ≤ 60◦ then ∃w such that u, v ∈
N (w) . This follows since

µ
(
C 1

2
(−~u) ∩ C 1

2
(−~v)

)
= µ (∩, d (~u,~v)) ≥ µ (∩, 60◦)

and one can see that similar arguments as in Lemma 5.10 would apply this statement.
Let G1 be a graph that is a result of replacing the edge set of G with a new edge set:
u ∈ N (v) ⇔ d (~u,~v) ≤ 60◦. It is easy to see that if G1 is connected then G is also
connected. Because G1 has the same distribution as H ∈ Ḡ′n,3,d the proof follows from
Lemma 5.9.

6 3-Neighborhood Algorithm

To simplify the presentation we assume that k = 3. In this section we describe Algo-
rithm 4 for coloring graphs and show the following theorem:

29

Theorem 6.1. Let d = (cGRD − ε) log n, where ε is a small constant larger than 0, and
let G ∈ Gn,3,d. Algorithm 4 legally colors G with high probability.

Suppose that the random vectors on the sphere, denote them by [~v1...~vn], that were
used to build Gn,3,d are given as part of the problem’s input. For every vertex vi of the
graph define Logical-Capvi :=

{
vj|
(
〈~vi, ~vj〉 ≤ −1

2

)
∧ (vj /∈ N (vi))

}
. This set contains

only vertices that have the same original color as vi. Apply the merge step on these sets
(as defined in Algorithm 2). These groups behave like random spherical caps of radius
60◦ that contain vertices with the same original color. By applying similar arguments
as in Lemma 3.4 one can see that the merge step colors Gn,3,d with higher dimensions
than in Algorithm 2. This is because in Algorithm 2 the merge step uses a small logical
caps (C1−ε) and here these logical caps are much bigger (C 1

2
).

If there exists an algorithm for restoring [~v1...~vn] then we can color G ∈ Gn,3,d with high
probability. It seems that in order to restore [~v1...~vn] we can use SDP as in Equation 1.1.
Note, however, that because this SDP has the naive solution (as mentioned in the
introduction this can be found in Karger et al. [9], Lemma 4.1) and also any convex
combination between it and [~v1...~vn] then it is unclear how to find [~v1...~vn] using SDP
and in any other method. So instead of finding [~v1...~vn] we would like to determine the
following: given a vertex v find almost all the vertices laying in C 1

2
(−~v).

Definition 6.2. Closetv = {u ∈ V |N (u) ∩N (v) ≥ t}

Intuitively if t is large enough and u ∈ Closetv then ~u and ~v are close.

6.1 Algorithm description

Algorithm 4
Input: A graph G.
Output: A k -coloring of the graph.

1. Building Logical caps: For all v ∈ G :

(a) T 1
v ← {u ∈ V |N (u) ∩ Closet1v ≥ t2}

(b) T 2
v ← {v} ∪ (T 1

v /N (v))

2. Merging: For any two groups if T 2
v ∩ T 2

u 6= ∅ then merge them into one group
T 2
v ← T 2

v ∪T 2
u . Continue this process until no two groups share a common vertex.

30

Later we set t1,t2 and we prove that the algorithm returns a coloring with high probabil-
ity. We show that T 1

v contains almost all the original neighbors of v (vertices that were
neighbors of v before the modification). Therefore T 2

v contains almost all the original
neighbors of v who are in the same color as v. The algorithm’s running time is clearly
polynomial.

6.2 Proof of Theorem 6.1

Recall the notions and definitions of sphere caps intersections (see Section 5.1). Let
d = c log (n) where c is a constant satisfying c < cGRD.

Lemma 6.3. ∀ε′ > 0 ∃t1 such that with high probability for G ∈ Gn,3,d it holds
that ∀u, v if ~u ∈ C 1

2 +ε′ (~v) then u ∈ Closet1v and if ~u /∈ C 1
2

(~v) then u /∈ Closet1v .

Proof. Let f (ε′) = R
(
C 1

2

)
− R

(
C 1

2 +ε′
)
. Let G′ be the graph before the modification

and let v, u be arbitrary vertices.
For u ∈ C 1

2 +ε′ (~v) let t̂′1 (u, v) = |N (u) ∩N (v)| in G′, it holds that

E
[
t̂′1
]
> (n− 2) µ̌ (∩, 60◦ − f (ε′))

In order to get a lower bound on t̂′1 in G we can assume that u, v are not in the same
color in G and set t̂1 ≈ 1

3 t̂
′
1.

For u /∈ C 1
2

(~v) let ť′1 (u, v) = |N (u) ∩N (v)| in G′, it holds that

E
[
ť′1
]
< (n− 2) µ̂ (∩, 60◦)

In order to get an upper bound on ť′1 in G we can assume that u, v are in the same
color in G and set ť1 ≈ 2

3 ť
′
1.

Recall that d < c log (n). With similar calculations as in Lemma 5.10 it follows that
1
3 t̂
′
1 = O (1)nα and 2

3 ť
′
1 = O (1)nβ, where α, β are constants satisfying 0 < β < α.

Therefore by applying the Chernoff and the Union bounds one can show that for arbi-
trary small ε′ and large enough n it holds that t̂1 > ť1 for every set of vertices in the
graph. Therefore if ť1 < t1 < t̂1 then the proof follows.

Lemma 6.4. ∃ε′′, t1, t2 such that with high probability for G ∈ Gn,3,d it holds that
∀u, v if ~u ∈ C 1

2 +ε′′ (−~v) then u ∈ T 1
v and if ~u /∈ C 1

2
(−~v) then u /∈ T 1

v .

31

Proof. Let v be an arbitrary vertex and set ε′′ = 0.1. By applying the previous lemma
with ε′ = 10−6 we can assume that there exists t1 satisfying ∀u, v ~u ∈ C 1

2 +ε′ (~v)⇒ u ∈
Closet1v and ~u /∈ C 1

2
(~v) ⇒ u /∈ Closet1v . Therefore the quantityE [|N (u) ∩ Closet1v |]

can be lower/upper bounded as follows:
For ~u ∈ C 1

2 +ε′′ (−~v) let t̂2 (u, v) = |N (u) ∩ Closet1v |, it holds that

E
[
t̂2
]
≥ (n− 2)µ

(
∩, d (−u, v) , 1

2 ,
1
2 + ε′

)

≥ (n− 2)µ
(
∩, R

(1
2 + ε′′

)
,
1
2 ,

1
2 + ε′

)

≥ c′′√
d

(0.829156)d

Where the last inequality is by Lemma 5.5. For ~u /∈ C 1
2

(−~v) let ť2 (u, v) = |N (u) ∩ Closet1v |,
it holds that

E
[
ť2
]

= E
[∣∣∣N (u) ∩ Closet1v

∣∣∣] ≤ (n− 2)µ
(
∩, 60◦, 1

2 ,
1
2

)

≤ c′ (0.816497)d

Where the last inequality is by Lemma 5.5. Recall that d < c log (n) and therefore
c′′√
d

(0.829156)d , c′ (0.816497)d ∈ Ω
(
nO(1)

)
. By applying the Chernoff and Union bounds

one can show that for large enough n it holds that ť2 < t̂2 for every set of vertices in
the graph. Therefore if ť2 < t2 < t̂2 then the proof follows.

Set ε′′, t1, t2 as in the proof of the previous lemma.

Corollary 6.5. For every v it holds that
{
u|~u ∈ C 1

2 +ε′′ (−~v)
}
⊆ T 1

v ⊆
{
u|~u ∈ C 1

2
(−~v)

}
.

Let ε > 0 be minimal such that for d ≤ (cGRD − ε) log (n) it holds that G ∈ K ′n
3 ,

1
2 +ε′′,d is

connected with probability. Similar proof as in Lemma 5.11 can show that there exists
some small constant ε such that this graph is connected with high probability. Note
that ε is a function of ε′′ that satisfies limε′′→0 ε (ε′′) = 0.
In order to prove that the algorithm colors the graph with high probability it suffices
to prove that the merging process works. Lets look on a new graph L with the same

32

set of vertices as G but now (u, v) ∈ E (L) if u ∈ T 2
v before the merging process.

From Corollary 6.5 L is a disjoint union of 3 components Li each of which has a sub-
graph distributed the same as K ′n

3 ,
1
2 +ε′′,d. And since these are all connected with high

probability then the merging process finds the original coloring with high probability.

7 Uniquely colorable graphs

Recall Definition 4.1 of a (d, 30◦ − ε)-dense graph.

Theorem 7.1. If G ∈ Gn,3,d is a (d, 30◦−ε)-dense graph then G is uniquely 3-colorable,
where ε < 30◦.

7.1 Definitions

Definition 7.2. (The coloring equivalence relation). Given a graph G and a proper
coloring of it χ, we denote by CER (G,χ) the equivalence relation on vertices induced
by the coloring i.e (u, v) ∈ CER (G,χ)⇐⇒ Col (u) = Col (v).

Two legal coloring are considered equivalent if CER (G,χ) = CER (G,χ′) (namely
they are the same up to permuting the names of the colors).

7.2 Proof of Theorem 7.1

We assume toward a contradiction that we have two different 3-coloring of G : χ (the
planted coloring) and χ′ such that CER (G,χ) 6= CER (G,χ′).

It must be the case that there exists (u, v) /∈ CER (G,χ) but (u, v) ∈ CER (G,χ′).
Otherwise χ′ uses more colors then χ or CER (G,χ) = CER (G,χ′). We call such pair
(u, v) uniting vertices.

Lemma 7.3. Let G ∈ Gn,3,d be a (d, 30◦− ε)-dense graph, where ε < 30◦. If there exist
two different coloring for G: χ and χ′ then there exist uniting vertices (u, v) such that
~u,~v ∈ CR (~x, 30◦ − ε) for some ~x ∈ Sd.

Proof. Let (u′, v′) be the closest (in terms of angular distance) uniting vertices in the
graph. Suppose towards a contradiction that there is no CR (30◦ − ε) sphere cap con-
taining them both. Hence ~u′, ~v′ /∈ CR (mid, 30◦ − ε), where mid = ~u′+~v′

2 /
∥∥∥ ~u′+~v′2

∥∥∥. Since
33

G is a (d, 30◦)-dense graph there are 3 vertices c1, c2, c3 in CR (mid, 30◦ − ε) with dif-
ferent colors in χ. If ∃i (u′, ci) ∈ CER (G,χ′) then since CER (G,χ′) is an equivalence
relation then also (v′, ci) ∈ CER (G,χ′) and we got a contradiction since ci is closer to
v′ than u′. Hence ∀1 ≤ i ≤ 3 : (u′, ci) /∈ CER (G,χ′) but this also leads to a contradic-
tion because on the one hand 1 ≤ i ≤ j ≤ 3 : (ci, cj) /∈ CER (G,χ) but on the other
hand ∃i, j : (ci, cj) ∈ CER (G,χ′) otherwise χ′ uses too many colors.

Let C, ε, ε′ be defined as in Section 4.1 and let H be defined as in Definition 4.3. Now
we show a proof of Theorem 7.1

Proof. Suppose for the sake of contradiction that in addition to the planted 3-coloring
χ there is a different 3-coloring χ′. Then by Lemma 7.3 there is some cap Cx ∈ C with
two vertices u and v with different colors in χ but the same color in χ′. Any cap Cy ∈ C
with y a neighbor of x in H has at most two colors in χ′. This is because any vertex
in Cx is at distance at least 180◦ − ε′ − 2(30◦ − ε) ≥ 120◦ from any vertex in Cy. One
of the color classes of χ′ in Cy then includes two vertices with different colors in χ but
the same color in χ′. Hence due to the connectivity of H, every cap in C is colored by
at most two colors in χ′ and has two vertices u and v with different colors in χ but
the same color in χ′. Let col be a coloring of X defined as follows: color every x ∈ X
by the set of the colors of Cx according to χ′ (each set of colors in χ′ is a color class
in col). This gives a 6-coloring of X because every cap Cz ∈ C contains some vertices
of G and these vertices are colored by at least one color and by at most two colors.
Note that|{x ⊆ {c1, c2, c3} |0 < |x| < 3}| = 6. The coloring of X is also a 6-coloring of
H. Let x, y ∈ X be neighbors in H and let x1, x2 be the two vertices in Cx that are
colored with some color (say c1) in χ′ although they have different colors in χ. Because
as before any vertex in Cy is a neighbor of one of the vertices x1, x2 then every vertex
in Cy is not colored with c1 in χ′. Therefore the set of colors of vertices in Cy differs
from the set of color of vertices in Cx. Hence col is a legal 6-coloring of H. By the
results of Feige et al. [5], when ε is sufficiently small, then H is not 6-colorable which
is a contradiction, see Theorem E.1.

It remains to compute for which values of n and d is G ∈ Gn,3,d likely to be dense.
Observe that Theorem 7.1 works for any value of ε which satisfy the conditions of
Theorem E.1, and hence ε may be a function that tends to zero as n grows. This is
equivalent to requiring that every cap of radius 30◦ has vertices from the three original
colors. Therefore by Lemma 4.4 if G ∈ Gn,3,d with d = c log n, where c is an arbitrary

34

positive constant that satisfies c ≤ c0 = − 1
log(sin(30◦)) ≈ 1.4426950, then G is uniquely

colorable graph with high probability.

References

[1] N. Alon and N. Kahale. A spectral technique for coloring random 3-colorable
graphs. SIAM Journal on Computing, 26(6):1733–1748, 1997.

[2] N. Alon and J.H. Spencer. The probabilistic method, volume 73. Wiley-Interscience,
2011.

[3] S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes
for dense instances of np-hard problems. In Proceedings of the twenty-seventh
annual ACM symposium on Theory of computing, pages 284–293. ACM, 1995.

[4] Avrim Blum and Joel Spencer. Coloring random and semi-random k-colorable
graphs. Journal of Algorithms, 19(2):204–234, September 1995.

[5] Feige, Langberg, and Schechtman. Graphs with tiny vector chromatic numbers
and huge chromatic numbers. SICOMP: SIAM Journal on Computing, 33, 2004.

[6] U. Feige and J. Kilian. Heuristics for semirandom graph problems. Journal of
Computer and System Sciences, 63(4):639–671, 2001.

[7] U. Feige and G. Schechtman. On the optimality of the random hyperplane rounding
technique for max cut. Random Structures & Algorithms, 20(3):403–440, 2002.

[8] D. Haussler and E. Welzl. ε-nets and simplex range queries. Discrete & Computa-
tional Geometry, 2(1):127–151, 1987.

[9] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite
programming. Journal of the ACM (JACM), 45(2):246–265, 1998.

[10] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, 1972.

[11] D.E. Knuth. The art of computer programming (volume 2-seminumerical algo-
rithms) author: Donald e. knuth, publisher: Addison-wesle. 1969.

35

[12] S. Li. Concise formulas for the area and volume of a hyperspherical cap. Asian
Journal of Mathematics and Statistics, 4(1):66–70, 2011.

[13] H. Maehara. A threshold for the size of random caps to cover a sphere. Annals of
the Institute of Statistical Mathematics, 40(4):665–670, 1988.

[14] V.V. Vazirani. Approximation algorithms. springer, 2004.

[15] Avi Wigderson. A new approximate graph coloring algorithm. In STOC, pages
325–329, 1982.

A Sphere caps cover appendix

Lemma A.1. There exists a cover of Sd with sphere caps Cd
a containing at most 1

µ(Ca′)

caps where a′ = cos
(

1
2arccos (a)

)
.

Proof. Note that R (Ca′) = 1
2arccos (a) = 1

2R (Ca). The biggest number of caps Ca′
that could be placed on the sphere without intersecting is at most 1

µ(Ca′)
. For any

maximal non-intersecting arrangement of caps Ca′ on the sphere (in a sense that no
space for other cap) replacing the original caps with with caps of radius 2 times bigger
will cover all the sphere. a Point left uncovered in the original arrangement means
one could add a new cap Ca′ exactly in this point contradicting the maximality of the
arrangement.

Lemma A.2. Fixing a sphere cap Cd
a′ on the sphere the probability for a random cap

Cd
a to cover it is µ (Ca′) where a′ = cos

(
1
2arccos (a)

)
.

Proof. Fix a Cd
a′ cap on the sphere and denoted it by t. Any other cap Cd

a whose center
in t will cover it , and any other cap Cd

a whose center not in t will not cover it .

Lemma A.3. t random sphere caps Ca will cover the unit sphere with probability at
least 1− 1

µ(a′′) (1− µ(a′))t , where a′ = cos
(

1
2arccos (a)

)
and a′′ = cos

(
1
2arccos (a′)

)
Proof. We bound the probability of failure. Fix a deterministic cover of Ca′ of size 1

µ(Ca′′)

, by Lemma A.1. For every one of these caps the probability that it is not covered by
the random Ca caps is (1− Ca′), by Lemma A.2. So the probability it’s left uncovered
is (1− Ca′)t. The lemma follows using union bound.

36

In Maehara [13] certain threshold of the size of n random spherical caps was shown that
causes them to cover the all unit sphere. We note that Lemma A.3 is an alternative proof
of the case the sphere caps size passes the threshold using a more standard technique.
The difference is that the result here is general for any dimension where in Maehara
[13] the result is for dimension 3.

B Algorithm 2 Appendix

In the calculation through out the appendix we denote Int = cos
(
arccos

(
1

k−1

)
− arccos(1−ε)

2

)
.

Note that ε = 1
d2 .

Lemma B.1. If ε = 1
d2 and k is a constant then µ̌1

µ

(
C 1
k−1

) ≈ 1.

Proof. Denote Int = cos
(
arccos

(
1

k−1

)
− arccos(1−ε)

2

)
.

µ̌1

µ
(
C 1
k−1

) = µ (CInt)
µ
(
C 1
k−1

) = S (CInt)
S
(
C 1
k−1

) =

1−
S
(
C 1
k−1

)
− S (CInt)

S
(
C 1
k−1

) ≥

Using 3.6.

1−

(
Int− 1

k−1

)
S

Sd−1√
1−(1

k−1)2

+ V

Sd−1√
1−(1

k−1)2

− V (Sd−1√
1−(Int)2

)
S
(
C 1
k−1

) ≥

Using 1.9

1−

(
Int− 1

k−1

)
S

Sd−1√
1−(1

k−1)2

+ V

Sd−1√
1−(1

k−1)2

− V (Sd−1√
1−(Int)2

)

V

Sd−1√
1−(1

k−1)2

 =

37

=
V
(
Sd−1√

1−(Int)2

)

V

Sd−1√
1−(1

k−1)2

 −
(
Int− 1

k−1

)
S

Sd−1√
1−(1

k−1)2

V

Sd−1√
1−(1

k−1)2

 =

Using 1.3 and 1.4:

π
d−1

2

Γ(d−1
2 +1)

(√
1− (Int)2

)d−1

π
d−1

2

Γ(d−1
2 +1)

(√
1−

(
1

k−1

)2
)d−1 −

(
Int− 1

k−1

)
2π

d−1
2

Γ(d−1
2)

(√
1−

(
1

k−1

)2
)d−2

π
d−1

2

Γ(d−1
2 +1)

(√
1−

(
1

k−1

)2
)d−1

Since Γ(d−2
2 +1)

Γ(d−2
2) ≈

d−1
2 + 1 For k(n) = O (1) the last term is O (1)

(
Int− 1

k−1

) (
d−1

2 + 1
)

which tends to zero as n grows, see Lemma B.4.

=
π
d−1

2

Γ(d−1
2 +1)

(√
1− (Int)2

)d−1

π
d−1

2

Γ(d−1
2 +1)

(√
1−

(
1

k−1

)2
)d−1

=

 1− (Int)2

1−
(

1
k−1

)2

d−1

2

This term tends to 1 as n grows, see Lemma B.5 :

≈ 1

Lemma B.2. limd→∞

[
cos[arccos[1

k−1]− arccos[1−eps]
2]

1
2 + 1

d2

]
= 1 i.e Int ≈ 1

2 + 1
d2 .

Proof. The proof uses continuity of the trigonometric functions.

limd→∞

[
cos[arccos[1

k−1]− arccos[1−eps]
2]

1
2 + 1

d2

]
= 2limd→∞

[
cos

[
arccos

[
1

k−1

]
− arccos[1−eps]

2

]]
= 2cos

[
limd→∞

[
arccos

[
1

k−1

]
− arccos[1−eps]

2

]]
= 2

[
cos

[
arccos

[
1

k−1

]
− limd→∞

[
arccos[1−eps]

2

]]]
= 2

[
cos

[
arccos

[
1

k−1

]
− 0

]]
=k=3 1

38

Lemma B.3. limd→∞

(
1−(1

2 + 1
d2)

1−Int

)d
= 1

Proof. limd→∞

(
1−(1

2 + 1
d2)

1−Int

)d
= limd→∞e

d log
(

1−(1
2 + 1

d2)
1−Int

)

Now with the similar proof as Lemma B.2 we can see limd→∞

(
1−(1

2 + 1
d2)

1−Int

)
= 1 so using

limx→1
log(x)
x−1 = 1 we get:

= limd→∞e
d

(
1−(1

2 + 1
d2)

1−Int −1
)

= e
Limd→∞d

(
1−(1

2 + 1
d2)

1−Int −1
)

But

limd→∞d

1−
(

1
2 + 1

d2

)
1− Int − 1

 = 0

We apply l’Hôpital’s rule:

limd→∞

d
dd

(
1−(1

2 + 1
d2)

1−Int − 1
)

d
dd

1
d

limd→∞
Θ
(

1
d3

)
− 1
d2

= 0

Lemma B.4. limd→∞
(
Int− 1

k−1

) (
d−1

2 + 1
)

= 0.

Proof. limd→∞
(
Int− 1

k−1

) (
d−1

2 + 1
)

By LemmaB.2 (k=3).

= limd→∞
(

1
d2

) (
d−1

2 + 1
)
≤ limd→∞

d
d2 = 0

Lemma B.5. limd→∞

(
1−(Int)2

1−(1
k−1)2

) d−1
2

= 1.

Proof. limd→∞

(
1−(Int)2

1−(1
k−1)2

) d−1
2

= limd→∞

(
1−(Int)2

1−(1
k−1)2

)− 1
2

limd→∞

(
1−(Int)2

1−(1
k−1)2

)− d2
By continuity of the the functions involve:

39

= limd→∞

 1− (Int)2

1−
(

1
k−1

)2

− d2

= ∗

Now we replace Int by 1
2 + 1

d2 so we have to prove that:

limd→∞

(
1−(Int)2

1−(1
k−1)2

)− d2
(

1−(1
2 + 1

d2)2

1−(1
k−1)2

)− d2 = 1

but this hold by simple manipulation and using Lemma B.3. So we continue:

∗ = limd→∞

1−
(

1
2 + 1

d2

)2

1−
(

1
k−1

)2

− d2

k = 3

=
limd→∞

((4
3

)(
1−

(1
2 + 1

d2

)2))d− 1
2

=
(
limd→∞e

d

(
log(4

3)+log
(

1−(1
2 + 1

d2)2
)))− 1

2

=
(
e
limd→∞d

(
log(4

3)+log
(

1−(1
2 + 1

d2)2
)))− 1

2

Now we left to show :

limd→∞d

(
log

(4
3

)
+ log

(
1−

(1
2 + 1

d2

)2))
= 0

Let t = 1
d
then we get:

limt→0

(
log

(
4
3

)
+ log

(
1−

(
1
2 + t2

)2
))

t

we can use l’Hôpital’s rule

40

limt→0
−2

(
1
2 + t2

)
2t

1−
(

1
2 + t2

)2 = 0

Lemma B.6. limd→∞n
2e−Ω(δ2

1
k−1
k
µ̌1n) = 0

Proof. Substituting µ̌1 and using lower bounds on sphere caps if the following expression
tends to zero then the claim holds:

limd→∞n
2e
− k−1

k
n

(
1
2(1−int2) d−1

2
)

= 0

Note that d = c0
logn

log logn and therefore proving for d = logn
log logn is suffice.

e
limd→∞2 logn− k−1

k
n

(
1
2(1−int2) d−1

2
)

We have to prove:

limd→∞2 log n− k − 1
k

n
(1

2
(
1− int2

)
d−1

2

)
= −∞

limd→∞2 log n− limd→∞
k − 1
k

n
(1

2
(
1− int2

)
d−1

2

)

Using Lemma B.5 we can replace (1− int2) by 1−
(

1
k−1

)2
.

limd→∞2 log n− limd→∞
k − 1
k

n

(
1
2

(
1−

(1
k − 1

)2)
d−1

2

)

limd→∞2 log n− Ω
(
nc
′) = −∞

Where c′ is any constant strictly larger than 1.

Lemma B.7. If d = c logn
log logn then limn→∞

n′
n
k

= 0, where c < 1.

Proof. Note that n′ = max
(

4
µ(Ca) log

(
2
γ

)
, 8d
µ(Ca) log

(
8d

µ(Ca)

))
and that a = cos

(
1
2arccos

(
1− 1

d2

))
.

One can check that in terms of asymptotic behavior we only need to show that limn→∞
1

µ(Ca)
n

=
0. We use Fact 1.8

41

lim
n→∞

(
1− cos

[
1
2arccos

[
1− 1

d2

]]2)− 1
2d

n
=

lim
n→∞

2d/2dd
n

=

lim
n→∞

2c
logn

log logn/2c logn
log logn

c logn
log logn

n
=

lim
n→∞

2c
logn

log logn/2nc

n

Since c < 1 the claim follows.

C Algorithm 3 Appendix

Lemma C.1. Let c < − 1
log(sin(30◦)) be a constant, if d = c log n then limn→∞

n′
n
k

= 0.

Proof. Note that n′ = max
(

4
µ(CR(30◦)) log

(
2
γ

)
, 8d
µ(CR(30◦)) log

(
8d

µ(CR(30◦))

))
. One can

check that in terms of asymptotic behavior it suffices to show that limn→∞
1

µ(CR(30◦))
n

= 0.
We use Fact 1.8

lim
n→∞

(1− cos (30◦) 2)−
1
2d

n
=

lim
n→∞

(
sin (30◦)2

)− 1
2 c logn

n
=

lim
n→∞

n−
1
2 c log(sin(30◦)2)

n

Therefore if c log
(

1
sin(30◦)

)
< 1 ⇒ c < − 1

log(sin(30◦)) = 1.4426950 then the claim follows.

42

Figure 9: Proof of Lemma D.1

D Intersection of sphere caps appendix

Lemma D.1. Let Ca be a sphere cap of Sdr, where a > 0. Let Cb be a sphere cap of Sdr′,
where b > 0. If r < r′ and

√
r2 − a2 =

√
r′2 − b2 then the surface area of Ca is larger

than this of Cb.

Proof. See Figure 9

Corollary D.2. Let CCa be a sphere cap of Bd
r , where a > 0. Let CCb be a sphere

cap of Bd
r′, where b > 0. If r < r′ and

√
r2 − a2 =

√
r′2 − b2 then the volume of CCa is

larger than this of CCb.

Lemma D.3. Let a > 0. The ratio between the volume of Cd
a and the surface area of

Cd+2
a is O (1)

Proof. Let a > 0 and let x be (sin arccos a)2. Ic (a, b) is the regularized incomplete beta
function . By Li [12] The volume of a sphere cap Cd

a is given by

1
2

πd/2

Γ (d/2 + 1)Ix
(
d+ 1

2 ,
1
2

)

43

Again by Li [12] the surface area of a sphere cap Cd+2
a is given by

1
2

π(d+2)/2

Γ ((d+ 2)/2)Ix
(
d+ 1

2 ,
1
2

)

Therefore The ratio between the volume of Cd
a and the surface area of Cd+2

a is O (1).

D.1 Proof of Lemma 5.4

Proof. We show a lower bound on the volume of z2. Note that Hb (~v1) ∩ Bd is a d− 1
ball with a radius smaller than 1. Note that z2 is a sphere cap of Hb (~v1)∩Bd. Assume
that after some translation ~0 is the center of Hb (~v1) ∩ Bd. Let

(
Hb (~v1) ∩Bd

)′
be the

ball with the smallest radius that contains Hb (~v1) ∩ Bd in dimension d + 1. Let z′2 be
a cap of

(
Hb (~v1) ∩Bd

)′
with the same radius as z2.

Let V (z2) be the volume of the cap z2 and let S (z′2) be the surface area of the cap z′2,
by Lemma D.3.

V (z2) = O (1)S (z′2)

Let r be the radius of Hb (~v1) ∩ Bd. Let a be such that Cd−1
a (~x) = z2 for some vector

~x. Note that
√
r2 − a2 =

√
1− ‖x̄‖2 and by Lemma D.1

O (1)S (z2) ≥ O (1)S
(
Cd+1
‖x̄‖

)
= O (1)µ

(
Cd+1
‖x̄‖

)
S
(
Sd−1

)
By lemma 5.3

µ (Cb (~v1) ∩ Cb (~v2)) ≥ V (z2)
S (Sd)

≥
O (1)µ

(
Cd+1
‖x̄‖

)
S
(
Sd−1

)
S (Sd) = O (1)√

d
µ
(
Cd+1
‖x̄‖

)
and Fact 1.8

O (1)√
d
µ
(
Cd+1
‖x̄‖

)
≥ O (1)

d

√√√√√1−

 b

cos
(
α
2

)
2

d

44

E Uniquely colorable graphs Appendix

The size of the maximum independent set in G is denoted by α (G). Note that for every
graph G it holds that χ (G) ≥ n

α(G) . Let H be defined as in Section 4.2. The measure
of the maximum independent set in H (which is an infinite graph) is also denoted by
α (H) and it holds that χ (H) ≥ 1

α(H) .

Theorem E.1. If ε′ < 90◦ then χ (H)� 6.

Proof. Suppose for the sake of contradiction that χ (H) ≤ 6. By a simple variation
Theorem 3.5 in Feige et al. [5] α (H) ≤ µ (CR (ε′)) .

By a simple calculation µ (CR (ε′)) tends to zero as d grows. But if χ (H) ≤ 6 then
α (H) ≥ 1

6 which is a contradiction.

F A note on the dimension range

Assume that the dimension d of our graphs G′n,3,d (the graphs before the modification)
is c log (n). When c gets larger each vertex has fewer neighbors. We would like to
determine the values of c for whichG ∈ G′

n, 1
2 ,d

has isolated vertices with high probability.
Let v be a vertex in G it holds that E [|N (v)|] = (n− 1)µ

(
C1/2

)
.Note that by Fact 1.8

µ
(
C1/2

)
can be upper bounded by 1

2

(
1− 1

2
2) d−1

2 . Note that:

(n− 1)µ
(
C1/2

)
≤ n

1
2

(
1− 1

2
2) d−1

2

= n
1
1e

log(3
4) d−1

2 =

= n
1
2e

log(3
4) d2 e− log(3

4) 1
2 = n

1
2n

log(3
4) c2 e− log(3

4) 1
2

= e− log(3
4) 1

2
1
2n

1+log(3
4) c2

Therefore if 1 + log
(

3
4

)
c
2 < 0 ⇒ c > 2

log(4
3) = 6.95212 then by applying the Markov’s

inequality the probability that v is isolated tends to one.

We would like to determine the values of c for which G ∈ G′
n, 1

2 ,d
has no isolated ver-

tices with high probability. Note that by Fact 1.8 µ
(
C1/2

)
can be lower bounded by

45

O(1)√
d

(
1− 1

2
2) d−1

2 . Note that:

(n− 1)µ
(
C1/2

)
≥ n

O (1)√
d

(
1− 1

2
2) d−1

2

= n
O (1)√
d
elog(3

4) d−1
2 =

= n
O (1)√
d
elog(3

4) d2 e− log(3
4) 1

2 = n
O (1)√
d
nlog(3

4) c2 e− log(3
4) 1

2

= e− log(3
4) 1

2
O (1)√
d
n1+log(3

4) c2

Therefore if 1 + log
(

3
4

)
c
2 > 0 ⇒ c < 2

log(4
3) = 6.95212 then by applying the Chernoff

and the union bounds the probability that ∀v ∈ G there are neighbors tends to 1.

46

	Introduction
	Goals
	Notation and definitions
	The model
	Some properties of these graphs

	Results
	Related work

	One shot coloring propagation algorithm
	A proof of Theorem 2.1 for constant d
	A proof of Theorem 2.1 for d=c(loglogn), where c<2log(4/3) is a constant.
	Sphere caps cover
	Geometric proof
	Algorithm 1 does not color Gn,k,d when d(n) is too large

	2-Neighborhood Algorithm
	Proof plan for Theorem 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.4
	The existence of a threshold
	Summary

	Iterative coloring propagation algorithm
	Notation
	Analysis of Algorithm 3

	Tools
	Bounds on the intersection of two sphere caps
	Geometric Routing

	3-Neighborhood Algorithm
	Algorithm description
	Proof of Theorem 6.1

	Uniquely colorable graphs
	Definitions
	Proof of Theorem 7.1

	Sphere caps cover appendix
	Algorithm 2 Appendix
	Algorithm 3 Appendix
	Intersection of sphere caps appendix
	Proof of Lemma 5.4

	Uniquely colorable graphs Appendix
	A note on the dimension range

