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Abstract

We consider a two player zero sum game played between a cutter
and a chooser consisting of two rounds. Every instance of the game has
two parameters C < S known to both players. The cutter makes the
first move, and cuts a cake of size S to an arbitrary number of pieces,
each of size at most 1. The chooser then replies by choosing a subset of
the pieces whose total size is no greater than C. The chooser’s payoff
is the total size of pieces captured, and maximizing his payoff involves
solving the knapsack instance that results from the cutter’s move. We
study the optimal min-max cutter strategy.

While the set of possible cuts is infinite (as the size of the pieces are
real numbers), we show that for every (S,C) an optimal cutter move
exists, and that such a move may be found efficiently. Furthermore,
although making an optimal reply is NP-hard, the chooser is able to
efficiently find a response achieving the game’s minmax value regardless
of the cut chosen by the cutter.
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1 Introduction

1.1 Terminology and notation

Consider a game between two players - a cutter and a chooser.
Every instance of the game has two parameters - size of a cake S, and

the capacity of the chooser C.
The cutter makes a move M , cutting the cake to an arbitrary number of

pieces `1, ..., `m of positive size no greater than 1 s.t.
∑
`i = S. Without loss

of generality we assume that ∀i<j`i ≥ `j . We sometimes call the cutter’s
move a ”cut”. The chooser then makes a reply R, choosing a subset of
the pieces in M , whose sum v is at most C. We call the unused capacity
0 ≤ C − v the slackness achieved by R.

Value of the game: We denote by ω(S,C,M,R) the slackness for a given
move M and reply R. This is the game’s value, which the cutter wishes to
maximize, and the chooser to minimize.

Then, we denote by ω(S,C,M) = minR[ω(S,C,M,R)] the minimal
slackness for a given cut M achieved by the optimal response. Lastly, we set
ω(S,C) = supM [ω(S,C,M)], the minmax slackness of the game. Note that
tentatively, the last definition involves supremum rather than maximum be-
cause given a cake size S, there are infinitely many possible cuts, and there
may not be an optimal one. When S,C are clear from the context, we
sometime omit them, and discuss the slackness ω(M) instead of ω(S,C,M).

Given C and M , we call a reply R ⊆M feasible, if its sum is at most C.

1.2 Research questions

In this thesis, we wish to characterize the function ω(S,C), and the optimal
cuts achieving it. In particular:

1. Must there exist an optimal cut for every S,C?

2. When optimal cuts exist, characterize their form.

3. Design efficient algorithms for both players, guaranteeing for each a
value no worse than ω(S,C).

1.3 Related work and concepts

The cake cutting game we consider is a two player sequential zero sum game
of full information, meaning that neither player knows anything the other
does not.
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As discussed earlier, approaching this game, we do not know a-priori
that an optimal cut must exist. To show that it does, one might attempt to
use rudimentary calculus methods, such as 1860 Weierstrass’ extreme value
theorem, stating that a continuous function over a compact domain achieves
optimal values inside it. Using the standard Euclidean metric, a-priori the
set of cuts is infinite, but we show in Proposition 7 that it is sufficient to
consider the compact set of standard cuts, those in which the sum of every
two pieces is greater than 1.

However, even in that compact domain, the optimal slackness function
ω(S,C,M) is not continuous as a function of the cutter’s move M . For
example, for C = 0.75, S = 1.75, the cut M = {1, 0.75} has ω(S,C,M) = 0,
while the cut M ′ = {1−ε, 0.75+ε} has ω(S,C,M ′) = 0.75 for every ε < 0.25,
making that approach unfeasbile.

Several classical game theory theorems are commonly used to show the
existence of optimal min-max strategies in full information games. We re-
view some of them and explain why they do not suffice for our case.

One such theorem is the minimax theorem proved by Jon Von Neumann
in 1928[13]. The theorem discusses two player simultaneous zero sum games
with finitely many deterministic strategies. It defines mixed strategies to
be the assignment of probabilities to the set of deterministic strategies, and
picking one at random according to the resulting distribution. The theorem
states that in every such a game, there exist mixed strategies for both players
and some value V , such that playing these strategies, one player gains V and
the other −V , and neither may improve his score by replacing his strategy
by another.

A generalization of the minimax theorem for from 1951, called Nash’s
theorem[12], defines the ”Nash equilibrium” solution concept, which coin-
cides with the minmax strategy solution concept for zero-sum games. A pair
of strategies for both players is called a Nash equilibrium if neither player
has incentive to deviate from their strategy given the other player does not
deviate from his. Nash’s theorem states that in a game with finitely many
deterministic strategies, there must exist a Nash equilibrium if we allow
mixed strategies.

Neither the minimax nor the Nash theorems are applicable directly to
our game, since the set of strategies for the cutter is uncountably infinite.

Both the minimax and Nash’s theorems discuss simultaneous games,
while our game is sequential. This means, since every cutter move has an
optimal reply, that mixed strategies are not required in our game. Con-
sider a mixed cutter strategy containing two cuts M,M ′ with ω(S,C,M) ≥
ω(S,C,M ′). Removing M ′ and increasing M ’s probability to the sum of
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the two moves’ probabilities does not decrease the strategy’s expected value.
The chooser has no need for randomization either, since there are finitely
many replies once a cut was chosen, and for every such cut there is a deter-
ministic optimal reply.

1.3.1 Similar games

Colonel Blotto games first proposed in 1921 by Emile Borel[2], are a
class of two player zero-sum games in which two players simultaneously
distribute a limited number of soldiers over several battlefields, such that a
player wins each battlefield iff he has chosen more soldiers than the other.
The goal of each player is to maximize the number of battlefields won. While
this game does not necessarily have a pure Nash, since the number of possible
moves is finite, Nash’s theorem states that it has an equilibrium.

An equilibrium was found by Borel in 1938 for n = 3 battlefields as-
suming the two players have symmetric resources. This result had been
expanded to an arbitrary number of battlefields in 1950 by [7], still assum-
ing symmetric resources, and the general unrestricted number of battlefields
and asymmetric budgets case was handled in 2006 by [16].

The colonel blotto game has had many extensions over time. Continuous
games are suggested in [7], [11], [16] among others. Asymmetric budgets are
considered in [16], [11], [7] and [8], with the first three considering continu-
ous versions and the last a discrete version. With the exception of [11], all
of these had assumed that both players have the same valuation for every
battlefield. In [17], a payoff function giving values to certain subsets of bat-
tlefields was suggested, instead of summing the payoff from each battlefield
separately. All of these games assume a simultaneous model, while in our
game one player plays first and the other reacts to his action.

Our game can be thought of as a two round, continuous Blotto game
with asymmetric budgets, where the battlefields are the 2S pieces made
by the cutter, since Corollary 8 shows that we may assume without loss of
generality that the cuts contain at most 2S pieces, with some of the pieces
may have 0 size. The contest rule in our game is that a battlefield is won
if the chooser has placed forces of equal size or more in the battlefield, and
his payoff is the sum of −C and the sum of the pieces he chose. Note that
in our case the payoff function for every battlefield is symmetrical, although
determined by the cutter in his turn.

In 2009, Powell suggested a two round full information stochastic version
of the Blotto game[14], with a different contest and payoff functions than
ours. In Powell’s game two players have asymmetric valuations for the N
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battlefields, with the defender playing first, allocating defensive resources
to the sites, such that the more resources allocated to a site, the lower the
likelihood of a successful attack on it. The attacker plays second, picking
a single target maximizing his expected value, derived from his chances of
success in every site, and his valuation of a successful attack in each. Powell
finds a minmax to that game. While sharing some common characteristics
with our game, it differs from our game in both the contest rule and the
ability to choose several battlefields in the same turn.

Other sequential colonel Blotto games exist, such as [15] which discusses
a stochastic game where each player has a sequence of soldiers, according to
which they will be paired to fight, where in each turn the winning soldier
remains to fight the battle and the loser is taken out of the game. The
player who has loses all of his soldiers first loses. The outcome of every fight
between two soldiers is determined randomly with the stronger soldier more
likely to win the greater the difference between them is. This game varies
from our more significantly since it allows several non simultaneous contest
rounds, which depend on one another, and such that in each only a single
pair of soldiers compete.

Several other sequential Blotto games were considered, but none was
found to directly apply to our model.

Cut and choose (for fair division) A well known somewhat similar
problem is the problem of fair cake cutting, also known as envy-free cake
cutting, cut and choose, divide and choose etc. The problem discusses a
procedure for the partition of a heterogeneous resource (the cake, which
may have several different toppings) regarding which the two players have
different preferences.

The well known protocol is composed of two steps - the cutter first
makes a cut into two pieces, and the chooser picks the piece he prefers. This
protocol is envy free, since the chooser prefers the piece he chose over the
piece left and the cutter was able to cut the cake into pieces he considers to
have equal value and make sure he gets a piece at least as good as the one
picked by the chooser. This protocol had been expanded in various ways, to
an arbitrary number of players, preferences, player entitlement etc.

The protocol does not assure an efficient allocation. Considering a cake
with half vanilla topping and half chocolate coating, suppose that one player
is only interested in vanilla and the other only in chocolate, making two equal
pieces, each containing a quarter chocolate and one of vanilla gets each player
exactly half the value he could have achieved by an optimal allocation.
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In our game, as in that model, we discuss two players, each attempting
to maximize the other player’s slackness. However, in our model, we set
a maximal capacity for the chooser, to which he must abide but limited
the maximal piece size to prevent the cutter from trivially preventing the
chooser from getting any cake. The cutter, on the other hand picks the
piece sizes in an attempting to prevent the chooser from fully utilizing his
capacity.

Stackleberg games also known as Stackleberg competitions, are two
player sequential zero sum games, consisting of two turns[19]. In these
games, originally defined for their economic applications, the leader plays
first, deciding the amount he wishes to produce, and the follower plays
second, responding the the market leader’s choice. Stackleberg games cor-
responding to various combinatorial problems, such as shortest path[9] and
minimum spanning tree[3] are known to be APX-hard.

Unlike our game, the Stackleberg games are usually not zero sum. In
addition, in the usual Stackleberg games model, playing first allows the
market leader an advantage over the market follower, which is not true for
our game, where chooser commitment to the pieces he chooses before their
sizes are revealed gives the cutter an advantage.

1.3.2 Motivation - Interdiction problems

Our motivation originated in network interdiction problems, where two play-
ers interact over a flow network. One attempting to maximize the flow of
some commodity through it and the other removing edges from the network
in an attempt to minimize that flow. The interdictor is assumed to have
limited resources preventing him from cutting the network’s flow completely,
which he attempts to best utilize. In addition, some of the networks edges
are harder to remove than others, so a removal of some edges may cost less
than others.

Among the most fundamental results in the topic of flow networks is the
min-cut-max-flow theorem, proven independently in both [4] and [5] in 1956.
Given a flow network with source s, sink t and a set of intermediate nodes
V , the min-cut-max-flow theorem states that the max flow in a network is
equal its minimal capacity s-t cut.

Given a flow network and a flow, one might consider the concept the
residual network induced by the flow, the flow network composed of the
residual capacities in the original network’s edges. By maximizing the flow,
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and separating it into connected components, it is possible to find a minimal
cut in the original network.

That insight is of limited use to the interdictor, since the minimal cut
might not be unique, and the number of minimal cuts might even be expo-
nential in the size of the graph.

The maximum flow reduction problem has many static variations, some
discussed in [6]. One such problem is: given a flow network, and a target
maximum flow value F , find the cheapest set of edges for the investigator
to remove in order to decrease the maximum flow to at most F .

Among the algorithms described in [6] for this problem, are two polyno-
mial bi-criteria algorithms, which achieve a (1 + ε)∨

(
1 + 1

ε

)
approximation

for every ε > 0. That notation, defined in [6], means that these algorithms
either decrease the maximum flow value below the threshold F , using at
most 1 + ε of the optimal budget, or use at most the optimal budget for the
problem, while reducing the maximum flow value to at most

(
1 + 1

ε

)
of the

optimal maximum flow value.
In addition, [6] shows that finding exact solutions for this static problem

is NP-Hard, by showing reductions to it from both Knapsack and Clique
problems.

Our game may be seen as an instance of the interdiction problem in a
network of two nodes with 2S parallel edges between them, each with a
capacity of 1.

Some models of network interdiction games were discussed in the lit-
erature. One such model is was suggested in 1995 in [20] discusses a two
player game with an evader attempting to get from one point to another in a
given flow network without being detected and an interdictor, who attempts
to discover him by inspecting the graph’s edges. Another model suggested
in [18] involves numerous non-cooperative independent interdictors each at-
tempting to prevent different adversaries from traversing in a given flow
network.

2 Results

Definition 1 Consider three families of cuts:

• AE - Cuts composed of all equal pieces

• AO - Cuts composed of bSc pieces of size 1 and at most one piece of
size S − bSc if S > bSc

• mix-1-AE - Cuts composed of pieces of two sizes, one of which is 1
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And define canonical and semi canonical cuts so:

Definition 2 A cut is called canonical if it is either an AE or an AO cut.
A cut is called semi-canonical if it is either canonical or an mix-1-AE

cut.

Note that given S, there are at most O(S) possible canonical cuts and
O(S2) semi-canonical cuts.

Our main result is:

Theorem 3 For every S,C, an optimal cut exists, and it is semi-canonical.

From which we deduce the two corollaries:

Corollary 4 There exists a cutter algorithm finding for every S,C the op-
timal cut in time O(C · S2), and in particular polynomial time.

Corollary 5 There exists a chooser algorithm finding for every chosen cut
M and capacity C, a response achieving slackness of at most ω(S,C) in time
O(C · |M |2), and in particular polynomial time.

Which we prove in sections 6.1 and 6.3.

3 Proof approach

We wish to prove theorem 3. To do so, we initially restrict our attention to
standard cuts, those where no two pieces may be merged into a single piece.
This is justified by Proposition 7.

Then, we observe that a cut’s slackness makes it sufficient to consider
cuts where the difference between pieces is greater than it, meaning that
cuts with few piece sizes need to be considered.

In particular, whenever the slackness is at least 1
3 , at most two piece sizes

may be considered, since with three piece sizes, the sum of the least two piece
sizes is be lesser than 1

3 + 2
3 = 1, meaning that the cut may be standardized

to one without it. Then, with only two possible piece sizes, weight shifting
arguments between the two sets of pieces are easier to analyze, and we will
see that any cut may be reduced to a cut no worse than it belonging to a
limited set of simpler forms.

This means that it is sufficient to prove for every S > C that ω(S,C) ≥
1
3 . We show that is true for every C > 4

3 and S > C. For C ≤ 4
3 , the

slackness may be lesser than 1
3 , so a different argument is required. However,

restricting our attention to standard cuts, the number of pieces in feasible
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responses is limited to either one or two, making that case easy to analyze
separately.

Remark: note that the optimal cut need not be unique. Consider for
example S = 3.6, C = 2.2. Manual calculation will show that there are 8
possible semi-canonical cut candidates, and both cuts of 4 and 6 equal pieces
are optimal with slackness of s = 2.2− 1.8 = 0.4.

A more detailed outline of the proof approach is:

1. For C ≤ 4
3 , show that any cut can be replaced by a canonical cut no

worse than it.

2. For any cut M with slackness ω(M) ≥ 1
3 show that it can be replaced

by a semi-canonical cut with a no lesser slackness.

3. For S > C > 4
3 , show that there is always a cut M with slackness

ω(M) ≥ 1
3 . (This is not true for small C, for example ω(1, 1.5) = 0.25,

and it can be seen by separation to cases that this is the minimal
slackness) This is proven separately in four different subcases, the first
of which is composed of eight subcases itself.

(a) For C < S ≤ C + 7
3

(b) For C + 7
3 < S < 2C

(c) For S = 2C

(d) For S > 2C

4 Some informative observations

Consider the chooser’s role in the game. His problem, given a cut, is the
uniform knapsack problem, which is a well known NP-hard problem, as
discussed in section 6.2. However, the existence of an optimal reply is guar-
anteed, since the set of replies is finite.

Furthermore, checking the feasibility of a given set of pieces may be
difficult under some representations, for example, if the cake is cut into
pieces whose sizes are given as sums of square roots of rational numbers, it
is currently unknown whether such a decision is even in NP[1].

4.1 Standard cuts

Our first step in characterizing the problem is to define standard cuts:
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Definition 6 Given S,C, a standard cut is a partition
∑
`i = S s.t. `i +

`j > 1 for every i 6= j.

A useful observation is that the number of pieces required by the cutter
is at most twice the size of the cake.

Proposition 7 Given S,C, for every cut M , there exists a standard cut
M ′ s.t. ω(M ′) ≥ ω(M).

Proof. Given a cut which is not standard, merge pieces which sum to at
most 1 repeatedly, lowering the number of pieces by one at a time until a
standard cut is achieved. This process does not improve the chooser’s set
of replies, since reply to the new cut may be transformed into a reply for
the old cut, possibly by breaking some merged pieces back to their original
parts. �

Notice that since the average piece size in standard cuts containing more
than a single piece is greater that 0.5, it contains less than 2S pieces overall.

Corollary 8 Given S > 1, for every cut M , there exists a cut M ′ with no
lesser slackness s.t. |M ′| ≤ 2S.

4.2 Online version of the game

We define an online version of the game:

Definition 9 The online cake cutting game is a sequential game with a
cutter cutting pieces from a cake of initial size S at every turn, with the
chooser deciding for each piece whether he wants to pick it and decrease his
capacity accordingly or ignore it and use his capacity for future pieces.

While seemingly similar to our game, the online cake cutting game might
not have optimal cutter strategies.

Example 4.1 We will show that for S = 1.1, C = 1, an optimal cutter
strategy for the online game does not exist by showing that the chooser may
always pick an amount strictly greater than 0.5, while the cutter is able to
make the amount arbitrarily close to it.

For every small ε > 0, the cutter first cuts a piece of size `1 = 0.1−ε. He
then follows that piece by two pieces of `2 = `3 = 0.5+ ε

2 if `1 is ignored, and
by `′2 = ε, `′3 = 1 otherwise. For such a cutting strategy, the chooser may
gain at most max{0.5 + ε

2 , 0.1} = 0.5 + ε
2 , making it impossible to choose

significantly more than 0.5.
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On the other hand, the chooser can always make sure an amount strictly
greater than 0.5 may be chosen, by a strategy of waiting until a piece ` ≥
S − C is made, choosing it if ` > S

2 , and ignoring it and choosing all other
pieces otherwise. That strategy assures at least half the remaining cake is
chosen, and that is strictly greater than C

2 , as required.

4.3 Enforcing continuity by partitioning the set of moves

Given a cut composed of m pieces, there are 2m subsets of these pieces, and
there are 22

m
subsets of the power set of the m pieces. For every cut and

capacity, there is a set of subsets of the m pieces which are feasible. This
may allow the separation of cuts including m pieces to 22

m
classes, such that

cuts of each class have the same feasible subsets. Within any such class, the
value function is continuous, so we may attempt to find an optimal cut in
each, and since the number of classes is finite, deduce an optimal solution
for the original problem as well.

Note that these classes are not compact since the unfeasibility con-
straints are strict inequalities demanding that certain subsets’ sums are
strictly greater than the capacity. Therefore, the existence of an optimal
solution is not guaranteed by Weierstrass’ extreme value theorem in these
domains either.

In particular, we may observe examples of instances and classes where
such an optimal solution does not exist:

Example 4.2 Given m = 5, S = 4, C = 1.5, with the feasible subsets being
{{`1, `2}, {`1}, {`2}, {`3}, {`4}, {`5}}. Since `1+`3 > 1.5, we get that `1 > 0.5
and therefore `1 + `2 > 1. Therefore, any cut belonging to this class has
slackness strictly lesser than 0.5.

It may be seen that a slackness arbitrarily close to 0.5 may be achieved
by considering, for every 0 < ε < 1

10 , the cut:
Mε = {12 + 3ε, 12 + 3ε, 1− 2ε, 1− 2ε, 1− 2ε}
Clearly for every such ε, we get that the required subsets feasible, and the

optimal subset sums to 1 + 6ε, arbitrarily close to 1, as required.

5 Proof

5.1 Semi-canonical cuts are optimal when ω(S,C) ≥ 1
3

In this subsection, we will prove the following theorem:
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Theorem 10 Given S,C, if there is a cut M with ω(M) ≥ 1
3 , then the

optimal semi-canonical cut is also the optimal cut.

To do so, we first show that every cut M which is not an AO cut may
be assumed to have all of its pieces strictly greater than ω(M), and that the
difference between every two piece sizes must also be greater than ω(M).
This is be proved in Propositions 11 and 12 accordingly:

Proposition 11 If ω(M) ≥ `m, then there is a cut M ′ of slackness ω(M ′) ≥
ω(M) of either one of the following two forms:

1. Only m− 1 pieces.

2. bSc pieces of size 1 and one of size S − bSc.

For a cut M in which not all pieces have the same size, the minimum
nonzero difference between two pieces is denoted by δ(M). If all pieces are
of the same size, we define δ(M) = 1 (which turns out convenient for the
statement of Proposition 12).

Proposition 12 If δ(M) ≤ ω(M), then there is a cut M ′ of slackness
ω(M ′) ≥ ω(M) for which δ(M ′) > ω(M ′).

By Proposition 12, we get that a slackness ω(M) ≥ 1
2 , suffices, since we

only need to consider canonical cuts:

Theorem 13 If there is a cut M with slackness ω(M) ≥ 1
2 , the optimal

canonical cut is also the optimal cut.

When there exists a cut M achieving slackness ω(M) ≥ 1
3 , we get that

by Proposition 11, that it is sufficient to only consider cuts where there are
no pieces of size 1

3 or less. Furthermore, by Proposition 12, there are only
two piece sizes, a > b, with a > b+ ω(M) ≥ b+ 1

3 >
2
3 .

Consider such a cut. Let ta, ta be the number of pieces of sizes a, b
accordingly. Let r be an optimal reply, with ka pieces of size a and kb pieces
of size b. Let ρa = ka

ta
and ρb = kb

tb
.

We first show that ka, kb may be assumed to be unique:

Proposition 14 W.l.o.g., the optimal reply ka, kb may be assumed to be
unique.

Furthermore, the possible values of ka and kb are limited:
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Proposition 15 If ka ≥ 1 then kb ≥ tb − 1.

And finish the by handling the two cases ρa ≥ ρb and ρa < ρb:

Proposition 16 If ρa ≥ ρb then there is a canonical cut M ′ with ω(M ′) ≥
ω(M).

Proposition 17 If ρb > ρa then there is a semi-canonical cut M ′ with
ω(M ′) ≥ ω(M).

Thus completing the proof of Theorem 10.
We begin by proving Proposition 11, which stated that we may assume

wlog that any cut which is not an AO cut must have all pieces greater than
the slackness ω(M), and in particular have `m > ω(M).
Proof. Any optimal reply must contain `m, as otherwise it remains feasible
by adding `m to it.

Change the cut by shifting value from `m into other arbitrary eligible (of
size less than 1) pieces until one of the following two events occurs: either
`m disappears, or all other pieces are of size 1. This gives the new move
M ′ = {`′1, . . . `′m}, where possibly `′m = 0. We claim that ω(M ′) ≥ ω(M).
Suppose otherwise, that r(M ′) has lesser slackness than r(M).

• If `m ∈ r(M ′), then r(M ′) has even lesser slackness in M , implying
that in M its slackness is below 0. But then r(M ′) \ {`m} must have
been feasible in M and of slackness below ω(M), which is a contradic-
tion.

• If `m 6∈ r(M ′), then r(M ′) is feasible also in M , and hence of slackness
at least ω(M) in M . Then the reply r(M ′)∪{`m} is feasible in M and
has slackness at most ω(M ′) < ω(M), which is a contradiction.

�

And continue to prove Proposition 12, stating that the difference between
every two pieces of different sizes may be assumed wlog to be strictly greater
than the slackness.
Proof. For i < j let i and j be a pair of pieces satisfying 0 < `i−`j ≤ ω(M).

Assume first for simplicity that no other piece is of size `i and no other
piece is of size `j . Then change M to a new cut M ′ by replacing `i and

`j by `′i = `′j =
`i+`j

2 . We claim that ω(M ′) ≥ ω(M). Given a move M ,
denote by r(M) the set of optimal replies to it. Clearly, they all have the
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same slackness. Suppose to the contrary that a reply r′ ∈ r(M ′) has lesser
slackness than that of r(M)’s replies. Then for every reply r′ ∈ r(M ′) either
i ∈ r′ or j ∈ r′, but not both nor neither, as otherwise the slackness does
not change by the averaging.

• If i ∈ r′, then r′ has even lesser slackness in M , implying that it is
unfeasible in M . But then r′ ∪ {j} \ {i} must have been feasible in M
and have slackness strictly less than `i − `j ≤ δ(M) ≤ ω(M), which is
a contradiction.

• If j ∈ r′, then r′ is feasible also in M , and hence of slackness at least
ω(M) in M . Then the reply r(M ′)∪{i} \ {j} is feasible in M and has
slackness at most ω(M ′) < ω(M), which is a contradiction.

If M ′ satisfies ω(M ′) < δ(M ′) then we are done. otherwise, repeat
the above process with M ′. Since every repetition decreases the number of
distinct piece sizes, the process must end.

We now modify the proof such that it applies also if there are ni pieces
of size `i and nj pieces of size `j , with ni +nj > 2. Notice that our previous
argument applies to any weight shift between such pairs, and not only to
their averaging.

Let ρ =
ni`i+nj`j
ni+nj

. In this case we shift weights between pairs among

these pieces, but always with one member of the pair reaching ρ. After at
most ni+nj−1 steps all these pieces have size ρ, and the number of distinct
piece sizes decreases. �

The intermediate Theorem 13, showing that if ω(S,C) ≥ 1
2 canonical

cuts are optimal follows from Propositions 12 and 11:
Proof. Given any cut M = {`1, ..., `m} with ω(M) ≥ 1

2 , we show that there
is a canonical move whose slackness no lesser than M ’s.

If `m ≥ 1
2 , by Proposition 12 all pieces are equal since otherwise `1 >

`m + 1
2 > 1, which is a contradiction.

If `m < 1
2 , by Proposition 11, we get that either there exists a better

cut containing only m− 1 pieces, and repeat the argument for it, or an AO
canonical cut is better than M . �

Now, proving Proposition 14, stating that when ω(S,C) ≥ 1
3 , it may be

assumed wlog that the optimal replies are unique:
Proof. Let k′a > ka and k′b < kb be another optimal reply. Then change
the cut M to M ′ by replacing kb − k′b pieces of size b by k′a − ka pieces
of size a. The number of pieces decreases, but the optimal reply does not
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improve, because any reply (k∗a, k
∗
b ) to M ′ is either possible also in M , or

can be replaced by a reply (k∗a + ka− k′a, k∗b + kb− k′b) that is legal in M and
has the same value. �

We now prove Proposition 15 stating that if ka ≥ 1 then kb ≥ tb − 1:
Proof. Otherwise, in the optimal reply replace one a by two b. As 2b > a
this is an improvement. This new reply is feasible because the sum of the
new subset’s pieces is at most C − δ − a + 2b ≤ C + a − 3δ ≤ C because
δ ≥ 1

3 . �

Recall that we denoted the ratios ρa = ka
ta

and ρb = kb
tb

.
We now prove Proposition 16, stating that if ρa ≥ ρb then there is a

canonical cut M ′ with ω(M ′) ≥ ω(M).
Proof. If ρa ≥ ρb then necessarily kb < tb (as otherwise ρa = ρb = 1
implying A ≥ L), and ka > 0 (otherwise ρa = ρb = 0 means that C < 1,
while we assume in this part that C > 4

3), and hence by Proposition 15
we get that kb = tb − 1. Consider the canonical cut M ′ with ta + tb equal
pieces of size ata+btb

ta+tb
. A reply that captures ka + kb of them has a sum of

(ka + kb)
ata+btb
ta+tb

≤ aka + bkb.

No reply to M ′ can capture ka + kb + 1 pieces because then in M taking
kb + 1 = tb pieces of size b and ka pieces of size a was feasible, because
aka + btb ≤ (ka + tb)

ata+btb
ta+tb

holds for a ≥ b and ta ≥ ka. �

And Proposition 17:
Proof. Gradually shift weight from b to a. This lowers the value of the
reply (ka, kb). The process of shifting weights ends at a move M ′ satisfying
at least one of the following events.

1. a = 1. This is a semi-canonical move.

2. There is some new reply of value equal to the optimal reply (ka, kb).
This case is handled as in Proposition 14.

3. There is some new reply r′ of value C (that in M has value above
C). We claim that r′ has exactly one b item (meaning, an item of
value b in M). If r′ has no b item it was feasible in M (contradicting
our assumption that it was not feasible in M). If r′ has at least two
b items, replace two b items by one a item. (There is at least one
a item not in r′, as otherwise the value of r′ increased rather than
decreased by the shift.) This gives a reply r∗ that had value at least
C − 2b+ a = C − b+ δ > C − δ in M (because 2δ = 2a− 2b > 2

3 > b
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when δ > 1
3), contradicting the optimality of (ka, kb)). (Notice that r∗

has lower value than r′, and hence is feasible in M ′, and consequently
must have been feasible in M , as otherwise we could not have reached
M ′ in the shifting process.)

Hence r′ = (k′a, 1) and its value in M ′ is C. Given that the value of r′

in M is larger than C, necessarily ρ′b > ρ′a. That means that:

k′a
ta
<

1

tb
⇐⇒ tb · k′a − ta < 0 ⇐⇒ (b− a)(tbk

′
a − ta) > 0 ⇐⇒

⇐⇒ tbk
′
ab+ taa > tab+ tbk

′
aa ⇐⇒

⇐⇒ tbk
′
ab+ taa+

(
tak
′
aa+ tbb

)
> tab+ tbk

′
aa+

(
tak
′
aa+ tbb

)
⇐⇒

(
k′a + 1

)
(taa+ tbb) > (ta + tb)

(
k′aa+ b

)
⇐⇒ (k′a + 1) (taa+ tbb)

ta + tb
> k′aa+ b

We know that k′aa + b > C since it was not feasible before the shift,
meaning that cutting S into ta + tb equal pieces gets at most k′a pieces
chosen, and have value of at most ak′a = C − b.
If b ≥ 1

2 the proposition follows from Theorem 13. And if we have that
b < 1

2 , then tb = 1, and since ρb > ρa, we get kb = 1, and we have
already seen that k′b = 1. As r 6= r′ this implies that k′a = ka + 1, and
the value of r in M is smaller than C−a < C− 1

2 , and the proposition
follows from Theorem 13.

�

That completes the proof of theorem 10.
Remark on the inequality ω(S,C) ≥ 1

3 . For C ≤ 4
3 the inequality need

not hold (e.g., C = 3
4 and S = 3

2). For C > 3
2 equality is sometimes needed

(e.g., C = 2 and S = 5
2).

5.2 ω(S,C) ≥ 1
3
, when C ≥ 4

3

5.2.1 C = S − C

Proposition 18 Suppose that C = S − C and C ≥ 1. Then ω(S,C) ≥ 1
3 .

18



Proof. Let n be the smallest odd integer satisfying n ≥ S. Cut S into n
equal pieces, each of size x = S

n . Then the slackness is S
2n . We are done

unless S
n < 2

3 . Given that S = 2C ≥ 2, the only case where S
n < 2

3 is
when 3 < S < 10

3 . But in this case, the max-1 move ensures slackness of
C − (S − 2) = 2− C = 2− S

2 > 2− 5
3 = 1

3 as required. �

The condition C ≥ 1 is needed above. For C = 3
4 and S = 3

2 we have that
ω(S,C) = 1

4 since there must be two pieces in every standard cut, and the
lesser one can be chosen, so the slackness can be at most C− (S−1) = 0.25.

5.2.2 C < S − C

Proposition 19 Suppose that S − C > C, and C ≥ 4
3 . Then ω(S,C) ≥ 1

3 .

Proof. Let c = dCe and `1 = C
c . Notice that 1 ≥ `1 ≥ 2

3 .
Let integer n1 ≥ 2c be such that S = n1`1 + y1 with 0 < y1 ≤ `1.
We separate into two cases:

Case 1 (n1 ≥ S)
In this case, we may cut S into n1 equal pieces.

At most c− 1 pieces are chosen since:

c · S
n1

=
cn1`1 + cy1

n1
= C +

cy1
n1

> C

So that cut ensures a slackness of:

ω(S,C) ≥ C−(c−1)
S

n1
= (c−1)

n1`1 + y1
n1

= C−`1+
c− 1

n1
y1 < C−`1

2
≤ C−1

3

Case 2 (n1 < S)
Let `2 = C

c+1 . If `2 ≥ 2
3 then the above argument works because

n2 > n1 ≥ bSc.
The only cases where `2 <

2
3 are the following:

Case 2.1 (3 ≤ C < 10
3 )

Then necessarily n1 ≥ S. Given that c = 4 (here we take c = 4
even if C = 3) and n1 ≥ 2c, the worst case is when n1 = 8 and
S = 9

4C < 15
2
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Case 2.2 (2 ≤ C < 8
3)

If C ≤ 18
7 then necessarily n1 ≥ S (here we take c = 3 even if

C = 2). When 18
7 < C < 8

3 and n1 < S then necessarily the
max-1 move ensures ω(S,C) ≥ 1

3

Case 2.3 (4
3 ≤ C < 2)

If C ≤ 8
5 then n1 ≥ S. When 8

5 < C ≤ 16
9 and n1 < S then

necessarily the max-1 move ensures ω(S,C) ≥ 1
3 .

Hence it remains only to consider the case that 16
9 ≤ C < 2.

Let x = C/2, let n be such that (n−1)x ≤ S < nx. Observe that
n ≥ 5. We may assume that S > C+n− 7

3 . Otherwise either take
n pieces (if they fit) or n ones and the remainder. The optimal
response is 1 plus the remainder, which is at most C − 1

3 .

The remaining is proven separately for two cases:

Case 2.3.1 (5 ≤ n ≤ 8)
Cut S into n + 2 pieces. The optimal response cannot take
3 pieces, since:
3 S
n+2 >

3C+3n−7
n+2 ≥ 3n+6−7

n+2 ≥ 3 − 7
n+2 ≥ 2, where the last

inequality holds for n ≥ 5, which we stated to hold earlier.
The value of 2 pieces is at most 2 S

n+2 ≤
n
n+2C < C − 1

3
where the last inequality holds for n ≤ 8, and when n = 9
for C ≥ 11

6 (if n = 9 and C < 11
6 , cut into n+ 1 pieces).

Case 2.3.2 (8 < n)
We have that S > 6. In this case let n be the smallest such
that 2n

3 > S. Cut S into n pieces. A response can capture
only 2 pieces, giving at most ω(S,C) = C− 4

3−
1
9 = C− 13

9 ≥
1
3 .

�

5.2.3 C > S − C and S − C > 7
3

Let b = dS − Ce and x1 = S−C
b .

Let integer n1 ≥ 2b+1 be such that S = n1x1−y1 with 0 < y1 ≤ x1. Cut
S into n1 equal pieces. Then the best reply takes n1−b−1 pieces for a value of
(n1−b−1)n1x1−y1

n1
= (n1−b−1)x1− n1−b−1

n1
y1 = C−x1+ b+1

n1
y1 ≤ C− b

2b+1x1.

When S−C > 3 (and also when S−C = 3) then b ≥ 4 and x1 ≥ 3
4 , implying

that omega ≥ 1
3 . Likewise, when 7

3 ≤ S − C < 3 taking b = 3 implies that
ω ≥ 1

3 .
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5.2.4 C > S − C and S − C ≤ 7
3

Let δ = S − C. For a quantity M ≥ 0 we let Mf denote its fractional part,
namely, Mf = M − dMe.

Let us start with a proposition describing the cases which are handled
by the AO cut.

Proposition 20 If 0 < δf ≤ 2
3 and 1

3 ≤ Cf < 1, then there is a cut M that
assures that ω(M) ≥ 1

3 .

Proof. The move is bSc items of size 1, and one item of size Sf . �

Case 1 (δ ≤ 1
2)

Proposition 20 implies that k ≤ C ≤ k + 1
3 for some integer k ≥ 2

(because C > 4
3), and consequently S < k + 1.

Cut S into k + 1 equal pieces. The optimal reply captures at most k
pieces. Hence

ω(C+δ, C) = C− k

k + 1
(C+δ) =

C

k + 1
− kδ

k + 1
≥ k

k + 1
−1

2

k

k + 1
=

k

2(k + 1)
≥ 1

3

because c ≥ k, δ ≤ 1
2 and k ≥ 2 accordingly.

Case 2 (1
2 < δ ≤ 2

3)
Proposition 20 implies that k ≤ C ≤ k + 1

3 for some integer k ≥ 2
(because C > 4

3), and consequently k + 1
2 < S ≤ k + 1.

Consider two cuts M1,M2. In M1 there are k+ 1 equal pieces. In M2

there are 2k + 1 equal pieces (each of size strictly greater than 1
2). If

in M2 the optimal reply captures only 2k − 1 pieces then ω(M2) ≥
2

2k+1S − δ > 1− 2
3 = 1

3 and we are done. Hence we may assume that

C ≥ 2k
2k+1S. But then in M1, since at least one piece would be missed,

the slackness is

ω(M1) ≥
2kS

2k + 1
− kS

k + 1
=

kS

(2k + 1)(k + 1)
>

(2k + 1)k

2(2k + 1)(k + 1)
=

k

2k + 2
≥ 1

3

because S > k + 1
2 , and k ≥ 2.

Case 3 (2
3 < δ ≤ 1)

Since C ≥ 4
3 , we get that S > 2.
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Let integer k be such that S
k+1 < δ ≤ S

k . (Such a k exists since

S > δ > 0) Hence C = S − δ ≥ k−1
k S. Cut S into k + 1 equal pieces.

(This is feasible since S
k+1 < δ ≤ 1) The optimal reply captures k−1

k+1S.

Hence ω(S,C) ≥ k−1
k S − k−1

k+1S = k−1
k(k+1)S ≥

k−1
k+1δ.

For k ≥ 3 we have ω(C + δ, C) ≥ 1
3 because δ ≥ 2

3 .

However, if k < 3, k = 2 because k + 1 > S
δ ≥ S > 2, and therefore

S < 3δ ≤ 3. Three equal pieces gets at most one piece, of size at
most 1 chosen, and ω(C + δ, C) ≥ C − 1 ≥ 4

3 − 1 = 1
3 as required.

Case 4 (1 < δ ≤ 4
3)

Proposition 20 implies that k ≤ C ≤ k + 1
3 for some integer k ≥ 2

because C > 4
3 , and consequently k + 1 < S ≤ k + 5

3 .

Cut S into k+ 2 equal pieces. Since 1 < δ, the optimal reply captures
only k of them. Therefore, the slackness is at most:

ω(C+δ, C) = C− k

k + 2
(C+δ) =

2C

k + 2
− kδ

k + 2
≥ 2k

k + 2
− 4k

3(k + 2)
=

2k

3(k + 2)
≥ 1

3

because k ≤ C, δ ≤ 4
3 , and k ≥ 2.

Case 5 (4
3 < δ ≤ 3

2)
Proposition 20 implies that k ≤ C ≤ k + 1

3 for some integer k ≥ 2
(because C > 4

3), and consequently k + 4
3 < S ≤ k + 11

6 .

This is handled separately in 3 different subcases:

Case 5.1 (k ≥ 4)
Cut S into k + 2 equal pieces. Since δ > 1, the optimal reply
captures only k pieces, giving:

ω(C+δ, C) = C− k
k+2(C+δ) = 2C

k+2−
kδ
k+2 ≥

2k
k+2−

3k
2(k+2) = k

2(k+2)

Since k ≥ 4, we get that ω(C + δ, C) ≥ 1
3 as required.

Case 5.2 (k = 3)
Notice that S ≤ 3 + 1

3 + 3
2 < 5, S > 3 + 4

3 > 3.5 and C ≤ 10
3 .

7 equal pieces get us the required difference, since at least 3 pieces
are missed as:

5S

7
>

5C

7
+

5

7
· 4

3
=

5C

7
+

2

7
· 10

3
≥ 5C

7
+

2

7
· C = C

And therefore:

ω(C+δ, C) = C−4S

7
≥ C−4C

7
−4

7
·3
2

=
3C

7
−6

7
≥ 3 · 3

7
−6

7
=

3

7
>

1

3
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Case 5.3 (k = 2)
Notice that S ≤ 2 + 1

3 + 3
2 < 4, and since δ > 1, four equal pieces

get S
2 chosen.

If 3
5S ≤ C, then these four equal pieces would do since:

ω(C + δ, C) = C − S
2 ≥ C −

5
6C = C

6 ≥
2
6 = 1

3

If 3
5S > C, then 5 equal pieces would do, since:

ω(C + δ, C) = C − 2
5S ≥ C −

2
5C −

6
10 = 3

5C −
3
5 ≥

3
5 >

1
3

Case 6 (3
2 < δ ≤ 5

3)
Proposition 20 implies that k ≤ C ≤ k + 1

3 for some integer k ≥ 2
(because C > 4

3), and consequently k + 3
2 < S ≤ k + 2.

Case 6.1 (k ≥ 4)
Consider two cuts M1,M2, one of 2k+3 equal pieces, and another
of k + 2 equal pieces.

If 2k
2k+3S > C, we get the required slackness by 2k+3 equal pieces,

since at least 4 pieces would be missed and:

ω(C + δ, C) > C − (S − 2) = 2− δ ≥ 1
3

Otherwise, 2k
2k+3S ≤ C and considering k + 2 equal pieces we see

that at most k may be chosen (since δ > 1), and therefore:

ω(C + δ, C) ≥ 2k
2k+3S −

k
k+2S = 2k2+4k−2k2−3k

(2k+3)(k+2) S >
k(k+ 3

2
)

(2k+3)(k+2) =
k

2(k+2) ≥
4

2(4+2) = 1
3

because S ≥ k + 3
2 and k ≥ 4.

Case 6.2 (k = 2)
A cut of four equal pieces would get 2 pieces missed since δ > 1.
If that is insufficient we get:

S

2
> C − 1

3
⇐⇒ C

2
+
δ

2
> C − 1

3
⇐⇒ δ > C − 2

3

And that means the cutting to 5 equal pieces would get at least
3 missed, since:

3S

5
=

3C

5
+

3δ

5
>

3C

5
+

3

5
(C − 2

3
) >

6

5
C − 2

5
> C

And that is sufficient since:

ω(C + δ, C) ≥ C − 2S

5
=

3C

5
− 2δ

5
≥ 3

5
· 2− 2

5
· 5

3
=

6

5
− 2

3
>

1

3
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Case 6.3 (k = 3)
A cut of seven equal pieces would get at least 3 missed since:

2S

7
=

2C

7
+

2δ

7
≤ 2

7
· 10

3
+

2

7
δ =

5

7
· 4

3
+

2

7
δ < δ

And that is sufficient since:

ω(C + δ, C) ≥ C − 4S

7
=

3C

7
− 4δ

7
≥ 3 · 3

7
− 20

21
=

7

21
=

1

3

Case 7 (5
3 < δ ≤ 2)

Observe that our assumption that C ≥ 4
3 implies that S > 3.

Let integer k be such that 2
k+1S < δ ≤ 2

kS. (Such a k exists since

0 < δ < 2S) Hence C = S − δ ≥ k−2
k S. Cut S into k + 1 equal

pieces. (That is feasible since S < δ
2(k+1) ≤ k+1) The optimal reply

captures k−2
k+1S by the definition of k. Hence

ω(C + δ, C) ≥ k − 2

k
S − k − 2

k + 1
S =

k − 2

k(k + 1)
S ≥ k − 2

2(k + 1)
δ

Case 7.1 (k ≥ 4)

ω(C + δ, C) ≥ k − 2

2(k + 1)
δ ≥ 4− 2

2(4 + 1)
δ =

1

5
δ >

1

3

Case 7.2 (k < 4)

Then since 2
k+1S < δ, we get S < δ(k+1)

2 ≤ k+1, and since 3 < S,

we get k = 3, 3 < S ≤ 4 and 2S
4 < δ.

This means that four equal pieces would get at most one chosen,
and by our assumption:

ω(C + δ, C) ≥ C − 1 >
4

3
− 1 =

1

3

Case 8 (2 < δ ≤ 7
3)

Proposition 20 implies that k ≤ C ≤ k + 1
3 for some integer k ≥ 2

(because C > 4
3), and consequently k + 2 < S ≤ k + 8

3 .

Cut S into k+ 3 equal pieces. Since δ > 2, the optimal reply captures
at most k of them, and therefore:

ω(C+δ, C) ≥ C− k

k + 3
(C+δ) =

3C

k + 3
− kδ

k + 3
≥ 3k

k + 3
− 7k

3(k + 3)
=

2k

3(k + 3)
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Case 8.1 (k ≥ 3)

ω(C + δ, C) ≥ 2

3
− 6

3(k + 3)
=

2

3
− 2

k + 3
≥ 1

3

Case 8.2 (k = 2)
By the same cut and using our assumption that S − C ≤ C we
get that δ ≤ C. Hence:

ω(C + δ, C) = C − 2

5
(C + δ) =

3C

5
− 2δ

5
≥ C

5
≥ 2

5
>

1

3

5.3 Canonical cuts are optimal for C ≤ 4
3

We would now prove that canonical cuts are optimal for C ≤ 4
3 :

Proposition 21 Canonical cuts are are optimal for C ≤ 4
3 .

To prove these remaining cases we begin with a proposition:

Proposition 22 Given S > C, if there exists a cut assuring that at most
one piece would be chosen, there exists an optimal canonical cut.

Proof. Notice that any standard cut at most one piece to be chosen is
superior to any cut allowing two pieces or more to be chosen, since the
former gets at most 1 chosen, and the latter strictly more than 1.

We may assume that the cut is standard, since if after standardization
two pieces may be chosen, at least two (the ones which composed them)
pieces could have been chosen originally as well.

Let m be the number of pieces in it. Note that 2S
m > C, since otherwise,

the smallest two pieces could have been chosen. If S
m > C, we are set, since

m equal pieces would get nothing chosen, and be optimal as required.

Case 1 (C ≥ 1)
In this case, the greatest of the pieces would be chosen, so the cut-
ter would be better off minimizing the greatest one. That would be
achieved by making m equal pieces. (Making the optimal m-pieces cut
the m-equal pieces cut)

Case 2 (C < 1)
This case is a little more complicated. First notice that the pieces may
be separated into two types - those strictly greater than C and those
that are not. The cutter would not be worse off if he made sure the
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pieces of each kind are equal. (Since in any case the greatest of the
lesser pieces would best be chosen)

If there are only lesser pieces, or only greater pieces, we are done.
(Nothing would be chosen, and the cut is an m equal pieces optimal
cut)

If there is a single lesser piece, it may be reduced (And increase the
greater pieces accordingly) until either the lesser piece reaches zero,
or all other pieces reach 1. The first case would result in an all equal
canonical cut, and the second to all ones canonical cut.

If there are two lesser pieces or more, they may be reduced (increasing
the greater pieces accordingly) until either the lesser pieces all reach
0.5 (In which case they may be merged into pieces of size one, averaged
with the other greater pieces, and revert to the single lesser piece case,
or to an all greater pieces case), or all of the greater pieces reaching
one. (In which case they would be broken into pieces of size 0.5, all
pieces would be averaged again, decreasing the minimal lesser piece
size again, as required).

In each of the cases, we arrive to a canonical cut no worse than the
original one.

�

The most immediate result would be:

Corollary 23 For every C ≤ 1 and C < S, there exists an optimal canon-
ical cut.

Proof. Any standard cut would get at most one piece chosen, so we get the
required result immediately by proposition 22.

The optimal cut would be either an AO cut if C < 1 or d2Se − 1 equal
pieces otherwise. �

Corollary 24 For every 1 < C ≤ 4
3 , there exists an optimal canonical cut.

Proof. For C < S ≤ 2, two equal pieces would get us the result by propo-
sition 22.

For 2 < S, dSe equal pieces would do since:

2S

dSe
>

2S

S + 1
= 2− 2

S + 1
≥ 2− 2

2 + 1
=

4

3
≥ C
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and the claim follows by proposition 22 again.
The optimal cut would be a cut to d2SC e−1 equal pieces, since 1 < C. �

6 Algorithmic results

Recall the definition of ω from the introduction. In the following we show
that for every S,C, both players can obtain the minmax value ω(S,C) in
polynomial time, although given a cut M , making an optimal reply tailored
especially for it and achieving ω(S,C,M) is NP-hard.

6.1 Efficient optimal cutter algorithm

We now prove corollary 4, which states that an optimal cutter algorithm
taking time O(CS2) exists:
Proof. The optimal cut is obtainable by finding the optimal among all semi-
canonical moves. Given a semi-canonical cut, finding the optimal choice of
subset may be done in time linear in the number of pieces it contains, since
for every choice of the non 1 pieces, finding how many 1’s may still be chosen
may be done in O(1) time.

Since there are O(S2) possible semi canonical moves, and in each the
number of possible 1’s to be chosen is O(C), finding the optimal cut would
take O(CS2), as required. �

6.2 NP Hardness of optimal reply generation

We show that finding a reply achieving ω(S,C,M) for every C,M is NP-
hard, by a reduction to the uniform knapsack maximization problem.

Definition 25 Given a finite set U of positive real numbers, and a size B,
find a subset U ′ ⊆ U maximizing

∑
ui∈U ′ ui and satisfying

∑
ui∈U ′ ui ≤ B.

The decision version of this problem is a well known NP-hard problem[10].
We show that the maximization version reduces to optimal reply gen-

eration. The only difference between the two is the limit on the maximal
piece size. A reduction from a uniform knapsack instance to the chooser’s
problem would be:

Given a knapsack instance U,B, pick u = maxU , and generate M =
{ vu | v ∈ U}, C = B

u . Since the sum of any feasible reply to this cut
corresponds to a feasible subset in the original instance and vice versa, and
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their values monotonically related as well, we get that an optimal reply to
that cut correspond to an optimal solution for the knapsack instance.

6.3 Time efficient generation of replies assuring at least −ω(S,C)

We now prove corollary 5, which states that an optimal chooser algorithm
exists, achieving slackness at most ω(S,C) and taking time O(|M |2 · C).

For C ≤ 4
3 , the chooser may first standardize the cut, and find the

optimal response in time O(M2), by finding the optimal among all choices
of one or two pieces, since the sum of every three is greater than 1.5, and
therefore unfeasible.

For C > 4
3 , pick k such that 0 < C

k = ε < 1
3·|M |

1. Observe that every

`i ∈ M may be seen as `i = ki · ε + ε′i with 0 ≤ ε′i < ε. We refer to ε′i as
the fractional part of `i. Given a set U ⊆ M , we refer to

∑
i∈U εi as the

fractional part of U . Every one of the pieces is replaced by `′i = ki · ε.
We find an optimal solution to that knapsack instance using dynamic

programming after discarding the pieces’ fractional parts. To do so, we
construct a table A of size |M | × k, where every cell A[i, j], we consider
sums of the subsets of `′1, ..., `

′
i which sum to j · ε.

Filling the other columns may be done one by one, by checking whether

A[i − 1, j − `′i
ε ] contains a subset, and adding `′i to it, or picking a subset

from A[i− 1, j] otherwise. If both cells are empty, put in an empty set.
This approach would have found an optimal subset for M ′ = {`′1, ..., `′m}.

We change this algorithm to allow the extraction of a choice for the original
problem as well. Instead of keeping a single subset at every cell, we keep two
subsets achieving the minimal and maximal sums of fractional parts given
the integral part ε · j. This does not change the base case, and the inductive
updating is repeated twice - once for the subset of maximal fractional part,
and again for the minimal one.

Since every sum in the matrix contains at most |M | elements, the differ-
ence between the minimal and maximal fractional parts in every cell:

ε · |M | < 1

3 · |M |
· |M | = 1

3

That is true in particular for the optimal subset’s cell.
We claim that finding an optimal feasible subset among all pairs of sub-

sets represented by the cells of the matrix would get the chooser at least
−ω(S,C).

1Say, for k = 3 · |M |C + 1.
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To prove that, consider the optimal subset. It belongs in one of the
matrix’ cells. If the set with the maximal fractional part in this cell is
feasible, it is no worse than optimal subset, and is therefore optimal itself.
If it is not optimal, it must be unfeasible, so the subset with the minimal
fractional parts in that cell must be strictly greater than C− 1

3 . The minimal
subset’s sum is lesser than the optimal subset’s, and is therefore feasible, and
achieves a slackness less than 1

3 ≤ ω(S,C), as required.
The time required by that dynamic programming algorithm is O(2 · |M | ·

k) = O(|M |2 · C), since updating every cell times O(1) time, and there are
|M | · k cells.
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