## Hint for exercise 1 in homework assignment 5

Consider a bipartite graph $H$ with $k$ vertices on each side. It is well known that if $H$ is $d$-regular then its edge set can be decomposed into $d$ perfect matchings. (Hall's condition can be shown to imply that it has at least one perfect matching. After removing the edges of this perfect matching, the graph becomes $d-1$ regular, and the proof can be continued by induction.)

Suppose now that $H$ is a random $k$ by $k$ bipartite graph, with edge probability $\frac{1}{2}$. Let $\delta$ denote the minimum degree in $H$ (which is roughly $\frac{k}{2}-O(\sqrt{k \log k})$, w.o.p.). Then surely $H$ cannot have more than $\delta$ disjoint perfect matchings. However, with overwhelming probability, it does have $\delta$ disjoint perfect matchings. In exercise 1 in homework assignment 5, you may use this fact without proof (though you may need to be clever in choosing the graph $H$ on which to apply this fact).

For completeness, here is a sketch of proof of the above fact. Give each edge of $H$ capacity 1 . Add a vertex $s$ and $k$ edges, connecting $s$ to the vertices of one side of $H$. Add a vertex $t$ and $k$ edges, connecting $t$ to the vertices of the other side of $H$. Give each edge incident with $s$ and each edge incident with $t$ capacity $\delta$. Standard probabilistic arguments show that w.o.p., the minimum cut between $s$ and $t$ has capacity $\delta k$. Consequently, the maximum flow between $s$ and $t$ is $\delta k$. As all capacities are integral, this flow can be assumed to be integral as well. The edges of $H$ that support this integral flow form a $\delta$-regular bipartite graph.

