
SIAM J. DISCRETE MATH. c© 2014 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 1578–1600

MUSICAL CHAIRS∗

YEHUDA AFEK† , YAKOV BABICHENKO‡ , URIEL FEIGE§ , ELI GAFNI¶, NATI LINIAL‖,
AND BENNY SUDAKOV#

Abstract. In the musical chairs game MC(n,m), a team of n players plays against an adver-
sarial scheduler. The scheduler wins if the game proceeds indefinitely, while termination after a finite
number of rounds is declared a win of the team. At each round of the game each player occupies one
of the m available chairs. Termination (and a win of the team) is declared as soon as each player
occupies a unique chair. Two players that simultaneously occupy the same chair are said to be in
conflict. In other words, termination (and a win for the team) is reached as soon as there are no
conflicts. The only means of communication throughout the game is this: At every round of the
game, the scheduler selects an arbitrary nonempty set of players who are currently in conflict, and
notifies each of them separately that it must move. A player who is thus notified changes its chair
according to its deterministic program. As we show, for m ≥ 2n− 1 chairs the team has a winning
strategy. Moreover, using topological arguments we show that this bound is tight. For m ≤ 2n− 2
the scheduler has a strategy that is guaranteed to make the game continue indefinitely and thus win.
We also have some results on additional interesting questions. For example, if m ≥ 2n− 1 (so that
the team can win), how quickly can they achieve victory?

Key words. distributed computing, oblivious computing, renaming, probabilistic analysis,
asynchronous computation

AMS subject classifications. 68Q02, 91A02

DOI. 10.1137/12088478X

1. Introduction. Communication is a crucial ingredient in every kind of collab-
orative work. But what is the least possible amount of communication required for a
team of players to achieve certain goals? Motivated by this question, we consider in
this paper the following game.

The musical chairs game MC(n,m) involves m chairs numbered 1, . . . ,m and
a team of n players P1, . . . , Pn, who are playing against an adversarial scheduler.
The scheduler’s goal is to make the game run indefinitely, in which case it wins. The
termination condition is that each player settles in a different chair. Upon termination
the team of players is declared the winner. We say that player P is in conflict if some
other player Q is presently occupying the same chair as P . Namely, termination and
a win of the team is reached if there are no conflicts. The scheduler gets to decide
for each player Pi the chair that Pi occupies at the start of the game. As mentioned
above we consider here the oblivious model of communication which severely restricts

∗Received by the editors July 16, 2012; accepted for publication (in revised form) July 11, 2014;
published electronically September 25, 2014.

http://www.siam.org/journals/sidma/28-3/88478.html
†The Blavatnik School of Computer Science, Tel-Aviv University, Israel 69978 (afek@tau.ac.il).
‡Department of Mathematics, Hebrew University, Jerusalem 91904, Israel (yak@math.huji.ac.il).
§Department of Computer Science and Applied Mathematics Weizmann Institute of Science Re-

hovot 76100, Israel (uriel.feige@weizmann.ac.il). The author holds the Lawrence G. Horowitz Profes-
sorial Chair at the Weizmann Institute. Research supported in part by the Israel Science Foundation
(grant 873/08).

¶Computer Science Department, University of California, Los Angeles, CA 95024 (eli@cs.ucla.
edu).

‖School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel
(nati@cs.huji.ac.il).

#Department of Mathematics, ETH, 8092 Zurich, Switzerland, and Department of Mathemat-
ics, UCLA, Los Angeles, CA 90095 (benjamin.sudakov@math.ethz.ch). This author’s research was
supported in part by SNSF grant 200021-149111 and by a USA-Israel BSF grant.

1578

http://www.siam.org/journals/sidma/28-3/88478.html
mailto:afek@tau.ac.il
mailto:yak@math.huji.ac.il
mailto:uriel.feige@weizmann.ac.il
mailto:eli@cs.ucla.edu
mailto:eli@cs.ucla.edu
mailto:nati@cs.huji.ac.il
mailto:benjamin.sudakov@math.ethz.ch

MUSICAL CHAIRS 1579

the communication between the players during the game. All such communication
is mediated by the scheduler as follows: At every time step, and as long as there
are conflicts, the scheduler selects an arbitrary nonempty set of players which are
currently in conflict and notifies them that they need to move. (Later on we consider
various restrictions on the selected sets resulting in different schedulers; see section 2.)
A player thus notified to be in conflict changes its chair according to its deterministic
program, which the player chooses before the game. During the game, each player
has no information about the chairs of other players beyond the occasional one bit
that tells it that it must move, and we insist that the choice of a player’s next chair be
deterministic. Consequently, a player’s action depends only on its current chair and
the sequence of chairs that it had traversed so far. Therefore the sequence of chairs
that player Pi traverses is simply an infinite word πi over the alphabet 1, . . . ,m.
Recall that the adversary can start each player on any of the chairs. Consequently we
assume that each πi is full, i.e., it contains all the letters in [m]. So upon receiving
a conflict notification from the scheduler, player Pi occupying chair πi[k] moves to
chair πi[k + 1]. The scheduler’s freedom in choosing the players’ initial chairs means
that for every i the scheduler selects an index ki and the game starts with each Pi

occupying chair πi[ki]. A winning strategy for the players is a choice of full words
πi with the following property: For every choice of initial positions ki and for every
strategy of the scheduler the game terminates in a finite number of rounds, i.e., the
players cannot be beaten by the scheduler.

In this paper we obtain several results about the musical chairs game. The reader
should note that as discussed in [3] the musical chairs problem is strongly related to the
adaptive renaming (also known as strong renaming) problem [1, 10]. Our first theorem
determines the minimal m for which the team of players wins the MC(n,m) game.

Theorem 1. The team of players has a winning strategy in the MC(n,m) game
iff m ≥ 2n− 1.

In the winning strategy that we produce, each word πi is periodic, or, equivalently,
a finite word that Pi traverses cyclically. We also show that for every N > n there
exist N full cyclic words on the alphabet [m] = [2n− 1] such that every set of n out
of these N words constitutes a winning strategy for the MC(n, 2n− 1) game.

To prove the lower bound in Theorem 1 we use Sperner’s lemma (see, e.g., [4]), a
fundamental tool from combinatorial topology. The use of this tool in proving lower
bounds for distributed algorithms was pioneered in [7, 10, 11]. If one is willing to
assume a great deal of knowledge in the field of distributed computing, it is possible
to deduce our lower bound from known results in this area. Instead, to make the
paper self contained, we chose to include here a direct proof which we think is more
illuminating and somewhat simpler than the one which would result from reductions
to the existing literature.

Although the words in Theorem 1 use the least number of chairs, namely, m =
2n − 1, their lengths are doubly exponential in n. This leads to several interesting
questions. Are there winning strategies for the MC game with much shorter words,
say, of length O(n)? Perhaps even of length m? Can we provide significantly better
upper bounds on the number of rounds till termination? Even if the scheduler is bound
to lose the game, how long can it make the game last? Our next two results give some
answers to these questions. Here we consider an MC(n,m) winning systems with N
words. This is a collection of N ≥ n full words on [m], every n of which constitute a
winning strategy for the players in the MC(n,m) game.

Theorem 2. For every N ≥ n, almost every choice of N words of length cn logN
in an alphabet of m = 7n letters is an MC(n,m) winning system with N full words.

1580 AFEK, BABICHENKO, FEIGE, GAFNI, LINIAL, AND SUDAKOV

Moreover, every game on these words terminates in O(n logN) steps. Here c is an
absolute constant.

Since we are dealing with full words that we seek to make short, we are ulti-
mately led to consider the problem under the assumption that each (finite, cyclically
traversed) word πi is a permutation on [m]. We note that the context of distributed
computing offers no particular reason for this restriction and that we are motivated
to study this question due to its aesthetic appeal. We can design permutation-based
winning strategies for MC(n, 2n − 1) game for very small n (provably for n = 3, a
computer assisted construction and proof for n = 4). We suspect that no such con-
structions are possible for large values of n, but we are unable at present to show this.
We do know, though, the following.

Theorem 3. For every integer d ≥ 1 there is an MC(n,m) winning system with
N = nd permutations on m = cn symbols, where c depends only on d. In fact, this
holds for almost every choice of N permutations on [m].

We should stress that our proofs of Theorems 2 and 3 are purely existential. The
explicit construction of such systems of words remains largely open, though we have
the following result in this direction.

Theorem 4. For every integer d ≥ 1 there is an MC(n,m) winning system with
N = nd permutations on m = O(d2n2) symbols.

We conclude this introduction with a discussion of several additional aspects of
the subject.

Our work was originally motivated by some questions in distributed computing.
In every distributed algorithm each processor must occasionally observe the activities
of other processors. This can be done by reading the messages that other processors
send, by inspecting some publicly accessible memory cells into which they write,
or by sensing an effect on the environment due to the actions of other processors.
Hence it is very natural to ask: What is the least possible amount of communication
required to achieve certain goals? To answer it, we consider two severe limitations on
the processors’ behavior and ask how this affects the system’s computational power.
First, a processor can only post a proposal for its own output, and second, each
processor is “blindfolded” and is only occasionally provided with the least possible
amount of information, namely, a single bit that indicates whether its current state is
“good” or “bad.” Here bad/good indicates whether or not this state conflicts with the
global-state desired by all the processors. Moreover, we also impose the requirement
that algorithms are deterministic, i.e., use no randomization. This new minimalist
model, which we call the oblivious model, was introduced in the conference version
of this paper [3]. This model might appear to be significantly weaker than other
(deterministic) models studied in distributed computing. Yet, our results show that a
very natural distributed problem, musical benches [8], can be solved optimally within
the highly limited oblivious model. Further discussion of the oblivious model and
additional well-known problems like adaptive renaming [1, 2], which we can also be
optimally solved in this model, can be found in [3].

A winning strategy for the MC(n,m) game cannot include any two identical
words. For that allows the scheduler to move the corresponding players together
in lock-step, keeping them constantly in a state of conflict. Also for every winning
strategy for MC(n,m), with finite cyclic words, there is a finite upper bound on the
number of moves till termination. To see this, let us associate with every state of
the system a vector whose ith coordinate is the current position of player Pi on πi.
The set of such vectors V is finite, |V | =

∏
|πi|, and in a terminating sequence of

moves no vector can be visited twice. In fact, we can associate with every collection

MUSICAL CHAIRS 1581

of finite words a directed graph on vertex set V , where edges correspond to the
possible transitions in response to scheduler’s notifications. The collection of words
constitute a winning MC strategy iff this directed graph is acyclic. We note that these
observations depend on the assumption that players use no randomness.

Our strategies for the MC game have a number of additional desirable properties.
As mentioned, we construct N full periodic words such that every subset of n of the
N words constitutes an MC(n,m) winning system. Hence our strategies are guar-
anteed to succeed (reach termination against every scheduler’s strategy) in dynamic
settings in which the set of players in the system keeps changing. This statement
holds provided there are sufficiently long intervals throughout which the set of players
remains unchanged. To illustrate this idea, consider a company that manufactures N
communication devices, each of which can use any one of m frequencies. If several
such devices happen to be at the same vicinity, and simultaneously transmit at the
same frequency, then interference occurs. Devices can move in or out of the area,
hop to a frequency of choice and transmit at this frequency, and sense whether there
are other transmissions in this frequency. The company wants to provide the fol-
lowing guarantee: If no more than n devices reside in the same geographical area,
then no device will suffer more than a total of T interference events for some guar-
anteed bound T . Our strategy for the MC game would yield this by preinstalling in
each device a list of frequencies (a word in our terminology), and having the device
hop to the next frequency on its list (in a cyclic fashion) in response to any inter-
ference it encounters. No communication beyond the ability to sense interference is
needed.

In proving the lower boundm ≥ 2n−1 we have to make several assumptions about
the setup. The first is the freedom of choice for the scheduler. From the perspective of
distributed computing this means that we are dealing with an asynchronous system.
In a synchronous setting, in every time step, every player involved in a conflict moves
to its next state. One can show that in such a synchronous setup the players have
a winning strategy even with m = n chairs. It is also important that the scheduler
can dictate each player’s starting position. If each Pi starts at the first letter of πi,
a trivial winning strategy with m = n simply sets i as the first letter of πi for each
i. It is also crucial that our players are deterministic (no randomization). If players
are allowed to pick their next state randomly, then again m = n suffices, since in
this case with probability 1 eventually a conflict-free configuration will be reached.
Hence, this paper is also related to the one of the fascinating questions in computer
science, whether and to what extent randomization increases the power of algorithmic
procedures. Our results show that without using randomness one can still win an MC
game by increasing only slightly the number of chairs (from n to 2n− 1).

2. Simplified oblivious model for musical chairs. Our general model for
oblivious algorithms is specified by providing the rules of possible behavior of the
scheduler. Here we consider an immediate scheduler, who enjoys a high degree of
freedom in choosing which processor to move.1 To simplify the design and analysis of
oblivious algorithms, it is convenient to consider a more restricted scheduler that has
fewer degrees of freedom but is nevertheless equivalent to the immediate scheduler in
their power to win the MC game. In each round an immediate scheduler can select an
arbitrary nonempty set of players that are currently in conflict and move them. Below

1There are several interesting schedulers which are even more flexible than the immediate sched-
uler. As we showed in the conference version of this paper [3], all of them are, in fact, equivalent to
the canonical scheduler.

1582 AFEK, BABICHENKO, FEIGE, GAFNI, LINIAL, AND SUDAKOV

we often refer to a team strategy as an oblivious MC(n,m) algorithm. It is a winning
strategy if the immediate scheduler is forced to reach a conflict-free configuration in
finite time. Conversely, an immediate scheduler wins against an oblivious MC(n,m)
algorithm if it can generate an infinite execution without ever reaching a conflict-free
configuration.

Terminology. Two schedulers σ1, σ2 are considered equivalent if for every team
strategy, scheduler σ1 has a winning strategy iff σ2 has also. In other words, an
oblivious MC(n,m) algorithm beats σ1 iff it beats σ2.

First we want to limit the number of processors that can be moved in a round.
A pairwise immediate scheduler is similar to the immediate scheduler, except for

the following restriction. In every round, the pairwise immediate scheduler can select
any two processors P �= Q that are currently in conflict with each other and move
either P , or Q, or both. Equivalently, in every round either exactly one processor
(that is involved in a conflict) moves, or two processors that share the same chair
move. We note that similar ideas can be found in the literature, Namely, that no
generality is lost upon weakening the scheduler in an appropriate way, e.g., see [5, 7,
10, 11].

Proposition 5. The immediate scheduler and the pairwise immediate scheduler
are equivalent.

Proof. Clearly, every adversary of the pairwise immediate scheduler is also a
strategy of the immediate scheduler. Hence it remains to show that if the immedi-
ate scheduler σ can win against some team strategy, then the pairwise immediate
scheduler σ′ can also force an infinite run against it. So fix an oblivious MC(n,m)
algorithm and an infinite run that σ forces. We modify this schedule into a schedule
of σ′ and show that every move that σ does is eventually performed by σ′ as well.
This is clearly, therefore, a winning strategy of σ′.

Consider the set X of the processors that σ moves at round t. The same set X
will be moved by σ′ as well, except that this is done in several steps. We split the set
X according to the chair c that these processors occupied before round t. Thus, if σ
moves exactly one of the ≥ 2 processors that occupy chair c, then σ′ does just the
same. If σ moves k ≥ 2 processors that occupy the same chair c before round t, then
σ′ moves k − 2 of these processors one by one and then finally moves the last two of
these processors at once. The claim follows.

The pairwise immediate scheduler (which, as we showed, is equivalent to the
immediate scheduler) is instrumental in proving Theorems 1 and 3. However, to
prove Theorem 2 the pairwise immediate scheduler needs to be further restricted. It
is true that the pairwise immediate scheduler has to pick only one pair of players to
move (and then either move only one or both of them), but it is still free to pick a
pair of its choice (among those pairs that are in conflict). We would like to eliminate
this degree of freedom.

Canonical scheduler. The canonical scheduler is similar to the pairwise immediate
scheduler but with the following difference. In every round in which there is a conflict,
one designates a canonical pair. This is a pair of players currently in conflict with each
other, but they are not chosen by the scheduler, but rather dictated to the scheduler.
Given the canonical pair P,Q, the only choice the scheduler has is whether to move
P , or Q, or both. But how is the canonical pair chosen? It actually does not really
matter, as long as the choice is deterministic. For concreteness, we shall assume the
following procedure. Fix an arbitrary order on the collection of all pairs of players.
In a nonterminal configuration, the canonical pair is the first pair of players in the
order that share a chair.

MUSICAL CHAIRS 1583

Proposition 6. The canonical scheduler and the pairwise immediate scheduler
are equivalent.

Proof. The general nature of the proof is similar to that of Proposition 5, but
the details are more complicated. Now σ is a pairwise immediate scheduler that
achieves an infinite schedule S against some oblivious MC(n,m) algorithm, and σ′ is
an arbitrary canonical scheduler. We need to construct an infinite schedule S′ that σ′

can accomplish against the same algorithm. We pass from S to S′ through an infinite
series of intermediate schedules St, each of which consists of a finite prefix λt followed
by an infinite suffix ρt. We start with S0 = S whose prefix λ0 = Λ is empty. In
passing from St = λt ◦ ρt to St+1 = λt+1 ◦ ρt+1 we maintain the following invariants:

• For all t, the prefix λt of St is a canonical schedule.
• Each schedule St is an infinite pairwise immediate schedule.
• The prefix λt of St is a proper prefix of λt+1.

Note that this method of construction guarantees that for every position i in
the emerging schedule there is some time Ti following which that position does not
change. Consequently there is a well-defined limit to S0, S1, This limit sequence
is defined as the infinite schedule S′.

We turn to show how to construct St+1 given St. Since St is infinite, the config-
uration at the end of λt is not terminal and there is a current canonical pair, say, P1

and P2, both of which presently occupy chair c1. There are several cases to consider.
1. If the first move in ρt is canonical (i.e., all players moved at this step are in

{P1, P2}). We simply take St+1 to be St, thus satisfying the requirements
stated above.
We next turn to the cases where in the first move in ρt at least one player
not from {P1, P2} gets moved.

2. If either P1 or P2 is never moved in ρt. Let λt+1 be λt followed by a move of
P2 (P1). Let ρt+1 be obtained from ρt by deleting the first move of P2 (P1)
away from chair c1 (if such move exists). Note that, as claimed, St+1 is a
pairwise immediate schedule. The only possible difficulty is that in some later
stage in ρt some player P3 is moved on account of its sharing chair c1 with
P2 (P1). But the same move of P3 is realizable in St+1 as well, since at this
stage in St+1 chair c1 remains occupied by P1 (P2), so that P3 is movable.
We proceed to the cases where in ρt both P1 and P2 get moved away from c1.

3. We now consider the case where in ρt the move of P1 from c1 precedes the
first move of P2 from c1. Here we construct λt+1 by appending a move of P1

to λt, and ρt+1 is obtained from ρt by deleting the first move of P1 in ρt. All
the requirements listed above are clearly satisfied.
The same argument can be applied with P1 and P2 exchanged.

4. In the last case to consider, both players P1 and P2 are first moved out of c1
at the same step s of ρt. There are two subcases to consider.

• No player other than P1 and P2 is on chair c1 in any of the first s − 1
rounds of ρt. Here λt+1 is λt followed by a move of both P1 and P2, and
ρt+1 is obtained by eliminating from ρt the moves of P1, P2 at round s.

• In the complementary case some other player, say, P3, occupies chair c1
in round s′ < s and s′ is the latest such time. We let λt+1 be λt followed
by a move of P1. We obtain ρt+1 by modifying ρt as follows: (i) Delete
the move of P1 at round s of ρt and (ii) move P2 in ρt+1 either together
with P3 (if only P3 moves in round s′), or if P3 moves together with a
P4, then move P2 in the round immediately preceding the simultaneous
move of P3 and P4.

1584 AFEK, BABICHENKO, FEIGE, GAFNI, LINIAL, AND SUDAKOV

3. An oblivious MC algorithm with 2n − 1 chairs.

3.1. Preliminaries. In this section we prove the upper bound that is stated in
Theorem 1. We start with some preliminaries. The length of a word w is denoted
by |w|. The concatenation of words is denoted by ◦. The rth power of w is denoted
by wr = w ◦ w . . . ◦ w (r times). Given a word π and a letter c, we denote by c ⊗ π
the word in which the letters are alternately c and a letter from π in consecutive
order. For example, if π = 2343 and c = 1, then c ⊗ π = 12131413. A collection of
words π1, π2, . . . , πn is called terminal if no schedule can fully traverse even one of
the πi. Every MC algorithm can be turned to a terminal collection by raising each
word to a high enough power. Namely, given n words of length ≤ L each, if there
is a schedule that runs for > Ln steps, then there is necessarily a configuration that
has been visited twice and therefore there is an infinite schedule as well. Therefore,
it suffices to raise the words to Ln power to yield a terminal collection.

We now introduce some of our basic machinery in this area. We first show how
to extend terminal sets of words.

Proposition 7. Let n,m,N be integers with 1 < n < m. Let Π = {π1, . . . πN}
be a collection of m-full words such that

(1) every n of these words form an oblivious MC(n,m) algorithm.

Then Π can be extended to a set of N + 1 m-full words that satisfy condition (1).
Proof. Suppose that for every choice of n words from Π and for every initial

configuration no schedule lasts more than t steps. As mentioned above t ≤ Ln, where
L is the length of the longest word in Π. For a word π, let π′ be defined as follows: If
|π| ≥ t, then π′ = π. Otherwise it consists of the first t letters in πr, where r > t/|π|.
The new word that we introduce is πN+1 = π′

1 ◦ π′
2 ◦ · · · ◦ π′

n. It is a full word, since
it contains the full word π1 as a subword.

We need to show that every set Π′ of n − 1 words from Π together with πN+1

constitute an oblivious MC(n,m) algorithm. Observe that in any infinite schedule
involving these words, there must be infinitely many moves on the word πN+1. Oth-
erwise, if the schedule remains on a letter c in πN+1 from some point on, replace
πN+1 by an arbitrary word from Π − Π′ and stay put on the letter c in this word.
This contradicts our assumption that Π satisfies condition (1). (Note that this word
contains the letter c by our fullness assumption.) But πN+1 moves infinitely often,
and it is a concatenation of n words whereas Π′ contains only n−1 words. Therefore,
eventually πN+1 must reach the beginning of a word πα for some πα �∈ Π′. From this
point onward, πN+1 cannot proceed for t additional steps, contrary to our assump-
tion.

Note that by repeated application of Proposition 7, we can construct an arbitrarily
large collection of m-full words that satisfy condition (1).

We next deal with the following situation: Suppose that π1, π2, . . . , πm is a ter-
minal collection, and we concatenate an arbitrary word σ to one of the words πi.
We show that by raising all words to a high enough power we again have a terminal
collection in our hands.

Lemma 8. Let π1, π2, . . . , πp be a terminal collection of full words over some
alphabet. Let σ be an arbitrary full word over the same alphabet. Then the collection

(π1)
k, (π2)

k, . . . , (πi−1)
k, (πi ◦ σ)2, (πi+1)

k, . . . , (πp)
k

is terminal as well for every 1 ≤ i ≤ p and every k ≥ |πi|+ |σ|.

MUSICAL CHAIRS 1585

Proof. We split the run of any schedule on these words into periods through which
we do not move along the word (πi ◦σ)2. We claim that throughout a single period we
do not traverse a full copy of πj in our progress along the word (πj)

k. The argument
is the same as in the proof of Proposition 7. By pasting all these periods together, we
conclude that during a time interval in which we advance ≤ |πi| + |σ| − 1 positions
along the word (πi ◦ σ)2 every other word (πj)

k traverses at most |πi|+ |σ| − 1 copies
of πj . In particular, there is a whole πj in the jth word in the collection that is never
visited. If the schedule ends in this way, no word is fully traversed, and our claim
holds.

So let us consider what happens when a schedule makes ≥ |πi|+ |σ| steps along
the word (πi ◦ σ)2. We must reach at some moment the start of πi in our traversal
of the word (πi ◦ σ)2. But our underlying assumption implies that from here on, no
entire copy of πl (for l = 1, . . . , p) is fully traversed. Thus, no word in this collection
is fully traversed, as claimed.

Lemma 8 yields immediately the following holds.
Corollary 9. Let π1, π2, . . . , πp be a terminal collection of full words over some

alphabet, and let πp+1, πp+2, . . . , πn be arbitrary full words over the same alphabet.
Then the collection

(π1 ◦ π2 ◦ · · · ◦ πn)
2, (π1)

k, (π2)
k, . . . , (πi−1)

k, (πi+1)
k, . . . , (πp)

k

is terminal as well. This holds for every 1 ≤ i ≤ p and k ≥
∑n

i=1 |πi|.
This is a special case of Lemma 8 where σ = πi+1 ◦ . . . πn ◦ π1 . . . ◦ πi−1.

3.2. The MC(n, 2n−1) upper bound. The proof we present shows somewhat
more than Theorem 1 says. A useful observation is that the scheduler can “trade” a
player P for a chair c. Namely, the scheduler can keep P constantly on chair c and be
able, in return, to move any other player past chair c. In other words, this effectively
means the elimination of chair c from all other words. This suggests the following
definition: If π is a word over alphabet C and B ⊆ C, we denote by π(B) the word
obtained from π by deleting from it the letters from C \B.

Our construction is recursive. An inductive step should add one player (i.e., a
word) and two chairs. We carry out this step in two installments: In the first we add
a single chair, and in the second one we add a chair and a player. Both steps are
accompanied by conditions that counter the abovementioned trading option.

Proposition 10. For every integer n ≥ 1
• there exist full words s1, s2, . . . , sn over the alphabet {1, 2, . . . , 2n − 1} such
that s1(A), s2(A), . . . , sp(A) is a terminal collection for every p ≤ n, and
every subset A ⊆ {1, 2, . . . , 2n− 1} of cardinality |A| = 2p− 1,

• there exist full words w1, w2, . . . , wn over alphabet {1, 2 . . . , 2n}, such that
w1(B), w2(B), . . . , wp(B) is a terminal collection for every p ≤ n, and every
subset B ⊆ {1, 2, . . . , 2n} of cardinality |B| = 2p− 1.

The words s1, s2, . . . , sn in Proposition 10 constitute a terminal collection and
are hence an oblivious MC(n, 2n− 1) algorithm that proves the upper bound part of
Theorem 1. In the rest of this section we prove Proposition 10.

Proof. As mentioned, the proof is by induction on n. For n = 1, clearly s1 = 11
and w1 = 1122 satisfy the conditions.

In the induction step we use the existence of s1, s2, . . . , sn to construct w1, w2, . . . ,
wn. Likewise the construction of s1, s2, . . . , sn+1 builds on the existence of w1, w2, . . . ,
wn.

1586 AFEK, BABICHENKO, FEIGE, GAFNI, LINIAL, AND SUDAKOV

The transition from w1, w2, . . . , wn to s1, s2, . . . , sn+1. To simplify nota-
tion we assume that the words w1, w2, . . . , wn in the alphabet {2, 3, . . . , 2n+1} (rather
than {1, 2, . . . , 2n}) satisfy the proposition. Let k :=

∑
|wi| and define

s1 : = 1⊗ ((w1 ◦ w2 ◦ · · · ◦ wn)
2(2n+1)),

∀i = 2, . . . n+ 1 si : = (wi−1)
k(2n+1) ◦ 1.

Fix a subset A ⊆ {1, 2, . . . , 2n + 1} of cardinality |A| = 2p − 1 with p ≤ n + 1,
and let us show that s1(A), s2(A), . . . , sp(A) is a terminal collection. There are two
cases to consider:

We first assume 1 /∈ A. This clearly implies that p ≤ n (or else A = {1, 2, . . . , 2n+
1} and in particular 1 ∈ A). In this case the collection is

s1(A) : = ((w1(A) ◦ w2(A) ◦ · · · ◦ wn(A))
2(2n+1)),

∀i = 2, . . . p si(A) : = (wi−1(A))
k(2n+1).

By the induction hypothesis, the collection w1(A), w2(A), . . . , wp−1(A), wp(A) is
terminal. We apply Corollary 9 and conclude that

(w1(A) ◦ w2(A) ◦ · · · ◦ wn(A))
2, (w1(A))

k, (w2(A))
k, . . . , (wp−1(A))

k

is terminal as well. But the si are obtained by taking (2n + 1)th powers of these
words, so that s1(A), s2(A), . . . , sp(A) is terminal as needed.

We now consider what happens when 1 ∈ A.
We define F1 := (w1(A)◦w2(A)◦· · ·◦wn(A))

2 and for j > 1, let Fj := (wj−1(A))
k.

We refer to Fi as the ith block. In our construction each word has 2n + 1 blocks,
ignoring chair 1.

At any moment throughout a schedule we denote by O1 the set of players in
{P2, P3, . . . , Pp} that currently occupy chair 1. We show that during a period in
which the set O1 remains unchanged, no player can traverse a whole block. The proof
splits according to whether O1 is empty or not.

Assume first that O1 �= ∅, and pick some i > 1 for which Pi occupies chair 1
during the current period. As long as O1 remains unchanged, Pi stays on chair 1, so
the words that the other players repeatedly traverse are as follows: For P1 it is

w1(A\{1}) ◦ w2(A\{1}) ◦ · · · ◦ wn(A\{1})

and for Pj with p ≥ j �= i ≥ 2 it is

wj−1(A\{1}).

We now show that no player can traverse a whole block (as defined above). Ob-
serve that the collection {wν(A\{1})|ν = 1, . . . , p − 1} (including, in particular the
word wi−1(A\{1})) is terminal. This follows from the induction hypothesis, because
|A\{1}| = 2p−2, and because the property of being terminal is maintained under the
insertion of new chairs into words. Applying Corollary 9 to this terminal collection
implies that this collection of blocks is terminal as well.

We turn to consider the case O1 = ∅. In this case player 1 cannot advance from
a none-1 chair to the next none-1 chair, since the two are separated by the presently
unoccupied chair 1. We henceforth assume that player P1 stays put on chair c �= 1,

MUSICAL CHAIRS 1587

but our considerations remain valid even if at some moment player P1 moves to chair
1. (If this happens, it will necessarily stay there, since O1 = ∅.) We are in a situation
where players P2, P3, . . . , Pp traverse the words w1(A\{1, c}), w2(A\{1, c}), . . . , wp−1

(A\{1, c}). (Chair c, which is occupied by player P1, can be safely eliminated from
these words.) But |A\{1, c}| = 2p− 3, so by the induction hypothesis no player can
traverse a whole wi(A\{1, c}), so no player can traverse a whole block.

We just saw that during a period in which the set O1 remains unchanged, no
player can traverse a whole block.

Finally, assume toward contradiction that Pj fully traverses sj for some index j,
and consider the first occurrence of such an event. It follows that Pj has traversed
2n+ 1 blocks, so that the set O1 must have changed at least 2n+ 1 times during the
process. However, for O1 to change, some Pi must either move to or away from a
1-chair in si. But 1 occurs exactly once in si, so every Pi can account for at most two
changes in O1, a contradiction.

The transition from s1, s2, . . . , sn to w1, w2, . . . , wn. We assume that the
words s1, s2, . . . , sn in the alphabet {2, 3, . . . , 2n} satisfy the proposition. Let k :=∑

|si| and define

w1 : = 1⊗ ((s1 ◦ s2 ◦ · · · ◦ sn)2(2n+1)),

∀i = 2, . . . , n wi : = (si−1)
k(2n+1) ◦ 1.

Fix a subset B ⊆ {1, 2, . . . , 2n} with |B| = 2p− 1. Then

w1(B) = 1⊗ ((s1(B) ◦ s2(B) ◦ · · · ◦ sn(B))2(2n+1)),

∀i = 2, . . . , p wi(B) = (si−1(B))k(2n+1) ◦ 1

are exactly the same as in the previous transition just by replacing s with w and A with
B. (In this case the induction hypothesis is on si and we prove for wi.) So exactly
the same considerations prove that w1(B), w2(B), . . . , wm(B) is a terminal collec-
tion.

4. Impossibility results. In this section we prove the lower bound of The-
orem 1. As it turns out, the situation for 2n − 2 ≥ m and for m ≥ 2n − 1 are
dramatically different. As we saw, for m ≥ 2n− 1 the team has a winning strategy,
but when 2n − 2 ≥ m, not only is it true that the scheduler can win the game, but
also the scheduler is guaranteed to have a winning strategy even if we (i) substantially
relax the requirement that each word πi over [m] be full, or (ii) restrict its power to
select the players’ starting position on their words. In the next proposition case (i)
occurs.

The following claim shows that the lower bound of Theorem 1 holds even for
words which are not full, provided that they satisfy some “richness” condition specified
herein. The specific condition is engineered so as to make it possible to apply our
main topological tool, namely, Sperner’s lemma.

Proposition 11. Every team strategy τ1, . . . , τn over [m] = [2n− 2] for which
• chair 1 appears in both τ1, τ2, and
• for every 3 ≤ i ≤ n, the word τi contains both chair 2i− 4 and 2i− 3

is a losing strategy.
Needless to say, this statement is invariant under permuting the player’s names

and the indices of the chairs. There are several such arbitrary choices of indices below,
and we hope that this creates no confusion. In the impossibility results that we prove
in this section, the number of chairs m is always 2n − 2. We also go beyond the

1588 AFEK, BABICHENKO, FEIGE, GAFNI, LINIAL, AND SUDAKOV

lower bound of Theorem 1 by considering scenarios with a total of N ≥ n players and
statements showing that there is a choice of n out of the N words that constitute a
losing strategy. (Clearly, new words that get added to a losing team strategy make it
only easier for the scheduler to win.) These deviations from the basic setup (N ≥ n
words, weakened fullness conditions, starting points not controlled by the scheduler)
give us more flexibility in our arguments and complement each other nicely. Here is
one of the main theorems that we prove in this section. It yields exponentially many
subsets of n words that constitute a losing team strategy.

Theorem 12. Let N = 2n−2 and let π1, . . . , πN be words over [m] = [2n−2] such
that the only equality among the symbols π1[1], π2[1], π3[1], . . . , πN [1] is π1[1] = π2[1].
Then, for every partition of the words π3, . . . , πN into n− 2 pairs, there is a choice of
one word from each pair, such that the chosen words together with π1 and π2 constitute
a losing team strategy even when the game starts on each word’s first letter.

Proposition 11 yields the lower bound of Theorem 1 under weakened fullness
requirements. It is much less clear how Theorem 12 fits into the picture. We show
next how to derive Proposition 11 from Theorem 12.

Proof (Theorem 12 implies Proposition 11). Let π1 (resp., π2) be the suffix of
τ1 (resp., τ2) starting with the first appearance of the symbol 1. The other words
come in pairs. For 3 ≤ i ≤ n, we define π2i−3 to be the suffix of τi starting at chair
2i− 4, and π2i−2 is its suffix starting at chair 2i− 3. Theorem 12 implies that there
is a choice of one word from each pair that together with π1 and π2 is losing when
started from the initial chairs. The same scheduler strategy clearly wins the game on
τ1, . . . , τn when started from the respective chairs.

The proof of Theorem 12, which uses some simple topological methods, is pre-
sented in section 4.2. We provide all the necessary background material for this proof
in section 4.1.

What happens if the fullness condition is eliminated altogether but the scheduler
maintains its right to select the starting positions? The scheduler clearly loses against
the words πi = (i) for i = 1, . . . ,m. However, as the following theorem shows, once
N > m = 2n− 2, the scheduler has a winning strategy.

Theorem 13. For every collection of N = 2n − 1 words over [m] = [2n − 2],
there is a choice of n words and starting locations for which the scheduler wins.

Proof. By the pigeonhole principle, the scheduler wins against every set of words
S that together contain fewer than |S| different letters. The whole collection satisfies
this condition, since it has 2n− 1 words and only ≤ 2n− 2 letters. We consider such
a collection of words S of smallest cardinality. By the minimality of |S|, the total
number of letters that appear in the words of S is exactly |S| − 1, otherwise just
eliminate one word from S to get a smaller collection that satisfies this condition. If
|S| ≤ n, the scheduler can play against these |S| players and win, as claimed. We
remain with the case where |S| > n.

We create a bipartite graph one side of which consists of the words in S. The
other side contains all the letters in S’s words. There is an edge between vertex π
and vertex x iff the letter x appears in the word π. Using the minimality of |S| and
applying the marriage theorem [9], we show that for every vertex that we remove
from the words’ side the remaining bipartite graph has a perfect matching. Stated
differently, for every word π ∈ S it is possible to mark one letter in every word in
S \ {π} where all the marked letters are different from each other. Let S′ consist of
π and the suffix of every other word in S \ {π} starting from the marked letter. If
|S| = |S′| is even, then Theorem 12 applies since S′ has more words than letters and
there is exactly one coincidence among these words’ initial letters. Consequently, S

MUSICAL CHAIRS 1589

has a subcollection of |S|
2 + 1 ≤ n that is a losing team strategy, as claimed. If |S| is

odd, we first delete a word from S whose marked letter differs from π[1] and argue as
above. Since the number of letters that appear in the words of S is |S| − 1, we will
have after the deletion at least as many words as letters and can still apply Theorem
12.

4.1. A few words on Sperner’s lemma. In this section we discuss our main
topological tool, Sperner’s lemma (see, e.g., [4]). We include all the required back-
ground and try to keep our presentation to the minimum that is necessary for a proof
of Theorem 12.

Definition 14. A simplicial complex is a collection X of subsets of a finite set
of vertices V such that

if A ∈ X and B ⊆ A, then B ∈ X.

A member A ∈ X is called a face, and its dimension is defined as dimA := |A| − 1.
We refer to d-dimensional faces as d-faces, and define dimX as the largest dimension
of a face in X. We note that a vertex is a 0-face, and call a 1-face an edge. The
1-skeleton of X is the graph with vertex set V , where xy is an edge iff {x, y} is an
edge (1-face) of X. A face of dimension dimX is called a facet. We say that X is
pure if every face of X is contained in some facet. Finally, a d-pseudomanifold is a
pure d-dimensional complex X such that

(2) every face of dimension d− 1 is contained in exactly two facets.

A good simple example of a two-dimensional pseudomanifold is provided by a
planar graph in which all faces including the outer face are triangles. The vertices
and the edges of the complex are just the vertices and the edges of the graph. The
facets (2-simplices) of the complex are the faces of the planar graph, including the
outer face. This is clearly a pure complex, and every edge is contained in exactly two
facets. Note that such a graph drawn on a torus or on another 2-manifold works just
as well. The pseudo part of the definition comes since we are allowing to carry out
identifications such as the following: Take a set of vertices that forms an anticlique
in the graph and identify all of them to a single vertex. The result is still a two-
dimensional psudomanifold. In any event, the uninitiated reader is encouraged to use
planar triangulations as a good mental model for a pseudomanifold. Henceforth we
shorten pseudomanifold to psm.

Let X be a psm on vertex set V . A k-coloring of X is a mapping ϕ : V →
{1, . . . , k}. A face of X on which ϕ is 1 : 1 is said to be ϕ-rainbow. (We only say
rainbow when it is clear what coloring is involved.) We are now ready to state and
prove a special case of Sperner’s lemma that suffices for our purposes.2

Lemma 15. Let X be an n-dimensional psm. Then for every (n+ 1)-coloring ϕ
of X, the number of ϕ-rainbow facets of X is even.

Proof. Consider all pairs A ⊃ B with A as a facet of X , where B is (n − 1)-
dimensional and ϕ-rainbow, and ϕ(B) = [n]. We count the number of such pairs in
two different ways.

Each (n− 1)-face B with ϕ(B) = [n] participates in exactly two such pairs, once
with each of the two facets that contain it. Hence the total count is even.

2It is customary to formulate Sperner’s lemma as the statement that there is an odd number
of rainbow facets. However, in those statements the external facet has some special status. In the
present statement all facets are treated equally. This increases the number of rainbow facets by one.

1590 AFEK, BABICHENKO, FEIGE, GAFNI, LINIAL, AND SUDAKOV

A facet A contributes to the count iff ϕ(A) ⊇ [n]. If ϕ(A) = [n], then there is
exactly one element j ∈ [n] for which |ϕ−1(j)| = 2 whereas |ϕ−1(i)| = 1 for all i �= j.
Consequently, such an A is counted exactly twice. On the other hand, if the facet A
is rainbow, then it is counted exactly once.

The claim follows.
Thus, in particular, if we 3-color the vertices of a triangulated planar graph, so

that the outer face is rainbow, then there must be at least one more rainbow face in
the triangulated planar graph.

We say that an n-dimensional psm is colorable if it has a (n+1)-coloring for which
no edge is monochromatic. In other words, an (n+1)-coloring for which all facets are
rainbow.

Lemma 16. Let δ be a 2-coloring of a colorable psm X. Then the number of
δ-monochromatic facets of X is even.

Proof. By assumption X is colorable, so let χ be some (n + 1)-coloring of X in
which no edge is monochromatic. Define next a new (n+1)-coloring ϕ via ϕ := χ+ δ
mod (n+1). By assumption, every facet is χ-rainbow and the addition (mod(n+1))
of a constant value of a monochromatic δ does not change this property. In other
words, every δ-monochromatic facet is ϕ-rainbow. We claim the reverse implication
holds as well. Indeed, if δ is not constant on the facet A, then we can find two vertices
x, y ∈ A for which δ(x) = 1, δ(y) = 2 and χ(y) = χ(x) + 1 mod (n + 1). But then
no vertex z ∈ A satisfies ϕ(z) = χ(x) + 2 mod (n + 1). In other words, a facet is
ϕ-rainbow iff it is δ-monochromatic. By Lemma 15, the proof is complete.

4.2. MC as a pseudomanifold. Here we prove Theorem 12 by using psm’s
and Lemma 16. Although psm’s can be realized geometrically, we do not refer to such
realizations. Still, as mentioned above, planar triangulations can be useful in guiding
one’s intuition in this area.

Given an MC algorithm in the form of N words, our plan is to construct a
psm X that encodes certain possible executions of the MC algorithm. Vertices of X
correspond to states of individual players, and facets correspond to reachable con-
figurations. Since we limit ourselves to schedules that involve only n out of the N
available players, every facet has n vertices, so that dimX = n− 1.

In the setting of Theorem 12, the scheduler selects one player from each of the
n−2 pairs (and adds in players P1, P2). This gives 2

n−2 possible initial configurations,
which we want to keep as facets. We note, however, that these 2n−2 sets do not
constitute the collection of facets of a psm. An (n− 2)-dimensional face that contains
one player from each of the n−2 pairs and exactly one of P1, P2 is contained in exactly
one initial facet, in violation of condition (2). Since our intention is to work with psm’s
we add two auxiliary vertices called A1 and A2, where A1 is viewed as being paired
with P1, and A2 with P2. This yields a collection of 2n initial facets that are obtained
by making all possible choices of one vertex from each of the n pairs. It is easily
verified that this collection constitutes the set of facets of an (n−1)-dimensional psm.
A facet in this psm is called auxiliary or nonauxiliary according to whether or not it
contains at least one of the auxiliary vertices A1, A2. Figure 1 illustrates the situation
for n = 3. There are six vertices, which correspond to N = 2n − 2 = 4 players plus
two auxiliary players. The vertices are 3-colored, where each pair of players (say P1

and A1) are equally colored. This planar graph has eight faces (including the outer
face), which are the 23 = 8 initial facets.

Let us now introduce δ, a 2-coloring of the vertices. We partition the 2n−2 chairs
into two subsets of cardinality n − 1 each, called the 0-chairs and the 1-chairs. The

MUSICAL CHAIRS 1591

Fig. 1. A 3-colorable two-dimensional simplicial complex.

initial chair of P1, P2 is a 1-chair whereas the initial chair of A1, A2 is a 0-chair.3 Also,
within each pair of players (out of the n − 2 original pairs), one starts at a 0-chair
and the other at a 1-chair, and the δ-color of corresponding vertex in the initial facet
is set accordingly to 0 or 1.

Proposition 17. The collection of all subsets of the 2n initial facets is a colorable
(n− 1)-dimensional psm. It has exactly one δ-monochromatic auxiliary facet.

Proof. We already noticed that this collection of sets is indeed a psm. To see that
it is colorable, let us associate a unique color to each of the n pairs of vertices. This
makes every facet rainbow, as claimed.

In the 2-coloring δ, there is indeed a unique δ-monochromatic initial auxiliary
facet. This is the facet that contains A1, A2, and the n − 2 players (one from each
pair) who start from a 0-chair. All vertices of this facet have δ = 0. Just for clarity
we mention that there is also a nonauxiliary facet all vertices of which have δ = 1 and
that includes the vertices P1 and P2.

Starting from the initial system, the rules of MC allow the scheduler to generate
new psm’s whose facets represent reachable configurations. We remark that unlike
the initial configurations, it may happen that several facets correspond to one and
the same configuration. This fact will cause no harm to us.

We turn to discuss how a scheduler’s move is reflected in pseudomanifold PSM .
Consider a configuration in which some players are in conflict and the corresponding
facet in PSM . The scheduler may select two players that occupy the same chair,
and move either one of them or both. Hence, given the two players and their states
(say, corresponding to vertices vi and vj in PSM), two new states are exposed by this
choice of three possible combined moves. These correspond to two new vertices (say
v′i and v′j) in a new psm. The given configuration can be moved to one of three new
configurations, which in our psm representation amounts to splitting each facet σ that
contains vi and vj into three new facets. That is, each facet {v1, . . . , vi, . . . , vj , . . . , vn}

3By assumption the cardinality of the set {π1[1], π2[1], π3[1], . . . , πN [1]} is 2n−3, so that exactly
one chair is missing from this set. We associate this missing chair with the auxiliary vertices A1, A2.
This is, however, just a convenient formality, since there is no player associated with vertices A1, A2.

1592 AFEK, BABICHENKO, FEIGE, GAFNI, LINIAL, AND SUDAKOV

Fig. 2. The simplicial complex when n = 3 after one step by the scheduler.

is replaced by the three facets {v1, . . . , vi, . . . , v′j , . . . , vn}, {v1, . . . , v′i, . . . , vj , . . . , vn},
and {v1, . . . , v′i, . . . , v′j , . . . , vn}. This completes the description of the new psm PSM ′.

We say that the above process subdivides the edge {vi, vj}. Figure 2 illustrates
the subdivision process when n = 3. (It is convenient to have A1 and A2 on the outer
faces of such drawings, so that edges correspond to straight line segments.)

Proposition 18. No move of the scheduler can subdivide an auxiliary face.
Proof. Since vertices A1 and A2 do not represent any players, they get never

moved by the scheduler, and are, therefore, never involved in a subdivided edge. The
rest of the vertices in auxiliary facets are occupying distinct chairs, and hence cannot
pair up to create a subdivided edge.

It should be clear how to extend the 2-coloring δ of PSM to PSM ′. Assign the
two new vertices v′i and v′j the 0/1 color of the chairs corresponding to their respective
states.

Proposition 19. The simplicial complex PSM ′ described above is a colorable
pseudomanifold.

Proof. The colorability of PSM ′ is inherited from PSM , because every new facet
contains the same set of players as its “parent” facet.

To show that PSM ′ is a psudomanifold we only need to show that each (n− 2)-
face is covered by exactly two facets. To this end we carry out the edge subdivision
in two substeps, introducing v′i and v′j one at a time. We only need to show that
property (2) is maintained under such a substep.

So let w be a new vertex inserted on an edge between u and v in a psm PSM .
That is, each facet σ in PSM that contains both u and v is replaced by two facets:
σ \ {u} ∪ {w} and σ \ {v} ∪ {w}. We only need to verify the required property for
(n− 2)-dimensional faces in PSM ′ that contain the vertex w. Every such an (n− 2)-
face τ contains at most one of the two vertices u, v. If it contains neither of the two,
then there are exactly two facets that contain τ , namely, τ ∪ {u} and τ ∪ {v}.

We next turn to the case where v and w are vertices in τ , but u is not. Necessarily
τ̄ = τ \ {w} ∪ {u} is an (n− 2)-face of PSM . As such it is contained in exactly two
facets, say, τ̄ ∪ {x} and τ̄ ∪ {y}. We conclude that τ ∪ {x} and τ ∪ {y} are the two
facets of PSM ′ that contain τ , as needed.

MUSICAL CHAIRS 1593

Proposition 20. The 2-coloring described for the above simplicial complex
PSM ′ has exactly one monochromatic auxiliary facet.

Proof. The 2-coloring property is a direct consequence of Propositions 17
and 18.

We are now ready to finish the proof. Consider a psm PSM generated by the
process described above, starting from the initial psm and subdividing faces as dis-
cussed. By Proposition 19 PSM is colorable. Hence, by Lemma 16, the associated
2-coloring has an even number of monochromatic facets. But Proposition 19 states
that exactly one of these facets is auxiliary. Therefore at least one nonauxiliary facet
is monochromatic, and this facet represents a reachable configuration θ. But there
are exactly n − 1 0-chairs and n − 1 1-chairs. Therefore there must be two players
sharing the same chair in θ, and this allows the scheduler to subdivide the respective
edge. Consequently the scheduler can continue to subdivide the psm indefinitely, and
this translates to an infinite schedule, as claimed.

5. Oblivious MC algorithms via the probabilistic method. We start with
an observation that puts Theorems 2 and 3 (as well as Theorem 1) in an interesting
perspective. The expected number of pairwise conflicts in a random configuration is
exactly

(
n
2

)
/m. In particular, when m � n2, most configurations are safe (namely,

have no conflicts). Therefore it is not surprising that in this range of parameters n
random words would yield an oblivious MC(n,m) algorithm. However, when m =
O(n), only an exponentially small fraction of configurations are safe, and the existence
of oblivious MC(n,m) algorithms is far from obvious.

5.1. Full words with O(n) chairs, allowing repetitions. Theorem 2 can
be viewed as a (nonconstructive) derandomization of the randomized MC algorithm
in which players choose their next chair at random (and future random decisions of
players are not accessible to the scheduler). Standard techniques for derandomizing
random processes involve taking a union bound over all possible bad events, which
in our case corresponds to a union bound over all possible schedules. The immedi-
ate scheduler has too many options (and so does the pairwise immediate scheduler),
making it infeasible to apply a union bound. For this reason, we shall consider in this
section the canonical scheduler, which is just as powerful (see section 2). In every
unsafe configuration, the canonical scheduler has just three possible moves to choose
from. This allows us to use a union bound. We now prove Theorem 2.

Theorem 2. For every N ≥ n, almost every choice of N words of length cn logN
in an alphabet of m = 7n letters is an MC(n,m) winning system with N full words.
Moreover, every game on these words terminates in O(n logN) steps. Here c is an
absolute constant.

Proof. Each of the N words is chosen independently at random as a sequence of
L chairs, where each chair in the sequence is chosen independently at random. We
show that with high probability (probability tending to 1 as the constant c grows),
this choice satisfies Theorem 2.

It is easy to verify that in this random construction, with high probability, all
words are full. To see this, note that the probability that chair j is missing from such
a random word is ((m − 1)/m)L. Consequently, the probability that a word chosen
this way is not full is ≤ m((m − 1)/m)L. Therefore, the expected number of nonfull
words is ≤ m · N · ((m − 1)/m)L. But with our choice of parameters m = 7n and
L = cn logN , we see that m ·N ·((m−1)/m)L = o(1), provided that c is large enough.

In our approach to the proof we keep track of all possible schedules. To this
end we use “a logbook” that is the complete ternary tree T of depth L rooted at

1594 AFEK, BABICHENKO, FEIGE, GAFNI, LINIAL, AND SUDAKOV

r. Associated with every node v of T is a random variable Xv. The values taken
by Xv are system configurations. For a given choice of words and an initial system
configuration we define the value of Xr to be the chosen initial configuration. Every
node v has three children corresponding to the three possible next configurations that
are available to the canonical scheduler at configuration Xv.

An important ingredient of the proof is a potential function (defined below) that
maps system configurations to the nonnegative reals. It is also convenient to define
an (artificial) “empty” configuration of 0 potential. Every safe configuration has
potential 1, and every nonempty unsafe configuration has potential > 10. If the node
u is a descendant of v and the system configuration Xv is safe, then we define Xu to
be the empty configuration.

We thus also associate with every node of T a nonnegative random variable P =
Pv that is the potential of the (random) configuration Xv. The main step of the proof

is to show that if v1, v2, v3 are the three children of v, then
∑3

i=1 E(Pvi) ≤ rE(Pv) for
some constant r ≤ 0.99. (Note that this inequality holds as well if Xv is either safe
or empty.) This exponential drop implies that

E

(∑
v is a leaf of T

(Pv)

)
=

∑
v is a leaf of T

E(Pv) = o(1)

provided that L is large enough. This implies that with probability 1 − o(1) (over
the choice of random words) all leaves of T correspond to an empty configuration. In
other words every schedule terminates in fewer than L steps.

We turn to the details of the proof. A configuration with i occupied chairs is
defined to have potential xn−i, where x > 1 is a constant to be chosen later. In a
nonempty configuration the potential can vary between 1 and xn−1, and it equals 1
iff the configuration is safe.

Consider a configuration of potential xn−i (with i < n), where the canonical pair
is (α, β). It has three children representing the move of either α or β, or both. Let
us denote ρ = i/m and ρ′ = (i − 1)/m. When a single player moves, the number
of occupied chairs can stay unchanged, which happens with probability ρ. With
probability 1−ρ, one more chair will be occupied and the potential gets divided by x.
Consider next what happens when both players move. Here the possible outcomes (in
terms of number of occupied chairs) depend on whether there is an additional player
γ currently co-occupying the same chair as α and β. It suffices to perform the analysis
in the less favorable case in which there is no such player γ, as this provides an upper
bound on the potential also for the case that there is such a player. With probability
(ρ′)2, both α and β move to occupied chairs and the potential gets multiplied by x.
With probability ρ′(1 − ρ′) + (1 − ρ′)ρ = (ρ + ρ′)(1 − ρ′), the number of occupied
chairs (and hence the potential) does not change. With probability (1 − ρ′)(1 − ρ),
the number of occupied chairs grows by one and the potential gets divided by x.

It follows that if v is a node of T with children v1, v2, v3 and if the configuration
Xv is unsafe and nonempty, then

∑3
i=1 E(Pvi) ≤ E(Pv)(2ρ + 2(1 − ρ)/x + (ρ′)2x +

(ρ+ ρ′)(1 − ρ′) + (1 − ρ)(1 − ρ′)/x). Recall that x > 1 and ρ′ < ρ < 1. This implies
that the last expression increases if ρ′ is replaced by ρ, and thereafter it is maximized
when ρ attains its largest possible value q = (n− 1)/m. We conclude that

3∑
1

E(Pvi) ≤ E(P)(2q + 2(1− q)/x+ q2x+ 2q(1− q) + (1− q)2/x).

We can choose q = 1/7 and x = 23/2 to obtain
∑3

i=1 E(Pvi) ≤ rE(Pv) for r < 0.99.

MUSICAL CHAIRS 1595

This guarantees an exponential decrease in the expected sum of potentials and hence
termination, as we now explain.

It follows that for every initial configuration the expected sum of potentials of
all leaves at depth L does not exceed xn−1 (the largest possible potential) times rL.
On the other hand, if there is at least one leaf v for which the configuration Xv is
neither safe nor empty, then the sum of potentials at depth L is at least x > 1. Our
aim is to show that with high probability (over the choice of N words), all runs have
length < L (i) for every choice of n out of the N words, (ii) each selection of an
initial configuration, and (iii) every canonical scheduler’s strategy. The n words can
be chosen in

(
N
n

)
ways. For every n words, there are Ln possible initial configurations.

The probability of length-L run from a given configuration is at most xn−1rL, where
x = 23/2 and r < 0.99. Therefore our claim is proved if

(
N
n

)
· Ln · xn−1rL ≤ o(1).

This inequality clearly holds if we let L = cn logN with c a sufficiently large constant.
This completes the proof of Theorem 2.

A careful analysis of the proof of Theorem 2 shows that it actually works as
long as m

n > 4 + 2
√
2 = 6.828 It would be interesting to determine the value

of lim infn→∞
m
n for which n long enough random words over an m-letter alphabet

constitute, with high probability, an oblivious MC(n,m) algorithm.

5.2. Permutations over O(n) chairs. Here we prove Theorem 3.
Theorem 3. For every integer d ≥ 1 there is an MC(n,m) winning system with

N = nd permutations on m = cn symbols, where c depends only on d. In fact, this
holds for almost every choice of N permutations on [m].

Our proof of Theorem 2 involves aspects that do not apply in the context of
Theorem 3. Theorem 3 deals with random permutations, whereas in the proof of
Theorem 2 we use words of length Ω(n logn). Recall that the word of a player is
a sequence of chairs that the player traverses (upon conflicts) in a cyclic manner.
The proof of Theorem 2 establishes that with random words termination is likely in
O(n log n) steps. Making the words longer than the number of steps that suffice for
termination avoids the possibility that a player will exhaust his word and wrap-around
to the location where he started. If this were to happen, the arguments in the proof
of Theorem 2 would not hold anymore, because after a wrap-around occurs future
chairs visited are no longer independent of chairs visited in previous steps—they are
the same chairs. In Theorem 3 we do not have the option of making words longer than
m = O(n), and hence our proof will not be able to avoid dealing with dependencies
that arise from wrap-around effects. This is the main source of extra difficulties that
need to be dealt with in the proof of Theorem 3 compared to the proof of Theorem 2.
These difficulties lead to a substantially different structure of proof for Theorem 3,
compared to that of Theorem 2. In particular, our proof of Theorem 3 works with
a pairwise immediate scheduler, and unlike the proof of Theorem 2, there does not
appear to be any significant benefit (e.g., no significant reduction in the ratio m

n) if a
canonical scheduler is used instead.

We first prove the special case N = n of Theorem 3, and only later show how to
extend the proof to larger values of N .

Theorem 21. If m ≥ cn, where c > 0, is a sufficiently large constant, then
there is a family of n permutations on [m] which constitute an oblivious MC(n,m)
algorithm.

We actually show that with high probability, a set of random permutations
π1, . . . , πn has the property that in every possible schedule the players visit at most
L = O(m logm) chairs. Our analysis separates between the locations (within the re-

1596 AFEK, BABICHENKO, FEIGE, GAFNI, LINIAL, AND SUDAKOV

spective words) visited by a schedule, and the contents in these locations (the actual
chairs that are placed there by the random permutations). First, when considering a
hypothetical schedule, we just view it as a sequence of locations visited. Thereafter,
we give random contents to these locations. Finally, we compute the probability that
this content is consistent with the assumption that these are the locations visited by
the schedule. Consistency requires that the composition of chairs in these locations
includes sufficiently many conflicts so as to allow the scheduler to traverse these par-
ticular locations. If the probability of consistency is sufficiently low, then Theorem 21
can be proved by using a union bound, as follows. There are mn possible initial
choices of locations in which to start the schedule. (We refer to these here as initial
configurations.) From each initial configuration we consider all possible sequences
of L locations (namely, all possible ways of partitioning L into n nonnegative parts
L1, . . . , Ln with

∑
Li = L, advancing Li steps on word i). For each such sequence,

we fill in the chairs in the locations in the sequence at random and prove that the
probability that this sequence represents a possible schedule is extremely small—so
small that even if we take a union bound over all initial configurations and over all
sequences of length L, we are left with a probability much smaller than 1.

The main difficulty in the proof is that since L � m, some players may completely
traverse their permutation (even more than once) and therefore the chairs in these
locations are no longer random. To address this, we partition the sequence of moves
into L/t blocks, where in each block players visit a total of t locations. We can and will
assume that t divides L. We take t = δm for some sufficiently small constant δ, and
n = εm, where ε is a constant much smaller than δ. This choice of parameters implies
that within a block, chairs are essentially random and independent. To deal with
dependencies among different blocks, we classify players (and their corresponding
permutations) as light or heavy. A player is light if during the whole schedule (of
length L) it visits at most t/ logm = o(t) locations. A player that visits more than
t/ logm locations during the whole sequence is heavy. Observe that for light players,
the probability of encountering a particular chair in some given location is at most

1
m−o(t) ≤

1+o(1)
m . Hence, the chairs encountered by light players are essentially random

and independent (up to negligible error terms). Thus it is the heavy players that
introduce dependencies among blocks. Every heavy player visits at least t/ logm
locations, so that nh, the number of heavy players does not exceed nh ≤ (L logm)/t =
O(log2 m). The fact that the number of heavy players is small is used in our proof to
limit the dependencies among blocks.

The following lemma is used to show that in every block of length t the number of
locations that are visited by heavy players is not too large. Consequently, sufficiently
many locations are visited by light players. In the lemma, we use the following
notation. A segment of k locations in a permutation is said to have volume k − 1.
Given a collection of locations, a chair is unique if it appears exactly once in these
locations.

Lemma 22. Let nh ≤ m/ log2 m and let δ > 0 be a sufficiently small constant.
Consider n random permutations over [m]. Select any nh of the permutations and a
starting location in each of them. Choose the next intervals in the selected permuta-
tions with total volume t′ for some t/10 ≤ t′ ≤ t. With probability 1 − o(1) for every
such set of choices at least 4t′/5 of the chairs in the chosen intervals are unique.

Proof. We first note that we will be using the lemma with nh = O(log2 n). Also,
if a list of letters contains u unique letters (i.e., they appear exactly once) and r
repeated letter (i.e., appearing at least twice), then it has d = u + r distinct letters
and length λ ≥ u+ 2r. In particular d ≤ (λ + u)/2.

MUSICAL CHAIRS 1597

There are
(
n
nh

)
ways of choosing nh of the permutations. Then, there are mnh

choices for the initial configuration. We denote by si the volume of the ith interval, so

that
∑nh

i=1 si = t′. Therefore there are
(
t′+nh−1
nh−1

)
≤ mnh ways of choosing the intervals

with total volume t′. Since the volume of every interval is at most t′, we have that the
probability that a particular chair resides at a particular location in this interval is
at most 1/(m− t′). This is because the permutation is random and at most t′ chairs
appeared so far in this interval. Therefore the probability that a sequence of t′ labels
involves less than 0.9t′ distinct chairs is at most(

m

0.9t′

)(
0.9t′

m− t′

)t′

≤
(em

0.9t′

)0.9t′ (0.9t′

m− t′

)t′

≤ et
′
(

m

m− t′

)0.9t′ (
t′

m− t′

)0.1t′

≤ 4t
′
(2δ)0.1t

′ � e−t′ .

Explanation. The set of chairs that appear in these intervals can be chosen in
(

m
0.9t′

)
ways. The probability that a particular location in this union of intervals is assigned
to a chair from the chosen set does not exceed 0.9t′

m−t′ . In addition m/(m− t′) ≤ (1+δ),
t′/(m− t′) ≤ 2δ, and δ is a very small constant.

Now we take a union bound over all choices of nh permutations, all starting
locations and all collection of intervals with total volume t′. It follows that the prob-
ability that there is a choice of intervals of volume t′ that span ≤ nh permutations
and contain fewer than 9t′/10 distinct chairs is at most

m3nhe−t′ = o(1).

In the above notation, λ = t′ and d ≥ 0.9t′, which yields u ≥ 0.8t′ as claimed.
Since the conclusion of this lemma holds with probability 1−o(1), we can assume

that our set of permutations satisfies it. In particular, in every collection of inter-
vals in these permutations with total volume t

10 ≤ t′ ≤ t that reside in O(log2 m)
permutations there are at least 4t′/5 unique chairs.

As already mentioned, we break the sequence of L locations visited by players
into blocks of t locations each. We analyze the possible runs by considering first the
breakpoints profile, namely, where each block starts and ends on each of the n words.
There are mn possible choices for the starting locations. If, in a particular block,
player i visits si chairs, then

∑n
i=1 si = t. Consequently, the parameters s1, . . . , sn

can be chosen in
(
t+n−1

n

)
≤ 2t+n ways. There are L/t blocks, so that the total number

of possible breakpoints profiles is at most mn(2t+n)L/t ≤ mn22L. (Here we used the
fact that t > n.) Clearly, by observing the breakpoints profile we can tell which
players are light and which are heavy. We recall that there are at most O(log2 m)
heavy players and that the premise of Lemma 22 can be assumed to hold.

Let us fix an arbitrary particular breakpoints profile β. We wish to estimate
the probability (over the random choice of chairs) that some legal sequence of moves
by the pairwise immediate scheduler yields this breakpoints profile β. Let B be an
arbitrary block in β. Let p(B) denote the probability over choice of random chairs
and conditioned over contents of all previous blocks in β that there is a legal sequence
of moves by the pairwise immediate scheduler that produces this block B.

Lemma 23. For p(B) as defined above we have that p(B) ≤ 8−t.
Proof. The total number of chairs encountered in block B is n � t. (For the initial

locations) plus t (for the moves.) Recall that the set of heavy players is determined by
the block-sequence β. Hence, within block B it is clear which are the heavy players
and which are the light players. Let th (resp., t� = t − th) be the number of chairs

1598 AFEK, BABICHENKO, FEIGE, GAFNI, LINIAL, AND SUDAKOV

visited by heavy (resp., light) players in this block. The proof now breaks into two
cases, depending on the value of th.

Case 1. th ≤ 0.1t. Light players altogether visit n+ t� chairs (n initial locations
plus t� moves). If u of these chair are unique, then they visit at most (n + t� + u)/2
distinct chairs. But a chair in this collection that is unique is either (i) one of the n
chairs where a player terminates its walk or (ii) a chair that a light player traverses due
to a conflict with a heavy player, and there are at most th of those. Consequently, the
number of distinct chairs visited by light players does not exceed (n+ t�+n+ th)/2 =
t/2 + n.

Fix the set S of t/2 + n distinct chairs that we are allowed to use. There are(
m

n+t/2

)
choices for S. Now assign chairs to the locations one by one, in an arbitrary

order. Each location has probability of at most (1+ o(1))n+t/2
m of receiving a chair in

S. Since we are dealing here with light players, we have exposed only o(m) chairs for
each of them (in B and in previous blocks of β), and as mentioned above, this can
increase the probability by no more that a 1 + o(1) factor.

Hence the probability that the segments traversed by the light players contain
only n+ t/2 chairs is at most(

m

n+ t/2

)(
(1 + o(1))

n+ t/2

m

)t�

≤
(

em

n+ t/2

)n+t/2

2t�
(
n+ t/2

m

)t�

≤ (2e)t
(
n+ t/2

m

)(t�−th)/2−n

≤ (2e)t
(
t/m

)t/4
< 8−t.

Here we used that th + t� = t, th ≤ 0.1t, tl ≥ 0.9t, and n � t � m.
Case 2. th ≥ 0.1t. Let us reveal first the chairs visited by the heavy players. By

Lemma 22, we find there at least 4th/5 unique chairs. In order that the heavy players
traverse these chairs, they must be visited by light players as well. Hence, the t�
locations visited by light players must include all these 0.8th prespecified chairs. We
bound the probability of this as follows. First choose for each of the 0.8th prespecified
chairs a particular location where it should appear in the intervals of light players.
The number of such choices is ≤ t0.8th� . As mentioned above, the probability that
a particular chair is assigned to some specific location is (1 + o(1))/m. Therefore
the probability that 0.8th prespecified chairs appear in the light intervals is at most

t0.8th�

(
(1+o(1))/m

)0.8th . Thus the probability that a schedule satisfying the condition
of the lemma exists is at most

t0.8th�

(
(1 + o(1))/m

)0.8th ≤
(
2t/m

)0.8th ≤
(
2t/m

)t/15
< 8−t,

where we used that n � t � m.
Lemma 23 implies an upper bound of p(B)L/t = 8−L on the probability there

is a legal sequence of moves by the pairwise immediate scheduler that gives rise to
breakpoints profile β. Taking a union bound over all block sequences (whose number
is at most mn22L ≤ 6L, by our choice of L = Cm logm for a sufficiently large constant
C), Theorem 21 is proved.

Observe that the proof of Theorem 21 easily extends to the case that there are
N = mO(1) random permutations out of which one chooses n. We simply need to
multiply the number of possibilities by Nn, a term that can be absorbed by increasing
m, similar to the way the term mn is absorbed. In Lemma 22 we need to replace

(
n
nh

)

MUSICAL CHAIRS 1599

by
(
N
nh

)
, and the proof goes through without any change (because nh is so small).

This proves Theorem 3.

5.3. Explicit construction with permutations and m = O(n2). In this
section we present for every integer d ≥ 1 an explicit collection of nd permutations
on m = O(d2n2) such that every n of these permutations constitute an oblivious
MC(n,m) algorithm. This proves Theorem 4.

We let LCS(π, σ) stand for the length of the longest common subsequence of the
two permutations π and σ, considered cyclically. (That is, we may rotate π and σ
arbitrarily to maximize the length of the resulting longest common subsequence). The
following easy claim is useful.

Proposition 24. Let π1, . . . , πn be permutations of {1, . . . ,m} such that LCS(πi,
πj) ≤ r for all i �= j. If m > (n − 1)r, then in every schedule none of the πi is fully
traversed.

Proof. This proof is reached by contradiction. Consider a schedule in which one
of the permutations is fully traversed, say, that π1 is the first permutation to be
fully traversed. Each move along π1 reflects a conflict with some other permutation.
Hence, there is a permutation πi, i > 1 that has at least m/(n− 1) agreements with
π1. Consequently, r ≥ LCS(π1, πi) ≥ m

(n−1) , a contradiction.

This yields an inexplicit oblivious MC(n,m) algorithm with m = O(n2), since
(even exponentially) large families of permutations in [m] exist where every two per-
mutations have an LCS of only O(

√
m). We omit the easy details. On the other hand,

we should notice that by [6] this approach is inherently limited and can, at best, yield
bounds of the form m ≤ O(n3/2).

We now present an explicit construction that uses some algebra.
Lemma 25. Let p be a prime power, let d be a positive integer, and let m = p2.

Then there is an explicit family of (1 − o(1))md permutations of an m-element set,
where the LCS of every two permutations is at most 4d

√
m.

Proof. Let F be the finite field of order p. Let M := F× F, and m = p2 = |M|.
Let f be a polynomial of degree 2d over F with vanishing constant term, and let
j ∈ F. We call the set Bf,j = {(x, f(x) + j)|x ∈ F} a block. We associate with f the
following permutation πf of M: It starts with an arbitrary ordering of the elements
in Bf,0 followed by Bf,1 arbitrarily ordered, then of Bf,2, etc. A polynomial of degree
r over a field has at most r roots. It follows that for every two polynomials f �= g as
above and any i, j ∈ F, the blocks Bf,i and Bg,j have at most 2d elements in common.
There are (p− 1) · p2d−1 = (1 − o(1))md such polynomials. There are p blocks in πf

and in πg, so that LCS(πf , πg) ≤ 4dp, as claimed.

6. Discussion and open problems. This work originated with the introduc-
tion of the concept of oblivious distributed algorithms. In the present paper we
concentrated on oblivious MC algorithms, a topic which yields a number of interest-
ing mathematical challenges. We showed that m ≥ 2n − 1 chairs are necessary and
sufficient for the existence of an oblivious MC algorithm with n processors. Still, our
construction involves very long words. It is interesting to find explicit constructions
with m = 2n− 1 chairs and substantially shorter words.

In other ranges of the problem we can show, using the probabilistic method, that
oblivious MC(n,m) algorithms exist with m = O(n) and relatively short full words.
We still do not have explicit constructions with comparable properties. We would
also like to determine lim inf m

n such that n random words over an m letter alphabet
typically constitute an oblivious MC(n,m) algorithm.

1600 AFEK, BABICHENKO, FEIGE, GAFNI, LINIAL, AND SUDAKOV

Computer simulations strongly suggest that for random permutations, a value of
m = 2n−1 does not suffice. On the other hand, we have constructed (details omitted
from this manuscript) oblivious MC(n, 2n − 1) algorithms using permutations for
n = 3 and n = 4. (For the latter the proof of correctness is computer-assisted.) For
n ≥ 5 we have neither been able to find such systems (not even in a fairly extensive
computer search) nor to rule out their existence.

We do not know how hard it is to recognize whether a given collection of words
constitute an oblivious MC algorithm. This can be viewed as the problem of whether
some digraph contains a directed cycle or not. The point is that the digraph is
presented in a very compact form. It is not hard to place this problem in PSPACE,
but is it in a lower complexity class, such as co-NP or P?

REFERENCES

[1] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk, Renaming in an asyn-
chronous environment, J. ACM, 37 (1990), pp. 524–548.

[2] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou, Long-Lived Renaming Made
Adaptive, Proceedings of PODC-99, pp. 91–103.

[3] Y. Afek, Y. Babichenko, U. Feige, E. Gafni, N. Linial, and B. Sudakov, Oblivious collab-
oration, Proceedings of the 25th Symposium on Distributed Computing (DISC’11), Lecture
Notes in Comput. Sci. 6950, Springer-Verlag, Berlin, 2011, pp. 489–504.

[4] M. Aigner and G. Ziegler, Proofs from the Book, 3rd ed., Springer-Verlag, Berlin, 2004.
[5] H. Attiya and S. Rajsbaum, The combinatorial structure of wait-free solvable tasks, SIAM J.

Comput., 31 (2002), pp. 1286–1313.
[6] P. Beame, E. Blais, and D. Ngoc, Longest Common Subsequences in Sets of Permutations,

http://arxiv.org/pdf/0904.1615.pdf.
[7] E. Borowsky and E. Gafni, Generalized FLP impossibility results for t-resilient asyn-

chronous computations, Proceedings of the 25th ACM Symposium on Theory of Computing
(STOC’93), 1993, pp. 91–100.

[8] E. Gafni and S. Rajsbaum,Musical Benches, Proceedings of the 19th Internatonal Symposium
on Distributed Computing (DISC’05), Lecture Notes in Comput. Sci. 3724, Springer-Verlag,
Berlin, 2005, pp. 63–77.

[9] P. Hall, On representatives of subsets, J. Lond. Math. Soc., 10 (1935), pp. 26–30.
[10] M.P. Herlihy and N. Shavit, The topological structure of asynchronous computability, J.

ACM, 46 (1999), pp. 858–923.
[11] M. Saks and F. Zaharoglou, Wait-free k-set agreement is impossible: The topology of public

knowledge, SIAM J. Comput., 29 (2000), pp. 1449–1483.

http://arxiv.org/pdf/0904.1615.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

