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ABSTRACT
We study a multi-round optimization setting in which in
each round a player may select one of several actions, and
each action produces an outcome vector, not observable to
the player until the round ends. The final payoff for the
player is computed by applying some known function f to
the sum of all outcome vectors (e.g., the minimum of all
coordinates of the sum). We show that standard notions
of performance measure (such as comparison to the best
single action) used in related expert and bandit settings (in
which the payoff in each round is scalar) are not useful in our
vector setting. Instead, we propose a different performance
measure, and design algorithms that have vanishing regret
with respect to our new measure.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.1 [Artificial
Intelligence]: Applications and Expert Systems—games;
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous

Keywords
expert; bandit; vector outcome

1. INTRODUCTION
We consider the following multiround optimization set-

ting. There is one player, m actions Ai for 1 ≤ i ≤ m
and T rounds t for 1 ≤ t ≤ T . With every action Ai and
round t there is some associated outcome of the action for
that round, denoted by Oi,t. The outcome is represented
by a vector of dimension d. The values Oi,t are a-priori un-
known to the player. However, for every t, the outcomes Oi,t
for all Ai are revealed to the player at the end of round t.
The multiround optimization proceeds as follows. In every
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round t, the player who already observed Oi,t′ for all t′ < t
chooses one action, say Aj . Thereafter, the outcomes Oi,t
of all actions for round t are revealed to the player, and the
player accumulates Oj,t for the action Aj that was selected
in round t. This proceeds for T rounds. After round T ,
the vector of accumulated outcomes is divided by T (thus
averaging over all rounds). Let V denote the resulting vec-
tor. The goal of the player is to achieve a most favorable
vector V . The quality of vectors is measured using a value
function f . Namely, the value that the player gets is f(V ).
Our goal is to characterize the maximum value achievable
by the player in such settings, and to design strategies for
the player that achieve this value.

To make the setting less abstract, consider the following
motivating example. The player is an advertiser (or more ac-
curately, its bidding agent) who wishes to run an advertising
campaign on an ad exchange over a month. Ad opportunities
from various publishers arrive repeatedly, and the bidding
agent needs to decide how to use advertising budget (e.g.,
on which keywords to bid, and how much), say every hour.
This situation can be modeled using our framework, where
the bidding agent needs to make real-time decisions over
T = 720 instances (i.e., the number of hours in a month),
and every instance there arem actions available to the agent,
where actions here correspond to different bidding strategies.
On any given instance t, the agent, using information avail-
able to it from previous instances, may choose an action for
that instance. The outcome of the action is represented by
a vector, where each component of the vector specifies some
aspect of the campaign. For example, one component can
be the number of impressions (denote it N(t)), another com-
ponent can be the number of clicks (denote it C(t)), and yet
another component can be the amount of budget spent (de-
note it B(t)). After every instance, the agent can estimate
the outcome of each action for that instance. (For exam-
ple, using statistics released by the ad exchange.) The same
set of actions are available on every instance, but the out-
comes of the same action on different instances may differ
from each other, and are largely unpredictable. The over-
all value of the campaign is determined only at the end of
T time periods (in our example, a month). The outcome
vectors are added up (or equivalently, averaged), and then
some value function f is applied to the resulting monthly
vector so as to measure its quality. A concrete function may
be, for example, f = min(N/10, C)−|B−1000|, where N,C
and B denote the sum of N(t), C(t) and B(t), respectively,
over the T time periods. This function has two aspects of



non-linearity: The first term is a non-linear aggregation of
two linear components, and the second term is a non-linear
operation applied to a single component. The goal of the
player is to run a campaign (that is, choose actions on each
instance) that maximizes the value of f at the end of the
month.

It should be noted that while this work has been moti-
vated by challenges in advertising and pricing, our goal here
is to present and study a stylized model, extending upon
previous theoretical work, and not to provide concrete im-
plementation that can be used “as is” to solving these highly
practical problems. Nonetheless, in many cases, our results
extend beyond these that are stated in the formal results,
and thus are more applicable than might be first perceived.
Some of these issues are elucidated in Section 4, which per-
haps allows the reader to better understand the scope of
applicability of our results.

Finally, while the guarantees given by our algorithms are
appropriate for multiround optimization settings, but not
necessarily so for multiround games, our framework is ap-
propriate for 0-sum game settings with vector outcomes. A
particular application of interest is a situation in which a
master player who plays on behalf of several players in a
repeated game, wishes to guarantee good performance to all
the players under his control (independent of the actions of
the other players). A related setting, motivated by [10], has
been studied in [3], which considered a player who observes
the actions taken by the opponent but not the obtained pay-
off. We study the complementary problem, where the ob-
tained payoff is observed, but not the action. See Section 5
for a discussion of these issues.

1.1 A scalar setting and restrictions on the value
function

To gain intuition to our problem and put it in context
of earlier work, it is instructive to first consider the sim-
pler case in which the outcome is one dimensional, namely,
d = 1. If in addition we impose the condition that f is the
identity function, we recover exactly a well known setting
often referred to as expert algorithms. In the correspond-
ing literature, what we refer to as actions is referred to as
experts. Informally, the main result associated with expert
algorithms is that the player has a strategy that obtains a
value essentially as good as the value of the best single ex-
pert. This well known result suggests that we should be
seeking a similar result in our setting. However, as we shall
see, there are substantial differences between our setting and
the classical expert setting.

Let us comment first that the aspect that specialized our
model to the known expert setting was not really the issue of
a one dimensional outcome, but rather a choice of f that is
linear. Even if the outcome is multidimensional, if f is linear,
then applying f commutes with averaging (applying f to
the average of outcome vectors is the same as first applying
f to each outcome vector and then averaging), and hence
in every round it suffices to consider only a one dimensional
value (rather than a multidimensional outcome) and average
all values at the end.

Given the above comment, we return to the special case
that d = 1, but now f is not linear. The first question that
we address is whether any function f is reasonable in our
context, or whether we must place some restrictions on f .
The answer of course depends on what we want to achieve.

Let us put forward one goal that seems to be a minimum
requirement in our setting.

Conservative goal. If among all actions there is one
action (say, action A1) that on every round gives the same
outcome V , then the algorithm should be able to obtain a
value of at least f(V )− o(1), where the o(1) term is a term
that tends to 0 as T grows.

To achieve an o(1) term as in the conservative goal, we
need to have f continuous. Otherwise, choosing the desir-
able action A1 on all rounds but one might still not give
a value of f(V ) − o(1). Continuity is a qualitative prop-
erty, whereas we will wish to achieve quantitative guarantees
(give an explicit bound on the o(1) term). A quantitative
version of continuity is a Lipschitz condition. Namely, for
some c > 0 and every two vectors u and v, we have that
|f(u) − f(v)| ≤ c|u − v| (where distance between vectors is
computed in the `2 norm). The Lipschitz condition ensures
that if the player manages to attain a vector close (in `2 dis-
tance) to a vector of high value, then the player also attains
high value. To make the Lipschitz constant c meaningful,
we use the convention (that can be attained by some simple
scaling) that outcome vectors have `2 norm at most 1, and
that f when applied to such vectors has value in the range
[−1, 1].

A Lipschitz condition by itself will not suffice in order to
attain the conservative goal.

Example 1. Consider the function f(x) = |x|, attaining
its maximum at x = ±1. Let A1 be an action that on
the first T/2 rounds gives outcome +1, and let A2 be an
action that on the first T/2 rounds gives outcome −1. In
the last T/2 rounds, either both actions give the outcome
+1, or both give−1, but before completing round T/2+1 the
player does not know which case holds. Note that in either
case, the conservative goal requires that the player achieves
a value of 1− o(1), but regardless of what the player does in
the first T/2 rounds, his average value over these two cases
is at most 1/2.

To overcome such negative examples, we shall require that
f is quasiconcave. Recall that a function f is convex if for
every 0 ≤ λ ≤ 1 and vectors u and v, we have f(λu +
(1 − λ)v) ≤ λf(u) + (1 − λ)f(v), and concave if for every
0 ≤ λ ≤ 1 and vectors u and v, we have f(λu+ (1− λ)v) ≥
λf(u) + (1− λ)f(v). A function is quasiconcave if for every
0 ≤ λ ≤ 1 and vectors u and v, we have the weaker condition
f(λu+ (1− λ)v) ≥ min[f(u), f(v)] (and for quasiconvex we
have f(λu+ (1− λ)v) ≤ max[f(u), f(v)]). Equivalently, for
every c, for quasiconvex functions the region of vectors for
which f(v) ≤ c is convex, and for quasiconcave functions
the region of vectors for which f(v) ≥ c is convex. An
example of a quasiconcave function that is not concave (in
fact, it is strictly convex) is the scalar function f(x) = x2

over the domain x ≥ 0. For the motivating example that we
started with, quasiconcavity of f is a natural assumption.
It is also natural that a property such as quasiconcavity
will be necessary in our setting. It is inherent in our model
that the player averages the outcome vectors from different
rounds, and quasiconcavity ensures that averaging vectors
cannot reduce the value below that of the least valuable
vector contributing to the average.

Summarizing the discussion above, we say that f is ad-
missible if the following requirements and conventions hold.

1. Outcome vectors have `2 norm at most 1



2. The value function f when applied to such vectors has
value in the range [−1, 1].

3. The value function f is continuous with a Lipschitz
constant c > 0.

4. The value function f is quasiconcave. Namely, for ev-
ery 0 ≤ λ ≤ 1 and vectors u and v, one has f(λu +
(1− λ)v) ≥ min[f(u), f(v)].

If f is admissible, can we achieve the same goals as those
achieved in the standard expert setting? That is, can the
player attain a value at least as high as the value of the best
action (up to low order terms)? Interestingly, the answer is
negative.

Example 2. Consider the concave function f(x) = −|x|,
attaining its maximum at x = 0. As in example 1, let A1

be an action that on the first T/2 rounds gives outcome +1,
and let A2 be an action that on the first T/2 rounds gives
outcome −1. In the last T/2 rounds, either both actions
give the outcome +1, or both give −1, but before completing
round T/2 + 1 the player does not know which case holds.
Note that in either case, there is one action whose average
outcome is 0. However, regardless of what the player does in
the first T/2 rounds, his average value over these two cases
is at most −1/2.

Example 2 illustrates that to be able to nearly match the
performance of the best action, one may need to place ad-
ditional restrictions on the value function f . Indeed, earlier
work of [9] (when adapted to our setting, see more detailed
discussion in Section 1.4) can be viewed as implementing
such an approach, in combination with placing restrictions
on the outcome vectors Oi,t. However, in this work we do
not wish to place such restrictions, as then the results will
not be applicable for our intended applications. Instead we
shall consider a different performance measure for our algo-
rithms.

1.2 Maxmin comparison classes
When quantifying the performance of an algorithm for

the player, one often specifies a class of algorithms against
which to compare the performance of the player’s algorithm
(or using standard jargon, against which to measure the re-
gret of the algorithm). Much of previous work on expert
algorithms uses as a comparison class those algorithms that
in every round perform the same action, and wishes to nearly
match the performance of the best algorithm in this class.
As Example 2 shows, in our setting it is impossible to do
so. Instead, in this work we follow a different approach. We
define a collection B, where each B ∈ B is a block of rounds
that may serve as an excuse block. In addition, we define a
comparison class A of algorithms. Let fA(B) be the value
achieved by algorithm A on block B of rounds. Then the
value that we attempt to attain is minB∈B[maxA∈A fA(B)].
One interpretation for this expression is that any block from
B can serve as an excuse of why our algorithm did not attain
a high value – no algorithm from the comparison class can
do well on the block B, and hence we are excused from do-
ing well on the whole sequence of T rounds. A special case
of this maxmin comparison class is when B contains only
a single block, that of all rounds (we call this the standard
excuse block), and A contains those algorithms that in ev-
ery round perform the same action. This special case is the
same as the comparison class conventionally used for expert
algorithms.

Before presenting our results, we introduce the following
terminology.

Definition 1. We say that a strategy asymptotically matches
a target value g, if the expected difference between g and the
value obtained by the strategy is O(ν(T )), where T is the
number of rounds and ν(T ) is a nonnegative function that
tends to 0 as T grows.

An interesting choice for B is to take as excuse blocks all
suffixes. Namely, for 1 ≤ t ≤ T , block Bt contains rounds
t up to T . We call this the suffix blocks. As above, A
contains those algorithms that in every round perform the
same action. We call this, the pure strategies. The proof of
the next proposition appears in Appendix A.

Proposition 1. If f is admissible and the outcome is
one dimensional, then there is a strategy that asymptoti-
cally matches minB∈B[maxA∈A fA(B)], where B is the suffix
blocks and A are the pure strategies.

The requirement that the outcome is one dimensional is
essential in Proposition 1. For multidimensional outcomes,
suffix blocks do not suffice, and neither does a natural larger
class of blocks. This is established in the following theorem,
whose proof appears in Appendix A.

Theorem 1. Even for admissible f and when A are
the pure strategies, no strategy asymptotically matches
minB∈B[maxA∈A fA(B)] for B that contains all single
rounds, all prefixes and all suffixes.

Remark. Our proof of Theorem 1 has interesting con-
sequences beyond those stated in the theorem. Consider
the following transparent version of the multiple round op-
timization problem: in every round the player is first told
what are the outcome vectors associated with each action
on that particular round, and only then needs to choose
an action. Then if any round can serve as an excuse
block, the player now has a strategy that achieves at least
minB∈B[maxA∈A fA(B)]. Namely, in each round the player
chooses the action that gives the outcome vector of highest
value, and by quasiconcavity of the value function f , this
gives the desired global guarantee. However, if the excuse
blocks are only all prefixes and all suffixes, then the proof of
Theorem 1 actually shows that no strategy asymptotically
matches minB∈B[maxA∈A fA(B)], not even in the transpar-
ent version.

Given the negative results of Theorem 1, in our Theo-
rem 2 we identify a collection of excuse blocks with respect
to which the player does have a good strategy.

1.3 Main theorem
For our positive results, the comparison class A need not

be restricted to that of pure strategies. It can be generalized
to be that of fixed mixed strategies. A fixed mixed strategy is
a probability vector α over actions, and the value resulting
from it within a block B is that of the α weighted average
of the pure strategies, namely, f( 1

|B|
∑
i αi

∑
t∈B Oi,t). The

collection of excuse blocks that we use are described next.
Medium size blocks. Blocks of

√
T consecutive rounds that

end at a round that is a multiple of
√
T . For concreteness,

let B contain
√
T blocks, where block j contains rounds (j−

1)
√
T + 1 up to j

√
T .



Theorem 2. Let f be admissible with Lipschitz con-
stant c, let B be the medium size collection of blocks,
and let A be the class of fixed mixed strategies. Then
there is a randomized strategy that asymptotically matches
minB∈B[maxA∈A fA(B)].

The proof of Theorem 2 (which appears in Section 2)
combines expert algorithms with Blackwell’s approachabil-
ity theorem [6]. The ability to have fixed mixed strategies
rather than only pure strategies as the comparison class is a
natural consequence of the use of Blackwell’s approachabil-
ity theorem, and a similar extension of the comparison class
appears also in [9].

An important aspect of Theorem 2 is that it uses the
medium size collection of blocks rather than the standard
one (that only contains all rounds as a single block). As
implied by Theorem 1, this is unavoidable in our setting.
(Of course, some variations on the medium size collection of
blocks would also work for us, but Theorem 1 places limita-
tions on what these variations might be.)

From a motivational point of view, the two versions of ex-
cuse blocks are incomparable. In a stock market example,
actions correspond to buying stocks in the stock market.
There it is natural to assume that in the long run (say, in a
15 years period) the stock market goes up, but this assump-
tion is not made for periods of medium length (say, three
months). Hence it is desirable to use the standard excuse
block, comparing our outcome with that of the best stock
that we could have bought and held on to, rather than with
the collection of medium size excuse blocks, which might
contain excuse blocks in which the value attainable is very
poor, and this will reflect badly on our guarantees. In the
tennis player example, actions correspond to supporting a
tennis player, and making profit in times in which the tennis
player is ranked among the top players in the world. There
is no single tennis player that maintains high rank over a
long period of 30 years, but within every medium length
period (say one year), there always is some player who is
consistently ranked high. In this setting it is desirable to
use the medium size excuse blocks rather than the standard
excuse block.

From a technical point of view, achieving results with
respect to the standard excuse block (when possible) are
preferable over results with respect to the collection of
medium size excuse blocks, since the former can be used
to obtain results also for the latter (apply the former algo-
rithm to each medium size block treating it as a standard
block, and concatenate the outcomes – the proof that this
works uses quasiconcavity of f), but not vice versa.

The proof of Theorem 2 establishes a regret of Õ(T 3/4) (or

an average of Õ(T−1/4) per round with respect to medium

size excuse blocks, where the Õ notation hides factors that
are either logarithmic or independent of T (such as number
of actions, or Lipschitz constant c). We next show that this

result is tight; i.e., a regret of Ω(T 3/4) is unavoidable.

Theorem 3. Even with only two actions and scalar out-
come, no algorithm has expected regret smaller than Ω(T 3/4)
with respect to medium size excuse blocks.

In Section 3, we establish the robustness of this lower
bound. Specifically, we show that a regret of Ω(T 3/4) is
unavoidable not only with respect to medium size excuse
blocks, but also with respect to other natural excuse blocks.

There are some natural directions in which one may want
to extend Theorem 2. One of them is to raise the bar and
rather than compare the value attained by the player to
that attainable by an algorithm from the comparison class in
the worst block, compare it to the kth-worst block for some
suitably small value k. That is, a single bad block no longer
serves as an excuse for bad performance – only multiple
bad blocks do. Another is to consider a bandit setting in
which the player can only observe the outcomes of those
actions that he performed (rather than of all actions). With
these extensions one can still design strategies for which the
expected regret term tends to 0 as T grows, though the rate
at which the regret term tends to 0 is slower than that of
Theorem 2. These extensions are discussed in Section 4.

1.4 Related work
In the classical expert setting (see, e.g., [13]), there are

m experts and T rounds. In every round t, every expert j
provides some scalar payoff pj,t in the range [−1, 1]. There is
a player that does not know these payoffs a-priori. In every
round t the player may select one expert (say, j), receive
the payoff from that expert (pj,t in our example), and in
addition the values pi,t for all i are revealed. The bandit
setting (see, e.g., [2]) is the same except that only pj,t for
the selected expert j is revealed in round t, but not pi,t for
i 6= j. The goal of the player in either setting is to maximize
the some of payoffs received in al rounds. As the selection
of a player may be randomized, one considers the expected
total payoff. The basic theorems in these settings relate the
expected payoff achievable by the player with that given by
the best expert – namely, with payoffs achievable by the best
fixed strategy that selects the same expert in every round,
with hindsight of knowing which is the expert with highest
total payoff. Many bounds have been established over the
years for different variants of the problem. Here, we present
the best existing bounds (to the best of our knowledge) to
the expert and bandit settings described above.

Theorem 4. [8] In the above expert setting, there is a
randomized strategy for the player that achieves payoff at

least maxj
∑
t pj,t−O

(√
T ln(m/δ)

)
with probability at least

1− δ for every δ ∈ (0, 1).

Theorem 5. [8] In the above bandit setting, there is a
randomized strategy for the player that achieves expected

payoff1 at least maxj
∑
t pj,t−O

(√
mT ln(m) ln(1/δ)

)
with

probability at least 1− δ for every δ ∈ (0, 1).

[6] considered vector-valued games (where the payoff of an
agent is given by a vector of unexchangeable values), and de-
fined the notion of “approachability” of a convex set in such
games. Specifically, a convex set is said to be approach-
able if the player has a strategy, in the repeated game, that
guarantees an average payoff vector (over all rounds) that
is approaching the convex set; i.e., whose distance from the
convex set goes to zero as the number of rounds goes to infin-
ity. The convex regions that are feasible in this setting were
exactly characterized by Blackwell’s approachability theo-
rem [6]. Blackwell’s approachability theorem applies in a

1Note that the ln(m) factor in the regret expression can be
discarded if one is interested in a regret bound that holds in
expectation rather than with high probability [1].



special case of the vector setting, when the experts repre-
sent pure strategies for the approaching player, the payoff
vectors represent payoffs obtained from mixed strategies of
the other player, and the payoff matrix of the game is known.

The work closest to ours that we are aware of is that of [9].
A motivating example presented in [9] is as follows. There
are m machines and T rounds. In every round t, a load
balancing scheduler needs to place a job Jt on a machine.
The marginal load li,t that will be suffered by machine i if
job Jt is placed on it is not a-priori known, but is revealed
after round t (for all machines, not only for the machine on
which Jt was actually placed). After T rounds one has the
m-dimensional vector whose jth entry is the total load (over
all rounds) placed on machine j. The goal is to achieve a
vector that minimizes some function f (e.g., the load of the
most loaded machine, or the sum of squares of loads). The
problem studied in [9] can readily be seen to be a special case
of the problem that we study. It too is concerned with opti-
mizing a function of the sum of outcomes, and the outcome
in each round is a vector. As such, much of what we do in our
current paper was already done in [9]. This includes placing
restrictions on f (it is required to be convex in [9] and quasi-
concave in our setting, where the switch between convexity
and concavity is explained by a switch between minimiza-
tion and maximization), using Blackwell’s approachability
theorem in the proofs, and using a comparison class that
allows for fixed mixed strategies. However, there is a major
aspect in which our setting is more general than that of [9],
which significantly changes the nature of results. In our set-
ting, the outcome of an action can be an arbitrary vector
(of norm at most 1). In [9], for every i the outcome of ac-
tion i is a vector for which all coordinates except for i are 0.
This restriction in [9] corresponds to a model in which all
load on the machines is a consequence of the jobs that the
load balancing scheduler places on them (e.g., nobody else
is using the machines except for the scheduler), and hence
each round adds load only to the machine on which the cor-
responding job is placed. This restriction allows [9] to use
the standard excuse block (whereas in our more general set-
ting this is impossible, as Example 2 above shows). A major
technical ingredient in their proof is to show that in their
setting, when f is an `p norm with p > 1, the value of the
outcome of the best fixed mixed strategy enjoys a concavity
property. The proof uses heavily the fact that the outcome
vectors are of special form, and the concavity property is
simply incorrect in our more general setting. (To see where
the concavity property fails in Example 2 above, consider
only the last T/2 rounds. Each of the two options given for
outcome vectors has poor value, but averaging the two out-
come vectors gives good value. This holds regardless of the
action chosen, and hence also with respect to the best fixed
mixed strategy. Translating this example to the terminology
of [9], this contradicts the concavity property.)

Our vector setting can be also seen as a generalization
of some nonlinear bandit or expert settings that have pre-
viously appeared in the literature. An example of such a
setting is that of dynamic pricing with unknown demand [4,
5]. In this setting, a seller has a set of identical items, and
is facing n potential buyers, who arrive sequentially. The
seller’s goal is to maximize profit; to do so, the seller can
make a “take it or leave it” offer to each arriving buyer. If
supply were unlimited, then this situation corresponds to a
standard bandit setting [7, 12]. If, however, the number of

items is smaller than n (as is the case in [4, 5]), then the
payoff becomes nonlinear and hence a blackbox application
of bandit algorithms is inappropriate2.

To avoid possible confusion, let us emphasize that our
framework is different from that of Online Convex Optimiza-
tion in the sense of [14]. We average the outcome vectors
over all rounds, and then compute the payoff of the average.
Zinkevich allows a choice of an action vector (which is differ-
ent from having an outcome vector), and the loss function
in a round is convex function of this vector (and revealed
only at the end of the round). The main difference is that
the loss is computed per round, and then averaged. Our
setting should also not be confused with that of [11], where
the strategy taken by the decision maker can be represented
as a vector, while the obtained payoff is a scalar.

2. MEDIUM SIZE EXCUSE BLOCKS
We restate and prove Theorem 2 and Theorem 3.

Theorem 2 Let f be admissible with Lipschitz constant c,
let B be the medium size collection of blocks, and let A be the
class of fixed mixed strategies. Then there is a randomized
strategy that asymptotically matches minB∈B[maxA∈A fA(B)].

We break the proof of the theorem into two parts. In the
first part, we assume that the algorithm knows which value
it needs to approach. The result of this part is summarized
in the following theorem.

Theorem 6. Let f be admissible with Lipschitz con-
stant c, let B be the medium size collection of blocks, and
let A be the class of fixed mixed strategies. Let g =
minB∈B[maxA∈A fA(B)] be the minimum over all blocks of
the value achievable by the fixed mixed strategy of highest
value in that block. Then there is a randomized strategy that
given g achieves value g−O(c

√
log(mT/δ)/T 1/4) with prob-

ability at least 1− δ.

Proof. Let K denote the set of vectors u in Rd that
satisfy f(u) ≥ g. By quasiconcavity of f we have that K
is a convex set. We are required to design a strategy that
over the T rounds obtains an average outcome vector that
is either in K or very close to K. This requirement is sim-
ilar to the requirement in Blackwell’s approachability theo-
rem. However, the premises of Blackwell’s theorem do not
hold, and hence we cannot apply Blackwell’s theorem di-
rectly. Instead, we shall use algorithms from the (scalar)
expert setting on each block separately and use this in order
to obtain an approximate version of Blackwell’s setting with
T/B rounds, where B =

√
T is the number of rounds in a

block. In our proof of Theorem 6 we shall use Theorem 4
(regarding the expert setting) as a blackbox, in combina-
tion with the proof technique that is used in the proof of
Blackwell’s approachability theorem.

We now describe the randomized algorithm. Recall that
the outcome of each action is a d-dimensional vector. Parti-
tion the T rounds into T/B blocks B1, B2, . . .. We describe
what our algorithm does in block Bj given the outcomes
in previous blocks. Let uj denote the average of outcome
vectors achieved by our algorithm in all rounds up to the
beginning of block Bj , with u1 = 0. Observe that uj is a

2A major difference between their setting and ours is that
their setting is stochastic while we employ a worst-case ap-
proach.



random variable (because our algorithm is randomized), but
the algorithm knows its value when block Bj is about to be-
gin. If uj ∈ K we refer to the block as a dormant block, and
in all rounds of block Bj our algorithm performs arbitrary
actions. (For out theoretical bounds, it does not matter
which actions are performed in dormant blocks, though in
practice it may matter. See Section 4.) If uj 6∈ K we refer
to the block as an active block, and then let Kj denote the
point in K closest to uj (in Euclidean distance). At an in-
tuitive level, our algorithm attempts to move towards Kj .
Formally, let dj be a unit vector pointing in the desirable
direction of movement (namely, dj = Kj − uj normalized
to be a unit vector). Within the block Bj our algorithm
would like to obtain an outcome vector Oj that maximizes
the movement in direction dj . This is the vector that max-
imizes the inner product 〈(Oj − uj), dj〉. Observe that this
inner product is a scalar and not a vector. Hence within
block Bj our algorithm shall employ the expert algorithm
from Theorem 4, where in each round the value of each out-
come O is considered to be 〈(O − uj), dj〉. This completes
the description of the strategy of our algorithm in block Bj ,
and by induction, on the whole sequence of T rounds.

We now analyze the performance of our algorithm. Let
Bj be an active block. Let Oji denote the average outcome
vector of action Ai on the rounds of block Bj . Within block
Bj the premises of Theorem 6 imply that there is a con-
vex combination

∑
i λiO

j
i (where λi ≥ 0 and

∑
i λi = 1)

that lies within K. For this particular convex combination
it must hold 〈(

∑
i λiO

j
i − uj), dj〉 ≥ 〈(Kj − uj), dj〉. In

particular, there must be some action (say Ai) for which
〈(Oji − u

j), dj〉 ≥ 〈(Kj − uj), dj〉. As a consequence of The-
orem 4, there is probability at least 1− δ that the outcome
vector Oj of our algorithm in block Bj satisfies

〈(Oji − u
j), dj〉 ≥ 〈(Kj − uj), dj〉 −O(

1√
B

√
log(m/δ)) (1)

For a vector u, let |u − K| denote the `2 distance be-
tween u and the point closest to u in the convex body K.
We consider the sequence of average vectors u1, u2, . . . ob-
tained by our algorithm at the beginning of blocks and upper
bound the distance of these vectors from K. It will be more
convenient for us to scale the distance by the number of
rounds that passed up to that point, e.g., replace |uj −K|
by Dj = (j − 1)B|uj −K|. In our analysis we will assume
that inequality (1) always holds. This can be enforced on
all blocks simultaneously with probability (1− δ) by taking
δ < 1/T 2 and applying the union bound.

We now show that if inequality (1) always holds then for

all 1 ≤ j ≤ T/B we have Dj ≤ O(B3/2
√

log(m/δ)). The
proof is by induction on j. Let j0 be the largest index satis-
fying Dj0 < B3/2. Then Dj0+1 ≤ Dj0 +2B (because in each
round the worst that can happen is that the outcome and K
are two antipodal points on the unit sphere). Thereafter, for

every j > j0 we claim that Dj+1 ≤ Dj + O(
√
B log(m/δ)).

This follows from the fact that in block j + 1 the total
backward movement along the direction dj+1 is no worse
than O(

√
B log(m/δ)) (by inequality (1)), and in the per-

pendicular direction it is no worse than B (because this is
the number rounds in a block). Hence (Dj+1)2 ≤ (Dj +

O(
√
B log(m/δ)))2 +B2 ≤ (Dj+O(

√
B log(m/δ)))2, where

the last inequality uses the fact that Dj > B3/2 and as-
sumes a change of constant in the O notation. As there

are B blocks we have that the final value of D is at most
B3/2 +B +O(B3/2

√
log(m/δ)) = O(B3/2

√
log(m/δ)).

It follows that the final average outcome vector u of
the algorithm satisfies |u − K| ≤ O(B3/2

√
log(m/δ)/T ) =

O(
√

log(m/δ)/T 1/4). By the Lipschitz condition on f the fi-

nal value is no worse than g−O(c
√

log(m/δ)/T 1/4). Finally,
the requirement that δ ≤ 1/T 2 gives the bound claimed in
the theorem.

Remark. If excuse blocks are of size
√
T log(mT/δ)

rather than
√
T , the proof in Theorem 6 gives an improved

bound of g − O(c(log(mT/δ)/T )1/4). However, for simplic-
ity, in this manuscript we fix the size of excuse blocks to be√
T and do not attempt to optimize the logarithmic terms.
With Theorem 6 at hand, we are now able to prove The-

orem 2.

Proof. Consider a nested sequence of convex bodies
K1 ⊂ K2 ⊂ K3 . . ., where for every 1 ≤ i < T 1/4 we
have that Ki is the set of vectors whose value under f is
above 1−2i/T 1/4 (recall that f takes on values in the range
[−1, 1]). Our strategy is similar to that of Theorem 6 with
the difference that there is no one fixed convex body K that
we attempt to approach, but rather the convex body may
change from block to block. Namely, suppose that in block
Bj the algorithm Ki played the role of K. Then before
block Bj+1 begins, the algorithm determines whether there
was a fixed mixed strategy whose average outcome vector
for block Bj lies within Ki. If there was such a strategy,
then also in block Bj+1 the algorithm attempts to approach
Ki. If there was no such strategy, then in block Bj+1 the al-
gorithm attempts to approach Ki+1. (In a different version
of our algorithm, rather than approaching Ki+1 the algo-
rithm may attempt to approach Ki′ for the largest i′ that is
consistent with all previous blocks. However, doing the con-
servative change to i + 1 rather than an aggressive change
to i′ has certain advantages that will become apparent in
Section 4.)

We now analyze the strategy. Let g =
minB∈B[maxA∈A fA(B)] and let K be the convex body
containing all vectors whose value according to f is at least
g. Our goal is to approach K, though K is not known to
the algorithm. Let i be the least index for which K ⊂ Ki.
In every block there is a fixed mixed strategy whose average
outcome vector lies within Ki. Hence in every block Bj it
must be the case that our algorithm attempts to approach
some convex body Ki′ with i′ ≤ i, where i′ may depend
on j. In some blocks it may happen to be the case that
there is no fixed mixed strategy whose average outcome
vector lies within the respective Ki′ (since Ki′ ⊂ Ki rather
than Ki′ = Ki). On these blocks the expert algorithm that
is employed on the block offers no guarantees. Luckily,
there can be at most T 1/4 such blocks, because each such
block causes the value of i′ to increase. Hence altogether
they can contribute at most 2BT 1/4 = O(T 3/4) to the loss
in D (where D is as in the proof of Theorem 6), which

translates to a loss of O(1/T 1/4) in the final value. Another
source of loss compared to the proof of Theorem 6 is due
to the quantization in specifying the convex body, namely,
due to the difference between Ki and K. This incurs an
additional loss of at most 2/T 1/4 in the final value. Other
than the above two issues, the bounds are precisely like in



the proof of Theorem 6, and hence with probability 1 − δ
the strategy achieves a value of g−O(c

√
log(mT/δ)/T 1/4).

This completes the proof of Theorem 2.

Finally, we show that an average regret of Ω(T−1/4) per
round with respect to medium size excuse blocks is unavoid-
able. The following result, as well as the results in the
next section, refer to the total regret. An average regret
of Ω(T−1/4) is equivalent to a total regret of Ω(T 3/4) as the
total regret is simply T times the average regret.

Theorem 3 Even with only two actions and scalar outcome,
no algorithm has expected regret smaller than Ω(T 3/4) with
respect to medium size excuse blocks.

Proof. In each block, for each of the two actions, the
outcome of the first

√
T − T 1/4 log T rounds is set indepen-

dently at random to be either +1 or −1. In each block Bj ,
for each of the two actions, the outcome of each of the last
T 1/4 log T rounds is set to be aj , where aj is chosen such
that the better of the two actions in the block averages to 0
in that block. Hence the value for every excuse block is 0.

Observe that the expectation of ajT
1/4 log T is in the

order of −θ(T 1/4), because the maximum of two random

±1 walks of length roughly
√
T is in the order of T 1/4.

Hence any algorithm is expected to average 0 on the first√
T − T 1/4 log T rounds and then lose Ω(T 1/4) on the last

rounds of the block. Hence altogether the algorithm has
regret Ω(T 3/4), or average regret Ω(T−1/4) per round.

3. LOWER BOUNDS
In Section 2 we showed an algorithm that obtains a regret

of Õ(T 3/4) with respect to medium size excuse blocks. We

also showed that a regret of Ω(T 3/4) is unavoidable. In this
section we extend this lower bound and show that a regret of
Ω(T 3/4) is unavoidable not only with respect to medium size
excuse blocks, but also with respect to many other natural
excuse blocks.

We begin with the introduction of several classes of excuse
blocks.

• Small interval blocks. Blocks of up to
√
T consecutive

rounds, starting at an arbitrary round.

• Binary tree blocks. T is assumed to be a power of 2.
The rounds are placed on the leaves of a full binary tree
of depth log T , and every node of the tree represents a
block that contains the rounds in its subtree.

• Sliding window blocks. Some arbitrary but fixed value
` serves as the size of the window. Every interval of `
consecutive rounds is a block.

• Interval excuse blocks. Every consecutive set of rounds
of arbitrary length serves as an excuse block.

Recall that by Theorem 3, even with only two actions, a
regret smaller than Ω(T 3/4) is unavoidable with respect to
medium size excuse blocks. In the proof of the following
theorem the number of actions grows with T .

Theorem 7. Even with O(log T ) actions and scalar out-

come, no algorithm has expected regret smaller than Ω(T 3/4)
with respect to small interval blocks.

Proof. Each of the m = Θ(log T ) actions is a random

string of±1. Each +1 counts as payoff of 1−1/T 1/4, whereas
each −1 counts as payoff of −1.

For a small interval of length `, every action has expected
average payoff of−`/2T 1/4 and standard deviation of Ω(

√
`).

Hence when ` ≤
√
T an action has constant probability of

giving positive average payoff on the interval. The probabil-
ity that no action gives positive payoff is 2−Ω(m). Taking a
union bound over all O(T 3/2) intervals, there is high prob-
ability that for every small interval there is an action with
positive average payoff.

On the other hand, the player gets an average payoff of
−1/2T 1/4 per round, giving total expected regret Ω(T 3/4).

In the proof of the following theorem, also the number of
dimensions grows with T .

Theorem 8. No algorithm has expected regret smaller than
Ω(T 3/4) with respect to binary tree blocks.

Proof. Blocks of size at most
√
T are already handled

by Theorem 7. Hence it remains to deal with those blocks
of size larger than

√
T . There are O(

√
T ) such blocks in

the binary tree. Each such block will be associated with
two fresh dimensions and two fresh actions. Consider one
such block of length ` >

√
T . In the first half of the block

one action offers an outcome of (1,−1) in the dimensions
associated with the block (and 0 in other dimensions). The
other action offers an outcome of (−1, 1). In the second half
of the block, with probability 1/2 both actions give (1,−1),
and with probability 1/2 they both give (−1, 1). If an action
associated with an interval is played outside the interval, it
gives an outcome of (−1,−1). The function f computing
the payoff of an average outcome vector is the negative of
the `2 norm of the vector.

If on at least half the rounds the player takes actions that
are associated with small intervals, the theorem follows from
Theorem 7. Hence on at least half the rounds the player
takes actions associated with large intervals. For every such
action, the expected regret is linear in the number of rounds
on which it was played. Hence to minimize regret (when
measured as an `2 norm), the player needs to spread the
regret (which is linear in `1 norm) on as many coordinates

as possible, namely, on O(T 1/2) coordinates. This reduces
the regret from O(T ) (had it been measured in `1 norm) to

O(T 3/4).

We note that unlike the proofs of Theorems 3 and 7, the
proof of Theorem 8 only establishes a bound on the expected
regret, but does not show that this bound holds with high
probability.

Theorem 9. For every even `, no algorithm has expected
regret smaller than Ω(T 3/4) with respect to sliding window

blocks of size `. When ` >
√
T , this holds even if the number

of actions is a constant independent of ` and T .

Proof. The case of ` ≤
√
T is handled by Theorem 7.

Hence we may assume that ` >
√
T . We first prove the the-

orem under the assumptions that ` ≤ T/2 and T is divisible
by `.

Recall that ` is assumed to be divisible by 2. Partition T
into 2T/` intervals of `/2 consecutive rounds. A quadruple



is four consecutive intervals. A quadruple is of type Qi if it
starts at an interval whose index is i modulo 4. Note that
the rounds covered by two quadruples of the same type do
not overlap. We shall consider only quadruples of type Q1

and Q3. We shall have four actions associated with type
Q1 quadruples, and four actions associated with type Q3

quadruples. With each quadruple we associate four pat-
terns, (+1,+1,+1,+1), (+1,−1,−1,−1), (+1,−1,+1,+1)
and (+1,−1,+1,−1). Given a quadruple (say of type Q1),
with each pattern we associate at random one of the four
actions associated with the type of the quadruple, and one
fresh dimension (without the player knowing which action is
associated with each pattern). The pattern associated with
an action shows which outcome to give (in the correspond-
ing dimension) in each of the four intervals that make up the
quadruple. Observe that only the last of the four patterns
ensures that in every block of ` consecutive rounds that lies
within the quadruple, the average outcome is 0. The payoff
function is the `2 norm of the average vector.

Observe that for every block of size ` there is some action
with average payoff 0. However, the player does not know
which action is associated with each pattern. Because of
that, within a block of length ` the player has expected
regret Ω(`). As the number of dimensions is O(T/`), the

total regret is Ω(
√
T`) ≥ Ω(T 3/4) (because ` >

√
T ).

To remove the assumption that T is divisible by `, let
T ′ < T be the largest integer smaller than T and divisible
by `. Make two copies of the construction above, one with
eight actions on the first T ′ rounds (and giving −1 payoffs
on the T − T ′ last rounds), the other with eight actions on
the last T ′ rounds (and giving −1 payoffs on the first T −T ′
rounds).

Finally, it remains to deal with the case that ` > T/2. In
this case, one cannot fit even a single quadruple in T rounds.
However, this does not matter. Let T ′ = 2` > T , which is
the number of rounds that suffices in order to support a
quadruple. Make two independent constructions of a single
quadruple and four patterns and four actions on T ′ rounds,
align one of them to start at the beginning of the T rounds,
and the other to end at the end of the T rounds. It does not
matter that the quadruples spill beyond the borders of the
T rounds.

Theorem 10. No algorithm has expected regret smaller
than Ω(T 3/4) with respect to the set of interval excuse blocks.

Proof. One can use the proof of Theorem 7 on blocks
of size at most

√
T . To handle blocks of size ` >

√
T one

would like to use the proof of Theorem 9. However, to do
so for every possible value of

√
T < ` ≤ T/2 would be too

costly, because than the total number of dimensions would
no longer be O(

√
T ), and even if the `1 regret is Ω(T ), the

`2 regret need not be Ω(T 3/4). To keep the number of di-

mensions at most O(
√
T ) we use the proof of Theorem 9

only with values of ` that are multiples of 1 + ε. To han-
dle other values of ` >

√
T we introduce some slackness in

the proof of Theorem 9. Namely, rather than give a coordi-
nate ±1 values, the coordinate is split into two coordinates,
where +1 corresponds to (1,−1 + ε) and −1 corresponds
to (−1 + ε, 1). The function f is now the `2 norms of the
average outcome vector, but computed only of those coor-
dinates that have negative value (coordinates with positive
value cost nothing).

4. EXTENSIONS
In Theorem 2 we assumed a so called expert setting in

which after each round the outcomes of all actions for that
round are revealed. Theorem 2 (with somewhat different
quantitative parameters) extends also to the bandit setting
in which only the outcomes of actions chosen by the player
are revealed.

Theorem 11. Let f be admissible with Lipschitz constant
c, let B be the medium size collection of blocks, and let A be
the class of fixed mixed strategies. Then in the bandit setting
there is a randomized strategy that asymptotically matches
minB∈B[maxA∈A fA(B)].

Proof. We first adapt the statement and proof of Theo-
rem 6 to the bandit setting. The only change in the proof is
a blackbox replacement of the algorithm from Theorem 4 by
the algorithm of Theorem 5. This changes the value achieved
to g −O(c

√
m log(T/δ)/T 1/4). 3

Now we adapt the proof of Theorem 2 to the bandit set-
ting. The difficulty is that in the bandit setting the algo-
rithm does not know after blockBj whether there was a fixed
mixed strategy whose average outcome vector lies within Ki.
Hence instead we employ a different strategy. If in block Bj
the movement away from the respective Ki along the direc-
tion dj turned out to be significantly larger than expected
(namely, Dj increased by more than O(c

√
mB log(T/δ))),

then the algorithm infers (and this inference is correct with
probability at least 1 − δ/T ) that block Bj can serve an
excuse block for failing to approach Ki, and raises i by 1.
The analysis then proceeds exactly as in the proof of Theo-
rem 2.

How robust are our algorithms? In what follows we em-
phasize some of the issues that are not stated in the formal
results, which can perhaps allow the reader to better under-
stand the robustness of our algorithms.

First, notice that the division into blocks of size
√
T can

be replaced by division into other block sizes, and in fact, not
all block sizes need to be the same. This will only change the
quantitative guarantees on the regret term, but the qualita-
tive guarantee (of being a term that tends to 0 as the number
of rounds grow) will remain. For example, our bounds apply
in a realistic setting of a campaign on an ad exchange, which
runs for a year, when a block corresponds to a day, in which
bidding is done approximately every minute.

Also, our guarantee for being no worse than the best ex-
pert on the worst block, can be replaced by referring to the k
worst blocks; this is important from a pragmatic perspective
as one may claim that some blocks (e.g. days) may be really
bad as far as payoffs or budget spent are concerned due to
the nature of supply arrival (in the ads example) or demand
arrival (in the pricing example). Suppose that for some value
g it happens that k of the excuse blocks are such that no
fixed mixed strategy can attain g on these blocks. Then our
algorithms with no change are still useful, provided that k is
not too large. The bounds in Theorem 6 suffer an additive
loss of at most 2kB/T (because in k blocks the algorithm

3The
√
m term is an exploration cost associated with the

bandit algorithm. For simplicity of notation, we equated the
space of actions with the space of bandits. We note that in
cases where the number of bandits exceeds number of actions
(for example, if bandits represent complicated strategies over
a small set of actions) the exploration term can be decreased.



might behave erratically), which for k ≤ T 1/4 is smaller than
the loss that they already allow. The bounds in Theorems 2
and 11 suffer a larger additive loss of O(k/T 1/4) (because
the algorithm may end up trying to approach Ki+k instead
of Ki), which is still tolerable when k = o(T 1/4). The pos-
sibility of such sources of error suggest that in practice, in
dormant blocks (see proof of Theorem 6), rather than tak-
ing arbitrary actions, it may be advisable to try to pick a
direction in which f increases and use the expert algorithm
(of Theorem 4) in an attempt to move in that direction.

One might also think that our definitions imply that our
algorithms would necessarily divide resources such as bud-
get equally among blocks. However, this is not the case:
our algorithms may well spend budget at higher rate in
some blocks, and compensate for this by spending budget
at slower rates at other blocks.

Finally, our algorithm is well defined, and moreover, may
potentially work great, even if there is no block in which our
experts do well; this is due to the fact that the derivatives of
the multi-dimensional changes in different blocks may cancel
each other, so that the overall average output may have high
value even if the average output of each individual block has
low value.

5. A GAME-THEORETIC SETTING
The low regret guarantees given by our algorithms are ap-

propriate for multiround optimization settings, but not nec-
essarily so for multiround games. The distinction is that in
multiround optimization settings we think of the sequence of
outcomes of every action as being fixed in advance (though
unknown to the player), whereas in multiround games the
outcomes depend on actions of other players, and the choice
of actions that the other players make may depend on the ac-
tions of the optimizing player. This point is well illustrated
by considering repeated play of the well known prisoner’s
dilemma game. For our notion of regret, defecting in every
round is an optimal policy. But if this game is played against
another player whose strategy is to play at each round what-
ever the other player played in the previous round, the op-
timal strategy would be to always cooperate (except for the
last round). Hence despite being optimal with respect to our
notion of regret, always defecting is a strategy that might
carry high regret in the multiround game setting (when the
player learns after the game that had he chosen to cooper-
ate his payoff would have been much larger). This aspect is
not captured by our modeling (and neither by the standard
experts and bandits models). On the other hand, for multi-
round 0-sum games, the multiround optimization framework
is appropriate.

A particular multiround 0-sum game setting with vector
outcomes was studied in [3]. In that setting there is a master
player who plays on behalf of several players in a repeated
game, and wishes to guarantee good performance to all the
players under his control, independent of the actions of the
other players. While in [3] the player observes the actions
taken by the opponent but not the obtained payoff, we con-
sider here the complementary problem, where the obtained
payoff is observed, but not the action. This situation can
be modeled as a two player game between players P1 (the
master player) and P2. The master player, P1, plays on be-
half of n players, and therefore the outcome of a round can
be viewed as an n-dimensional vector of payoffs, with one
coordinate for each player he represents. Payoff matrices

are unknown and cannot be inferred (since the actions of
P2 are not observable). The master player can only observe
the realized payoff vector (the outcome) after each round
of play. As the payoffs for P2 are never observed by P1,
we wish to obtain guarantees for P1 that hold regardless
of the payoff matrix for P2, and the worst case from this
respect is the 0-sum setting. For symmetric games, a nat-
ural goal for P1 is to maximize the sum of payoffs of his n
players, and this task can be cast as a bandit problem. For
nonsymmetric games, the situation becomes more compli-
cated. The master player wishes to achieve some goal over
the obtained payoff vector, which corresponds to some mas-
ter payoff function f (that returns a real value v given a
payoff vector V ). Our work establishes sufficient conditions
for a value v to be approachable in the repeated game. In
particular, by Theorem 2 (or rather Theorem 11, we shall
not distinguish between them here), v is approachable if the
master payoff function is quasiconcave, and every medium
sized block has an action that achieves v. A natural goal
for P1 is to guarantee good performance to every player he
represents. In this case, f is the minimum function, given
by f(V ) = min(V1, . . . , Vn), where Vi is the payoff for player
i, averaged over all rounds. Theorem 2 establishes that P1

has a strategy that guarantees good performance to every
player if every medium sized block of rounds has an action
that exhibits good performance with respect to every player.

Two remarks are in order here. One is that it is natural
and desirable to make use of the extra power offered by
Theorem 2 to compare with fixed mixed strategies rather
than fixed actions. This is because in any given block, it
could be that each action is bad for some player, but a mixed
strategy offers a vector of payoffs that is not bad for any
player.

The other remark is that in the game setting there will be
a natural class of vectors V such that for every vector V ∈ V,
in each medium size block there is a fixed mixed strategy
that achieves V . Moreover, in every block of rounds (re-
gardless of the number of rounds in the block and regardless
of whether they are consecutive or not) there is a fixed mixed
strategy achieving this vector. This class contains those
vectors that in each coordinate have the product-minimax
value [3] for the corresponding player. The product-minimax
value of a player in a game is defined as the value that a
player can guarantee herself if the other players announce
their most harmful product mixed strategy first, and in re-
sponse she chooses her best strategy. This value is at least
as high as the minimax value and is often higher. In par-
ticular, if we let v be the minimum product-minimax value
across all players the master represents, then our results im-
ply that v is approachable for the master for the function
f(V ) = min(V1, . . . , Vn).

6. OPEN QUESTIONS
We do not know if the lower bounds of Section 3 hold

when the dimension and/or the number of actions is a con-
stant independent of T (except for those theorems that state
so explicitly). When block size can be large (e.g., as large as
T ) this relates also to the question of whether the bound of

Ω(T 3/4) is only on the expected regret or also a high proba-
bility bound. If the number of actions is k and the complete
block can serve as an excuse block then the probability of
having no regret is at least 1/k.



Another situation in which the Ω(T 3/4) lower bound need
not hold is when every set of rounds is an excuse block (and
not only intervals). This case may come up in situations like
those discussed in Section 5. The number of possible excuse
blocks is then exponential in T rather than polynomial in T
which makes the construction of negative examples difficult.
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APPENDIX
A. THE SUFFIX EXCUSE BLOCKS

We restate and prove Proposition 1 and Theorem 1.

Proposition 1 If f is admissible and the outcome is one di-
mensional, then there is a strategy that asymptotically matches
minB∈B[maxA∈A fA(B)], where B is the suffix blocks and A
are the pure strategies.

Theorem 4 does not directly prove Proposition 1 because
in Proposition 1 the player does not need to maximize the
outcome, but rather some function f of the average out-
come. This function need not be nondecreasing. However,
Theorem 4 can be used as a blackbox in order to prove
Proposition 1, which we now prove.

Proof. As f is admissible it is quasiconcave. When the
outcome is scalar, this implies that f is unimodular. That
is, there is some value p ∈ [−1, 1] such that f(x) is non-
decreasing in the range x ∈ [−1, p] and nonincreasing in
the range x ∈ [p, 1]. Furthermore, f is continuous with
Lipschitz constant c > 0, and hence for every x ∈ [−1, 1],
f(p)− f(x) ≤ c|x− p|.

For the sake of devising a strategy for the player, ignore
the function f and treat the outcome of a round as a pay-
off. Consider two strategies for the player. Strategy max
attempts to maximize the sum of payoffs over all rounds,
and is the strategy from the proof of Theorem 4. Strategy
min attempts to minimize the sum of payoffs over all rounds,
and is the strategy one obtains from the proof of Theorem 4
by negating all payoffs. Let pt denote the payoff obtained

by the player in round t, and let Pt =
∑

i≤t pi

t
(with P0 = 0).

Then the zooming in strategy is as follows: for every t ≥ 0,
in round t+ 1 use strategy max if Pt ≤ p, and use strategy
min if Pt > p.

Let v be the minimum over all suffixes of the value of
f obtained by averaging the outcomes of the expert who
maximizes this value over the respective suffix. We now
prove that for every δ > 0, there is probability at least 1− δ
that the expected value obtained by the zooming in strategy

is at least v −O(c
√

log(mT/δ)
T

).

We first make some preliminary calculations that will later
be used in our analysis. For 0 ≤ t ≤ T −1, let ut denote the
maximum over all actions of the average outcome on rounds
[t+ 1, T ], and let `t denote the minimum over all actions of
the average outcome on these rounds. Suppose that a player
uses strategy max from round t+1 until round T (regardless
of whether the zooming in strategy actually dictates using
max on these rounds). Then we denote by Ut the event that
in these rounds the sum of outcomes obtained by the max
strategy is below ut(T − t)−O(

√
T log(mT/δ)). Theorem 4

implies that Pr[Ut] ≤ δ
2T

. Likewise, denote by Lt the event
that in rounds [t + 1, T ] the sum of outcomes obtained by

the min strategy is above lt(T − t) + O(
√
T log(mT/δ)).

Theorem 4 implies that Pr[Lt] ≤ δ
2T

. The union bound
implies that with probability at least 1− δ there is no value
of t for which either Ut or Lt happens.

We now return to the analysis of the zooming in strategy.
Let −1 ≤ q1 ≤ p ≤ q2 ≤ 1 be such that [q1, q2] is the maxi-
mal range of values for which f(x) ≥ v (by quasiconcavity of
f there must be such an interval). Partition values into three
ranges: under (< q1), good (∈ [q1, q2]) and over (> q2). Con-
sider what happens when the zooming in strategy is played.



As t increases, the corresponding average value Pt may drift.
For some values of t, it changes range (say from good to un-
der). Let t0 be the latest round for which the range in which
Pt0 lies is different from that in which Pt0−1 lies. Consider
the range in which Pt0 lies. If this range is good then we are
done, because then f(PT ) ≥ v. Hence we may assume that
this range is either under or over, and without loss of gener-
ality let it be under. This implies that also PT is under, and
it is left to estimate by how much. In round t0 the player
got a payoff pt0 that caused Pt0 to drift into under. Hence
−1 ≤ pt0 < q1. In the suffix starting from round t0+1, there
is an expert whose average outcome lies in [q1, q2]. As was
shown above, even if the value t0 is chosen in an adversarial
manner, there is probability at least 1− δ that the strategy
max of the player on these rounds gives a sum of outcomes
of at least (T − t0)q1−O(

√
T log(mT/δ)). In the first t0−1

rounds the sum of outcomes was at least (t0 − 1)q1. Hence

the average outcome is at least q1 −O(
√

log(mT/δ)
T

) (and at

most q1), and hence the value obtained by the player is at

least v −O(c
√

log(mT/δ)
T

).

Remark. Our proof of Proposition 1 shows that with

probability at least 1−δ the regret is at mostO(c
√

log(mT/δ)
T

).

The T factor within the log was a consequence of using
Theorem 4 as a blackbox and applying a union bound on

2T events. A smaller regret of O(c
√

log(m/δ)
T

) can be ob-

tained by a more sophisticated argument that we sketch
here. A common approach of devising algorithms in the
expert setting is via the multiplicative weight update ap-
proach. Within that framework, one can consider fractional
expert algorithms (rather than randomized ones), and for

them the regret is O(
√

logm
T

) (this is a deterministic state-

ment). The dependence on δ only enters once one uses
randomized rounding to transform the fractional algorithms
into randomized ones. For the randomized rounding pro-
cess, with probability 1−δ the error introduced in T rounds
is at most

√
1/T log δ. But in fact, this is be true for every

prefix of rounds simultaneously. (Suppose otherwise. Then
after the first time an exceptionally high value is reached,
there is probability 1/2 of maintaining this value until the
end.) By symmetry, a similar property holds for all suf-
fixes. Hence there is no need of suffering a union bound
over O(T ) events. (A formal proof based on this remark
becomes simpler if one modifies the zooming in strategy to
switch between max and min only at points when the frac-
tional expert algorithm would have switched. However, then
it does not apply to the bandit setting.)

We now restate and prove Theorem 1.

Theorem 1 Even for admissible f and when A are
the pure strategies, no strategy asymptotically matches
minB∈B[maxA∈A fA(B)] for B that contains all single
rounds, all prefixes and all suffixes.

Proof. In our proof there will be four actions, that we
call P1, P2, S1 and S2 (P for prefix, S for suffix). The out-
come vectors will be 4-dimensional. For convenience of the
presentation, their `2 norm will be bounded by 3 rather than
by 1. Likewise, the total number of rounds will be denoted
by 4T rather than T . For a vector x = (x1, x2, x3, x4), the
value function will be f(x) = min[x1, x2, x3, x4, 0], which is

nonpositive. Observe that f is continuous with Lipschitz
constant 1, and quasiconcave, as required from value func-
tions. We first prove the theorem when the excuse blocks
are all prefixes and all suffixes, and later extend the proof
to capture also all single rounds.

We shall consider four possible input sequences, that we
shall denote by I11, I12, I21, I22. The first subscript deter-
mines which of the prefix actions attains a value of 0 on
all prefix blocks, whereas the second subscript determines
which of the suffix actions attains a value of 0 on all suffix
blocks.

Action P1 gives an outcome of (3, 0, 0, 0) on each of the
first T rounds. Action P2 gives an outcome of (0, 3, 0, 0) on
each of the first T rounds. On the last 3T rounds, both P1

and P2 give an outcome of (−1, 0, 0, 0) for inputs sequences
I11 and I12, and an outcome of (0,−1, 0, 0) for inputs se-
quences I21 and I22.

Action S1 gives an outcome of (0, 0,−1, 0) on each of the
first 3T rounds. Action S2 gives an outcome of (0, 0, 0,−1)
on each of the first 3T rounds. On the last T rounds, both S1

and S2 gives an outcome of (0, 0, 3, 0) for inputs sequences
I11 and I21, and an outcome of (0, 0, 0, 3) for inputs se-
quences I12 and I22.

One can readily verify that for input sequence Iij (with
1 ≤ i, j ≤ 2), for every prefix the average outcome of action
Pi has value 0, and for every suffix the average outcome of
action Sj has value 0.

Consider now a player faced with an input sequence chosen
at random from the four possible input sequences Iij (the
player does not know which one). In the first T rounds,
at least one of the actions P1 or P2 is played at most T/2
times. Without loss of generality, let P1 be this action. Then
after T rounds the accumulated outcome vector has value
at most 3T/2 on its first coordinate. Then, with probability
half, it turns out that the input sequence is one of I11 or
I12. As a consequence, in the middle 2T rounds, the player
may choose an action from P1 or P2 at most 5T/3 times,
as otherwise the first coordinate of the accumulated output
vector becomes −T/6, and can never recover from being
negative. Hence at least one of the actions S1 or S2 is played
at least T/6 times. Without loss of generality, let S1 be
this action. Then in the input sequence turns out to be
I12 the third coordinate of the aggregate outcome vector
ends up being at most −T/6, and the overall value of the
outcome vector is at most −T

6
1

4T
= −1/24. As this happens

with probability at least 1/4, the expected value obtained
by the player is negative and bounded away from 0, proving
the theorem when the excuse blocks are all prefixes and all
suffixes.

Extending the proof to allow also for single round excuse
blocks is fairly straightforward. One option is to add two
auxiliary actions A1 and A2, where in each round one of
them (chosen at random independently in each round) gives
an outcome vector of (0, 0, 0, 0) and the other an outcome
vector of (−2,−2, 0, 0). The player gains nothing by play-
ing these actions because their expected outcome vector is
(−1,−1, 0, 0) which is worse than playing P1. However now
in each round some outcome vector has value 0. Another
option is not to add auxiliary actions, but instead, in every
round to replace the outcome of one of the P1/P2/S1/S2

actions (chosen at random) by (0, 0, 0, 0).


