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Abstract

Given a bipartite graph G(U ∪ V, E) with n vertices on each side, an independent set
I ∈ G such that |U ⋂

I| = |V ⋂
I| is called a balanced bipartite independent set. A balanced

coloring of G is a coloring of the vertices of G such that each color class induces a balanced
bipartite independent set in G. If graph G has a balanced coloring we call it colorable. The
coloring number χB(G) is the minimum number of colors in a balanced coloring of a colorable
graph G. We shall give bounds on χB(G) in terms of the average degree d of G and in terms
of the maximum degree ∆ of G. In particular we prove the following:

• χB(G) ≤ max{2, b2dc+ 1}.
• For any 0 < ε < 1 there is a constant ∆0 such that the following holds. Let G be a

balanced bipartite graph with maximum degree ∆ ≥ ∆0 and n ≥ (1+ ε)2∆ vertices on
each side, then χB(G) ≤ 20

ε2
∆

ln ∆ .

1 Introduction and definitions

Let G(U ∪V, E) be bipartite graph with n vertices on each side. We call such a graph a balanced
bipartite graph. An independent set I ∈ G such that |U ⋂

I| = |V ⋂
I| = k is called a balanced

bipartite independent set of size k. Finding a balanced bipartite set of maximum size (the
max-BBIS problem) is NP-hard, and the reader is referred to [2] for a discussion of some of its
applications, as well as some results regarding its inapproximability. 1

1Technically [2] discusses the Complete Bipartite Subgraph Problem, but this problem is the same as max-

BBIS, by exchanging the interpretation of edges and non-edges.
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A balanced coloring of G is a coloring of the vertices of G such that each color class induces
a balanced bipartite independent set in G. Notice that G has a balanced coloring if and only if
G contains a perfect matching of non-edges. We call such a graph colorable. Denote by χB(G)
the minimum number of colors needed in a balanced coloring of a colorable balanced bipartite
graph G.

Some applications in computational biology to colorings similar to the balanced coloring are
described in [1]. In particular they focus on partitions into balanced subgraphs of maximum
degree 1, and into possibly overlapping balanced subgraphs of maximum degree 1 .

In the following sections we shall give bounds on χB(G) in terms of the average degree d̄ of
G and in terms of the maximum degree ∆ of G. Our main results (see Theorems 2.1 and 3.2
for more details) are that χB(G) ≤ max{2, b2dc + 1} and that χB(G) = O(∆/ log ∆) (when ∆
is not too large). It is instructive to compare these results with the results known with respect
to the chromatic number χ(G) of a graph (the minimum number of independent sets that cover
all vertices, without the requirement that the graph is bipartite and that independent sets be
balanced with respect to a given bipartition), as this allows one to appreciate the differences
between these two seemingly related problems. No bound on the chromatic number can be
given in terms of the average degree alone, for the simple reason that for any graph, its average
degree can be made arbitrary small by adding isolated vertices to the graph, without decreasing
the chromatic number. As to bounds in terms of maximum degree, the well known inductive
coloring argument shows that for every graph, χ(G) ≤ ∆ + 1. From this it is easy to show
that for every graph, χB(G) ≤ 2∆ + 1. The proof, which implicitly appears in [1], is based on
merging together matched vertices in a perfect matching of the edge complement of G. However,
we prove a stronger bound, namely, that χB(G) ≤ O(∆/ log ∆) (when the number of vertices
is sufficiently large). This is similar in nature to the fact that χ(G) ≤ O(∆/ log ∆) for triangle
free graphs (as was proved by Johansson, see for example [7]). The reader might suspect that
the proof of these two statements is also similar, because bipartite graphs have no triangles, but
in fact the proofs are different. To appreciate why the proofs need to be different, the reader
may observe that with respect to chromatic number, when one color class (independent set) is
removed from the graph, the chromatic number of the remaining graph is never larger than that
of the original graph. This is not true for balanced coloring. By removing a balanced bipartite
independent set from a graph, the number of colors needed to color the remaining graph may
in fact go up, and in some cases, the remaining graph might not be colorable at all. Hence all
our algorithms for balanced coloring involve recoloring of previously colored vertices.

It is also instructive to compare between chromatic number and balanced coloring in terms
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of their computational complexity. Both problems are polynomially time solvable when the
number of required colors is two. For balanced coloring, we omit the proof, but it is similar in
nature to the proof of Lemma 2.2. When the number of required colors is three, both problems
become NP-hard. For chromatic number, the best polynomial time algorithms currently known
for coloring 3-colorable graphs require nδ colors, where n is the number of vertices and δ > 0
is some constant (see for example [4] for one such result). However, in terms of hardness of
approximation results, it is only known that it is NP-hard to color 3-colorable graphs by four
colors [5]. For minimum balanced coloring, larger hardness of approximation ratios can be
established under reasonable complexity assumptions. Recall that SAT is NP-hard problem of
determining whether a Boolean formula in conjunctive normal form has a satisfying assignment.
A stronger version of the P not equal NP assumption postulates that algorithms for SAT require
time exponential in n, the number of variables, and moreover, that this holds also for randomized
algorithms.

Theorem 1.1. There are ε > 0 and δ > 0, such that given a graph G with n vertices, there is
no polynomial time algorithm that distinguishes between the following two cases:

1. χB(G) ≤ 3

2. χB(G) ≥ nδ

unless SAT has a randomized algorithm that runs in time O(2nε
).

Proof: We prove the hardness of approximation of balanced coloring problem by a reduction
from the maximum balanced bipartite independent set problem (max-BBIS). Denote by IB(G)
the size of the maximum balanced bipartite independent set in graph G. It is shown in [6] that
for some 0 < α < β < 1 one cannot distinguish in polynomial time between the following cases

1. IB(G) ≤ nα

2. IB(G) ≥ nβ

unless unless SAT has a randomized algorithm that runs in time O(2nε
). Let G be a balanced

bipartite graph G(U∪V, E) with n vertices on each side, in which we seek to distinguish between
the above cases. Add n − nβ isolated vertices to each side of graph G. We will refer to these
vertices as bad vertices. Call the resulting graph with 2n− nβ vertices on each side G′. Notice
that if IB(G) ≥ nβ then χB(G′) ≤ 3. We will show that if IB(G) ≤ nα then χB(G′) ≥ nβ−α.
For the sake of contradiction, consider a balanced coloring C1, C2, . . . , Ct of G′ consisting of
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t < nβ−α colors. While there is a bad vertex in some color class remove it and an arbitrary
vertex from the other side of the color class. In the end of this process we will have at most t

color classes which together contain at least nβ vertices from the original graph on each side,
hence some color class corresponds to a nβ

t > nα balanced bipartite independent set in G.
To summarize, we may take δ to be essentially β−α. If there is a polynomial time algorithm

that distinguishes between the cases χB(G′) ≥ nδ and χB(G′) ≤ 3, then the algorithm (after
performing the reduction described above) can be used to distinguish between the cases that
IB(G) ≤ nα and IB(G) ≥ nβ, and then in combination with the randomized reduction described
in [6], it can be used as a randomized algorithm that solves SAT instances in time O(2nε

).

2 A bound on the balanced coloring number in terms of the

average degree

In this section we will give upper bounds on χB(G) in terms of the average degree of G.

Theorem 2.1. If G(U ∪V, E) is a colorable balanced bipartite graph with average degree d, then
χB(G) ≤ max{2, b2dc+ 1}.

Furthermore the results of theorem 2.1 are constructive in the sense that such coloring can
be found in polynomial time.

2.1 Proof of theorem 2.1

First we will prove the following lemmas.

Lemma 2.2. Let G(U, V, E) be a balanced bipartite graph with |U | = |V | = n and |E| < n, then
χB(G) ≤ 2.

Proof: Since G has 2n vertices and at most n− 1 edges it contains at least n + 1 components.
Assume w.l.o.g that it contains exactly n+1 components C1, C2, . . . , Cn+1 where

∑n+1
i=1 |Ci| = 2n.

We claim that there is an index set I s.t.
∑

i∈I |Ci| = n. Look at the partial sums:

S1 =|C1|
S2 =|C1|+ |C2|

. . .

Sn =|C1|+ |C2|+ · · ·+ |Cn|
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Notice that S1 < S2 < · · · < Sn < 2n. If for some i, j we have Si ≡ Sj (mod n) then
Si − Sj ≡ 0 (mod n) which implies that Si − Sj = n. On the other hand if Si 6≡ Sj (mod n) for
all i, j then for some i we have Si ≡ 0 (mod n) and thus Si = n. Thus we have shown that there
is an index set I s.t.

∑
i∈I |Ci| = n. Let U ′ = U

⋂ (⋃
i∈I Ci

)
and V ′ = V

⋂ (⋃
i∈I Ci

)
. Since

|U ′| + |V ′| = n we have that U ′⋃(V \V ′) and (U\U ′)
⋃

V ′ are balanced bipartite independent
sets and thus G is 2-colorable.

Lemma 2.3. Let G(U, V,E) be a colorable balanced bipartite graph with |U | = |V | = n, and
d ≥ 3 an integer. If χB(G) = d then |E(G)| ≥ (d−1)n

2 .

Proof: Let C = {I1, I2, . . . , Id} be a balanced coloring of G, where for each i, Ii = Ui
⋃

Vi is a
balanced bipartite independent set with Ui ∈ U , Vi ∈ V and |Ui| = |Vi|. Let

S =
∑

1≤i<j<k≤d

E
(
Ii

⋃
Ij

⋃
Ik

)

where E (Ii
⋃

Ij
⋃

Ik) denotes the number of edges in the subgraph of G induced by the union
of Ii, Ij , Ik. By our assumption that χB(G) = d we know that G is not (d − 1)-colorable and
thus from lemma 2.2 it follows that

∀i<j<k E
(
Ii

⋃
Ij

⋃
Ik

)
≥ |Vi|+ |Vj |+ |Vk|

for otherwise the subgraph induced by Ii
⋃

Ij
⋃

Ik is 2-colorable and thus the whole graph will
be (d− 1)-colorable. We conclude that

S ≥
∑

1≤i<j<k≤d

|Vi|+ |Vj |+ |Vk|

=
(

d− 1
2

) d∑

i=1

|Vi|

=
(

d− 1
2

)
n

Now consider another way to evaluate the sum S. Each edge of G is between two different
sets of C and thus each edge of G is counted exactly d − 2 times in the sum S, so actually
S = (d− 2)|E(G)|. Thus we have

(d− 2)|E(G)| ≥
(

d− 1
2

)
n
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and we are done.

Theorem 2.1 follows directly from Lemma 2.2 and Lemma 2.3. If d < 1 then by Lemma 2.2
we have χB(G) ≤ 2. From Lemma 2.3 it follows that for d ≥ 1, if χB(G) ≥ b2dc+ 2 then

E(G) ≥ (b2dc+ 1)n
2

> dn

and thus in this case the graph G is necessarily (b2dc+ 1)-colorable.

Now that we finished proving Theorem 2.1 we may notice that in fact we have the following
polynomial time coloring algorithm which works by local improvements.

Algorithm BalancedColoring(G)

Input: A colorable balanced bipartite graph G(U∪V,E) where |X| = |Y | = n.
Output: A balanced coloring of G with at most max{2, b2dc+ 1} colors.

1. Color G with n colors (use the perfect matching of non-edges in G).

2. While there are three color classes I1, I2, I3 s.t.

2 · E(I1

⋃
I2

⋃
I3) < |I1|+ |I2|+ |I3|

use the procedure described in the proof of lemma 2.2 to recolor the
subgraph I1

⋃
I2

⋃
I3 using at most two colors.

3. Return the resulting coloring

2.2 Lower bounds

In this section we exhibit an infinite family of graphs in which the balanced coloring number is
more than twice the average degree. In particular for each integer d ≥ 2 we will show a colorable
balanced bipartite graph with average degree d/2 which is not d-colorable.

Let G1(U1 ∪ V1, E1) be a bipartite graph with U1 = {u1, u2}, V1 = {v1, v2} and E1 =
{(u1, v1)}. Notice that G1 is a colorable balanced bipartite graph with d(G) = 1/2 and χB(G) =
2. For all i > 1 define Gi(Ui ∪ Vi, Ei) in the following way.

1. Take graph Gi−1 and add a vertex to Ui−1 which is connected to all the vertices of Vi−1
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2. Add a vertex to Vi−1 which is connected to all the vertices in Ui−1 and to the new vertex
which was added in step 1.

3. Add an isolated vertex to each side of the bipartite graph.

It is easy to see that χB(Gi) = 2i and

d(Gi) =
1 + 5 + 9 + · · ·+ (4i− 3)

2i

= i− 1
2

G1

G2

G3

Figure 1: Graphs G1, G2, G3

In a similar manner one can build a graph family G′
1, G

′
2, . . . which satisfies χB(G′

i) = 2i+1
and d(G′) = i. Let G′

1(U1∪V1, E1) be a bipartite graph with U1 = {u1, u2, u3}, V1 = {v1, v2, v3}
and E1 = {(u1, v1), (u2, v2), (u3, v3)}. Notice that G′

1 is a colorable balanced bipartite graph
with d(G′) = 1 and χB(G′) = 3. Graphs G′

2, G
′
3, . . . can be obtained from graph G′

1 with same
recursive method which we used to obtain graphs G2, G3, . . . from graph G1.
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3 A bound on the balanced coloring number in terms of the

maximum degree

Let G(U ∪V,E) be a balanced bipartite graph with n vertices on each side and maximum degree
∆. First notice that from Hall’s theorem ([3]) we get the following.

Claim 3.1. If n ≥ 2∆ then G is colorable.

Proof: A simple corollary to Hall’s theorem ([3]) states that if a bipartite graph H with n

vertices on each side has minimum degree ≥ n/2 then H contains a perfect matching. As the
bipartite complement of graph G satisfies that property, graph G contains a perfect matching
of non-edges.

Furthermore it is easy to see that Claim 3.1 is tight in the sense that there are graphs with
maximum degree ∆ and n = 2∆ − 1 vertices which are not colorable. In this section we shall
prove the following theorem:

Theorem 3.2. For any 0 < ε < 1 there is a constant ∆0 such that the following holds. If G

is a balanced bipartite graph with maximum degree ∆ ≥ ∆0 and n ≥ (1 + ε)2∆ vertices on each
side, then χB(G) ≤ 20

ε2
∆

ln∆ .

Corollary 3.3. For any 0 < ε < 1 and large enough n the following holds. If G is a balanced
bipartite graph with n vertices on each side and minimum degree δ(G) ≥ (1 + ε)n

2 . Then G has
a partition of its vertices into at most 20

ε2
n

ln n vertex disjoint bipartite cliques.

Proof: Consider the bipartite complement G of graph G. We have ∆(G) ≤ (1 − ε)n
2 , and

n ≥ 2(1 + ε)∆(G) and thus by theorem 3.2 we have χB(G) ≤ 20
ε2

n
ln n .

It is not hard to show that Theorem 3.2 offers an optimal dependency on ∆ (though most
likely the constant factors can be improved). For example, a straightforward union bound shows
that for some sufficiently large constant c, in a random bipartite graph with average degree ∆ the
expected number of balanced bipartite independent sets of size cn ln∆

∆ is less than 1/2, implying
that with high probability no such balanced independent set exists. In the absence of balanced
independent sets of size cn ln∆

∆ , a balanced coloring requires more than ∆
c ln∆ colors.

Theorem 3.2 will be proved by successively finding “large” balanced bipartite independent
sets in the yet uncolored part of graph G, and modifying the current coloring if no such set can
be found.

Lemma 3.4. For any 0 < ε < 1 there is a constant d0 such that the following holds. Let G be a
balanced bipartite graph with average degree d ≥ d0 and n ≥ (1 + ε)d vertices on each side, then
G contains a balanced bipartite independent set of size at least ε

2 · n ln d
d
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Proof: Let k = dn ln d
Cd e where C = 2

ε . We will prove that for large enough d0, any graph
G(U ∪ V, E) with average degree d ≥ d0 and n ≥ (1 + ε)d vertices on each side contains a
balanced bipartite independent set of size k. Assume that the vertices in U are u1, . . . , un and
that their degrees are d1, . . . , dn. Choose uniformly at random a set S of k vertices in V . Let X

be the random variable which counts the number of vertices in U which have no neighbors in S.
The probability that vertex ui has no neighbors in S is

(
n−di

k

)
/
(
n
k

)
and thus

E(X) =
n∑

i=1

(
n−di

k

)
(
n
k

)

≥ n

(
n−d

k

)
(
n
k

) by convexity

= n ·
k−1∏

i=0

n− d− i

n− i

If E(X) ≥ k then G contains a balanced bipartite independent set of size k. Thus we will next
prove that for d ≥ d0

n

k
≥

k−1∏

i=0

n− i

n− d− i
(3.1)
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Now notice that

ln

(
k−1∏

i=0

n− i

n− d− i

)
=

k−1∑

i=0

ln
(

1 +
d

n− d− i

)

≤ k ln
(

1 +
d

n− d− k + 1

)

≤ dk

n− d− k + 1
as ln(1 + x) ≤ x for x ≥ 0

≤ d · (n ln d
Cd + 1)

n(1− ln d
Cd )− d

=
ln d
C + d

n

1− ln d
Cd − d

n

≤
ln d
C + 1

1+ε

1− ln d
Cd − 1

1+ε

as n ≥ (1 + ε)d

=
ε ln d

2 + 1
1+ε

ε
1+ε − ε ln d

2d

=
(1+ε) ln d

2 + 1
ε

1− (1+ε) ln d
2d

≤ (1− δ) ln d + O(1) for some δ > 0 and large enough d

and thus
k−1∏

i=0

n− i

n− d− i
= O(d1−δ) (3.2)

On the other hand

n

k
≥ n

n ln d
Cd + 1

=
Cd

ln d + Cd
n

≥ Cd

ln d + C
1+ε

as n ≥ (1 + ε)d

= Ω(
d

ln d
) (3.3)

Finally inequality 3.1 follows from 3.2 and 3.3 for large enough d and we are done.
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3.1 Proof of theorem 3.2

Fix some 0 < ε < 1. We will show that for some constant ∆0 the following holds. Let G(U∪V, E)
be a balanced bipartite graph with maximum degree ∆ ≥ ∆0 and n ≥ (1 + ε)2∆ vertices on
each side, then χB(G) ≤ 20

ε2
∆

ln∆ . Suppose that U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn}.
Definition 3.1. An r-partial coloring of G is a balanced coloring of some vertex induced sub-
graph G′(U ′ ∪ V ′, E′′) of G(U, V,E), s.t. U ′ ⊆ U , V ′ ⊆ V and |V ′| = |U ′| = n− r.

Definition 3.2. Given an r-partial coloring of G we define graph Gr(X ∪Y, E′) in the following
way. Suppose that the colored vertices of G are ur+1, . . . , un and vr+1, . . . , vn and furthermore
that for each r+1 ≤ i ≤ n we have that ui and vi are in the same color class. Let X = {x1, . . . , xr}
and Y = {yr+1, . . . , yn}.

(xi, yj) ∈ E′ ⇔ (ui, vj) ∈ E or (vi, uj) ∈ E

Thus Gr is a bipartite graph with r vertices on one side and n− r on the other.

Given a balanced bipartite independent set I of size k in Gr one can extend the r-partial
coloring into a (r − k)-partial coloring in the following manner. Suppose that the vertices
in I are x1, . . . , xk and yr+1, . . . , yr+k. We could add a new color class which contains vertices
u1, . . . , uk, vr+1, . . . , vr+k and another color class which contains vertices v1, . . . , vk, ur+1, . . . , ur+k.
Notice that vertices u1, . . . , uk and v1, . . . , vk were uncolored in the original r-partial coloring
and thus we’ve obtained a (r − k)-partial coloring using two additional colors.

The coloring of G will be done in the following manner. Assume that we have some r-partial
coloring of G (where in the beginning r = n), and that the uncolored vertices are u1, . . . , ur and
v1, . . . , vr. Furthermore assume that vertices vr+i and ur+i are colored with the same color for
1 ≤ i ≤ n− r. We’ll show how to extend this partial coloring successively.

Case I: r ≥ ε
8n

Let A be the uncolored part of graph G. Subgraph A contains vertices u1, . . . , ur and v1, . . . , vr.
Let d be the average degree of G and dA be the average degree of the subgraph induced by A.
If r ≥ (1 + ε)dA and dA ≥ d0 for large enough d0 then by lemma 3.4 subgraph A contains a
balanced bipartite independent set of size

ε

2
· r ln dA

dA
≥ ε2

16
· n ln dA

dA

≥ ε2n ln∆
16∆

as
ln dA

dA
is monotonically decreasing for dA ≥ e
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We color this independent set with a new color and get a new partial coloring.
Next we show that in the case of dA < d0 we can use a constant number of additional colors

to get a balanced coloring of all but a constant number of vertices of the graph. Notice that
since dA < d0 there are at most 8d0 vertices of A of degree ≥ r/4. Thus by removing 8d0 vertices
from each side of A we can obtain a subgraph A′ with r − 8d0 vertices on each side, average
degree dA′ ≤ d0r

r−8d0
and maximum degree ∆A′ ≤ r/4. Now as r ≥ ε

8 · n ≥ ε
4 · ∆, we have for

large enough ∆ that dA′ ≤ 2d0 and r − 8d0 > 2∆A′ and hence by claim 3.1 the subgraph A′

is colorable, and by theorem 2.1 it can be colored using at most 2dA′ + 1 = O(1) colors. We
remain with a constant number of uncolored vertices, which will be handled in case III.

The remaining case is r < (1 + ε)dA. First we notice that r cannot be very large as

r < (1 + ε)dA ≤ (1 + ε)∆ ≤ n/2

Now look at the bipartite graph Gr. Recall that the vertices of Gr are X = {x1, . . . , xr},
Y = {yr+1, . . . , yn} and

(xi, yj) ∈ E′ ⇔ (ui, vj) ∈ E or (vi, uj) ∈ E

The average degree of Gr is at most 4(∆ − dA)r/n. (Each of the r vertices of type x in Gr

represents two vertices of G and hence can contribute at most 2∆ edges to Gr, for a total of
2∆r. However edges induced by A are not represented in Gr, subtracting 2rdA from the total.
The total number of vertices in Gr is n, and the average degree is thus twice the total number
of edges divided by n.) Assume without loss of generality that d(yr+1) ≤ d(yr+2) ≤ · · · ≤ d(yn).
Let G′

r(X,Y ′, E′′) be the balanced bipartite subgraph of Gr induced by the vertices in X and
Y ′ = yr+1, yr+2, . . . , y2r. As the expected degree in Gr of a vertex chosen uniformly at random
from Y is at most 2(∆− dA) r

n−r we have that d(G′
r), the average degree of G′

r, is at most

2(∆− dA)
r

n− r
≤ 2

(
∆− r

1 + ε

)
r

n− r

Furthermore

(1 + ε)d(G′
r) ≤ (1 + ε)2

(
∆− r

1 + ε

)
r

n− r

=
(1 + ε)2∆− 2r

n− r
· r

≤ (1 + ε)2∆− 2r

(1 + ε)2∆− r
· r as n ≥ (1 + ε)2∆

≤ r
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And thus by Lemma 3.4 if d(G′
r) ≥ d0 for large enough d0 then G′

r contains a balanced bipartite
independent set of size at least

ε

2
· r ln d(G′

r)
d(G′

r)
≥ εr

2
·
ln

(
2∆r
n−r

)

2∆r
n−r

as d(G′
r) ≤

2∆r

n− r

=
ε(n− r)

2
·
ln

(
2∆r
n−r

)

2∆

≥ εn

4
· ln

(
2∆r
n

)

2∆
as r ≤ n/2

≥ εn ln (ε∆/4)
8∆

as r ≥ εn/8

≥ εn ln (∆)
9∆

for large enough ∆

If the vertices of this independent set are x1, . . . , xk and yr+1, . . . yr+k we obtain an extended
partial coloring of G in the following manner. Color vertices u1, . . . , uk, vr+1, . . . , vr+k with a
new color, and vertices v1, . . . , vk, ur+1, . . . , ur+k with another new color. Notice that vertices
ur+1, . . . , ur+k and vr+1, . . . , vr+k were recolored in this process.

The only case left is d(G′
r) < d0. In this case graph G′

r contains at most 8d0 vertices of
degree ≥ r/4. Thus by removing 8d0 vertices from each side of G′

r we can obtain a subgraph H

with r − 8d0 vertices on each side, average degree dH ≤ d0r
r−8d0

and maximum degree ∆H ≤ r/4.
Now as r ≥ ε

8 · n ≥ ε
4 ·∆, we have for large enough ∆ that dH ≤ 2d0 and r − 8d0 > 2∆H and

hence by theorem 2.1 the subgraph H can be colored using at most 2dH +1 = O(1) colors. Now
from the balanced coloring of H and the r-partial coloring of G we can extend the balanced
coloring of G, using the recoloring method described above. We remain with a constant number
of uncolored vertices and they will be handled in case III.

Case II: n
∆1/9 ≤ r ≤ ε

8n

Again consider the bipartite graph G′
r which was defined above and recall that d(G′

r) ≤ 2∆r
n−r
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where d(G′
r) is the average degree of G′

r. Now
(

1 +
3
4
ε

)
d(G′

r) ≤
(

1 +
3
4
ε

)
2∆r

n− r

≤ 1 + 3
4ε

1− 1
8ε
· 2∆r

n

≤ (1 + ε) · 2∆r

n

≤ r since n ≥ (1 + ε)2∆

Lemma 3.4 applied with 3ε/4 serving as ε implies that if d(G′
r) ≥ d0 for some constant d0 then

G′
r contains a balanced bipartite independent set of size

3ε

8
· r ln d(G′

r)
d(G′

r)
≥ 3εr

8
·
ln

(
2∆r
n−r

)

2∆r
n−r

as d(G′
r) ≤

2∆r

n− r

≥ 3ε(n− r)
8

· ln
(

2∆r
n

)

2∆

≥ 21εn

64
· ln

(
2∆r
n

)

2∆
as r ≤ n/8

≥ 21εn

72
· ln∆

2∆
as r ≥ n/∆1/9

≥ εn ln∆
8∆

As in Case I we can use this independent set in G′
r to extend the r-partial coloring using two

additional colors. The only case left is d(G′
r) < d0 but it can handled in the exact same manner

as we handled it in the analysis of case II.

Case III: r ≤ n
∆1/9

Consider the graph G′
r. Notice that the average degree of G′

r satisfies the following inequalities.

d(G′
r) ≤

2∆r

n− r

≤ 2n∆8/9

n− r

≤ 4∆8/9 as r < n/2 for large enough ∆ (3.4)

14



d(G′
r) ≤

2∆r

n− r

≤ 2∆r

n(1− 1/∆1/9)

≤ r

(1 + ε)(1− 1/∆1/9)

< r for large enough ∆ (3.5)

First suppose that r ≤ 16d(G′
r). By inequality 3.5 we have that G′

r contains a balanced bipartite
independent set of size at least 1. We can extend the r-partial coloring into an (r − 1)-partial
coloring using 2 new colors. Applying this process r times we get a balanced coloring of G using
additional 2r = O(∆8/9) colors.

Now suppose that r ≥ 16d(G′
r). Notice that graph G′

r contains at most 8d(G′
r) vertices of

degree ≥ r/4. Thus by removing 8d(G′
r) vertices from each side of graph G′

r we can obtain a
subgraph H with at least r/2 vertices on each side, and maximum degree ∆H ≤ r/4. Hence by
theorem 2.1 subgraph H can be colored using at most 2dH + 1 = O(∆8/9) colors, and graph G

can be recolored accordingly. We remain with 8d(G′
r) uncolored vertices on each side, and once

again we can color them using the procedure described for the case r ≤ 16d(G′
r), with at most

O(∆8/9) colors.
Analysis
Let us compute the maximum number of colors used in the three staged procedure described
above. Each iteration in stage I or stage II colors at least ε2n ln(∆)

9∆ yet uncolored vertices using
one additional color. (Recall that the total number of vertices in a balanced bipartite subgraph
is twice its size. The constant 9 in the denominator comes from the worst of all subcases. A
denominator of 16 appears in one of the subcases, but in this subcase the number of newly
colored vertices is twice the size of the balanced bipartite subgraph, and hence it is equivalent
to a denominator of 8. In any case, we have not attempted to optimize the constants in this
part of the proof.) Thus the number of colors used during these stages is at most

2n · 9∆
ε2n ln (∆)

+ O(1) =
18∆

ε2 ln (∆)
+ O(1)

In Stage III we extend the r-partial coloring into a balanced coloring of G using O(∆8/9) ad-
ditional colors. For large enough ∆ the total number of colors used is at most 20∆

ε2 ln(∆)
and this

concludes the proof of theorem 3.2.
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