Primary-Secondary-Resolver Membership Proof Systems

Moni Naor* and Asaf Ziv

Weizmann Institute of Science, Department of Computer Science and Applied Mathematics.
{moni.naor,asaf.ziv}@weizmann.ac.il. **

Abstract. We consider Primary-Secondary-Resolver Membership Proof Systems (PSR for short) and
show different constructions of that primitive. A PSR system is a 3-party protocol, where we have a
primary, which is a trusted party which commits to a set of members and their values, then generates
public and secret keys in order for secondaries (provers with knowledge of both keys) and resolvers
(verifiers who only know the public key) to engage in interactive proof sessions regarding elements in
the universe and their values. The motivation for such systems is for constructing a secure Domain
Name System (DNSSEC) that does not reveal any unnecessary information to its clients.

We require our systems to be complete, so honest executions will result in correct conclusions by the
resolvers, sound, so malicious secondaries cannot cheat resolvers, and zero-knowledge, so resolvers will
not learn additional information about elements they did not query explicitly. Providing proofs of
membership is easy, as the primary can simply precompute signatures over all the members of the set.
Providing proofs of non-membership, i.e. a denial-of-existence mechanism, is trickier and is the main
issue in constructing PSR systems.

We provide three different strategies to construct a denial of existence mechanism. The first uses a set
of cryptographic keys for all elements of the universe which are not members, which we implement using
hierarchical identity based encryption and a tree based signature scheme. The second construction uses
cuckoo hashing with a stash, where in order to prove non-membership, a secondary must prove that a
search for it will fail, i.e. that it is not in the tables or the stash of the cuckoo hashing scheme. The third
uses a verifiable “random looking” function which the primary evaluates over the set of members, then
signs the values lexicographically and secondaries then use those signatures to prove to resolvers that
the value of the non-member was not signed by the primary. We implement this function using a weaker
variant of verifiable random/unpredictable functions and pseudorandom functions with interactive zero
knowledge proofs.

For all three constructions we suggest fairly efficient implementations, of order comparable to other
public-key operations such as signatures and encryption. The first approach offers perfect ZK and
does not reveal the size of the set in question, the second can be implemented based on very solid
cryptographic assumptions and uses the unique structure of cuckoo hashing, while the last technique
has the potential to be highly efficient, if one could construct an efficient and secure VRF/VUF or if
one is willing to live in the random oracle model.

* Incumbent of the Judith Kleeman Professorial Chair.

** Research supported in part by grants from the Israel Science Foundation, BSF and Israeli Ministry of Science
and Technology and from the I-CORE Program of the Planning and Budgeting Committee and the Israel Science
Foundation.

10
11

Table of Contents

Introduction . . .o e 1
1.1 Our Contributionsot e e e e 1
1.2 A Guide for Reading the Paper i 3
1.3 Related Work . ..o 3
Model and Security Definitions i e 4
2.1 PSR SyYSteIns ..ottt 5
2.2 Completeness and SOUNANESSottt ittt e e e e e e e e 6
2.3 Zero-Knowledgeo 6
Concurrent Zero Knowledgeot 8
3.1 On Achieving Universally Composable Security, 10
HIBE Based Construction of PSR Systems i 11
4.1 HIBE Definitiono it e et et e e 12
4.2 HIBE SeCUrityottt e e 13
4.3 PSR from HIBE. 14
4.4 HIBE Construction by Boneh, Boyen and Goh i, 16
PSR Systems Based on One-Time Signatures, 18
Cuckoo Hashing Based Construction of PSR Systems 21
6.1 Cuckoo Hashing with a Stash 21
6.2 Construction of PSR Systems from Cuckoo Hashing with a Stash........................ 23
6.3 Implementations for Commitments and Fixed Set Non-Membership........... 25
PSR from Unpredictability or VRF, VUF and PRF Based Constructions. 30
7.1 VRF and VUF Definition e e e 30
7.2 Constructing PSR Systems from tsVRFs 32
7.3 Constructing PSR Systems from tsVUFs 35
7.4 Good VRFs, VUFs and Their Complexityo 38
7.5 PRFs with Interactive ZK Proofs. 41
7.6 Random Oracle Constructionsttt et 41
Towards Dynamic SOIUtions e e e e e e 43
Conclusions and Future Directions i e 45
Acknowledgmentst e 46
ADDENAIX . ottt e 48
11.1 The Random Oracle Model e e e 48
11.2 Signature SChemeSsottt et e e e e 49
11.3 Pairing Based Cryptosystemst e e e 50
114 ASSUMPEIONS « o .ottt e e e e e e e e e e e e e e e 50

11.5 Hoeffding Inequalityo e e e e 55

1 Introduction

We consider the cryptographic primitive called Primary-Secondary-Resolver Membership Proof Systems
(PSR for short) and show efficient constructions of that primitive. The motivation for this type of sys-
tems comes from trying to improve DNSSEC which is a security extension of DNS (Domain Name System)
(plain DNS communication doesn’t guarantee security (confidentiality and authenticity) for the users). The
basic problem is as follows, we have a trustworthy source, called the primary, which maps all valid names
(e.g. URLs) in its domain to their corresponding values (e.g. IP addresses). This primary doesn’t commu-
nicate directly with users (resolvers) who wish to make DNS queries for names; it has the secondaries for
that, which are DNS servers that receive some initial information from the primary and are in charge of
responding to resolvers’ queries. As there may be many such secondary servers, we cannot be sure they are
all honest and we do not wish to give them the ability to fool resolvers with a false response to a DNS query.
We would like to give them enough information so as to give correct responses to DNS queries and a short
proof of some sort to help convince the resolver of the authenticity of the data they received. On the other
hand, we do not wish the resolvers get more information about the domain than a simple answer to their
query, i.e. whether the answer is positive or negative is all a resolver should be able to deduce (the issue
of releasing too much information about the domain has been an obstacle in getting the current DNSSEC
adapted [7]).

A PSR system consists of a setup algorithm, used by the primary which receives a privileged subset R
from a universe U of names (e.g. the list of hosts in its domain) and a set of corresponding values V', mapping
each element z; € R to its value v; € V (e.g. mapping all URLs in a domain to their IPs). The primary
generates a public key PK (one may think of it as a signature key), which should be available to all parties
of the protocol. It also generates a secret key SK which provides secondaries the ability to answer queries
honestly. We will be interested only in efficient constructions where the public key size and the amount of
communication between the secondaries and the resolvers are independent of the cardinality of the set R.

1.1 Owur Contributions

In a companion paper to this work [36] the notion of PSR systems was introduced (albeit it was defined
as a one-round proof protocol), as well as an efficient construction named NSEC5 was suggested. NSECH
is based on RSA and analyzed in the random oracle model. The main application of PSR systems is for
a secure Domain Name Server that does not reveal information about the underlying set. That paper also
gave a lower bound that shows that in order to preserve soundness and prevent an adversarial resolver from
learning additional information about elements they didn’t query, the secondary must perform some non-
trivial computation: it must do the computational work needed in a a public key identification scheme, for
which the best known implementations are signatures (in the random oracle model these two are equivalent).
(This showed that none of the prior approaches to DNSSEC such as NSEC3 yield a solution that is secure
against zone enumeration, i.e. listing of the set R).

We consider PSR Systems that are more general than those of [36] and define PSR systems with
interactive proofs as well as systems that are perfect zero-knowledge.

In this paper we investigate in depth PSR systems. Our main interest is efficiency, where we are interested
in the computational and communication load on all three parties, but in particular in the secondary-resolver
part that is performed online. Our main goal in this work is to provide PSR systems that are efficient and
based on reasonable and well studied assumptions. We aim for efficiency that is of the order of other public-
key primitives such as encryption and signatures.

We provide three general techniques to constructing PSR systems and present efficient implementations
to each of them. We use signatures and various different cryptographic primitives in our constructions such
as: hierarchical identity based encryption schemes, one-time signatures, cuckoo hashing (with a stash) with
commitments and fixed-set non-membership proofs, verifiable random/unpredictable functions and pseudo-
random functions with interactive zero-knowledge proofs. Our constructions are based on solid cryptographic

assumptions: the discrete logarithm assumption and factoring, the existence of universal one way hash func-
tions and various Diffie-Hellman assumptions. Some of our constructions even achieve perfect zero-knowledge.

It is quite clear that the more challenging case in constructing PSR systems is dealing with the non-
members of the set. For the members of the set a precomputed signature by the primary solves the problem.
We suggest three approaches for constructing PSR, systems. All constructions use (regular) signatures to
handle proofs of membership, as we precompute a signature over every x; € R and its value v;. Thus, the
difference between the constructions is how they handle proofs of non-membership, i.e. we offer different
denial of existence mechanisms.

In our first approach the primary matches encryption keys to elements of the universe U. A secondary
with knowledge of such a key can use it to generate a proof of non-membership for the corresponding element.
The primary precomputes a set of secret keys K, from which it can derive the keys corresponding only to the
set of elements U\ R and sends it to the secondaries as part of their secret key. As long as we make sure the
secondaries cannot produce any key for an element in R, we can construct a denial of existence mechanism
in a number of ways. Resolvers can encrypt a random challenge, which can be decrypted only with the secret
key corresponding to the queried element x € U, thus non-membership can be proven only for elements
outside of R. One can also just send that secret key to resolvers when queried, making them verify the
correctness of the key by encrypting and decrypting random challenges by themselves. The secondaries can
also generate signatures for the queried element under a secret key corresponding to that element and verified
with a corresponding public key. In order to implement those constructions efficiently we use Hierarchical
Identity Based Encryption (or HIBE for short). One can think of a set of identities as nodes in a full binary
tree, where with the secret key for an identity, one can produce the key to any of its descendants. We think
of the leaves as elements in the universe, so by making sure the set of keys K doesn’t contain any secret key
to an element in R or any of its ancestors, but contains at least an ancestor key to the rest of the elements
in U, we get an efficient denial of existence mechanism. Lastly we consider a construction that uses a chain
of signatures from the root of the tree to the leaf, where each signature signs the public key needed to verify
the next signature in the chain. All those constructions manage to achieve perfect zero-knowledge.

The idea of the second approach is to imitate an oblivious search for the element, where by oblivious we
mean that the locations examined are determined by the element searched and some hash functions. The
point is to show that the searched element is in none of the probed locations. For the data structure we
use cuckoo hashing [64] where (unless we are unlucky) each element resides in one of two locations. That
is, as a denial of existence mechanism, we need to prove non equality just twice. To handle the unlucky
case we use a cuckoo hashing scheme with a stash [49] to store some extra elements. We need to prove
non equality to these elements as well, however we have the advantage that these elements are fixed for
all possible searches. To handle the “normal” case the primary places Pedersen commitments [65] for the
relevant elements in the cells of the cuckoo hash tables (including “dummies” in the empty cells) and signs
these commitments. The secondary is provided with the signed commitments and proves the committed
values are not equal to the queried element. For the stash non equality we use a generalization of the
Feige-Fiat-Shamir identification protocol [31]. Both proofs are zero knowledge and are rather efficient as the
computation needed in order to execute these two interactive zero-knowledge protocols is dominated by only
a constant number of exponentiations. As Pedersen commitments rely on the discrete logarithm assumption
and the Feige-Fiat-Shamir protocol relies on the factoring assumption, the result is a PSR system which
reveals the size of the set R but is very efficient and is based on conservative and well studied cryptographic
assumptions.

Our third approach to constructing PSR systems applies a “random looking” function F', for which
we can prove the value F(x) in a zero knowledge fashion, without revealing information about the value
of the function at other locations. The primary precomputes the values of F' over the set R, sorts them
lexicographically and signs them in pairs, {Sign(y;, yi+1)}i—o- In order to prove non-membership for an
element ¢ R one simply provides a proof that F(z) = y and the signature Sign(y;,y;+1) for which
yi <y < yitr1 (we choose F' to have negligible probability for collisions). This construction reveals the size
of the set R during multiple executions of the protocol as a resolver which issues enough random queries
will eventually witness all signatures Sign(y;, y;+1) and learn the size of R, but in some applications such as

DNSSEC, revealing the size of the set is acceptable. In order to construct the function F' we use variants of
Verifiable Random Functions (VRF) and Verifiable Unpredictable Functions (VUF) [55], the Naor-Reingold
PRF [59] with zero knowledge interactive proofs, the GHR signature scheme [33] and a random oracle
construction which uses the famous BLS signature scheme [18]. The scheme NSEC5 presented in [36] (which
resides in the random oracle model) falls into this category as well.

For all three constructions we suggest fairly efficient implementations. The first approach offers perfect
ZK and does not reveal the size of the set in question, the second can be implemented based on very solid
cryptographic assumptions and uses the unique structure of cuckoo hashing, while the last technique has the
potential to be highly efficient, if one could construct an efficient and secure VRF/VUF or one is willing to
live in the random oracle model.

Structural Issues: We analyze and prove that PSR systems with one-round proofs are secure even in a
concurrent setting. This means that in the case of one-round proofs, even a coordinated attack of resolvers
trying to learn information about elements in the universe which they did not query explicitly will fail with
overwhelming probability. In the case of many-rounds proofs we show that providing each secondary with an
independent set of keys also results in a concurrently secure PSR system. We prove that PSR systems exist
if and only if one way functions exist, which in turn helps us get a black box separation from zero knowledge
sets [54], which is a more restrictive membership proving system (see details in Section 1.3), thus showing
that the two primitives are indeed inherently different.

1.2 A Guide for Reading the Paper

In Section 2 we present our model, the definition of PSR systems, our requirements of completeness, soundness
and zero-knowledge and in Section 3 we show cases where the system is secure in a concurrent setting. In
Section 4 we show a HIBE based construction which achieves perfect ZK. In Section 5 we introduce a signature
based PSR system and use it to prove that the existence of one way functions is equivalent to the existence
of PSR systems, which leads us to a black box separation between PSR systems and ZKS. In Section 6 we
introduce the cuckoo hashing with a stash based PSR construction. In Section 7 we introduce two general
constructions of PSR systems which use a weaker variant of verifiable random /unpredictable functions and
analyze different implementations of those primitives. We also introduce a PRF based construction and a
random oracle construction. In Section 9 we present concluding remarks. Section 11 is the Appendix and
provides standard definitions, tools and assumptions.

1.3 Related Work

There are several types of cryptographic primitives that are related to PSR systems. Consider zero-knowledge
sets, introduced by Micali, Rabin and Kilian [54] (ZKS for short) and its generalization zero-knowledge
elementary databases. The latter is a primitive, defined in the common reference string model or the trusted
parameters model, where a user (prover) can commit to a database and later open and prove its values
to a verifier in a zero knowledge fashion. The existence of ZKS implies the existence of a PSR system, as
a zero-knowledge elementary database construction implements a PSR System (the other direction is not
true as we prove in Section 5). However, the problem is that even the best known constructions of ZKS are
inefficient. The point is that in a ZKS the requirements are too stringent: even the primary cannot cheat.
This is not something of interest in our setting, since the primary is a trustworthy party that commits to
a set of its choosing and it does not make sense for it to cheat. We are only interested in preventing the
secondaries from cheating. Hence we introduced a more complex setting with three parties, at the benefit of
gaining efficiency.

Chase et al. [25] introduce the notion of trapdoor mercurial commitments (TMC for short) and construct
ZKS based on TMCs. They show a few implementations of their new primitive where their most efficient
implementation is a constant factor improvement on the original MRK construction, while both rely on the
discrete logarithm assumption. Catalano et al. [24] extend their notion of TMC to trapdoor g-mercurial

commitments (¢-TMC for short) and by that further improve the efficiency of ZKS implementation by
shortening the non-memberships proofs by a constant factor, at the expense of slowing down the verification
process. Their construction of ¢-TMC relies on the g-strong Diffie-Hellman assumption. Later, Libert and
Yung [52] introduced a new construction for ¢-TMCs, based on the ¢-Diffie Hellman exponent assumption,
and managed to shorten the memberships proofs by a constant factor as well. All those ZKS constructions
have the same basic structure: a tree (either binary as in [54,25] or with arity ¢ as in [24,52]), where the
leaves represent the elements in the universe and a proof of membership or non-membership is a path of
commitments from the root to the leaf. All four ZKS constructions use proofs made up of O(log |U|) group
elements and require O(log |U|) modular exponentiations for verification.

Prabhakaran and Xue introduced statistically hiding sets [67] (SHS for short), which are a slight variation
on ZKS. Their definition of statistical hiding is formulated with computationally unbounded simulation,
which means it is a relaxation of the security requirement of ZKS as they do not require efficient simulation.
Their construction uses accumulators, first presented in [11], in order to accumulate a set of values into one
value, where there is a short proof for every value in the set. Although it is more efficient than ZKS and can
be extended to statistical hiding databases, their underlying assumptions are rather new and strong. They
use the strong RSA assumption and an assumption they call the knowledge of exponent assumption. They
require the use of a hash function which maps elements to large prime numbers and a trapdoor DDH group.

Ostrovsky, Rackoff and Smith [63] generalized ZKS by defining Consistent Query Protocols, which allow
more general queries than membership queries. They also suggested a relaxation for ZK proofs, allowing the
server to leak an upper bound T on the size of the database (called size-T-Privacy). Our privacy requirement,
f-ZK, is a generalization of this size-T-Privacy requirement.

Another related line of investigation is that of data structures that come with a guarantee of correctness.
That is when the data structure, like a dictionary, returns an answer it also provides a proof that the
answer is correct in the sense that it is consistent with some external information. One motivation for these
investigations comes from data structure for managing CRLs (certificate revocation lists). The difference
with the current work is that no additional information than the result of the query should leak.

A recent paper by Ghosh, Ohrimenko and Tamassia [35] introduces two new primitives which are related
notions to PSR systems: a 2-party and a 3-party protocols for proving values of elements in a database and
their order (lists). The 2-party protocol they define is Zero Knowledge Lists (ZKL for short), where their
construction of the primitive is too inefficient for our needs, as it builds upon ZKS (which, as we mentioned,
does not have an efficient implementation yet). The 3-party protocol is Privacy Preserving Authenticated
Lists (PPAL) which unlike ZKL is closer in spirit to our PSR systems but it cannot answer non-membership
queries (their construction only handles queries for elements in the list and returns their order in the list
combined with a proof). Besides that, their constructions are also analyzed in the random oracle model,
where we strive to find constructions in the standard model.

2 Model and Security Definitions

We model Primary-Secondary-Resolver Membership Proof systems as a 3-party protocol where the primary,
a trusted party, commits to a set R, a subset of the universe U, where each element x; € R is coupled with
a value v; € V. The primary generates two keys for the committed set, the secret key SK given only to
secondaries in the system and the public key PK given to all parties of the protocol, i.e. secondaries and
resolvers. The resolvers in the system engage in an interactive protocol with the secondaries in order to learn
whether a given € U is in R or not and if yes then they obtain its value v,.. The secondaries use their secret
key to generate proofs (possibly interactive) for the correct statement regarding the queried element, while
resolvers verify the correctness of the proofs they get. We require that the secondaries won’t be able to cheat
the resolvers and if the secondaries are following the protocols then the resolvers should be able to verify
the correctness of the responses with overwhelming success probability. Another important requirement we
would like from such a system is zero-knowledge, i.e. for resolvers to learn as little as possible about elements
they didn’t query explicitly. See Figure 1 for an illustration of the 3-parties’ engagement in the protocol.

Remark 1. Note that we chose to focus on the static version of this problem, i.e. when the sets R and V are
determined at the beginning of the process and do not change throughout the process. The dynamic case for
this problem is out of the scope of this paper, though we discuss the issues of defining requirements for the
dynamic case, as well as give guidelines on how to transform our constructions into ones which can handle
dynamic changes in Section 8.

(PK,SK
Primary =——— Secondary <——> Resolver
Trusted Not Trusted Queries xelU
Offline Online Learns xER or
xeR and Vyx

Fig. 1. Illustration of a PSR system.

2.1 PSR Systems

The system consists of three algorithms: the Setup algorithm is used by the primary to generate the public
key PK which it publishes to all parties in the protocol and the secret key SK, delivered to the secondaries.
The resolvers use the Verify algorithm in order to initiate an interactive proof session with the secondaries
who use the Prove algorithm to prove interactively the correct membership statement about the element,
queried by the resolver.

Definition 1. Let U be a universe of elements. A Primary-Secondary-Resolver system (PSR for short) is
specified by three probabilistic polynomial-time algorithms (Setup, Prove, Verify):

Setup(R,V,1%): On input k the security parameter, a privileged set R C U and its values V, where |R| =
|V| = r (for every x; € R the corresponding value is v; € V), this algorithm outputs two strings:
(PK,SK) which are the public and secret keys for the system.

Verify(z, PK): The algorithm gets as input x € U and the public key PK. It initiates an interactive proof
protocol over the element x € U with a secondary of its choice and verifies the correctness of the proof
given by the secondary. It outputs 1 when it accepts the interactive proof and 0 otherwise.

Prove(x, PK,SK): On input x € U and both the public and secret keys (PK,SK) this algorithm proves
interactively to a resolver either the statement x € R and its value is v, or x ¢ R.

Remark 2. Non-interactive proofs. The proofs given by secondaries (using Prove(z, PK,SK)), which
are verified by resolvers (using Verify(xz, PK)) can either be interactive or non-interactive. Non-interactive
proofs consist of one message sent by the resolver (which may contain additional information besides the
queried element z), one message in response sent by a secondary and verification of the response, done by
the resolver. We prove that non-interactive proofs have the added advantage of being secure in a concurrent
setting (see Section 3) and even in a universally composable environment (see Section 3.1), while this might
non be the case for interactive proofs.

We require the above three algorithms to satisfy three properties: completeness, soundness and zero
knowledge.

2.2 Completeness and Soundness

The completeness requirement means that when the parties at hand are honest and follow the protocol,
then the system works properly. The resolvers will learn successfully whether the element x € U, which they
queried, is in R (and its value) or not. We do allow a negligible probability of failure.

Definition 2. Completeness: For all R C U, for allV and Vx € U,

(PK, SK) & Setup(R, V,1%);
Pr Verify(z, PK) & Prove(z, PK, SK); >1— (k)
Verify(z, PK) =1

For a negligible function u(k).

As for soundness, we want that even a malicious secondary A, would not be able to convince an honest
resolver of a false statement with more than a negligible probability. We require this to hold even when the
adversary gets to choose R and V, then gets the keys (PK, SK) and then chooses z € U on which it wishes
to cheat. At the end of the protocol A outputs either 0 if it tries to convince the resolver that « ¢ R or (1,v)
if it tries to convince him that x € R and its value is v.

Definition 3. Soundness: for all probabilistic polynomial time stateful adversaries A we have

[(R.V) & AQb); '
(PK,SK) kil Setup(R,V,1%);

& A(PK,SK);

Verify(z, PK) & A(z, PK, SK); < (k)
Verify(z, PK) = 1A

((A(z, PK,SK) =0 Az € R)V

(A(z, PK,SK) = (L,Lv) A(x ¢ RV (x =x; ANv # v;))))

For a negligible function u(k).

Note that our definitions are strong because they ensure (up to negligible probability) that an adversary
cannot find any z € U violating either completeness or soundness, even after getting its relevant keys, i.e.
(PK, SK) for a secondary in the soundness condition and PK for a resolver in the completeness condition.

2.3 Zero-Knowledge

We want to restrict the amount of information learned about the set R by resolvers during the interactive
proofs. Besides the answer to the question being asked by the resolver we would like him to learn as little as
possible about the set R. In some cases we let some information about the set R leak during the protocol
(or many executions of the protocol on different elements), which is why we choose to define zero-knowledge
with respect to a function f acting on R. We show two constructions of PSR systems which don’t leak any
information about the set R (see Sections 4 and 5), while the rest of the constructions leak the size of the
set R (see Sections 6 and 7). We define this property as f-Zero-Knowledge (f-ZK for short), where f(R)
is some information about the set which we can tolerate leaking to resolvers.

We require that the resolver cannot distinguish between: (1) a real system which provides the original
proofs, and (2) a simulator that can only obtain the answer to each query asked by the resolver online, but
must still be able to “forge” a satisfactory proof for that response. This allows us to deduce that the resolver

has not learned much about R from the proofs, for if it had, it would be able to distinguish between an
interaction with the simulator and one with the real secondary (at least after it gets R explicitly).

The PSR simulator: Let SIM be an interactive polynomial time algorithm with restricted oracle access
to the set R, which means it can query the oracle only on elements which the adversary communicating
with it queried explicitly. On its first step SIM receives f(R) and outputs a fake public key PK*, a fake
secret key SKgra and f(R). On its following steps an adversary interacts with the simulator and queries
different elements in the universe. Following every such query x; the simulator queries its oracle for x; and
either learns that x; ¢ R or z; € R and its value is v;. SIM proves the statement on x; to the adversary.
The simulator is successful if its output, i.e. its random tape, public key and transcripts of the interactive
protocols, is indistinguishable from that of a real PSR system.

The first step of the interactive protocol for the PSR system' is:

(PK,SK, f(R)) & Setup(R, V,1¥)
and for the simulator the first step is:
(PK*, SKsa, f(R)) < SIMR(f(R),1%)

The rest is a series of interactive proofs of membership between the adversary and either a PSR system or
a simulator, where the simulator uses the fake public key PK™ and the fake secret key SKgrps to respond
to queries and the system uses the real keys (PK,SK). Note that the number of queries is not determined
a priori and the simulator does not know how many queries will be asked by the resolver.

Definition 4. Let f() be some function from 2V to some domain and let algorithms (Setup, Prove, Verify)
be a PSR system. We say that it is f-zero knowledge (f-ZK for short) if it satisfies the following property
for a negligible function p(k):

There exists a simulator SIM such that for every probabilistic polynomial time algorithms A (adversary)
and D (distinguisher), a set R C U and V, the distinguisher D cannot distinguish (See Remark 3 below)
between the following two views (interactions of A with a PSR system or a PSR simulator) with an advantage
greater than p(k), even for D that knows R:

,Uiewreal = {Trealv PK7 f(R)a (zlaﬂl)v (x277r2)7 e }

and
view ™ = {rgra, PK*, f(R), (x1, 7)), (x2,75), ...}

where the two views are generated by the protocols described above, m; and 7} are the transcripts for
the interactive protocols over the element x; and rsypr and Treq; are the random tapes of the simulator and
secondaries respectively.

Remark 3. We have three notions of Zero-knowledge for PSR systems: computational ZK, which means
that the distinguisher cannot computationally distinguish between the two views, statistical ZK, where the
distributions of the two views are statistically close and perfect ZK where the two distributions are identical.
Note that the perfect and statistical ZK have the added advantage of being secure in an information theoretic
sense, which guarantees everlasting privacy. As both these ZK properties are information theoretic, they
require their underlying assumptions to hold only during the execution of the protocol, while for computational
ZK, we require the assumptions to hold ‘forever’ in order to prevent an adversary from breaking the privacy
of the scheme at a later point in time. Our HIBE and signature based constructions (Section 4 and 5
respectively) achieve perfect ZK, the cuckoo hashing construction (Section 6) achieves statistical ZK, while
the last construction (Section 7) achieves computational ZK.

! Note that the Setup algorithm is not defined to output f(R), but it is obviously a simple modification, as it gets
R and can compute f(R) easily. We add this output in order to generate comparable views.

In our companion paper [36], we prove two very important facts about non-interactive PSR systems. The
first is that f-ZK, where f(R) is the cardinality of the set R, implies prevention of zone enumeration, i.e. if a
PSR is f-ZK, then a resolver cannot learn any information about an element it didn’t query explicitly. All of
the constructions in this paper are at least f-ZK for this f (the HIBE and signature based constrictions are
even perfect ZK), which means they all prevent zone enumeration. The second important result is that PSR
systems require a heavy computational task from the secondaries, such as public key cryptography or public
key authentication, in order to maintain both soundness and f-ZK. This fact is crucial to understanding why
the secondaries work hard in our constructions. Note that both these proofs were for the single-round PSR
and in the random oracle model, but the proofs generalize to our (possibly interactive) setting as well. The
prevention of zone enumeration holds as is in the standard model for interactive proofs, while the reduction
to public key authentication for interactive PSRs in the standard model is only selectively secure, as opposed
to existentially secure in the random oracle model. We state the resulting theorem:

Theorem 1. Given an f-ZK PSR system (where f(R) = |R| or f(R) = null), one can construct a public-
key identification or a selectively secure public key authentication protocol from the PSR system where the
prover’s complexity is similar to the secondary’s. The construction is black box.”.

3 Concurrent Zero Knowledge

In this section we prove that in some cases PSR systems are not only f-ZK as defined earlier, but also
concurrent zero knowledge with respect to that same function f. Concurrent ZK was introduced by Dwork,
Naor and Sahai [30] as an extension to zero knowledge. In order for an interactive proof system to be
concurrent ZK we require that if we have up to a polynomial number of provers and verifiers, where the
verifiers are controlled by a malicious adversary and work concurrently (one could start an interactive proof
with a prover, put it on hold and finish an earlier interaction), then still no information is leaked to the
adversary controlling the verifiers.

We use similar definitions to the ones defined by Rosen [69] and adapt them to our setting. For an
interactive proof system (P, V), we define a nonuniform probabilistic polynomial time concurrent adversary
A. A gets some input I (for PSR systems I = PK), controls a polynomial number of verifiers (resolvers)
and has access to an unbounded number of copies of the prover P. A can use verifiers to interact with the
provers and controls the scheduling of all the messages in the system, meaning that A controls when any
verifiers output a message and when every prover outputs a message. We denote by view% (I) the view of the
adversary, which is a random variable which contains the random tape of A and all the concurrent interaction
of A with the provers (copies of P).

Roughly speaking, a protocol is concurrent ZK if for every such adversary A there is a probabilistic
polynomial time simulator S4 such that the two ensembles {view’(I)} and {Sa(I)} are computationally
indistinguishable, where I is some x € L and S4(I) is the output of a simulator which uses the adversary
A as an oracle. But PSR systems, as we defined them, consist of multiple executions of membership/non-
membership interactive proofs using the keys (PK,SK). Thus it is more natural for us to define I = PK
and compare between the view of an adversary communicating with secondaries (provers) on the public key
PK and the view of an adversary communicating with the simulator on the fake public key PK*.

Thus we define a concurrent PSR simulator as a probabilistic polynomial time algorithm SIM, with
restricted oracle access to the set R, such that on its first step of the computation, SIM gets f(R) and outputs
a fake public key PK™*, a fake secret key SKgrps and f(R). SIM is not allowed to query its oracle on & € U
if it was not explicitly queried by a resolver (verifier) on it. When an adversary interacts with a simulator,
the copies of the prover are replaced with the simulator itself which acts as a prover (i.e. it emulates all the
provers), uses the fake cryptographic keys it generated and can query its oracle for the element queried by
the resolvers.

We consider two different concurrent settings: where all the secondaries get the exact same pair of keys
and when each secondary and resolver get a pair of keys generated independently for them. We prove, that

2 See the original paper for the proof and definitions for public key authentication.

in the case we use independent keys, every PSR system which is f-ZK in the sequential (regular) setting is
also f-CZK, thus by making the primary work k - m times harder, one can get a concurrently secure PSR
system with k secondaries and m resolvers, from a sequentially secure PSR, system. When all secondaries
get the exact same pair of keys we prove that non-interactive PSRs remain concurrently secure as well.

We denote by {view$™ (f(R))} the view which contains f(R), PK*, the random tape of A and the
concurrent interaction between SIM and A. We denote by {view’*(R)} the view which contains f(R), PK
the random tape of A and the concurrent interaction between the real PSR system and A, where the keys are
generated by the setup algorithm of the PSR and the provers are honest secondaries in a real PSR, system.

Definition 5. A PSR system is f-Concurrent Zero Knowledge (f-CZK) if for every nonuniform probabilistic
polynomial time concurrent adversary A and every R C U there exists a concurrent PSR simulator SIM,
such that the two views: {view3™M (f(R))} and {view"¢*(R)} are indistinguishable, even for a distinguisher
which knows R.

Note that the way we defined the f-ZK simulator in Section 2.3 the simulation occurs online, meaning
there is no rewinding. Rewinding usually raises an obstacle in going from regular ZK to concurrent ZK, so
this is a good property to have for the simulator. We prove that a non interactive PSR system (one-round
proofs) is always an f-CZK PSR system. On the other hand, we show that for many-round PSR systems
this is not necessarily the case: we provide a counter example with more than one round proofs which is not
concurrent zero knowledge.

Theorem 2. If (Setup, Prove, Verify) constitute an f-ZK PSR system with one round proofs then it is
also f-Concurrent Zero Knowledge.

Before proving this theorem note that PSR systems remain f-ZK against sequential composition, meaning
that if we have a PSR simulator which is indistinguishable from a secondary interacting with one adversarial
resolver then it is also indistinguishable when interacting with multiple resolvers and secondaries sequentially.
This is due to the fact that the PSR simulator does not know before hand how many queries it is going to
get, thus it doesn’t matter if it is queried (m + n) queries by one resolver or m queries by one resolver and n
by another. Also, our secondaries are defined to be stateless in the sense that secondaries do not keep state
and only require the queried element x and the keys (PK, SK) to generate proofs, so secondaries can take
on many resolvers one after the other, as each proof stands by itself.

Proof. Suppose that there exists a concurrent adversary A and a distinguisher D. We describe a (sequential)
adversary B which uses A as a subroutine. We show that the view of B interacting with a real PSR secondary
can be distinguished with the same non-negligible advantage as in the concurrent case from the view of B
interacting with an f-ZK simulator. B simply acts as a mediator between the concurrent adversary A and
the prover (secondary/simulator). Every time A issues a new query to some prover, B simply sends the first
message of the interaction to the prover and records the response. Notice that although A might be asking
for different provers, B only uses the one prover it has access to and as this is only a two message protocol,
B simply records the response to the query. When A asks for the response of that interaction, B sends back
the recorded response. When A wishes to terminate the interaction, B terminates the interaction with the
prover.

Notice that the view of B communicating with its prover (secondary or simulator) is sequential, but
the view of A interacting with B looks concurrent to A, as B sends the responses at A’s request. So
during the interaction B simply generates the concurrent view of it interacting with A, which it gives
to the distinguisher D. This view B gives to the distinguisher D is distributed identically to that of A
interacting with a prover (secondary/simulator). As we assumed that D can distinguish between the two
concurrent views of A (distinguishing between an interaction with a PSR simulator and an interaction with
a real PSR secondary), then D can distinguish between the two views generated by B, as B’s views are
distributed identically to those of A. Thus we can use D to distinguish between the two sequential views,
which means that non-interactive f-ZK PSR systems are also f-concurrent zero knowledge in the same sense:
computational, statistical or perfect ZK. a

Counter example for a many-round PSR: We show that Theorem 2 does not hold when we try to
generalize it to many-rounds PSRs. Suppose that we have a one-round proof f-ZK PSR. We modify it by
adding two more rounds to its proof. During the setup algorithm the primary selects some pseudorandom
function F', such that for an adversary (who doesn’t know the secret key), the probability of guessing F(x)
for a randomly chosen x will be negligible in the security parameter for the PSR. The first round of the
interaction will be the resolver asking to learn the value F'(x1) for =7 of its choice (under honest behavior
it should be uniformly random). The second round will be the secondary sending an element x5, chosen
uniformly at random, to the resolver and if the resolver returns the correct value F'(z2) then the secondary
returns a description of R. Otherwise it continues to the original one round proof of the PSR. One can see
this is still an f-ZK PSR, as guessing F'(x3) for a randomly chosen xo is successful with only negligible
probability, even after seeing several values of F'. Thus the resolver will learn more than it should about R
only with negligible probability, making the new PSR secure if the original one was secure.

On the other hand, in a concurrent setting, a malicious resolver can simply interact with a secondary
and when it gets its challenge x5, stop the interaction and start a new one with a new secondary. In the first
round, the resolver will set x = x4, i.e. it asks the new secondary what is the value of F(z5); it will then
return the answer to the first secondary, which should accept it as the correct answer and then it will “spill
the beans” and reveal the entire set R, thus violating the f-CZK property (no concurrent simulator can do
it for a random set R).

Concurrent Zero-knowledge with independent keys: The reason the above counter example was
successful is that the provers were confined by the common key of the PRF they all shared. We claim that
in case we have a concurrent execution of the PSR system but where each prover (secondary) - verifier
(resolver) couple receives different and independently chosen keys (that is for each secondary-resolver the
primary executes the setup algorithm independently), then the resulting PSR systems are f-CZK?.

Proof Sketch: the way the concurrent simulator will work is by running the (regular) simulator for each
secondary independently. We now use a hybrid argument to show that if we are in the described setting
and we have an adversary A that can generate two distinguishable views for the concurrent setting, then
we can construct an adversary B that can generate distinguishable views for the sequential setting. If there
is a distinguisher D that can distinguish with non-negligible advantage between the two views (generated
by A) then it can also distinguish between at least two adjacent hybrids with non-negligible advantage, due
to the hybrid argument. This means that there is some index 4 for which we can construct the adversary
B as follows: the first ¢ — 1 provers will be simulated by B to be a real PSR system secondaries (this is
done by running the setup algorithm i — 1 times), the i’ prover will be the prover interacting with B
(either a simulator or a real secondary) and the rest of the provers will be simulated by B using the strategy
employed by the (regular) simulator. The two possible views resulting from interacting with this adversary
B will be distinguishable with a non-negligible advantage due to the hybrid argument, thus contradicting
the assumption that the PSR system is f-ZK. O

3.1 On Achieving Universally Composable Security

Canetti [22] introduced Universally Composable security (UC security) as a framework for analyzing the
security of cryptographic protocols and their composition. In this framework, secure protocols are proven
to preserve their security in any context, such as protocol composition and an adversarial network, working
concurrently. We claim that PSR systems achieve those demanding security requirements, at least in the
cases where we proved it can achieve concurrent security, i.e. when the PSR uses non-interactive proofs or
it generates independent keys for each secondary and resolver in the system.

3 Note that it is critical to use different keys for every couple (secondary-resolver) running concurrently, otherwise in
the scenario described in the counter example, either a malicious resolver can communicate with two secondaries
using the same keys and break the f-CZK property, or two malicious resolvers can collide and interact with one
secondary using the same keys to break the f-CZK property.

10

Without going into too much detail of this framework, in order to qualify as a UC secure protocol, one
has to prove that it is infeasible to distinguish, in a concurrently adversarial environment, between a real
execution of the protocol and an execution of the “ideal process” of that protocol. In the first scenario
we have an environment F where the protocol in question is being executed, where an adversary A has
control over a subset of the parties and the scheduling of all messages, while in the second scenario this
protocol is replaced with its ideal process, which can be thought of as a trusted party which gets the
inputs form the relevant parties and distributes the honestly computed outputs, where using a simulator to
replace adversary A (with oracle access to that adversary if needed), one can generate an indistinguishable
view from the first scenario. The major difference between concurrent security and universally composable
security is the environment which is taken into account. In concurrent security, we require that a simulator is
indistinguishable from a real prover (secondary) in a specific environment where only the discussed protocol
is executed concurrently, possibly many times. In the universally composable framework, the simulator should
be indistinguishable from the real prover in any environment, including ones where different protocols are
being executed concurrently and an arbitrary composition of protocols (where one protocol uses the other
as a subroutine).

The ideal process to replace our protocol will be the membership responses to resolvers’ queries, i.e.
getting € U as an input and outputting either © ¢ R or € R and its value v. The observant reader
might notice that this functionality is similar to the oracle access we grant our PSR simulator in our f-zk
requirement, which is how the simulator in a UC environment is going to use this ideal process to emulate the
view of an adversary communicating with an honest PSR system®*. For both the case of a PSR system with
non-interactive proofs and the one with independent keys for each secondary-resolver couple, the simulator
simply emulates the adversary A (using its oracle access to it) while using the PSR f-ZK simulator, with the
ideal process replacing the limited oracle access, to generate proofs for the responses to membership queries
asked by resolvers in the system.

Like the case in the concurrent setting, non-interactive proofs are not affected by malicious scheduling
of messages due to the fact that responses and proofs to queries are only one message, so they can be
recorded and sent at a later point in time. Even if resolvers try to coordinate a concurrent attack, it is
executed sequentially in practice as the secondary/simulator generates the response immediately after being
queried and saves it until it is asked to send it back to the resolver. The use of a different sets of keys for
every couple of resolvers and secondaries who interact with each other, again, eliminates the possibility of
resolvers coordinating an attack on secondaries as each secondary responds with the use of different keys,
thus produces different and unrelated proofs, which cannot help resolvers extract any information from the
secondaries, without explicitly querying for it.

4 HIBE Based Construction of PSR Systems

In this section we introduce a PSR system based on Hierarchical Identity Based Encryption (or HIBE for
short). We think of the universe of elements U, as the leaves of a full binary tree. The primary can generate an
encryption key for any node in the tree, where this encryption key holds the power to prove non-membership
for every element in the universe which is a descendant of that node. A proof of non-membership for an
element x € U uses the encryption key of the leaf that corresponds to x, while an encryption key for an
internal node can generate the keys of its descendants. Thus if the primary generates the encryption key for
the root node, it can then generate a set of keys K which contains keys only to the elements in U\R. In
order to do that the primary removes the entire path of keys from the root to a leaf x € R and generates
keys to the siblings of each node along that path. One might notice the similarity to revocation schemes, as
we “revoke” all keys for the elements in R and as shown by Naor et al. [56], this process results in a forest
of O(|R| - log ‘I%I) full binary trees (See Figure 2 for an example).
4 Note that we allow to leak the information f(R) in the execution of our protocol, so this information can be added
as an output to the ideal process (i.e. if we allow leaking |R| the ideal process should leak it too so that the two
views described above will truly be indistinguishable).

11

In order to generate this set of keys K we will use a HIBE scheme, which is an identity based encryption
scheme (i.e. an element’s encoding is its identity) with the special property we need: that every key can
generate keys to its descendants in the hierarchy tree. For high efficiency we use the HIBE construction of
Boneh et al. [16], which we describe in more details in Section 4.4. Agrawal, Boneh and Boyen also offer
two HIBE constructions [4,3] based on lattices, which give us also two lattice based assumptions from which
we can construct a PSR system. The HIBE construction is perfect ZK, in the sense that it doesn’t reveal
any information about the set R to any adversarial resolver, not even its cardinality, while providing perfect
simulation.

\
A\
A\
O
i
I

Loeebilh biesseey

e Elementsin R
© non-elements

® | Key for Subset

Fig. 2. A full binary tree that represents a set R and its set of keys K.

4.1 HIBE Definition

An IBE (Identity Based Encryption) is a scheme where one can encrypt messages to users using their
names/IDs or any other unique identifiers one chooses to use. A trusted party generates a master public key
(also called system parameters sometimes) and a master secret key, where the first is used by users to encrypt
messages under any identity they wish, while the latter is used to generate secret keys for all identities in
the scheme, which are then distributed to the users (each user gets its own secret key). A user can then
use its secret key to decrypt messages intended for him. A HIBE is an hierarchical IBE, which means that
identities in the scheme are defined by up to ¢ coordinates and anyone who has a secret key for its identity
x, can generate secret keys to any of its descendants, i.e. to any identity with x as its prefix.

We use the following definition for HIBE which is similar to that of Gentry and Silverberg [34]. An ID-
tuple is a description of a user in the system defined by (I1,...,I;) where ¢t < £ and £ is the maximum depth
of the hierarchy of identities, i.e. the maximal number of coordinates in an identity. In our construction we
use binary vectors as the identities.

Definition 6. A HIBE is defined by five algorithms: Setup, MKeyGen, KeyGen, Encrypt and Decrypt.

Setup Gets a security parameter k and the depth of the hierarchy ¢ and generates the master public key
MKp, which should be distributed to all the users in the system and a master secret key M Kg given
only to the root user, both corresponding to the HIBE of depth (.

12

MKeyGen Gets the master key MKg and a target identity ID = (I1,...,I;) and generates a private key
(from a distribution of valid keys) denoted as SKyp, which user ID can use to decrypt messages intended
for him and also to generate properly distributed private keys (i.e. with same distribution, as if it was
generated using M Kg) to any of its descendants (any user who has the identity ID as a prefix to its own
identity).

KeyGen Gets a private key SK p for identity ID = (I4,...,1;) and some descendant of that identity of any
level, ID* = (I, ..., 14, I111,...,Iy) and generates a private key SKrp+ from its proper distribution. It
18 critical that for every identity, two different ancestors produce the same distribution on the generation
of its private key. Sometimes this algorithm is described only for one level deeper than that of 1D, but
this can be extended by invoking the algorithm recursively.

Encrypt Gets the master public key, a message m and a target identity ID and outputs a ciphertext C'T
which is an encryption of m intended for ID.

Decrypt Gets a private key for identity ID and a ciphertext CT intended for that identity and decrypts it
to retrieve the original message m.

We include the description of the HIBE by Boneh et al. [16] in Section 4.4, which is the most efficient
HIBE implementation we could find for our purposes. It uses only a constant number of pairing computations
and exponentiations and a logarithmic number (in the size of the universe U) of multiplications in a group,
for the algorithms used by the secondaries and resolvers: Encrypt, Decrypt and KeyGen for leaves in the
tree. Not all algorithms are as efficient as those three, but we may allow the primary setup to take longer
time as it commits to the set R only once.

4.2 HIBE Security

There are four types of security notions for HIBE. We have indistinguishability under chosen plaintext attack
and under chosen ciphertext attack, where in the first an adversary can issue queries to different secret keys
in the HIBE and in the second it can also issue decryption queries where it can ask to decrypt ciphertexts. For
the needs of our construction the weaker notion of security will suffice, i.e. indistinguishability under chosen
plaintext attack. We can also talk about the difference between selective and existential security, where in
the first an adversary selects a priori the target identity it wishes to be tested on and in the second it can
choose the target identity after it issues some queries. Again we only need the weaker notion of security for
our construction, i.e. selective security. We use the definitions of security as defined by Boneh et al. [16].

Definition 7. Indistinguishability under selective identity chosen plaintext attack (IND-sID-CPA). We say
that a HIBE system is (t,q,e) IND-sID-CPA if any t-time adversary A that uses q queries wins the following
game with an advantage of at most €. This is a communication game between an adversary A and a challenger
which controls the HIBE system at hand.

step 1: A sends a target identity ID* to the challenger and two equal length messages mg, m1 on which it
wishes to be tested.

step 2: The challenger runs the HIBE’s setup algorithm, sends the master public key to the adversary and
keeps the master secret key to himself.

step 3: A adaptively issues up to q key queries to the challenger, where it asks to know the private key of
an identity ID. The challenger responds with the correct keys to all queries. The only restriction is that
A didn’t issue a key query on identity ID* or a prefix of it.

step 4: The challenger draws a bit at random b € {0,1}, computes CT = Encrypt(MKp, ID*,my) and
sends CT to A.

step 5: A issues more queries (where the total number of queries is at most q) where again A cannot issue
key queries to prefizes of the identity ID* or to ID* itself. When A finishes with the queries it issues a
guess b’ € {0,1} and wins the game if b/ = b.

Notation. If we have a HIBE which is (¢, ¢,) IND-sID-CPA secure, t, ¢ are polynomials and ¢ is negligible
in the scheme’s security parameter, then we simply say it is IND-sID-CPA secure.

13

Remark 4. In a recent paper, Lewko and Waters [51] examine the difficulty in proving full (existential)
security for HIBEs. They show that proving full security for a large class of HIBEs results in an exponential
degradation (in the depth of the hierarchy) in security. Luckily for us we only need selective chosen plaintext
security (the weakest security notion for HIBEs), which most if not all HIBEs achieve, without the exponential
degradation.

4.3 PSR from HIBE

Suppose that all possible queries that resolvers issue are in the domain {0,1}*. We can assume that, as we
may use a collision resistant hash function A in order to map our domain of queries into a domain with the
appropriate £. We will use a HIBE of depth £. As we do in all constructions, for x € R we will use consistent
signatures on the element and its value, i.e. a signing algorithm that produces the same signature on the
same message. We will use the HIBE scheme to deal with non-membership proofs. In order to prove non-
membership in R, the secondaries will get as part of the secret key SK, a set of secret HIBE keys K, from
which they can generate a secret key corresponding to any = ¢ R (the secret key is SKj,(,)) and prove its
possession by decrypting random challenges encrypted by the resolvers under the queried element’s identity
h(zx) (alternatively the key may be given to the resolvers who should verify its correctness).

We do not want the secondary to be able to prove the non membership of an actual member x € R, so we
make sure it cannot obtain the secret keys to any element in R. Thus secondaries will not be able to prove
false statements with overwhelming probability, as in order to prove false statements the secondary will have
to either forge signatures or decrypt a message it doesn’t have the private key for.

In order to give secondaries the correct set of private keys, consider the full binary tree of depth ¢. The
primary removes all nodes which are in R or are ancestors/prefixes of elements in R. All the remaining
nodes in the tree (both internal and leaves) comprise a forest of full binary trees of different depths. The
primary then generates the secret key to all the roots of the binary trees in the forest and distributes it
to the secondaries. Now, the union of all those keys, denoted as K, can generate all keys corresponding to
leaves that are not members of R. As mentioned before, the number of trees in the forest can be shown to
be O(rlog) [56].

We now describe the PSR construction that uses a HIBE which is required to be only IND-sID-CPA
secure (see Definition 7 for details) and an existentially unforgeable signature scheme.

Setup(R,V, 1¥): Use the setup algorithm for the signature scheme in order to obtain the keys (PKy;g, SKsig, h)

where h is a collision resistant hash function that maps elements from U to {0,1}. Use the setup algo-
rithm for the HIBE scheme and obtain the master public key M Kp and the master secret key M Kg for
a HIBE of depth £. Set the public key to be PK = (PK;y, MKp,h).
Now generate the forest of full binary trees, as specified above, by removing all the nodes in the full
binary tree of depth ¢, which are prefixes of h(z;) for every z; € R. For every root ¢; in that forest,
generate its corresponding secret key k; (using the MKeyGen algorithm) and set K = {(¢;,%;)}. Now
sign every element x; € R with its value: s; = (Signsk,,, (¢, v:), (z:,v;)) and set the secret key to be
SK = (K, {S%}:zl)

Verify(z, PK): Gets an element € U and the public key and initiates an interactive protocol with a
secondary. It draws uniformly at random a message m from the message domain of the HIBE scheme
and encrypts it under the public key of h(z): CT = Encrypt(m,h(x), MKp). It send (CT,z) to a
secondary. If it gets in return back m, it returns 1 and “x ¢ R”; if it gets in return a signature s and a
pair (x,v) where it verifies correctly that s is a valid signature on (x,v) then it accepts that x € R and
its value is v and returns 1. Otherwise it returns 0.

Prove(z, PK,SK): Gets the public and private keys and also (CT,z) from a resolver. If there exists a
signature s; for which x; = z, then it returns s;. Otherwise the secret key SK contains, in its HIBE set
of keys K, a key for a prefix of h(z). The secondary generates the secret key for h(z) (using the HIBE
KeyGen algorithm), decrypts C'T under that secret key and returns m to the verifier.

Theorem 3. The three algorithms described above constitute a (perfect) ZK PSR (i.e. f is the null function
and the simulation is perfect).

14

Proof. In order to prove the above scheme constitutes a PSR system we need to prove it fulfills the three
properties required from a PSR system: completeness, soundness and zero-knowledge.

Perfect Completeness. For all R C U, for all V and for all x € U we need to show that after obtaining
the keys (PK, SK) from the setup algorithm, it always holds that an honest secondary manages to convince
an honest resolver of the true statement regarding the queried element x. For every element z; € R the
primary precomputed s; = (Signsk.,,, (i, vi), (x;,v;)) which is part of the secret key and thus the secondary
will always succeed in proving membership statements. As for statements of the type x ¢ R, using the set
of HIBE keys K given to the secondaries, they can derive a secret key for every x € U\R (actually a key
for every such h(z)). Using that key SKj,(s), secondaries can always decrypt a random challenge issued by
resolvers and thus will always manage to prove statements of non-membership.

Soundness. Assume for contradiction that there exits some polynomial time adversary that using (PK, SK)
can provide for some = ¢ R a proof that € R with non-negligible probability. This means it can forge a
signature with non-negligible probability for that = and some value v, violating the unforgeability assumption
on the underlying signature scheme. The same holds if an adversary is trying to prove for some z € R with
value v a different value v’ # v, i.e. due to the existential unforgeability of the signature scheme proving a
false value for « € R is infeasible as well.

If we assume to have such an adversary A that can provide for some x € R a proof that x ¢ R with
non-negligible probability e, then we can use A to construct an adversary B that wins the IND-sID-CPA
security game (Definition 7) with a non-negligible advantage 5. If A can cheat with probability ¢ for the set
R C U and some z € R then the adversary B (trying to win the IND-sID-CPA security game) will first select
h(zx) as its target identity (h will be chosen by him as well), choose two random messages as the challenge
messages {mg, m1} and get the HIBE master public key, M Kp. Then B runs the setup algorithm for the
PSR over U and R while using M Kp as its master public key for the HIBE in the PSR and will use the key
queries in the security game to generate the set of HIBE keys K. Note that as x € R all the key queries will
be for non-prefixes of h(z) as K doesn’t contain any ancestors of h(R) = {h(z;)|z; € R}.

Thus B will generate a valid pair of keys (PK, SK) for a PSR and hand them to the adversarial secondary
A. B will now send the random challenge it got form the IND-sID-CPA security game (an encryption under
h(z) of mg or my) to A which will try to decrypt the ciphertext. A succeeds in decrypting the challenge with
probability e and if the decryption A offers matches one of the two original challenge messages (mq, m1) then
B chooses this message and else it guesses uniformly at random. Thus B wins the IND-sID-CPA security
game with an advantage of about § ®. Thus violating the security assumption made on the HIBE scheme
being used.

We also note that it is infeasible for an adversary to find an element on which it can provide a false
proof. As the adversary gets both keys we can assume it knows R. The adversary cannot find an element
2 ¢ R and provide a false proof with non-negligible probability as this again violates the unforgeability of the
signature scheme. Regarding = € R as we know that the HIBE is selectively secure then we know that if the
target identity is chosen in advance, then any polynomial time adversary has at most a negligible advantage
¢ in distinguishing between the two target messages, which makes its probability of decrypting the target
ciphertext at most 2e (by the reduction shown above). So as this time there are |R| = r target identities,
any adversary has at most a probability of 2 - r (still negligible as r is polynomial) to decrypt a random
challenge under one of the identities of hA(R), thus it is also infeasible to find z € R for which a secondary
can cheat on.

Perfect ZK. In order to show that this PSR is indeed zero knowledge we need to show a suitable simulator
SIM which can fool any adversary into believing it is a real PSR system. SIM simply chooses the function
h as the primary does, runs the setup algorithm for the HIBE to obtain (M Kp, MKg) and the setup
algorithm for the signature scheme to obtain (Pks;g, SKsg). SIM then sets the fake public key to be PK* =
(MKp,PKig,h) and the fake secret key to be SKgry = (SKgi9, MKg). Note that the fake public key is
generated the exact same way the original public key is generated and the fake secret key has the master

5 There is a probability that A decrypts C'T to a wrong message that happens to be mi_; while m; was chosen as
the challenge. But, as {mgo,m1} are chosen uniformly at random and are not known at all to A this probability is
negligible.

15

secret key for the HIBE instead of the subset of the keys (K) and the secret key for the signature scheme
instead of the signatures on the elements of R and their values ({s;}7_;). When SIM is queried on an element
x € U, it queries its oracle to R on x. If z € R and its value is v, it returns s = (Signsk,,, (¢, vz), (,v;)). If
x ¢ R then SIM gets (CT, z) and it can generate the secret key for h(x) using the master secret key M Kg,
decrypt the challenge and return it to the adversary.

We claim that the two views generated by the simulator and a real PSR system are not only indistin-
guishable but identically distributed, thus making this construction perfect zero-knowledge. The public keys
are generated by the same algorithm. The signatures (proofs regarding x € R) are generated online instead
of during the setup algorithm as the primary does, but yield the same distribution over the signatures, due
their consistency. Proofs for elements x ¢ R are also identical as both the simulator and a PSR system
decrypt successfully the random challenges on elements outside of R with probability 1 and simply return
it. This concludes the proof that this PSR system is perfect ZK. O

On Transferability of Responses and Using Hierarchical Identity Based Signatures

We can also use Hierarchical Identity Based Signatures (HIBS for short) instead of encryptions. The difference
between the two approaches is that instead of encrypting messages you can generate signatures and verify
them. This way a resolver doesn’t have to issue a random challenge, it can just query for z and get in
response a signature on the element x (under the secret key corresponding to h(x)), saying it is not in R.
This makes secondary responses to queries transferable, meaning a resolver could prove to another resolver
that ¢ R by sending it the signature it got when it queried that element.

Another way we can get transferability of responses is instead of using random challenges by the resolvers,
we could just have them query 2 and in case ¢ R have them get the secret HIBE key for h(x), i.e. SKj(z).
This way the resolvers could encrypt random challenges and decrypt them by themselves to verify the
correctness of the response. This way they could transfer the response to other resolvers to prove to them
that © ¢ R. Notice that when we use this technique we shift some of the computational load from the
secondaries to the resolvers as now secondaries don’t need to decrypt any challenges, just generate a key,
which they did before anyway, but now the resolvers need to decrypt a challenge which they issued, to make
sure they got a valid key and a correct response.

4.4 HIBE Construction by Boneh, Boyen and Goh

We describe the construction by Boneh et al. [16] as it is the most efficient HIBE implementation for our
needs. Its greatest virtue, with respect to our construction, is the fact that generating secret keys for nodes
gets more efficient the deeper the node is in the hierarchy. Thus generating keys for leaves is very efficient,
which is critical for us, since this is done online by the secondaries generating non-membership proofs. Let G
be a bilinear group of prime order p and let e : GxG — Gy be an admissible bilinear map (see Section 11.3 for
details). We choose arbitrarily how to map Jy, J; to Z, since the original HIBE can handle identities of the
type ID € (Z;;)Z (or shorter), while we only require binary identities of length at most £°. This means that for
some node in level k of the tree, u = x5 ...z where x; € {0,1} has identity I, = (Jz,, .-, Ju,) = (I1, ..., Ik),
which will be also its public key. We also assume that the messages to be encrypted are elements in G;. We
choose /¢, the depth of the hierarchy, to be [log |U|], in order for the leaves of the full binary tree of depth ¢
to represent the elements in the universe.
The HIBE system works as follows:

— Setup(1¥,1%): Gets k the security parameter and ¢ the depth of the hierarchy. To generate the public
master key for the HIBE of maximum depth ¢, draw uniformly at random: g € G, a € Zj, set g1 = g*

6 Note that we could use a tree with smaller depth (i.e. decrease £) and map more than one bit of an element to
every coordinate in the hierarchy of identities. This modification though, will result in more work for the primary,
as it will increase the size of the set of HIBE keys K and the computation and size of Aux (defined in the HIBE
setup algorithm). Asymptotically the efficiency of the scheme remains about the same, unlike the size of the keys
which grows, thus we use binary identities.

16

and pick some more random elements go, g3, h1, ..., hy € G. Next compute Auz = (h‘1]° , h‘1]1 ey hZJO, hZJl)
and define the master secret key to be M Kg = ¢g§ and the public master key to be:

MKP = (gagl,g%gfia hla . .,hg,AUCE).

— MKeyGen(MKg, ID): To generate a private key for ID = (Iy,...,Ix) € (Z;)k pick uniformly at random
r € Zp and output:

SKID = (gg . (h{l .. hik .g3)r’gr’h2+1’ . 7h2’) c G£7k+2

Note that the deeper the node the smaller the private key.

— KeyGen(SKyp,I1D*): Suppose we want to generate a private key SKp~ for identity ID* = (I1,...,I,) €
(Zy)™ using a private key SKp of its ancestor, with identity ID = (I1,..., 1) (m > k). Let SK;p =
(ag, a1, bry1,...,be), that is if SK;p was generated with a random value 1’ € Z,, then

(a07a17bk+17"'7bf) = (9(21 : (hil hék gS)T ,gr 7h2+17"~7h2)

Choose uniformly at random t € Z,, and output:
I _
SKrp- = (ag- by -+ bhr (- bl g3)' an - g' by - bl yn, o be -) € G2

We get that this private key is a properly distributed key for identity ID* = (I3, ..., I,,) with the random
value r =71' +t € Z).

This can be computed using 4+ (¢ — m) exponentiations and O(¢) multiplications by utilizing Aux. Note
that the deeper the node the shorter the key. Thus computing a secret key for a leaf is very efficient, as
is the case for a PSR secondary. If ID* is a leaf (m = ¢) we get:

SKrp- = (ag - b5 - bt (A1t -~ bl - g3)t,as - ') € G2

Computing secret keys for the leaves takes only 4 exponentiations and O(¢) multiplications, since by
utilizing Aux, the secondary multiplies all the b;’s where I; = J; and then raises them to the power of
Jy and similarly for Jy; exponentiations of h;Jj are already calculated and included in Auzx.

— Encrypt(MKp,ID,m): To encrypt a message m € Gy under the public key ID = (I3,...,1I) draw
uniformly at random s € Z, and output:

CT = (e(g1,92)° -m, g°, (h]* - - b - g3)*) € Gy x G2

Which takes 1 pairing computation, 3 exponentiations and O(¢) multiplications (we can also add e(g1, g2)
to M Kp in order to avoid computing pairings in the encryption).

— Decrypt(SKrp,CT): Consider a ciphertext CT = (A, B,C) encrypted for ID = (I3, ..., I;) where the
private key is SK;p = (ag, a1, bg41,. - .,be). Output:

ea,C . e(g”, hfl,..hlk. s
A~%:€(91,92) m.- (g a(1[1 kleB)) _
e(, ao) 6(93792 '(h1 hk - g3)")

(91,92)" :
=e91,92) M- ——— — =M
b2 6(9792)6(1

Which takes only two pairing computations and one multiplication.

This HIBE achieves selective-ID security for both chosen plaintext and chosen ciphertext attacks (IND-
sID-CPA and IND-sID-CCA respectively) under the f-weak decisional Bilinear Diffie-Hellman Inversion
assumption (~-wBDHI, defined in Section 11.4) in the standard model and is fully secure in the random
oracle model, where £ is the number of levels of the hierarchy.

17

Performance. As for the performance of the resulting PSR, the setup algorithm’s running time is
dominated by the generation of the set of private keys K which is of size O(rlog %) In order to provide
proofs of non-membership, the secondaries have to decrypt a message intended for an identity of depth ¢,
for which they have to first generate a proper key. This takes 4 exponentiations and O(¢) multiplications.
The secondaries then decrypt the message, which takes 2 pairing computations and one multiplication. For
a resolver to issue a query for an element it has to encrypt one message which takes 3 exponentiations and
O(¢) multiplications (we avoid the pairing computation in the encryption by adding e(g1, g2) to M Kp).

So in total a secondary has to do at most 2 pairing computations, 4 exponentiations and O(¢) multipli-
cations, while a resolver has to do only 3 exponentiations and O(¢) multiplications. As mentioned before,
we can also have a variant of the protocol where the resolvers receive the secret key itself (and have them
encrypt and decrypt random challenges by themselves). This moves the computational load of 2 pairing
computations to the resolvers. The primary has to work harder as the setup algorithm is more costly, but
that is understandable as the primary has to set up the system only once.

5 PSR Systems Based on One-Time Signatures

In this section we describe a PSR system that works along the line of the HIBE construction in that they
both have a full binary tree structure, where we remove all paths from the root to leaves corresponding
to elements in R. This structure is closely related to that of punctured pseudorandom functions [70]. We
allow secondaries to generate chains of signatures in this construction (which constitute a proof of non-
membership) and secret decryption keys in the HIBE construction, only for elements outside of R, where
in a punctured PRF, one can compute the PRF on all values besides one. We will use one-time signatures,
which are signatures that are infeasible to forge for any polynomial time adversary who witnesses at most
one signature of its choice (signatures and k-time existential security are defined in Section 11.2). In fact we
will need to sign at most two times with each key, so we can use one-time signatures and double the keys. A
proof of non-membership for an element x ¢ R will be a chain of signatures from the root of the full binary
tree to the leaf corresponding to h(x), where each node on the path signs the public key of its descendant
and the public key of the root is part of the scheme’s public key. In order to remain consistent (give the
same proofs at different times, or for different secondaries), we use the GGM pseudorandom function [38].
For every node z in the full binary tree, the PRF produces three values: labels for the two children of and
randomness used to generate the secret and public keys corresponding to z.

We describe the PSR system in detail:

Setup - Use the setup algorithm for the (consistent) signature scheme and obtain (PKg;g, SKyig, h) where h
is a universally one way hash function (UOWHF) that maps elements from U to {0, 1}¢. Also generate a GGM
pseudorandom function [38] F' = (Fy, Fr, Fs) which maps a label of a node x to three strings: a label for each
of a’s children (Fj for the right child and Fy, for the left) and randomness used to generate the cryptographic
keys for the one-time signature scheme (Fs for the one-time signature)”. Use the setup algorithm for the
one-time signature scheme and obtain the secret and public keys for the root of the full binary tree of depth
¢, denoted as (PKy ooty SKroot) (generate keys which are secure for two signatures). As for the randomness
used for the generation of these keys, draw uniformly at random a label for the root L,.,.t, invoke Fg on that
label to generate the randomness for the keys. Set the public key to be PK = (PK;g, PKyoot, h).

Now generate the forest of full binary trees, as we did for the HIBE, by removing all the nodes in the full
binary tree of depth ¢, which are prefixes of h(z;) for every z; € R. For every root ¢; in that forest, gencrate
a chain of signatures, along the path from the root of the full binary tree (of depth ¢), ending with ¢;. The
first signature in the chain is signed by SK,,,: and each node signs with its secret key, the public key of its
descendant coupled with its encoding (i.e. for the descendant z, sign (x, PK,)). The generation of keys for
a node z, child of y (where L, is its label), is done using the setup algorithm for the one-time signatures,

7 Note that we use the GGM implementation of a PRF as it is the most natural choice when dealing with labels of
binary trees. The choice of a seed for the PRF determines the labels of the full binary tree of depth ¢, thus we use
the full binary tree structure both for the GGM PRF and for the tree of signatures.

18

which uses randomness generated by Fs(Ff(Ly)) in case x is a left child and Fs(Fr(L,)) otherwise. Denote
the chain of signatures leading up to ¢; as c;, the secret key corresponding to c; as SK; and the label for ¢;
as L; and set K = {t;,L;,c;, SK;}.

To produce proofs of membership, sign every element z; € R and its value: s; = (Signs.,,, (T, vi), (74, v;)).
Note that each node in U either has a signature proving its membership in R, or it has a chain of signatures
ending at one of its ancestors, which can be completed online. Set the secret key to be SK = (K, {s;}I_,, F).
Verify - Gets an element x € U and the public key and initiates an interactive protocol with a secondary
by sending it = in the clear. If it gets in return a signature s and a pair (z,v) where it verifies correctly that
s is a valid signature on (x,v) then it accepts that z € R and its value is v and returns 1.

If it gets a chain of £ signatures, it verifies the first signature with PK,,,; and every next signature is
verified with the public key which was decrypted in the previous signature in the chain. Each signature must
contain the public key of the next node along the path from the root to the leaf and the node’s encoding (to
verify the correct path). Only if all signatures verify correctly and the path of signatures ends in h(x), then
it accepts that « ¢ R and returns 1. Otherwise it returns 0.

Prove - Gets the public and secret keys and also x from a resolver. If there exists a signature s; for which
x; = x, then return s;. Otherwise the secret key contains K, contains a chain of signatures from the root
to a node which is an ancestor of h(z) (or h(z) itself), plus the secret key corresponding to that node and
its label. Complete the chain of signatures by signing the next node in the path, coupled with its public key
(generated using randomness from F' and its label) until the end of the chain at node h(z). Send the chain
of signatures back to the resolver.

Now we claim that the resulting scheme is a prefect ZK PSR system.

Proof sketch. Perfect completeness holds as for every z; € R there is a precomputed signature s;
in the secret key which will always be verified successfully. Regarding elements x ¢ R, the secondaries can
generate a valid chain of signatures for each such element as by definition of K, it contains a secret key for
a node which is an ancestor of h(z) and a chain of signatures leading up to it, from which it can complete
the chain of signatures which will be verified successfully by a resolver with probability 1.

Soundness also holds as if one can prove for x ¢ R that € R then it will violate the existential unforge-
ability of the (regular) signature scheme. If one could prove for « € R that x ¢ R then it means it managed
to forge a one-time signature, since we defined K not to contain any secret key for an ancestor of h(z), for
z € R. But as we defined the scheme, each secret key is used to generate at most two signatures (one for
each of its children), thus the forgery contradicts the assumption that the signature scheme is secure against
two signatures, thus proving that the system is sound. Note that because each node’s secret key is generated
using the randomness of F' over its parent’s secret label (resolvers are not aware of the nodes’ labels, just
their encodings), secondaries don’t have any label for an ancestor of h(z) for € R, so they cannot produce
the secret keys for any node in the chain of signatures that ends at h(z), thus secondaries cannot forge a
proof for the false statement = ¢ R.

Perfect ZK is proven similarly to the HIBE construction. The simulator again runs most of the setup
algorithms which the PSR setup algorithm uses. It generates the GGM PRF F, the hash function h and
chooses a random label L., for the root of the tree. It then produces a pair of keys for the (regular) signature
scheme, (PKgy;q, SKsiq) and generates the keys for the one-time signature scheme (PK,oot, SKroot) (using
the randomness of Fs(L,o0t)), corresponding to the root of the full binary tree. The simulator then sets the
keys to be PK* = (PKyig, PKroot, h) and SKgrn = (SKsig, SKroot, I, Lroot). Like the case for the HIBE
construction the precomputed signatures {s;} are replaced with the signature key SK,;, and the set of keys
K is replaced with a secret key which can generate proofs of non-membership for any element in the universe,
this time it is SK,0t, While the HIBE construction used the master secret key for the HIBE. In order to
generate proofs for z; € R, the simulator generates the signatures s; = (Signs,,, (s, vi), (%4, v;)) online.
For elements x ¢ R the simulator simply generates the chain of signatures starting from the root of the
tree ending at the leaf corresponding to h(x), exactly like the Prove algorithm would do, using randomness
generated by the PRF F starting with the root label, L,o¢-

The resulting view of the adversary communicating with SIM will be identically distributed to the view
of the adversary communicating with a real PSR system. The fake public key PK* is generated the same

19

way the original keys are generated. Proofs regarding € R are generated by the same algorithm, just online
instead of before hand, but the distribution of the signatures remains the same. Proofs regarding = ¢ R are
identically distributed for both views, using the secret root label L,,,; and F', the simulator can produce
a proof of non-membership for every element in the universe U, thus resulting in the same distribution of
proofs for = ¢ R as the distribution of a real PSR system, which also chooses a PRF and such a label, which
determine the entire set of secret keys and labels for the tree. The only difference between those proofs is that
a real PSR system generates a part from each chain of signatures before hand and the secondary completes
the chain online, while the simulator generates the whole proof online, but the resulting chains are identically
distributed. Either way once the function F' and the label L,,,; are set the entire set of keys for the tree is
set and both the function and the label are determined at the setup phase, randomly drawn from the same
distribution. Thus we get two identically distributed views, which results in perfect ZK. a

Now as we can construct both types of signatures (one-time and regular) from universally one way hash
functions (UOWHF) [61], we can conclude that the existence of UOWHFs implies the existence of PSR
systems with perfect ZK. UOWHFSs in turn can be constructed from one-way functions [68]. PSR systems
imply identification schemes, as shown in our companion paper [36], which in turn imply the existence of
one-way functions, as shown by Impagliazzo and Luby [45] (see also [44]).

Note that these are all black box constructions, which give us the following corollary:

Corollary 1. Single round PSR systems exist if and only if one-way functions exist. If many rounds PSR
systems exist then a single round PSR system exists (see Figure 3 for clarification).

|dentification
schemes

Many-round
PSR Systems

One Way
Functions

One-round PSR
Systems

Universal One
Way Hash
Functions

Fig. 3. Each node represents a cryptographic primitive and an arrow means that the existence of one primitive
implies the existence of the other, as proved by the citation above it ([36,45,68,61]). Sig-PSR represents the one-time
signatures PSR construction, presented in this section.

Chase et al. [25] proved that interactive ZKS and collision resistant hash functions (CRH) are existentially
equivalent, i.e. you can construct one from the other. Simon [75] showed a separation result, which states
that no CRH can be constructed from one-way functions (or even permutations) in a black box manner.
Thus we get the following corollary:

Corollary 2. One cannot construct ZKS (and even interactive ZKS) in a black box manner from PSR
systems (interactive or not).

20

Note that if we have an efficient one-time signature scheme (in terms of the complexity of the signature
and verification algorithms), then this PSR system can be quite efficient as the time it takes a secondary to
produce a response is dominated by at most O(log |U]|) signatures and the time it takes to verify is dominated
by O(log |U]) verifications. Thus an efficient signature scheme with this very weak security requirement can
produce an efficient and practical PSR system.

6 Cuckoo Hashing Based Construction of PSR Systems

We now discuss an instantiation of the second approach for constructing PSRs mentioned in the introduction,
imitating an oblivious search for the element, where the locations examined are determined by the element
searched and some hash functions. The point is that the secondary needs to show that the searched element
is in none of the probed locations. We describe a construction based on cuckoo hashing, a scheme first
introduced by Pagh and Rodler [64]. We will think of cuckoo hashing in the static case, where the set R
is fixed in advance, as is the case with PSR systems. A cuckoo hashing scheme uses two hash functions
(Fy, F»), which map elements in the universe, into two tables 77 and T of size (1 + &)r. The primary starts
by mapping the r elements of R into the tables T and T,, where each element x € R is placed either in
T in location Fi(x) or in T5 in location Fy(z). As collisions can always cause this task to be impossible
for some chosen set R and functions (F, F»), the primary may need to draw the functions (Fi, F3) a few
times, until it finds ones that fit the set R (as we shall see, in our case the probability of redrawing will
be negligible). When the primary finds proper functions, it commits to the placements of the set R in the
tables. In order to prove membership in the set for a cuckoo hashing scheme the prover proves to the verifier
that x is placed in one of its two possible placements (either in T (Fy(z)) or To(Fa(x))), while in order
prove non-membership it proves that z is not placed in either of its two possible positions. We will use this
technique for our non-membership proofs.

There are different variations on cuckoo hashing which try to improve its success probability and efficiency.
For example, one may use tables with buckets which are larger than 1 in order to reduce the probability of
choosing bad functions for the set of elements. We will be interested, for our denial of existence mechanism,
in the variation which uses a “stash”, where the elements that could not be placed in the tables, due
to overcrowding, are kept. This reduces the probability of having to choose new functions for the cuckoo
hashing, even when using a relatively small stash, as shown by Kirsch, Mitzenmacher and Wieder [49]. As a
non-membership proof for « ¢ R, secondaries will prove that x is not in either of the two locations of the table
and that z is not in the stash (by proving that none of the elements in the stash are x). Cuckoo hashing has
been used in cryptography in the past, for example [12], which uses cuckoo hashing for a hardness preserving
reduction from non-adaptive to adaptive PRFs and in works on constructing Oblivious RAMs [66,41].

6.1 Cuckoo Hashing with a Stash

We give a brief description of how cuckoo hashing works and its different properties. Roughly speaking, in
a cuckoo hashing scheme we draw two universal hash functions Fy, Fy : U — [{], where £ > (1 + ¢)r for
some constant &, and r is the number of elements to be inserted into the cuckoo hash. A lookup for x in
the table is simply checking if T} (Fy(x)) = = or Ta(F2(x)) = z. In order to put the set R in the cuckoo
hashing, one simply inserts the elements one by one. An insertion of z is as follows: set y = Ty (Fy(x)) and
Ty (Fi(z)) =z, if y = L (empty) finish, else set z = To(Fs(y)) and To(F>(y)) = y, keep this procedure going
until all elements are in the tables (if it is possible). It is clear that not all functions (F}, F») will be able to
properly place the set R in both tables. Consider the bipartite cuckoo hash graph G, r, r that results from
the two functions (F1, F») and the set R, by setting the nodes to be the cells of the tables Ty and 75, i.e. 2¢
nodes and the edges to be E = {(Fi(z), Fo(x))|x € R}, then if and only if Gp r, g has at most one cycle
in every one of its connected components, we can place the set successfully in the cuckoo hash. See Figure 4
for an example.

21

Good choice of Bad choice of
functions functions

R={a,b,cd ef}

Fig. 4. Two choices of functions, where the left one suits the set R and the right one doesn’t, since it contains more
than one cycle in its connected component.

Pagh and Rodler [64] showed that the probability of choosing bad functions when £ > (1+¢)r and F; and
Fj are drawn from an (O(1), O(log r))-universal hashing family® is O(+), while the entire insertion process
takes O(r) expected time. Note that if we use cuckoo hashing as described above as a denial of existence
mechanism, then a malicious resolver could learn about the set R some information just by the choice of the
functions Fy and F (that are public), as about an O() fraction of the functions will not produce a valid
assignment for R.

In order to diminish the amount of information we release to resolvers about the set R, we use cuckoo
hashing with a stash. It is a cuckoo hashing scheme where we keep a stash of elements that we could not
fit in the tables T and Tb. For example, if the bipartite graph for the set R and functions F} and Fy,
after we remove 3 edges from it, has at most one cycle in every one of its connected components then a
stash of size 3 will suffice for us to commit to the set R successfully with the functions (F;, Fy). This makes
our lookup procedure longer, as now one also needs to check the stash and not only the tables 77 and 75,
to verify whether an element is in the cuckoo hash. Kirsch, Mitzenmacher and Wieder [49] show that the
probability that the stash is larger than s is bounded by O(r~*), albeit in their analysis they require the
hash functions to be fully random, instead of being drawn from an (O(1), O(log r))-universal hashing family.
Luckily, Aumiiller et al. [6] addressed that issue and suggested a construction of hash functions which suffices
in order to get an O(r~*) probability of failure. An alternative is to use pseudorandom functions for F; and
F5. Usually releasing the secret key of the PRF is dangerous, but here we are interested in a property that
can be tested on a given set R. If the function fails on it (whereas a truly random function would not), then
we have a distinguisher for the PRF.

Thus, if we take a stash of size log, |U| we will get a negligible probability that functions F; and F» do
not properly place the set R in the tables plus stash. This means that if we use a cuckoo hash with a stash
as our denial of existence mechanism, we will release significantly less information about the set R than with
a regular cuckoo hash. Note that by doing so we reduced the problem of proving non-membership for the
set R to the set S and as the bound on the stash is fairly small compared to the size of the original set R,
it reduces the problem to be proportional in its efficiency to a much smaller set, i.e. S instead of R.

8 A (c, k)-universal hashing family {h; : U — L};c1 is a family of hash functions such that for every k distinct elements
T1y..., Tk, ANY Y1,...,Yr and a uniformly random ¢ € I it holds that Pr[h;(z1) = y1,...,hi(xx) = yi] < ﬁ

22

6.2 Construction of PSR Systems from Cuckoo Hashing with a Stash

We describe our cuckoo hashing with a stash based PSR construction and prove it to be a PSR system with
f-ZK (for f(R) = |R|). Except for the cuckoo hashing with a stash, we will also need to use commitments with
inequality proofs and a method for proving non-membership for a fixed set. We will require both protocols
to be complete, sound and indistinguishable in the case we commit to “dummies” instead of the real set. We
describe both required primitives next.

A commitment scheme is comprised of two phases: commit and reveal. In the commit phase, you generate
a commitment c to a string x with secret information s. In the reveal phase we will only require that using
(c,z,s), one can prove interactively for an element y # x that the committed value is not equal to y°.
We require the commitments to be hiding, meaning that for every x # 2’ and uniformly at random chosen
secrets s, s', the ensembles {Commit(z, s)} and {Commit(z’, s')} are identically distributed (perfect hiding),
statistically close (statistically hiding) or computationally indistinguishable (computationally hiding). We
also require the commitments to be computationally binding, meaning that it is infeasible for a polynomial
time attacker which gets a commitment ¢ to z with the secret information s (¢ = Commit(z, s)), to find
(2',s") such that Commit(z',s") = c. In our case the binding requirement is a bit weaker: given that the
primary is choosing the commitment and giving it to the secondary, all we need is that for a properly chosen
commitment it is hard to find a different opening. A commitment may also be to a ‘dummy’ element, in
which case all z’s are different from it.

Our commitment inequality proofs, which get a commitment C, to an element x with secret information s
and an element y and prove that C, is not a commitment to y, have to satisfy three properties: completeness,
soundness and indistinguishably. Completeness means that when the prover and verifier both act honestly
then the protocol succeeds with overwhelming probability while the soundness condition states that a prover
cannot convince a verifier to believe in a false statement with overwhelming probability. The indistinguisha-
bility requirement is that an adversary who chooses x and z’ such that 2’ # x, cannot distinguish between
a proof of inequality of x to a commitment to 2’ and a proof of inequality of z to a commitment to the
“dummy” element. We note that this is a weaker requirement than ZK which implies indistinguishability.

The second protocol we require is a fixed set non-membership proof system. The only difference between
this protocol and the commitment scheme is that we commit to a set instead of a single element. The primary
generates two keys (secret and public) for the set S, where a secondary could use the secret key to prove to a
resolver, with knowledge of the public key and no knowledge about the set S (besides maybe its cardinality),
that an element x is not in the set, without revealing any elements in the set S. Our requirements from
the protocol are identical to those of the commitment scheme: hiding (cannot tell the difference between
different sets), binding and soundness (both requirements amount to it being infeasible to cheat on the
set), completeness (honest execution results in the correct conclusions) and indistinguishability between
non-membership of any set (even a set known to the distinguisher) and one consisting of only dummies.

Armed with a cuckoo hashing scheme, a commitment scheme with interactive proofs of inequality and a
fixed set non-membership proof system, we describe the PSR system.

Setup. Compute the cuckoo hash with a stash as described above. Generate the keys (PKg, SKg) for
the fixed set non-membership proofs with the set S, where S is the stash. Generate parameters for the
commitment scheme, PK,p,. Run the setup algorithm for the signature scheme to obtain (PK g, SKsg) (we
use consistent signatures which produce the same signature on the same message). Generate the signatures
s; = (Sign(x;, v;), (x;,v;)). If € R is in table T} in cell j = F;(z) in the cuckoo hash, then set z; ; = =
and generate a commitment C; ; with secret information r; j: C; ; = Commit(z, ;,7; ;). If cell j in table
T; is empty generate a dummy commitment C; ;, i.e. draw uniformly at random an element z; ; and secret
information 7; ;, check that F;(x) # 419 and compute Commit(x; j,r; ;) = C; j. For every such commitment

9 Usually, one proves the value committed, but as we want to prove non-membership we do not require this feature
in our commitment scheme.

19 We check that so we could prove non-membership for z, if F;(z) = j we could not prove that z is not in table Tj,
due to the soundness property of the commitment scheme.

23

C;,; (dummy or regular), compute s; ; = (Sign(C; ;,1,7),(Cs;,1,7)). Note that x; ; and r; ; are the value
and secret of the commitment at cell j of table i.

Set the public key of the scheme to be PK = (Fy, Fs, PK,y, PKg, PKcom) and the secret key to be
SK = ({Si,j}§:1,¢e{1,2}» {sitiz1, {Cmvxi,jv’"i,j}§:1,ie{1,2}’ SKs).
Prove. Gets z, if = x; € R then return the signature s;. If z ¢ R then locate commitments C; p, () and
Cs, 7, (2), send signatures sy g, () and sy g, (z) to the resolver and prove (using the inequality proofs) that both
commitments are for a different value than x using (z1 g, (z) TLFl(z)) and (T2, (2); T2, 7, (x)) T€SPectively. Also
prove that z ¢ S using the fixed set non-membership proof system and its secret key SKg.
Verify. Sends = to the secondary and gets one of two possible responses. For a membership proof it gets
(s,z,v) where s is supposed to be a signature on the pair (z,v) and if it verifies correctly that s is a valid
signature on (z,v), it accepts and outputs 1. For a non-membership proof of ¢ R, the secondary gets
signatures si g, (;) and s p,(;) and engages in three interactive proofs, two for the two commitments in the
cuckoo hash in positions (1, Fy(x)) and (2, F>(z)) in the tables and one that proves z ¢ S (where S is not
known to the resolver). The resolver verifies that all interactive proofs are valid using its public keys for
the protocols (PK o for commitments and PKg for fixed set non-membership) and also checks that the
commitments for which the secondary proved inequality are the signed commitments in the correct positions
(using the signatures which it gets from the secondary). If all checks pass successfully the resolver accepts
and returns 1, else it returns 0.

We now argue that this construction is indeed a PSR system with f-ZK, for f(R) = |R].
Proof sketch. In order to prove this construction to be a PSR we need to prove it to be complete, sound
and f-ZK (for f(R) = |R|).
Completeness. Elements x; € R can always be proven successfully as the precomputed signature s; is part
of the secret key, thus known to the secondary, while the public key for the signature scheme is part of
the PSR’s public key, which is why it will be verified successfully. Regarding elements x ¢ R, proving the
commitments’ inequalities succeeds with overwhelming probability, as we know we committed to a different
value than z in the places T1(Fi(z)) and T2 (F>(x)) and the completeness guarantee of the commitment
scheme guarantees our overwhelming success. Proving the non-membership of z in S is also guaranteed to
succeed with overwhelming probability due to the completeness condition of the fixed set non-membership
proofs we use.
Soundness. Proving false statements regarding elements « ¢ R requires the secondary to generate a valid
signature on x and some value v without the knowledge of the secret key for the signature scheme. In order to
prove a false value for an element z € R, an adversary also has to generate a valid signature without knowing
the secret key. According to the existential unforgeability of the underlying signature scheme we know this
is not possible with more than a negligible probability of success. Proving false statements regarding = € R
requires a cheating secondary to do one of three things. If z is placed in the stash then it has to prove z ¢ S,
which is a false statement on the set S violating the soundness property of the fixed set non-membership
proofs for S. If x is placed in table T; of the cuckoo hash, then the secondary can try to forge a signature
for a different commitment, to replace the commitment to x in position F;(x) of table T;, but due to the
existential unforgeability of the signature scheme this is infeasible for the secondary. The secondary can also
try to prove that the commitment C; r,(,) is not a commitment to z, which is false and thus cannot be done
with more than a negligible probability of success, unless one knows z’, 7’ for which Commit(z',r") = C; g, (),
according to the soundness property of the commitment scheme. But according to the binding property of
the commitment scheme, it is infeasible to find such (z’,r’) thus making it infeasible to prove such a false
statement. Either way we see that a secondary doesn’t have more than a negligible probability to cheat a
resolver, thus making the system sound.
f-ZK. In order to show that this PSR is indeed zero knowledge we need to show a suitable simulator
STM which can fool any adversary into believing it is a real PSR system. ST M generates the keys for the
signature scheme (PKSZ-Q7 SKig) and also generates public parameters for a commitment scheme PK o, .
SIM gets f(R) = |R| and the universe U, so it knows the size needed for the tables in the cuckoo hash
(each table of size ¢) with a stash (of size log| g |U|) and thus knows from which distribution it has to draw
the functions (Fi, Fy). Then it continues to generate fake keys for the fixed set non-membership proofs,

24

by committing to S, a set of dummies, i.e. it chooses the elements uniformly at random from the universe
U and obtains (PKg,SKg). It then fills the tables of the cuckoo hash with random commitments, using
PKcom to generate commitments to random elements x; ; with secrets r; ;: C; ; = Commit(x; ;,7; ;) for
i =1,2and j = 1...4 It checks before committing to each element that F;(x; ;) # j so we could prove
inequality for all elements which map to this commitment. It signs each commitment just as the primary does:
si; = (Sign(C; 5,14, 7), (Cij,1,7)). It sets the fake public key to be PK* = (Fi, Fy, PKs;g, PKg, PK o) and
the fake secret key to be SKgry = ({Si’j}ﬁzl,ie{m}’ SKgig, {Cimxi,j’Ti,j}ﬁ:l,ie{m}’ SKg).

When queried on an element = the simulator asks its oracle on x. If x € R and its value is v it generates
sy = (Sign(z,v), (z,v)) using the secret signature key SKy;,. When z ¢ R the simulator uses PK o, to
prove inequality for the commitments positioned at T3 (Fi(z)) and To(Fz(x)), after sending the relevant
signatures (s1,p, (), 52,F5(2)), like a secondary does. The committed values in both positions cannot be x
because before committing to each random element z; ; we checked that T;(Fj(x;;)) # j. The simulator
then proves that the element x is not in S, assuming it didn’t choose = as one of the dummy elements in the
set. If the simulator had committed to x, it stops as it failed to produce an indistinguishable view. Note that
as we chose the dummies for the set S uniformly at random from U and S is of size log g |U|, the probability

q(k)-log| g U]
|U|—logg| U]’

of queries an adversary can issue, and this probability is negligible (as |U| is exponential in k, while |R| is
at most polynomial).

We now claim that the two views generated by the simulator and a real system are indistinguishable. The
public key PK™ is generated by the same algorithms the real system uses, but for dummy elements instead
of the real set R, but due to the indistinguishability property of both schemes (commitments and the fixed
set), a distinguisher can’t tell the difference. The dummy commitments we generate are indistinguishable
from real commitments to the elements of R due to the hiding property of the commitment scheme. Proofs
regarding x; € R are signatures coupled with their values (Sign(x;, v;), (x;,v;)), generated the same way the
original proofs are computed in the system, the only difference is that they are generated online instead of
before hand during the setup phase, but this yields the same distribution, since the signature scheme we use
produces the same signatures on the same messages.

of querying such an element is bounded by where ¢(k) is the polynomial bound on the amount

Proofs for x ¢ R are comprised of the inequality proofs for the commitments and the non-membership
proofs for the stash. As we required indistinguishability form both proof systems, we know that even
when we committed to dummies, a distinguisher that knows the set R could not distinguish between the
two inequality /non-membership proofs for the set of dummies and the real set R. For the fixed set non-
membership proofs, we have a probability of failure, but as we mentioned it is negligible. As we mentioned
before, the fact that we use a stash of size logp |U| means that only for a negligible fraction the functions
(F1, F3) the set R will not fit in the cuckoo hash with a stash. Thus the choice of “bad” functions can
fail us in generating an indistinguishable view from a real system with at most negligible probability. Note
that this makes our ZK property at most statistical, even if both the commitment scheme and the fixed
set non-membership proofs have perfect indistinguishability, as a distinguisher who knows R can always
check if the functions Fi, F5 fit the set R. Thus a distinguisher cannot distinguish the simulation from a real
execution. g

6.3 Implementations for Commitments and Fixed Set Non-Membership

We suggest Pedersen commitments [65] as the commitment scheme for the PSR and a scheme that uses a
generalization of the Feige-Fiat-Shamir identification protocol [31] as the fixed set non-membership proofs
for a predetermined set. We require the same properties from both schemes, so it is not unreasonable to
expect a scheme to implement both primitives, but due to the fact that we need to commit to only one set,
as opposed to many commitments to elements, we use different implementations. The fact that we reduced
the problem of set non-membership from the set R to the much smaller stash S, for which we commit only
once, gives the primary the ability to use a shared random string (which will be proportionate in size to S),
or instead incorporate it in the public key. Doing the same for the set R would have been inefficient.

25

Pedersen Commitments

We describe Pedersen’s commitments [65] with ZK proofs of inequality briefly and specify their properties.
Setup. Generates large primes p, g such that ¢ divides p — 1. Set g to be a generator for G, a subgroup of
order g of Zy. Choose a random integer a € Z, and set h = g°. p,q, g, h are public while a is secret to all
parties (i.e. even the prover can’t know a).

Commit. In order to commit to a value x € Z,, one simply draws uniformly at random r € Z, and computes
C, =g"h".

Interactive ZK proof of equality. We use the ZK proof of knowledge for Pedersen commitments based
on the adaptation of Schnorr’s identification protocol [72], which is proven to be complete, sound and ZK.
At every step of the interactive proof we specify in parenthesis the added actions we need to take in order
to prove simultaneously that C, = ¢*h" and B, = k*¢" in ZK, which we will use for the inequality proofs.

1. The prover which knows C, = g”h" chooses uniformly at random y, s € Z; and computes D = g¥h® and
sends D to the verifier. (Compute E = k¥¢° and send it to the verifier as well).

2. The verifier chooses uniformly at random e € Z, and sends it as a challenge to the prover.

3. The prover computes u =y + ex and v = s + er and sends them back to the verifier.

4. The verifier accepts the proof if and only if g*h* = DCE. (The verifier also checks that k“¢¥ = EB¢).

Interactive ZK proof of inequality. For a given commitment C, = ¢g*h" (where z,r are known to the
prover) and a given y, we can use the ZK proof of inequality for discrete logarithms suggested by Camenisch
and Shoup [21] to prove that x # y.

1. The prover chooses uniformly at random s,t € Z,; and computes C = (%)St It then computes A = A"
and B = ¢ and sends (A C,t) to the veriﬁer.

. The verifier computes CA* = (q;hr) =g¢® = B.

3. The prover proves that it knows integers (a,b) such that: C = h*(;4)" and 1 = ¢g%(%)? (a = xst and
b = s), using the simultaneous proof of equality described above.

4. The verifier accepts the proof if and only if it accepted the interactive simultaneous proof of equality

and C' # 1.

[\

Correctness follows as from 1 = g%(%)” we can conclude that a = blog, B. By substituting a in the

second equation we get: C' = h(337)" = (hl;ﬁiB)? and as we checked that C' # 1 it means that log, B # ty.
But log, B = tz which proves x # y. This protocol requires a total of 9 modular exponentiations and 3
modular multiplications from the prover and 8 modular exponentiations and 5 modular multiplications from
the verifier.

Pedersen’s commitments are proven to be perfectly hiding, meaning that for a given commitment c,
every value x is equally likely to be the value committed in ¢. They are computationally binding under the
discrete logarithm assumption (see Section 11.4), meaning that a prover that can find (z, ', r,r’) such that
Commit(x,r) = Commit(z’,r"), can compute the discrete logarithm of h: a = log, h, which is a secret.
The proof of inequality is both complete, sound and ZK (which implies indistinguishability) as shown by
Camenisch and Shoup [21].

Fixed Set Non-membership using the Feige-Fiat-Shamir Protocol

The idea for proving non-membership with a fixed set is to have a set of secrets corresponding to some public
and fixed random collection. Each element in the universe is assigned a certain subset of the secrets and the
rule is that if x € S then the secondary knows none of the corresponding secrets. L.e. the secondary gets all
the secrets that do not belong to any subset of elements in S. A good assignment of subsets to elements is
such that for z ¢ S there is a least one secret not covered by elements of S. Thus to show that x ¢ S it is
enough if the secondary shows that it knows at least one of the corresponding secrets.

In order to construct a protocol for a fixed set non-membership proof system we will use the set lower
bound technique of Goldwasser and Sipser [40], to allow the prover to show that it knows a large fraction

26

of the secrets as opposed to knowing none of them. The basic technique is to map the universe of secrets
to a much smaller domain, and with knowledge of a large enough fraction of the secrets, a prover will still
be able to prove it knows a secret to at least one preimage of every element in the function’s range with
overwhelming probability. Specifically a resolver will be asking to get a proof corresponding to some vector
v, where it gets to pick the constraints on the vector (for a fixed matrix C it will be a vector ¢ such that
Cv =t). A secondary will succeed in its proof if it can find a vector it knows the proof for which stratifies
the resolver’s constraints. A cheating secondary will know the proof for only one vector (which will satisfy
the constraints with negligible probability) whereas a good secondary will know proofs to many vectors.

The subset assignment: We will generate n = log|U| universal pairwise independent hash functions
({hi}71), which map the universe of elements to 2s distinct values (where s is the maximal size we allow
the fixed set, s = log, |U|). The i" hash function will map the elements in the universe to the integers:
{2s-4,...,25-(i+ 1) — 1}. Every integer k = 2s-i+ j (where i € [n] and j € [2s]) will be mapped by M to
some hard to compute unique challenge M (k) = ¢; j, where for each such challenge there is a corresponding
answer or secret, that the generator of the scheme can compute, denoted as x; ;. The primary which generates
all those challenges and can also produce their corresponding secrets will give secondaries the secrets x; ;
corresponding to the challenges ¢; ; iff M (h;(S)) # 2s - i + j, meaning no element = € S is mapped by the
it" mapping to the j** challenge, i.e. we give the secrets to every challenge that doesn’t correspond to an
element of S.

For every x ¢ S we get that the probability that such a mapping maps x and some element y € S to the
same challenge is at most %, due to the pairwise independence of the hash functions and the uniqueness of
the mapping M. Thus in expectation for a specific z ¢ S a secondary will know the secrets to about % of the
n challenges which correspond to z (as it only knows secrets to challenges not in S). Using the Hoeffding
inequality [42] (see Appendix 11.5) we reach the conclusion that with overwhelming probability (in n), for
every v ¢ S the secondaries will know at least % secrets for x out of n challenges. On the other hand for
every element x € S the secondaries will not know even one secret out of the n challenges. Thus we would
like to devise a system where knowing at least % of the secrets will give secondaries the power to convince
resolvers that the element in question is not in S while if they know none of the secrets, it is infeasible for
them to convince a resolver that the element is not in S.

Our starting point is the Feige-Fiat-Shamir [31] identification protocol as the protocol for proving knowl-
edge of a secret corresponding to some specific challenge, which is proven to be ZK. We present the original
Feige-Fiat-Shamir identification protocol first, before extending it for our needs:

A trusted authority generates n secrets by assigning quadratic residues modulus an RSA-like modulus
N = PQ as public keys: y1, ..., yn. The corresponding secret keys are z1, ..., z, where y; = 22 mod N. The
prover then wants to prove to the challenger that it knows all the secret keys:

. The prover draws uniformly at random 1 < a < N — 1 and sends b = a® mod N to the challenger.
. The challenger sends in response a challenge vector v € {0,1}".

. The prover computes b, = a - Hv,:l x; mod N and sends it back to the challenger.

. The challenger accepts the response as valid iff b2 = b - Hui:1 y; mod N.

= W N~

We cannot use this protocol as is, because as we mentioned before, our secondaries will not know all n
secrets for the elements outside of .S, but will know at least % of them with overwhelming probability. Notice

that if the secondary, which picks a at step 1, can predict the vector v, then it can choose b = T a? and

v;=1 Yi)
send at step 3 as a response b, = a, which in turn will be verified successfully. L
Thus we will generalize this protocol by having a set of global linear constraints on vectors v € {0,1}"
and having the resolvers choose the constraints on the vector. The secondary will in turn have to find a
vector v which satisfies all the constraints and compute b, such that 2 = b - [I,,—1 ¥i- The probability of
satisfying k constraints without knowing any of the secrets is 27% by trying to guess a vector to satisfy the
constraints, thus we will use constraints in order for secondaries to be able to cheat with only a negligible
probability.

27

The Mapping. If we want to use the Feige-Fiat-Shamir protocol as our underlying scheme, we will need a
mapping M from the integers [2sn] to quadratic residues modulus N. We are willing to use a fixed mapping,
based on a shared random string, in order to reduce communication complexity. We interpret the shared
string as a sequence of integers of length roughly log V. But this may not be a straightforward mapping
to integers modulus NV, since not every integer modulus N has a square root. Denote by QRy the set of
quadratic residues modulo N.

Consider a large publicly known random string that defines a large table of random integers, which every
party of the protocol knows. We use this table to map every k € [2sn] to two integers from the table denoted
(2%, 25). We will generate our challenge for k from (2%, 2&). We choose our modulus N = PQ in the scheme to
be a Blum integer, which means that we pick P = () = 3 mod 4. For a prime P = 3 mod 4 and every integer
z it holds that either z € QRp or —z € QRp. We have z € QRy (where N is a Blum integer) iff z € QRp
and z € QRg. It also holds for Blum integers that if 21,20 € QRp but 21,22 ¢ QRg then 21 - 22 € QRN.
Thus if the challenge k € [2sn] is mapped to the integers z1, zo we know that at least one of the following is
a quadratic residue modulo N: (21, 29, —21, —22, 21 - 22, —21 - 22), because if 21, 29, —21, —22 ¢ QRy, then at
least two of them are in QRp and not in Q Rg, which means their product is in QRy. As the primary knows
the factorization of N it will add 3 bits for every challenge k € [2sn] to the public key, specifying which of
the six possible integers is a quadratic residue modulo N and will serve as the challenge.

Note that as all the integers in the table are random, the fact that an adversary gets to learn, say, that
a challenge ¢; ; = 21 - 2o mod N cannot help him, as if he draws a random integer z; € [N] and computes
Zo = Cz—lf mod N he can get the same outcome by himself. I.e. the distribution would be identical in this
case.

The constraints and the generalization of the Feige-Fiat-Shamir protocol. Consider a constraints
matrix C' = {¢; j} with % rows and n columns. Since we showed that the secondary knows at least % secrets
with overwhelming probabil