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1 A brief history of linear PDE

I am most pleased and honored to start off this conference celebrating my
friend and co-worker Yakar Kannai.

It is a prerogative of age to look back and see how we got to where we
are now. When Yakar and I were students, one of the fashions in linear PDE
was operators of arbitrary order – for example: operators of any type having
constant coefficients, and elliptic operators of any even order with variable
coefficients:

A =
∑

|α|≤2m

aα(x)Dα.

This turns out to have been something of a detour in the subject generally,
and for us personally. Having started out separately on that detour, we
eventually came together on another, much more classical, path. I would like
to start with a very brief history of that path.

The history begins in the middle of 18th century, with the (linearized)
equation of a vibrating string:

utt(x, t) = uxx(x, t).

This was the subject of study and debate by D’Alembert, Euler, Daniel
Bernoulli, and Lagrange. The debate was largely settled in the early 19th
century after Fourier’s work on the heat equation in one variable:

ut = uxx(x, t).
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See [4] for an extended discussion of the history, the controversy, and the role
it played in the development of mathematical analysis.

In the 19th century there was much study of the Laplace and Poisson
equations, especially in three space variables:

∆u(x) = 0;

∆u(x) + u(x) = f(x),

the multidimensional versions of the wave and heat equations:

utt(x, t) = ∆u(x, t);

ut(x, t) = ∆u(x, t),

and the Helmholtz equation

∆u(x) + k2u(x) = f(x).

A general procedure was adopted in studying these equations (especially
their homogeneous forms) in various geometries: separate variables and re-
duce to the study of second order ODEs. This resulted in a zoo of special
functions: the Euler–Gauss hypergeometric functions as well as functions
associated with the names of Airy, Bessel, Chebyshev, Fresnel, Gegenbauer,
Hankel, Jacobi, Kelvin, Kummer, Laguerre, Legendre, Macdonald, Weber,
and Whittaker.

You will note that every equation mentioned so far is of second order and
has constant coefficients. In the 20th century much effort was devoted to
developing the tools – functional analysis, generalized functions and distri-
bution theory, pseudodifferential operators, Fourier integral operators – for
dealing with certain kinds of generalization to variable coefficients and to
equations of higher order. In particular we have considerably generalized the
classical notions of elliptic, parabolic, and hyperbolic equations. Meanwhile,
special functions and the quest for explicit solutions nearly dropped from
sight.

This brief sketch has brought us to the early 1970s, and has concentrated
entirely on the classical elliptic, hyperbolic, and parabolic equations. Nev-
ertheless there were other things going on in PDE – also connected, as we
shall see, with some mathematicians of note. An example from the 18th and
19th centuries is:

(x + y)uxy(x, y) + ux(x, y) + uy(x, y) = 0,
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the Euler–Poisson–Darboux equation [5]. Two examples from the middle
third of the 20th century are the kinetic equation

xuy(x, y) = uxx(x, y) + f(x, y)

considered by Kolmogorov in 1934 [7], and the Tricomi–Clairaut equation

xuxx(x, y) = uyy(x, y)

studied by Delache and Leray in 1971 [6]. Both the Euler–Poisson–Darboux
equation and the Tricomi–Clairaut equation have fundamental solutions that
involve hypergeometric functions.

While Yakar and I were in graduate school in the 1960s, attention in
linear PDE began to shift more generally toward other equations that did
not fit the classical mold: subelliptic, degenerate elliptic, singular hyperbolic,
degenerate hyperbolic, and so on. To some extent we retreated to techniques
of earlier eras: study very specific examples in detail in order to understand
the range of possibilities. One result was a new appreciation for the role of
lower order terms – and for the role of the classical special functions. Here
is an example from our joint work, the singular hyperbolic operator

x2
∂2

∂t2
+ λ

∂

∂t
−

∂2

∂x2
.

Treves [15] showed that there is uniqueness in the Cauchy problem for this
operator if and only if λ is not a negative odd integer. We examined in detail
the general form

x2k−2
∂2

∂t2
+ λ(k − 1)xk−2

∂

∂t
−

∂2

∂x2
, k = 2, 3, 4, . . . .

Consider the forward problem for this operator with data at x0 > 0. For
most values of λ the propagator (wave operator) is supported on the closure
of the union of the following two regions:

Ω1 : |xk − xk
0| < kt < |xk + xk

0|, x > 0;

Ω2 : max{|xk − xk
0|, |x

k + xk
0| < kt}.

One each region the propagator has an explicit representation

V (x, t; x0) = |z+|
−a|z−|

−bF (v),
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where

z± =
xk + xk

0 ± kt

2
, v =

(xx0)
k

z+z−
,

and F is a solution of the hypergeometric equation

v(1 − v)F ′′(v) + [c − (a + b + 1)v F ′(v) − ab F (v) = 0,

with

c = 1 −
1

k
, a =

(

1 + λ

2

)

c, b =

(

1 − λ

2

)

c.

For example, suppose k = 3, so that the operator is

Lλ = x4
∂

∂t
+ 2λx

∂

∂t
−

∂2

∂x2
.

Theorem. If 2λ/3 is not an odd integer, then Lλ has a global forward propa-

gator. The singular support of the forward propagator contains the boundary

of Ω1 ∪ Ω2. It contains the curve common to the boundaries of Ω1 and Ω2 if

and only if neither (2 − λ)/3 nor (1 − λ)/3 is a positive integer.

If 2λ/3 is an odd integer, there is non–uniqueness: Lλ has a solution with

support Ω1 ∪ Ω2.

Analogous results are true for the degenerate hyperbolic operator ob-
tained by interchanging the “space” and “time” variables here: [14],[2]. To
prove them we constructed wave operators with the help of results on Whit-
taker functions and hypergeometric functions.

2 Special functions

As I have tried to indicate, special functions play an important role in PDE.
As a student I absorbed functional analysis, a priori estimates and other
then–fashionable techniques for studying PDE. Somewhat later (after con-
siderable initial resistance) I learned about pseudodifferential and Fourier
integral operators. It was only after falling in with a new crowd – Peter
Greiner, Bernard Gaveau, Jacek Szmigielski, and Yakar – that I was dragged
into the 19th century and the world of special functions. This had an effect
that I would like to describe.
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Often, learning a subject as a student, one simply takes one’s teachers’
advice about what is important. When confronting a new subject later on,
one is likely to be harder to convince. And if the subject seems to come in bits
and pieces, one might be particularly concerned about getting an overview.

Getting an overview of special functions is particularly difficult. Most
textbooks and handbooks of special functions are written by people who
have come to know and love the functions as individuals, and do not feel it
necessary to provide a convincing, unifying perspective.

One thing that does tie together all the functions mentioned earlier has
already been mentioned. Each arises out of separating variables for the Lapla-
cian. To a physicist or applied mathematician, this is probably sufficient: the
Laplacian and the associated wave and heat operators are the canonical op-
erators of classical physics, and the coordinate systems in which variables
separate reflect natural symmetries. A pure mathematician might ask for a

more fundamental view. Here is a result I had to discover on my own, though
versions of it are well–known to the specialists.

Question: Given a Sturm–Liouville problem on an interval I ⊂ R, self-

adjoint with respect to w(x) dx, when are the eigenfunctions polynomials?

Answer: Up to normalizations there are three cases:

• I = (−1, 1), w(x) = (1−x)α(1+x)β, eigenfunctions are Jacobi polynomials.

• I = (0,∞), w(x) = xαe−x, eigenfunctions are Laguerre polynomials.

• I = (−∞,∞), w(x) = e−x2

, eigenfunctions are Hermite polynomials.

Thus this accounts for all the ”classical orthogonal polynomials,” and
nothing else. (Legende polynomials, Chebyshev polynomials, and so on are
special cases of Jacobi polynomials.)

The attempt to find unifying principles led to a set of notes. Under
prodding by Roderick Wong, the set of notes led to a joint book on the
subject. This allowed me to get the whole business out of my system once
and for all. Or so I thought.

A few weeks ago I had a visit from Szmigielski, one of the dubious char-
acters mentioned above. In some recent work of his, he had found himself
confronted with yet another class of special functions, the Meijer G–functions.
My book with Wong carries on a venerable tradition in books about special
functions: it contain no mention whatever of the G–functions. This is an
exact reflection of my state of knowledge as we began to think about them.
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As we thought about them, we became convinced that they deserve a
wider audience. The rest of this lecture is my attempt to convince you of
this. There are two basic reasons:

• The G–functions play a crucial role in a certain mathematical enterprise.

• When looked at conceptually, they are both natural and attractive.

We all know that there exist table of integrals. They have been around
for much longer than G–functions, which date to 1936. What I did not
know is that the most extensive such tables, in print [13] and online [17], are
constructed almost entirely on the basis of G–functions and their properties;
see [16]. I will say a little more about this later, but first I want to argue
that they are indeed natural and attractive.

The literature on the G–functions has the same general structure as most
writing on special functions by experts: a definition, a list of fairly elementary
identities, then a longer list of less elementary identities, with no motivation
and little explanation to interrupt the flow. As an afterthought it is men-
tioned that the function in question is the solution of some homogeneous
linear ODE.

As some of us could guess, the ODE is actually the key – both to why the
functions are of interest and how they are best understood. This is certainly
the case with the G–functions. So let me begin with the ODE, which in this
case is essentially the generalized hypergeometric equation.

3 What is special about the generalized hy-

pergeometric equation?

Consider the general linear homogeneous ODE with coefficients that are an-
alytic near x = 0. In principle we can construct a formal solution by the
power series method. If you try this with a simple example, say

u′′(x) − exu(x) = 0,

and ask for the coefficient of x10, or even x5, it is not a pleasant thing to do
by hand. In fact, about the only way such a procedure would be pleasant is
if it reduced to a simple two–term recursion for the coefficients.

Question: When does this happen? When does the power series expan-

sion reduce to a two-term recursion?
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With trivial exceptions, and up to a simple change of scale, the answer is:
precisely when the equation is a generalized hypergeometric equation. Such
an equation is most conveniently written using the Euler derivative

D = x
d

dx
.

Then the equation has the form
[

D

q−1
∏

j=1

(D + bj − 1) − x

q
∏

j=1

(D + aj)

]

u(x) = 0.

Since D[xn] = nxn, the associated recursion is

n

q−1
∏

j=1

(n + bj − 1) · un =

q
∏

j=1

(n + aj) · un−1

and the formal power series solution with constant term 1 is

u(x) =
∞

∑

n=0

∏p

j=1
(aj)n

∏q−1

j=1
(bj)n n !

xn,

where

(a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1) =
Γ(a + n)

Γ(a)
, n > 0.

(Here and below we make assumptions like: neither a − 1 nor b − 1 is a
negative integer, and no two indices differ by an integer.) The series has
radius of convergence 0 if p > q, 1 if p = q, +∞ if p < q. If p ≤ q the
function so defined is the generalized hypergeometric function

pFq−1

(

a1, . . . , ap

b1, . . . , bq−1

∣

∣

∣

∣

x

)

.

4 The Meijer G–functions

Let us start with a more symmetric version of the generalized hypergeometric
equation, obtained by replacing the lone factor D by D + bq − 1:

[

q
∏

j=1

(D + bj − 1) − x

q
∏

j=1

(D + aj)

]

u(x) = 0, p ≤ q. (1)
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Writing u(x) = x1−bkvk(x) leads to a generalized hypergeometric equation
for vk (with indices {bj +1−bk}, {aj +1−bk}), so there is a basis of solutions
of the form

x1−bkFk(x), Fk(x) = pFq−1(. . . |x).

We look for a more symmetric and conceptual approach. Most of the issues
that arise can be seen already in the case p = q = 1:

(D + b − 1)u(x) − x(D + a)u(x) = 0. (2)

Since D[xn] = nxn and x·xn = xn+1, it is reasonable to try to write a solution
as a (continuous) sum of powers of x, say

u(x) =
1

2πi

∫

L

Φ(s) xs ds,

where L is some complex contour. The equation leads us to

0 =
1

2πi

∫

L

[

(s + b − 1)Φ(s) xs −
1

2πi

∫

L

(s + a)Φ(s) xs+1

]

ds

=
1

2πi

∫

L

(s + b − 1)Φ(s) xs ds −
1

2πi

∫

L−1

(s + a − 1)Φ(s − 1) xs ds.

Assuming that the translated contour L − 1 can be deformed to L without
crossing any singularities, we obtain the continuous recursion

Φ(s)

Φ(s − 1)
=

a + s − 1

b + s − 1
=

Γ(a + s)

Γ(a + s − 1)
·
Γ(b + s − 1)

Γ(b + s)
, (3)

so one solution is Φ(s) = Γ(a + s)/Γ(b + s). We have been led to

u(x) =
1

2πi

∫

L

Γ(a + s)

Γ(b + s)
xs ds.

With appropriate choices of L, two residue calculations show that u(x) van-
ishes for |x| < 1 and is a non–trivial solution of (2) for |x| > 1.

One question we need to address is that of uniqueness . It is easy to see
that ϕ(s)Φ(s) is a second solution of the recurrence relation (3) if and only if
ϕ(s−1) = ϕ(s). We can change the kernel Φ while staying within the context

of gamma functions by using Euler’s reflection identity

Γ(s) Γ(1 − s) =
π

sin πs
. (4)
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Taking

ϕ(s) =
π

sin π(b + s)
= Γ(b + s) Γ(1 − b − s),

we can convert to

Φ(s) ϕ(s) = Γ(a + s) Γ(1 − b − s),

and consider

v(x) =
1

2πi

∫

L

Γ(a + s) Γ(1 − b − s) xs ds

Now you would be correct to object that this ϕ is not periodic with period
1, it is antiperiodic: ϕ(s− 1) = −ϕ(s). Tracing the argument backward, one
can see that this fits with changing the sign of x in (2). Two different residue
calculations produce solutions of the version with change of sign

(D + b − 1)v(x) + x(D + a)v(x) = 0,

for |x| < 1 and |x| > 1 respectively.

In the general case (1), our starting kernel Φ is

Φ(s) =

∏p

j=1
Γ(aj + s)

∏q

j=1
Γ(bj + s)

. (5)

The corresponding integral

G(x) =
1

2πi

∫

L

∏p

j=1
Γ(aj + s)

∏q

j=1
Γ(bj + s)

xs ds

is Meier’s G–function G0,p
p,q. The general version

Gm,n
p,q , 0 ≤ m ≤ q, 0 ≤ n ≤ p,

is obtained by replacing the first m factors Γ(bj + s) in the denominator of
the quotient (5) by factors Γ(1− bj + s) in the numerator and the last p− n
factors Γ(aj +s) in the numerator by factors Γ(1−aj−s) in the denominator.

(We need to note a nasty fact about notation. For historical reasons one
should replace bj and aj by 1 − bj and 1 − aj throughout this discussion.
Thus the Meijer G–function

G0,p
p,q

(

a1, . . . , ap

b1, . . . , bq

∣

∣

∣

∣

x

)

=
1

2πi

∫

L

∏p

j=1
Γ(1 − aj + s)

∏q

j=1
Γ(1 − bj + s)

xs ds
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is a solution of the equation

[

q
∏

j=1

(D − bj) − x

q
∏

j=1

(D + 1 − aj)

]

u(x) = 0.)

5 The convolution theorem

Almost every standard special function, or elementary function, can be writ-
ten neatly in terms of the Meijer G–functions. This is one of the principal
ingredients in current recipes for constructing tables of integrals. Another
principal ingredient is the the convolution theorem: the multiplicative con-
volution

G(x) =

∫ ∞

0

G1(y) G2

(

x

y

)

dy

y
(6)

of G–functions G1 and G2 is itself a G–function.

In different terminology, this is a standard result. Consider the Mellin
transform normalized as

Mf(s) =

∫ ∞

0

f(x) x−s dx

x
.

It is easy to verify that the Mellin transform of a multiplicative convolution
is the product of the Mellin transforms, so for (6) we have

MG(s) = MG1(s)MG2(s).

But, as you may have guessed from the formulas for G–functions, the G–
function itself is (in many cases) the inverse Mellin transform of the function
we have been denoting Φ or one of its variants. Thus for the function G
in (6), the Mellin transform Φ1Φ2 is again a quotient of products of gamma
functions, and G is a G–function. In fact if Gj is of type

Gj = Gmj ,nj
pj ,qj

, j = 1, 2,

then G is of type
G = Gm1+m2,n1+n2

p1+p2,q1+q2
,

and some bookkeeping will identify the indices {aj}, {bj} of G in terms of
the corresponding indices of G1 and G2.
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Remarks. Although the specific source for the Meijer G–functions is [8],
integral representations of this kind go back to Barnes [1] for the classical
hypergeometric functions, and to Mellin [9] for the generalized hypergeomet-
ric functions. For more information, references, and applications in statistics
and science, see [8], [9], [10].
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