◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Representations of constitutions under incomplete information

Bezalel Peleg Shmuel Zamir

Center for the Study of Rationality The Hebrew University, Jerusalem, Israel.

Center for the Study of Rationality The Hebrew University, December 23, 2012

The framework

- A set of players (*Society*), each of which has to choose a strategy that best serves his goal.
- The strategies chosen by all players determine the resulting *social state*.
- There is incomplete information among the players regarding the preference relations of each player on the set of possible social states.
- The constitution and the power structure are given by an *effectivity function*.
- A *decision scheme* assigns to any profile of declared preference relations, a probability distribution on the set of social states.

The framework

- A set of players (*Society*), each of which has to choose a strategy that best serves his goal.
- The strategies chosen by all players determine the resulting *social state*.
- There is incomplete information among the players regarding the preference relations of each player on the set of possible social states.
- The constitution and the power structure are given by an *effectivity function*.
- A *decision scheme* assigns to any profile of declared preference relations, a probability distribution on the set of social states.

- A set of players (*Society*), each of which has to choose a strategy that best serves his goal.
- The strategies chosen by all players determine the resulting *social state*.
- There is incomplete information among the players regarding the preference relations of each player on the set of possible social states.
- The constitution and the power structure are given by an *effectivity function*.
- A *decision scheme* assigns to any profile of declared preference relations, a probability distribution on the set of social states.

- A set of players (*Society*), each of which has to choose a strategy that best serves his goal.
- The strategies chosen by all players determine the resulting *social state*.
- There is incomplete information among the players regarding the preference relations of each player on the set of possible social states.
- The constitution and the power structure are given by an *effectivity function*.
- A *decision scheme* assigns to any profile of declared preference relations, a probability distribution on the set of social states.

- A set of players (*Society*), each of which has to choose a strategy that best serves his goal.
- The strategies chosen by all players determine the resulting *social state*.
- There is incomplete information among the players regarding the preference relations of each player on the set of possible social states.
- The constitution and the power structure are given by an *effectivity function*.
- A *decision scheme* assigns to any profile of declared preference relations, a probability distribution on the set of social states.

- A set of players (*Society*), each of which has to choose a strategy that best serves his goal.
- The strategies chosen by all players determine the resulting *social state*.
- There is incomplete information among the players regarding the preference relations of each player on the set of possible social states.
- The constitution and the power structure are given by an *effectivity function*.
- A *decision scheme* assigns to any profile of declared preference relations, a probability distribution on the set of social states.

・ロト ・聞ト ・ヨト ・ヨト 三日

The representation problem

Given a constitution (effectivity function), is there a decision scheme representing the constitution such that the induced incomplete information game has a *Bayesian-Nash-Equilibrium* (BNE) in pure strategies ?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The representation problem

Given a constitution (effectivity function), is there a decision scheme representing the constitution such that the induced incomplete information game has a *Bayesian-Nash-Equilibrium* (BNE) in pure strategies ?

- The society : $N = \{1, 2\}$.
- Each individual has two shirts, *white* (*w*) and *blue* (*b*), and has to wear exactly one of them.
- The set of *social states* is $A = \{ww, wb, bw, bb\}$.
- Each individual is free to choose the color of his/her shirt, then the *effectivity function*, *E*, is:

 $E(\{1\}) = \{\{ww, wb\}^+, \{bw, bb\}^+\}$

 $E(\{2\}) = \{\{ww, bw\}^+, \{wb, bb\}^+\},\$

- Player 1 has two types: $T^1 = \{1_c, 1_n\}$ and player 2 has one type: $T^2 = \{2\}$.
- Player 2 assigns equal probabilities to the two types of player 1.

- The society : $N = \{1, 2\}$.
- Each individual has two shirts, *white* (*w*) and *blue* (*b*), and has to wear exactly one of them.
- The set of *social states* is $A = \{ww, wb, bw, bb\}$.
- Each individual is free to choose the color of his/her shirt, then the *effectivity function*, *E*, is:

 $E(\{1\}) = \{\{ww, wb\}^+, \{bw, bb\}^+\}$

 $\mathsf{E}(\{2\}) = \{\{ww, bw\}^+, \{wb, bb\}^+\},\$

- Player 1 has two types: $T^1 = \{1_c, 1_n\}$ and player 2 has one type: $T^2 = \{2\}$.
- Player 2 assigns equal probabilities to the two types of player 1.

- The society : *N* = {1,2}.
- Each individual has two shirts, *white* (*w*) and *blue* (*b*), and has to wear exactly one of them.
- The set of *social states* is $A = \{ww, wb, bw, bb\}$.
- Each individual is free to choose the color of his/her shirt, then the *effectivity function*, *E*, is:

 $E(\{1\}) = \{\{ww, wb\}^+, \{bw, bb\}^+\}$

 $E(\{2\}) = \{\{ww, bw\}^+, \{wb, bb\}^+\},\$

- Player 1 has two types: $T^1 = \{1_c, 1_n\}$ and player 2 has one type: $T^2 = \{2\}$.
- Player 2 assigns equal probabilities to the two types of player 1.

- The society : *N* = {1,2}.
- Each individual has two shirts, *white* (*w*) and *blue* (*b*), and has to wear exactly one of them.
- The set of *social states* is $A = \{ww, wb, bw, bb\}$.
- Each individual is free to choose the color of his/her shirt, then the *effectivity function*, *E*, is:

 $E(\{1\}) = \{\{ww, wb\}^+, \{bw, bb\}^+\}$

 $\mathsf{E}(\{2\}) = \{\{ww, bw\}^+, \{wb, bb\}^+\},\$

- Player 1 has two types: $T^1 = \{1_c, 1_n\}$ and player 2 has one type: $T^2 = \{2\}$.
- Player 2 assigns equal probabilities to the two types of player 1.

- The society : *N* = {1,2}.
- Each individual has two shirts, *white* (*w*) and *blue* (*b*), and has to wear exactly one of them.
- The set of *social states* is $A = \{ww, wb, bw, bb\}$.
- Each individual is free to choose the color of his/her shirt, then the *effectivity function*, *E*, is:

 $E(\{1\}) = \{\{ww, wb\}^+, \{bw, bb\}^+\}$

 $E(\{2\}) = \{\{ww, bw\}^+, \{wb, bb\}^+\},\$

- Player 1 has two types: $T^1 = \{1_c, 1_n\}$ and player 2 has one type: $T^2 = \{2\}$.
- Player 2 assigns equal probabilities to the two types of player 1.

- The society : *N* = {1,2}.
- Each individual has two shirts, *white* (*w*) and *blue* (*b*), and has to wear exactly one of them.
- The set of *social states* is $A = \{ww, wb, bw, bb\}$.
- Each individual is free to choose the color of his/her shirt, then the *effectivity function*, *E*, is:

 $E(\{1\}) = \{\{ww, wb\}^+, \{bw, bb\}^+\},\$

 $E(\{2\}) = \{\{ww, bw\}^+, \{wb, bb\}^+\},\$

- Player 1 has two types: $T^1 = \{1_c, 1_n\}$ and player 2 has one type: $T^2 = \{2\}$.
- Player 2 assigns equal probabilities to the two types of player 1.

- The society : *N* = {1,2}.
- Each individual has two shirts, *white* (*w*) and *blue* (*b*), and has to wear exactly one of them.
- The set of *social states* is $A = \{ww, wb, bw, bb\}$.
- Each individual is free to choose the color of his/her shirt, then the *effectivity function*, *E*, is:

$$E(\{1\}) = \{\{ww, wb\}^+, \{bw, bb\}^+\},\$$

$$E(\{2\}) = \{\{ww, bw\}^+, \{wb, bb\}^+\},\$$

- Player 1 has two types: $T^1 = \{1_c, 1_n\}$ and player 2 has one type: $T^2 = \{2\}$.
- Player 2 assigns equal probabilities to the two types of player 1.

- The society : *N* = {1,2}.
- Each individual has two shirts, *white* (*w*) and *blue* (*b*), and has to wear exactly one of them.
- The set of *social states* is $A = \{ww, wb, bw, bb\}$.
- Each individual is free to choose the color of his/her shirt, then the *effectivity function*, *E*, is:

$$E(\{1\}) = \{\{ww, wb\}^+, \{bw, bb\}^+\},\$$

$$E(\{2\}) = \{\{ww, bw\}^+, \{wb, bb\}^+\},\$$

- Player 1 has two types: $T^1 = \{1_c, 1_n\}$ and player 2 has one type: $T^2 = \{2\}$.
- Player 2 assigns equal probabilities to the two types of player 1.

- Each type of a player has a *von-Neumann Morgenstern* utility function.
- Each player declares a *preference ordering* on the social states.
- Given the profile of declared preferences, a *decision scheme* chooses the social state (randomly).

Question:

Is there a pure strategy Bayes-Nash equilibrium of this game ?

Answer:

- Each type of a player has a *von-Neumann Morgenstern* utility function.
- Each player declares a *preference ordering* on the social states.
- Given the profile of declared preferences, a *decision scheme* chooses the social state (randomly).

Question:

Is there a pure strategy Bayes-Nash equilibrium of this game ?

Answer:

- Each type of a player has a *von-Neumann Morgenstern* utility function.
- Each player declares a *preference ordering* on the social states.
- Given the profile of declared preferences, a *decision scheme* chooses the social state (randomly).

Question:

Is there a pure strategy Bayes-Nash equilibrium of this game ?

Answer:

- Each type of a player has a *von-Neumann Morgenstern* utility function.
- Each player declares a *preference ordering* on the social states.
- Given the profile of declared preferences, a *decision scheme* chooses the social state (randomly).

Question:

Is there a pure strategy Bayes-Nash equilibrium of this game ?

Answer:

- Each type of a player has a *von-Neumann Morgenstern* utility function.
- Each player declares a *preference ordering* on the social states.
- Given the profile of declared preferences, a *decision scheme* chooses the social state (randomly).

Question:

Is there a pure strategy Bayes-Nash equilibrium of this game?

Answer:

- Each type of a player has a *von-Neumann Morgenstern* utility function.
- Each player declares a *preference ordering* on the social states.
- Given the profile of declared preferences, a *decision scheme* chooses the social state (randomly).

Question:

Is there a pure strategy Bayes-Nash equilibrium of this game ?

Answer:

- Each type of a player has a *von-Neumann Morgenstern* utility function.
- Each player declares a *preference ordering* on the social states.
- Given the profile of declared preferences, a *decision scheme* chooses the social state (randomly).

Question:

Is there a pure strategy Bayes-Nash equilibrium of this game ?

Answer:

- Each type of a player has a *von-Neumann Morgenstern* utility function.
- Each player declares a *preference ordering* on the social states.
- Given the profile of declared preferences, a *decision scheme* chooses the social state (randomly).

Question:

Is there a pure strategy Bayes-Nash equilibrium of this game ?

Answer:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The model

- Let $N = \{1, 2, ..., n\}$ be the set of *players* (voters).
- Let A = {a₁, a₂,..., a_m} be the set of alternatives (social states), m ≥ 2.
- For a finite set D let $P(D) = \{D' | D' \subseteq D\}$ and $P_0(D) = P(D) \setminus \{\emptyset\}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The model

• Let *N* = {1,2,...,*n*} be the set of *players* (voters).

Let A = {a₁, a₂,..., a_m} be the set of alternatives (social states), m ≥ 2.

• For a finite set D let $P(D) = \{D' | D' \subseteq D\}$ and $P_0(D) = P(D) \setminus \{\emptyset\}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The model

- Let *N* = {1,2,...,*n*} be the set of *players* (voters).
- Let A = {a₁, a₂,..., a_m} be the set of alternatives (social states), m ≥ 2.
- For a finite set D let $P(D) = \{D' | D' \subseteq D\}$ and $P_0(D) = P(D) \setminus \{\emptyset\}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The model

- Let *N* = {1,2,...,*n*} be the set of *players* (voters).
- Let A = {a₁, a₂,..., a_m} be the set of *alternatives* (social states), m ≥ 2.
- For a finite set D let $P(D) = \{D' | D' \subseteq D\}$ and $P_0(D) = P(D) \setminus \{\emptyset\}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Effectivity function

Effectivity function

An *effectivity function* (EF) is a function $E : P(N) \rightarrow P(P_0(A))$ satisfying:

- (i) $A \in E(S)$ for all $S \in P_0(N)$.
- (ii) $E(\emptyset) = \emptyset$.
- (iii) $E(N) = P_0(A)$.

Interpretation:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Effectivity function

Effectivity function

An *effectivity function* (EF) is a function $E : P(N) \rightarrow P(P_0(A))$ satisfying:

(i) $A \in E(S)$ for all $S \in P_0(N)$. (ii) $E(\emptyset) = \emptyset$. (iii) $E(N) = P_0(A)$.

Interpretation:

Effectivity function

Effectivity function

An *effectivity function* (EF) is a function $E : P(N) \rightarrow P(P_0(A))$ satisfying:

```
(i) A \in E(S) for all S \in P_0(N).

(ii) E(\emptyset) = \emptyset.

(iii) E(N) = P_0(A).
```

Interpretation:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Effectivity function

Effectivity function

An *effectivity function* (EF) is a function $E : P(N) \rightarrow P(P_0(A))$ satisfying:

(i)
$$A \in E(S)$$
 for all $S \in P_0(N)$.

(ii)
$$E(\emptyset) = \emptyset$$
.

(iii) $E(N) = P_0(A)$.

Interpretation:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Effectivity function

Effectivity function

An *effectivity function* (EF) is a function $E : P(N) \rightarrow P(P_0(A))$ satisfying:

- (i) $A \in E(S)$ for all $S \in P_0(N)$.
- (ii) $E(\emptyset) = \emptyset$.
- (iii) $E(N) = P_0(A)$.

Interpretation:

Effectivity function

Effectivity function

An *effectivity function* (EF) is a function $E : P(N) \rightarrow P(P_0(A))$ satisfying:

- (i) $A \in E(S)$ for all $S \in P_0(N)$.
- (ii) $E(\emptyset) = \emptyset$.
- (iii) $E(N) = P_0(A)$.

Interpretation:

Effectivity function

Effectivity function

An *effectivity function* (EF) is a function $E : P(N) \rightarrow P(P_0(A))$ satisfying:

- (i) $A \in E(S)$ for all $S \in P_0(N)$.
- (ii) $E(\emptyset) = \emptyset$.
- (iii) $E(N) = P_0(A)$.

Interpretation:
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties of effectivity functions

• An effectivity function *E* is **monotonic** if:

 $[S \in P_0(N), S' \supseteq S, \text{ and } B' \supseteq B, B \in E(S)] \Rightarrow B' \in E(S').$

• An effectivity function *E* is **superadditive** if:

 $[B_i \in E(S_i), i = 1, 2, \text{ and } S_1 \cap S_2 = \emptyset] \Rightarrow B_1 \cap B_2 \in E(S_1 \cup S_2).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Properties of effectivity functions

• An effectivity function *E* is **monotonic** if:

 $[S \in P_0(N), S' \supseteq S, \text{ and } B' \supseteq B, B \in E(S)] \Rightarrow B' \in E(S').$

• An effectivity function *E* is **superadditive** if:

 $[B_i \in E(S_i), i = 1, 2, \text{ and } S_1 \cap S_2 = \emptyset] \Rightarrow B_1 \cap B_2 \in E(S_1 \cup S_2).$

A D F A 同 F A E F A E F A Q A

Properties of effectivity functions

• An effectivity function *E* is **monotonic** if:

 $[S \in P_0(N), S' \supseteq S, \text{ and } B' \supseteq B, B \in E(S)] \Rightarrow B' \in E(S').$

• An effectivity function *E* is **superadditive** if:

 $[B_i \in E(S_i), i = 1, 2, \text{ and } S_1 \cap S_2 = \emptyset] \Rightarrow B_1 \cap B_2 \in E(S_1 \cup S_2).$

Social Choice Correspondence

• A social choice correspondence (SCC) is a function

 $H: W^N \to P_0(A),$

where W is the set of *weak* (i.e., complete and transitive) orderings of A.

- Let *H* : *W^N* → *P*₀(*A*) be an SCC. A coalition *S* ∈ *P*₀(*N*) is *effective* for *B* ∈ *P*₀(*A*) if there exists *Q^S* ∈ *W^S* such that for all *R^{N\S}* ∈ *W^{N\S}*, *H*(*Q^S*, *R^{N\S}*) ⊆ *B*.
- The effectivity function of *H*, denoted by E^H , is given by $E^H(\emptyset) = \emptyset$ and for $S \in P_0(N)$,

 $E^{H}(S) = \{B \in P_0(A) | S \text{ is effective for } B\}.$

Social Choice Correspondence

• A social choice correspondence (SCC) is a function

$$H: W^N \to P_0(A),$$

where W is the set of *weak* (i.e., complete and transitive) orderings of A.

- Let *H* : *W^N* → *P*₀(*A*) be an SCC. A coalition *S* ∈ *P*₀(*N*) is *effective* for *B* ∈ *P*₀(*A*) if there exists *Q^S* ∈ *W^S* such that for all *R^{N\S}* ∈ *W^{N\S}*, *H*(*Q^S*, *R^{N\S}*) ⊆ *B*.
- The effectivity function of *H*, denoted by E^H , is given by $E^H(\emptyset) = \emptyset$ and for $S \in P_0(N)$,

 $E^{H}(S) = \{B \in P_0(A) | S \text{ is effective for } B\}.$

The model

Analysis

Social Choice Correspondence

• A social choice correspondence (SCC) is a function

$$H: W^N \to P_0(A),$$

where W is the set of *weak* (i.e., complete and transitive) orderings of A.

- Let *H* : *W^N* → *P*₀(*A*) be an SCC. A coalition *S* ∈ *P*₀(*N*) is *effective* for *B* ∈ *P*₀(*A*) if there exists *Q^S* ∈ *W^S* such that for all *R^{N\S}* ∈ *W^{N\S}*, *H*(*Q^S*, *R^{N\S}*) ⊆ *B*.
- The effectivity function of *H*, denoted by E^H , is given by $E^H(\emptyset) = \emptyset$ and for $S \in P_0(N)$,

 $E^{H}(S) = \{B \in P_0(A) | S \text{ is effective for } B\}.$

Social Choice Correspondence

• A social choice correspondence (SCC) is a function

$$H: W^N \to P_0(A),$$

where W is the set of *weak* (i.e., complete and transitive) orderings of A.

- Let *H* : *W^N* → *P*₀(*A*) be an SCC. A coalition *S* ∈ *P*₀(*N*) is *effective* for *B* ∈ *P*₀(*A*) if there exists *Q^S* ∈ *W^S* such that for all *R^{N\S}* ∈ *W^{N\S}*, *H*(*Q^S*, *R^{N\S}*) ⊆ *B*.
- The effectivity function of *H*, denoted by E^H, is given by E^H(Ø) = Ø and for S ∈ P₀(N),

$E^{H}(S) = \{B \in P_{0}(A) | S \text{ is effective for } B\}.$

Social Choice Correspondence

• A social choice correspondence (SCC) is a function

$$H: W^N \to P_0(A),$$

where W is the set of *weak* (i.e., complete and transitive) orderings of A.

- Let *H* : *W^N* → *P*₀(*A*) be an SCC. A coalition *S* ∈ *P*₀(*N*) is *effective* for *B* ∈ *P*₀(*A*) if there exists *Q^S* ∈ *W^S* such that for all *R^{N\S}* ∈ *W^{N\S}*, *H*(*Q^S*, *R^{N\S}*) ⊆ *B*.
- The effectivity function of *H*, denoted by E^H, is given by E^H(Ø) = Ø and for S ∈ P₀(N),

$$E^{H}(S) = \{B \in P_0(A) | S \text{ is effective for } B\}.$$

Definition

A social choice correspondence *H* is a *representation* of the effectivity function *E* if $E^H = E$.

Definition

- A decision scheme (DS) is a function $d: W^N \to \Delta(A)$.
- The Social Choice Correspondence associated with the decision scheme *d*, denoted by *H_d*, is defined by:

$$H_d(R^N) = \{x \in A | d(x, R^N) > 0\}.$$

Definition

A social choice correspondence *H* is a *representation* of the effectivity function *E* if $E^H = E$.

Definition

- A decision scheme (DS) is a function $d: W^N \to \Delta(A)$.
- The Social Choice Correspondence associated with the decision scheme *d*, denoted by *H*_d, is defined by:

$$H_d(R^N) = \{x \in A | d(x, R^N) > 0\}.$$

Definition

A social choice correspondence *H* is a *representation* of the effectivity function *E* if $E^H = E$.

Definition

- A decision scheme (DS) is a function $d: W^N \to \Delta(A)$.
- The Social Choice Correspondence associated with the decision scheme *d*, denoted by *H*_d, is defined by:

$$H_d(R^N) = \{x \in A | d(x, R^N) > 0\}.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Definition

A social choice correspondence *H* is a *representation* of the effectivity function *E* if $E^H = E$.

Definition

- A decision scheme (DS) is a function $d: W^N \to \Delta(A)$.
- The Social Choice Correspondence associated with the decision scheme *d*, denoted by *H*_d, is defined by:

$$H_d(R^N) = \{x \in A | d(x, R^N) > 0\}.$$

The uniform core

For any weak preference relation on $A, R \in W$.

- Denote the strict preference by *P*.
- Denote the indifference relation by *I*, that is, *xIy* holds for *x*, *y* ∈ *A* if *xRy* and *yRx*.

Given a vector of preference relations R^N and a coalition S ⊆ N, we write BP^SA \ B if xPⁱy for all x ∈ B, y ∈ A \ B and i ∈ S.

The uniform core

- Denote the strict preference by *P*.
- Denote the indifference relation by *I*, that is, *xIy* holds for *x*, *y* ∈ *A* if *xRy* and *yRx*.
- Given a vector of preference relations R^N and a coalition S ⊆ N, we write BP^SA \ B if xPⁱy for all x ∈ B, y ∈ A \ B and i ∈ S.

The uniform core

- Denote the strict preference by *P*.
- Denote the indifference relation by *I*, that is, *xIy* holds for *x*, *y* ∈ *A* if *xRy* and *yRx*.
- Given a vector of preference relations R^N and a coalition S ⊆ N, we write BP^SA \ B if xPⁱy for all x ∈ B, y ∈ A \ B and i ∈ S.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The uniform core

- Denote the strict preference by *P*.
- Denote the indifference relation by *I*, that is, *xIy* holds for *x*, *y* ∈ *A* if *xRy* and *yRx*.
- Given a vector of preference relations R^N and a coalition S ⊆ N, we write BP^SA \ B if xPⁱy for all x ∈ B, y ∈ A \ B and i ∈ S.

The uniform core

- Denote the strict preference by *P*.
- Denote the indifference relation by *I*, that is, *xIy* holds for *x*, *y* ∈ *A* if *xRy* and *yRx*.
- Given a vector of preference relations *R^N* and a coalition *S* ⊆ *N*, we write *BP^SA**B* if *xPⁱy* for all *x* ∈ *B*, *y* ∈ *A**B* and *i* ∈ *S*.

Definition

- A set of alternatives B ∈ E(S) uniformly dominates A \ B via the coalition S at R^N if BP^SA \ B.
- In that case, for any alternative x ∈ A \ B we also say that B uniformly dominates x via the coalition S.
- The *uniform core* of *E* and *R^N*, denoted by *C_{uf}(E, R^N*) (or shortly *C_{uf}(R^N*)), is the set of all alternatives in *A* that are not uniformly dominated at *R^N*.

Definition

- A set of alternatives B ∈ E(S) uniformly dominates A \ B via the coalition S at R^N if BP^SA \ B.
- In that case, for any alternative x ∈ A \ B we also say that B uniformly dominates x via the coalition S.
- The uniform core of E and R^N, denoted by C_{uf}(E, R^N) (or shortly C_{uf}(R^N)), is the set of all alternatives in A that are not uniformly dominated at R^N.

Definition

- A set of alternatives B ∈ E(S) uniformly dominates A \ B via the coalition S at R^N if BP^SA \ B.
- In that case, for any alternative x ∈ A \ B we also say that B uniformly dominates x via the coalition S.
- The uniform core of E and R^N, denoted by C_{uf}(E, R^N) (or shortly C_{uf}(R^N)), is the set of all alternatives in A that are not uniformly dominated at R^N.

Definition

- A set of alternatives B ∈ E(S) uniformly dominates A \ B via the coalition S at R^N if BP^SA \ B.
- In that case, for any alternative x ∈ A \ B we also say that B uniformly dominates x via the coalition S.
- The uniform core of E and R^N, denoted by C_{uf}(E, R^N) (or shortly C_{uf}(R^N)), is the set of all alternatives in A that are not uniformly dominated at R^N.

Comparison to the Core

Definition

- An alternative x ∈ A is *dominated* by B ⊆ A, x ∉ B via the coalition S ∈ P₀(N), if B ∈ E(S) and B P^S{x}.
- An alternative x ∈ A is not dominated at (E, R^N) if there is no pair (S, B) of a coalition S ∈ P₀(N) and a set of states B not containing x that dominates x via the coalition S.
- The *core* of (E, R^N) , denoted by $C(E, R^N)$, is the set of all alternatives in A that are not dominated at (E, R^N) .

Comparison to the Core

Definition

- An alternative x ∈ A is *dominated* by B ⊆ A, x ∉ B via the coalition S ∈ P₀(N), if B ∈ E(S) and B P^S{x}.
- An alternative x ∈ A is not dominated at (E, R^N) if there is no pair (S, B) of a coalition S ∈ P₀(N) and a set of states B not containing x that dominates x via the coalition S.
- The *core* of (E, R^N) , denoted by $C(E, R^N)$, is the set of all alternatives in A that are not dominated at (E, R^N) .

Comparison to the Core

Definition

- An alternative x ∈ A is *dominated* by B ⊆ A, x ∉ B via the coalition S ∈ P₀(N), if B ∈ E(S) and B P^S{x}.
- An alternative x ∈ A is not dominated at (E, R^N) if there is no pair (S, B) of a coalition S ∈ P₀(N) and a set of states B not containing x that dominates x via the coalition S.
- The *core* of (E, R^N) , denoted by $C(E, R^N)$, is the set of all alternatives in A that are not dominated at (E, R^N) .

Comparison to the Core

Definition

- An alternative $x \in A$ is *dominated* by $B \subseteq A$, $x \notin B$ via the coalition $S \in P_0(N)$, if $B \in E(S)$ and $B P^S\{x\}$.
- An alternative x ∈ A is not dominated at (E, R^N) if there is no pair (S, B) of a coalition S ∈ P₀(N) and a set of states B not containing x that dominates x via the coalition S.
- The *core* of (E, R^N) , denoted by $C(E, R^N)$, is the set of all alternatives in A that are not dominated at (E, R^N) .

Example (Based on the Condorcet Paradox)

Let $N = \{1,2,3\}$, $A = \{x, y, z\}$ and the effectivity function *E* given by:

$$\mathsf{E}(S) = \begin{cases} P_0(A) & \text{ if } |S| > 1\\ \{A\} & \text{ if } |S| = 1 \end{cases}$$

For the vector of preference relations:

$$\mathsf{R}^{\mathsf{N}} = \begin{array}{ccc} \frac{1}{x} & \frac{2}{z} & \frac{3}{y} \\ \frac{1}{x} & \frac{2}{z} & \frac{3}{y} \\ \frac{1}{y} & \frac{1}{x} & \frac{2}{z} \\ \frac{1}{y} & \frac{1}{x} & \frac{3}{z} \\ \frac{1}{z} & \frac{1}{y} & \frac{1}{x} \end{array}$$

Example (Based on the Condorcet Paradox)

Let $N = \{1, 2, 3\}$, $A = \{x, y, z\}$ and the effectivity function *E* given by:

$$E(S) = \begin{cases} P_0(A) & \text{if } |S| > 1\\ \{A\} & \text{if } |S| = 1 \end{cases}$$

For the vector of preference relations:

$$\mathsf{R}^{\mathsf{N}} = \begin{array}{ccc} \frac{1}{x} & \frac{2}{z} & \frac{3}{y} \\ x & z & y \\ y & x & z \\ z & y & x \end{array}$$

At (E, R^N) every alternative is dominated but not uniformly dominated. Hence, $C(E, R^N) = \emptyset$ while $C_{uf}(E, R^N) = A$.

) 2 (~

Example (Based on the Condorcet Paradox)

Let $N = \{1, 2, 3\}$, $A = \{x, y, z\}$ and the effectivity function *E* given by:

$$\mathsf{E}(S) = \begin{cases} P_0(A) & \text{ if } |S| > 1\\ \{A\} & \text{ if } |S| = 1 \end{cases}$$

For the vector of preference relations:

$$\mathsf{R}^{\mathsf{N}} = \frac{1}{\begin{array}{ccc} x & 2 & 3 \\ x & z & y \\ y & x & z \\ z & y & x \end{array}}$$

Example (Based on the Condorcet Paradox)

Let $N = \{1, 2, 3\}$, $A = \{x, y, z\}$ and the effectivity function *E* given by:

$$\mathsf{E}(S) = \left\{ egin{array}{cc} P_0(A) & ext{ if } |S| > 1 \ \{A\} & ext{ if } |S| = 1 \end{array}
ight.$$

For the vector of preference relations:

$$\mathbf{R}^{N} = \begin{array}{ccc} \frac{1}{x} & \frac{2}{z} & \frac{3}{y} \\ \frac{1}{y} & \frac{1}{x} & \frac{2}{z} & \frac{3}{y} \\ \frac{1}{y} & \frac{1}{x} & \frac{1}{z} & \frac{3}{y} \\ \frac{1}{z} & \frac{1}{y} & \frac{1}{x} & \frac{1}{z} \\ \frac{1}{z} & \frac{1}{y} & \frac{1}{z} \\ \frac{1}{z} & \frac{1}{y} & \frac{1}{z} \\ \frac{1}{z} & \frac{1}{z} & \frac{1}{z} & \frac{1}{z} \\ \frac{1}{z} & \frac{1}{z} \\ \frac{1}{z} & \frac{1}{z$$

Example (Based on the Condorcet Paradox)

Let $N = \{1, 2, 3\}$, $A = \{x, y, z\}$ and the effectivity function *E* given by:

$$\mathsf{E}(S) = \left\{ egin{array}{cc} P_0(A) & ext{ if } |S| > 1 \ \{A\} & ext{ if } |S| = 1 \end{array}
ight.$$

For the vector of preference relations:

$$\mathbf{R}^{N} = \begin{array}{ccc} \frac{1}{x} & \frac{2}{z} & \frac{3}{y} \\ \frac{1}{x} & \frac{2}{z} & \frac{3}{y} \\ \frac{1}{y} & \frac{1}{x} & \frac{2}{z} \\ \frac{1}{y} & \frac{1}{x} & \frac{3}{z} \\ \frac{1}{z} & \frac{1}{y} & \frac{1}{x} \end{array}$$

Example (Based on the Condorcet Paradox)

Let $N = \{1, 2, 3\}$, $A = \{x, y, z\}$ and the effectivity function *E* given by:

$$\mathsf{E}(S) = \left\{ egin{array}{cc} P_0(A) & ext{ if } |S| > 1 \ \{A\} & ext{ if } |S| = 1 \end{array}
ight.$$

For the vector of preference relations:

$$\mathbf{R}^{N} = \begin{array}{ccc} \frac{1}{x} & \frac{2}{z} & \frac{3}{y} \\ \frac{1}{x} & \frac{2}{z} & \frac{3}{y} \\ \frac{1}{y} & \frac{1}{x} & \frac{2}{z} \\ \frac{1}{y} & \frac{1}{x} & \frac{3}{z} \\ \frac{1}{z} & \frac{1}{y} & \frac{1}{x} \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Abdou and Keiding (1991))

Let E be a monotonic and superadditive EF and let $R^N \in W^N$. Then the uniform core $C_{uf}(E, R^N)$ is non-empty.

Theorem (Keiding and Peleg (2006))

Let E be a monotonic and superadditive EF. Then the social choice correspondence $C_{uf}(E, \mathbb{R}^N)$ is a representation of E.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Abdou and Keiding (1991))

Let E be a monotonic and superadditive EF and let $R^N \in W^N$. Then the uniform core $C_{uf}(E, R^N)$ is non-empty.

Theorem (Keiding and Peleg (2006))

Let E be a monotonic and superadditive EF. Then the social choice correspondence $C_{uf}(E, R^N)$ is a representation of E.

・ コット (雪) (小田) (コット 日)

Example (Continued.)

- By Keiding and Peleg's theorem, C_{uf}(E,·) is a representation of E by a social choice correspondence
- Convert this into a representation by a decision scheme by assigning the uniform distribution on $C_{uf}(E, R^N)$.
- For example, if $R^1 = (ww, wb, bw, bb)$ and $R^2 = (bw, wb, ww, bb)$, Then
- $C_{uf}(E, R^N) = \{ww, wb\}$, and hence,
- A decision scheme representing *E* satisfies:

$$d(ww, R^N) = d(wb, R^N) = 1/2$$

Example (Continued.)

- By Keiding and Peleg's theorem, C_{uf}(E, ·) is a representation of E by a social choice correspondence.
- Convert this into a representation by a decision scheme by assigning the uniform distribution on $C_{uf}(E, R^N)$.
- For example, if $R^1 = (ww, wb, bw, bb)$ and $R^2 = (bw, wb, ww, bb)$, Then
- $C_{uf}(E, R^N) = \{ww, wb\}$, and hence,
- A decision scheme representing *E* satisfies:

$$d(ww, R^N) = d(wb, R^N) = 1/2$$

Example (Continued.)

- By Keiding and Peleg's theorem, C_{uf}(E, ·) is a representation of E by a social choice correspondence.
- Convert this into a representation by a decision scheme by assigning the uniform distribution on $C_{uf}(E, R^N)$.
- For example, if $R^1 = (ww, wb, bw, bb)$ and $R^2 = (bw, wb, ww, bb)$, Then
- $C_{uf}(E, R^N) = \{ww, wb\}$, and hence,
- A decision scheme representing *E* satisfies:

$$d(ww, R^N) = d(wb, R^N) = 1/2$$
Example (Continued.)

- By Keiding and Peleg's theorem, C_{uf}(E, ·) is a representation of E by a social choice correspondence.
- Convert this into a representation by a decision scheme by assigning the uniform distribution on $C_{uf}(E, R^N)$.
- For example, if $R^1 = (ww, wb, bw, bb)$ and $R^2 = (bw, wb, ww, bb)$, Then
- $C_{uf}(E, R^N) = \{ww, wb\}$, and hence,
- A decision scheme representing *E* satisfies:

$$d(ww, R^N) = d(wb, R^N) = 1/2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example (Continued.)

- By Keiding and Peleg's theorem, C_{uf}(E, ·) is a representation of E by a social choice correspondence.
- Convert this into a representation by a decision scheme by assigning the uniform distribution on $C_{uf}(E, R^N)$.
- For example, if $R^1 = (ww, wb, bw, bb)$ and $R^2 = (bw, wb, ww, bb)$, Then
- $C_{uf}(E, R^N) = \{ww, wb\}$, and hence,
- A decision scheme representing *E* satisfies:

$$d(ww, R^N) = d(wb, R^N) = 1/2$$

Example (Continued.)

- By Keiding and Peleg's theorem, C_{uf}(E, ·) is a representation of E by a social choice correspondence.
- Convert this into a representation by a decision scheme by assigning the uniform distribution on $C_{uf}(E, R^N)$.
- For example, if $R^1 = (ww, wb, bw, bb)$ and $R^2 = (bw, wb, ww, bb)$, Then
- $C_{uf}(E, R^N) = \{ww, wb\}$, and hence,
- A decision scheme representing E satisfies:

$$d(ww, R^N) = d(wb, R^N) = 1/2$$

- Given a society *N* = {1,2,...,*n*},
- A set of social states $A = \{a_1, a_2, \dots, a_m\},\$
- An effectivity function E,
- von-Neumann Morgenstern utility functions, u^1, \ldots, u^n , on $\Delta(A)$.

Theorem

- The decision scheme d is a representation of the effectivity function E.
- The game Γ_d = (N; W,..., W; u¹,..., uⁿ; d) has a Nash equilibrium in pure strategies.

- Given a society $N = \{1, 2, ..., n\}$,
- A set of social states $A = \{a_1, a_2, \dots, a_m\},\$
- An effectivity function E,
- von-Neumann Morgenstern utility functions, u^1, \ldots, u^n , on $\Delta(A)$.

Theorem

- The decision scheme d is a representation of the effectivity function E.
- The game Γ_d = (N; W,..., W; u¹,..., uⁿ; d) has a Nash equilibrium in pure strategies.

- Given a society $N = \{1, 2, ..., n\},\$
- A set of social states $A = \{a_1, a_2, \dots, a_m\},\$
- An effectivity function E,
- von-Neumann Morgenstern utility functions, u^1, \ldots, u^n , on $\Delta(A)$.

Theorem

- The decision scheme d is a representation of the effectivity function E.
- The game Γ_d = (N; W,..., W; u¹,..., uⁿ; d) has a Nash equilibrium in pure strategies.

- Given a society $N = \{1, 2, ..., n\},\$
- A set of social states $A = \{a_1, a_2, \ldots, a_m\},\$
- An effectivity function E,

• von-Neumann Morgenstern utility functions, u^1, \ldots, u^n , on $\Delta(A)$.

Theorem

- The decision scheme d is a representation of the effectivity function E.
- The game Γ_d = (N; W,..., W; u¹,..., uⁿ; d) has a Nash equilibrium in pure strategies.

- Given a society $N = \{1, 2, ..., n\}$,
- A set of social states $A = \{a_1, a_2, \dots, a_m\},\$
- An effectivity function *E*,
- von-Neumann Morgenstern utility functions, u¹,...,uⁿ, on Δ(A).

Theorem

- The decision scheme d is a representation of the effectivity function E.
- The game Γ_d = (N; W,..., W; u¹,..., uⁿ; d) has a Nash equilibrium in pure strategies.

- Given a society $N = \{1, 2, ..., n\}$,
- A set of social states $A = \{a_1, a_2, \dots, a_m\},\$
- An effectivity function *E*,
- von-Neumann Morgenstern utility functions, u¹,...,uⁿ, on Δ(A).

Theorem

- The decision scheme d is a representation of the effectivity function E.
- The game Γ_d = (N; W,..., W; u¹,..., uⁿ; d) has a Nash equilibrium in pure strategies.

Incomplete information

An *information structure* (IS) is a 2*n*-tuple $\mathscr{I} = (T^1, ..., T^n; p^1, ..., p^n)$ where T^i is the (finite) set of types of player $i \in N$, and for all $i \in N$ and $t^i \in T^i$, $p^i(\cdot|t^i)$ is a probability distribution on $\times_{i \neq i} T^j$.

Remark

It is not assumed that the beliefs of the players $p^i(\cdot|t^i)$ are derived from a common prior that is, the game Γ is not necessarily a Harsanyi game.

Incomplete information

An *information structure* (IS) is a 2*n*-tuple $\mathscr{I} = (T^1, ..., T^n; p^1, ..., p^n)$ where T^i is the (finite) set of types of player $i \in N$, and for all $i \in N$ and $t^i \in T^i$, $p^i(\cdot | t^i)$ is a probability distribution on $\times_{i \neq i} T^j$.

Remark

It is not assumed that the beliefs of the players $p^i(\cdot|t^i)$ are derived from a common prior that is, the game Γ is not necessarily a Harsanyi game.

Incomplete information

An *information structure* (IS) is a 2*n*-tuple $\mathscr{I} = (T^1, ..., T^n; p^1, ..., p^n)$ where T^i is the (finite) set of types of player $i \in N$, and for all $i \in N$ and $t^i \in T^i$, $p^i(\cdot | t^i)$ is a probability distribution on $\times_{i \neq i} T^j$.

Remark

It is not assumed that the beliefs of the players $p^i(\cdot|t^i)$ are derived from a common prior that is, the game Γ is not necessarily a Harsanyi game.

- A generalized decision scheme (GDS) is a function $d: W^N \times T \rightarrow \Delta(A)$.

- A generalized decision scheme (GDS) is a function $d: W^N \times T \rightarrow \Delta(A)$.
- A strategy of player *i* (with respect to a GDS) is a pair (s^i, π^i) where $s^i : T^i \to W$ and $\pi^i : T^i \to T^i$.

Denote by S^i the set of all such mappings and let $S = S^1 \times, \dots, \times S^n$).

Equivalently, a strategy of player *i* is a mapping $\tilde{s}^i: T^i \to W \times T^i$.

Denote by \tilde{S}^i the set of pure strategies of player *i* and by $\tilde{S} = \tilde{S}^1 \times \cdots \times \tilde{S}^n$ the set of vectors of pure strategies. A vector $\tilde{s} \in \tilde{S}$ will also be written as $\tilde{s} = (s, \pi)$ where $s = (s^1, \dots, s^n) \in S$ and $\pi = (\pi^1, \dots, \pi^n)$.

• A generalized decision scheme (GDS) is a function $d: W^N \times T \rightarrow \Delta(A)$.

2 A strategy of player *i* (with respect to a GDS) is a pair (s^i, π^i) where $s^i : T^i \to W$ and $\pi^i : T^i \to T^i$. Denote by S^i the set of all such mappings and let $S = S^1 \times, \dots, \times S^n$).

Equivalently, a strategy of player *i* is a mapping $\tilde{s}^i: T^i \to W \times T^i$.

Denote by \tilde{S}^i the set of pure strategies of player *i* and by $\tilde{S} = \tilde{S}^1 \times \cdots \times \tilde{S}^n$ the set of vectors of pure strategies. A vector $\tilde{s} \in \tilde{S}$ will also be written as $\tilde{s} = (s, \pi)$ where $s = (s^1 - s^n) \in S$ and $\pi = (\pi^1 - \pi^n)$

• A generalized decision scheme (GDS) is a function $d: W^N \times T \rightarrow \Delta(A)$.

2 A strategy of player *i* (with respect to a GDS) is a pair (s^i, π^i) where $s^i : T^i \to W$ and $\pi^i : T^i \to T^i$. Denote by S^i the set of all such mappings and let $S = S^1 \times \dots \times S^n$). Equivalently, a strategy of player *i* is a mapping $\tilde{s}^i : T^i \to W \times T^i$. Denote by \tilde{S}^i the set of pure strategies of player *i* and by $\tilde{S} = \tilde{S}^1 \times \dots \times \tilde{S}^n$ the set of vectors of pure strategies. A vector $\tilde{s} \in \tilde{S}$ will also be written as $\tilde{s} = (s, \pi)$ where $s = (s^1, \dots, s^n) \in S$ and $\pi = (\pi^1, \dots, \pi^n)$.

- A generalized decision scheme (GDS) is a function $d: W^N \times T \rightarrow \Delta(A)$.
- A strategy of player i (with respect to a GDS) is a pair (s^i, π^i) where $s^i : T^i \to W$ and $\pi^i : T^i \to T^i$. Denote by S^i the set of all such mappings and let $S = S^1 \times \cdots \times S^n$. Equivalently, a strategy of player *i* is a mapping $\tilde{\mathbf{s}}^i: T^i \to W \times T^i$. Denote by \tilde{S}^i the set of pure strategies of player *i* and by $\tilde{S} = \tilde{S}^1 \times \cdots \times \tilde{S}^n$ the set of vectors of pure strategies.

- A generalized decision scheme (GDS) is a function $d: W^N \times T \rightarrow \Delta(A)$.
- A strategy of player i (with respect to a GDS) is a pair (s^i, π^i) where $s^i : T^i \to W$ and $\pi^i : T^i \to T^i$. Denote by S^i the set of all such mappings and let $S = S^1 \times \cdots \times S^n$. Equivalently, a strategy of player *i* is a mapping $\tilde{\mathbf{s}}^i: T^i \to W \times T^i$. Denote by \tilde{S}^i the set of pure strategies of player *i* and by $\tilde{S} = \tilde{S}^1 \times \cdots \times \tilde{S}^n$ the set of vectors of pure strategies. A vector $\tilde{s} \in \tilde{S}$ will also be written as $\tilde{s} = (s, \pi)$ where $s = (s^1, ..., s^n) \in S$ and $\pi = (\pi^1, ..., \pi^n)$.

The Bayesian game

An information structure $\mathscr{I} = (T^1, \ldots, T^n; p^1, \ldots, p^n),$

A vector of utility functions $(u^i)_{i \in N}$ where $u^i : A \times T \to \mathbb{R}$, A generalized decision scheme $d : W^N \times T \to \Delta(A)$, defines a game of incomplete information:

$$\Gamma_d = (N; W, \ldots, W; \mathscr{I}; u^1, \ldots, u^n; d).$$

- The set of actions of player *i* ∈ *N* of any possible type *tⁱ* is *W* × *Tⁱ*. The set of pure strategies of player *i* is *Šⁱ*.
- The payoff to player t^i when the players play the pure strategy vector $\tilde{s} = (\tilde{s}^1, \dots, \tilde{s}^n) \in \tilde{S}$ is $U^i(\tilde{s}|t^i)$ given by:

$$U_{d}^{i}(\tilde{s}|t^{i}) = \sum_{t^{-i} \in T^{-i}} \rho^{i}(t^{-i}|t^{i}) \sum_{x \in A} u^{i}(x;t) d(x;\tilde{s}^{1}(t^{1}),\ldots,\tilde{s}^{n}(t^{n})).$$

The Bayesian game

An information structure $\mathscr{I} = (T^1, ..., T^n; p^1, ..., p^n)$, A vector of utility functions $(u^i)_{i \in N}$ where $u^i : A \times T \to \mathbb{R}$,

A generalized decision scheme $d: W^N \times T \rightarrow \Delta(A)$, defines a game of incomplete information:

$$\Gamma_d = (N; W, \dots, W; \mathscr{I}; u^1, \dots, u^n; d).$$

- The set of actions of player *i* ∈ *N* of any possible type *tⁱ* is *W* × *Tⁱ*. The set of pure strategies of player *i* is *Šⁱ*.
- The payoff to player t^i when the players play the pure strategy vector $\tilde{s} = (\tilde{s}^1, \dots, \tilde{s}^n) \in \tilde{S}$ is $U^i(\tilde{s}|t^i)$ given by:

$$U_{d}^{i}(\tilde{s}|t^{i}) = \sum_{t^{-i} \in T^{-i}} \rho^{i}(t^{-i}|t^{i}) \sum_{x \in A} u^{i}(x;t) d(x;\tilde{s}^{1}(t^{1}),\ldots,\tilde{s}^{n}(t^{n})).$$

The Bayesian game

An information structure $\mathscr{I} = (T^1, ..., T^n; p^1, ..., p^n)$, A vector of utility functions $(u^i)_{i \in N}$ where $u^i : A \times T \to \mathbb{R}$, A generalized decision scheme $d : W^N \times T \to \Delta(A)$, defines a game of incomplete information:

$$\Gamma_d = (N; W, \ldots, W; \mathscr{I}; u^1, \ldots, u^n; d).$$

- The set of actions of player *i* ∈ *N* of any possible type *tⁱ* is *W* × *Tⁱ*. The set of pure strategies of player *i* is *Šⁱ*.
- The payoff to player t^i when the players play the pure strategy vector $\tilde{s} = (\tilde{s}^1, \dots, \tilde{s}^n) \in \tilde{S}$ is $U^i(\tilde{s}|t^i)$ given by:

$$U_{d}^{i}(\tilde{s}|t^{i}) = \sum_{t^{-i} \in T^{-i}} \rho^{i}(t^{-i}|t^{i}) \sum_{x \in A} u^{i}(x;t) d(x;\tilde{s}^{1}(t^{1}),\ldots,\tilde{s}^{n}(t^{n})).$$

The Bayesian game

An information structure $\mathscr{I} = (T^1, ..., T^n; p^1, ..., p^n)$, A vector of utility functions $(u^i)_{i \in N}$ where $u^i : A \times T \to \mathbb{R}$, A generalized decision scheme $d : W^N \times T \to \Delta(A)$, defines a game of incomplete information:

$$\Gamma_d = (N; W, \ldots, W; \mathscr{I}; u^1, \ldots, u^n; d).$$

- The set of actions of player *i* ∈ *N* of any possible type *tⁱ* is *W* × *Tⁱ*. The set of pure strategies of player *i* is *Šⁱ*.
- The payoff to player t^i when the players play the pure strategy vector $\tilde{s} = (\tilde{s}^1, \dots, \tilde{s}^n) \in \tilde{S}$ is $U^i(\tilde{s}|t^i)$ given by:

$$U_{d}^{i}(\tilde{s}|t^{i}) = \sum_{t^{-i} \in T^{-i}} \rho^{i}(t^{-i}|t^{i}) \sum_{x \in A} u^{i}(x;t) d(x;\tilde{s}^{1}(t^{1}),\ldots,\tilde{s}^{n}(t^{n})).$$

The Bayesian game

An information structure $\mathscr{I} = (T^1, \ldots, T^n; p^1, \ldots, p^n)$, A vector of utility functions $(u^i)_{i \in N}$ where $u^i : A \times T \to \mathbb{R}$, A generalized decision scheme $d : W^N \times T \to \Delta(A)$, defines a game of incomplete information:

$$\Gamma_d = (N; W, \ldots, W; \mathscr{I}; u^1, \ldots, u^n; d).$$

- The set of actions of player *i* ∈ *N* of any possible type *tⁱ* is *W* × *Tⁱ*. The set of pure strategies of player *i* is *Šⁱ*.
- The payoff to player t^i when the players play the pure strategy vector $\tilde{s} = (\tilde{s}^1, \dots, \tilde{s}^n) \in \tilde{S}$ is $U^i(\tilde{s}|t^i)$ given by:

$$U_{d}^{i}(\tilde{s}|t^{i}) = \sum_{t^{-i} \in T^{-i}} \rho^{i}(t^{-i}|t^{i}) \sum_{x \in A} u^{i}(x;t) d(x;\tilde{s}^{1}(t^{1}),\ldots,\tilde{s}^{n}(t^{n})).$$

The Bayesian game

An information structure $\mathscr{I} = (T^1, \ldots, T^n; p^1, \ldots, p^n)$, A vector of utility functions $(u^i)_{i \in N}$ where $u^i : A \times T \to \mathbb{R}$, A generalized decision scheme $d : W^N \times T \to \Delta(A)$, defines a game of incomplete information:

$$\Gamma_d = (N; W, \ldots, W; \mathscr{I}; u^1, \ldots, u^n; d).$$

- The set of actions of player *i* ∈ *N* of any possible type *tⁱ* is *W* × *Tⁱ*. The set of pure strategies of player *i* is *Šⁱ*.
- The payoff to player tⁱ when the players play the pure strategy vector s̃ = (s̃¹,..., s̃ⁿ) ∈ S̃ is Uⁱ(s̃|tⁱ) given by:

 $U_{d}^{i}(\tilde{s}|t^{i}) = \sum_{t^{-i} \in \mathcal{T}^{-i}} p^{i}(t^{-i}|t^{i}) \sum_{x \in \mathcal{A}} u^{i}(x;t) d(x;\tilde{s}^{1}(t^{1}),\ldots,\tilde{s}^{n}(t^{n})).$

The Bayesian game

An information structure $\mathscr{I} = (T^1, \ldots, T^n; p^1, \ldots, p^n)$, A vector of utility functions $(u^i)_{i \in N}$ where $u^i : A \times T \to \mathbb{R}$, A generalized decision scheme $d : W^N \times T \to \Delta(A)$, defines a game of incomplete information:

$$\Gamma_d = (N; W, \ldots, W; \mathscr{I}; u^1, \ldots, u^n; d).$$

- The set of actions of player *i* ∈ *N* of any possible type *tⁱ* is *W* × *Tⁱ*. The set of pure strategies of player *i* is *Šⁱ*.
- The payoff to player tⁱ when the players play the pure strategy vector s̃ = (s̃¹,...,s̃ⁿ) ∈ S̃ is Uⁱ(s̃|tⁱ) given by:

$$U_{d}^{i}(\tilde{s}|t^{i}) = \sum_{t^{-i} \in T^{-i}} \rho^{i}(t^{-i}|t^{i}) \sum_{x \in A} u^{i}(x;t) d(x;\tilde{s}^{1}(t^{1}),\ldots,\tilde{s}^{n}(t^{n})).$$

Analysis

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Bayes Nash quilibrium

Definition

An *n*-tuple of strategies \tilde{s} is a *Bayesian Nash equilibrium* (BNE) if for all $i \in N$, all $t^i \in T^i$ and all $(R^i, \hat{t}^i) \in W \times T^i$,

$$\sum_{t^{-i}\in T^{-i}} p^{i}(t^{-i}|t^{i}) \sum_{x\in A} u^{i}(x;t)d(x;\tilde{s}(t)) \geq \sum_{t^{-i}\in T^{-i}} p^{i}(t^{-i}|t^{i}) \sum_{x\in A} u^{i}(x;t)d((x;\tilde{s}^{-i}(t^{-i}),(R^{i},\hat{t}^{i}))).$$

Where $\tilde{s}(t)$ is the vector $(\tilde{s}^{i}(t^{i}))_{i \in N}$ and $\tilde{s}^{-i}(t^{-i})$ is the vector $(\tilde{s}^{i}(t^{j}))_{j \neq i}$.

Analysis

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Bayes Nash quilibrium

Definition

An *n*-tuple of strategies \tilde{s} is a *Bayesian Nash equilibrium* (BNE) if for all $i \in N$, all $t^i \in T^i$ and all $(R^i, \hat{t}^i) \in W \times T^i$,

$$\sum_{t^{-i}\in T^{-i}} p^{i}(t^{-i}|t^{i}) \sum_{x\in A} u^{i}(x;t)d(x;\tilde{s}(t)) \geq \sum_{t^{-i}\in T^{-i}} p^{i}(t^{-i}|t^{i}) \sum_{x\in A} u^{i}(x;t)d((x;\tilde{s}^{-i}(t^{-i}),(R^{i},\hat{t}^{i}))).$$

Where $\tilde{s}(t)$ is the vector $(\tilde{s}^{i}(t^{i}))_{i \in N}$ and $\tilde{s}^{-i}(t^{-i})$ is the vector $(\tilde{s}^{j}(t^{j}))_{j \neq i}$.

Main result

Theorem

Let $E : P(N) \to P(P_0(A))$ be a monotonic and superadditive EF. Let $\mathscr{I} = (T^1, ..., T^n; p^1, ..., p^n)$ be an IS, and let $(u^1, ..., u^n), u^i : A \times T \to \mathbb{R}$, be a vector of vNM utilities for the players. Then E has a representation by a generalized decision scheme $d : W^N \times T \to \Delta(A)$ such that the game $\Gamma_d = (N; W, ..., W; \mathscr{I}; (u^i)_{i \in N}; d)$ has a BNE in pure strategies. Introduction The model Analysis results

Outline of the proof

Define the generalized decision scheme $d_1: W^N \times T \to \Delta(A)$ by

$$d_1(\mathbb{R}^N,t)=d_{uf}(\mathbb{R}^N), \quad \forall (\mathbb{R}^N,t)\in \mathbb{W}^N\times T.$$

$$G_{d_1} = (N; S^1, \dots, S^n; h^1, \dots, h^n; d_1)$$

$$h^{i}(s^{1},...,s^{n}) = \sum_{t\in T} p^{i}(t) \sum_{x\in A} u^{i}(x,t) d_{1}(x;s(t)),$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Introduction The model Analysis results
Outline of the proof

Define the generalized decision scheme $d_1: W^N \times T \to \Delta(A)$ by

$$d_1(\mathbf{R}^N,t)=d_{uf}(\mathbf{R}^N), \quad \forall (\mathbf{R}^N,t)\in \mathbf{W}^N\times \mathbf{T}.$$

Consider the ex-ante game:

$$G_{d_1} = (N; S^1, \dots, S^n; h^1, \dots, h^n; d_1)$$

in which the payoff functions are:

$$h^{i}(s^{1},...,s^{n}) = \sum_{t\in T} p^{i}(t) \sum_{x\in A} u^{i}(x,t) d_{1}(x;s(t)),$$

Note that in this game, the strategy sets are S^i rather than \tilde{S}^i since $d_1(R^N, t)$ does not depend on t.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Introduction The model Analysis results

Outline of the proof

Define the generalized decision scheme $d_1: W^N \times T \to \Delta(A)$ by

$$d_1(\mathbb{R}^N,t)=d_{uf}(\mathbb{R}^N), \quad \forall (\mathbb{R}^N,t)\in \mathbb{W}^N\times T.$$

Consider the ex-ante game:

$$G_{d_1} = (N; S^1, \ldots, S^n; h^1, \ldots, h^n; d_1)$$

in which the payoff functions are:

$$h^{i}(s^{1},...,s^{n}) = \sum_{t\in T} p^{i}(t) \sum_{x\in A} u^{i}(x,t) d_{1}(x;s(t)),$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Introduction The model Analysis results

Outline of the proof

Define the generalized decision scheme $d_1: W^N \times T \to \Delta(A)$ by

$$d_1(\mathbb{R}^N,t)=d_{uf}(\mathbb{R}^N), \quad \forall (\mathbb{R}^N,t)\in \mathbb{W}^N\times T.$$

Consider the ex-ante game:

$$G_{d_1} = (N; S^1, \dots, S^n; h^1, \dots, h^n; d_1)$$

in which the payoff functions are:

$$h^{i}(s^{1},...,s^{n}) = \sum_{t\in T} p^{i}(t) \sum_{x\in A} u^{i}(x,t) d_{1}(x;s(t)),$$

Note that in this game, the strategy sets are S^{i} rather than \tilde{S}^{i} since $d_1(\mathbb{R}^N, t)$ does not depend on t.

Outline of the proof cont.

Let $(q(s))_{s \in S}$ be a correlated equilibrium (CE) of the game G_{d_1} . The equilibrium conditions are:

$$\sum_{s\in S} q(s)h^i(s) \geq \sum_{s\in S} q(s)h^i(s^{-i},\delta(s^i)),$$

which holds for all $i \in N$ and for all $\delta : S^i \to S^i$. From this (by appropriate choice of δ) that:

$$\sum_{s \in S} q(s) U^i_{d_1}(s|t^i) \geq \sum_{s \in S} q(s) U^i_{d_1}(s^{-i}, R^i|t^i),$$

and

$$\sum_{s \in S} q(s) U_{d_1}^i(s | t^i) \ge \sum_{s \in S} q(s) U_{d_1}^i(s^{-i}, s^i(\tilde{t}^i) | t^i)$$

holds for all $i \in N$ and for all t^i and \tilde{t}^i in T^i and all $R^i \in W$.

Analysis

Outline of the proof cont.

Let $(q(s))_{s \in S}$ be a correlated equilibrium (CE) of the game G_{d_1} . The equilibrium conditions are:

$$\sum_{s\in S} q(s)h^i(s) \geq \sum_{s\in S} q(s)h^i(s^{-i},\delta(s^i)),$$

which holds for all $i \in N$ and for all $\delta : S^i \to S^i$. From this (by appropriate choice of δ) that:

$$\sum_{s\in S} q(s) U^i_{d_1}(s|t^i) \geq \sum_{s\in S} q(s) U^i_{d_1}(s^{-i}, R^i|t^i),$$

and

$$\sum_{s \in S} q(s) U_{d_1}^i(s | t^i) \ge \sum_{s \in S} q(s) U_{d_1}^i(s^{-i}, s^i(\tilde{t}^i) | t^i)$$

holds for all $i \in N$ and for all t^i and \tilde{t}^i in T^i and all $R^i \in W$.

Analysis

Outline of the proof cont.

Let $(q(s))_{s \in S}$ be a correlated equilibrium (CE) of the game G_{d_1} . The equilibrium conditions are:

$$\sum_{s\in S} q(s)h^i(s) \geq \sum_{s\in S} q(s)h^i(s^{-i},\delta(s^i)),$$

which holds for all $i \in N$ and for all $\delta : S^i \to S^i$. From this (by appropriate choice of δ) that:

$$\sum_{s\in S} q(s) U^i_{d_1}(s|t^i) \geq \sum_{s\in S} q(s) U^i_{d_1}(s^{-i}, \mathcal{R}^i|t^i),$$

and

$$\sum_{s\in \mathcal{S}} q(s) U^i_{d_1}(s|t^i) \geq \sum_{s\in \mathcal{S}} q(s) U^i_{d_1}(s^{-i},s^i(\tilde{t}^i)|t^i)$$

holds for all $i \in N$ and for all t^i and \tilde{t}^i in T^i and all $R^i \in W$.

(日) (日) (日) (日) (日) (日) (日)

Outline of the proof cont.

Define now a generalized decision scheme *d* by:

- $d(x; I^N, t) = \sum_{s \in S} q(s) d_1(x; s(t)), \forall x \in A, \forall t \in T.$
- $d(x; (I^{-i}, R^i), t) = \sum_{s \in S} q(s) d_1(x; s^{-i}(t^{-i}), R^i),$ for all $i \in N, R^i \in W, t \in T$, and $x \in A$.
- $d(x; \mathbb{R}^N, t) = d_{uf}(x; \mathbb{R}^N)$ otherwise.
・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Outline of the proof cont.

Define now a generalized decision scheme *d* by:

- $d(x; I^N, t) = \sum_{s \in S} q(s) d_1(x; s(t)), \forall x \in A, \forall t \in T.$
- $d(x; (I^{-i}, R^i), t) = \sum_{s \in S} q(s) d_1(x; s^{-i}(t^{-i}), R^i),$ for all $i \in N, R^i \in W, t \in T$, and $x \in A$.
- $d(x; \mathbb{R}^N, t) = d_{uf}(x; \mathbb{R}^N)$ otherwise.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Outline of the proof cont.

Define now a generalized decision scheme *d* by:

- $d(x; I^N, t) = \sum_{s \in S} q(s) d_1(x; s(t)), \forall x \in A, \forall t \in T.$
- $d(x; (I^{-i}, R^i), t) = \sum_{s \in S} q(s) d_1(x; s^{-i}(t^{-i}), R^i),$ for all $i \in N, R^i \in W, t \in T$, and $x \in A$.
- $d(x; \mathbb{R}^N, t) = d_{uf}(x; \mathbb{R}^N)$ otherwise.

A D F A 同 F A E F A E F A Q A

Outline of the proof cont.

Define now a generalized decision scheme *d* by:

- $d(x; I^N, t) = \sum_{s \in S} q(s) d_1(x; s(t)), \forall x \in A, \forall t \in T.$
- $d(x; (I^{-i}, R^i), t) = \sum_{s \in S} q(s) d_1(x; s^{-i}(t^{-i}), R^i),$ for all $i \in N, R^i \in W, t \in T$, and $x \in A$.
- $d(x; \mathbb{R}^N, t) = d_{uf}(x; \mathbb{R}^N)$ otherwise.

・ コット (雪) (小田) (コット 日)

Outline of the proof cont.

Claim:

- This generalized decision scheme *d* is a representation of the effectivity function *E*.
 Basically because the uniform core *d_{uf}* is a representation of *E* (By Peleg and Keiding).
- The vector \tilde{s} in which $\tilde{s}^i(t^i) = (I, t^i)$, for all $i \in N$ and for all $t^i \in T^i$, where *I* is the total indifference preference on *A*, is a BNE of the game

$$\Gamma_d = (N; W, \ldots, W; \mathscr{I}; (u^i)_{i \in N}; d).$$

Outline of the proof cont.

Claim:

• This generalized decision scheme *d* is a representation of the effectivity function *E*.

Basically because the uniform core d_{uf} is a representation of *E* (By Peleg and Keiding).

• The vector \tilde{s} in which $\tilde{s}^i(t^i) = (I, t^i)$, for all $i \in N$ and for all $t^i \in T^i$, where *I* is the total indifference preference on *A*, is a BNE of the game

$$\Gamma_d = (N; W, \ldots, W; \mathscr{I}; (u^i)_{i \in N}; d).$$

Outline of the proof cont.

Claim:

- This generalized decision scheme *d* is a representation of the effectivity function *E*.
 Basically because the uniform core *d_{uf}* is a representation of *E* (By Peleg and Keiding).
- The vector *š* in which *šⁱ*(*tⁱ*) = (*I*, *tⁱ*), for all *i* ∈ *N* and for all *tⁱ* ∈ *Tⁱ*, where *I* is the total indifference preference on *A*, is a BNE of the game

$$\Gamma_d = (N; W, \ldots, W; \mathscr{I}; (u^i)_{i \in N}; d).$$

Outline of the proof cont.

Claim:

- This generalized decision scheme *d* is a representation of the effectivity function *E*.
 Basically because the uniform core *d_{uf}* is a representation of *E* (By Peleg and Keiding).
- The vector \tilde{s} in which $\tilde{s}^{i}(t^{i}) = (I, t^{i})$, for all $i \in N$ and for all $t^{i} \in T^{i}$, where *I* is the total indifference preference on *A*, is a BNE of the game

$$\Gamma_d = (N; W, \ldots, W; \mathscr{I}; (u^i)_{i \in N}; d).$$

Outline of the proof cont.

Deviation of player *i* of type t^i :

• Deviate from (I, t^i) to (R^i, t^i) where $R^i \neq I$. This is not profitable by the CE inequality:

$$\sum_{s \in S} q(s) U^i_{d_1}(s|t^i) \geq \sum_{s \in S} q(s) U^i_{d_1}(s^{-i}, R^i|t^i).$$

• Deviate from (I, t^i) to (I, \tilde{t}^i) where $\tilde{t}^i \neq t^i$. This is not profitable by the CE inequality:

$$\sum_{s \in S} q(s) U^i_{d_1}(s | t^i) \geq \sum_{s \in S} q(s) U^i_{d_1}(s^{-i}, s^i(\widetilde{t}^i) | t^i).$$

$$d(x; (I^{-i}, R^{i}), (t^{-i}, \tilde{t}^{i})) = d(x; (I^{-i}, R^{i}), t).$$

Outline of the proof cont.

Deviation of player *i* of type t^i :

• Deviate from (I, t^i) to (R^i, t^i) where $R^i \neq I$. This is not profitable by the CE inequality:

$$\sum_{s\in S} q(s) U^i_{d_1}(s|t^i) \geq \sum_{s\in S} q(s) U^i_{d_1}(s^{-i}, R^i|t^i).$$

• Deviate from (I, t^i) to (I, \tilde{t}^i) where $\tilde{t}^i \neq t^i$. This is not profitable by the CE inequality:

$$\sum_{s\in S}q(s)U^i_{d_1}(s|t^i)\geq \sum_{s\in S}q(s)U^i_{d_1}(s^{-i},s^i(\widetilde{t}^i)|t^i).$$

$$d(x;(I^{-i},R^i),(t^{-i},\tilde{t}^i)) = d(x;(I^{-i},R^i),t).$$

Outline of the proof cont.

Deviation of player *i* of type t^i :

• Deviate from (I, t^i) to (R^i, t^i) where $R^i \neq I$. This is not profitable by the CE inequality:

$$\sum_{s \in S} q(s) U^i_{d_1}(s|t^i) \geq \sum_{s \in S} q(s) U^i_{d_1}(s^{-i}, \mathsf{R}^i|t^i).$$

• Deviate from (I, t^i) to (I, \tilde{t}^i) where $\tilde{t}^i \neq t^i$. This is not profitable by the CE inequality:

$$\sum_{s \in S} q(s) U^{i}_{d_{1}}(s|t^{i}) \geq \sum_{s \in S} q(s) U^{i}_{d_{1}}(s^{-i},s^{i}(\widetilde{t}^{i})|t^{i}).$$

$$d(x; (I^{-i}, R^{i}), (t^{-i}, \tilde{t}^{i})) = d(x; (I^{-i}, R^{i}), t).$$

Outline of the proof cont.

Deviation of player *i* of type t^i :

• Deviate from (I, t^i) to (R^i, t^i) where $R^i \neq I$. This is not profitable by the CE inequality:

$$\sum_{s \in S} q(s) U^{i}_{d_{1}}(s|t^{i}) \geq \sum_{s \in S} q(s) U^{i}_{d_{1}}(s^{-i}, \mathsf{R}^{i}|t^{i}).$$

• Deviate from (I, t^i) to (I, \tilde{t}^i) where $\tilde{t}^i \neq t^i$. This is not profitable by the CE inequality:

$$\sum_{s\in S}q(s)U^i_{d_1}(s|t^i)\geq \sum_{s\in S}q(s)U^i_{d_1}(s^{-i},s^i(\widetilde{t}^i)|t^i).$$

$$d(x;(I^{-i},R^i),(t^{-i},\tilde{t}^i)) = d(x;(I^{-i},R^i),t).$$

Outline of the proof cont.

Deviation of player *i* of type t^i :

• Deviate from (I, t^i) to (R^i, t^i) where $R^i \neq I$. This is not profitable by the CE inequality:

$$\sum_{s \in S} q(s) U^{i}_{d_{1}}(s|t^{i}) \geq \sum_{s \in S} q(s) U^{i}_{d_{1}}(s^{-i}, \mathsf{R}^{i}|t^{i}).$$

• Deviate from (I, t^i) to (I, \tilde{t}^i) where $\tilde{t}^i \neq t^i$. This is not profitable by the CE inequality:

$$\sum_{s\in\mathcal{S}}q(s)U^i_{d_1}(s|t^i)\geq \sum_{s\in\mathcal{S}}q(s)U^i_{d_1}(s^{-i},s^i(\widetilde{t}^i)|t^i).$$

$$d(x; (I^{-i}, R^{i}), (t^{-i}, \tilde{t}^{i})) = d(x; (I^{-i}, R^{i}), t).$$

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

Outline of the proof cont.

Deviation of player *i* of type t^i :

• Deviate from (I, t^i) to (R^i, t^i) where $R^i \neq I$. This is not profitable by the CE inequality:

$$\sum_{s \in S} q(s) U^i_{d_1}(s|t^i) \geq \sum_{s \in S} q(s) U^i_{d_1}(s^{-i}, R^i|t^i).$$

• Deviate from (I, t^i) to (I, \tilde{t}^i) where $\tilde{t}^i \neq t^i$. This is not profitable by the CE inequality:

$$\sum_{s\in\mathcal{S}}q(s)U^i_{d_1}(s|t^i)\geq \sum_{s\in\mathcal{S}}q(s)U^i_{d_1}(s^{-i},s^i(\widetilde{t}^i)|t^i).$$

Outline of the proof cont.

Deviation of player *i* of type t^i :

• Deviate from (I, t^i) to (R^i, t^i) where $R^i \neq I$. This is not profitable by the CE inequality:

$$\sum_{s \in S} q(s) U^i_{d_1}(s|t^i) \geq \sum_{s \in S} q(s) U^i_{d_1}(s^{-i}, R^i|t^i).$$

• Deviate from (I, t^i) to (I, \tilde{t}^i) where $\tilde{t}^i \neq t^i$. This is not profitable by the CE inequality:

$$\sum_{s\in\mathcal{S}}q(s)U^i_{d_1}(s|t^i)\geq \sum_{s\in\mathcal{S}}q(s)U^i_{d_1}(s^{-i},s^i(\widetilde{t}^i)|t^i).$$

$$d(x; (I^{-i}, R^{i}), (t^{-i}, \tilde{t}^{i})) = d(x; (I^{-i}, R^{i}), t).$$

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

Definition

A preference relation $R \in W$ is *dichotomous* if there exist $B_1, B_2 \in P(A)$ such that $B_1 \neq \emptyset, B_1 \cap B_2 = \emptyset$ and $B_1 \cup B_2 = A$ such that *xly* if $x, y \in B_i$, i = 1, 2 and *xPy* if $x \in B_1$, $y \in B_2$. The set of all dichotomous preferences in W is denoted by W_{δ} .

Since a dichotomous preference relation is determined by a single subset $B \subseteq A$, the set of most preferred alternatives, we use the notation $R = \frac{B}{-A \setminus B}$ for a generic dichotomous preference relation.

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

Definition

A preference relation $R \in W$ is *dichotomous* if there exist $B_1, B_2 \in P(A)$ such that $B_1 \neq \emptyset, B_1 \cap B_2 = \emptyset$ and $B_1 \cup B_2 = A$ such that *xly* if $x, y \in B_i$, i = 1, 2 and *xPy* if $x \in B_1$, $y \in B_2$. The set of all dichotomous preferences in W is denoted by W_{δ} .

Since a dichotomous preference relation is determined by a single subset $B \subseteq A$, the set of most preferred alternatives, we use the notation $R = \frac{B}{A \setminus B}$ for a generic dichotomous preference relation.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem

Let $E : P(N) \to P(P_0(A))$ be a monotonic and superadditive EF. Let $\mathscr{I} = (T^1, ..., T^n; p^1, ..., p^n)$ be an IS, and let $(u^1, ..., u^n)$ be a vector of utilities for the players. Then E has a representation by a generalized decision scheme $d : W^N_{\delta} \times T \to \Delta(A)$ such that the game $\Gamma = (N; W_{\delta}, ..., W_{\delta}; \mathscr{I}; (u^i)_{i \in N}; d)$ has a (pure strategy) BNE.

Example (back to Gibbard's example.)

Recall the information structure $\mathscr{I} = (T^1, p^2)$ where $T^1 = \{1_c, 1_n\}$ and $p^2(1_c) = p^2(1_n) = 1/2$. (player 2 has one type). • $u^1(ww, 1_c) = u^1(bb, 1_c) = 1$ and $u^1(bw, 1_c) = u^1(wb, 1_c) = 0$ (1_c likes 'conformity'). • $u^1(a, 1_n) = u^1(a, 1_c) - 1$ for all $a \in A$ (1_c also likes 'conformity' but at a lower level of utilities)

u²(a,1_c) = -u¹(a,1_c) and u²(a,1_n) = -u¹(a,1_n) for all a ∈ A (the utility of player 2 is 'opposed' to that of player 1 whatever his type is).

Example (back to Gibbard's example.)

Recall the information structure $\mathscr{I} = (T^1, p^2)$ where $T^1 = \{1_c, 1_n\}$ and $p^2(1_c) = p^2(1_n) = 1/2$. (player 2 has one type).

•
$$u^1(ww, 1_c) = u^1(bb, 1_c) = 1$$
 and
 $u^1(bw, 1_c) = u^1(wb, 1_c) = 0$ (1_c likes 'conformity').

u¹(a, 1_n) = u¹(a, 1_c) − 1 for all a ∈ A
 (1_n also likes 'conformity' but at a lower level of utilities).

Example (back to Gibbard's example.)

•
$$u^1(ww, 1_c) = u^1(bb, 1_c) = 1$$
 and
 $u^1(bw, 1_c) = u^1(wb, 1_c) = 0$ (1_c likes 'conformity').

Example (back to Gibbard's example.)

- $u^{1}(ww, 1_{c}) = u^{1}(bb, 1_{c}) = 1$ and $u^{1}(bw, 1_{c}) = u^{1}(wb, 1_{c}) = 0$ (1_c likes 'conformity').
- u¹(a, 1_n) = u¹(a, 1_c) − 1 for all a ∈ A
 (1_n also likes 'conformity' but at a lower level of utilities).
- u²(a,1_c) = -u¹(a,1_c) and u²(a,1_n) = -u¹(a,1_n) for all a ∈ A (the utility of player 2 is 'opposed' to that of player 1 whatever his type is).

Example (back to Gibbard's example.)

•
$$u^{1}(ww, 1_{c}) = u^{1}(bb, 1_{c}) = 1$$
 and
 $u^{1}(bw, 1_{c}) = u^{1}(wb, 1_{c}) = 0$ (1_c likes 'conformity').

Example (back to Gibbard's example.)

•
$$u^{1}(ww, 1_{c}) = u^{1}(bb, 1_{c}) = 1$$
 and
 $u^{1}(bw, 1_{c}) = u^{1}(wb, 1_{c}) = 0$ (1_c likes 'conformity').

- u¹(a, 1_n) = u¹(a, 1_c) − 1 for all a ∈ A
 (1_n also likes 'conformity' but at a lower level of utilities).
- u²(a, 1_c) = -u¹(a, 1_c) and u²(a, 1_n) = -u¹(a, 1_n) for all a ∈ A (the utility of player 2 is 'opposed' to that of player 1 whatever his type is).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example (continued.)

Consider the Bayesian game in which the players submit dichotomous preferences:

$$\Gamma_{\delta} = (N; W_{\delta}, W_{\delta}; \mathscr{I}; u^{1}, u^{2}; d_{uf})$$

- Player 2 has 16 pure strategies (indexed by the subsets of *A*).
- Player 1 has 16² pure strategies.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example (continued.)

Consider the Bayesian game in which the players submit dichotomous preferences:

$$\Gamma_{\delta} = (N; W_{\delta}, W_{\delta}; \mathscr{I}; u^{1}, u^{2}; d_{uf})$$

- Player 2 has 16 pure strategies (indexed by the subsets of *A*).
- Player 1 has 16² pure strategies.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example (continued.)

Consider the Bayesian game in which the players submit dichotomous preferences:

$$\Gamma_{\delta} = (N; W_{\delta}, W_{\delta}; \mathscr{I}; u^{1}, u^{2}; d_{uf})$$

- Player 2 has 16 pure strategies (indexed by the subsets of *A*).
- Player 1 has 16² pure strategies.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example (continued.)

Consider the Bayesian game in which the players submit dichotomous preferences:

$$\Gamma_{\delta} = (N; W_{\delta}, W_{\delta}; \mathscr{I}; u^{1}, u^{2}; d_{uf})$$

- Player 2 has 16 pure strategies (indexed by the subsets of *A*).
- Player 1 has 16² pure strategies.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example (continued.)

Consider the Bayesian game in which the players submit dichotomous preferences:

$$\Gamma_{\delta} = (N; W_{\delta}, W_{\delta}; \mathscr{I}; u^{1}, u^{2}; d_{uf})$$

- Player 2 has 16 pure strategies (indexed by the subsets of *A*).
- Player 1 has 16² pure strategies.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example (continued.)

Consider the Bayesian game in which the players submit dichotomous preferences:

$$\Gamma_{\delta} = (N; W_{\delta}, W_{\delta}; \mathscr{I}; u^{1}, u^{2}; d_{uf})$$

- Player 2 has 16 pure strategies (indexed by the subsets of *A*).
- Player 1 has 16² pure strategies.

Figure The restriction of the game Γ_{δ} .

Example (The reduced game.) Nature 1/21/2 $\mathbf{1}_n$ $\mathbf{1}_{c}$ 2 (ww, bw) (wb, bb)(WW, DW)(wb, bb)wb wb WW WW (ww, wb)(ww, wb)1, -1 -1, 1 0,0 0,0 bw bb bw bb (bw, bb)(bw, bb)1, -1 -1, 1 0,0 0,0

Figure The restriction of the game Γ_{δ} .

Here, the pure strategies are denoted by the upper-set in the dichotomous preference that is: $(ww, wb) \equiv \frac{ww, wb}{bw, bb}$ etc.

• A BNE of this restricted game is (s^1, s^2) where

$$s^{1}(1_{c}) = \frac{ww, wb}{bw, bb}$$
, $s^{1}(1_{n}) = \frac{bw, bb}{bw, bb}$,

and

$$s^2 = \frac{1}{2} \frac{ww, bw}{wb, bb} + \frac{1}{2} \frac{wb, bb}{ww, bw}$$

Here, the pure strategies are denoted by the upper-set in the dichotomous preference that is: $(ww, wb) \equiv \frac{ww, wb}{bw, bb}$ etc.

• A BNE of this restricted game is (s^1, s^2) where

$$s^{1}(1_{c}) = \frac{ww, wb}{bw, bb}$$
, $s^{1}(1_{n}) = \frac{bw, bb}{bw, bb}$

and

$$s^2 = \frac{1}{2} \frac{ww, bw}{wb, bb} + \frac{1}{2} \frac{wb, bb}{ww, bw}$$

Here, the pure strategies are denoted by the upper-set in the dichotomous preference that is: $(ww, wb) \equiv \frac{ww, wb}{bw, bb}$ etc.

• A BNE of this restricted game is (s^1, s^2) where

$$s^1(1_c) = \frac{ww, wb}{bw, bb}$$
, $s^1(1_n) = \frac{bw, bb}{bw, bb}$,

and

$$s^2 = \frac{1}{2} \frac{ww, bw}{wb, bb} + \frac{1}{2} \frac{wb, bb}{ww, bw}$$

Here, the pure strategies are denoted by the upper-set in the dichotomous preference that is: $(ww, wb) \equiv \frac{ww, wb}{bw, bb}$ etc.

• A BNE of this restricted game is (s^1, s^2) where

$$s^{1}(1_{c}) = \frac{ww, wb}{bw, bb}$$
, $s^{1}(1_{n}) = \frac{bw, bb}{bw, bb}$,

and

$$s^2 = \frac{1}{2} \frac{ww, bw}{wb, bb} + \frac{1}{2} \frac{wb, bb}{ww, bw}$$

Here, the pure strategies are denoted by the upper-set in the dichotomous preference that is: $(ww, wb) \equiv \frac{ww, wb}{bw, bb}$ etc.

• A BNE of this restricted game is (s^1, s^2) where

$$s^{1}(1_{c}) = \frac{ww, wb}{bw, bb}$$
, $s^{1}(1_{n}) = \frac{bw, bb}{bw, bb}$,

and

$$s^2 = \frac{1}{2} \frac{ww, bw}{wb, bb} + \frac{1}{2} \frac{wb, bb}{ww, bw}$$

- It can be shown that this is also a BNE of the game Γ_{δ} .
- As far as we can see, Γ_{δ} has no BNE in pure strategies.
It turns out that in this simple example the BNE can be obtained from the game induced by a decision scheme (rather than a GDS):

• Define a decision scheme *d* that satisfies:

$$d(a;\hat{l}^N)=rac{1}{4} ext{ for all } a \in A$$

and

$$d(a; \hat{l}^{-i}, R^i) = \frac{1}{4}$$
 for all $a \in A$ and $i \in N$

where $R^1 \in \{(ww, wb), (bw, bb)\}$ and $R^2 \in \{(ww, bw), (wb, bb)\}.$

It turns out that in this simple example the BNE can be obtained from the game induced by a decision scheme (rather than a GDS):

• Define a decision scheme d that satisfies:

$$d(a;\hat{l}^N)=rac{1}{4} ext{ for all } a\in A$$

and

$$d(a; \hat{l}^{-i}, R^i) = \frac{1}{4}$$
 for all $a \in A$ and $i \in N$

where $R^1 \in \{(ww, wb), (bw, bb)\}$ and $R^2 \in \{(ww, bw), (wb, bb)\}.$

It turns out that in this simple example the BNE can be obtained from the game induced by a decision scheme (rather than a GDS):

• Define a decision scheme d that satisfies:

$$d(a;\hat{l}^N) = \frac{1}{4}$$
 for all $a \in A$

and

$$d(a; \hat{l}^{-i}, R^i) = \frac{1}{4}$$
 for all $a \in A$ and $i \in N$

where $R^1 \in \{(ww, wb), (bw, bb)\}$ and $R^2 \in \{(ww, bw), (wb, bb)\}.$

It turns out that in this simple example the BNE can be obtained from the game induced by a decision scheme (rather than a GDS):

• Define a decision scheme d that satisfies:

$$d(a;\hat{l}^N)=rac{1}{4} \ ext{ for all } a\in A$$

and

$$d(a; \hat{l}^{-i}, R^i) = \frac{1}{4}$$
 for all $a \in A$ and $i \in N$

where $R^1 \in \{(ww, wb), (bw, bb)\}$ and $R^2 \in \{(ww, bw), (wb, bb)\}.$

It turns out that in this simple example the BNE can be obtained from the game induced by a decision scheme (rather than a GDS):

• Define a decision scheme d that satisfies:

$$d(a; \hat{l}^N) = \frac{1}{4}$$
 for all $a \in A$

and

$$d(a; \hat{l}^{-i}, R^i) = \frac{1}{4}$$
 for all $a \in A$ and $i \in N$

where $R^1 \in \{(ww, wb), (bw, bb)\}$ and $R^2 \in \{(ww, bw), (wb, bb)\}.$

• Consider the game $G = (\{1,2\}; C^1, C^2; u^1, u^2)$ in which:

- The players are 1 and 2.
- The pure strategy sets are C^1 and C^2 respectively, satisfying $|C^i| = 2, i = 1, 2$.
- The utility functions are $u^i : C^1 \times C^2 \to \mathbb{R}, i = 1, 2.$
- Consider the set of alternative to be $C := C^1 \times C^2$.
- Consider the natural effectivity function $E^G: P(N) \rightarrow P(P_0(C))$ defined as follows:
 - A coalition *S* is effective for $B \in P_0(C)$ if there exists $c_0^S \in C^S$ such that $B \supseteq \{c_0^S\} \times C^{N \setminus S}$, and

 $E^G(S) := \{B \in P_0(C) | S \text{ is effective for } B\}$

・ロト・日本・日本・日本・日本・日本

• Consider the game $G = (\{1,2\}; C^1, C^2; u^1, u^2)$ in which:

- The players are 1 and 2.
- The pure strategy sets are C^1 and C^2 respectively, satisfying $|C^i| = 2, i = 1, 2$.
- The utility functions are $u^i : C^1 \times C^2 \to \mathbb{R}, i = 1, 2.$
- Consider the set of alternative to be $C := C^1 \times C^2$.
- Consider the natural effectivity function $E^G: P(N) \rightarrow P(P_0(C))$ defined as follows:
 - A coalition *S* is effective for $B \in P_0(C)$ if there exists $c_0^S \in C^S$ such that $B \supseteq \{c_0^S\} \times C^{N \setminus S}$, and

 $E^G(S) := \{B \in P_0(C) | S \text{ is effective for } B\}$

・ロト・日本・日本・日本・日本・日本

• Consider the game $G = (\{1,2\}; C^1, C^2; u^1, u^2)$ in which:

- The players are 1 and 2.
- The pure strategy sets are *C*¹ and *C*² respectively, satisfying $|C^i| = 2, i = 1, 2$.
- The utility functions are $u^i : C^1 \times C^2 \to \mathbb{R}, i = 1, 2$.
- Consider the set of alternative to be $C := C^1 \times C^2$.
- Consider the natural effectivity function $E^G: P(N) \rightarrow P(P_0(C))$ defined as follows:
 - A coalition *S* is effective for $B \in P_0(C)$ if there exists $c_0^S \in C^S$ such that $B \supseteq \{c_0^S\} \times C^{N \setminus S}$, and

 $E^G(S) := \{B \in P_0(C) | S \text{ is effective for } B\}$

・ロト・日本・日本・日本・日本・日本

• Consider the game $G = (\{1,2\}; C^1, C^2; u^1, u^2)$ in which:

- The players are 1 and 2.
- The pure strategy sets are C^1 and C^2 respectively, satisfying $|C^i| = 2, i = 1, 2$.

• The utility functions are $u^i : C^1 \times C^2 \to \mathbb{R}, i = 1, 2$.

- Consider the set of alternative to be $C := C^1 \times C^2$.
- Consider the natural effectivity function $E^G: P(N) \rightarrow P(P_0(C))$ defined as follows:
 - A coalition *S* is effective for $B \in P_0(C)$ if there exists $c_0^S \in C^S$ such that $B \supseteq \{c_0^S\} \times C^{N \setminus S}$, and

• Consider the game $G = (\{1,2\}; C^1, C^2; u^1, u^2)$ in which:

- The players are 1 and 2.
- The pure strategy sets are C^1 and C^2 respectively, satisfying $|C^i| = 2, i = 1, 2$.
- The utility functions are $u^i : C^1 \times C^2 \to \mathbb{R}, i = 1, 2.$
- Consider the set of alternative to be $C := C^1 \times C^2$.
- Consider the natural effectivity function $E^G: P(N) \rightarrow P(P_0(C))$ defined as follows:
 - A coalition *S* is effective for $B \in P_0(C)$ if there exists $c_0^S \in C^S$ such that $B \supseteq \{c_0^S\} \times C^{N \setminus S}$, and

• Consider the game $G = (\{1,2\}; C^1, C^2; u^1, u^2)$ in which:

- The players are 1 and 2.
- The pure strategy sets are C^1 and C^2 respectively, satisfying $|C^i| = 2, i = 1, 2$.
- The utility functions are $u^i : C^1 \times C^2 \to \mathbb{R}, i = 1, 2.$
- Consider the set of alternative to be $C := C^1 \times C^2$.
- Consider the natural effectivity function $E^G: P(N) \rightarrow P(P_0(C))$ defined as follows:
 - A coalition *S* is effective for $B \in P_0(C)$ if there exists $c_0^S \in C^S$ such that $B \supseteq \{c_0^S\} \times C^{N \setminus S}$, and

• Consider the game $G = (\{1,2\}; C^1, C^2; u^1, u^2)$ in which:

- The players are 1 and 2.
- The pure strategy sets are C^1 and C^2 respectively, satisfying $|C^i| = 2, i = 1, 2$.
- The utility functions are $u^i : C^1 \times C^2 \to \mathbb{R}, i = 1, 2.$
- Consider the set of alternative to be $C := C^1 \times C^2$.
- Consider the natural effectivity function $E^G: P(N) \rightarrow P(P_0(C))$ defined as follows:
 - A coalition *S* is effective for $B \in P_0(C)$ if there exists $c_0^S \in C^S$ such that $B \supseteq \{c_0^S\} \times C^{N \setminus S}$, and

 $E^G(S) := \{B \in P_0(C) | S \text{ is effective for } B\}$

• Consider the game $G = (\{1,2\}; C^1, C^2; u^1, u^2)$ in which:

- The players are 1 and 2.
- The pure strategy sets are C^1 and C^2 respectively, satisfying $|C^i| = 2, i = 1, 2$.
- The utility functions are $u^i : C^1 \times C^2 \to \mathbb{R}, i = 1, 2.$
- Consider the set of alternative to be $C := C^1 \times C^2$.
- Consider the natural effectivity function $E^G: P(N) \rightarrow P(P_0(C))$ defined as follows:
 - A coalition S is effective for $B \in P_0(C)$ if there exists $c_0^S \in C^S$ such that $B \supseteq \{c_0^S\} \times C^{N \setminus S}$, and

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Example (Two-person 2×2 games)

• Consider the game $G = (\{1,2\}; C^1, C^2; u^1, u^2)$ in which:

- The players are 1 and 2.
- The pure strategy sets are C^1 and C^2 respectively, satisfying $|C^i| = 2, i = 1, 2$.
- The utility functions are $u^i : C^1 \times C^2 \to \mathbb{R}, i = 1, 2.$
- Consider the set of alternative to be $C := C^1 \times C^2$.
- Consider the natural effectivity function $E^G: P(N) \rightarrow P(P_0(C))$ defined as follows:
 - A coalition S is effective for $B \in P_0(C)$ if there exists $c_0^S \in C^S$ such that $B \supseteq \{c_0^S\} \times C^{N \setminus S}$, and

- A correlated strategy is a probability distribution p on $C = C^1 \times C^2$.
- The corresponding payoffs to a correlated strategy p is

$$u^{i}(p) = \sum_{c^{1} \in C^{1}} \sum_{c^{2} \in C^{2}} p(c)u^{i}(c^{1}, c^{2}), \ i = 1, 2$$

• The security levels (in mixed strategies) of player 1 and player 2 are:

$$v^{1} = \max_{\sigma^{1} \in \Delta(C^{1})} \min_{c^{2} \in C^{2}} u^{1}(\sigma^{1}, c^{2})$$

$$v^2 = \max_{\sigma^2 \in \Delta(C^2)} \min_{c^1 \in C^1} u^2(c^1, \sigma^2)$$

- A correlated strategy is a probability distribution p on $C = C^1 \times C^2$.
- The corresponding payoffs to a correlated strategy p is

$$u^{i}(p) = \sum_{c^{1} \in C^{1}} \sum_{c^{2} \in C^{2}} p(c)u^{i}(c^{1}, c^{2}), \ i = 1, 2.$$

• The security levels (in mixed strategies) of player 1 and player 2 are:

$$u^{1} = \max_{\sigma^{1} \in \Delta(C^{1})} \min_{c^{2} \in C^{2}} u^{1}(\sigma^{1}, c^{2})$$

$$v^2 = \max_{\sigma^2 \in \Delta(\mathcal{C}^2)} \min_{c^1 \in \mathcal{C}^1} u^2(c^1, \sigma^2)$$

- A correlated strategy is a probability distribution p on $C = C^1 \times C^2$.
- The corresponding payoffs to a correlated strategy p is

$$u^{i}(p) = \sum_{c^{1} \in C^{1}} \sum_{c^{2} \in C^{2}} p(c)u^{i}(c^{1}, c^{2}), \ i = 1, 2$$

 The security levels (in mixed strategies) of player 1 and player 2 are:

$$v^{1} = \max_{\sigma^{1} \in \Delta(C^{1})} \min_{c^{2} \in C^{2}} u^{1}(\sigma^{1}, c^{2})$$

$$v^2 = \max_{\sigma^2 \in \Delta(C^2)} \min_{c^1 \in C^1} u^2(c^1, \sigma^2)$$

A decision scheme $d: W_{\delta}^{N} \to \Delta(C)$ is *individually rational* (IR) (w.r.t. the game *G*) if each player $i \in N$ has a strategy $V^{i} \in W_{\delta}$ such that $u^{i}(d(V^{i}, \mathbb{R}^{N \setminus \{i\}})) \geq v^{i}$ for all $\mathbb{R}^{N \setminus \{i\}} \in W_{\delta}^{N \setminus \{i\}}$.

Proposition

- Let $p \in \Delta(C)$. Then $u^i(p) \ge v^i$ for i = 1, 2, if and only if there exists a decision scheme $d : W^N_{\delta} \to \Delta(C)$ such that,
 - (i) The decision scheme d is a representation of E^G, the EF of G.
- (ii) The game Γ = (N; W_δ, W_δ; u¹, u²; d) has a Nash equilibrium (R¹, R²) ∈ W^N_δ such that d(·, (R¹, R²)) = p.
 (iii) The decision coheres d is individually rational.

(iii) The decision scheme d is individually rational.

A decision scheme $d: W_{\delta}^{N} \to \Delta(C)$ is *individually rational* (IR) (w.r.t. the game *G*) if each player $i \in N$ has a strategy $V^{i} \in W_{\delta}$ such that $u^{i}(d(V^{i}, \mathbb{R}^{N \setminus \{i\}})) \geq v^{i}$ for all $\mathbb{R}^{N \setminus \{i\}} \in W_{\delta}^{N \setminus \{i\}}$.

Proposition

Let $p \in \Delta(C)$. Then $u^i(p) \ge v^i$ for i = 1, 2, if and only if there exists a decision scheme $d : W^N_{\delta} \to \Delta(C)$ such that,

- (i) The decision scheme d is a representation of E^G, the EF of G.
- (ii) The game $\Gamma = (N; W_{\delta}, W_{\delta}; u^1, u^2; d)$ has a Nash equilibrium $(R^1, R^2) \in W_{\delta}^N$ such that $d(\cdot, (R^1, R^2)) = p$

(iii) The decision scheme d is individually rational.

A decision scheme $d: W_{\delta}^{N} \to \Delta(C)$ is *individually rational* (IR) (w.r.t. the game *G*) if each player $i \in N$ has a strategy $V^{i} \in W_{\delta}$ such that $u^{i}(d(V^{i}, \mathbb{R}^{N \setminus \{i\}})) \geq v^{i}$ for all $\mathbb{R}^{N \setminus \{i\}} \in W_{\delta}^{N \setminus \{i\}}$.

Proposition

Let $p \in \Delta(C)$. Then $u^i(p) \ge v^i$ for i = 1, 2, if and only if there exists a decision scheme $d : W^N_{\delta} \to \Delta(C)$ such that,

- (i) The decision scheme d is a representation of E^G, the EF of G.
- (ii) The game $\Gamma = (N; W_{\delta}, W_{\delta}; u^1, u^2; d)$ has a Nash equilibrium $(R^1, R^2) \in W_{\delta}^N$ such that $d(\cdot, (R^1, R^2)) = p$.

(iii) The decision scheme d is individually rational.

A decision scheme $d: W_{\delta}^{N} \to \Delta(C)$ is *individually rational* (IR) (w.r.t. the game *G*) if each player $i \in N$ has a strategy $V^{i} \in W_{\delta}$ such that $u^{i}(d(V^{i}, \mathbb{R}^{N \setminus \{i\}})) \geq v^{i}$ for all $\mathbb{R}^{N \setminus \{i\}} \in W_{\delta}^{N \setminus \{i\}}$.

Proposition

Let $p \in \Delta(C)$. Then $u^i(p) \ge v^i$ for i = 1, 2, if and only if there exists a decision scheme $d : W^N_{\delta} \to \Delta(C)$ such that,

- (i) The decision scheme d is a representation of E^G, the EF of G.
- (ii) The game $\Gamma = (N; W_{\delta}, W_{\delta}; u^1, u^2; d)$ has a Nash equilibrium $(R^1, R^2) \in W_{\delta}^N$ such that $d(\cdot, (R^1, R^2)) = p$.

iii) The decision scheme d is individually rational.

A decision scheme $d: W_{\delta}^{N} \to \Delta(C)$ is *individually rational* (IR) (w.r.t. the game *G*) if each player $i \in N$ has a strategy $V^{i} \in W_{\delta}$ such that $u^{i}(d(V^{i}, \mathbb{R}^{N \setminus \{i\}})) \geq v^{i}$ for all $\mathbb{R}^{N \setminus \{i\}} \in W_{\delta}^{N \setminus \{i\}}$.

Proposition

Let $p \in \Delta(C)$. Then $u^i(p) \ge v^i$ for i = 1, 2, if and only if there exists a decision scheme $d : W^N_{\delta} \to \Delta(C)$ such that,

- (i) The decision scheme d is a representation of E^G, the EF of G.
- (ii) The game $\Gamma = (N; W_{\delta}, W_{\delta}; u^1, u^2; d)$ has a Nash equilibrium $(R^1, R^2) \in W_{\delta}^N$ such that $d(\cdot, (R^1, R^2)) = p$.

(iii) The decision scheme d is individually rational.

A decision scheme $d: W_{\delta}^{N} \to \Delta(C)$ is *individually rational* (IR) (w.r.t. the game *G*) if each player $i \in N$ has a strategy $V^{i} \in W_{\delta}$ such that $u^{i}(d(V^{i}, \mathbb{R}^{N \setminus \{i\}})) \geq v^{i}$ for all $\mathbb{R}^{N \setminus \{i\}} \in W_{\delta}^{N \setminus \{i\}}$.

Proposition

Let $p \in \Delta(C)$. Then $u^i(p) \ge v^i$ for i = 1, 2, if and only if there exists a decision scheme $d : W^N_{\delta} \to \Delta(C)$ such that,

- (i) The decision scheme d is a representation of E^G, the EF of G.
- (ii) The game $\Gamma = (N; W_{\delta}, W_{\delta}; u^1, u^2; d)$ has a Nash equilibrium $(R^1, R^2) \in W_{\delta}^N$ such that $d(\cdot, (R^1, R^2)) = p$.

(iii) The decision scheme d is individually rational.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example (The prisoners' dilemma)

Consider the prisoners' dilemma given in the following game:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Example (The prisoners' dilemma)

Consider the prisoners' dilemma given in the following game:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example (The prisoners' dilemma, Cont.)

Here $v^1 = v^2 = 0$ and the set of NE payoffs is given in Figure 1:

Figure 1: The NE payoffs in the prisoners' dilemma .

Recall that (0,0) is the unique correlated equilibrium payoff.

Example (The prisoners' dilemma, Cont.)

Here $v^1 = v^2 = 0$ and the set of NE payoffs is given in Figure 1:

Figure 1: The NE payoffs in the prisoners' dilemma .

Recall that (0,0) is the unique correlated equilibrium payoff.

References

- Abdou, J. and H. Keiding (1991): Effectivity functions in social choice. *Kluwer Academic Publishers*, Dordrecht.
- Arrow, K. J. (1951, 1963): Social choice and individual values. *Wiley*, New York.
- Gardenfors, P. (1981): Rights, games, and social choice. *Nous*, 15, 341-356.
- Keiding, H., and B. Peleg (2006): Binary effectivity rules. *Review of Economic Design*, 10, 167 181.
- Peleg, B., and H. Peters (2010): Strategic social choice. *Springer*, Berlin.

References

- Abdou, J. and H. Keiding (1991): Effectivity functions in social choice. *Kluwer Academic Publishers*, Dordrecht.
- Arrow, K. J. (1951, 1963): Social choice and individual values. *Wiley*, New York.
- Gardenfors, P. (1981): Rights, games, and social choice. Nous, 15, 341-356.
- Keiding, H., and B. Peleg (2006): Binary effectivity rules. *Review of Economic Design*, 10, 167 181.
- Peleg, B., and H. Peters (2010): Strategic social choice. *Springer*, Berlin.