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The setting

Consider a second-order elliptic operator P with real coefficients in
divergence form

Pu := − 1

m(x)
div
[
m(x)

(
A(x)∇u + b̃(x)u

)]
+ b(x) · ∇u + c(x)u,

which is defined in a domain Ω ⊂ Rn, n ≥ 2 (or more generally, on a
smooth noncompact manifold Ω of dimension n, dν := m dx).

Prototype equations are given by the Laplace-Beltrami operator −∆ and
the Schrödinger operator −∆ + V (x).
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Agmon’s problem

Problem (Agmon (1982))

Given a symmetric elliptic operator P in Rn, find a continuous,
nonnegative function W which is ‘as large as possible’ such that for some
neighborhood of infinity ΩR the following inequality holds∫

ΩR

Pϕϕdν ≥
∫

ΩR

W (x)|ϕ|2 dν ∀ϕ ∈ C∞0 (ΩR).

Agmon used such W to measure the decay of solutions of the equation
Pu = λu in Rn via the celebrated Agmon’s metric

ds2 := W (x)
n∑

i ,j=1

aij(x)dxi dxj , where
[
aij
]

:= A−1.

The decay is given in terms of W and a function h satisfying

|∇h(x)|2A < W (x) a.e. Ω.
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Features of Hardy inequality W (x) = CH

|x |2
Let Ω? := Rn \ {0}. Consider the celebrated Hardy inequality∫

Ω?
|∇ϕ|2 dx ≥ λ

∫
Ω?

CH

|x |2
|ϕ(x)|2 dx ∀ϕ ∈ C∞0 (Ω?), (0.1)

where λ ≤ 1 and CH :=
(
n−2

2

)2
.

It has the following important features:

(a) P =−∆− CH
|x |2 is critical in Ω?, i.e., for any V (x)	 CH

|x |2 the inequality∫
Ω?
|∇ϕ|2 dx ≥

∫
Ω?

V (x)|ϕ(x)|2 dx ∀ϕ ∈ C∞0 (Ω?)

is not valid. In particular, λ = 1 is the best constant for (0.1).

(b) λ = 1 is also optimal for test functions supported in any fixed
neighborhood of either 0 or ∞.

(c) The corresponding Rayleigh-Ritz variational problem

inf
ϕ∈D1,2(Ω?)

{ ∫
Ω? |∇ϕ|

2 dx∫
Ω?

CH
|x |2 |ϕ(x)|2 dx

}
admits no minimizer.
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Criticality theory

Definition

Let P be a general, second-order elliptic operator on a domain Ω ⊂ Rn (or
on a noncompact manifold Ω), n ≥ 2.

P is nonnegative (P ≥ 0) in Ω if the equation Pu = 0 in Ω admits a
global positive (super)solution.

P ≥ 0 in Ω is said to be critical in Ω if P −W 6≥ 0 in Ω for any
W 	 0. Otherwise, P is subcritical in Ω.

If P 6≥ 0 in Ω, then P is supercritical in Ω.
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Criticality theory

Remarks
1 In the symmetric case, P ≥ 0 iff the quadratic form associated to P is

nonnegative on C∞0 (Ω) (i.e.
∫

Ω Pϕϕdν ≥ 0 ∀ϕ ∈ C∞0 (Ω)).

2 P is subcritical in Ω iff it admits a positive minimal Green function
G Ω
P (x , y) in Ω.

3 P is subcritical in Ω iff it admits a positive supersolution u in Ω which
is not a solution. So, P −W ≥ 0, where W := Pu/u 	 0.

4 If P is critical in Ω, then the equation Pu = 0 admits a unique
positive solution ψ in Ω, called the Agmon’s ground state of P in Ω.
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Optimal Hardy-weight: Features (a)–(c)
We assume that x0 = 0 ∈ Ω, and denote Ω∗ := Ω \ {0}.

Definition

Let P be subcritical in Ω. We say that W ≥ 0 is an optimal Hardy-weight
for P in Ω∗ if P −W has the following properties:

(a) P −W is critical in Ω∗. In particular,

max
{
λ ∈ R | P − λW ≥ 0 in Ω∗

}
= 1.

(b) λ = 1 is also optimal for the inequality P − λW ≥ 0 in any fixed
punctured neighborhood of either 0 or ∞ in Ω.

(c) Denote the ground states of P −W and P? −W in Ω∗ by ψ and ψ?.
Then ψψ? is not Wdν-integrable in any fixed neighborhood of either
0 or ∞ (P is said to be null-critical in Ω?).

Aim: For general P and Ω find an optimal Hardy-weight W
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The supersolution construction

Lemma (Supersolution construction)

Let vj be two positive solutions (resp. supersolutions) of the equation
Pu = 0, j = 0, 1, in a domain Ω, and let v := v1/v0. Then for any
0 ≤ α ≤ 1 the function

vα(x) :=
(
v1(x)

)α(
v0(x)

)1−α
=
(
v(x)

)α
v0(x)

is a positive solution (resp. supersolution) of the equation[
P − 4α(1− α)W (x)

]
u = 0 in Ω.

Here

W (x) :=
|∇v |2A

4v 2
≥ 0, where |ξ|2A := ξ · Aξ .

In particular, P −W ≥ 0 in Ω.
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Main result

Theorem

Let P be a subcritical operator in Ω, and let G (x) := G Ω
P (x , 0). Let u be a

positive solution of the equation Pu = 0 in Ω satisfying

lim
x→∞

v(x) = 0, where v(x) :=
G (x)

u(x)
, and

∞ is the ideal point in the one-point compactification Ω̂ of Ω. Consider
the supersolution v1/2 :=

√
Gu.

Then the Hardy-weight W :=
|∇v |2A

4v2 is an optimal Hardy-weight in Ω?.

Furthermore, in the symmetric case, let σ, (σess) be the (essential)
spectrum of the operator P̃ := W−1P on L2(Ω?,Wdν). Then

σ = σess = [1,∞).

cf. Adimurthi-Sekar, Carron, Cowan, D’Ambrosio, Li-Wang, Cazacu-Zuazua, . . . .
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On the condition limx→∞
G (x)
u(x) = 0

Remark

By a result of A. Ancona (2002), if P is symmetric, or more generally if
G Ω
P (x , y) � G Ω

P (y , x), then a positive solution u of the equation Pu = 0 in
Ω satisfying

lim
x→∞

G (x)

u(x)
= 0

always exists.
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Proof’s outline

Surprisingly, the proof of the main theorem is similar to the following proof
of the particular case of the classical Hardy inequality.
Let P = −∆ be the Laplace operator on Ω? := Rn \ {0}, where n ≥ 3,
and denote by G (x) := |x |2−n the corresponding positive minimal Green
function.
Consider the positive superharmonic function in Ω

v1/2(x) := |x |(2−n)/2 = G (x)1/2 =
√

G (x)1.

By the supersolution construction, W (x) = CH |x |−2. So, we obtain the
Hardy inequality∫

Ω?
|∇ϕ|2 dx ≥

∫
Ω?

CH

|x |2
|ϕ(x)|2 dx ∀ϕ ∈ C∞0 (Ω?).
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Criticality
To prove that W (x) = CH |x |−2 is an optimal Hardy-weight, we analyze
oscillatory properties of the corresponding radial Euler’s equation

−u′′ − n − 1

r
u′ − λCH

r 2
u = 0 r ∈ (0,∞), (0.2)

where λ ∈ R. For λ 6= 1 two linearly independent solutions of (0.2) are
given by

u±(r) =
(

r (2−n)/2
)(

r (2−n)/2
)±√1−λ

,

while for λ = 1 two linearly independent solutions of (0.2) are expressed by

u+(r) = r (2−n)/2, u−(r) =
(

r (2−n)/2
)

log(r 2−n).

For λ < 1 both solutions are positive, and therefore, the operator
P − λCH |x |−2 is subcritical in Ω?. For λ = 1 only u+ is positive, and
moreover, it is dominated by |u−| at both ends r = 0 and r =∞. Hence,
u+ is a ground state, and P − CH |x |−2 is critical in Ω? (Khas’minskĭi
criterion for recurrency).
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Optimality near infinity and null-criticality
Finally, for λ > 1 the solution of (0.2) given by

ϕξ(r) := Re{u+(r)} = r (2−n)/2 cos
[
ξ log(r 2−n)

]
, where ξ :=

√
λ− 1

2
,

oscillates in compact sets near zero and near infinity, and therefore, the
best possible constant for the validity of the Hardy inequality in any
neighborhood of either the origin or infinity is also 1. In particular,

inf
{
σ(−C−1

H |x |
2∆,Ω∗)

}
= inf

{
σess(−C−1

H |x |
2∆,Ω∗)

}
= 1.

Furthermore, since ϕξ → ϕ0 as ξ → 0, the orthogonality relation∫
{−π2 <ξ log(r2−n)< 0}

ϕξϕ3ξ r−2 dr = 0

implies that ϕ0(r) = r (2−n)/2 6∈ L2(Ω?, |x |−2 dx), which shows the
null-criticality of the Hardy operator −∆− CH |x |−2 in Ω?.
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best possible constant for the validity of the Hardy inequality in any
neighborhood of either the origin or infinity is also 1. In particular,

inf
{
σ(−C−1

H |x |
2∆,Ω∗)

}
= inf

{
σess(−C−1

H |x |
2∆,Ω∗)

}
= 1.

Furthermore, since ϕξ → ϕ0 as ξ → 0, the orthogonality relation∫
{−π2 <ξ log(r2−n)< 0}

ϕξϕ3ξ r−2 dr = 0

implies that ϕ0(r) = r (2−n)/2 6∈ L2(Ω?, |x |−2 dx), which shows the
null-criticality of the Hardy operator −∆− CH |x |−2 in Ω?.

Yehuda Pinchover (Technion) Hardy inequalities Weizmann, 2012 13 / 19



The entire spectrum
The spectral representation of P̃ := C−1

H |x |
2(−∆), restricted to the radial

functions, is obtained by Mellin’s transform, M : L2(0,∞) −→ L2(R)

Mf (ξ) =
1√
2π

∫ ∞
0

f (r)r iξ−
1
2 dr .

In fact, the composition of the unitary operator

L2
(

(0,∞), rn−1 CH

r 2
dr
)
→ L2(0,∞); f (r) 7→

√
|n − 2|

2
f (r 1/(n−2)),

and the Mellin transform, gives a unitary operator

U : L2
rad(Ω?,W dx) ∼= L2

(
(0,∞), rn−1 CH

r 2
dr
)
→ L2(R),

which is a spectral representation for P̃ restricted to radial function: in
this representation, P̃ is just the multiplication by λ = 1 + 4ξ2. Indeed,
this follows from the fact that(

P̃ − (4ξ2 + 1)
) (

rn−2
)iξ− 1

2 = 0.

Hence, σ(P̃,Ω∗) = σess(P̃,Ω∗) = [1,∞).
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Proof in the general case
Loosely speaking, to obtain the general result, just replace in the above
proof, the function r (2−n) = r (2−n)/1 with the function v(x) = G(x)

u(x) , and
the radial functions with the space of functions v that are proportional to
u on the level sets of G/u (i.e. v = uf (G/u), where f : (0, ∞)→ C).

In

particular, let ϕ(ξ, x) := ϕξ(x) = u
(
G
u

)1/2
exp(iξ log(G/u)). We have

Theorem

In the symmetric case, F : L2
rad(Ω?,Wdν)→ L2(R, dξ) given by

F f (ξ) :=

√
2

π

∫
Ω?

f (x)ϕ(ξ, x)W (x)dν(x) ξ ∈ R,
is a unitary operator, whose inverse is given by

F−1g(x) =

√
2

π

∫
R

g(ξ)ϕ(−ξ, x)dξ.

Furthermore,

F 1

W
PF−1f (ξ) = (1 + 4ξ2)f (ξ).
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Application: Rellich-type inequality

Corollary

Assume that P is subcritical in Ω, symmetric in L2(Ω, dν). Let W > 0 be
the obtained optimal Hardy weight. Then the induced Agmon metric is
complete, and by Agmon, the following Rellich-type inequality holds true∫

Ω
|u|2W (x) dx ≤

∫
Ω

|Pu|2

W (x)
dx ∀u ∈ C∞0 (Ω?).

Example (Ghoussoub-Moradifam (2011), Caldiroli-Musina (2012))

Take Ω? = Rn \ {0}, n ≥ 3 with the optimal Hardy-weight
W (x) := CH |x |−2. Then for any 0 ≤ µ < 1 the following Rellich-type
inequality holds true (with the best constant)(

n−2

2

)4(
1−µ2

)2
∫

Ω?

|u(x)|2

|x |2+(n−2)µ
dx≤

∫
Ω?
|∆u|2|x |2−(n−2)µ dx ∀u ∈ C∞0 (Ω?).
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Generalizations

1 Boundary singularities.

2 Finitely many ends.

3 The quasilinear case.
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Confucius (500 BCE)- The Analects, Section 1.2

The Master said:

At fifteen, I had my mind bent on learning.

At thirty, I stood firm.

At forty, I had no doubts.

At fifty, I knew the decrees of Heaven.

At sixty, my ear was an obedient organ for the reception of truth.

At seventy, I could follow what my heart desired, without transgressing
what was right.

Yehuda Pinchover (Technion) Hardy inequalities Weizmann, 2012 18 / 19



Confucius (500 BCE)- The Analects, Section 1.2

The Master said:

At fifteen, I had my mind bent on learning.

At thirty, I stood firm.

At forty, I had no doubts.

At fifty, I knew the decrees of Heaven.

At sixty, my ear was an obedient organ for the reception of truth.

At seventy, I could follow what my heart desired, without transgressing
what was right.

Yehuda Pinchover (Technion) Hardy inequalities Weizmann, 2012 18 / 19



Confucius (500 BCE)- The Analects, Section 1.2

The Master said:

At fifteen, I had my mind bent on learning.

At thirty, I stood firm.

At forty, I had no doubts.

At fifty, I knew the decrees of Heaven.

At sixty, my ear was an obedient organ for the reception of truth.

At seventy, I could follow what my heart desired, without transgressing
what was right.

Yehuda Pinchover (Technion) Hardy inequalities Weizmann, 2012 18 / 19



Confucius (500 BCE)- The Analects, Section 1.2

The Master said:

At fifteen, I had my mind bent on learning.

At thirty, I stood firm.

At forty, I had no doubts.

At fifty, I knew the decrees of Heaven.

At sixty, my ear was an obedient organ for the reception of truth.

At seventy, I could follow what my heart desired, without transgressing
what was right.

Yehuda Pinchover (Technion) Hardy inequalities Weizmann, 2012 18 / 19



Confucius (500 BCE)- The Analects, Section 1.2

The Master said:

At fifteen, I had my mind bent on learning.

At thirty, I stood firm.

At forty, I had no doubts.

At fifty, I knew the decrees of Heaven.

At sixty, my ear was an obedient organ for the reception of truth.

At seventy, I could follow what my heart desired, without transgressing
what was right.

Yehuda Pinchover (Technion) Hardy inequalities Weizmann, 2012 18 / 19



Confucius (500 BCE)- The Analects, Section 1.2

The Master said:

At fifteen, I had my mind bent on learning.

At thirty, I stood firm.

At forty, I had no doubts.

At fifty, I knew the decrees of Heaven.

At sixty, my ear was an obedient organ for the reception of truth.

At seventy, I could follow what my heart desired, without transgressing
what was right.

Yehuda Pinchover (Technion) Hardy inequalities Weizmann, 2012 18 / 19



Mishnah (200 CE), Ethics of the Fathers (5.21)

He [Yehuda ben Teima] used to say:

. . .

Forty [is the age] for understanding,

Fifty [is the age] for [giving] counsel,

Sixty [is the age] for sagacity,

Seventy [is the age] for Seiva (hoariness)

. . .

They shall still bring forth fruit in old age
they shall stay fresh and flourishing (Psalms 92,15)

Mazal Tov!
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