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* SECTION 1: NoTATIONS, DEFINITIONS *

Notations and Definitions
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1.1 Games and Solutions

e I “the players” : {1,...,n} or an interval of R,
e F “the coalitions” (P(I) or Borelian subsets of I).

e v “the coalitional function”, v = F — R,
(v(®) =0, v(I)=1)
).

( a.c. w.r.t. A — hence nonatomic

Players cooperate in S € E, — monetary value v(S).

Imputations :

J:={&| £ is a probability on F}.
(“Total worth” v(I) is distributed).
Definition 1.1. QRN MO I is o mapping from a
class V' of coalitional functions resulting in a set of imputations,

1.€.

S:V — P(J)

Example 1.2.

e The N2
Clv) = {€€T|E2v .}

LYMNN Shapley value:

a linear mapping
P =V =]

axiomatically defined.
SHAPLEY****[1954], AUMANN-SHAPLEY****[1966],
KANNAT****[1966],



x 1.1 GAMES AND SOLUTIONS *

The SENAENITIIAA (‘Von Neumann—Morgenstern Solution”):
(VON NEUMANN-MORGENSTERN**** [1944], LUCAS****[1968])

q dominates LEERIESNY
if

(1.1) A(S) >0 and &(S5) <wv(9)
and
(1.2) ET)>n(T) (T€E, TCS AT)>0).

Every subcoalition of S (almost every player in S') strictly improves
its payoff at & versus 7.

Write £ domgn .

Definition 1.3. BERINAY BRI T2

A set 8 of imputations such that:
e (“Internal stability”:)
no &,m € & with £ dom, 0.

e (“external stability”:)
for m & 8 there exists & € 8§ such that € dom, .
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Example 1.4. [the 3—person majority game)|

I = {1,2,3}

1 (8]>2)
v(S) = {O otherwise

-1

icl

Imputations:
§(v) = {z € R}

(unit simplex in R3).

e? = (0,1,0)

,0)

N[

el = (1,0,0) (3,
Figure 1.1: Imputations and Solutions for the Majority Game

We have

The Shapley Value: ®(v) = (
The Core: C(v) = 0 ;

1

2

A vNM-Stable Set: 8§ = {(
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1.2 Linear Production Games
v = v given by
v(9) = max{cz |z R, , Az <b(S)}

with (all nonnegative):

!

ce R,

A an m X [ matrix ,

b: F — R7 a (nonatomic) vectorvalued measure .

The Core is nonempty !

y € RT: an optimal solution for the dual problem of the grand
coalition (“shadow prices” for production factors),

gb(I) = min{yb(I)‘yE]RT, yAZc}

then
gb(e) € C(v*")
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Remark 1.5.

)
Core and the Shapley value “converge” towards equilibria.

(i.e. yb(e) the shadow price evaluated worth of the factors
= equilibrium solution)

)

Both favor the short side of the market

)
Equivalence Theorems

.) The vINM-Stable Set does not satisfy equivalence
theorems - respects the cartel power of the long side.

Remark 1.6. Any LP.—game v is a “glove game”, i.e.,
(1.3) v(S) == min{N(S)|p = 1,...,7} (SeE).

( A” are assumed copies of Lebesgue measure on some interval).
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Linear Production Games:

Continuum of Players

2.1 The Orthogonal Case

Forv(e) := min{A’(e) | p=1,...,r} the core is well known(BILLERA—
RAANAN *** [1981]):

Theorem 2.1. C{v} = ConvH{N |X(I)=1=v(I)}

In the orthogonal and exact case, the Core is vNM—Stable. (EINY,
HOLZMAN, MONDERER, SHITOVITZ ****[1996]).

Theorem 2.2. Let
v(e) =min{A(e) | p=1,...,r}

and suppose that the A* are orthogonal probabilities. Then the
core is (the unique) vNM-Stable Set.

Al A2

1 2 3 r

Figure 2.1: The exact and orthogonal case
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Al )\2 )\r—l

1 2 3 r—1
Figure 2.2: The not exact and orthogonal case

If the game is not exact, then the Core is not vNM-stable.

Characterization of convex vNM-Stable Sets (ROSENMULLER-SHITOVITZ
**% [2000,2010] ):

Theorem 2.3 ( Characterization).
Let p? be probabilities satisfying

1w <N (p=1,...,r),
2. pf <1 a.e. (p=1,...,7r),

Then
§ = ConvH{p’|p=1,...,r}

18 a vINM—=Stable set.
All convex vINM—Stable sets are generated this way.

)\1 A2 )\7‘—1 Ar

r

7

Figure 2.3: The orthogonal case — a vNM-Stable Set

.) The vINM-Stable Set does not favor the short
side of the market unconditionally - respects the
cartel power of the long side.
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2.2 c¢—Relevant Coalitions

For orthogonal A” and S = J/_, S (disjoint !).
v(S) = rﬁé? N(S) = 151}11 A (SP)

Choose T? C SP with A(T?) = v(S5).

Then T = UJ_; T7 yields

Now: if ¥ domgn, then ¥ domy n.

Moreover:

Theorem 2.4 ( AR INN T )- Let 9,1 be im-

putations and let ¥ domgmn. Then, for all sufficiently small ¢ > 0
there is a coalition T'CS satisfying

(ANT),..., N (T)) = ¢(1,...,1) and Ydomrn .

Le., with respect to domination, it is sufficient and necessary to
consider “c—relevant coalitions” only.
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LP Games — Continuum of Players

The Semi Orthogonal Game

3.1 The non—cornered commodity

Now A',..., \": orthogonal probabilities (Lebesgue measure)
also : A” with piecewise constant density, )\O(I ) > 1.

Le.

(3.1) AV = Zhr Ip~;

Dl D2 Dt D2t

Figure 3.1: The density of \°
Again consider
v(e) = min{A’(e)|p=0,1,...,r}

Then
Clv) = ConvH{N |p=1,...;r } .

Drt



% 3.1 THE SEMI ORTHOGONAL CASE %

11

Forr =t =2:

Al

A2

Figure 3.2: The density of A° with 4 steps
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3.2 c—Relevant Coalitions

“Discrete analogues” : (A = A(D"))
3K 3k Sk koK 3k sk koK ks sk sk skosk ks sk sk skosk ko sk sk skosk skosk sk sk sk skoskosk ko skosk sk skoskosk ko skoskoskoskosk kol sk skoskoskoskosk skokoskosksksk

Pre—mputations:

Tr = (xT)TET € ]R':-t

Z Ay =1

T€T

Then

(3.2) 9 = > x.lp,,

T€T

constitutes ¥* € J(v)

htr

T,

Figure 3.3: A preimputation
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Skkosk sk >kokosk sk skokosk sk sk ok sk skoskosk sk stokoskosk stk skosk sk skotokoskosk kol sk stokosk skokosk skokokoskoskokosk skokok skokokoskokokok skokoskosk

Pre—coalitions:.

a = (aT)TGT

For some ¢ > 0 choose a coalition T

AT*ND")=¢ca, (TeT).

Dl D2 Dt / D2t Drt

Figure 3.4: A pre—coalition
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Skkosk sk >kokosk sk skokosk sk sk ok sk skoskosk sk stokoskosk stk skosk sk skotokoskosk kol sk stokosk skokosk skokokoskoskokosk skokok skokokoskokokok skokoskosk

pre—measures , i.e., functionals on pre—coalitions:

¢ : R"= R, cla) = ZaT

TETP

corresponds to A” as
AN(T*) = ec’(a)

also
d  R"=R, c(a) = ZhTaT

corresponds to A, as

AT = ec%(a) .
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Skkosk sk >kokosk sk skokosk sk sk ok sk skoskosk sk stokoskosk stk skosk sk skotokoskosk kol sk stokosk skokosk skokokoskoskokosk skokok skokokoskokokok skokoskosk

pre—game

v(a) := min{c’(a)| (p=0,1,...,r)}
(positively homogenous: v(ta) = tv(a) t > 0).
Definition 3.1. The extremal points of the convex set
(3.3) A {aceR}|c(a)>1 (p=0,1,...,7)}

are called the relevant vectors.

NS R The Inheritance Theorem BB

Let 9 domg 7.

Then there is 6 > 0 such that for all 0 < e < § there is a relevant
vector a® € A° and a coalition TCS satisfying

—

AXT)=¢ea® and Ydomrn.

It is sufficient and necessary to consider e—relevant coalitions only.
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3.3 vINM-Stable Sets
for the Semi—Orthogonal Game

With some conditions to the h, we can construct a “candidate”.

htr

Al A? A

Dl D2 Dt D2t D'I’t

Figure 3.5: The density of A°

Dl D2 Dt D2t DTt

Figure 3.6: The canditate &
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Definition 3.3. Define &:
First

(34) ET - h’T (T eT \ {?17F7"})

Then =, and Tz, by two equations

(3.5) Try, + hayo oo+ he  +77 =1
and
(36) Z )\?TE?T — ]_ .

T7€T

That is, & reflects A° up to some normalising to a preimputation
AND some equation for a relevant vector.

Theorem 3.4. (With some conditions to he and \,)

ConvH{9" A',..., X}
constitutes a vNM Stable set.

.) Again: vINM-Stable Set does not favor the
short side of the market unconditionally - re-
spects the cartel power of the long side.
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The 2 x 2—example (scarce central measure):

h2+h3§1 and >\1+>\3§1

3k >k 3k 3k sk sk sk sk ok 3k sk sk sk sk sk ok ok sk sk sk sk ok ok sk sk sk sk sk ok ok sk sk sk sk ok ok sk sk sk sk ok ok ok sk sk kok

Then,

Figure 3.7: A" for the 2 x 2 case
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Figure 3.8: & (or 9%) for the 2 x 2 case

QEEREYN visicnce and Uniguencss |
H = ConvH{\' \* 9%}

15 a vNM-Stable Set. For the 2 x 2—case this is the unique convex
vNM-Stable Set.
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The 2 x 2—example: (abundance of central commodity)

(3.7) hy +hs >1
and
(3.8) A+ A< 1.

sk >k 3k 3k sk sk sk sk ok 3k sk sk sk sk >k ok sk sk sk sk sk ok ok sk sk sk sk ok ok sk sk sk sk ok ok sk sk sk sk ok ok sk sk sk ko

Theorem 3.6. C(v) is the unique vNM-Stable Set.

(FOT hl = O h2 hg h4 = 1 )\1 )\2
EINY, HOLZMAN, MONDERER SHITOVITZ ****[1996])
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The 2 x 2— example (rich central commodity):

h2+h321 and )\1+)\321

3k >k 3k 3k sk sk sk sk ok 3k sk sk sk sk sk ok ok sk sk sk sk ok ok sk sk sk sk sk ok ok sk sk sk sk ok ok sk sk sk sk ok ok ok sk sk kok In

this case

~ A A
T = 07(1_h3)_37h3a1) - hg,(l—h3)—3,h3,1)
)\2 )\2
(h1—|—h3 < 1,h1+h4: 1)
Theorem 3.7 ( PRI IZILZION -

H = ConvH{\' \* 0%}

is a vNM-Stable Set. (NOT unique !)
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Definition 3.8.

3 vNM-extremal:

9 = z on D'UD?*U D*
and
(1—h3)§’l9 S hg O’Il.D2

8
)
N R

—_
|
>
w‘

Figure 3.9: A vNM-extremal imputation

NS NR KM@ Existence and Characterization BRG]

be a vNM—-extremal imputation and let
G = ConvH{\' \* 9} .

then G is a vNM-Stable Set.

Every convex vNM-Stable Set is generated this way by a suitable
vNM-extremal imputation 9.

Complete characterization !!



