* *

Von Neumann-Morgenstern-Solutions for Semi Orthogonal Games

Joachim Rosenmüller

Institute of Mathematical Economics $\frac{\mathbf{I}\mathbf{M}\mathbf{W}}{\mathbf{U}\mathbf{n}\mathbf{i}\mathbf{v}\mathbf{e}\mathbf{r}\mathbf{s}\mathbf{i}\mathbf{t}\mathbf{y}} \text{ of Bielefeld}$

D-33615 Bielefeld Germany

e-mail: jr@wiwi.uni-bielefeld.de

1.1 Games and Solutions

A game:

$$(\boldsymbol{I}, \underline{\mathbf{F}}, \boldsymbol{v})$$

- I "the players" : $\{1, \ldots, n\}$ or an interval of \mathbb{R} ,
- $\underline{\mathbf{F}}$ "the coalitions" ($\mathcal{P}(\mathbf{I})$ or Borelian subsets of \mathbf{I}).
- \boldsymbol{v} "the coalitional function"; $\boldsymbol{v} := \underline{\underline{F}} \to \mathbb{R}_+$ $(\boldsymbol{v}(\emptyset) = 0, \ \boldsymbol{v}(\boldsymbol{I}) = 1)$ (a.c. w.r.t. $\boldsymbol{\lambda}$ hence nonatomic).

Players cooperate in $S \in \underline{\mathbf{F}}$, \rightarrow monetary value $\boldsymbol{v}(S)$.

Imputations:

 $\mathfrak{I} := \{ \boldsymbol{\xi} \mid \boldsymbol{\xi} \text{ is a probability on } \underline{\mathbf{F}} \}.$

("Total worth" $\boldsymbol{v}(\boldsymbol{I})$ is distributed).

Definition 1.1. A Solution Concept is a mapping from a class V of coalitional functions resulting in a set of imputations, i.e.

$$S: \mathbf{V} \to \mathcal{P}(\mathcal{I})$$

Example 1.2.

• The Core

$$\mathbb{C}(v) = \{ \boldsymbol{\xi} \in \mathbb{I} \, | \, \boldsymbol{\xi} \geq v . \}$$

• The Shapley value:

a linear mapping

$$\Phi := V o \mathfrak{I}$$

axiomatically defined.

SHAPLEY****[1954], AUMANN-SHAPLEY****[1966], KANNAI****[1966],

· ~~~~ ·

The *vNM-Stable Set* ("Von Neumann-Morgenstern Solution"): (VON NEUMANN-MORGENSTERN**** [1944], LUCAS****[1968])

$$\xi$$
 dominates η w.r.t $S \in \underline{\underline{\mathbf{F}}}$ if

(1.1)
$$\lambda(S) > 0 \text{ and } \boldsymbol{\xi}(S) \le \boldsymbol{v}(S)$$

and

(1.2)
$$\xi(T) > \eta(T) \quad (T \in \underline{\underline{\mathbf{F}}}, \ T \subseteq S, \lambda(T) > 0).$$

Every subcoalition of S (almost every player in S) strictly improves its payoff at $\boldsymbol{\xi}$ versus $\boldsymbol{\eta}$.

Write $\boldsymbol{\xi} \operatorname{dom}_S \boldsymbol{\eta}$.

Definition 1.3. vNM-Stable Set:

A set S of imputations such that:

- ("Internal stability":) $no \ \xi, \eta \in S \ with \ \xi \operatorname{dom}_{\bullet} \eta$.
- ("external stability":) for $\eta \notin S$ there exists $\xi \in S$ such that $\xi \operatorname{dom}_{\bullet} \eta$.

Example 1.4. [the 3-person majority game]

$$I = \{1, 2, 3\}$$

$$\boldsymbol{v}(S) = \begin{cases} 1 & (|S| \ge 2) \\ 0 & \text{otherwise} \end{cases}$$

Imputations:

$$\mathcal{J}(oldsymbol{v}) = \{oldsymbol{x} \in \mathbb{R}^3_+ \ \bigg| \ \sum_{i \in oldsymbol{I}} = 1 \} \ \ ,$$

(unit simplex in \mathbb{R}^3).

Figure 1.1: Imputations and Solutions for the Majority Game

We have

The Shapley Value:
$$\Phi(\boldsymbol{v}) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$
;
The Core: $\mathcal{C}(\boldsymbol{v}) = \emptyset$;
A vNM-Stable Set: $\mathcal{S} = \left\{ (\frac{1}{2}, \frac{1}{2}, 0)(\frac{1}{2}, 0, \frac{1}{2})(0, \frac{1}{2}, \frac{1}{2}) \right\}$;

° ~~~~~ °

1.2 Linear Production Games

 $v = v^{A,b,c}$ given by

$$v(S) := \max \{cx \mid x \in \mathbb{R}^l_+, Ax \leq b(S)\}$$

with (all nonnegative):

 $\boldsymbol{c} \in \mathbb{R}^l_+$,

 \boldsymbol{A} an $m \times l$ matrix,

 $\pmb{b}:\underline{\underline{\mathbf{F}}}\to\mathbb{R}^m_+$ a (nonatomic) vector valued measure .

The Core is nonempty!

 $\bar{\boldsymbol{y}} \in \mathbb{R}_{+}^{m}$: an optimal solution for the dual problem of the grand coalition ("shadow prices" for production factors),

$$ar{m{y}}m{b}(m{I}) = \min ig\{ m{y}m{b}(m{I}) \ ig| \ m{y} \in \mathbb{R}_+^m \ , \ \ m{y}m{A} \geq m{c} ig\}$$

then

$$ar{m{y}}m{b}(ullet)\in \mathfrak{C}(m{v}^{m{A},m{b},m{c}})$$

Remark 1.5.

- Ore and the Shapley value "converge" towards equilibria.
 (i.e. yb(•) the shadow price evaluated worth of the factors = equilibrium solution)
-)
 Both favor the short side of the market
-) Equivalence Theorems
 - .) The vNM-Stable Set does **not** satisfy equivalence theorems respects the cartel power of the long side.

· ~~~~ ·

Remark 1.6. Any LP.-game v is a "glove game", i.e.,

(1.3)
$$\mathbf{v}(S) := \min \{ \boldsymbol{\lambda}^{\rho}(S) \mid \rho = 1, \dots, r \} \quad (S \in \underline{\mathbf{F}}).$$

(λ^{ρ} are assumed copies of Lebesgue measure on some interval).

· ~~~~ ·

Linear Production Games: Continuum of Players

2.1 The Orthogonal Case

For $\mathbf{v}(\bullet) := \min \{ \boldsymbol{\lambda}^{\rho}(\bullet) \mid \rho = 1, \dots, r \}$ the core is well known(BILLERA-RAANAN *** [1981]):

Theorem 2.1.
$$\mathcal{C}\{v\} = ConvH\{\lambda^{\rho} \mid \lambda^{\rho}(I) = 1 = v(I)\}$$

In the **orthogonal** and **exact** case, the Core is vNM-Stable. (EINY, HOLZMAN, MONDERER, SHITOVITZ ****[1996]).

Theorem 2.2. Let

$$\boldsymbol{v}(\bullet) = \min \left\{ \boldsymbol{\lambda}^{\rho}(\bullet) \mid \rho = 1, \dots, r \right\}$$

and suppose that the λ^{ρ} are orthogonal probabilities. Then the core is (the unique) vNM-Stable Set.

Figure 2.1: The exact and orthogonal case

Figure 2.2: The not exact and orthogonal case

If the game is not exact, then the Core is not vNM-stable.

Characterization of convex vNM–Stable Sets (ROSENMÜLLER–SHITOVITZ *** [2000,2010]):

Theorem 2.3 (Characterization).

Let μ^{ρ} be probabilities satisfying

1.
$$\boldsymbol{\mu}^{\rho} \ll \boldsymbol{\lambda}^{\rho} \quad (\rho = 1, \dots, r),$$

2.
$$\mu^{\rho} \leq 1 \text{ a.e. } (\rho = 1, \dots, r),$$

Then

$$S := ConvH\{\mu^{\rho} \mid \rho = 1, \dots, r\}$$

is a vNM-Stable set.

All convex vNM-Stable sets are generated this way.

Figure 2.3: The orthogonal case – a vNM–Stable Set

.) The vNM-Stable Set does **not** favor the short side of the market unconditionally - respects the cartel power of the long side.

2.2 ε -Relevant Coalitions

For orthogonal λ^{ρ} and $S = \bigcup_{\rho=1}^{r} S^{\rho}$ (disjoint!).

$$\boldsymbol{v}(S) = \min_{\rho=1}^{r} \boldsymbol{\lambda}^{\rho}(S) = \min_{\rho=1}^{r} \boldsymbol{\lambda}^{\rho}(S^{\rho})$$

Choose $T^{\rho} \subseteq S^{\rho}$ with $\lambda(T^{\rho}) = \boldsymbol{v}(S)$.

Then $T = \bigcup_{\rho=1}^r T^{\rho}$ yields

$$\boldsymbol{v}(T) = \boldsymbol{v}(S)$$
.

Now: if $\boldsymbol{\vartheta} \operatorname{dom}_S \boldsymbol{\eta}$, then $\boldsymbol{\vartheta} \operatorname{dom}_T \boldsymbol{\eta}$.

Moreover:

Theorem 2.4 (The Inheritance Theorem). Let ϑ , η be imputations and let ϑ dom_S η . Then, for all sufficiently small $\varepsilon > 0$ there is a coalition $T \subseteq S$ satisfying

$$(\boldsymbol{\lambda}^1(T),\ldots,\boldsymbol{\lambda}^r(T)) = \varepsilon(1,\ldots,1) \quad and \quad \boldsymbol{\vartheta} \operatorname{dom}_T \boldsymbol{\eta}.$$

I.e., with respect to domination, it is sufficient and necessary to consider " ε -relevant coalitions" only.

3 LP Games – Continuum of Players The Semi Orthogonal Game

3.1 The non-cornered commodity

Now $\boldsymbol{\lambda}^1,\ldots,\boldsymbol{\lambda}^r$: orthogonal probabilities (Lebesgue measure) also : $\boldsymbol{\lambda}^0$ with piecewise constant density, $\boldsymbol{\lambda}^0(\boldsymbol{I}) > 1$.

I.e.

(3.1)
$$\boldsymbol{\lambda}^{\bullet} = \sum_{\tau \in \mathbf{T}} h_{\tau} \, \mathbb{1}_{\mathbf{D}^{\tau}} ;$$

Figure 3.1: The density of λ^0

Again consider

$$\mathbf{v}(\bullet) = \min \{ \boldsymbol{\lambda}^{\rho}(\bullet) \mid \rho = 0, 1, \dots, r \}$$

Then

$$\mathfrak{C}(\boldsymbol{v}) \ = \ \mathbf{ConvH} \left\{ \boldsymbol{\lambda}^{\rho} \, \big| \, \rho = 1, \ldots, r \ \right\} \ .$$

For r = t = 2:

Figure 3.2: The density of λ^0 with 4 steps

3.2 ε -Relevant Coalitions

"Discrete analogues" : $(\lambda_{\tau} := \boldsymbol{\lambda}(\boldsymbol{D}^{\tau}))$

${\it Pre-imputations}:$

$$\boldsymbol{x} = (x_{\tau})_{\tau \in \mathbf{T}} \in \mathbb{R}^{rt}_{+} \left| \sum_{\tau \in \mathbf{T}} \lambda_{\tau} x_{\tau} = 1 \right|$$

Then

(3.2)
$$\boldsymbol{\vartheta}^{\boldsymbol{x}} := \sum_{\tau \in \mathbf{T}} x_{\tau} \mathbb{1}_{\boldsymbol{D}\tau} ,$$

constitutes $\boldsymbol{\vartheta^x} \in \boldsymbol{\Im(v)}$

Figure 3.3: A preimputation

Pre-coalitions:.

$$\boldsymbol{a} = (a_{\tau})_{\tau \in \mathbf{T}}$$

For some $\varepsilon > 0$ choose a coalition $T^{\varepsilon a}$

$$\boldsymbol{\lambda}(T^{\varepsilon \boldsymbol{a}} \cap \boldsymbol{D}^{\tau}) = \varepsilon a_{\tau} \ (\tau \in \mathbf{T}) \ .$$

Figure 3.4: A pre-coalition

pre-measures , i.e., functionals on pre-coalitions:

$$oldsymbol{c}^
ho : \mathbb{R}^{rt} o \mathbb{R} \; , \; oldsymbol{c}^
ho(oldsymbol{a}) \; := \; \sum_{ au \in \mathbf{T}^
ho} a_ au \; .$$

corresponds to λ^{ρ} as

$$\boldsymbol{\lambda}^{\rho}(T^{\varepsilon \boldsymbol{a}}) = \varepsilon \boldsymbol{c}^{\rho}(\boldsymbol{a})$$

also

$$oldsymbol{c}^0 : \mathbb{R}^{rt} o \mathbb{R} \; , \; oldsymbol{c}^{
ho}(oldsymbol{a}) := \sum_{ au \in \mathbf{T}} h_{ au} a_{ au}$$

corresponds to λ^0 , as

$$\boldsymbol{\lambda}^0(T^{\varepsilon \boldsymbol{a}}) = \varepsilon \boldsymbol{c}^0(\boldsymbol{a}) .$$

pre-game

$$v(\boldsymbol{a}) := \min \{ \boldsymbol{c}^{\rho}(\boldsymbol{a}) \mid (\rho = 0, 1, \dots, r) \}$$

(positively homogenous: $v(t\mathbf{a}) = tv(\mathbf{a}) \ t > 0$).

Definition 3.1. The extremal points of the convex set

(3.3)
$$\mathbf{A} : \{ \mathbf{a} \in \mathbb{R}^{\mathsf{t}}_{+} \mid \mathbf{c}^{\rho}(\mathbf{a}) \ge 1 \mid (\rho = 0, 1, \dots, r) \}$$

are called the relevant vectors.

Theorem 3.2 (The Inheritance Theorem).

Let $\boldsymbol{\vartheta} \operatorname{dom}_S \boldsymbol{\eta}$.

Then there is $\delta > 0$ such that for all $0 < \varepsilon < \delta$ there is a relevant vector $\mathbf{a}^e \in \mathbf{A}^e$ and a coalition $T \subseteq S$ satisfying

$$\overset{\rightarrow}{\boldsymbol{\lambda}}(T) = \varepsilon \boldsymbol{a}^e \quad and \quad \boldsymbol{\vartheta} \operatorname{dom}_T \boldsymbol{\eta} .$$

It is sufficient and necessary to consider ε -relevant coalitions only.

$\begin{array}{ccc} \textbf{3.3} & \textbf{vNM-Stable Sets} \\ & \textbf{for the Semi-Orthogonal Game} \end{array}$

With some conditions to the h_{τ} we can construct a "candidate".

Figure 3.5: The density of λ^0

Figure 3.6: The canditate $\bar{\boldsymbol{x}}$

Definition 3.3. Define \bar{x} :

First

$$(3.4) \overline{x}_{\tau} = h_{\tau} \ (\tau \in \mathbf{T} \setminus \{\overline{\tau}_1, \overline{\tau}_r\}) .$$

Then $\overline{x}_{\overline{\tau}_1}$ and $\overline{x}_{\overline{\tau}_r}$ by two equations

$$\overline{x}_{\overline{\tau}_1} + h_{\widehat{\tau}_2} \dots + h_{\widehat{\tau}_{r-1}} + \overline{x}_{\overline{\tau}_r} = 1$$

and

(3.6)
$$\sum_{\tau \in \mathbf{T}} \lambda_{\overline{\tau}_{\tau}} \overline{x}_{\overline{\tau}_{\tau}} = 1 .$$

That is, \bar{x} reflects λ^0 up to some normalising to a preimputation AND some equation for a relevant vector.

Theorem 3.4. (With some conditions to h_{\bullet} and λ_{\bullet})

$$extbf{\it ConvH}ig\{artheta^{ar{m{x}}},m{\lambda}^1,\dots,m{\lambda}^
hoig\}$$

constitutes a vNM Stable set.

.) Again: vNM-Stable Set does **not** favor the short side of the market unconditionally - respects the cartel power of the long side.

The 2×2 -example (scarce central measure):

$$h_2 + h_3 \le 1$$
 and $\lambda_1 + \lambda_3 \le 1$.

Then,

$$\bar{x} := (\frac{\lambda_3 + \lambda_{23}^0}{\lambda_4 - \lambda_1}, h_2, h_3, \frac{(\lambda_2 - \lambda_{23}^0)}{\lambda_4 - \lambda_1}).$$

Figure 3.7: λ^0 for the 2×2 case

Figure 3.8: $\bar{\boldsymbol{x}}$ (or $\boldsymbol{\vartheta}^{\bar{\boldsymbol{x}}}$) for the 2×2 case

$$\mathcal{H} := \textit{ConvH}\{\lambda^1, \lambda^2, \vartheta^{\bar{x}}\}$$

is a vNM–Stable Set. For the 2×2 -case this is the **unique convex** vNM–Stable Set.

The 2×2 -example: (abundance of central commodity)

$$(3.7) h_2 + h_3 \ge 1$$

and

$$(3.8) \lambda_1 + \lambda_3 \le 1 .$$

Theorem 3.6. C(v) is the unique vNM-Stable Set.

(For $h_1=0, h_2=h_3=\frac{1}{2}, h_4=1, \ \lambda_1=..., \lambda_2=...$: Einy, Holzman, Monderer, Shitovitz ****[1996]).

The 2×2 - example (rich central commodity):

$$h_2 + h_3 \ge 1$$
 and $\lambda_1 + \lambda_3 \ge 1$.

$$\widehat{\boldsymbol{x}} := \left(0, (1 - h_3) \frac{\lambda_3}{\lambda_2}, h_3, 1\right) = \left(h_2, (1 - h_3) \frac{\lambda_3}{\lambda_2}, h_3, 1\right)$$

$$(h_1 + h_3 < 1, h_1 + h_4 = 1).$$

Theorem 3.7 (Existence Theorem).

$$\mathcal{H} := ConvH\{\lambda^1, \lambda^2, \vartheta^{\widehat{x}}\}$$

is a vNM-Stable Set. (NOT unique!)

Definition 3.8.

ϑ vNM-extremal:

Figure 3.9: A vNM-extremal imputation

Theorem 3.9 (Existence and Characterization). Let $\bar{\vartheta}$ be a vNM-extremal imputation and let

$$\mathfrak{G} := ConvH\{\lambda^1, \lambda^2, \bar{\vartheta}\}$$
.

then G is a vNM-Stable Set.

Every convex vNM-Stable Set is generated this way by a suitable vNM-extremal imputation $\bar{\boldsymbol{\vartheta}}$.

Complete characterization!!