Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

On the negative spectrum of the Schrödinger operator in the two-dimensional case:
an overview
Workshop Kannai-70

Michael Solomyak

December 26, 2012

GENERAL SETTING $\left(\mathbb{R}^{d}\right.$, any $\left.d \geq 1\right)$

$$
\mathbf{H}_{V}=-\Delta-V, \quad V \geq 0
$$

is the Schrödinger operator on \mathbb{R}^{d} with the potential $-V$.
Precise definition - via the quadratic form

$$
\mathbf{Q}_{V}[u]=\int\left(|\nabla u|^{2}-V|u|^{2}\right) d x, \quad u \in H^{1}\left(\mathbb{R}^{d}\right)
$$

Under appropriate assumptions about V the operator \mathbf{H}_{V} is well-defined and self-adjoint in $L^{2}\left(\mathbb{R}^{d}\right)$.

If $V(x) \rightarrow 0$ as $x \rightarrow \infty$, the positive spectrum is $[0, \infty)$, a.c.

The problem

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

The negative spectrum consists of eigenvalues of finite multiplicity, with the only possible accumulation point at $\lambda=0$.

GENERAL PROBLEM, COMING FROM PHYSICS: TO ESTIMATE THE NUMBER $N_{-}\left(\mathbf{H}_{V}\right)$ OF THESE EIGENVALUES (counted with multiplicities) IN TERMS OF V

Often, one inserts a large parameter $\alpha>0$ (THE COUPLING CONSTANT) and studies the behavior of $N_{-}\left(\mathbf{H}_{\alpha} V\right)$ as $\alpha \rightarrow \infty$.

The Weyl asymptptic formula

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

For nice potentials (say, $V \in C_{0}^{\infty}$)
Weyl's asymptotic formula is satisfied:

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} \alpha^{-d / 2} N_{-}\left(\mathbf{H}_{\alpha} V\right)=\frac{v_{d}}{(2 \pi)^{d}} \int V^{d / 2} d x \tag{W}
\end{equation*}
$$

(v_{d} is the volume of the ball $|x| \leq 1$.)

The Weyl asymptptic formula

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

For nice potentials (say, $V \in C_{0}^{\infty}$)
Weyl's asymptotic formula is satisfied:
$\lim _{\alpha \rightarrow \infty} \alpha^{-d / 2} N_{-}\left(\mathbf{H}_{\alpha} V\right)=\frac{v_{d}}{(2 \pi)^{d}} \int V^{d / 2} d x$
(v_{d} is the volume of the ball $|x| \leq 1$.)
The growth $N_{-}\left(\mathbf{H}_{\alpha} V\right)=O\left(\alpha^{d / 2}\right)$ is called SEMI-CLASSICAL.

Schrödinger

The SLOWER growth $N_{-}\left(\mathbf{H}_{\alpha} V\right)=o\left(\alpha^{d / 2}\right)$ is IMPOSSIBLE (it implies $V \equiv 0$)

Schrödinger

The SLOWER growth $N_{-}\left(\mathbf{H}_{\alpha} V\right)=o\left(\alpha^{d / 2}\right)$ is IMPOSSIBLE (it implies $V \equiv 0$)

The FASTER growth of $N_{-}\left(\mathbf{H}_{\alpha} V\right)$ is possible (for slowly decaying potentials)

Schrödinger

The SLOWER growth $N_{-}\left(\mathbf{H}_{\alpha} V\right)=o\left(\alpha^{d / 2}\right)$ is IMPOSSIBLE (it implies $V \equiv 0$)

The FASTER growth of $N_{-}\left(\mathbf{H}_{\alpha} V\right)$ is possible (for slowly decaying potentials)

WE CALL AN ESTIMATE FOR $N_{-}\left(\mathbf{H}_{V}\right)$ (without parameter) SEMI-CLASSICAL, IF IT YIELDS

$$
N_{-}\left(\mathbf{H}_{\alpha} V\right)=O\left(\alpha^{d / 2}\right)
$$

Schrödinger

The SLOWER growth $N_{-}\left(\mathbf{H}_{\alpha} V\right)=o\left(\alpha^{d / 2}\right)$ is IMPOSSIBLE (it implies $V \equiv 0$)

The FASTER growth of $N_{-}\left(\mathbf{H}_{\alpha} V\right)$ is possible (for slowly decaying potentials)

WE CALL AN ESTIMATE FOR $N_{-}\left(\mathbf{H}_{V}\right)$ (without parameter) SEMI-CLASSICAL, IF IT YIELDS

$$
N_{-}\left(\mathbf{H}_{\alpha} V\right)=O\left(\alpha^{d / 2}\right)
$$

The conditions guaranteeing the semi-classical behavior of $N_{-}\left(\mathbf{H}_{V}\right)$ and those guaranteeing (W) DEPEND ON THE DIMENSION.

WHAT IS SPECIAL ABOUT THE 2D-CASE???

Let us discuss other dimensions!

Dimensions $d>2$

Schrödinger
operator on \mathbb{R}^{2}

Michael Solomyak

The central result is

CWIKEL (1977) - LIEB ((1976)- ROZENBLUM (1972) estimate:

For any $V \in L^{d / 2}\left(\mathbb{R}^{d}\right), d>2$, the semi-classical estimate holds:

$$
\begin{equation*}
N_{-}\left(\mathbf{H}_{V}\right) \leq C(d) \int V^{d / 2} d x \tag{CLR}
\end{equation*}
$$

and the asymptotic formula (W) is satisfied.

Dimensions $d>2$: comments

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

1. (CLR) and (W) show that $N_{-}\left(\mathbf{H}_{\alpha v}\right)$
is estimated through its own asymptotics

Dimensions $d>2$: comments

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

1. (CLR) and (W) show that $N_{-}\left(\mathbf{H}_{\alpha v}\right)$
is estimated through its own asymptotics
2. The condition $V \in L^{d / 2}$
is NECESSARY and SUFFICIENT for the validity of both (CLR) and (W).

Dimensions $d>2$: comments

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

1. (CLR) and (W) show that $N_{-}\left(\mathbf{H}_{\alpha v}\right)$
is estimated through its own asymptotics
2. The condition $V \in L^{d / 2}$
is NECESSARY and SUFFICIENT for the validity of both (CLR) and (W).
3. If $\int V^{d / 2} d x$ is SMALL, then $N_{-}\left(\mathbf{H}_{V}\right)=0$ (NO NEGATIVE EIGENVALUES!)

$$
d=1
$$

Schrödinger
operator on \mathbb{R}^{2}

Michael Solomyak
$\Delta u=u^{\prime \prime}$
The most convenient estimate (SEMICLASSICAL): define
$I_{k}=\left(e^{k-1}, e^{k}\right)$ for $k \in \mathbb{N}$. Then
$N_{-}\left(\mathbf{H}_{V}\right) \leq 1+C \sqrt{\int_{(-1,1)} V(x) d x}+C \sum_{k \in \mathbb{N}} \sqrt{\int_{|x| \in I_{k}}|x| V(x) d x}$
(see survey M.S. arXiv:1203.1156)

$d=1:$ comments

Schrödinger

1. No analog of (CLR) (it DOES EXIST but only for the potentials that are monotone on \mathbb{R}_{+}and on \mathbb{R}_{-}).

$d=1:$ comments

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

1. No analog of (CLR) (it DOES EXIST but only for the potentials that are monotone on \mathbb{R}_{+}and on \mathbb{R}_{-}).
2. For general $V, N_{-}\left(\mathbf{H}_{\alpha V}\right)$ is NOT estimated through its asymptotics.

$d=1:$ comments

Schrödinger

Michael Solomyak

1. No analog of (CLR) (it DOES EXIST but only for the potentials that are monotone on \mathbb{R}_{+}and on \mathbb{R}_{-}).
2. For general $V, N_{-}\left(\mathbf{H}_{\alpha V}\right)$ is NOT estimated through its asymptotics.
3. Finiteness of the RHS is only SUFFICIENT for $N_{-}\left(\mathbf{H}_{\alpha} V\right)=O(\sqrt{\alpha})$.

Necessary and sufficient condition is also known but it CANNOT be expressed in terms of the function spaces for V.

$d=1:$ comments

Schrödinger

1. No analog of (CLR) (it DOES EXIST but only for the potentials that are monotone on \mathbb{R}_{+}and on \mathbb{R}_{-}).
2. For general $V, N_{-}\left(\mathbf{H}_{\alpha} V\right)$ is NOT estimated through its asymptotics.
3. Finiteness of the RHS is only SUFFICIENT for $N_{-}\left(\mathbf{H}_{\alpha} V\right)=O(\sqrt{\alpha})$.

Necessary and sufficient condition is also known but it CANNOT be expressed in terms of the function spaces for V.
4. $N_{-}\left(\mathbf{H}_{V}\right) \geq 1$ for ANY non-trivial $V \geq 0$.

$d=2$: main peculiarities

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

$d=2$ is THE BORDERLINE CASE!

1. Fundamental solution of the Laplacian involves the logarithmic factor.

$d=2$: main peculiarities

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak
$d=2$ is THE BORDERLINE CASE!

1. Fundamental solution of the Laplacian involves the logarithmic factor.
2. Hardy inequality on \mathbb{R}^{2} also involves the logarithmic factor.

$d=2$: main peculiarities

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak
$d=2$ is THE BORDERLINE CASE!

1. Fundamental solution of the Laplacian involves the logarithmic factor.
2. Hardy inequality on \mathbb{R}^{2} also involves the logarithmic factor.
3. Sobolev Embedding theorem with the limiting exponent (which is equal to infinity) fails.

$d=2$: preliminary information

Schrödinger
operator on

1. $N_{-}\left(\mathbf{H}_{V}\right) \geq 1$ for ANY non-trivial $V \geq 0$ (as on \mathbb{R}^{1}).

$d=2$: preliminary information

Schrödinger
operator on

Michael Solomyak

1. $N_{-}\left(\mathbf{H}_{V}\right) \geq 1$ for ANY non-trivial $V \geq 0$
(as on \mathbb{R}^{1}).
2. ANALOG OF (CLR) FAILS FOR GENERAL POTENTIALS. AN INVERSE INEQUALITY HOLDS:

$$
N_{-}\left(\mathbf{H}_{V}\right) \geq c \int V d x, \quad c>0
$$

(A.Grigor'yan, Y.Netrusov, S-T. Yau, 2004; MR 2195408).

NO ANALOG FOR $d>2$!

$d=2$, general potentials - preliminaries. I

Schrödinger

Michael
Solomyak

Orthogonal decomposition of the Sobolev space $H^{1}\left(\mathbb{R}^{2}\right)$:
\mathcal{F}_{1} - the subspace of functions $u(x)=f(|x|)$;

$$
\mathcal{F}_{2}=\mathcal{F}_{1}^{\perp}
$$

(orthogonality in the metric of $H^{1}\left(\mathbb{R}^{2}\right)$)
$\mathcal{G}_{1}, \mathcal{G}_{2}$ - their closures in $L^{2}\left(\mathbb{R}^{2}\right)$.
They are orthogonal in L^{2}

$d=2$, general potentials. II

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

Restrictions of the quadratic form
$\mathbf{Q}_{V}[u]=\int\left(|\nabla u|^{2}-V|u|^{2}\right) d x$ to $\mathcal{F}_{1}, \mathcal{F}_{2}$ generate operators on $\mathcal{G}_{1}, \mathcal{G}_{2}$ - say, $\mathbf{H}_{V}^{(1)}, \mathbf{H}_{V}^{(2)}$.

$d=2$, general potentials. II

Schrödinger
operator on \mathbb{R}^{2}

Michael Solomyak

Restrictions of the quadratic form
$\mathbf{Q}_{V}[u]=\int\left(|\nabla u|^{2}-V|u|^{2}\right) d x$ to $\mathcal{F}_{1}, \mathcal{F}_{2}$ generate operators on $\mathcal{G}_{1}, \mathcal{G}_{2}$ - say, $\mathbf{H}_{V}^{(1)}, \mathbf{H}_{V}^{(2)}$.

For estimation of $N_{-}\left(\mathbf{H}_{V}\right)$ it is sufficient (and necessary!) to estimate $N_{-}\left(\mathbf{H}_{V}^{(1)}\right), N_{-}\left(\mathbf{H}_{V}^{(2)}\right)$.
The latter estimates have a different nature and require different techniques

Estimate for $\mathbf{H}_{V}^{(1)}$

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

ESTIMATE FOR $\mathbf{H}_{V}^{(1)}$ REQUIRES THE
"WEAK ℓ^{1}-SPACE" (LORENTZ SPACE) ℓ_{w}^{1}

Estimate for $\mathbf{H}_{V}^{(1)}$

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

ESTIMATE FOR $\mathbf{H}_{V}^{(1)}$ REQUIRES THE "WEAK ℓ^{1}-SPACE" (LORENTZ SPACE) ℓ_{w}^{1}

Let $\left\{c_{k}\right\}_{k \in \mathcal{K}}$ be a number sequence. \mathcal{K} can be any countable set. Suppose $c_{k} \rightarrow 0$, i.e., $\#\left\{k:\left|c_{k}\right|>\varepsilon\right\}<\infty$ for any $\varepsilon>0$.

Define $\left\{c_{n}^{*}\right\}_{n \in \mathbb{N}}$ as the non-increasing rearrangement of $\left\{\left|c_{k}\right|\right\}$.

Space ℓ_{w}^{1}

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

DEFINITION

$$
\left\{c_{k}\right\} \in \ell_{w}^{1} \Leftrightarrow\left\|\left\{c_{k}\right\}\right\|_{1, w}:=\sup _{n}\left(n c_{n}^{*}\right)<\infty .
$$

In other words, $c_{n}^{*}=O\left(n^{-1}\right)$.

Space ℓ_{w}^{1}

Schrödinger
operator on \mathbb{R}^{2}

Michael Solomyak

DEFINITION

$$
\left\{c_{k}\right\} \in \ell_{w}^{1} \Leftrightarrow\left\|\left\{c_{k}\right\}\right\|_{1, w}:=\sup _{n}\left(n c_{n}^{*}\right)<\infty .
$$

In other words, $c_{n}^{*}=O\left(n^{-1}\right)$.
$\left\|\left\{c_{k}\right\}\right\|_{1, w}$ is a QUASI-NORM on ℓ_{w}^{1} (not a norm!)
ℓ_{w}^{1} is NOT NORMALIZABLE!

Space ℓ_{w}^{1}

Schrödinger
operator on \mathbb{R}^{2}

Michael Solomyak

DEFINITION

$$
\left\{c_{k}\right\} \in \ell_{w}^{1} \Leftrightarrow\left\|\left\{c_{k}\right\}\right\|_{1, w}:=\sup _{n}\left(n c_{n}^{*}\right)<\infty .
$$

In other words, $c_{n}^{*}=O\left(n^{-1}\right)$.
$\left\|\left\{c_{k}\right\}\right\|_{1, w}$ is a QUASI-NORM on ℓ_{w}^{1} (not a norm!)
ℓ_{w}^{1} is NOT NORMALIZABLE!
Clearly, $\ell^{1} \subset \ell_{w}^{1}$ and $\left\|\left\{c_{k}\right\}\right\|_{1, w} \leq\left\|\left\{c_{k}\right\}\right\|_{1}$.

Estimate for $\mathbf{H}_{V}^{(2)}$. Space $L \log L$

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

ESTIMATE FOR $\mathbf{H}_{V}^{(2)}$ REQUIRES EMBEDDING THEOREM THAT FOR $d=2$ INVOLVES THE ORLICZ SPACE $L \log L$.

The space $L \log L(\Omega)$ on a set $\Omega \subset \mathbb{R}^{d}$ is defined by the condition

$$
\int_{\Omega}[(1+|f(x)|) \log (1+|f(x)|)-|f(x)|] d x<\infty
$$

This is a Banach space but the above integral is NOT a norm.

Norms in $L \log L$

There are several standard ways to define a norm in $\mathfrak{B}=L \log L$. Of course, all these norms are mutually equivalent. I do not present their definitions here.

We use $\|f\|_{\mathfrak{B}(\Omega)}^{a v}$ - a special norm, with an appropriate normalization depending on shape of Ω.
If Ω_{1}, Ω_{2} are homothetic, f_{1} is a function on Ω_{1}, and f_{2} is its "transplantation" to Ω_{2}, then

$$
\left\|f_{1}\right\|_{\mathfrak{B}\left(\Omega_{1}\right)}^{a v}=\left\|f_{2}\right\|_{\mathfrak{B}\left(\Omega_{2}\right)}^{a v}
$$

(IMPORTANT FOR THE ESTIMATES!)

Basic estimate, I

Schrödinger
operator on \mathbb{R}^{2}

Michael Solomyak

Two partitions of \mathbb{R}^{2} and two number sequences (depending on V) are used.

FIRST PARTITION:

$$
\Omega_{0}=\{|x|<1\} ; \quad \Omega_{k}=\left\{2^{(k-1)}<|x|<2^{k}\right\}, k \in \mathbb{N}
$$

(the unit disk and the annuli whose inner radii form a geometric series. The ratio (which is taken e) is indifferent - it affects only the value of the estimating constant).

DEFINE $\mathfrak{B}_{k}(V)=\|V\|_{\mathfrak{B}\left(\Omega_{k}\right)}^{a v} \quad$ (responsible for $\mathbf{H}_{V}^{(2)}$)

Basic estimate, II

SECOND PARTITION:

$$
X_{0}=\{|x|<e\} ; \quad X_{k}=\left\{e^{2^{k-1}}<|x|<e^{2^{k}}\right\}, k \in \mathbb{N}
$$

(the disk X_{0} and the annuli such that the LOGARITHMS of their inner radii form a geometric series).

$$
\zeta_{0}(V)=\int_{X_{0}} V(x) d x, \quad \zeta_{k}(V)=\int_{X_{k}} V(x) \log |x| d x, k \in \mathbb{N} .
$$

(responsible for $\mathbf{H}_{V}^{(1)}$)

Basic estimate, III

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

THEOREM (M.S. 1994; MR 1276138)
SUPPOSE $\quad\left\{\mathfrak{B}_{k}(V)\right\} \in \ell^{1},\left\{\zeta_{k}(V)\right\} \in \ell_{w}^{1}$.
THEN THE SEMI-CLASSICAL ESTIMATE IS SATISFIED:
$N_{-}\left(\mathbf{H}_{V}\right) \leq 1+C\left(\sum_{k} \mathfrak{B}_{k}(V)+\left\|\left\{\zeta_{k}(V)\right\}\right\|_{1, w}\right)$

IF, IN ADDITION, $\zeta_{n}^{*}(V)=o\left(n^{-1}\right)$, THEN ALSO (W) IS VALID.

Comments

Schrödinger operator on \mathbb{R}^{2}

Michael
Solomyak

1. The conditions are ONLY SUFFICIENT for $N_{-}\left(\mathbf{H}_{\alpha} v\right)=O(\alpha)$ (unlike (CLR) for $d>2$)

Comments

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

1. The conditions are ONLY SUFFICIENT for $N_{-}\left(\mathbf{H}_{\alpha} v\right)=O(\alpha)$ (unlike (CLR) for $d>2$)
2. For Ω BOUNDED

$$
L^{p}(\Omega) \subset \mathfrak{B}(\Omega), \quad \forall p>1,
$$

with the corresponding inequality for the norms.

Comments

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

1. The conditions are ONLY SUFFICIENT for $N_{-}\left(\mathbf{H}_{\alpha} v\right)=O(\alpha)$ (unlike (CLR) for $d>2$)
2. For Ω BOUNDED

$$
L^{p}(\Omega) \subset \mathfrak{B}(\Omega), \quad \forall p>1,
$$

with the corresponding inequality for the norms.
Often a roughened estimate is used, with $L \log L$ replaced by L^{p} (" Lp-ROUGHENING").

Comments

Schrödinger
operator on \mathbb{R}^{2}

Michael Solomyak

1. The conditions are ONLY SUFFICIENT for $N_{-}\left(\mathbf{H}_{\alpha} v\right)=O(\alpha)$ (unlike (CLR) for $d>2$)
2. For Ω BOUNDED

$$
L^{p}(\Omega) \subset \mathfrak{B}(\Omega), \forall p>1,
$$

with the corresponding inequality for the norms.
Often a roughened estimate is used, with $L \log L$ replaced by L^{p} (" Lp-ROUGHENING").
(REASON: many people do not like Orlicz spaces as something too exotic)

A general comment

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

Among the people working on the estimates, there are those looking for the SIMPLEST POSSIBLE ESTIMATE and those looking for the SHARPEST POSSIBLE ESTIMATE.

In the problem of estimating $N_{-}\left(\mathbf{H}_{V}\right)$ for $d>2$ we are LUCKY, due to (CLR) that is BOTH SIMPLE and SHARP.

But for $d=2$ ONE HAS TO CHOOSE...

Result by M.Birman - A. Laptev (1996; MR 1443037)

They used L^{p}-roughened estimate.
The main concern was ASYMPTOTIC BEHAVIOR OF $N_{-}\left(\mathbf{H}_{\alpha} V\right)$.

UNDER SOME BROAD ASSUMPTIONS ABOUT V,

$$
N_{-}\left(\mathbf{H}_{\alpha V}\right) \sim N_{-}\left(\mathbf{H}_{\alpha V}^{(1)}\right)+N_{-}\left(\mathbf{H}_{\alpha V}^{(2)}\right)
$$

Independence of contributions of $\mathbf{H}_{\alpha V}^{(1)}, \mathbf{H}_{\alpha V}^{(2)}$ to the asymptotics!

Competition between these contributions. In particular, the potentials were constructed such that $N_{-}\left(\mathbf{H}_{\alpha} V\right)=O(\alpha)$ but (W) fails.

Radial potentials: result by A.Laptev (1998)

1998 is the date of preprint (Inst. Mittag -Leffler) Journal publication of 2000; MR 1819649.

EQUIVALENT FORMULATION: Let $V(x)=F(|x|)$, i.e., the potential V depends only on $|x|$. Then

$$
N_{-}\left(\mathbf{H}_{V}^{(2)}\right) \leq C \int V(x) d x
$$

An extremely important and unexpected result! Direct analog of (CLR) (for $\mathbf{H}_{V}^{(2)}$ the term 1 disappears) A very elegant proof.

Radial potentials: integral estimate

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak
K. Chadan, N.Khuri, A.Martin, T.-T.Wu (2002; MR 1952194): FOR A RADIAL POTENTIAL

$$
N_{-}\left(\mathbf{H}_{V}\right) \leq 1+C \int V(x)(1+|\ln | x| |) d x
$$

In fact, they re-discovered Laptev's approach, and also made the next step - the passage from $\mathbf{H}_{V}^{(2)}$ to \mathbf{H}_{V}.

Back to the general potentials: refinement of M.S.-94

Schrödinger
operator on \mathbb{R}^{2}

Michael Solomyak

Below r, ϑ stand for the polar coordinates in \mathbb{R}^{2}.
Define $V_{\text {rad }}(r)=(2 \pi)^{-1} \int_{0}^{2 \pi} V(r, \vartheta) d \vartheta$;

$$
V_{\text {nrad }}(r, \vartheta)=V(r, \vartheta)-V_{\text {rad }}(r)
$$

Consider the space $\mathfrak{M}=L^{1}\left(\mathbb{R}_{+} ; \mathfrak{B}\left(\mathbb{S}^{1}\right)\right)$, with the norm

$$
\|f\|_{\mathfrak{M}}=\int_{0}^{\infty}\|f(r, .)\|_{\mathfrak{B}\left(\mathbb{S}^{1}\right)} r d r
$$

Define, for $k \in \mathbb{Z}$,

$$
\eta_{k}(V)=\int_{e^{2^{k-1}<|x|<e^{2^{k}}}} V(x)|\ln | x| | d x
$$

Refinement of M.S.-94: E. Shargorodsky 2012

Schrödinger

$$
N_{-}\left(\mathbf{H}_{V}\right) \leq 1+C\left(\left\|\left\{\eta_{k}(V)\right\}\right\|_{1, w}+\left\|V_{\text {nrad }}\right\|_{\mathfrak{M}}\right)
$$

(E.Shargorodsky, arXiv: 1203:4833; see also Laptev and M.S, arXiv: 1201:3074)

Refinement of M.S.-94: E. Shargorodsky 2012

Schrödinger

$$
N_{-}\left(\mathbf{H}_{V}\right) \leq 1+C\left(\left\|\left\{\eta_{k}(V)\right\}\right\|_{1, w}+\left\|V_{\text {nrad }}\right\|_{\mathfrak{M}}\right)
$$

(E.Shargorodsky, arXiv: 1203:4833; see also Laptev and M.S, arXiv: 1201:3074)

THIS IS THE SHARPEST SEMI-CLASSICAL ESTIMATE KNOWN SO FAR.

COMMENT: In M.S.-94 $k \in \mathbb{N}$. Here $k \in \mathbb{Z}$:
small annuli around $x=0$ are involved. The conditions allow singularity of V at $x=0$.
M.S.-94 allows singularity only at infinity.

Radial potentials: necessary and sufficient condition

Schrödinger
operator on \mathbb{R}^{2}

Michael Solomyak

Let V depend only on $|x|$. Then the last term in the above estimate DISAPPEARS, and we get

$$
N_{-}\left(\mathbf{H}_{V}\right) \leq 1+C\left\|\left\{\eta_{k}(V)\right\}\right\|_{1, w}
$$

In fact, the condition

$$
\left\{\eta_{k}(V)\right\} \in \ell_{w}^{1}
$$

is NOT ONLY SUFFICIENT BUT ALSO NECESSARY for the semi-classical behavior of $N_{-}\left(\mathbf{H}_{V}\right)$ with radial V (Laptev, M.S., 2012; MR 2954515).

The latter condition, plus $\eta_{n}^{*}(V)=o\left(n^{-1}\right)$, is NECESSARY AND SUFFICIENT for (W) (for such potentials)

The Chadan-Khuri-Martin-Wu estimate for radial potentials

$$
N_{-}\left(\mathbf{H}_{V}\right) \leq 1+C \int V(x)(1+|\ln | x| |) d x
$$

is a direct consequence of Laptev - M.S. 2012 (due to the estimate of ℓ_{w}^{1}-quasinorm through the norm in ℓ^{1}). But this was realized only recently.

ACTUALLY, EVERYTHING COULD BE DONE IN 1998 BUT THIS POSSIBILITY WAS MISSED.

A.Grigor'yan - N.Nadirashvili estimate (arXiv:1112.4986)

Schrödinger operator on \mathbb{R}^{2}

Michael Solomyak
(with refinement due to E.Shargorodsky, arXiv:1203.4833)
LET $\mathfrak{B}_{k}=\mathfrak{B}_{k}(V)=\|V\|_{\mathfrak{B}\left(\Omega_{k}\right)}^{a v}, k \geq 0 ;$
$\zeta_{k}=\zeta_{k}(V)=\int_{e^{2 k-1}}^{e^{2^{k}}} V(x) \log |x| d x, k \in \mathbb{N}$;
$\zeta_{0}=\zeta_{k}(V)=\int_{|x|<e} V(x) d x$.
THERE EXIST CONSTANTS $m_{1}, m_{2}>0$ SUCH THAT

$$
N_{-}\left(\mathbf{H}_{V}\right) \leq 1+C\left(\sum_{\zeta_{k}>m_{1}} \sqrt{\zeta_{k}}+\sum_{\mathfrak{B}_{k}>m_{2}} \mathfrak{B}_{k}\right)
$$

(GN used L^{p}-roughening)

Comments.

Truncated sums on the right. If the series without truncation CONVERGE, we come to the semi-classical estimate as in M.S.-1994.

If the series DIVERGE, we come to a non-semi-classical estimate.

PROOF requires only a minor change in the original argument of M.S.-1994 - shown by E.Shargorodsky

Khuri-Martin-Wu conjecture

Schrödinger
operator on

Michael
Solomyak

NON-INCREASING SPHERICAL REARRANGEMENT OF V is a function $V_{*}(|x|)$, such that for any $s>0$

$$
\operatorname{meas}\left\{x \in \mathbb{R}^{2}: V_{*}(|x|)>s\right\}=\operatorname{meas}\left\{x \in \mathbb{R}^{2}: V(|x|)>s\right\}
$$

Khuri-Martin-Wu conjecture

Schrödinger
operator on

Michael Solomyak

NON-INCREASING SPHERICAL REARRANGEMENT OF V is a function $V_{*}(|x|)$, such that for any $s>0$

$$
\operatorname{meas}\left\{x \in \mathbb{R}^{2}: V_{*}(|x|)>s\right\}=\operatorname{meas}\left\{x \in \mathbb{R}^{2}: V(|x|)>s\right\}
$$

KMW-CONJECTURE (2002):

$$
\begin{aligned}
N_{-}\left(\mathbf{H}_{V}\right) & \leq 1+C \int_{\mathbb{R}^{2}} V(x) \ln (2+|x|) d x \\
& +C \int_{|x|<1} V_{*}(|x|) \ln \frac{1}{|x|} d x
\end{aligned}
$$

Schrödinger
operator on \mathbb{R}^{2}

Michael Solomyak

KMW-CONJECTURE had been recently justified by
E. Shargorodsky, arXiv:1203.4833.

He showed that KMW is a consequence of M.S.-1994, and that the latter is strictly sharper.

Some unsolved problems I

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

1. The necessary AND sufficient condition for the semi-classical behavior of $N_{-}\left(\mathbf{H}_{V}\right)$ is unknown. It may happen that it is impossible to express it in terms of function spaces for V (as it is for $d=1$).

Some unsolved problems I

Schrödinger
operator on \mathbb{R}^{2}

Michael
Solomyak

1. The necessary AND sufficient condition for the semi-classical behavior of $N_{-}\left(\mathbf{H}_{V}\right)$ is unknown. It may happen that it is impossible to express it in terms of function spaces for V (as it is for $d=1$).
2. What happens in the similar problem on a two-dimensional Riemannian manifold?
(Its structure "at infinity" counts).

Some unsolved problems II

3. Is it possible to obtain estimates invariant wrt MOTIONS in \mathbb{R}^{2} ?
In all the known estimates the point $x=0$ plays a special role and it is not clear how to avoid it, due to the necessity to separate the subspace of radial functions.

WARMEST CONGRATULATIONS TO YAKAR!

