Trudinger-Moser inequality and beyond

Cyril Tintarev
Uppsala University

Weizmann Institute of Science, December 272012

Why in dimension 2 one can stop blowing bubbles and start making toy pyramids

Why in dimension 2 one can stop blowing bubbles and start making toy pyramids

- Trudinger-Moser (Yudovich, Peetre, Pohozhaev, Trudinger, Moser) inequality defines an optimal nonlinearity $\int e^{4 \pi u^{2}}$ on a ball in Sobolev space for dimension 2, that exhibits more weak continuous behavior than its counterpart $\int|u|^{2^{*}}$ in higher dimensions.

Why in dimension 2 one can stop blowing bubbles and start making toy pyramids

- Trudinger-Moser (Yudovich, Peetre, Pohozhaev, Trudinger, Moser) inequality defines an optimal nonlinearity $\int e^{4 \pi u^{2}}$ on a ball in Sobolev space for dimension 2, that exhibits more weak continuous behavior than its counterpart $\int|u|^{2^{*}}$ in higher dimensions.
- This suggests that the inequality can be refined. We produce several refinements, but argue that there an invariant local analog of $\int|u|^{2^{*}}$ does nor exist.

Why in dimension 2 one can stop blowing bubbles and start making toy pyramids

- Trudinger-Moser (Yudovich, Peetre, Pohozhaev, Trudinger, Moser) inequality defines an optimal nonlinearity $\int e^{4 \pi u^{2}}$ on a ball in Sobolev space for dimension 2, that exhibits more weak continuous behavior than its counterpart $\int|u|^{2^{*}}$ in higher dimensions.
- This suggests that the inequality can be refined. We produce several refinements, but argue that there an invariant local analog of $\int|u|^{2^{*}}$ does nor exist.
- In the higher dimensions sequences approximating solutions to critical elliptic (Yamabe-type) problems may form concentration profiles in form of rescaled "standard bubbles". In dimension 2 the analogous sequences produce rescaled "toy pyramids".

Comparison of Sobolev and Trudinger-Moser inequalities

Sobolev ineq. $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right), N>2 \quad$ Trudinger-Moser, $H_{0}^{1}(\mathbb{D}), \mathbb{D} \subset \mathbb{R}^{2}$

$$
\begin{array}{c|c}
\sup _{\|\nabla u\|_{2} \leq 1} \int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x<\infty & \sup _{\|\nabla u\|_{2} \leq 1} \int_{\mathbb{D}} e^{4 \pi u^{2}} \mathrm{~d} x<\infty \\
h \uparrow \infty, \sup \int_{\mathbb{R}^{N}} h(|u|)|u|^{2^{*}} \mathrm{~d} x=\infty & \sup \int_{\mathbb{D}} h(|u|) e^{4 \pi u^{2}} \mathrm{~d} x=\infty \\
\mathcal{D}^{1,2} \hookrightarrow L^{2^{*}, 2}, \text { Peetre '66 } & H_{0}^{1}(\mathbb{D}) \hookrightarrow L^{\infty, 2,-1}, \text { Brezis-Wainger } \\
\|u\|_{2^{*}, 2}^{2}=\int\left|\frac{u^{*}}{r}\right|^{2} \mathrm{~d} x \text { (Hardy) } & \|u\|_{\infty, 2,-1}^{2}=\int\left|\frac{u^{*}}{r \log \frac{e}{r}}\right|^{2} \mathrm{~d} x \text { (Leray) } \\
L^{2^{*}, 2} \hookrightarrow L^{2^{*}}=L^{2^{*}, 2^{*}} \hookrightarrow L^{2^{*}, \infty} & L^{\infty, 2,-1} \hookrightarrow L^{\infty, \infty,-1 / 2}=\exp L^{2} \\
\int|u|^{2^{*}} \text { no weak continuity at any } u & \int e^{4 \pi u^{2}} \text { "almost" weakly cont. }
\end{array}
$$

Weak continuity of the Moser functional

Lions' compactness result. Let $u_{k} \rightharpoonup u$ in $H_{0}^{1}(\mathbb{D})$ and $\left\|\nabla u_{k}\right\|_{2} \leq 1$. $J(u)=\int_{\mathbb{D}}\left(e^{4 \pi u^{2}}-1\right) \mathrm{d} x$.

- If $\left\|\nabla u_{k}\right\|_{2} \leq \alpha<1$, or $u \neq 0$, then $J\left(u_{k}\right) \rightarrow J(u)$.

Weak continuity of the Moser functional

Lions' compactness result. Let $u_{k} \rightharpoonup u$ in $H_{0}^{1}(\mathbb{D})$ and $\left\|\nabla u_{k}\right\|_{2} \leq 1$.
$J(u)=\int_{\mathbb{D}}\left(e^{4 \pi u^{2}}-1\right) \mathrm{d} x$.

- If $\left\|\nabla u_{k}\right\|_{2} \leq \alpha<1$, or $u \neq 0$, then $J\left(u_{k}\right) \rightarrow J(u)$.
- If $u=0,\left\|\nabla u_{k}\right\|_{2} \rightarrow 1$, and the singular support of $w-\lim |\nabla u|^{2} d x$ is anything but a single point, then $J\left(u_{k}\right) \rightarrow J(u)$.

Weak continuity of the Moser functional

Lions' compactness result. Let $u_{k} \rightharpoonup u$ in $H_{0}^{1}(\mathbb{D})$ and $\left\|\nabla u_{k}\right\|_{2} \leq 1$. $J(u)=\int_{\mathbb{D}}\left(e^{4 \pi u^{2}}-1\right) \mathrm{d} x$.

- If $\left\|\nabla u_{k}\right\|_{2} \leq \alpha<1$, or $u \neq 0$, then $J\left(u_{k}\right) \rightarrow J(u)$.
- If $u=0,\left\|\nabla u_{k}\right\|_{2} \rightarrow 1$, and the singular support of $w-\lim |\nabla u|^{2} d x$ is anything but a single point, then $J\left(u_{k}\right) \rightarrow J(u)$.
- Adimurthi and CT (Annali SNS Pisa, to appear): $J\left(u_{k}\right) \rightarrow J(u)$ unless

$$
\left\|\nabla\left(u_{k}-\mu_{t_{k}}\left(\cdot-y_{k}\right)\right)\right\|_{2} \rightarrow 0
$$

for some $y_{k} \in \mathbb{D}$ and $t_{k} \rightarrow 0$, where

$$
\mu_{t}(x) \stackrel{\text { def }}{=}(2 \pi)^{-\frac{1}{2}}\left(\log \frac{1}{t}\right)^{-\frac{1}{2}} \min \left\{\log \frac{1}{|x|}, \log \frac{1}{t}\right\}, \quad t \in(0,1), x \in \mathbb{D} .
$$

(Moser function). The condition is still not necessary: convergence of $J\left(\lambda_{k} \mu_{t_{k}}\right)$ with $\lambda_{k} \rightarrow 1$ depends on the sequence λ_{k} (Adimurthi \& Prashanth)

Perfectly critical nonlinearity

- For $N>2$ one can derive the critical nonlinearity from the Hardy inequality $\int_{\mathbb{R}^{N}}|\nabla u|^{2} \geq\left(\frac{N-2}{2}\right)^{2} \int_{\mathbb{R}^{N}} \frac{u^{2}}{r^{2}}$. Hardy functional lacks weak continuity, but only on sequences concentrating at zero.

Perfectly critical nonlinearity

- For $N>2$ one can derive the critical nonlinearity from the Hardy inequality $\int_{\mathbb{R}^{N}}|\nabla u|^{2} \geq\left(\frac{N-2}{2}\right)^{2} \int_{\mathbb{R}^{N}} \frac{u^{2}}{r^{2}}$. Hardy functional lacks weak continuity, but only on sequences concentrating at zero.
- By using rearrangements, one forces the concentration to occur in the origin: $\int \frac{u^{* 2}}{r^{2}}$. This is the standard definition of the $L^{2^{*}, 2}$-quasinorm.

Perfectly critical nonlinearity

- For $N>2$ one can derive the critical nonlinearity from the Hardy inequality $\int_{\mathbb{R}^{N}}|\nabla u|^{2} \geq\left(\frac{N-2}{2}\right)^{2} \int_{\mathbb{R}^{N}} \frac{u^{2}}{r^{2}}$. Hardy functional lacks weak continuity, but only on sequences concentrating at zero.
- By using rearrangements, one forces the concentration to occur in the origin: $\int \frac{u^{* 2}}{r^{2}}$. This is the standard definition of the $L^{2^{*}, 2}$-quasinorm.
- Radial estimate: $\sup _{r>0} u^{*}(r) r^{\frac{N-2}{2}} \leq C\|\nabla u\|_{2}$. The left hand side is the $L^{2^{*}, \infty^{2}}$ - norm (weak $L^{2^{*}}$, Marcinkiewicz $M_{2^{*}}$). Hölder inequality defines quasinorms for a family of Lorentz spaces, $L^{2^{*}, q}, q>2$. For radial functions all these quasinorms are invariant with respect to dilations $u \mapsto t^{\frac{N-2}{2}} u(t \cdot)$, thus no compactness.

Perfectly critical nonlinearity

- For $N>2$ one can derive the critical nonlinearity from the Hardy inequality $\int_{\mathbb{R}^{N}}|\nabla u|^{2} \geq\left(\frac{N-2}{2}\right)^{2} \int_{\mathbb{R}^{N}} \frac{u^{2}}{r^{2}}$. Hardy functional lacks weak continuity, but only on sequences concentrating at zero.
- By using rearrangements, one forces the concentration to occur in the origin: $\int \frac{u^{* 2}}{r^{2}}$. This is the standard definition of the $L^{2^{*}, 2}$-quasinorm.
- Radial estimate: $\sup _{r>0} u^{*}(r) r^{\frac{N-2}{2}} \leq C\|\nabla u\|_{2}$. The left hand side is the $L^{2^{*}, \infty^{2}}$ - norm (weak $L^{2^{*}}$, Marcinkiewicz $M_{2^{*}}$). Hölder inequality defines quasinorms for a family of Lorentz spaces, $L^{2^{*}, q}, q>2$. For radial functions all these quasinorms are invariant with respect to dilations $u \mapsto t^{\frac{N-2}{2}} u(t \cdot)$, thus no compactness.
- Imbedding into $L^{2^{*}, 2}$ is optimal in the class of RI spaces (Peetre 1966), but the quasinorm of $L^{2^{*}, 2^{*}}$ coincides with the $L^{2^{*}}$ - norm.

Dilation-invariant nonlinearity

Same derivation in dimension 2 can be carried out with a twist and only at 90%. First of all there is no function space $\mathcal{D}^{1,2}\left(\mathbb{R}^{2}\right)$. Its role rather convincingly is taken over by $H_{0}^{1}(\mathbb{D})$ with the norm $\|\nabla u\|_{2}$. On the unit disk we have analogs of translations and dilations acting on $H_{0}^{1}(\mathbb{D})$ and preserving $\|\nabla u\|_{2}$.

Dilation-invariant nonlinearity

Same derivation in dimension 2 can be carried out with a twist and only at 90%. First of all there is no function space $\mathcal{D}^{1,2}\left(\mathbb{R}^{2}\right)$. Its role rather convincingly is taken over by $H_{0}^{1}(\mathbb{D})$ with the norm $\|\nabla u\|_{2}$. On the unit disk we have analogs of translations and dilations acting on $H_{0}^{1}(\mathbb{D})$ and preserving $\|\nabla u\|_{2}$.
Translations: $u\left(\frac{z-\zeta}{1-\bar{\zeta} z}\right), \zeta \in \mathbb{D}$.

Dilation-invariant nonlinearity

Same derivation in dimension 2 can be carried out with a twist and only at 90%. First of all there is no function space $\mathcal{D}^{1,2}\left(\mathbb{R}^{2}\right)$. Its role rather convincingly is taken over by $H_{0}^{1}(\mathbb{D})$ with the norm $\|\nabla u\|_{2}$.
On the unit disk we have analogs of translations and dilations acting on $H_{0}^{1}(\mathbb{D})$ and preserving $\|\nabla u\|_{2}$.
Translations: $u\left(\frac{z-\zeta}{1-\bar{\zeta} z}\right), \zeta \in \mathbb{D}$.
Dilations (a semigroup): $j^{-1 / 2} u\left(z^{j}\right), j \in \mathbb{N}$, extend to radial functions to the group

$$
h_{s} u(r) \stackrel{\text { def }}{=} s^{-\frac{1}{2}} u\left(r^{s}\right), s>0
$$

The counterpart of Hardy inequality is the Leray inequality (dilation invariant)

$$
\|\nabla u\|_{2}^{2} \geq \frac{1}{4} \int_{\mathbb{D}} \frac{u^{* 2}}{\left(r \log \frac{1}{r}\right)^{2}} \mathrm{~d} x \quad \text { Leray, } 1933
$$

Replacing $1 / r$ with e / r we have the quasinorm of the Lorentz-Zygmund space $L^{\infty, 2 ; 0}$.

The counterpart of Hardy inequality is the Leray inequality (dilation invariant)

$$
\|\nabla u\|_{2}^{2} \geq \frac{1}{4} \int_{\mathbb{D}} \frac{u^{* 2}}{\left(r \log \frac{1}{r}\right)^{2}} \mathrm{~d} x \quad \text { Leray, } 1933
$$

Replacing $1 / r$ with e / r we have the quasinorm of the Lorentz-Zygmund space $L^{\infty, 2 ; 0}$.
Radial estimate: $\sup _{r>0} \frac{u^{*}(r)}{\sqrt{\log \frac{1}{r}}} \leq \frac{1}{\sqrt{2 \pi}}\|\nabla u\|_{2 .} L^{\infty, \infty ;-1 / 2}$ coincides with the Orlicz space $\exp L^{2}$.

The counterpart of Hardy inequality is the Leray inequality (dilation invariant)

$$
\|\nabla u\|_{2}^{2} \geq \frac{1}{4} \int_{\mathbb{D}} \frac{u^{* 2}}{\left(r \log \frac{1}{r}\right)^{2}} \mathrm{~d} x \quad \text { Leray, } 1933
$$

Replacing $1 / r$ with e / r we have the quasinorm of the Lorentz-Zygmund space $L^{\infty, 2 ; 0}$.
Radial estimate: $\sup _{r>0} \frac{u^{*}(r)}{\sqrt{\log \frac{1}{r}}} \leq \frac{1}{\sqrt{2 \pi}}\|\nabla u\|_{2 .} L^{\infty, \infty ;-1 / 2}$ coincides with the Orlicz space $\exp L^{2}$.
The scale of Lorentz-Zygmund spaces $L^{\infty, p ; 1 / p-1 / 2}$ is similar to the Lorentz scale and the $L^{\infty, \infty ;-1 / 2}$-quasinorm is a clear analogue of the $L^{2^{*}}$-norm. As fiascos come, this is one of the nicest, a true Pyrrhic victory.

Why Möbius transformations?

- Poincaré disk model of the hyperbolic space $\mathbb{H}^{2}: d \mu=\frac{4}{\left(1-|x|^{2}\right)^{2}} d x$; $\|d u\|_{L^{2}\left(\mathbb{H}^{2}\right)}^{2}=\|\nabla u\|_{2}^{2} ;$

$$
\sup _{u \in \dot{H}^{1}\left(\mathbb{H}^{2}\right),\|d u\|_{2} \leq 1} \int_{\mathbb{H}^{2}}\left(e^{4 \pi u^{2}}-1\right) d \mu<\infty .
$$

"Hyperbolic refinement" of Trudinger-Moser: Adimurthi \&CT, Sandeep and Mancini, 2010

Why Möbius transformations?

- Poincaré disk model of the hyperbolic space $\mathbb{H}^{2}: d \mu=\frac{4}{\left(1-|x|^{2}\right)^{2}} d x$; $\|d u\|_{L^{2}\left(\mathbb{H}^{2}\right)}^{2}=\|\nabla u\|_{2}^{2} ;$

$$
\sup _{u \in \dot{H}^{1}\left(\mathbb{H}^{2}\right),\|d u\|_{2} \leq 1} \int_{\mathbb{H}^{2}}\left(e^{4 \pi u^{2}}-1\right) d \mu<\infty .
$$

"Hyperbolic refinement" of Trudinger-Moser: Adimurthi \&CT, Sandeep and Mancini, 2010

- Möbius transformations η_{ζ} are isometries on \mathbb{H}^{2}. "Translation-invariant" Lorentz-Zygmund spaces have to use rearrangements relative to μ. This helps the quasinorms, but not the Trudinger-Moser functional!

Forcing invariance:

Creating an invariant functional in $H_{0, r}^{1}(\mathbb{D})$ by limit: $\lim _{s \rightarrow 0} J\left(h_{s} u\right)-J(0)=0$ and $\lim _{s \rightarrow \infty} J\left(h_{s} u\right)-J(0)=2 \pi \mathbf{1}_{M}(u)$ where $M=\left\{\mu_{t}\right\}_{t \in(0,1)}$.

Forcing invariance:

Creating an invariant functional in $H_{0, r}^{1}(\mathbb{D})$ by limit: $\lim _{s \rightarrow 0} J\left(h_{s} u\right)-J(0)=0$ and $\lim _{s \rightarrow \infty} J\left(h_{s} u\right)-J(0)=2 \pi \mathbf{1}_{M}(u)$ where $M=\left\{\mu_{t}\right\}_{t \in(0,1)}$.
If the functional $\int_{\mathbb{D}} F(r, u) d \mu$ is both Möbius-translation invariant and dilation invariant, then $F=0$.

More refinements of Trudinger-Moser inequality

$$
\sup _{u \in H_{0}^{1}(\mathbb{D}),\|\nabla u\|_{2} \leq 1} \int_{\mathbb{D}} e^{4 \pi\left(1+\lambda\|u\|_{2}^{2}\right) u^{2}} d x<\infty, \lambda<\lambda_{1}(\mathbb{D})=5.7 \ldots
$$

More refinements of Trudinger-Moser inequality

$$
\sup _{u \in H_{0}^{1}(\mathbb{D}),\|\nabla u\|_{2} \leq 1} \int_{\mathbb{D}} e^{4 \pi\left(1+\lambda\|u\|_{2}^{2}\right) u^{2}} d x<\infty, \lambda<\lambda_{1}(\mathbb{D})=5.7 \ldots
$$

- Under general conditions (the singularity of V at the origin has to be sub-Leray) the inequality

$$
\sup _{u \in H_{0}^{1}(\Omega)\|\nabla u\|^{2}-\int V(r) u^{2} \leq 1} \int_{\mathbb{D}} e^{4 \pi u^{2}}<\infty
$$

holds if and only if the quadratic form is subcritical in the sense of Agmon (positive without a virtual bound state). CT (preprint 2012)

- Expressing this with the Orlicz norm is not kind to the constant 4π.
- Adimurthi-Druet inequality follows from the case of $V(r)=\lambda$. Wang and $Y e(2012)$ have $V=\frac{1}{\left(1-r^{2}\right)^{2}}$.

Trudinger-Moser on the plane

Bernhard Ruf (2005):

$$
c(\lambda)=\sup _{u \in H^{1}(\Omega)\|\nabla u\|^{2}+\lambda \int u^{2} \leq 1} \int_{\mathbb{R}^{2}} e^{4 \pi u^{2}}<\infty,
$$

Conjecture: $\int u^{2}$ can be replaced by a weaker term, as long as some coercivity is sustained. Perhaps not by $\left(\int_{\mathbb{D}} u\right)^{2}$?
In general, it's time to look for the counterpart of the Caffarelli-Cohn-Nirenberg inequalities.

How to blow bubbles

- Critical sequences for the limit Sobolev functional in higher dimensions, $\|\nabla u\|^{2}-\int|u|^{\frac{2 N}{N-2}}$, develop elementary concentrations ("bubbles") $t^{\frac{N-2}{2}} w(t(\cdot-y))$. There is only one possible positive bubble, the "standard bubble"
- $w(x)=\frac{1}{\left(1+x^{2}\right)^{\frac{N-2}{2}}}$.
- Existence results require elimination of concentration. Once concentration is eliminated, the sequence converges. "How to blow bubbles" by Brezis and Coron, 1984.
- What happens in the case of $\|\nabla u\|^{2}-\int e^{4 \pi u^{2}}$?
- The elementary concentration: $t^{1 / 2} w\left(|x-y|^{1 / t}\right)$. (Druet, Struwe and others studied sequences of solutions that allowed Euclidean blowups).
- Convergence after elimination of bubbles: Adimurthi and CT, to appear in Annali SNS Pisa, radial case Adimurthi, do Ó and CT (2010)
- Instead of a standard bubble the profiles are infinitely many "toy pyramids" (David Costa and CT, preprint 2012).

How to build toy pyramids

- A radial function $\mu_{C_{+}, C_{-}} \in H_{0}^{1}(B)$, parametrized by closed disjoint sets $C_{+}, C_{-} \subset(0,1)$, is called a Moser-Carleson-Chang tower if $\mu_{C_{+}, C_{-}}(r)=$ $\begin{cases}\sqrt{\frac{1}{2 \pi} \log \frac{1}{r}}, & r \in C_{+}, \\ -\sqrt{\frac{1}{2 \pi} \log \frac{1}{r}}, & r \in C_{-},\end{cases}$
$\left(A_{n}+B_{n} \log \frac{1}{r}, \quad r \in\left(a_{n}, b_{n}\right)\right.$ (a connected complement of $(0,1) \backslash\left(C_{+}\right.$
- When the set C_{+}consists of a single point and $C_{-}=\emptyset$, this is the original Moser function, and it uniquely minimizes $\left\|\nabla \mu_{C_{+}}, C_{-}\right\|_{2}$.
- The coefficients A_{n}, B_{n} are defined uniquely by the requirement of continuity.
- The function $\mu C_{+}, C_{-}(r)$ has continuous derivative at every point of $(0,1)$ except the endpoints $\left\{a_{n}, b_{n}\right\}$.
- The number of times the function $\mu_{C_{+}, C_{-}}$on $(0,1)$ changes sign does not exceed $\left\|\nabla \mu C_{+}, C_{-}\right\|_{2}^{2}-1$.
- Restriction on $C_{-}, C_{+}: \sum \frac{\sigma_{n}-1}{\sigma_{n}+1}<\infty$ where $\sigma_{n}=\sqrt{\frac{\log \frac{1}{2} n}{\log \frac{1}{b} n_{n}}}$.

