Geometric optimization of eigenvalues of the Laplace operator

Alexei V. Penskoi

Moscow State University

Independent University of Moscow

Workshop "Applications of analysis: game theory, spectral theory and beyond" in honor of Yakar Kannai's 70th birthday Weizmann Institute of Science — December 25–27, 2012

Outline Laplace operator in \mathbb{R}^n

Spectrum of the Laplace operator

Geometric optimization of eigenvalues

Laplace-Beltrami operator on surfaces

Laplace-Beltrami operator

Geometric optimization of eigenvalues

Known results about particular surfaces

New results

Minimal submanifolds of a sphere and extremal spectral property of their metrics

Two important theorems New method

New examples of extremal metrics

Lawson τ -surfaces Otsuki tori

・ 同 ト ・ ヨ ト ・ ヨ ト

Laplace-Beltrami operator on surfaces Minimal submanifolds in \mathbb{S}^n and extremal metrics New examples of extremal metrics

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Laplace operator

• Laplace operator in \mathbb{R}^n

$$\Delta f = -\frac{\partial^2 f}{\partial x_1^2} - \dots - \frac{\partial^2 f}{\partial x_n^2}$$

イロン 不同 とくほ とくほ とう

э

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Spectral problems for the Laplace operator

- Let Ω be a domain in \mathbb{R}^n
- Dirichlet spectral problem

$$\begin{cases} \Delta f = \lambda f \\ f|_{\partial\Omega} = \mathbf{0} \end{cases}$$

The spectrum consists only of eigenvalues

$$\mathbf{0} \leqslant \lambda_1(\Omega, D) \leqslant \lambda_2(\Omega, D) \leqslant \dots$$

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Spectral problems for the Laplace operator

Neumann spectral problem

$$\begin{cases} \Delta f = \lambda f \\ \frac{\partial f}{\partial \vec{n}} |_{\partial \Omega} = \mathbf{0} \end{cases}$$

 For nice domains Ω the spectrum consists only of eigenvalues

<

$$\mathbf{0} = \lambda_1(\Omega, \mathbf{N}) < \lambda_2(\Omega, \mathbf{N}) \leqslant \lambda_3(\Omega, \mathbf{N}) \leqslant \dots$$

Laplace-Beltrami operator on surfaces Minimal submanifolds in \mathbb{S}^n and extremal metrics New examples of extremal metrics Spectrum of the Laplace operator Geometric optimization of eigenvalues

Standing waves

Wave equation

$$\frac{\partial^2}{\partial t^2}v(x,t) + \Delta v(x,t) = 0, x = (x^1, \dots, x^n) \in \Omega \subset \mathbb{R}^n$$

Separation of variables

$$v(x,t) = u(x)T(t) \implies u(x)T''(t) + T(t)\Delta u(x) = 0$$
$$-\frac{T''(t)}{T(t)} = \frac{\Delta u(x)}{u(x)}$$

• Spectral problem for Δ

$$\Delta u(x) = \lambda u(x)$$

ヘロト ヘワト ヘビト ヘビト

э

Laplace-Beltrami operator on surfaces Minimal submanifolds in \mathbb{S}^n and extremal metrics New examples of extremal metrics Spectrum of the Laplace operator Geometric optimization of eigenvalues

Standing waves

Wave equation

$$\frac{\partial^2}{\partial t^2}v(x,t) + \Delta v(x,t) = 0, x = (x^1, \dots, x^n) \in \Omega \subset \mathbb{R}^n$$

Separation of variables

$$v(x,t) = u(x)T(t) \implies u(x)T''(t) + T(t)\Delta u(x) = 0$$
$$-\frac{T''(t)}{T(t)} = \frac{\Delta u(x)}{u(x)} = \lambda$$

• Spectral problem for Δ

$$\Delta u(x) = \lambda u(x)$$

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Boundary conditions

► Fixed boundary ⇒ Dirichlet spectral problem

$$\begin{cases} \Delta u = \lambda u \\ u|_{\partial\Omega} = 0 \end{cases}$$

► Free boundary ⇒ Neumann spectral problem

$$\begin{cases} \Delta u = \lambda u \\ \frac{\partial u}{\partial \vec{n}}|_{\partial \Omega} = 0 \end{cases}$$

くロト (過) (目) (日)

Laplace-Beltrami operator on surfaces Minimal submanifolds in \mathbb{S}^n and extremal metrics New examples of extremal metrics Spectrum of the Laplace operator Geometric optimization of eigenvalues

Example: dim = 1 (string)

- ► $\Omega = [0, I] \subset \mathbb{R}$
- ► Fixed endpoints ⇒ Dirichlet spectral problem

$$\begin{cases} -u'' = \lambda u \\ u(0) = u(l) = 0 \end{cases}$$

► Free endpoints ⇒ Neumann spectral problem

$$\begin{cases} -u'' = \lambda u \\ u'(0) = u'(l) = 0 \end{cases}$$

くロト (過) (目) (日)

Laplace-Beltrami operator on surfaces Minimal submanifolds in Sⁿ and extremal metrics New examples of extremal metrics Spectrum of the Laplace operator Geometric optimization of eigenvalues

Example: dim = 1 (string)

•
$$-u'' = \lambda u \Longrightarrow u(x) = A\sin(\sqrt{\lambda}x) + B\cos(\sqrt{\lambda}x)$$

Dirichlet spectral problem

$$u(0) = 0 \iff B = 0$$

 $u(l) = 0 \iff \sin(\sqrt{\lambda}l) = 0 \iff \sqrt{\lambda}l = \pi n, \quad n \in \mathbb{Z}$

• Eigenvalues $\lambda_n = \left(\frac{\pi n}{T}\right)^2$, where n = 1, 2, 3, ...

• Eigenfunctions
$$u_n = \sin(\frac{\pi n}{T}x)$$

ヘロン ヘアン ヘビン ヘビン

э

Laplace-Beltrami operator on surfaces Minimal submanifolds in Sⁿ and extremal metrics New examples of extremal metrics Spectrum of the Laplace operator Geometric optimization of eigenvalues

Example: dim = 1 (string)

•
$$-u'' = \lambda u \Longrightarrow u(x) = A\sin(\sqrt{\lambda}x) + B\cos(\sqrt{\lambda}x)$$

Dirichlet spectral problem

$$u(0) = 0 \iff B = 0$$

 $u(l) = 0 \iff \sin(\sqrt{\lambda}l) = 0 \iff \sqrt{\lambda}l = \pi n, \quad n \in \mathbb{Z}$

- Eigenvalues $\lambda_n = \left(\frac{\pi n}{T}\right)^2$, where n = 1, 2, 3, ...
- Eigenfunctions $u_n = \sin(\frac{\pi n}{l}x)$

ヘロト ヘアト ヘビト ヘビト

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Example: dim = 1 (string)

Neumann spectral problem

$$u(x) = A\sin(\sqrt{\lambda}x) + B\cos(\sqrt{\lambda}x)$$
$$u'(x) = A\sqrt{\lambda}\cos(\sqrt{\lambda}x) - B\sqrt{\lambda}\sin(\sqrt{\lambda}x)$$
$$u'(0) = 0 \iff A = 0$$
$$u'(l) = 0 \iff \sin(\sqrt{\lambda}l) = 0 \iff \sqrt{\lambda}l = \pi n, \quad n \in \mathbb{Z}$$

- Eigenvalues $\lambda_n = \left(\frac{\pi n}{T}\right)^2$, where $n = 0, 1, 2, 3, \dots$
- Eigenfunctions $u_n = \cos(\frac{\pi n}{l}x)$

イロト 不得 とくほ とくほとう

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Example: dim = 2, rectangular membrane

▶ Rectangular membrane $[0, a] \times [0, b] \subset \mathbb{R}^2$

$$-\frac{\partial^2}{\partial x^2}u(x,y)-\frac{\partial^2}{\partial y^2}u(x,y)=\lambda u(x,y)$$

Separation of variables

$$u(x, y) = X(x)Y(y)$$
$$-X''(x)Y(y) - X(x)Y''(y) = \lambda X(x)Y(y)$$
$$-\frac{X''(x)}{X(x)} = \frac{Y''(y)}{Y(y)} + \lambda = \mu$$

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Example: dim = 2, rectangular membrane

▶ Rectangular membrane $[0, a] \times [0, b] \subset \mathbb{R}^2$

$$-\frac{\partial^2}{\partial x^2}u(x,y)-\frac{\partial^2}{\partial y^2}u(x,y)=\lambda u(x,y)$$

Separation of variables

$$u(x, y) = X(x)Y(y)$$
$$-X''(x)Y(y) - X(x)Y''(y) = \lambda X(x)Y(y)$$
$$-\frac{X''(x)}{X(x)} = \frac{Y''(y)}{Y(y)} + \lambda = \mu$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Example: dim = 2, rectangular membrane

 2D Dirichlet spectral problem => 1D Dirichlet spectral problems

$$-X''(x) = \mu X(x), \quad X(0) = X(a) = 0$$

 $\mu_m = \left(\frac{\pi m}{a}\right)^2, \quad m = 1, 2, 3...$

$$-Y''(y) = (\lambda - \mu_m)Y(y), \quad Y(0) = Y(b) = 0$$
$$\lambda - \mu_m = \left(\frac{\pi n}{b}\right)^2, \quad n = 1, 2, 3...$$

Eigenvalues

$$\lambda_{m,n} = \left(\frac{\pi m}{a}\right)^2 + \left(\frac{\pi n}{b}\right)^2, \quad m,n = 1,2,3,\dots$$

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Example: dim = 2, rectangular membrane

 2D Dirichlet spectral problem => 1D Dirichlet spectral problems

$$-X''(x) = \mu X(x), \quad X(0) = X(a) = 0$$

 $\mu_m = \left(\frac{\pi m}{a}\right)^2, \quad m = 1, 2, 3...$

$$-Y''(y) = (\lambda - \mu_m)Y(y), \quad Y(0) = Y(b) = 0$$
$$\lambda - \mu_m = \left(\frac{\pi n}{b}\right)^2, \quad n = 1, 2, 3...$$

Eigenvalues

$$\lambda_{m,n} = \left(\frac{\pi m}{a}\right)^2 + \left(\frac{\pi n}{b}\right)^2, \quad m,n = 1,2,3,\ldots$$

Laplace-Beltrami operator on surfaces Minimal submanifolds in \mathbb{S}^n and extremal metrics New examples of extremal metrics

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Example: dim = 2, rectangular membrane

 In particular, if Ω = [0, π] × [0, π] then Dirichlet spectrum is given by formulas

$$\lambda_{m,n} = m^2 + n^2, \quad m, n = 1, 2, 3, \dots$$

ヘロト 人間 ト ヘヨト ヘヨト

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Geometric optimization of eigenvalues

Eigenvalues are functionals on the "set of domains"

 $\Omega \longmapsto \lambda_i(\Omega, D)$ $\Omega \longmapsto \lambda_i(\Omega, N)$

Naïve question: can we find

 $\min_{\Omega} \lambda_i(\Omega, D), \quad \max_{\Omega} \lambda_i(\Omega, D)?$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Geometric optimization of eigenvalues

Eigenvalues are functionals on the "set of domains"

 $\Omega \longmapsto \lambda_i(\Omega, D)$ $\Omega \longmapsto \lambda_i(\Omega, N)$

Naïve question: can we find

 $\min_{\Omega} \lambda_i(\Omega, D), \quad \max_{\Omega} \lambda_i(\Omega, D)?$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Example: rectangular membranes

- Let us consider now only λ_1 and $\Omega = [0, a] \times [0, b]$
- Then

$$\lambda_1 = \left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2$$

Naïve question

$$\min_{a,b} \left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2, \quad \max_{a,b} \left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2?$$

• Boring answer: no min or max, but inf = 0, sup = $+\infty$

イロト 不得 とくほ とくほとう

э

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Example: rectangular membranes

- Let us consider now only λ_1 and $\Omega = [0, a] \times [0, b]$
- Then

$$\lambda_1 = \left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2$$

Naïve question

$$\min_{a,b} \left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2, \quad \max_{a,b} \left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2?$$

• Boring answer: no min or max, but inf = 0, sup = $+\infty$

イロン 不同 とくほう イヨン

Laplace-Beltrami operator on surfaces Minimal submanifolds in \mathbb{S}^n and extremal metrics New examples of extremal metrics

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Rescaling

- What happens if $a \mapsto ka, b \mapsto kb$?
- Then

$$\lambda_1(ka, kb) = \left(\frac{\pi}{ka}\right)^2 + \left(\frac{\pi}{kb}\right)^2 =$$
$$= \frac{1}{k^2} \left[\left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2 \right] = \frac{1}{k^2} \lambda_1(a, b)$$

• One should fix the area! Let Area = 1 $\iff b = \frac{1}{a}$, then

$$\lambda_1(a) = \left(\frac{\pi}{a}\right)^2 + (\pi a)^2$$

▶ If Area = 1 then

$$\min_{a} \lambda_1(a) = \lambda_1(1) = 2\pi^2, \quad \sup_{a} \lambda_1(a) = +\infty$$

イロト 不得 とくほ とくほ とう

E DQC

Laplace-Beltrami operator on surfaces Minimal submanifolds in \mathbb{S}^n and extremal metrics New examples of extremal metrics Spectrum of the Laplace operator Geometric optimization of eigenvalues

Rescaling

- What happens if $a \mapsto ka, b \mapsto kb$?
- Then

$$\lambda_1(ka, kb) = \left(\frac{\pi}{ka}\right)^2 + \left(\frac{\pi}{kb}\right)^2 =$$
$$= \frac{1}{k^2} \left[\left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2 \right] = \frac{1}{k^2} \lambda_1(a, b)$$

• One should fix the area! Let Area = 1 $\iff b = \frac{1}{a}$, then

$$\lambda_1(a) = \left(\frac{\pi}{a}\right)^2 + (\pi a)^2$$

▶ If Area = 1 then

$$\min_{a} \lambda_1(a) = \lambda_1(1) = 2\pi^2, \quad \sup_{a} \lambda_1(a) = +\infty$$

イロト 不得 とくほと くほとう

3

Laplace-Beltrami operator on surfaces Minimal submanifolds in Sⁿ and extremal metrics New examples of extremal metrics Spectrum of the Laplace operator Geometric optimization of eigenvalues

Example: rectangular membranes

min λ₁(a) = λ₁(1) means that a drumhead of square shape produces the lowest possible sound among all rectangular drumheads of given area

Laplace-Beltrami operator on surfaces Minimal submanifolds in \mathbb{S}^n and extremal metrics New examples of extremal metrics Spectrum of the Laplace operator Geometric optimization of eigenvalues

Right question

Find

 $\inf_{\substack{\Omega \subset \mathbb{R}^n \\ \text{Vol}(\Omega) = c}} \lambda_i(\Omega, D)$

In the i = 1 2D case this means "A drumhead of which shape produces the lowest possible sound among all drumheads of given area?"

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Rayleigh-Faber-Krahn theorem

If i = 1 then the minimum is reached on a ball of given volume, i.e.

$$\min_{\substack{\Omega \subset \mathbb{R}^n \\ \text{Vol}(\Omega) = c}} \lambda_1(\Omega, D) = \lambda_1(B, D),$$

where *B* is the ball of volume *c* in \mathbb{R}^n .

This means that the optimal drumhead form is the disc.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Spectrum of the Laplace operator Geometric optimization of eigenvalues

Krahn-Szegö theorem

If i = 2 then the minimum is reached on the union of two identical balls, i.e.

$$\min_{\substack{\Omega \subset \mathbb{R}^n \\ \text{Vol}(\Omega) = c}} \lambda_2(\Omega, D) = \lambda_2(B \sqcup B, D),$$

where $B \sqcup B$ is the union of two identical balls in \mathbb{R}^n such that $Vol(B \sqcup B) = c$.

ヘロト 人間 ト ヘヨト ヘヨト

Spectrum of the Laplace operator Geometric optimization of eigenvalues

What about $i \ge 3$?

 We do not know the answer even in the case of planar domains

イロト イポト イヨト イヨト

э

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

Laplace-Beltrami operator on manifolds

Laplace-Beltrami operator on a Riemannian manifold

$$\Delta f = -\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^{i}} \left(\sqrt{|g|} g^{ij} \frac{\partial f}{\partial x^{j}} \right),$$

where g_{ij} is the metric tensor, g^{ij} are the component of the matrix inverse to g_{ij} and $g = \det g$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

Spectral problem for the Laplace-Beltrami operator

 Spectral problem for the Laplace-Beltrami operator on a Riemannian manifold *M* without boundary

$$\Delta f = \lambda f$$

The spectrum consists only of eigenvalues

 $0 = \lambda_0(M,g) < \lambda_1(M,g) \leqslant \lambda_2(M,g) \leqslant \dots$

ヘロト 人間 ト ヘヨト ヘヨト

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

Geometric optimization of eigenvalues

► Let us fix *M*. Then \(\lambda_i(M,g)\) is a functional on the space of Riemannian metrics on *M*

 $\boldsymbol{g}\longmapsto\lambda_i(\boldsymbol{M},\boldsymbol{g})$

What is a natural optimization problem?

► Find

 $\sup_{g} \lambda_i(M,g),$

where g belongs to the the space of Riemannian metrics on M such that Vol(M) = 1

This is a good question only for surfaces

・ロト ・ 理 ト ・ ヨ ト ・

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

Geometric optimization of eigenvalues

► Let us fix *M*. Then \(\lambda_i(M,g)\) is a functional on the space of Riemannian metrics on *M*

 $\boldsymbol{g}\longmapsto\lambda_i(\boldsymbol{M},\boldsymbol{g})$

What is a natural optimization problem?

Find

 $\sup_g \lambda_i(M,g),$

where *g* belongs to the the space of Riemannian metrics on *M* such that Vol(M) = 1

This is a good question only for surfaces

ヘロン ヘアン ヘビン ヘビン

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

Geometric optimization of eigenvalues

► Let us fix *M*. Then \(\lambda_i(M,g)\) is a functional on the space of Riemannian metrics on *M*

 $\boldsymbol{g}\longmapsto\lambda_i(\boldsymbol{M},\boldsymbol{g})$

What is a natural optimization problem?

Find

 $\sup_g \lambda_i(M,g),$

where *g* belongs to the the space of Riemannian metrics on *M* such that Vol(M) = 1

This is a good question only for surfaces

ヘロト ヘアト ヘビト ヘビト

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

Upper bounds

 In 1980 it was proven by Yang and Yau that for an orientable surface *M* of genus *γ* the following inequality holds,

 $\lambda_1(M,g) \leqslant 8\pi(\gamma+1).$

A generalization of this result for an arbitrary λ_i was found in 1993 by Korevaar. He proved that there exists a constant *C* such that for any *i* > 0 and any compact surface *M* of genus γ the functional λ_i(*M*, *g*) is bounded,

 $\lambda_i(M,g) \leqslant C(\gamma+1)i.$

ヘロン ヘアン ヘビン ヘビン

-

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

Upper bounds

 In 1980 it was proven by Yang and Yau that for an orientable surface *M* of genus *γ* the following inequality holds,

$$\lambda_1(M,g) \leq 8\pi(\gamma+1).$$

A generalization of this result for an arbitrary λ_i was found in 1993 by Korevaar. He proved that there exists a constant *C* such that for any *i* > 0 and any compact surface *M* of genus γ the functional λ_i(*M*, *g*) is bounded,

$$\lambda_i(M,g) \leqslant C(\gamma+1)i.$$

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

It should be remarked that in 1994 Colbois and Dodziuk proved that for a manifold *M* of dimension dim *M* ≥ 3 the functional λ_i(*M*, *g*) is not bounded on the space of Riemannian metrics *g* on *M*.

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

Eigenvalues as functions of a metric

- ► The functional \u03c6_i(M, g) depends continuously on the metric g, but this functional is not differentiable.
- However, it was shown in 1973 by Berger that for analytic deformations g_t the left and right derivatives of the functional λ_i(M, g_t) with respect to t exist.

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

Eigenvalues as functions of a metric

- ► The functional \u03c6_i(M, g) depends continuously on the metric g, but this functional is not differentiable.
- ► However, it was shown in 1973 by Berger that for analytic deformations g_t the left and right derivatives of the functional λ_i(M, g_t) with respect to t exist.

・ロト ・ 日本・ ・ 日本・

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

Eigenvalues as functions of a metric

- This led to the following definition by Nadirashvili (1986) and by El Soufi and Ilias (2000).
- ▶ Definition. A Riemannian metric g on a closed surface M is called *extremal metric* for the functional λ_i(M, g) if for any analytic deformation g_t such that g₀ = g the following inequality holds,

$$\frac{d}{dt}\lambda_i(M,g_t)\Big|_{t=0+} \leqslant 0 \leqslant \frac{d}{dt}\lambda_i(M,g_t)\Big|_{t=0-}$$

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

What can we say about particular surfaces?

The list of surfaces M and values of index i such that the maximal or at least extremal metrics for the functional \(\lambda_i(M,g)\) are known is quite short.

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

What can we say about particular surfaces?

- λ₁(S², g). Hersch proved in 1970 that sup λ₁(S², g) = 8π and the maximum is reached on the canonical metric on S². This metric is the unique extremal metric.
- λ₁(ℝP², g). Li and Yau proved in 1982 that sup λ₁(ℝP², g) = 12π and the maximum is reached on the canonical metric on ℝP². This metric is the unique extremal metric.
- λ₁(T², g). Nadirashvili proved in 1996 that sup λ₁(T², g) = ^{8π²}/_{√3} and the maximum is reached on the flat equilateral torus. El Soufi and Ilias proved in 2000 that the only extremal metric for λ₁(T², g) different from the maximal one is the metric on the Clifford torus.

ヘロト ヘワト ヘビト ヘビト

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

What can we say about particular surfaces?

- λ₁(S², g). Hersch proved in 1970 that sup λ₁(S², g) = 8π and the maximum is reached on the canonical metric on S². This metric is the unique extremal metric.
- λ₁(ℝP², g). Li and Yau proved in 1982 that sup λ₁(ℝP², g) = 12π and the maximum is reached on the canonical metric on ℝP². This metric is the unique extremal metric.

λ₁(T², g). Nadirashvili proved in 1996 that sup λ₁(T², g) = ^{8π²}/_{√3} and the maximum is reached on the flat equilateral torus. El Soufi and Ilias proved in 2000 that the only extremal metric for λ₁(T², g) different from the maximal one is the metric on the Clifford torus.

ヘロト ヘワト ヘビト ヘビト

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

What can we say about particular surfaces?

- λ₁(S², g). Hersch proved in 1970 that sup λ₁(S², g) = 8π and the maximum is reached on the canonical metric on S². This metric is the unique extremal metric.
- λ₁(ℝP², g). Li and Yau proved in 1982 that sup λ₁(ℝP², g) = 12π and the maximum is reached on the canonical metric on ℝP². This metric is the unique extremal metric.

► $\lambda_1(\mathbb{T}^2, g)$. Nadirashvili proved in 1996 that sup $\lambda_1(\mathbb{T}^2, g) = \frac{8\pi^2}{\sqrt{3}}$ and the maximum is reached on the flat equilateral torus. El Soufi and Ilias proved in 2000 that the only extremal metric for $\lambda_1(\mathbb{T}^2, g)$ different from the maximal one is the metric on the Clifford torus.

ヘロン ヘアン ヘビン ヘビン

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

What can we say about particular surfaces?

► $\lambda_1(\mathbb{K}, g)$. Jakobson, Nadirashvili and I. Polterovich proved in 2006 that the metric on a Klein bottle realized as the Lawson bipolar surface $\tilde{\tau}_{3,1}$ is extremal. El Soufi, Giacomini and Jazar proved in the same year that this metric is the unique extremal metric and the maximal one. Here sup $\lambda_1(\mathbb{K}, g) = 12\pi E\left(\frac{2\sqrt{2}}{3}\right)$, where *E* is a complete elliptic integral of the second kind,

$$E(k) = \int_0^1 \frac{\sqrt{1-k^2\alpha^2}}{\sqrt{1-\alpha^2}} d\alpha.$$

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

What can we say about particular surfaces?

λ₂(S², g). Nadirashvili proved in 2002 that sup λ₂(S², g) = 16π and maximum is reached on a singular metric which can be obtained as the metric on the union of two spheres of equal radius with canonical metric glued together. The proof contained some gaps filled later by Petrides (2012).

・ロト ・ 日本・ ・ 日本・

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

What can we say about particular surfaces?

- λ_i(T², g), λ_i(K, g). Let r, k ∈ N, 0 < k < r, (r, k) = 1. Lapointe studied bipolar surfaces τ̃_{r,k} of Lawson τ-surfaces τ_{r,k} and proved the following result published in 2008.
 - If rk ≡ 0 mod 2 then τ̃_{r,k} is a torus and it carries an extremal metric for λ_{4r-2}(T², g).
 - If rk ≡ 1 mod 4 then τ̃_{r,k} is a torus and it carries an extremal metric for λ_{2r-2}(T², g).
 - If rk ≡ 3 mod 4 then τ̃_{r,k} is a Klein bottle and it carries an extremal metric for λ_{r-2}(K, g).

・ロト ・ 日本・ ・ 日本・

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

What can we say about particular surfaces?

We should also mention the paper in 2005 by Jakobson, Levitin, Nadirashvili, Nigam and I. Polterovich. It is shown in this paper using a combination of analytic and numerical tools that the maximal metric for the first eigenvalue on the surface of genus two is the metric on the Bolza surface *P* induced from the canonical metric on the sphere using the standard covering *P* → S². In fact, the authors state this result as a conjecture, because a part of the argument is based on a numerical calculation.

Laplace operator in \mathbb{R}^n Laplace-Beltrami operatorLaplace-Beltrami operator on surfacesGeometric optimization of eigenvaluesMinimal submanifolds in \mathbb{S}^n and extremal metricsKnown results about particular surfacesNew examples of extremal metricsNew results

Lawson τ -surfaces

A.P., Extremal spectral properties of Lawson tau-surfaces and the Lamé equation, Moscow Math. J. 12 (2012), 173-192. Preprint arXiv:math/1009.0285

Let τ_{m,k} be a Lawson torus. We can assume that m, k ≡ 1 mod 2, (m, k) = 1. Then the induced metric on τ_{m,k} is an extremal metric for the functional λ_j(T², g), where where

$$j=2\left[\frac{\sqrt{m^2+k^2}}{2}\right]+m+k-1.$$

The corresponding value of the functional is

$$\lambda_j(au_{m,k}) = 8\pi m E\left(rac{\sqrt{m^2-k^2}}{m}
ight)$$

ヘロト ヘアト ヘビト ヘビト

Laplace operator in \mathbb{R}^n Laplace-Beltrami operatorLaplace-Beltrami operator on surfacesGeometric optimization of eigenvaluesMinimal submanifolds in \mathbb{S}^n and extremal metricsKnown results about particular surfacesNew examples of extremal metricsNew results

Lawson τ -surfaces

A.P., Extremal spectral properties of Lawson tau-surfaces and the Lamé equation, Moscow Math. J. 12 (2012), 173-192. Preprint arXiv:math/1009.0285

► 2. Let τ_{m,k} be a Lawson Klein bottle. We can assume that m ≡ 0 mod 2, k ≡ 1 mod 2, (m, k) = 1. Then the induced metric on τ_{m,k} is an extremal metric for the functional λ_j(K, g), where

$$j=2\left[\frac{\sqrt{m^2+k^2}}{2}\right]+m+k-1.$$

The corresponding value of the functional is

$$\lambda_j(au_{m,k}) = 8\pi m E\left(rac{\sqrt{m^2-k^2}}{m}
ight)$$

ヘロト ヘアト ヘビト ヘビト

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

Otsuki tori

A.P., *Extremal spectral properties of Otsuki tori*, to appear in Mathematische Nachrichten, Preprint arXiv:math/1108.5160

The metric on an Otsuki torus $O_{\frac{p}{q}} \subset \mathbb{S}^3$ is extremal for the functional $\lambda_{2p-1}(\mathbb{T}^2, g)$.

ヘロト 人間 ト ヘヨト ヘヨト

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

Bipolar Otsuki tori

M.Karpukhin, Spectral properties of bipolar surfaces to Otsuki tori, Preprint arXiv:math/1205.6316

The metric on an bipolar Otsuki torus $\tilde{O}_{\frac{p}{q}} \subset \mathbb{S}^4$ is extremal for the functional $\lambda_{2q+4p-2}(\mathbb{T}^2, g)$ for odd q and $\lambda_{q+2p-2}(\mathbb{T}^2, g)$ for even q.

・ロト ・ ア・ ・ ヨト ・ ヨト

Laplace-Beltrami operator Geometric optimization of eigenvalues Known results about particular surfaces New results

All known extremal metrics on the torus and the Klein bottle are non-maximal

M.Karpukhin, On maximality of known extremal metrics on torus and Klein bottle, Preprint arXiv:1210.8122

All known extremal metrics on tori are non-maximal. The only exception are the metric on the equilateral torus (its metric is maximal for $\lambda_1(\mathbb{T}^2, g)$) and the metric on the Lawson Klein bottle $\tilde{\tau}_{3,1}$ (its metric is maximal for $\lambda_1(\mathbb{K}^2, g)$.)

ヘロト ヘアト ヘビト ヘビト

Two important theorems New method

A classical theorem

- Let N be a d-dimensional minimal submanifold of the sphere Sⁿ ⊂ ℝⁿ⁺¹ of radius R. Let Δ be the Laplace-Beltrami operator on N equipped with the induced metric.
- ▶ **Theorem.** The restrictions $x^1|_N, \ldots, x^{n+1}|_N$ on *N* of the standard coordinate functions of \mathbb{R}^{n+1} are eigenfunctions of Δ with eigenvalue $\frac{d}{B^2}$.

ヘロン 不通 とくほ とくほ とう

Laplace operator in R" Laplace-Beltrami operator on surfaces Minimal submanifolds in Sⁿ and extremal metrics New examples of extremal metrics

Two important theorems New method

A recent theorem by El Soufi and Ilias (2008)

Let us numerate the eigenvalues of ∆ counting them with multiplicities

$$\mathbf{0} = \lambda_{\mathbf{0}} < \lambda_{\mathbf{1}} \leqslant \lambda_{\mathbf{2}} \leqslant \cdots \leqslant \lambda_{i} \leqslant \dots$$

- ► The above mentioned theorem implies that there exists at least one index *i* such that $\lambda_i = \frac{d}{R^2}$. Let *j* denotes the minimal number *i* such that $\lambda_i = \frac{d}{R^2}$.
- Let us introduce the eigenvalues counting function

$$N(\lambda) = \#\{\lambda_i | \lambda_i < \lambda\}.$$

We see that $j = N(\frac{d}{B^2})$.

Two important theorems New method

A recent theorem by El Soufi and Ilias (2008)

Let us numerate the eigenvalues of ∆ counting them with multiplicities

$$\mathbf{0} = \lambda_{\mathbf{0}} < \lambda_{\mathbf{1}} \leqslant \lambda_{\mathbf{2}} \leqslant \cdots \leqslant \lambda_{i} \leqslant \dots$$

- ► The above mentioned theorem implies that there exists at least one index *i* such that $\lambda_i = \frac{d}{R^2}$. Let *j* denotes the minimal number *i* such that $\lambda_i = \frac{d}{R^2}$.
- Let us introduce the eigenvalues counting function

$$N(\lambda) = \#\{\lambda_i | \lambda_i < \lambda\}.$$

We see that $j = N(\frac{d}{R^2})$.

Two important theorems New method

A recent theorem by El Soufi and Ilias (2008)

Let us numerate the eigenvalues of ∆ counting them with multiplicities

$$\mathbf{0} = \lambda_{\mathbf{0}} < \lambda_{\mathbf{1}} \leqslant \lambda_{\mathbf{2}} \leqslant \cdots \leqslant \lambda_{i} \leqslant \dots$$

- ► The above mentioned theorem implies that there exists at least one index *i* such that $\lambda_i = \frac{d}{R^2}$. Let *j* denotes the minimal number *i* such that $\lambda_i = \frac{d}{R^2}$.
- Let us introduce the eigenvalues counting function

$$N(\lambda) = \#\{\lambda_i | \lambda_i < \lambda\}.$$

We see that $j = N(\frac{d}{B^2})$.

Two important theorems New method

A recent theorem by El Soufi and Ilias (2008)

Theorem. The metric g₀ induced on N by minimal immersion N ⊂ Sⁿ is an extremal metric for the functional λ_{N(^d/_{R²</sup>)}(N, g).}

イロト 不得 とくほ とくほとう

Laplace operator in R" Laplace-Beltrami operator on surfaces Minimal submanifolds in Sⁿ and extremal metrics New examples of extremal metrics

Two important theorems New method

How to find extremal metrics?

- Find a minimally immersed surface Σ in a unit sphere
- ▶ Find *N*(2)
- Then the induced metric on Σ is extremal for $\lambda_{N(2)}$

ヘロト ヘアト ヘビト ヘビト

1

Lawson *τ*-surfaces Otsuki tori

Lawson τ -surfaces

Definition A Lawson tau-surface *τ_{m,k}* ⊂ S³ is defined by the doubly-periodic immersion Ψ_{m,k} : ℝ² → S³ ⊂ ℝ⁴ given by the following explicit formula,

$$\Psi_{m,k}(x,y) =$$

 $= (\cos mx \cos y, \sin mx \cos y, \cos kx \sin y, \sin kx \sin y).$

くロト (過) (目) (日)

Lawson *τ*-surfaces Otsuki tori

Lawson τ -surfaces

► This family of surfaces is introduced in 1970 by Lawson. He proved that for each unordered pair of positive integers (m, k) with (m, k) = 1 the surface $\tau_{m,k}$ is a distinct compact minimal surface in S³. Let us impose the condition (m, k) = 1. If both integers *m* and *k* are odd then $\tau_{m,k}$ is a torus. We call it a Lawson torus. If one of integers *m* and *k* is even then $\tau_{m,k}$ is a Klein bottle. We call it a Lawson Klein bottle. The torus $\tau_{1,1}$ is the Clifford torus.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lawson *τ*-surfaces Otsuki tori

Lawson τ -surfaces

The proof is done by reduction to a periodic Sturm-Liouville problem and applying theory of Magnus-Winkler-Ince equation and the Lamé equation.

くロト (過) (目) (日)

Lawson τ -surfaces Otsuki tori

Hsiang-Lawson reduction theorem

- Let *M* be a Riemannian manifold with a metric g' and *I*(*M*) its full isometry group. Let *G* ⊂ *I*(*M*) be an isometry group. Let us denote by π the natural projection onto the space of orbits π : *M* → *M*/*G*.
- The union M* of all orbits of principal type is an open dense submanifold of M. The subset M*/G of M/G is a manifold carrying a natural Riemannian structure g induced from the metric g' on M.

イロト 不得 トイヨト イヨト

Laplace operator in R" Laplace-Beltrami operator on surfaces Minimal submanifolds in Sⁿ and extremal metrics New examples of extremal metrics

Hsiang-Lawson reduction theorem

- ► Let us define a volume function $V : M/G \longrightarrow \mathbb{R}$: if $x \in M^*/G$ then $V(x) = Vol(\pi^{-1}(x))$
- Let *f* : *N* → *M* be a *G*-invariant submanifold, i.e. *G* acts on *N* and *f* commutes with the actions of *G* on *N* and *M*.
- A cohomogeneity of a *G*-invariant submanifold *f* : *N* → *M* in *M* is the integer dim *N* − *ν*, where dim *N* is the dimension of *N* and *ν* is the common dimension of the principal orbits.
- Let us define for each integer $k \ge 1$ a metric $g_k = V^{\frac{2}{k}}g$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Lawson τ -surfaces Otsuki tori

Hsiang-Lawson reduction theorem

- ► Theorem (Hsiang-Lawson). Let f : N → M be a G-invariant submanifold of cohomogeneity k, and let M/G be given the metric g_k. Then f : N → M is minimal is and only if f̄ : N*/G → M*/G is minimal.
- Corollary. If M = Sⁿ, G = S¹ and Ñ ⊂ M*/G is a closed geodesic w.r.t. the metric g₁ then π⁻¹(Ñ) is a minimal torus in Sⁿ.

ヘロト ヘアト ヘビト ヘビト

Otsuki tori

• Let us consider $M = \mathbb{S}^3$ and $G = \mathbb{S}^1$ acting as

 $\alpha \cdot (\mathbf{x}, \mathbf{y}, \mathbf{z}, t) = (\cos \alpha \mathbf{x} + \sin \alpha \mathbf{y}, -\sin \alpha \mathbf{x} + \cos \alpha \mathbf{y}, \mathbf{z}, t).$

- Minimal tori obtained in this case by the described construction are called Otsuki tori.
- Except one particular case (this is a Clifford torus), Otsuki tori are in one-to-one correspondence with rational numbers ^p/_q such that

$$\frac{1}{2} < \frac{p}{q} < \frac{\sqrt{2}}{2}, \quad p,q > 0, \quad (p,q) = 1.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Laplace operator in R^{*n*} Laplace-Beltrami operator on surfaces Minimal submanifolds in S^{*n*} and extremal metrics New examples of extremal metrics

Lawson *τ*-surfaces Otsuki tori

Otsuki tori

- We denote these tori by O_{<u>p</u>}.
- ► Example: the geodesic corresponding to O_{2/2}.

Laplace operator in R" Laplace-Beltrami operator on surfaces Minimal submanifolds in Sⁿ and extremal metrics New examples of extremal metrics

Lawson *τ*-surfaces Otsuki tori

The Otsuki tori

 Here the proof also use the reduction to a periodic Sturm-Liouville problem but it does not require complicated classical ODEs.