
Optimal File Sharing in Distributed Networks∗

Moni Naor† Ron M. Roth‡

Abstract

The following file distribution problem is considered: Given a network of processors repre-

sented by an undirected graph G = (V,E), and a file size k, an arbitrary file w of k bits is to

be distributed among all nodes of G. To this end, each node is assigned a memory device such

that, by accessing the memory of its own and of its adjacent nodes, the node can reconstruct

the contents of w. The objective is to minimize the total size of memory in the network. This

paper presents a file distribution scheme which realizes this objective for k ≫ log∆G, where

∆G stands for the maximum degree in G: For this range of k, the total memory size required

by the suggested scheme approaches an integer programming lower bound on that size. The

scheme is also constructive in the sense that, given G and k, the memory size at each node in

G, as well as the mapping of any file w into the node memory devices, can be computed in

time complexity which is polynomial in k and |V |. Furthermore, each node can reconstruct the

contents of such a file w in O(k2) bit operations. Finally, it is shown that the requirement of

k being much larger than log∆G is necessary in order to have total memory size close to the

integer programming lower bound.

Key words: De-randomization; Distributed networks; File assignment; Integer Programming;

Linear codes; Linear Programming; Probabilistic algorithms; Resource sharing; Set cover.

AMS (MOS) subject classifications: 68P20, 68M10, 68Q20, 68R99, 94B05.

∗This work was presented in part at the 32nd IEEE Symposium on Foundations of Computer Science,

Puerto Rico, October 1991.
†Department of Applied Mathematics and Computer Science, Weizmann Institute, Rehovot 76100, Israel.

e-mail: naor@wisdom.weizmann.ac.il. Part of this work was done while the author was with the IBM

Research Division, Almaden Research Center.
‡Computer Science Department, Technion, Haifa 32000, Israel. e-mail: ronny@cs.technion.ac.il. Part of

this work was done while the author was visiting IBM Research Division, Almaden Research Center.



1 Introduction

Consider the following file distribution problem: A network of processors is represented by

an undirected graph G. An arbitrary file w of a prescribed size k (measured, say, in bits)

is to be distributed among all nodes of G. We are to assign memory devices to the nodes

of G such that, by accessing the memory of its own and of its adjacent nodes, each node

can reconstruct the contents of w. Given G and k, the objective is to find a static memory

allocation to the nodes of G, independent of w, as to minimize the total size of memory in

the network. Although we do not restrict the file distribution or reconstruction algorithms

to be of any particular form, we aim at simple and efficient ones.

The problem of file allocation in a network, i.e., of storing a file in a network so that

every processor has “easy” access to the file, has been considered in many variants (see [4]

for a survey). The specific version of reconstruction from adjacent nodes only has received

attention in the form of file segmentation, where the task is to partition the file so that, for

each node u in the network, the union of the file segments stored at nodes adjacent to u is

the complete file [4][8][13]. As we shall see, allowing more general reconstruction procedures

than simply taking the union of file segments at adjacent nodes can result in a considerable

savings of the total amount of memory required: Letting ∆G denote the maximum degree of

any node in G, the memory requirement of the best segmentation scheme can be Ω(log∆G)

times larger than the optimal requirement in the general scheme; this bound is tight.

We start by deriving linear and integer programming lower bounds on the total size

of memory required for any network G and file size k. We then present a simple scheme

that attains these bounds for sufficiently large values of k. In this scheme, however, the

file size k must be, in some cases, much larger than ∆G log∆G in order to approach the

above-mentioned lower bounds. We regard this as a great disadvantage for two reasons:

such a scheme may turn out to be efficient only for large files, and, even then, it requires

addressing large units of stored data each time a node accesses the file. Thus we devote

considerable attention to the problem of finding a scheme that is close to the linear and

integer programming bounds with file size that is as small as possible.

Our main result is that the critical file size above which the linear or integer programming

bounds can be approached is of the order of log∆G: We present a file distribution scheme

1



for any network G and file size k, of total memory size that is within a multiplicative factor

of 1 + ε(G, k) from the linear programming bound, where ε(G, k) stands for a term which

approaches zero as k/ log∆G increases. On the other hand, we present an infinite sequence

of network–file-size pairs
{
(Gl, kl)

}∞
l=0

such that kl ≥ log∆Gl
, and yet any file distribution

scheme, when applied to a pair (Gl, kl), requires memory size which is 1 + δ(Gl, kl) times

larger than the integer (or linear) lower bound, with lim inf l→∞ δ(Gl, kl) ≥ 1
4
. This proves

that a file size of the order of log∆G is, indeed, a critical point.

The rest of the paper is organized as follows. In Section 2 we provide the necessary

background and definitions. In Section 3 we describe the linear and integer programming

lower bounds and prove that the linear programming lower bound can be approached for large

file sizes k. In Section 4 we prove our main result, namely, we present a file distribution

scheme that approaches the linear programming bound as the ratio k/ log∆G increases.

Finally, in Section 5 we exhibit the fact that a file size of log∆G is a critical point, below

which there exist infinite families of networks for which the linear and integer programming

lower bounds cannot be attained.

2 Background and definitions

Throughout this paper we assume the underlying network to be presented by an undirected

graph G = (V,E), with a set of nodes V = VG and a set of edges E = EG such that —

(i) G does not have parallel edges; and —

(ii) each node contains a self loop. This stands for the fact that each node can access its

own memory.

An undirected graph satisfying conditions (i) and (ii) will be referred to as a network graph.

Two nodes u and v in a network graph G = (V,E) are adjacent if there is an edge in G

connecting u and v. The adjacency matrix of a network graph G = (V,E) is the |V | × |V |
matrix AG = [au,v]u,v∈V , where au,v = 1 when u and v are adjacent, and au,v = 0 otherwise.

Note that, by the definition of a network graph, every node u ∈ V is adjacent to itself and,

thus, au,u = 1.

2



For every u ∈ V , let Γ(u) be the set of nodes that are adjacent to u inG. The degree of u is

denoted by ∆(u)
∆
= |Γ(u)|, and the maximum degree in G is denoted by ∆G

∆
= maxu∈V ∆(u).

Two real vectors y = [yi]i and z = [zi]i are said to satisfy the relation y ≥ z if yi ≥ zi

for all i. The scalar product y · z of these vectors is defined, as usual, by
∑

i yizi. A real

vector y is called nonnegative if y ≥ 0, where 0 denotes the all-zero vector. By the norm

of a nonnegative vector y we mean the L1-norm ∥y∥ ∆
= y · 1, where 1 denotes the all-one

vector.

Given a network graph G = (V,E) and a positive integer k, a file distribution protocol

for (G, k) is, intuitively, a procedure for allocating memory devices to the nodes of G, and

to map an arbitrary file w of size k into these memory devices, such that each node u can

reconstruct w by reading the memory contents at nodes adjacent to u.

More precisely, let F2
∆
= GF (2), let G = (V,E) be a network graph, and let k be a

positive integer. For u ∈ V and a real vector z = [zu]u∈V denote by (AGz)u the uth entry1

of AGz; this entry is equal to
∑

v∈Γ(u) zv. A file distribution protocol χ for (G, k) is a list(
x ; [Eu]u∈V ; [Du]u∈V

)
, consisting of —

• memory allocation, which is a nonnegative integer vector x = [xu]u∈V ; the entry xu

denotes the size of memory (in bits) assigned to node u;

• encoding mappings

Eu : F k
2 → F xu

2 for every u ∈ V ;

these mappings define the coding rule of any file w of size k into the memory devices

at the nodes: the contents of the memory at node u is given by Eu(w);

• decoding (reconstruction) mappings

Du : F
(AGx)u
2 → F k

2 for every u ∈ V .

The memory allocation, encoding mappings, and decoding mappings satisfy the re-

quirement

Du

(
[ Ev(w) ]v∈Γ(u)

)
≡ w , w ∈ F k

2 . (1)

1As we have not defined any order on the set of nodes V , the order of entries in vectors such as z can be

fixed arbitrarily. The same applies to rows and columns of the adjacency matrix AG, or to subvectors such

as [zv]v∈Γ(u).

3



Equation (1) guarantees that each node u is able to reconstruct the value (contents)

of any file w of size k out of the memory contents Ev(w) at nodes v adjacent to u.

The memory size of a file distribution protocol χ =
(
x ; [Eu]u∈V ; [Du]u∈V

)
for (G, k) is

defined as the norm ∥x∥ and is denoted |χ|. That is, the memory size of a file distribution

protocol is the total number of bits assigned to the nodes. The minimum memory size of

any file distribution protocol for (G, k) is denoted by M(G, k).

Example 1. The file segmentation method mentioned in Section 1 can be described as

a file distribution protocol for (G, k) with memory allocation x = [xu]u∈V and associated

encoding mappings Eu : F k
2 → F xu

2 of the form

Eu : [w1w2 . . . wk] 7→ [wj(u;1)wj(u;2) . . . wj(u;xu)] ,

where 0 < j(u; 1) < j(u; 2) < . . . < j(u;xu) ≤ k. For a node u ∈ V to be able to reconstruct

the original file w, the mappings Ev, v ∈ Γ(u), must be such that every entry wi of w appears

in at least one Ev(w). This implies that the set of nodes Si which wi is mapped to under the

encoding mappings must be a dominating set in G; that is, each node u ∈ G is adjacent to

some node in Si. On the other hand, given a dominating set S in G, we can construct a file

segmentation protocol for (G, k) of memory size k · |S| ≤ k · |V | (the case S = V corresponds

to simply replicating the original file w into each node in G). •

A file distribution scheme is a function (G, k) 7→ χ(G, k) which maps every network graph

G and positive integer k into a file distribution protocol χ(G, k) for (G, k).

A file distribution scheme (G, k) 7→ χ(G, k) =
(
x ; [Eu]u∈V ; [Du]u∈V

)
is constructive if —

(a) the complexity of computing the memory allocation x is polynomial in k and |V |;

(b) for every w ∈ F k
2 , the complexity of computing the encoded values [ Eu(w) ]u∈V is poly-

nomial in the memory size ∥x∥; and —

(c) for every u ∈ V and c ∈ F
(AGx)u
2 , the complexity of reconstructing w = Du(c) out of c

is polynomial in the original file size k.

4



By computational complexity of a problem we mean the running time of a Turing machine

that solves this problem.

Remark 1. In the definition of memory size of file distribution protocols we chose not

to count the amount of memory required at each node u to store and run the routines which

implement the decoding mappings Du(·). The reasoning for neglecting this auxiliary memory

is that, in practice, there are a number of files (each, say, of the same size k) that are to be

distributed in the network. The file distribution protocol can be implemented independently

for each such file, using the same program and the same working space to handle all these

files. To this end, we might better think of k as the size of the smallest information unit

(e.g., a word, or a record) that is addressed at each access to any file. From a complexity

point of view, we would prefer k to be as small as possible. The motivation of this paper

can be summarized as finding a constructive file distribution scheme (G, k) 7→ χ(G, k) which

maintains a ratio of memory-size to file-size virtually equal to liml→∞ M(G, l)/l for relatively

small file sizes k. •

Remark 2. One might think of a weaker definition for constructiveness by allowing

non-polynomial pre-computation of x (item (a)) and, possibly, of some other data structures

which depend on G and k, but not on w (e.g., calculating suitable representations for Eu
and Du); such schemes may be justified by the assumption that these pre-computation steps

should be done once for a given network graph G and file size k. On the other hand, items

(b) and (c) in the constructiveness definition involve the complexity of the more frequent

occasions when the file is encoded and — even more so — reconstructed. In this paper,

however, we aim at finding file distribution schemes which are constructive in the way we

have defined, i.e., in the strong sense: satisfying all three requirements (a)–(c). •

We end this section by introducing a few terms which will be used in describing the

mappings Eu and Du of the proposed file distribution schemes. Let Φ be a finite alphabet of

q elements. An (n,K) code C over Φ is a nonempty subset of Φn of size K; the parameter n

is called the length of C, and the members of C are referred to as codewords. The minimum

distance of an (n,K) code C over Φ is the minimum integer d such that any two distinct

codewords in C differ in at least d coordinates.

5



Let C be an (n,K) code over Φ and let S be a subset of ⟨n⟩ ∆
= {1, 2, . . . , n}. We say that

C is separable with respect to S if every two distinct codewords in C differ in at least one

coordinate indexed by S. The next lemma follows directly from the definition of minimum

distance.

Lemma 1. The minimum distance of an (n,K) code C over Φ is the minimum integer

d for which C is separable with respect to every set S ⊆ ⟨n⟩ of size n− d+ 1.

Let q be a power of a prime. An (n,K) code C over a field Φ = GF (q) is linear if C

is a linear subspace of Φn; in this case we have K = qk where k is the dimension of C. A

generator matrix B of a linear (n, qk) code C over Φ is a k× n matrix B over Φ whose rows

span the codewords of C.

For a k×n matrix B (such as a generator matrix) and a set S ⊆ ⟨n⟩, denote by (B)S the

k × |S| matrix consisting of all columns of B indexed by S. The following lemma is easily

verified.

Lemma 2. Let C be an (n, qk) linear code over a field Φ, let B be a generator matrix of

C, and let S be a subset of ⟨n⟩. Then, C is separable with respect to S if and only if (B)S

has rank k.

3 Lower bounds and statement of main result

In this section we first derive lower bounds on M(G, k), i.e., on the memory size of any

file distribution protocol for (G, k). Then, we state our main result (Theorem 2) which

establishes the existence of a constructive file distribution scheme (G, k) 7→ χ(G, k) that

attains these lower bounds whenever k ≫ log∆G. As the proof of Theorem 2 is somewhat

long, it is deferred to Section 4. Instead, we present in this section a simple file distribution

scheme which attains the lower bounds when k = Ω(∆2
G log∆G).

6



3.1 Lower bounds

Let x = [xu]u∈V be a memory allocation of some file distribution protocol for (G, k). Assign-

ing xu bits to each node u ∈ V , each node must “see” at least k memory bits at its adjacent

nodes, or else (1) would not hold. Therefore, for every u ∈ V we must have
∑

v∈Γ(u) xv ≥ k

or, in vector notation,

AGx ≥ k · 1 .

Let J(G, k) denote the minimum value attained by the following integer programming

problem:

J(G, k) = min ∥y∥,
IP(G, k) : ranging over all integer y such that

AGy ≥ k · 1 and y ≥ 0 .

Also, let ρG denote the minimum value attained by the following (rational) linear program-

ming problem:

ρG = min ∥z∥ ,
LP(G) : ranging over all rational z such that

AGz ≥ 1 and z ≥ 0 .

(2)

The next theorem follows from the previous definitions, Example 1, and the fact that

J(G, 1) is the size of a (smallest) dominating set in G.

Theorem 1. For every network graph G and positive integer k,

ρG · k ≤ J(G, k) ≤ M(G, k) ≤ k · J(G, 1) ≤ k · |V | .

We call J(G, k) the integer programming bound, whereas ρG ·k is referred to as the linear

programming bound.

For k = 1, Theorem 1 becomes M(G, 1) = J(G, 1). The problem of deciding whether a

network graph G has a dominating set of size ≤ s is well-known to be NP-complete [6]. The

next corollary immediately follows.

Corollary 1. Given an instance of a network graph G and positive integers k and s, the

problem of deciding whether there exists a file distribution protocol for (G, k) of memory

size ≤ s (i.e., whether M(G, k) ≤ s) is NP-hard.

7



Note that we do not know whether the decision problem of Corollary 1 is in NP (and

therefore, whether it is NP-complete) since it is unclear how to verify (1) in polynomial-time,

even when the encoding and decoding mappings are computable in polynomial-time.

Remark 3. A result of Lovász [11] states that J(G, 1) ≤ ρG log2∆G; on the other hand,

one can construct an infinite family of network graphs {Gl}l (such as the ones presented in

Section 5) for which J(Gl, 1) ≥ 1
4
ρGl

log2 ∆Gl
(see also [7]). In terms of file segmentation

schemes (Example 1) this means that there always exists a file distribution protocol for (G, k)

based on segmentation whose memory size, k · J(G, 1), is within a multiplicative factor of

log2∆G from the linear programming bound ρG ·k. Yet, on the other hand, there are families

of network graphs for which such a multiplicative gap is definitive (up to a constant 4), even

when k tends to infinity. •

3.2 Statement of main result

Corollary 1 suggests that it is unlikely that there exists an efficient algorithm for gener-

ating a file distribution scheme (G, k) 7→ χ(G, k) with |χ(G, k)| = M(G, k). This directs

our objective to finding a constructive file distribution scheme (G, k) 7→ χ(G, k) such that

|χ(G, k)| /(ρG · k) is close to 1 for values of k as small as possible.

More specifically, we prove the following theorem.

Theorem 2. There exists a constructive file distribution scheme (G, k) 7→ χ(G, k) such

that
|χ(G, k)|
ρG · k

= 1 + O

max

 log∆G

k
;

√
log∆G

k


 . (3)

(The maximum in the right-hand side of (3) is determined according to whether k is smaller,

or larger, than log∆G. Also, by Theorem 1, the ratios |χ(G, k)| /M(G, k), M(G, k)/J(G, k),

and J(G, k)/(ρG · k) all approach 1 when k ≫ log∆G.)

In Section 4 we prove Theorem 2 by presenting an algorithm for generating a constructive

file distribution scheme (G, k) 7→ χ(G, k) which satisfies (3); in particular, the computational

complexity of the encoding mappings in the resulting scheme (item (b) in the constructiveness

8



requirements) is O(k · |χ(G, k)|), whereas applying the decoding mapping at each node (item

(c)) requires O(k2) bits operations. Returning to our discussion in Remark 1, the complexity

of these mappings suggests that the file size k should be as small as possible, still greater

than log∆G. This means that files distributed in the network should be segmented into

records of size k = a · log∆G for some (large) constant a, each record being encoded and

decoded independently. Information can be retrieved from the file by reading whole records

of size a · log∆G bits each, requiring O(a2 log2 ∆G) bit operations, whereby the ratio between

the memory size required in the network and the file size k is at most 1 + O(1/
√
a) times

that ratio for k →∞.

Our file distribution algorithm is divided into two major steps:

Step 1. Finding a memory allocation x = [xu]u∈V for (G, k) by finding an approximate

solution to an integer programming problem; the resulting memory size |χ(G, k)| = ∥x∥
will satisfy (3).

Step 2. Constructing a set of k × xu matrices Bu, u ∈ V , over F2; these matrices define

the encoding mappings Eu : F k
2 → F xu

2 by Eu : w 7→ wBu, u ∈ V . The choice of the

matrices Bu, in turn, is such that each k × (AGx)u matrix [Bv]v∈Γ(u) is of rank k, thus

yielding decoding mappings Du : F
(AGx)u
2 → F k

2 which satisfy (1).

3.3 File distribution scheme for large files

In this section we present a fairly simple constructive file distribution scheme (G, k) 7→
χ(G, k) for which

|χ(G, k)|
ρG · k

= 1 + O

(
∆G · log(∆G · k)

k

)
.

Note that this proves Theorem 2 whenever k = Ω(∆2
G log∆G).

Given a network graph G = (V,E) and a positive integer k, we first compute a memory

allocation x = [xu]u∈V for (G, k) (Step 1 above). Let z = [zu]u∈V be an optimal solution to the

linear programming problem LP(G) in (2). Such a vector z can be found in time complexity

which is polynomial in |V | (e.g., by using Karmarkar’s algorithm [9]). Set h
∆
= ⌈log2(∆G ·k)⌉

9



and l
∆
= ⌈k/h⌉, and define the integer vector y = [yu]u∈V by

yu
∆
= min

{
l ; ⌊(l +∆G) · zu⌋

}
, u ∈ V .

Clearly, ∥y∥ ≤ ρG · (l +∆G); furthermore, since AGz ≥ 1, we also have

(AGy)u ≥ min
{
l ; (l +∆G)(AGz)u −∆G

}
≥ l , u ∈ V ,

i.e., AGy ≥ l · 1. The memory allocation for (G, k) is defined by x
∆
= h · y, and it is easy to

verify that ∥x∥/(ρG · k) = 1 +O
(
(∆G/k) log(∆G · k)

)
.

We now turn to defining the encoding and decoding mappings (Step 2 above). To this

end, we first assign ∆G · l colors to the nodes of G, with each node u assigned a set Cu of yu

colors, such that
∣∣∣∪v∈Γ(u)Cv

∣∣∣ ≥ l, u ∈ V . In other words, we multi-color the nodes of G in

such a way that each node “sees” at least l colors at its adjacent nodes.

Such a coloring can be obtained in the following greedy manner: Start with Cu ← ∅ for
every u ∈ V . Call a node u saturated if

∣∣∣∪v∈Γ(u)Cv

∣∣∣ ≥ l (hence, at the beginning all nodes are

unsaturated, whereas at the end all should become saturated). Scan each node u ∈ V once,

and, at each visited node u, re-define the set Cu to have yu distinct colors not contained in

sets Cv already assigned to nodes v ∈ Γ(u′) for all unsaturated nodes u′ ∈ Γ(u).

To verify that such a procedure yields, indeed, an all-saturated network, we first show

that at each step there are enough colors to assign to the current node. Let σ(u) denote the

number of unsaturated nodes u′ ∈ Γ(u) − {u} when Cu is being re-defined. Recalling that

yv ≤ l for every v ∈ V , it is easy to verify that the number of disqualified colors for Cu is

at most σ(u) · (l − 1) + (∆(u) − σ(u) − 1) · l ≤ ∆Gl − l ≤ ∆Gl − yu. This leaves at least

yu qualified colors to assign to node u. We now claim that each node becomes saturated at

some point. For if node u remained unsaturated all along, then the sets Cv, v ∈ Γ(u), had

to be disjoint; but in that case we would have

∣∣∣∪v∈Γ(u) Cv

∣∣∣ = ∑
v∈Γ(u)

|Cv| =
∑

v∈Γ(u)
yu = (AGy)u ≥ l,

contradicting the fact that u was unsaturated.

Let α1, α2, . . . , α∆G·l be distinct elements in Φ
∆
= GF (2h), each αj corresponding to some

color j (note that |Φ| ≥ ∆G · k ≥ ∆G · l). Given a file w of k bits, we group the entries

10



of w into h-tuples to form the coefficients of a polynomial w(t) of degree < ⌈k/h⌉ = l over

Φ. We now compute the values wj = w(αj), 1 ≤ j ≤ ∆G · l, and store at each node u ∈ V

the values wj, j ∈ Cu, requiring memory allocation of xu = h · yu bits. Since each u has

access to images wj of w(t) evaluated at l distinct elements αj, each node can interpolate

the polynomial w(t) and, hence, reconstruct the file w.

The above encoding procedure can be described also in terms of linear codes (refer to

the end of Section 2). Such a characterization will turn out to be useful in Sections 4

and 5. Let BRS be an l × (∆Gl) matrix over Φ = GF (2h) defined by (BRS)i,j = αi−1
j ,

1 ≤ i ≤ l, 1 ≤ j ≤ ∆Gl. For every node u ∈ V , let Cu be the set of colors assigned to u

and let Bu
∆
= (BRS)Cu ; that is, regarding Cu as a subset of {1, 2, . . . ,∆Gl}, Bu consists of all

columns of BRS indexed by Cu. The mappings Eu : F k
2 → F xu

2 , or, rather, Eu : Φl → Φyu ,

are defined by Eu : w 7→ wBu, u ∈ V , w ∈ Φl. The matrix BRS is known as a generator

matrix of a (∆Gl, 2
hl) generalized Reed-Solomon code over Φ [12, Chs. 10–11]. Note that

since every l columns in BRS are linearly independent, every l × (AGy)u matrix [Bv]v∈Γ(u)

has rank l, allowing each node u to reconstruct w out of [wBv]v∈Γ(u).

We remark that Reed-Solomon codes have been extensively applied to some other recon-

struction problems in networks, such as Shamir’s secret sharing [18] (see also [10][14]).

The file distribution scheme described in this section is not satisfactory when the file size

k is, say, O(∆G), in which case the ratio χ(G, k)/(ρG · k) might be bounded away from 1.

This will be rectified in our next construction which is presented in Section 4.

4 Proof of main result

In this section we present a file distribution scheme which attains the memory size stated

in Theorem 2. In Section 4.1 we present a randomized algorithm for finding a memory

allocation by scaling and perturbing a solution to the linear programming problem LP(G)

defined in (2). Having found a memory allocation x, we describe in Section 4.2 a second

randomized algorithm for obtaining the encoding and decoding mappings. Both algorithms

are then de-randomized in Section 4.3 to obtain a deterministic procedure for computing

the file distribution scheme claimed in Theorem 2. In Section 4.4 we present an alternative

11



proof of the theorem using the Lovász Local Lemma. In Section 4.5 we consider a variant of

the cost measure used in the rest of the paper: instead of looking for a near optimal solution

with respect to the total memory requirement of the system, we consider approximating the

best solution such that the maximum amount of memory required in any node is close to

the minimum feasible. This is done using the techniques of Section 5.

4.1 Step 1. Solving for a memory allocation

The goal of this section is to prove the following (hereafter e stands for the base of natural

logarithms).

Theorem 3. Given a network graphG and an integerm, let z = [zu]u∈V be a nonnegative

real vector satisfying AGz ≥ 1. Then there is a nonnegative integer vector x satisfying

AGx ≥ m · 1 such that

∥x∥
∥m · z∥

≤ 1 + c ·max

 loge ∆G

m
;

√
loge ∆G

m

 (4)

for some absolute constant c.

In fact, we provide also an efficient algorithm to compute the nonnegative integer vector

x = [xu]u∈V guaranteed by the theorem. The vector x will serve as the memory allocation

of the computed file distribution protocol for an instance (G, k), where we will need to

take m slightly larger than k in order to construct the encoding and decoding mappings in

Section 4.2.

Theorem 3 is proved via a ‘randomized rounding’ argument (see [15][17]): We first solve

the corresponding linear programming problem LP(G) in (2) (say, by Karmarkar’s algo-

rithm [9]), and use the rational solution to define a probability measure on integer vectors

that are candidates for x. We then show that this probability space contains an integer

vector x which satisfies the conditions of Theorem 3. Furthermore, such a vector can be

found by a polynomial-time (randomized) algorithm. Note that if we are interested in a

weaker result, where log |V | replaces log∆G in Theorem 2 (or in Theorem 3), then a slight

modification of Raghavan’s lattice approximation method can be applied [15]. However,

12



to prove Theorem 3 as is, we need a so-called ‘local’ technique. One possibility is to use

the ‘method of alteration’ (see [19]) where a random integer vector selected from the above

probability space is perturbed in a few coordinates so as to satisfy the conditions of the

theorem. Another option is to use the Lovász Local Lemma. Both methods can be used

to prove Theorem 3, and both can be made constructive and deterministic: the method of

alteration by applying the method of conditional probabilities (see Spencer [19, p. 31] and

Raghavan [15]), and the Local Lemma by using Beck’s method [2]. We show here the method

of alteration, and present a second existence proof using the Local Lemma in Section 4.4.

Given a nonnegative real vector z = [zu]u∈V and a real number ℓ > 0, define the vectors

s = [su]u∈V and p = [pu]u∈V by

su
∆
= ⌊ℓ · zu⌋ and pu

∆
= ℓ · zu − su ; u ∈ V ; (5)

note that 0 ≤ pu < 1 for every u ∈ V . Let Y = [Yu]u∈V be a random vector of independent

random variables Yu over {0, 1} such that

Prob
{
Yu = 1

}
= pu , u ∈ V , (6)

and let X = [Xu]u∈V be a random vector defined by

X
∆
= s + Y . (7)

Fix a to be a real vector in the unit hyper-cube [0, 1]|V | such that a · z ≥ 1. Since the

expectation vector E
(
Y
)
is equal to p, we have

E
(
a ·X

)
= a · s + a · p = ℓ · a · z ≥ ℓ .

In particular, if z is a rational vector satisfying AGz ≥ 1, then

E
(
AGX

)
≥ ℓ · AGz ≥ 1 ≥ ℓ · 1 .

Showing the existence of an instance of X which can serve as the desired memory allo-

cation x makes use of the following two propositions. The proofs of these propositions are

given in the Appendix, as similar statements can be found also in [15].

Throughout this section, L{β, η} stands for max
{
loge β ;

√
η · loge β

}
.

13



Proposition 1. Given a nonnegative real vector z and an integer ℓ, let X = [Xu]u∈V

be defined by (5)–(7), let a be a real vector in [0, 1]|V | such that a · z ≥ 1, and let m be a

positive integer. There exists a constant c1 such that, for every β ≥ 1,

Prob
{
a ·X < m

}
≤ 1

β

whenever ℓ ≥ m + c1 · L{β,m}.

Proposition 2. Given a nonnegative real vector z and an integer ℓ, let X = [Xu]u∈V be

defined by (5)–(7) and let a be a real vector in [0, 1]|V |. There exists a constant c2 such that,

for every β ≥ 1,

Prob
{
a ·X > E

(
a ·X

)
+ c2 · L

{
β,E

(
a ·X

)}}
≤ 1

β
.

Consider the following algorithm for computing a nonnegative integer vector x for an

instance (G,m):

Algorithm 1.

1. Set β = βG
∆
= 2∆2

G and ℓ = m+ c1 · L{βG,m}.

2. Solve the linear programming problem LP(G) (defined by (2)) for z.

3. Generate an instance of the random vector X = [su]u + [Yu]u as in (5)–(7).

4. The integer vector x = [xu]u∈V is given by

xu
∆
=

 su + 1 if there exists v ∈ Γ(u) with (AGX)v < m

su + Yu otherwise
.

Theorem 3 is a consequence of the following lemma.

Lemma 3. The vector ∥x∥ obtained by Algorithm 1 satisfies Inequality (4) with proba-

bility ≥ 1
2
− 1

βG
.

14



Proof. Call a node v deficient if (AGX)v < m for the generated vector X. First note

that xu is either Xu or Xu + 1 and that

AGx ≥ m · 1 ; (8)

in fact, for deficient nodes v we have (AGx)v ≥ ℓ · (AGz)v ≥ ℓ ≥ m.

Now, by Proposition 1, for every node v ∈ V ,

Prob
{
node v is deficient

}
= Prob

{
(AGX)v < m

}
≤ 1

βG

.

Hence, for each node u ∈ V ,

Prob
{
xu = Xu + 1

}
≤ ∆G · Prob

{
node v is deficient

}
≤ ∆G

βG

=
1

2∆G

.

Therefore, the expected number of nodes u for which xu = Xu + 1 is at most |V |
2∆G

and, with

probability at least 1
2
, there are no more than |V |

∆G
such nodes u. Observing that

∥z∥ ≥ 1

∆G

∑
u∈V

(AGz)u ≥
1

∆G

∑
u∈V

1 =
|V |
∆G

,

we thus obtain, with probability ≥ 1
2
,

∥x∥ ≤ ∥X∥ +
|V |
∆G

≤ ∥X∥ + ∥z∥ . (9)

Recalling that E
(
∥X∥

)
= ℓ · ∥z∥, we apply Proposition 2 with a = 1 to obtain

Prob
{
∥X∥ > ℓ · ∥z∥ + c2 · L{βG, ℓ · ∥z∥}

}
≤ 1

βG

. (10)

Hence, by (8), (9), and (10) we conclude that, with probability ≥ 1
2
− 1

βG
, the integer

vector x satisfies both

AGx ≥ m · 1 (11)

and

∥x∥ ≤ (ℓ+ 1) · ∥z∥+ c2 · L
{
βG, ℓ · ∥z∥

}
≤ (ℓ+ 1) · ∥z∥+ c2 · ∥z∥ · L

{
βG, ℓ

}
.

15



The last inequality implies

∥x∥
∥ℓ · z∥

≤ 1 +
1

ℓ
+ c2

 loge βG

ℓ
+

√
loge βG

ℓ

 , (12)

and the lemma now follows by substituting

ℓ = m ·

1 + c1 ·max

 loge βG

m
;

√
loge βG

m




and βG = 2∆2
G in (12).

Note that for m = k +O(log∆G) we also have

∥x∥
∥k · z∥

= 1 + O

max

 log∆G

k
;

√
log∆G

k


 (13)

(compare with the right-hand side of (3)). The vector x, computed for m = k +O(log∆G),

will serve, with a slight modification, as the memory allocation of χ(G, k). In Section 4.3 we

shall apply the method of conditional probabilities to make Algorithm 1 deterministic.

4.2 Step 2. Defining the encoding mappings

Having found a memory allocation x, we now provide a randomized algorithm for construct-

ing the encoding and decoding mappings. The construction makes use of the following

lemma.

Lemma 4. [12, p. 444]. Let S denote a random matrix, uniformly distributed over all

k ×m matrices over F2. Then,

Prob
{
rank (S) = k

}
=

k−1∏
i=0

(1− 2i−m) > 1− 2k−m .

Given an instance (G, k), let x = [xu]u∈V be the nonnegative integer vector obtained by

Algorithm 1 for m = k + 3⌈log2 ∆G⌉ + 1. The following algorithm computes for each node

u a matrix Bu to be used for the encoding mappings.

Algorithm 2.

16



1. For each u ∈ V , assign at random a matrix Qu uniformly distributed over all k × xu

matrices over F2.

2. For each u ∈ V , let Su
∆
= [Qv]v∈Γ(u), and define the encoding matrix Bu by

Bu
∆
=

 Qu if rank (Su) = k

Ik if rank (Su) < k
, (14)

where Ik stands for the k × k identity matrix.

Note that each Bu is a k × x̂u binary matrix with

x̂u =

 xu if rank (Su) = k

k if rank (Su) < k
. (15)

The vector x̂
∆
= [x̂u]u∈V will serve as the (final) memory allocation for χ(G, k). As we

show later on in this section, the excess of ∥x̂∥ over ∥x∥, if any, is small enough to let

Equation (13) hold also with respect to the memory allocation x̂. This will establish the

memory size claimed in Theorem 2. The associated encoding mappings Eu : F k
2 → F x̂u

2 are

given by Eu : w 7→ wBu , u ∈ V , and the overall process of encoding w into [ Eu(w) ]u∈V

requires O(k · ∥x̂∥) multiplications and additions over F2.

Recalling the definitions in Section 2, note that for each node u, the k × ∥x̂∥ matrix

B
∆
= [Bv]v∈V is separable with respect to the set Γ(u); that is, the rank of (B)Γ(u) = [Bv]v∈Γ(u)

is k. Therefore, each node u, knowing the values [ Ev(w) ]v∈Γ(u) = [wBv]v∈Γ(u), is able to

reconstruct the file w. To this end, node u has to process only k fixed coordinates of

w(B)Γ(u), namely, k coordinates which correspond to k linearly independent columns of

(B)Γ(u). Let such a set of coordinates be indexed by the set Tu, u ∈ V . Assuming a ‘hard-

wired’ connection between node u and the k entries of w(B)Γ(u) indexed by Tu, the decoding

process at u sums up to multiplying the vector w(B)Tu ∈ F k
2 by the inverse of (B)Tu . Hence,

the mappings Du, u ∈ V , are given by Du(c) = (c)Tu ((B)Tu)
−1 for every c ∈ F

(AGx̂)u
2 . The

decoding process at each node thus requires O(k2) multiplications and additions over F2.

Note that in those cases where we set Bu in (14) to be the identity matrix, the decoding

process is trivial, since the whole file is written at node u.

We now turn to estimating the memory size x̂. First note that for every node u, the

matrix Su is uniformly distributed over all k × (AGx)u matrices over F2. Recalling that, by

17



construction, (AGx)u ≥ m = k + 3⌈log2∆G⌉+ 1, we have, by Lemma 4,

Prob
{
rank (Su) < k

}
< 2k−m ≤ 1

2∆3
G

.

Hence, the expected number of nodes for which x̂u > xu in (15) is at most |V | /(2∆3
G).

Therefore, with probability at least 1
2
, there are no more than |V | /∆3

G nodes u whose memory

allocation xu has been increased to x̂u = k. Since |V | /∆3
G ≤ ∥z∥/∆2

G, the total memory-size

increase in (15) is bounded from above by (k/∆2
G)∥z∥. Hence, by (13),

∥x̂∥
∥k · z∥

≤ ∥x∥+ (k/∆2
G)∥z∥

∥k · z∥
= 1 + O

max

 log∆G

k
;

√
log∆G

k




whenever k = O(∆2
G log∆G). Recall that the construction of Section 3.3 covers Theorem 2

for larger values of k.

In Section 4.3 we apply the method of conditional probabilities (see [19, p. 31] and [15])

in order to make the computation of the matrices Bu deterministic.

Remark 4. It is worthwhile comparing the file distribution scheme described in Sec-

tions 4.1 and 4.2 with the scheme of Section 3.3, modified to employ Algorithm 1 on

(G, ⌈k/h⌉), h = ⌈log2(∆G · k)⌉, to solve for the memory allocation there. It can be veri-

fied that the resulting file distribution scheme is slightly worse than the one obtained here:

every term log∆G in (3) should be changed to log(∆G ·k) log∆G. In particular, this method

has critical file size of log2 ∆G. •

4.3 A deterministic algorithm

We now show how to make Algorithms 1 and 2 deterministic using the method of conditional

probabilities of Spencer [19, p. 31] and Raghavan [15], adapted to conditional expectation

values. The idea of the method of conditional probabilities is to search the probability space

defined by the random choices. At each iteration the probability space is bisected by setting

one of the random variables. Throughout the search we estimate the probability of success,

conditional on the choices we have fixed so far. The value of the next random variable is

chosen as the one that maximizes the estimator function.

18



In de-randomizing Algorithms 1 and 2 we employ as an estimator the expected value of

the size of the allocation. At every step the conditional expectation for both possibilities for

the value of the next random variable are computed and the setting that is smaller (thus

increasing the probability of success) is chosen. Unlike Raghavan [15], we do not employ a

“pessimistic estimator,” but rather a conditional expectation estimator which is fairly easy

to compute.

We start with de-randomizing the computation of the (initial) memory allocation x. Let

z = [zu]u = [su + pu]u, X = [Xu]u, and x = [xu]u be the vectors computed in the course

of Algorithm 1. Recall that for every u ∈ V , the entry Xu is a random variable given by

Xu = su + Yu, with Prob {Yu = 1} = pu. Now,

E
(
∥x∥

)
= E

(
∥X∥

)
+

∑
u∈V

Prob
{
xu = Xu + 1

}
≤ E

(
∥X∥

)
+ ∆G ·

∑
u∈V

Prob
{
node u is deficient

}
∆
= Ê .

We refer to Ê as the expectation estimator for x, and we have,

E
(
∥x∥

)
≤ Ê = E

(
∥X∥

)
+ ∆G ·

∑
u∈V

Prob
{
(AGX)u < m

}
= ℓ · ∥z∥ + ∆G ·

∑
u∈V

Prob
{ ∑
v∈Γ(u)

Xv < m
}

≤ ℓ · ∥z∥ +
|V |
2∆G

≤ (ℓ+ 1
2
) · ∥z∥ .

Comparing the last inequality with (12), it would suffice if we found a memory allocation

whose size is at most Ê. Note that Ê can be computed efficiently by calculating the expres-

sions Prob
{∑

v∈Wi
Xv < j

}
for subsets Wi of Γ(u) consisting of the first i nodes in Γ(u) for

i = 1, 2, . . . ,∆(u) = |Γ(u)|, and for
∑

u∈Wi
su ≤ j ≤ m. Such a computation can be carried

out efficiently by dynamic programming.

Let Y1 denote the first entry of Y = X − s and define the conditional expectation

estimators by

Êb
∆
= E

(
∥X∥

∣∣∣ Y1 = b
)
+ ∆G ·

∑
u∈V

Prob
{ ∑
v∈Γ(u)

Xv < m
∣∣∣ Y1 = b

}
, b = 0, 1 .

19



Indeed, we have E
(
∥x∥

∣∣∣ Y1 = b
)
≤ Êb; furthermore, the two conditional expectation

estimators Ê0 and Ê1 have Ê as a convex combination and, therefore, one of them must be

bounded from above by Ê. We set the entry Y1 to the bit y1 = b for which Êb is the smallest.

Note that, like Ê, the conditional expectation estimators can be efficiently computed.

Having determined the first entry in Y, we now re-iterate this process with the second

entry, Y2, now involving the conditional expectation estimators Êy1, 0 and Êy1, 1. Contin-

uing this way with subsequent entries of Y, we end up with a nondecreasing sequence of

conditional expectation estimators

(ℓ+ 1
2
) · ∥z∥ ≥ Ê ≥ Êy1 ≥ Êy1, y2 ≥ . . . ≥ Êy1, y2,...,y|V |

≥ E
(
∥x∥

∣∣∣ Y1 = y1, Y2 = y2, . . . , Y|V | = y|V |
)
,

thus determining the whole vector Y, and therefore the vectors X and x, the latter having

memory size ≤ (ℓ+ 1
2
) · ∥z∥.

We now turn to making the computation of the encoding mappings deterministic. Recall

that Algorithm 2 first assigns a random k × xu matrix Qu to each node u. We may regard

this assignment as an ∥x∥-step procedure, where at the nth step a random column of F k
2 is

added to a node v with less than xv already-assigned columns. Denote by Qu;n the (partial)

matrix at node u ∈ V after the nth step. The assignment of the random matrices Qu

to the nodes of the network can thus be described as a random process {Un}∥x∥n=1, where

Un = {Qu;n}u∈V is a random column configuration denoting the contents of each node after

adding the nth column to the network graph. We shall use the notation U0 for the initial

column configuration where no columns have been assigned yet to any node.

Let Su denote the random matrix [Qv]v∈Γ(u) (as in Algorithm 2) and let R be the number

of nodes u for which rank (Su) < k. Recall that Algorithm 2 was based on the inequality

E(R)
∆
= E(R | U0) <

|V |
2∆G

,

which then allowed us to give a probabilistic estimate of 2E(R) < |V |
∆G

for the number of

nodes u that required replacing Qu by Ik. Instead, we compute here a sequence of column

configurations Un = {Qu;n}u∈V , n = 1, 2, . . . , ∥x∥, such that

E(R | Un = Un) ≤ E(R | Un−1 = Un−1) ; (16)

20



in particular, we will have

E(R | U∥x∥ = U∥x∥) <
|V |
2∆G

,

i.e., the number of nodes u for which Bu is set to Ik in (14) is guaranteed to be less than
|V |
2∆G

.

In order to attain the inequality chain (16) we proceed as follows: Let U0 be the empty

column configuration and assume, by induction, that the column configuration Un−1 has been

determined for some n ≥ 1. Let v be a node which has been assigned less than xv columns

in Un−1. We now determine the column which will be added to v to obtain Un. This is done

in a manner similar to the process described before for de-randomizing Algorithm 1: Set the

first entry, b1, of the added column to be 0, assume the other entries to be random bits, and

compute the expected value, E0, of R conditioned on Un−1 = Un−1 and on b1 = 0. Now

repeat the process with b1 being set to 1, resulting in a conditional expected value E1 of R.

Since the two conditional expected values E0 and E1 average to E(R | Un−1 = Un−1), one

of them must be at most that average. The first entry b1 in the column added to v is set

to the bit b for which Eb is the smallest. This process is now iterated for the second bit b2

of the column added to v, resulting in two conditional expected values Eb1, 0 and Eb1, 1 of R,

the smaller of which determines b2. Continuing this way, we obtain a sequence of conditional

expected values of R,

E(R | Un−1 = Un−1) ≥ Eb1 ≥ Eb1, b2 ≥ . . . ≥ Eb1, b2,..., bk ,

thus determining the entire column added to v. Note that, indeed,

E(R | Un = Un) = Eb1, b2,..., bk ≤ E(R | Un−1 = Un−1) ,

in accordance with (16).

It remains to show how to compute the conditional expected values of R which are used

to determine the column configurations Un. It is easy to verify that, for any event A,

E(R | A) =
∑
u∈V

Prob
{
rank (Su) < k | A

}
. (17)

Hence, the computation of the conditional expected values of R boils down to the following

problem:

21



Let S denote a k×m random matrix over F2 whose first l columns, as well as the first t

entries in its (l+1)st column, are preset, and the rest of its entries are independent random

bits with probability 1
2
of being zero. What is the probability of S having rank k?

Let H denote the k× l matrix consisting of the first l (preset) columns of such a random

matrix S. Denote by T the matrix consisting of the first l + 1 columns of S and by W the

matrix consisting of the last m− l− 1 columns of S. Also, let the random variable ρ denote

the rank of T. Clearly, ρ may take only two values, namely, rank (H) or rank (H) + 1. We

now show that

Prob
{
rank (S) < k | ρ = r

}
= 1 −

k−r−1∏
i=0

(1− 2i+l+1−m) < 2k+l+1−m−r . (18)

Indeed, without loss of generality assume that the first r rows of T are linearly independent.

We assume that the entries of W are chosen randomly row by row. Having selected the first

r rows of W, we thus obtain the first r rows in S which, in turn, are linearly independent.

Next we select the (r+ 1)st row in W. Clearly, there are 2m−l−1 choices for such a row, out

of which one row will result in an (r + 1)st row in S which is spanned by the first r rows

in S. Hence, given that the first r rows in W have been set, the probability that the first

r + 1 rows in S will be linearly independent is 1 − 2l+1−m. Conditioning upon the linear

independence of the first r+1 rows in S, we now select the (r+2)nd row in W. In this case

there are two choices of this row that yield an (r+2)nd row in S which is spanned by the first

r+1 rows in S. Hence, the probability of the first r+2 rows in S to be linearly independent

(given the linear independence of the first r + 1 rows) is 1 − 2l+2−m. In general, assuming

linear independence of the first r + i rows in S, there are 2i choices for the (r + i + 1)st

row of W that yield a row in S belonging to the linear span of the first r + i rows in S.

The conditional probability for the first r + i+ 1 rows in S to be linearly independent thus

becomes 1 − 2i+l+1−m. Equation (18) is obtained by re-iterating the process for all rows of

W.

To complete the computation of the probability of S having rank k, we need to calculate

the probability of ρ being r = rank (H). Let Ht denote the first t rows of H with rt
∆
=

rank (Ht) and let c denote the first t (preset) entries of the (l + 1)st column of S (or of T).

We now show that

Prob
{
ρ = r = rank (H)

}
=

 2r−rt−k+t if rank ([Ht ; c]) = rt

0 if rank ([Ht ; c]) = rt + 1
. (19)

22



We first perform elementary operations on the columns of H so that (i) the first rt columns

in Ht are linearly independent whereas the remaining l − rt columns in Ht are zero, and

(ii) the first r columns in H are linearly independent whereas the remaining l − r columns

in H are zero. Now, if c is not in the linear span of the columns of Ht, then ρ = rank (T) =

rank (H) + 1. Otherwise, there are 2r−rt ways to select the last k − t entries of the (l + 1)st

column of T to have that column spanned by the columns of H: each such choice corresponds

to one linear combination of the last r − rt nonzero columns of H. Therefore, conditioning

upon rank ([Ht ; c]) = rt, the probability of having rank (T ) = rank (H) equals 2r−rt−k+t.

Equations (18) and (19) can be now applied to Su to compute the right-hand side of (17),

where A stands for the event of having n − 1 columns in Un set to Un−1, and t bits of the

currently-added nth column set to b1, b2, . . . , bt.

4.4 Proof using the Lovász Local Lemma

In this section we present an alternative proof for the existence of a memory allocation

x satisfying (3) and of k × xu binary matrices Bu for the encoding mappings Eu : w 7→
wBu , u ∈ V . The techniques used will turn out to be useful in Section refvariations. To

this end, we make use of the following lemma.

Lemma 5. (The Lovász Local Lemma [5][19]). Let A1,A2, . . . ,An be events in an

arbitrary probability space. Suppose that each event Ai is mutually independent of a set of

all, but at most δ, events Aj and that Prob {Ai} ≤ p for all 1 ≤ i ≤ n. If e p δ < 1, then

Prob
{∧n

i=1Ai

}
> 0.

In most applications of the lemma (as well as in its use in the sequel), the Ai’s stand for

‘bad’ events; hence, if the probability of each bad event is at most p, and if the bad events

are not-too-dependent of one another (in the sense stated in the lemma), there is a strictly

positive probability that none of the bad events will occur. However, this probability might

be exponentially small. Recently, Beck [2] has proposed a constructive technique that can

be used in most applications of the lemma for finding an element of
∧n

i=1Ai (see also [1]).

We shall be mainly concentrating on an existence proof, as the construction will then follow

by a technique similar to the one in [2].

23



We start by using the local lemma to present an alternative proof of Theorem 3. Given

a network graph G = (V,EG) and an integer m, we construct a directed graph H = (V,EH)

which satisfies the following four properties:

(i) there is an edge u→ v in H whenever u is adjacent to v in G;

(ii) there are no parallel edges in H;

(iii) each node in H has the same in-degree ∆H = O(∆G);

(iv) each node in H has an out-degree which is bounded from above by ΛH = O(∆G).

Lemma 6. A directed graph H satisfying (i)–(iv) always exists.

Proof. When ∆G > 1
2
|V | we take H as the complete graph (i.e., the adjacency matrix

AH is the all-one matrix and ∆H = ΛH = |V | < 2∆G). Otherwise, we construct H out of G

as follows: Make every self loop in G a directed edge in H, and change all other edges in G

into two anti-parallel edges in H. Finally, adjoin extra edges (not parallel to existing ones)

to have in-degree ∆H = ∆G and out-degree ≤ ΛH = 2∆G at each node in H. To realize

this last step, we scan the nodes of H and add incoming edges to nodes whose in-degree is

less than ∆G — one node at a time. Let u be such a node and let Γ(u) be the set of nodes

in H with no outgoing edges that terminate at u. We show that at least one of the nodes

in Γ(u) has out-degree less than 2∆G, thus allowing us to adjoin a new incoming edge to

u from that node. The proof then continues inductively. Now, since the in-degree of each

node in H at each stage is at most ∆G, the total number of edges outgoing from nodes in

Γ(u) is bounded from above by ∆G · (|V | − 1). On the other hand, Γ(u) contains at least

|V |−∆G+1 nodes. Hence, there exists at least one node in Γ(u) whose out-degree is at most

(∆G ·(|V |−1))/(|V |−∆G+1); this number, in turn, is less than 2∆G whenever ∆G ≤ 1
2
|V |.

Proof of Theorem 3 using the Local Lemma. Let z be a solution the linear program-

ming problem LP(G) of (2). By property (i), z satisfies the inequality AHz ≥ 1. Re-define

βG to be 8e∆2
G (and ℓ accordingly to be m+c1 ·L{βG,m}), and let X be obtained by (5)–(7).

By Proposition 1 we have

Prob
{
(AGX)u < m

}
≤ 1

βG

, (20)

24



and by property (ii) and Proposition 2 we have,

Prob
{
(AHX)u > ℓ · (AHz)u + c2 · L {βG, ℓ · (AHz)u}

}
≤ 1

βG

(21)

for each node u ∈ V .

For every u ∈ V define the event Au as

Au
∆
=


(AGX)u < m

or

(AHX)u > ℓ · (AHz)u + c2 · L
{
βG, ℓ · (AHz)u

}
 . (22)

By (20) and (21) it follows that Prob {Au} ≤ 2/βG < 1/(4e∆2
G). For every node u in H,

denote by Γout(u) the set of terminal nodes of the edges outgoing from u inH. Then, for every

node u, the event Au is mutually independent of all events Av such that Γout(u)∩Γout(v) = ∅.
Hence, by properties (iii) and (iv), each Au depends on at most ΛH(∆H − 1) + 1 ≤ 4∆2

G

events Av and, therefore, by Lemma 5 there exists a nonnegative integer vector x satisfying

both

(AGx)u ≥ m (23)

and

(AHx)u ≤ ℓ · (AHz)u + c2 · L
{
βG, ℓ · (AHz)u

}
(24)

for all u ∈ V .

We now show that ∥x∥ satisfies the inequality

∥x∥
∥ℓ · z∥

≤ 1 + c2

 loge βG

ℓ
+

√
loge βG

ℓ

 . (25)

By (24) and the fact that each node in H has in-degree ∆H we have,

∥x∥ =
1

∆H

∑
u∈V

(AHx)u

≤ ℓ

∆H

∑
u∈V

(AHz)u +
c2
∆H

∑
u∈V

L
{
βG, ℓ · (AHz)u

}

≤ ℓ · ∥z∥ + c2

(
|V |
∆H

loge βG +
1

∆H

∑
u∈V

√
ℓ · (AHz)u · loge βG

)
.

25



Now, by the Cauchy-Schwarz inequality,

∑
u∈V

√
(AHz)u ≤

√
|V | ·

√∑
u∈V (AHz)u =

√
|V | ·∆H · ∥z∥

and, therefore,

∥x∥ ≤ ℓ · ∥z∥ + c2

 |V |
∆H

loge βG +

√
|V |
∆H

·
√
∥z∥ · ℓ · loge βG

 .

Inequality (25) is now obtained by bounding |V | /∆H from above by ∥z∥. Finally, Theorem 3

is a consequence of both (23) and (25).

We now turn to defining the encoding and decoding mappings for a given instance (G, k).

To this end, we shall make use of the following lemma.

Lemma 7. Let S1,S2, . . . ,St be subsets of ⟨n⟩ ∆
= {1, 2, . . . , n}, each Si of size ≥ s,

and no subset intersects more than δ subsets. Let q be a power of a prime and let k be a

nonnegative integer satisfying

e · δ · q−s−1 < q−k .

Then there exists an (n, qk) linear code over Φ = GF (q) which is separable with respect to

each Si.

Proof. We construct inductively l × n matrices Bl, 1 ≤ l ≤ k, each generating a linear

code which is separable with respect to every Si; that is, each (Bl)Si
has rank l. Start with

an all-one 1 × n matrix B1. As the induction step, assume that a matrix Bl−1, with the

above property, has already been constructed for some l ≤ k. We are now to append an lth

row to Bl−1.

Given such a matrix Bl−1, a row vector in Φn is ‘good’ with respect to Si if, when

appended to Bl−1, it yields a matrix Bl such that (Bl)Si
has rank l; otherwise, a row vector

is ‘bad’ with respect to that Si. Now, for each i, the row span of (Bl−1)Si
consists of ql−1

vectors in Φ|Si|; this means that the probability of a randomly selected row to be bad with

respect to Si is q−|Si|+l−1 ≤ q−s−1+k < 1/(e · δ). Similarly, if Si
∩Sj = ∅, then the probability

of a randomly selected row to be bad with respect to both Si and Sj is q−|Si|−|Sj |+2(l−1).

Therefore, when Si
∩Sj = ∅, the events “the row vector is bad with respect to Si” and “the

26



row vector is bad with respect to Sj” are independent; thus, by Lemma 5 we are guaranteed

to have a row vector in Φn which is good with respect to every Si. This vector can now be

appended to Bl−1 to obtain a generator matrix Bl with (Bl)Si
having rank l for all i.

Let x be the integer vector guaranteed by Theorem 3 form = k+2⌈log2∆G⌉+1. Partition

the set ⟨∥x∥⟩ into |V | (disjoint) subsets Qu with |Qu| = xu and let Su ∆
= ∪v∈Γ(u)Qv, u ∈ V .

We have |Su| = (AGx)u ≥ m = k + 2⌈log2∆G⌉ + 1 and, therefore, e · ∆2
G · 2−|Su|−1 < 2−k.

Furthermore, each Su intersects at most (∆G − 1)2 + 1 sets Sv; hence, by Lemma 7 there

exists a linear (∥x∥, 2k) code over F2 which is separable with respect to each Su. For each

u ∈ V let Bu
∆
= (B)Qu ; i.e., Bu is the k × xu matrix consisting of all columns of B indexed

by Qu. We now use this to define the encoding and decoding mappings as in Section 4.2.

4.5 Variations on the memory cost measure

The techniques used in Section 4.4 can be adapted to obtain file distribution schemes

(G, k) 7→ χ(G, k) which are close to optimal with respect to other variants of the mem-

ory cost measure. For instance, consider the problem where for every instance (G, k), we

are looking for a file distribution protocol χ(G, k) whose memory allocation x satisfies the

following two criterions:

(i) The largest component xmax of x is the smallest possible.

(ii) Among all file distribution protocols that satisfy (i), we take one whose memory size

∥x∥ is the smallest.

This variant of our original problem might suit cases where, say, each node in the network

graph (as opposed to some ‘network manager’) needs to pay for its own memory. Since

the respective decision problem is NP-complete, we need to look for approximations to the

optimal solution.

Given a network graph G = (V,E) and an integer k, we proceed as follows. Let ∆min be

minu∈V ∆(u). It is clear that ⌈k/∆min⌉ is a lower bound on the largest component of x. Set

27



α = ⌈k/∆min⌉/k and consider the following linear program:

ρG;α = min ∥z∥ ,
LP(G;α) : ranging over all rational z = [zu]u∈V such that

AGz ≥ 1 and 0 ≤ zu ≤ α for every u ∈ V .

(26)

Next, we set βG = 12e∆2
G, m = k + 2⌈log2 ∆G⌉ + 1, and ℓ = m + c1 · L{βG,m}. Now, let

X = [Xu]u∈V be obtained by (5)–(7) and re-define the events Au in (22) as

Au
∆
=



(AGX)u < m

or

Xu > ℓ · zu + c2 · L
{
βG, ℓ · zu

}
or

(AHX)u > ℓ · (AHz)u + c2 · L
{
βG, ℓ · (AHz)u

}


.

By (20) and (21) we have Prob {Au} ≤ 3/βG < 1/(4e∆2
G). Following along the lines of

Section 4.4, the Lovász Local Lemma now guarantees a file distribution protocol with memory

allocation x whose maximal component xmax and size ∥x∥ satisfy both

xmax

α · k
= 1 + O

max

 log∆G

k
;

√
log∆G

k




and
∥x∥

ρG;α · k
= 1 + O

max

 log∆G

k
;

√
log∆G

k


 .

Both xmax and ∥x∥ approach there optimal values as k becomes larger than log∆G.

5 The integer programming bound is not tight

In Section 4 we presented an algorithm for finding a constructive file distribution scheme

(G, k) 7→ χ(G, k) such that the ratio between the memory size |χ(G, k)| and ρG ·k approaches

1 as the ratio k/ log∆G tends to infinity. In this section we present a family of network graphs

{Gl}∞l=1 for which a file size of log∆Gl
is, indeed, a critical point: there exists a sequence of

file sizes kl ≥ log2∆Gl
, l = 1, 2, . . . , for which the ratios M(Gl, kl)/J(Gl, kl) (and, therefore,

M(Gl, kl)/(ρGl
· kl)) are bounded away from 1.

28



For integers m and l, m ≥ l, define the network graphs Gm,l = (Vm,l, Em,l) as follows:

Let Um be a set of m elements (say, Um = ⟨m⟩) and let Wm,l consist of all subsets of Um of

size l. Set Vm,l = Um ∪Wm,l and draw an edge between two nodes u, v ∈ Vm,l in any of the

following cases: (i) both u and v are in Um (i.e., Um is a clique); (ii) u ∈ Um, v ∈ Wm,l, and

u ∈ v; (iii) u = v (self loops).

First, we verify that ρGm,l
= m/l. Let z = [zu]u∈Vm,l

be a nonnegative real vector satisfying

AGm,l
z ≥ 1 and ∥z∥ = ρGm,l

. Without loss of generality, we can assume that zv = 0 for every

v ∈ Wm,l; otherwise, “remove” the quantity zv from such a node v and add it to the value

zu at some node u ∈ Γ(v) − {v} ⊆ Um. This change results in a new nonnegative vector z̃

with the same norm as z and which satisfies AGm,l
z̃ ≥ 1.

Now, rename the nodes of Um to have Um = ⟨m⟩ and z1 ≤ z2 ≤ . . . ≤ zm. For the node

⟨l⟩ ∈ Wm,l we have
l∑

u=1

zu =
(
AGm,l

z
)
⟨l⟩
≥ 1 ,

and, therefore, zu ≥ zl ≥ 1/l for every node u ≥ l in Um. Hence,

ρGm,l
= ∥z∥ =

l∑
u=1

zu +
m∑

u=l+1

zu ≥ 1 +
m− l

l
=

m

l
.

Setting z = [zu]u∈Vm,l
to

zu =

 1/l if u ∈ Um

0 otherwise
,

we obtain the equality ρGm,l
= m/l. Furthermore,

J(Gm,l, r · l) = ρGm,l
· r · l = r ·m (27)

for every positive integer r. A similar analysis for a similar set-covering problem appears

also in [7].

In the forthcoming discussion we will be concentrating on two types of network graphs

Gm,l, namely:

• Gl
∆
= G2l,l, in which case ρGl

= 2 and

log2 ∆Gl
= log2

(
2l +

(
2l − 1

l − 1

))
≤ 2l ;

29



• Hl
∆
= G2l,l, in which case ρHl

= 2l/l and

log2∆Hl
= log2

(
2l +

(
2l − 1

l − 1

))
≤ l2, l ≥ 2 .

The proof of the next proposition makes use of the following known lemma.

Lemma 8. (The sphere-packing or the Hamming bound [12, Ch. 1]). Let Φ be an

alphabet of q elements. There exists an (n,K) code of minimum distance 2t+1 over Φ only

if

K ·
t∑

i=0

(
n

i

)
(q − 1)i ≤ qn .

Proposition 3. For any fixed positive integer r,

lim
l→∞

M(Gl, r · l)
ρGl
· r · l

= lim
l→∞

M(Gl, r · l)
J(Gl, r · l)

≥ 1 +
1

2r
.

Proof. Set k = rl for some positive integer r and let x be the memory allocation of a

file distribution protocol χ for (Gl, k) of memory size |χ| = ∥x∥ = M(Gl, k). We assume

that xv = 0 for every v ∈ W2l,l and that the nodes of U2l = ⟨2l⟩ are renamed to have

x1 ≤ x2 ≤ . . . ≤ x2l. Letting h
∆
= xl+2, we obtain,

M(Gl, k) = ∥x∥ =
∑l

u=1 xu + xl+1 +
∑2l

u=l+2 xu

≥ r · l + r + (l − 1)h ,
(28)

where the inequality follows from
∑l

u=1 xu = (AGl
x)⟨l⟩ ≥ k = rl which, in turn, implies the

inequalities xl+1 ≥ xl ≥ r.

For a file w ∈ F k
2 , let cw denote the encoded memory contents [ Eu(w) ]l+2

u=1 as determined

by the file distribution protocol χ. We now regard the set

C
∆
=
{
cw

∣∣∣ w ∈ F k
2

}
as an (l + 2, 2k) code over an alphabet of q

∆
= 2h elements. The code C must be separable

with respect to any subset of ⟨l+2⟩ of size l, or else there would be nodes inW2l,l that could

not reconstruct the file w. Hence, by Lemma 1, the minimum distance of C is at least 3,

which readily implies by Lemma 8 the inequality

2k ·
(
1 + (l + 2)(q − 1)

)
≤ ql+2 .

30



Substituting k = rl and q = 2h, and noting that 2h − 1 ≥ 2h−1, we obtain,

(l + 2) · 2rl+h−1 ≤ 2(l+2)h ,

or

h ≥
⌈
log2(l + 2) + rl − 1

l + 1

⌉
= r +

⌈
log2(l + 2)− r − 1

l + 1

⌉
.

Hence, for fixed r and for sufficiently large l we must have h ≥ r + 1. Combining this lower

bound on h with (28) yields the inequality

lim
l→∞

M(Gl, r · l)
J(Gl, r · l)

≥ lim
l→∞

r (l + 1) + (r + 1)(l − 1)

2rl
= 1 +

1

2r

which, with (27), concludes the proof.

Corollary 2. For kl
∆
= 2l ≥ log2∆Gl

,

lim
l→∞

M(Gl, kl)

ρGl
· kl

= lim
l→∞

M(Gl, kl)

J(Gl, kl)
≥ 5

4
.

Corollary 2 exhibits the fact that a file size of log∆Gl
is a critical point in the following

strong sense: For kl = 2l ≥ log2∆Gl
, the size of any memory allocation for (Gl, kl) must be

bounded away from ρGl
· kl, not because of a gap between J(Gl, kl) and ρGl

· kl, but rather
because of a gap between M(Gl, kl) and J(Gl, kl).

We point out that, as a counterpart of Proposition 3, we also have

lim
l→∞

M(Gl, r · l)
J(Gl, r · l)

≤ 1 +
2

r
,

the proof of which is based on the following result.

Lemma 9. (The Gilbert-Varshamov bound [3, pp. 321–322]). Let Φ be an alphabet of

q elements and let n, K, and d be positive integers satisfying

(K − 1) ·
d−1∑
i=0

(
n

i

)
(q − 1)i < qn .

Then, there exists an (n,K) code of minimum distance d over Φ.

31



Set n = 2l, K = 2rl, d = l + 1, h = r + 2, and q = 2h; these values satisfy the equality

K · 2n · qd−1 = qn and, therefore, by Lemma 1 and Lemma 9 there exists a (2l, 2rl) code C

over F h
2 which is separable with respect to any subset of ⟨2l⟩ of size l. Assign the coordinates

(over F h
2 ) of C to the nodes u ∈ U2l of Gl and map the files w ∈ F rl

2 into distinct codewords

of C. This protocol allows every node in Gl to reconstruct any such file w, requiring a total

memory size of 2(r + 2)l (compared to J(Gl, r · l) = 2rl).

Remark 5. It can be readily verified that J(Gm,l, k) ≥ m − l + k for every m, l, and

k, and, in particular, J(Gl, 1) ≥ l + 1 ≥ 1
4
ρGl

log2 ∆Gl
. Hence, any file distribution protocol

for (Gl, k) based on segmentation will be at least 1
4
log2 ∆Gl

times larger than the linear

programming bound ρGl
· k, even when k tends to infinity (see Example 1 and Remark 3).•

For file sizes k which are smaller than log∆G, one can find examples where the ratio

between M(G, k) and J(G, k) is even larger than stated in Proposition 3. We demonstrate

this for the network graphs Hl = G2l,l in the next proposition, making use of the following

lemma.

Lemma 10. (The Plotkin bound [3, p. 315]). Let C be an (n,K) code of minimum

distance d over an alphabet of q elements. Then,

1

q
≤ 1 − d

n

(
1− 1

K

)
.

Proposition 4.

M(Hl, k)

J(Hl, k)
∼


1 if l | k and k ≥ l2

l2/k if l | k and l ≤ k < l2

k if k < l

,

where fl(k) ∼ gl(k) stands for lim l→∞ fl(k)/gl(k) = 1 uniformly on k.

In particular, when k = l, the ratio M(Hl, k)/J(Hl, k) is approximately l which, in turn,

is at least
√
log2 ∆Hl

.

Proof. We distinguish between the three ranges of k stated in the proposition.

32



Case 1: k = rl for some integer r ≥ l. By (27) we have J(Hl, k) = ρHl
· k = r · 2l. In

fact, we also have M(Hl, k) = J(Hl, k): since r ≥ l, we can construct a (2l, 2rl) generalized

Reed-Solomon code CRS over GF (2r), which is separable with respect to any subset of ⟨2l⟩
of size l [12, Chs. 10–11] (compare with Section 3.3). Assign the coordinates, over GF (2r),

of CRS to the nodes u ∈ U2l of Hl and map the files w ∈ F k
2 into distinct codewords of CRS.

By the separability of CRS every node in Hl can readily reconstruct any file w ∈ F k
2 .

Case 2: k = rl for some strictly positive integer r < l. Let x be the memory allocation

of a file distribution protocol for (Hl, k) of memory size ∥x∥ = M(Hl, k). Again, we assume

that xv = 0 for v ∈ W2l,l and that the nodes in U2l are renamed to have x1 ≤ x2 ≤ . . . ≤ x2l .

Defining n
∆
= ⌈2l/l⌉ and h

∆
= xn+1, we obtain,

M(Hl, k) = ∥x∥ ≥
2l∑

u=n+1

xu ≥ (2l − n)h > h · 2l ·
(
1− 1

l
− 1

2l

)
(29)

(compare with (28)).

To bound h from below, we regard the set

C
∆
=
{
[ Eu(w) ]nu=1

∣∣∣ w ∈ F k
2

}
as an (n, 2k) code over an alphabet of q

∆
= 2h elements. Since C is separable with respect to

any subset of ⟨n⟩ of size l, its minimum distance must be, by Lemma 1, at least n − l + 1.

This, in turn, implies by Lemma 10 the inequality

1

2h
≤ 1 −

(
1− l − 1

n

)(
1− 1

2k

)
≤ l − 1

n
+

1

2k
. (30)

Since 2k ≥ 2l ≥ n, we thus have,
1

2h
≤ l

n
≤ l2

2l
,

or,

h ≥ l − 2 log2 l .

Combining the last inequality with (29) yields

M(Hl, k) > 2l · (l − 2 log2 l)
(
1− 1

l
− 1

2l

)
= l · 2l ·

(
1− o(1)

)
, (31)

where o(1) stands for an expression, independent of k, which tends to zero as l goes to

infinity. Recalling that J(Hl, k) = r · 2l, we thus obtain,

M(Hl, k)

J(Hl, k)
≥ l

r
·
(
1− o(1)

)
=

l2

k
·
(
1− o(1)

)
. (32)

33



The bounds (31) and (32) are definitive up to a multiplying factor of 1− o(1): An upper

bound M(Hl, k) ≤ l · 2l is obtained by assigning the coordinates of a (2l, 2rl) generalized

Reed-Solomon code over GF (2l) to the nodes u ∈ U2l of Hl; such a code is separable with

respect to any subset of ⟨2l⟩ of size r and, therefore, with respect to any subset of size l.

Case 3: k < l. Let n and h be defined as in case 2. Noting that (29) and (30) still apply,

we have,
1

2h
≤ l − 1

n
+

1

2k
< 2 max

{
l2

2l
;

1

2k

}
,

i.e.,

h ≥ min
{
l − ⌈2 log2 l⌉ ; k

}
≥

(
1− ⌈2 log2 l⌉

l

)
· k .

Combining the last inequality with (29) yields

M(Hl, k) ≥ k · 2l ·
(
1− o(1)

)
. (33)

Turning to J(Hl, k), for k < l we have J(Hl, k) ≤ 2l − l+ k (and, by Remark 5 we have,

in fact, equality): it is easy to verify that the integer vector y = [yu]u∈V
2l,l

which is defined

by

yu =

 1 if u ∈ U2l and u ≥ l − k + 1

0 otherwise
,

satisfies the inequality AHl
y ≥ k · 1. Hence, by (33) we obtain

M(Hl, k)

J(Hl, k)
≥ k ·

(
1− o(1)

)
. (34)

Again, the bounds (33) and (34) are definitive as we can simply replicate the file w into

each node u ∈ U2l of Hl, requiring a memory size of k · 2l.

Acknowledgment

We thank Noga Alon and Cynthia Dwork for the many helpful discussions and the anonymous

referee for the useful comments and the suggestion that we consider other variations on the

memory cost measure.

34



Appendix

The proofs of Propositions 1 and 2 make use of the following lemma.

Lemma 11. Let a = [au]u∈V and p = [pu]u∈V be real vectors in [0, 1]|V | and let Y =

[Yu]u∈V be a vector of independent random variables over {0, 1} with Prob {Yu = 1} = pu.

Then,

(a) for every δ ∈ [0, 1) and τ ≤ a · p,

Prob
{
a ·Y ≤ (1− δ)τ

}
≤

(
e−δ

(1− δ)1−δ

)τ

;

(b) for every δ ≥ 0 and τ ≥ a · p,

Prob
{
a ·Y ≥ (1 + δ)τ

}
≤

(
eδ

(1 + δ)1+δ

)τ

.

Proof. Lemma 11 is proved in [15] and [16]. Part (b) of the lemma appears as is in [15]

and for the sake of completeness we include the proof of part (a) here.

For a real random variable Z and constants γ ≥ 0 and b, we have

Prob
{
Z ≤ b

}
≤ E

(
eγ(b−Z)

)
,

an inequality known as the Chernoff bound. Letting Z = a ·Y and b = (1− δ)τ , we obtain,

for every γ ≥ 0,

Prob
{
a ·Y ≤ (1− δ)τ

}
≤ E

(
eγ((1−δ)τ − a·Y)

)
= eγ(1−δ)τE

(∏
u∈V

e−γauYu

)

= eγ(1−δ)τ
∏
u∈V

E
(
e−γauYu

)
= eγ(1−δ)τ

∏
u∈V

(
1− pu + pue

−γau
)
.

Substituting t = e−γ yields, for every t ∈ (0, 1],

Prob
{
a ·Y ≤ (1− δ)τ

}
≤ α(t) , (35)

35



where

α(t)
∆
= t−(1−δ)τ

∏
u∈V

(1− pu (1− tau)) ≤ t−(1−δ)τ
∏
u∈V

exp {−pu (1− tau)}

= t−(1−δ)τ exp

{
−
∑
u∈V

pu (1− tau)

}
.

Now, for au ∈ [0, 1] and t ∈ (0, 1] we have 1− tau ≥ au(1− t) ≥ 0. Therefore,

α(t) ≤ t−(1−δ)τ exp

{
−
∑
u∈V

aupu(1− t)

}
≤

(
t−(1−δ)et−1

)τ
which, for t = 1− δ becomes

α(1− δ) ≤
(

e−δ

(1− δ)1−δ

)τ

.

Part (a) is now obtained by substituting t = 1− δ in (35).

Proof of Proposition 1. Let r denote the difference ℓ−m and let

τ
∆
= ℓ − ℓ · a · z + a · p . (36)

Note that a · z ≥ 1 implies τ ≤ a · p and that a · p ≤ ℓ · a · z implies τ ≤ ℓ. Also, let Y be

the random variable as in (7). Then,

Prob
{
a ·X < m

}
= Prob

{
a ·Y + a · s < ℓ− r

}
= Prob

{
a ·Y < ℓ − ℓ · a · z + a · p − r

}
= Prob

{
a ·Y < τ − r

}
,

which readily proves the proposition for r ≥ τ . Hence, we assume from now on that 0 ≤ r <

τ .

Apply Lemma 11(a) with τ as in (36) and with δ = r/τ (note that, indeed, τ ≤ a · p).
Defining σ

∆
= τ − r (> 0), we thus obtain,

Prob
{
a ·Y < τ − r

}
≤

(
e−δ

(1− δ)(1−δ)

)τ

=
(
1 +

r

σ

)σ

e−r .

Therefore, to have Prob
{
a ·X < m

}
≤ 1

β
it suffices to require that

r − σ · loge
(
1 +

r

σ

)
≥ loge β . (37)

36



Case 1: r ≤ 2σ. It is easy to verify that loge(1 + t) ≤ t − (t2/6) whenever 0 ≤ t ≤ 2.

Hence, Inequality (37) is implied by

r − σ ·
(
r

σ
− r2

6σ2

)
≥ loge β

which, in turn, is satisfied if r ≥
√

6σ loge β. Recalling that σ = τ − r ≤ ℓ − r = m,

Inequality (37) is thus implied by

r ≥
√

6m loge β . (38)

Case 2: r > 2σ. In this range,

σ · loge
(
1 +

r

σ

)
= r · loge

((
1 +

r

σ

)(σ/r)
)
≤ r · loge

√
3 .

Hence, Inequality (37) is satisfied if

r ≥ loge β

1− loge
√
3
. (39)

The existence of the constant c1 is now implied by (38) and (39) (setting c1 = 2.5 will do).

Proof of Proposition 2. Let Y be the random variable as in (7) and let r be a positive

number. Then,

Prob
{
a ·X > E

(
a ·X

)
+ r

}
= Prob

{
a ·Y > a · p + r

}
.

Now, the proposition holds trivially when a ·p = 0, since, in this case, Prob
{
a ·Y = 0

}
= 1.

Therefore, we assume from now on that a · p > 0.

Apply Lemma 11(b) with τ = a · p and δ = r/(a · p); we obtain,

Prob
{
a ·Y > a · p + r

}
≤

(
(1 + δ)−(1+δ)eδ

)τ
.

Therefore, to have Prob
{
a ·X > E

(
a ·X

)
+ r

}
≤ 1

β
it suffices to require that

τ ·
(
(1 + δ) loge(1 + δ) − δ

)
≥ loge β . (40)

Case 1: r/(a · p) = δ ≤ 3
2
. Noting that (1 + t) loge(1 + t) ≥ t + (t2/4) for 0 ≤ t ≤ 3

2
,

Inequality (40) is satisfied whenever

δ2τ

4
=

r2

4 (a · p)
≥ loge β

37



which, with E
(
a ·X

)
≥ a · p, is implied by

r ≥ 2

√
E
(
a ·X

)
· loge β . (41)

Case 2: r/(a·p) = δ > 3
2
. Noting that t 7→ (1+t−1) loge(1+t) is monotonously increasing

for t > 0, we have

τ ·
(
(1 + δ) loge(1 + δ) − δ

)
= r ·

(
(1 + δ−1) loge(1 + δ) − 1

)
δ≥ 3

2

≥ r ·
((

5
3
loge

5
2

)
− 1

)
> 1

2
r ;

i.e., Inequality (40) is satisfied if

r ≥ 2 loge β . (42)

The existence of the constant c2 (such as c2 = 2) is now implied by (41) and (42).

References

[1] N. Alon, A parallel algorithmic version of the Local Lemma, Random Struct. Alg., 2

(1991), 367–378.

[2] J. Beck, An algorithmic approach to the Lovász Local Lemma, I, Random Struct. Alg.,

2 (1991), 343–365.

[3] E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York (1968).

[4] L.W. Dowdy, D.V. Foster, Comparative models of the file assignment problem,

Comp. Surveys, 14 (1982), 287–313.

[5] P. Erdös, L. Lovász, Problems and results on 3-chromatic hypergraphs and some

related questions, in: Infinite and Finite Sets (A. Hajnal et al., Editors), Colloq. Math.

Soc. J. Bolyai, 11, North Holland, Amsterdam (1975), 609–627.

[6] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W.H. Freeman, San Francisco (1979).

38



[7] D.S. Hochbaum, On the fractional solution to the set covering problem, SIAM J. Alg.

Disc. Meth., 4 (1983), 221–222.

[8] G. Kant, J. van Leeuwen, File distribution problem for processor networks, Proc.

Scandinavian Workshop on Algorithmic Theory (1990), 47–59.

[9] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combina-

torica, 4 (1984), 373–395.

[10] E.D. Karnin, J.W. Greene, M.H. Hellman, On secret sharing systems, IEEE

Trans. Inform. Theory, 29 (1983), 35–41.

[11] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math., 13

(1975), 383–390.

[12] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North

Holland, Amsterdam (1977).

[13] S. Mahmoud, J.S. Riordan, Optimal allocation of resources in distributed informa-

tion networks, ACM Trans. Database Sys., 1 (1976), 66–78.

[14] M.O. Rabin, Efficient dispersal of information for security, load balancing, and fault

tolerance, J. ACM, 36 (1989), 335–348.

[15] P. Raghavan, Probabilistic construction of deterministic algorithms: approximating

packing integer programs, J. Comp. Sys. Sciences, 37 (1988), 130–143 (see also Proc.

27th IEEE Symp. Found. Comp. Science (1986), 10–18).

[16] P. Raghavan, Lecture notes on randomized algorithms, Technical Report RC 15340

(#68237), IBM T.J.Watson Research Center, 1990.

[17] P. Raghavan, C.D. Thompson, Randomized rounding: a technique for provably

good algorithms and algorithmic proofs, Combinatorica, 7 (1987), 365–374.

[18] A. Shamir, How to share a secret, Comm. ACM, 22 (1979), 612–613.

[19] J. Spencer, Ten Lectures on the Probabilistic Method, SIAM, Philadelphia (1987).

39


