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Abstract

We investigate an approach for routing in p2p networks
called neighbor-of-neighbor greedy. We show that this
approach may reduce significantly the number of hops
used, when routing in skip graphs and small worlds. Fur-
thermore we show that a simple variation of Chord is de-
gree optimal. Our algorithm is implemented on top of
the conventional greedy algorithms, thus it maintains the
good properties of greedy routing. Implementing it may
only improve the performance of the system.

1 Introduction

Our aim in this paper is to propose an approach for rout-
ing in DHT’s which is better than greedy routing. Greedy
routing is a common approach in many DHT construc-
tions. Typically some metric is imposed on the key space
and then routing is performed by moving the message
to the closest neighbor to the target. Examples include
Chord [15], Skip Graphs or Skip Nets [2],[6], Pastry [14],
Tapestry [16] and more. We discuss constructions which
do not employ greedy routing towards the end of this sec-
tion. The greedy routing approach has many advantages,
among which are the following:
Simplicity -greedy routing is easy to understand and im-

plement. The routing is oblivious in the sense that
the link used depends only on the destination of the
message.

Fault Tolerance - In greedy routing closer is better. So
when nodes or links fail, as long as each node has
some edge towards the target, it is guaranteed that
the message would reach its destination. In many
constructions (such as Chord and Tapestry) it is as-
sumed that a ring like structure exists. It is clear
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that as long as the ring edges exist, greedy routing
would eventually succeed.

Locality in the key space- Messages do not ‘wander’
in the key space. If the source and the target are
close to each other in the key space, then during the
routing, the message would stay between the source
and the target, in a small portion of the key space.
If the key of a resource is associated with its loca-
tion in the physical world then greedy routing might
have proximity preserving properties; i.e. it might
minimize the physical distance a message travels.
If keys havesemanticmeaning, such as file names
and sizes, then greedy routing would supply prefix
search (as in skip graphs, see Section1.1).

If greedy routing is so good then why use something
else? Greedy routing has one major disadvantage - it re-
quires a large number of hops, at least larger than what
is dictated by the degree. In the previous examples, the
degree is logarithmic in the network size, while the num-
ber of hops used by greedy routing isO(log n). Loga-
rithmic degree may permit theoretically path lengths of
O(log n/ log log n), thus greedy routing isnot degree op-
timal. Furthermore, there are lower bounds that show
that under some general conditions, greedy routing uses
Ω(log n) hops, when the degree is logarithmic, see [1],[11].
The latter bounds any routing algorithm which uses the
immediate neighbor only.

Recently constructions with optimal path length were
suggested. De-Bruijn based DHT’s [13],[8],[4] offer an
optimal tradeoff between degree and path length for every
degree, in particular logarithmic degree permits routing in
O(log n/ log log n) hops. These routing algorithms how-
ever, arenot greedy and rely on some arithmetic manip-
ulation of the keys. Thus routing in these graphs is not
local in the key space. Furthermore these algorithms as-
sume keys arerandom, so there is no immediate way to
make the keys carry semantic meaning.

Can we have the advantages of greedy routing together
with optimal path length? In this paper we answer this
question affirmatively. We show that a variation of the



greedy algorithm called ‘neighbor-of-neighbor (NoN) greedy’
enjoys the advantages of greedy routing while being de-
gree optimal in a large family of constructions. We show
that our algorithm reduces substantially the latency of skip
graphs and of small worlds. Furthermore while it is known
that Chord is not degree optimal [5], we show that a vari-
ation of Chord is indeed degree optimal.

1.1 Small Worlds and Skip Graphs

The notion of ‘small worlds’ originated as a term to de-
scribe the high connectivity of social networks. Klein-
berg [9] modelled social networks by taking a two di-
mensional grid and connecting each nodeu to q edges
when edge(u, v) exists with probability proportional to
||u − v||−2. For simplicity, we remove the parameterq
and assume that each edge(u, v) is connected with prob-
ability ||u − v||−2, thus creating a graph with average
degreeΘ(log n). For any dimensiond > 1, the small
world graph of dimensiond hasnd nodes associated with
the points of ad−dimensional mesh, where edge(u, v)
is occupied with probability||u − v||−d. Small world
graphs serve as a motivation for p2p networks. Indeed
they were analyzed in this context by Aspneset al [1] who
proved that the one dimensional small world graph per-
mits greedy routing ofO(log n) even if nodes and links
fail independently.

Skip-Graphs or Skip-Nets is a dynamic data structure
meant to serve as a tool for locating resources in a dy-
namic setting. It was proposed independently by Aspnes
and Shah in [2] and by Harveyet al in [6]. The main ad-
vantage of skip graphs is that they supply prefix search
and proximity search. In a skip graph each nodes chooses
randomly a string of bits called themembership vectors.
The links are determined by the membership vectors, and
therefore the keys could be arbitrary. In other words, there
is no need for the keys to be randomized and they may
maintainsemanticmeaning. It is therefore essential that
routing algorithms remain local in the key space. This is
achieved without compromising the complexity of the In-
sert and Delete operations, thus skip graphs(nets) are an
especially attractive p2p construction. It is shown in [2]
[6] that greedy routing takesO(log n) hops. It is shown
in [11] that greedy routing takesΩ(log n) hops.

2 The NoN-Greedy algorithm

The NoN approach originates from a work by Copper-
smithet al [3], which used it to prove bounds on the diam-
eter of the small world graph, though not in an algorithmic
perspective. It was also used by Mankuet al (under the
name ’lookahead’) as a heuristic for the ‘Symphony’ P2P

construction [10] which is based upon small world graphs.
We assume that each node holds its own routing table, and
on top of that it holds its neighbors routing tables. Thus
each node has knowledge of a neighborhood of radius2
around it. The NoN algorithm is presented in Figure1.

Algorithm for routing to node t.
1. Assume the message is currently at nodeu 6= t.

Let w1, w2, . . . , wk be the neighbors ofu.
2. For eachi, let zi1 , zi2 , . . . , zik

be the neighbors of
wi.

3. Among thesek2 nodes, assumezij is the one clos-
est tot.

4. Route the message fromu via wi to zij
.

Figure 1: The NoN-Greedy Algorithm. It is assumed for
simplicity that the degree of each node isk.

The NoN algorithm could be thought of as greedy
in two hops instead of just one. One might think that
practically the NoN algorithm uses a routing table of size
O(log2 n). This however is not the case. In order to apply
NoN, thememoryallocated to hold the routing tables of
the neighbors isO(log2 n) instead ofO(log n). The main
cost of an entry in the routing table lies in itsmaintenance
(pinging periodically etc.). The cost in terms of memory
of simply holding the entry is marginal.

Step(2) of the algorithm is implemented internally by
putting all thez in a search tree. Thus the time it takes
to find the next link is the time it takes to find the correct
link is the search time of the tree which isO(log(k2)).
Assuming thatk = O(log n), Step(2) takesO(log log n)
time, which is the same as in greedy routing.

NoN is not greedy sincewi might not be the closest
node tot among the neighbors ofu. While not being
greedy per se it is clear that NoN enjoys the advantages of
greedy. The following theorem is taken from a companion
paper [11], and shows that asymptotically the NoN algo-
rithm is optimal both for skip graphs and for small world
graphs.

Theorem 2.1. When using the NoN algorithm:
(a) The average number of hops it takes to route a mes-

sage in a skip graph isO(log n/ log log n).
(b) Using the NoN algorithm, the number of hops it takes

to route a message in a small world graph of any
dimension isO(log n/ log log n) with high proba-
bility.

2.1 An Interesting Phenomena

A common approach when constructing p2p systems is
to try and ‘emulate’ dynamically a good static network.
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Thus Chord, Pastry and Tapestry are ‘inspired’ by the hy-
percube. A perfect skip graph has a topology similar to
that of Chord. A deterministic protocol that achieves it
is presented by Harvey and Munro in [7]. The work of
Ganesan and Manku [5] implies that the average diame-
ter of a perfect skip graph isΩ(log n), thus we conclude
that the randomization of edgesreducesthe expected path
length. See [11] for a discussion of this phenomena.

3 Simulation Results

We ran simulations in which we compared the perfor-
mance of the greedy algorithm and the performance of the
NoN greedy algorithm. We constructed a skip graph of up
to 217 nodes and a small world graph of up to224 nodes.
In a small world graph it is not necessary to create the full
graph in advance. Each time the message reached a node,
we randomly created the neighborhood of radius2 around
the node. This is a negligible compromise over the defi-
nition of the model, since the edge in which the node was
entered might not be sampled. This technique allowed us
to run simulations on much larger graphs. For each graph
size we ran150 executions. A substantial improvement
could be seen. Figures2,3 demonstrate an improvement
of about48% for skip graphs of size217 and an improve-
ment of34% for small world graphs of size224. Figure
2 also depicts the average shortest path in the graph. We
see that the shortest paths may be30% shorter than the
paths found by NoN, yet even for moderate network sizes,
the NoN algorithm performs substantially better than the
Greedy one.

An even more impressive improvement could be seen
when the size of the graph is fixed and the average de-
gree changes. We fixed a small world graph of size220.
After that we deleted each edge with a fixed probability
which varied from0 (the usual small world graph) to0.9
(a graph with roughly one tenth of the edges). Figure4
depicts the results of these simulations. It shows that the
reduction in the number of hops is more or less indepen-
dent from the number of edges. The latency achieved by
the Greedy algorithm when the degree is26 is achieved
by the NoN algorithm when the degree is merely12. In
the case of skip graphs we ran the simulation for a graph
of size217 and varied the size of the alphabet of the mem-
bership vectors. When the alphabet size iss the average
degree isO(logs n). We can see in Figure4 that NoN with
alphabet size20 is better than Greedy with alphabet size
2, i.e. when the average degree islog2 20 ' 4.3 bigger.
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Figure 2: The number of hops in skip graphs.
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Figure 3: The number of hops in a small world of dimen-
sions1, 2.
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Figure 4: The tradeoff between average degree and latency in a small world with220 nodes (left) and skip graphs of
217 nodes (right).

3.1 A different Implementation

The algorithm presented in Figure1 is somewhat unnat-
ural. Each NoN step has two phases. In the first phase
the message is sent to a neighbor whose neighbor is close
to the target. In the second phase a greedy step is taken
(i.e. the message moves to the neighbor of neighbor). A
1−phase implementation would let each node initiate a
NoN step again, i.e. each node upon receiving a mes-
sage, finds the closest neighbor of neighbor, and passes
the message on. This variant is harder to analyze, indeed
Theorem2.1 holds for the2−phase version only. Yet, as
Figure5 shows, in practice the two variants have basically
the same performance.

3.2 Fault Tolerance

The previous simulations assumed that the list of neigh-
bor’s neighbors each node holds is always correct. In re-
ality this might not be the case. We examine two scenarios
which capture the two extremes of this problem.

Optimistic Scenario: In this case we assume that a node
knows whether its neighbors of neighbors lists are up-to-
date or not. Whenever a node has a stale list is performs a
greedy step. If a node cannot perform the NoN step from
any other reason, it performs the greedy step instead. We
ran simulations in which each node performs with proba-
bility 1

2 a NoN step, and with probability12 a greedy step.
Whenever a NoN step is performed, both phases of it are
performed correctly. Figures3,6 show that the total per-
formance is hardly compromised. A small world of size
222 suffered a relative delay of less than one hop, A skip
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Figure 5: Comparison between the two variants of NoN
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Figure 6: Optimistic fault tolerance in Skip Graphs

graph of size217 suffers a relative delay of1.2 hops. But
why is the optimistic scenario justified? Our suggestion
is that each node would calculate a hash of its neighbors
list. This hash would be sent to all its neighbors on top of
the maintenance messages. Thus with a minuscule over-
head in communication each node would know whether
its lists are up-to-date. We discuss specific hash functions
in Section4.

Pessimistic Scenario: In this scenario we assume that a
node is unaware that its neighbor’s neighbors lists are not
up-to-date. So when nodeu passes a message to nodew
expecting it to move on to nodez, with probability 1

2 the
edge(w, z) no longer exists. We tested two variants: in
the first one, whenever this occurs the intermediate node
w performs a greedy step. In the second variant the inter-
mediate nodew initiates another NoN step. The results
of the simulations appear in Figure7. It could be seen
that in the pessimistic scenario, the performance of NoN
is approximately the same as the Greedy algorithm.

We conclude that even if we assume that the neighbor
lists are error prone, still the use of the NoN algorithm
may be beneficial.

4 Implementation Issues

The execution of a NoN hop requires a node to store the
neighbor lists of its neighbors. This implies that nodes
should update each other regarding their own lists of neigh-
bors. Such an update occurs in two scenarios:

1. Each node upon entrance, must send its list of neigh-
bors to its neighbors.
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Figure 7: Pessimistic Fault Tolerance

2. Whenever a node encounters a change in its neigh-
bor list (due to the entrance or exit of a node), it
should update its neighbors.

The extra communication imposed by these updates is not
heavy due to the two following reasons. First, assume
nodesu, v are neighbors. Nodeu periodically checks that
v is alive (for instance by pinging it). Checking whether
v’s neighbor list has changed could be added to the main-
tenance protocol by lettingv send a hash of its neighbor
list on top of the maintenance protocol. A possible hash
function may beMD5(though the cryptographic proper-
ties of this hash function are not needed). Another possi-
bility is simply to treat the id of neighbors as coefficients
of a polynomial, and evaluate this polynomial at a random
point. Either way the actual cost in communication is very
small. When an actual update occurs there is no reason for
v to send its entire neighbor list. It may only send the part
of it which u misses. If it does not know which part it is
thenu, v may participate in a very fast and communica-
tion efficient protocol that reconciles the two sets, see e.g.
[12] for details. The second reason the communication
overhead is small is that the the actual updates are not ur-
gent (as the simulations of the optimistic scenario show)
and may be done when the system is not busy.

It is important to notice that the implementation of the
NoN algorithm does not affect the Insert/Delete opera-
tions. Once a node enters, the needed updates should oc-
cur. We conclude that implementing NoN has very lit-
tle cost both in communication complexity and in internal
running time. It is almost a free tweak that may be imple-
mented on top of the previous constructions.

5



5 Other Constructions - NoN-Chord

Does NoN-Greedy improve more p2p systems? In this
section we show that a variation of Chord [15] is degree
optimal. In Chord the key space is a ring[0, 1, . . . , n].
A node whose i.d. isx is connected (more or less) tox +
1, x+2, x+4, . . . , x+ n

2 mod n. It was shown by Manku
[5] that theaveragediameter of Chord isΘ(log n), thus
no algorithm may significantly reduce the path length.
We show a slight variation of Chord, (in search of a bet-
ter name lets call it NoN-Chord). The idea is to make
Chord resemble the Small-World graph. Now each node
x is connected tolog n nodesy0, y1, y2, . . . such thatyi

is a randompoint in the segment[x + 2i, x + 2i+1]. An
easy adaptation of the proofs in [11],[3] shows that w.h.p
the path length used by NoN isO(log n/ log log n). The
Insert operation now, would takelog2 n/ log log n opera-
tions, inlog n/ log log n parallel time. So we have an in-
teresting tradeoff of parameters. An increase in the com-
munication complexity of the Insert operation (though not
in the time complexity) reduces the latency of the paths.
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