
A Brief Introduction to Property Testing

Oded Goldreich

Abstract. This short article provides a brief description of the main
issues that underly the study of property testing. It is meant to serve as
a general introduction to a collection of surveys and extended abstracts
that cover various specific subareas and research directions in property
testing.

This article was originally written for inclusion in [4].

1 Introduction

Property Testing is the study of super-fast (randomized) algorithms for approx-
imate decision making. These algorithms are given direct access to items of a
huge data set, and determine whether this data set has some predetermined
(global) property or is far from having this property. Remarkably, this approxi-
mate decision is made by accessing a small portion of the data set.

Property Testing has been a subject of intensive research in the last couple
of decades, with hundreds of studies conducted in it and in closely related areas.
Indeed, Property Testing is closely related to Probabilistically Checkable Proofs
(PCPs), and is related to Coding Theory, Combinatorics, Statistics, Computa-
tional Learning Theory, Computational Geometry, and more.

This brief introduction to the area of Property Testing is confined to con-
ceptual issues; that is, it focuses on the main notions and models being studied,
while hardly mentioning the numerous results obtained in the various models.
This deficiency of the current article is corrected by the various surveys and
extended abstracts presented in the current volume. In addition, we refer the
interested reader to two recent surveys of Ron [10, 11].

2 The Issues

Property testing is a relaxation of decision problems and it focuses on algorithms
that can only read parts of the input. Thus, the input is represented as a function
(to which the tester has oracle access) and the tester is required to accept func-
tions that have some predetermined property (i.e., reside in some predetermined
set) and reject any function that is “far” from the set of functions having the
property. Distances between functions are defined as the fraction of the domain
on which the functions disagree, and the threshold determining what is consid-
ered far is presented as a proximity parameter, which is explicitly given to the
tester.

2

An asymptotic analysis is enabled by considering an infinite sequence of
domains, functions, and properties. That is, for any n, we consider functions

from Dn to Rn, where |Dn| = n. (Often, one just assumes that Dn = [n]
def
=

{1, 2, ..., n}.) Thus, in addition to the input oracle, representing a function f :
Dn → Rn, the tester is explicitly given two parameters: a size parameter, denoted
n, and a proximity parameter, denoted ǫ.

Definition 1 Let Π =
⋃

n∈N
Πn, where Πn contains functions defined over the

domain Dn. A tester for a property Π is a probabilistic oracle machine T that

satisfies the following two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every

n ∈ N and f ∈ Πn (and every ǫ > 0), it holds that Pr[T f (n, ǫ)=1] ≥ 2/3.
2. Given ǫ > 0 and oracle access to any f that is ǫ-far from Π, the tester

rejects with probability at least 2/3; that is, for every ǫ > 0 and n ∈ N, if

f : Dn → Rn is ǫ-far from Πn, then Pr[T f(n, ǫ)=0] ≥ 2/3, where f is ǫ-far
from Πn if, for every g ∈ Πn, it holds that |{e ∈ Dn : f(e) 6= g(e)}| > ǫ · n.

If the tester accepts every function in Π with probability 1, then we say that

it has one-sided error; that is, T has one-sided error if for every f ∈ Π and

every ǫ > 0, it holds that Pr[T f(n, ǫ) = 1] = 1. A tester is called non-adaptive

if it determines all its queries based solely on its internal coin tosses (and the
parameters n and ǫ); otherwise it is called adaptive.

Definition 1 does not specify the query complexity of the tester, and indeed an
oracle machine that queries the entire domain of the function qualifies as a tester
(with zero error probability...). Needless to say, we are interested in testers that
have significantly lower query complexity.

Research in property testing is often categorized according to the type of func-
tions and properties being considered. In particular, algebraic property testing
focuses on the case that the domain and range are associated with some algebraic
structures (e.g., groups, fields, and vector spaces) and studies algebraic proper-
ties such as being a polynomial of low degree (see, e.g., [3, 12]). In the context of
testing graph properties (see, e.g., [5]), the functions represent graphs or rather
allow certain queries to such graphs (e.g., in the adjacency matrix model, graphs
are represented by their adjacency relation and queries correspond to pairs of
vertices where the answers indicate whether or not the two vertices are adjacent
in the graph).1

Ramifications. While most research in property testing refers to distances with
respect to the uniform distribution on the function’s domain, other distributions
and even distribution-free models were also considered. That is, for a (known or
unknown) distribution µ on the domain, we say that f is ǫ-far from g (w.r.t µ) if
Pre∼µ[f(e) 6=g(e)] > ǫ. Indeed, Definition 1 refers to the case that µ is uniform
over the domain (i.e., Dn).

1 In an alternative model, known as the incidence-list model, graphs are represented
by functions that assign to the pair (v, i) the ith neighbor of vertex v.

3

A somewhat related model is one in which the tester obtains random pairs
(e, f(e)), where each sample e is drawn (independently) from the aforementioned
distribution. Such random (f -labeled) example can be either obtained on top of
the queries to f or instead of them. This is also the context of testing distribu-
tions, where the examples are actually unlabeled and the aim is testing properties
of the underlying distribution (rather than properties of the labeling which is
null here).

A third ramification refers to the related notions of tolerant testing and dis-

tance approximation (cf. [9]). In the latter, the algorithm is required to estimate
the distance of the input (i.e., f) from the predetermined set of instances hav-
ing the property (i.e., Π). Tolerant testing usually means only a crude distance
approximation that guarantees that inputs close to Π (rather than only inputs
in Π) are accepted while inputs that are far from Π are rejected (as usual).

On the current focus on query complexity. Current research in property testing
focuses mainly on query (and/or sample) complexity, while either ignoring time
complexity or considering it a secondary issue. The current focus on these in-
formation theoretic measures is justified by the fact that even the latter are far
from being understood. (Indeed, this stands in contrast to the situation in, say,
PAC learning.)

On the importance of representation. The representation of problems’ instances
is crucial to any study of computation, since the representation determines the
type of information that is explicit in the input. This issue becomes much more
acute when one is only allowed partial access to the input (i.e., making a number
of queries that result in answers that do not fully determine the input). An
additional issue, which is unique to property testing, is that the representation
may effect the distance measure (i.e., the definition of distances between inputs).
This is crucial because property testing problems are defined in terms of this
distance measure.

The importance of representation is forcefully demonstrated in the gap be-
tween the complexity of testing numerous natural graph properties in two natural
representations: the adjacency matrix representation (cf. [5]) and the incidence
lists representation (cf. [6]).

Things get to the extreme in the study of locally testable codes, which may
be viewed as evolving around testing whether the input is “well formed” with
respect to some fixed error correcting code. Interestingly, the general study of
locally testable codes seeks an arbitrary succinct representation (i.e., a code
of good rate) such that well-formed inputs (i.e., codewords) are far apart and
testing well-formness is easy (i.e., there exists a low complexity codeword test).

3 A Brief Historical Perspective

Property testing first appeared as a tool towards program checking (see the
linearity tester of [3]) and the construction of PCPs (see the low-degree tests and

4

their relation to locally testable codes, as discussed in [12]). In these settings it
was natural to view the tested object as a function, and this convention continued
also in [5], which defined property testing in relation to PAC learning. More
importantly, in [5] property testing is promoted as a new type of computational
problems, which transcends all its natural applications.

While [3, 12] focused on algebraic properties, the focus of [5] was on graph
properties. From this perspective the choice of representation became less obvi-
ous, and oracle access was viewed as allowing local inspection of the graph rather
than being the graph itself.2 The distinction between objects and their repre-
sentations became more clear when an alternative representation of graphs was
studied in [6, 7]. At this point, query complexity that is polynomially related to
the size of the object (e.g., its square root) was no longer considered inhibiting.
This shift in scale is discussed next.

Recall that initially property testing was viewed as referring to functions that
are implicitly defined by some succinct programs (as in the context of program
checking) or by “transcendental” entities (as in the context of PAC learning).
From this perspective the yardstick for efficiency is being polynomial in the
length of the query, which means being polylogarithmic in the size of the object.
However, when viewing property testing as being applied to (huge) objects that
may exist in explicit form in reality, it is evident that any sub-linear complexity
may be beneficial.

The realization that property testing may mean any algorithm that does not
inspect its entire input seems crucial to the study of testing distributions, which
emerged with [2]. In general, property testing became identified as a study of a
special type of sublinear-time algorithms.

Another consequence of the aforementioned shift in scale is the decoupling
of the representation from the query types. In the context of graph properties,
this culminated in the model of [8].

Nevertheless, the study of testing properties within query complexity that
only depends on the proximity parameter (and is thus totally independent of
the size of the object) remains an appealing and natural direction. A remarkable
result in this direction is the characterization of graph properties that are testable
within such complexity in the adjacency matrix model [1].

References

1. N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Characterization
of the Testable Graph Properties: It’s All About Regularity. In 38th STOC, pages
251–260, 2006.

2. T. Batu, L. Fortnow, R. Rubinfeld, W.D. Smith and P. White. Testing that Dis-
tributions are Close. In 41st FOCS, pages 259–269, 2000.

2 That is, in this case the starting point is the (unlabeled) graph itself, and its repre-
sentation as a (labeled) graph by either its adjacency matrix or incidence list is an
auxiliary conceptual step.

5

3. M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications
to Numerical Problems. JCSS, Vol. 47, No. 3, pages 549–595, 1993. Extended
abstract in 22nd STOC, 1990.

4. O. Goldreich (editor). Property Testing. Springer, 2010.
5. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection

to learning and approximation. Journal of the ACM, pages 653–750, July 1998.
Extended abstract in 37th FOCS, 1996.

6. O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorith-

mica, Vol. 32 (2), pages 302–343, 2002. Extended abstract in 29th STOC, 1997.
7. O. Goldreich and D. Ron. A Sublinear Bipartitness Tester for Bounded Degree

Graphs. Combinatorica, Vol. 19 (3), pages 335–373, 1999. Extended abstract in
30th STOC, 1998.

8. T. Kaufman, M. Krivelevich, and D. Ron. Tight Bounds for Testing Bipartiteness
in General Graphs. In Proc. of RANDOM’03, pages 341–353, 2003.

9. M. Parnas, D. Ron, and R. Rubinfeld: Tolerant Property Testing and Distance
Approximation. JCSS, Vol. 72 (6), pages 1012–1042, 2006. Preliminary version in
ECCC, 2004.

10. D. Ron. Property Testing: A Learning Theory Perspective. Foundations and Trends

in Machine Learning, Vol. 1 (3), pages 307–402, 2008.
11. D. Ron. Algorithmic and Analysis Techniques in Property Testing. Foundations

and Trends in TCS, Vol. 5 (2), pages 73–205, 2010.
12. R. Rubinfeld and M. Sudan. Robust Characterization of Polynomials with Ap-

plications to Program Testing. SIAM Journal on Computing, Vol. 25 (2), pages
252–271, 1996.

