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Abstract. While typical constructions of explicit expanders work for
certain sizes (i.e., number of vertices), one can obtain constructions of
about the same complexity by manipulating the original expanders. One
way of doing so is detailed and analyzed below.
For any m ∈ [0.5n, n] (equiv., n ∈ [m, 2m]), given an m-vertex expander,
Gm, we construct an n-vertex expander by connecting each of the first
n−m vertices of Gm to an (otherwise isolated) new vertex, and adding
edges arbitrarily to regain regularity. The analysis of this construction
uses the combinatorial definition of expansion.

A preliminary version of this memo was posted on the author’s web-site in
October 2019.1 The current revision corrects various typos.

1 The story, which can be skipped

Expander graph have numerous applications in the theory of computation (see,
e.g., [3]), which explains the extensive interest in constructing these objects.
Actually, when talking about expander graphs, one typically refers to families
of regular graphs of fixed degree for a varying number of vertices that are Ω(1)-
expanding, where the expansion factor is fixed for the entire family. That is,
there exists a constant c > 0 such that for every graph G = (V,E) in the family,
and every S ⊆ V of size at most |V |/2, it holds that

|{v∈V \ S : ∃u ∈ S s.t. {u, v}∈E}| ≥ c · |S|.

While designers of expanders focus on optimizing various parameters, their users
tend to care most of having explicit expanders for any number of vertices (i.e.,
for any size). The most popular notions of being explicit are a minimal notion
that requires that the graph be constructed in time that is polynomial in its
length, and a stronger notion that requires that the neighbors of each vertex in
each graph can be identified in time that is poly-logarithmic in the size of the
graph (equiv., polynomial in the size of the description of the vertices, assuming
a non-redundant representation).2

Unfortunately, typical constructions of explicit expanders work only for cer-
tain sizes (i.e., number of vertices). Yet, fortunately, one can obtain constructions

1 See http://www.wisdom.weizmann.ac.il/∼oded/p ex4all.html
2 See [3, Def. 2.3] or [2, Apdx. E.2.1.2].
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of the same level of explicitness (or complexity) by manipulating the original ex-
panders. One such construction was presented recently by Murtagh et al. [4]. It
reminded me of a different construction, which I heard from Noga Alon many
years ago. (In fact, checking something else in [2, Apdx. E.2], I noticed that I
used Noga’s construction there (see last paragraph in [2, Apdx. E.2.1.2])...)

The starting point in both cases is a construction for a “dense” set of sizes M ;
that is, for every n ∈ N there exists m ∈ M and an explicit m-vertex expander
such that m ∈ [0.5n, n] (equiv., n ∈ [m, 2m]). The aim is to obtain an explicit
n-vertex expander, for any given n ∈ N.

The construction of Murtagh et al. [4] takes an m-vertex graph, where m ∈
M ∩ [0.5n, n], designates n −m pairs of vertices in it, joins each such pair to a
single vertex (doubling the degree), and adds self-loops on the other m−(n−m)
vertices to regain regularity. The analysis of this construction is conducted in
terms of the algebraic definition of expansion (i.e., eigenvalues), and is presented
in [4, Apdx. B]. Assuming that the m-vertex graph has a second eigenvalue
smaller (in absolute value) than β < 1/3, the resulting n-vertex graph has a
second eigenvalue smaller than (1 + 3β)/2.

Noga Alon’s construction starts by picking m1 ∈ M ∩ [0.5n, n]. Discarding
the fortunate case of m1 = n, note that if m1 = n/2 we are done by connecting
two copies of the m1-vertex graph by a matching. The resulting n-vertex graph
is shown to be an expander using the combinatorial definition of expansion (i.e.,
the expansion of vertex-sets). In general, we set r1 = n − m1 ∈ (0, 0.5n], and
proceed by picking m2 ∈ M ∩ [0.5r1, r1], setting r2 = r1 −m2, and so on; that
is, in iteration i we pick mi ∈ M ∩ [0.5ri−1, ri−1] and set ri = ri−1 − mi, till
we get to rt = O(1). At this point we connect the vertices of the t − 1 smaller
graphs to

∑t
i=2mi vertices of the m1-vertex graph by using a matching (and

add self-loops to maintain regularity).

The analysis of Noga’s construction is less trivial than it seems. The source
of trouble is that, when analyzing the expansion of sets, one needs to consider
sets of size at most n/2 and such sets may have more than m1/2 vertices in the
large (m1-vertex) expander. This difficulty can be resolved by using a definition
that guarantees expansion also for larger sets (actually, it suffices to guarantee
expansion for sets that have density at most 3/4). Furthermore, the standard
definition of expansion does imply expansion also for larger sets (as needed
above).

Thinking a little more about Noga’s suggestion, I realized that, if one does
not care about the specific expansion parameters, then the smaller expanders
play no real role. Hence, the added small expanders can be replaced by isolated
vertices; that is, wishing to have an n-vertex expander and given an m-vertex
expander such that m ∈ [0.5n, n], we connect n − m auxiliary vertices (which
are otherwise isolated) to n−m vertices of the original expander (and then add
edges arbitrarily to recover regularity). The analysis works via the combinatorial
definition of expansion, with the aforementioned caveat.
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2 The actual construction and its analysis

While typical constructions of explicit expanders work for certain sizes (i.e.,
number of vertices), one can obtain construction of about the same complexity
by manipulating the original expanders. One way of doing so is detailed and
analyzed below.

The construction. For m ∈ [0.5n, n] (equiv., n ∈ [m, 2m]), given an m-vertex
expander, Gm, we construct an n-vertex expander by connecting each of the
first n−m vertices of Gm to an (otherwise isolated) new vertex, and add edges
arbitrarily to regain regularity. Hence, we obtain a construction of expanders
for all sizes, provided we are given a construction of expanders for a sufficiently
dense set of sizes (which is effectively accessible as assumed below).

Construction 1 (padding and matching with isolated vertices): For d ∈ N,
suppose that M ⊆ N and {Gm}m∈M is a set of d-regular graphs such that the
following two conditions hold.

1. Given any m ∈M , we can construct the m-vertex graph Gm = ([m], Em).
2. For every n ∈ N, we can determine an m ∈ M such that m ∈ [0.5n, n]

(equiv., n ∈ [m, 2m]).

Then, we construct a d′-regular n-vertex graph Gn = ([n], En) by picking m ∈
M ∩ [0.5n, n], constructing Gm = ([m], Em), and letting

En = Em ∪ {{i,m+ i} : i ∈ [n−m]} ∪ Em,n,

where d′ ∈ {d + 1, d + 2} and Em,n is an arbitrary set of (d′·n−d·m
2 − (n −m)

edges that is added so to make Gn be d′-regular. Specifically, d′ = d+ 1 may be
used if either n is even or d is odd, and d′ = d+ 2 is used otherwise.

We say that a graph G = (V,E) is (ρ, c)-expanding if for every S ⊂ V such that
|S| ≤ ρ · |V | it holds that |∂(S)| ≥ c · |S|, where ∂(S) = {u ∈ V \ S : ∃v ∈
S s.t. {v, u} ∈ E} is the boundary of S. The standard definition of expansion
corresponds to (0.5, Ω(1))-expansion, but it implies (ρ,Ω(1))-expansion for any
constant ρ < 1.3 Hence, when showing that Gn is an expander, we may assume
that Gm is (0.75, Ω(1))-expanding, rather than (0.5, Ω(1))-expanding.

Theorem 2 (analysis of Construction 1): If Gm is (0.75, c)-expanding, then Gn

is (0.5, c/2)-expanding.

3 Assume that the graph is (0.5, c)-expanding, and let S ⊂ V be an arbitrarty set such

that 0.5 · |V | < |S| ≤ ρ · |V |. Then, R
def
= V \ (S ∪ ∂(S)) has cardinality smaller than

0.5 · |V |, and it follows that |∂(R)| ≥ c · |R|. On the other hand, ∂(R) ⊆ ∂(S), and so
|∂(S)| ≥ c·|R| = c·(|V |−|S|−|∂(S)|). Hence, |∂(S)| ≥ c

1+c
·(|V |−|S|) ≥ c

1+c
· 1−ρ
ρ
·|S|,

and it follows that the graph is (ρ, c′)-expanding for c′ = c·(1−ρ)
(1+c)·ρ .
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The proof does not use the edges in Em,n, which makes sense given their arbitrary
choice. Yet, it is quite likely that a more careful analysis of other aspects will
yield a stronger result. In particular, assuming that Gm is (0.5, c)-expanding,
we only conclude that Gn is (0.5, c/12)-expanding4 (so the real challenged is to
establish a higher expansion bound for Gn, when assuming that Gm is (0.5, c)-
expanding).

Proof: Recall that 0 ≤ n−m ≤ m. For an arbitrary set S ⊂ [n] of size at most
0.5n, we consider the following four disjoint subsets of S:

S′
def
= {i ∈ [n−m] : i∈S & m+ i∈S}

S′′
def
= {i ∈ ([m] \ [n−m]) : i ∈ S}

S′′′
def
= {i ∈ [n−m] : i∈S & m+ i 6∈S}

R
def
= {m+ i ∈ S : i 6∈S}

Note that (S′, S′′, S′′′) is a partition of S∩ [m] whereas (m+S′, R) is a partition
of S \ [m]. We may assume, without loss of generality, that S′′′ = ∅, because
moving i ∈ S′′′ to m + i (i.e., replacing S by (S \ {i}) ∪ {m + i}) can only
decrease the ∂(·)-value.5

Next, we show that |S| ≤ n/2 implies |S′∪S′′| ≤ 0.75 ·m. This holds because
|S′′| ≤ m− (n−m) = 2m− n, which implies

|S′|+ |S′′| ≤ |S| − |S
′′|

2
+ |S′′|

≤ max
s≤2m−n

{
|S| − s

2
+ s

}
=
|S|+ 2m− n

2

≤ 2m− 0.5n

2
≤ 0.75 ·m,

where the third (resp., last) inequality is due to |S| ≤ n/2 (resp., m ≤ n).
Having established |S′ ∪S′′| ≤ 0.75 ·m and using the (0.75, c)-expansion of Gm,
we get |∂(S′ ∪ S′′)| ≥ c · (|S′| + |S′′|). Turning to R, and using the matching
edges (i.e., theset {{i,m + i} : i ∈ [n − m]}), we have |∂(R)| = |R| ≥ c · |R|,
since c ≤ 1/3. Note that ∂(S′ ∪ S′′)∩R = ∅ and ∂(R)∩ (S′ ∪ S′′) = ∅, since the
vertices in R are matched to vertices in [m]\ (S′∪S′′). Hence, |∂(S′∪S′′∪R)| ≥
4 We first infer that Gm is (0.75, c′)-expanding for c′ = 0.25·c

0.75·(1+c) (see Footnote 3).

Hence, Gn is (0.5, c′′)-expanding for c′′ = c
6(1+c)

. Using c ≤ 1, we get c′′ ≥ c/12.
5 Suppose that i ∈ [m]∩S and m+ i ∈ [n] \S, and let T = (S \ {i})∪ {m+ i}. Then,
i 6∈ ∂(S) and m + i ∈ ∂(S), whereas i ∈ ∂(T ) and m + i 6∈ ∂(T ), which means that
|∂(T )∩{i,m+i}| = 1 = |∂(S)∩{i,m+i}|. However, ∂(T )\{i,m+i} ⊆ ∂(S)\{i,m+i},
since the move may only eliminate a contribution of i to ∂(S) \ {i,m+ i} (whereas
m+ i does not contribute to ∂(T ) \ {i,m+ i}).
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c · (|S′| + |S′′| + |R|)/2, since each vertex may contribute at most twice to the
sum |∂(S′ ∪ S′′)| + |∂(R)|. Noting that |S′| + |S′′| + |R| ≥ |S|/2, we infer that
|∂(S)| ≥ c · |S|/4.

Using a more careful anlaysis, we note that |∂(S′ ∪S′′ ∪R)| ≥ |∂(S′ ∪S′′)|+
|∂(R)| ≥ c · (|S′|+ |S′′|) + 0.5 · |R|, since the double contribution may occur only
on elements of ∂(R) and |∂(R)| = |R|. Using |S| = 2 · |S′|+ |S′′|+ |R|, we get

|∂(S′ ∪ S′′ ∪R)| ≥ c · (|S′|+ |S′′|) + 0.5 · |R|

= c ·
(
|S| − (|S′′|+ |R|)

2
+ |S′′|

)
+ 0.5 · |R|

= c · |S|+ |S
′′|

2
+

1− c
2
· |R|,

and the claim follows (since c ≤ 1/3).

3 Postscript

As mentiined in Section 1, it turns out that I did mention Noga Alon’s con-
struction in [2, Apdx. E.2.1.2] (but forgot of this). Also, it seems that Noga has
mentioned the construction (and/or variants of it) in some old papers of his.
Asking him about this in October 2019, he suggested a few alternative construc-
tions, which are aimed at better expansion parameters. My favorite one, starts
with an m-vertex d-regular graph, Gm, for n ∈ [m,m + o(m)], and obtains an
n-regular d′-regular graph by connecting each of the n −m new vertices to d′

different old vertices.
A combinatorial analysis of the resulting graph, Gn, maintains much of the

expansion features of Gm. Specifically, assume that, for some monotone non-
decreasing function X : [m] → [m] (e.g., X(s) = Ω(d · s) for s < m/2d), every
s-subset of vertices of Gm has at least X(s) neighbors (in Gm) that are outside

it. Consider an arbitrary set S ⊂ [n] of vertices in Gn, and let S′
def
= S ∩ [m] and

S′′ = S \ S′. If |S′′| > X(|S|)/2d′, then |∂(S)| ≥ |∂(S′′) \ S′| ≥ d′ · |S′′| − |S| >
0.5 · X(|S|) − |S|, since |∂(S′′)| = d′ · |S′′|. Otherwise, |∂(S)| ≥ |∂(S′) ∩ [m]| ≥
X(|S′|) ≥ X(|S| − (X(|S|)/2d′)) ≥ X(|S|/2), since X(|S|) ≤ d · |S|.

Noga is currently writing a paper with a spectral analysis of some of these
alternative construction [1]. The tentative abstract reads as follows.

An (n, d, λ)-graph is a d-regular graph on n vertices in which the absolute
value of any nontrivial eigenvalue is at most λ.
– For any constant d ≥ 3 and ε > 0, and all sufficiently large n we show

that there is a deterministic poly(n)-time algorithm that outputs an
(n, d, λ)-graph (on exactly n vertices) with λ ≤ 2

√
d− 1 + ε.

– For any d = p + 2 with p ≡ 1 mod 4 prime and all sufficiently large
n, we describe a strongly explicit construction of an (n, d, λ)-graph
(on exactly n vertices) with λ ≤

√
2(d− 1) +

√
d− 2 + o(1) (<

(1 +
√

2)
√
d− 1 + o(1)), with the o(1) term tending to 0 as n tends

to infinity.
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– For every ε > 0, d > d0(ε) and n > n0(d, ε) we show a strongly
explicit construction of an (m, d, λ)-graph with λ < (2 + ε)

√
d and

m = n+ o(n).
All constructions are obtained by starting with known ones of Ramanu-
jan or nearly Ramanujan graphs, modifying or packing them in an ap-
propriate way. The spectral analysis relies on the delocalization of eigen-
vectors of regular graphs in cycle-free neighborhoods.
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