
Bridging a Small Gap in the Gap Amplification of

Assignment Testers

Oded Goldreich Or Meir

August 17, 2019

Abstract

Irit Dinur’s proof of the PCP theorem via gap amplification (J. ACM,
Vol. 54 (3) and ECCC TR05-046) has an important extension to As-
signment Testers (a.k.a PCPPs). This extension is based on a cor-
responding extension of the gap amplification theorem from PCPs to
Assignment Testers (a.k.a PCPPs). Specifically, the latter extension
states that the rejection probability of an Assignment Tester can be
amplified by a constant factor, at the expense of increasing the out-
put size of the Assignment Tester by a constant factor (while retaining
the alphabet). We point out a gap in the proof of this extension, and
show that this gap can be bridged. We stress that the gap refers to
the amplification of Assignment Testers, and the underlying issue does
not arise in the case of standard PCPs. Furthermore, it seems that
the issue also does not arise with respect to the applications in Dinur’s
paper, but it may arise in other applications.

This note appeared as Comment Nr 3 on TR05-046 of ECCC. (The comment
was posted in Oct. 2007.) The current revision is intentionally minimal, but
does include some minor corrections and clarifications of the original note
as well as some stylistic improvements. Section 4 is a digest that was added
in the current revision.

1 Background

(We make references to specific items as numbered both in the journal ver-
sion of Dinur’s work [D07] and in the version posted on ECCC [D05], since
both are cited in the literature.)

1

1.1 Assignment Testers and Gap Amplification

We begin by recalling the definition of Assignment Testers, as stated in [D05,
D07] (following [DR06]), while commentging that this notion is closely re-
lated to the notion of PCPs of Proximity (as defined in [BGHSV04]). The
current formulation of Assignment Testers refers to the notion of a constraint
graph, which is a graph G = (V,E) augmented with binary constraints that
are associated with its edges. These constraints refer to an assignment α of
values in Σ0 to the vertices (i.e., α : V → Σ0), and UNSATα(G) denotes the
fraction of edge-contraints that are violated by this assignment.

Definition 1 (Assignment Testers, See [D05, Definition 3.1] and [D07, Definition 2.8])
An assignment-tester with alphabet Σ0 and rejection probability ε > 0 is a

polynomial-time transformation P that, on input a circuit Φ over Boolean

variables X, outputs a constraint graph G = 〈(V,E) ,Σ0, C〉 such that X ⊆ V
and the following hold with respect to any assignment a : X → {0, 1}.

• (Completeness): If a ∈ SAT(Φ), then there exists b : (V \X) → Σ0

such that UNSATa∪b (G) = 0.

• (Soundness): If a /∈ SAT(Φ), then for all b : (V \X) → Σ0, UNSATa∪b(G) ≥
ε · dist (a,SAT (Φ)).1

The main technical result of [D05, D07] is a gap amplification theorem for
PCPs. The following important extension of this theorem to Assignment
Testers is also provided in [D05, D07]:

Theorem 2 (Gap Amplification for Assignment Testers, See [D05, Theorem 8.1] and [D07
There exists t ∈ N such that given an assignment-tester with constant-size al-

phabet Σ and rejection probability ε, one can construct an assignment-tester

with the same alphabet such that

• the rejection probability of the new assignment-tester is at least min(2ε, 1/t);
and

• the output size of the new assignment-tester is at most a constant

factor larger than the output size of the given assignment-tester.

The size of a graph (e.g., an output of an assignment-tester) is defined as

the number of edges in it.

1Indeed, SAT (Φ) denotes the set of assignments that satisfy Φ, and dist(a, S) denotes
the relative Hamming distance of the assignment a from the set S.

2

1.2 Overview of the proof of Theorem 2

The assignment tester of Theorem 2 is constructed in two steps: First, for
a fixed constant d ∈ N and an arbitrary constant t ∈ N (to be determined

later), an intermediate assignment tester with alphabet Σdt/2

and rejection
probability p = Ω(min(

√
t·ε, 1/t)) is constructed. Then, a composition theo-

rem of Dinur and Reingold [DR06] is applied to the intermediate assignment
tester in order to reduce its alphabet’s size, resulting in an assignment tester
with alphabet Σ and rejection probability Ω(p) = Ω(min(

√
t · ε, 1/t)). The

number t is then fixed to some sufficiently large natural number that yields
the desired rejection probability.

The subject of this note is a gap in the first step of the foregoing con-
struction; namely, the construction of the intermediate assignment tester.
Specifically, we show that under certain circumstences, the intermediate as-
signment tester has output size that is quadratic in the output size of the
input assignment tester, failing to establish Theorem 2. Such an increase
in the output size can not be afforded by the applications of Theorem 2
presented in [D05] and [D07]. We comment that those circumstences do not
seem to occur in the applications of Theorem 2 presented in of [D05]. In this
note we show that the proof of Theorem 2 can be corrected so the theorem
holds under any circumstences.

Outline of the construction of the intermediate assignment tester.
Let Φ be a circuit over Boolean variables X.

1. First, the intermediate assignment tester runs the given assignment
tester on input Φ, yielding a constraint graph G = 〈(V,E),Σ, C〉.
For any vertex v ∈ V , let degG(v) denote the degree of v in G.

2. Next, the intermediate assignment tester constructs the constraint
graph H = (prep(G))t, where prep(G) is the graph in which every
vertex v of G is replaced by a degG(v)-vertex expander graph, denoted
[v], whose vertices represent “copies” of v and whose edges correspond
to equality constraints. We denote the set of vertices of H by VH . (In
addition, a larger expander, with trivial constraints, is superimposed
on VH ; but we ignore it here.)2

We stress that the X 6⊆ VH , since each x ∈ X ⊆ V was replaced by
[x].

2We also ignored the contraints placed on the edges of H , which are a key issue in [D05,
D07]. We do so since our focus is on the added constraints of Step 3.

3

3. Finally, the intermediate assignment tester constructs and outputs a
constraint graph H ′, whose set of vertices is VH ∪X and whose edges
consist of the edges of H and of “consistency edges” that check consis-
tency between X and VH (i.e., between each x ∈ X and each vertex in
[x]). The edges are reweighted such that the latter consistency edges
form half of the edges of H ′.

For every v ∈ VH ∪ X, let degH′(v) denote the degree of v in H ′.

(We stress that the definition of the latter consistency edges, which are
added in the last step, was not fully specified above. The question of how
to actually define these edges is the issue that we address in this note.)

2 The gap

The gap in the proof is in the way the consistency edges between X and VH

are defined. Specifically, we show that if the graph G is highly non-regular,
then the construction of H ′ may contain too many consistency edges. For
simplicity, let us assume that t = 1, but note that the argument holds for
any value of t. For t = 1, it holds that H = prep (G) and VH =

⋃

v∈V
[v],

where [v] is the set of vertices that represent “copies” of the vertex v of G.

The consistency edges as defined in [D05, D07]. The natural way
to define the consistency edges, which is the way taken in [D05, D07], is
based on the natural randomized testing procedure (to be described next).
This procedure is given oracle access to an assignment A : VH ∪ X → Σ to
H ′, and is allowed to make two queries to A, which it selects uniformly at
random (see below). The procedure then decides whether to accept or reject
A. Assuming that t = 1, the aforementioned procedure is as follows:

1. Select x ∈ X uniformly at random.

2. Select z ∈ [x] uniformly at random (recall that [x] is the set of vertices
in H that are copies of x).

3. Accept if and only if A(x) = A(z).

The consistency edges are defined using the procedure as follows: For every
possible outcome of the coin tosses ω, let vω

1 and vω
2 denote the vertices that

the procedure queries on coin tosses ω. Then, a consistency edge is placed
between vω

1 and vω
2 , and this edge accepts an assignment A : VH ∪ X → Σ

if and only if the procedure accepts on coin tosses ω when given oracle

4

access to A (i.e., A(vω
1) = A(vω

2)). Note that for every x ∈ X, it holds that
degH′(x) equals to the number of consistency edges connected to x using
the foregoing procedure. The problem is now as follows:

• Since the procedure chooses x ∈ X uniformly at random (at Step 1),
every variable x ∈ X must have the same degree in H ′. That is, for
every two variables x, y ∈ X, it holds that degH′(x) = degH′(y).

• Since the procedure chooses z ∈ [x] uniformly at random (at Step 2),
every variable x ∈ X must satisfy degH′(x) ≥ |[x]| = degG(x).

• Combining the previous two items, it follows that the degree of every
variable x ∈ X is at least maxx∈X {degG(x)}, and therefore the num-
ber of consistency edges added by the foregoing procedure is at least
|X| · maxx∈X {degG(x)}.

Now, suppose that |X| = Ω(size(G)) and that there exists x0 ∈ X for which
degG(x0) = Ω(size(G)); this can be the case if G is highly non-regular.
In such a case, the number of consistency edges that will be added in the
construction of H ′ will be at least |X|·degG(x0) = Ω(size(G)2), and therefore
we will have size(H ′) = Ω(size(G)2), contradicting the claim of Theorem
2. Note that this problem does not occur if G is a regular graph (i.e.,
degG(x) = degG(y) for every x, y ∈ X), since in such case we have that

N
def
= |X| · max

x∈X

{degG(x)} =
∑

x∈X

degG(x) ≤ size (G)

and therefore we will have size(H ′) = 2 · max(size(H), N) = O(size(G)), as
required. Ditto if G is almost regular (i.e., degG(x) = Θ(degG(y)) for every
x, y ∈ X).

It seems that the assignment testers to which this construction is applied
in [D05, D07] are regular, and in such a case the gap we discuss does not
occur. However, envisioning possible applications in which the regularity
condition does not hold or is hard to verify, we wish to establish the result
also for such (general) cases.

3 Bridging the gap

We turn to describe how the gap can be bridged. In order to bridge the gap,
we modify the foregoing randomized procedure as follows. For every x ∈ X,
let [x]′ to be an arbitrary subset of [x] that has size min(|[x]| , size(H)/|X|).

5

The modified procedure is the same as the original procedure, except for that
in Step 2, it chooses z uniformly at random from the set [x]′ instead of in

[x]. Observe that this modification indeed solves the problem, since now the
degree of every variable x ∈ X in H ′ is at most size(H)/|X|, and therefore
the total number of consistency edges is at most size(H) = O(size(G)).

The reason that the modified procedure works is roughly as follows:
Consider some assignment to X∪VH . Ideally, we would like that if a variable
x ∈ X is assigned a value that is inconsistent with most of [x], then this
variable violates Ω(1/|X|)-fraction of the edges of H ′. Suppose now that
some variable x ∈ X is assigned a value that is inconsistent with most of
the vertices in [x]. Then, either that x is inconsistent with most of the
set [x]′, or most of the set [x]′ is inconsistent with most of the set [x]. In
the first case, at least Ω(1/|X|)-fraction of the edges are violated, since the
modified procedure chooses x with probability 1/|X| and then chooses with
probability at least 1/2 a vertex z ∈ [x]′ that is inconsistent with x. In the
second case, the inconsistency of the two majorities yields sufficiently many
violated edges by virture of the mixing property of the expander [x]. Details
follow.

Indeed, the case where x is consistent with most of [x]′ is more prob-
lematic, since the procedure is likely to choose z ∈ [x]′ that is consistent
with x, whereas this value is inconsistent with the majority in [x]. In-
deed, this is possible only when [x]′ 6= [x], which in particular implies that

|[x]| > s
def
= size(H)/|X| = |[x]′|. Hence, there is an (s/2)-subset of [x] (i.e.,

the majority in [x]′) that is inconsistent with most of [x], and therefore by
the mixing property of the expander [x] at least Ω(s/2) inner edges of [x]
are violated. It follows that the fraction of violated edges that are incident
at x is at least

Ω(s)

size(H ′)
=

Ω(s)

O(size(H))
= Ω(1/|X|)

as required. Below we give a rigorous proof of this argument.

The modified procedure for arbitrary t. We first describe the modi-
fied procedure for an arbitrary value of t (rather than just t = 1):

1. Select x ∈ X uniformly at random.

2. Select z ∈ [x]′ uniformly at random (recall that [x]′ is an arbitrary
s-subset of [x], where s = min(|[x]| , size(H)/|X|)).

3. Take a ⌊t/2⌋-step random walk in prep (G) starting from z, and let w
be the endpoint of the walk. Accept if and only if A(w)z = A(x).

6

Recall that A : VH ∪X → Σdt/2 ∪{0, 1} assigns each v ∈ VH a sequence
of values, one per each vertex u at distance at most t/2 from v. Hence,
A(v)u denotes the value that v attributes to u.

We now use the procedure to define the consistency edges as before, and
then reweight the edges of H ′ such that the consistency edges form half of
the edges of H ′. Observe that this modification solves the problem: Indeed,
this construction requires placing at most size(H)/|X| consistency edges on
H ′ for each variable in X, but this sums-up to only O(size(H)) = O(size(G))
consistency edges.

It remains to show that the intermediate assignment tester that uses
the modified randomized procedure has rejection probability Ω(min(

√
t ·

ε, 1/t). In order to do it, we prove a result analogous to [D05, Lemma 8.2]
and [D07, Lemma 9.2]. The reason that we prove again such a result is
that Dinur [D05, D07] proves the result for her construction of H ′, while we
prove it for the modified version of this construction. The following lemma
also differs from [D05, Lemma 8.2] and [D07, Lemma 9.2] in some (hidden)
constant factors.

Lemma 3 Assume that ε < 1/t and fix an assignment a : X → {0, 1}.
Then

• If a ∈ SAT(Φ), then there exists b : VH → Σdt/2

such that UNSATa∪b (H ′) =
0.

• If δ = dist(a,SAT(Φ)) > 0, then for every b : VH → Σdt/2

it holds

that UNSATa∪b (H ′) = Ω(
√

t · ε) · δ.

Proof. The first item of the lemma can be proved using the same proof as
in [D05, D07]. Turning to the second item, assume that δ = dist (a,SAT (Φ)) >

0 and fix an assignment b : VH → Σdt/2

to H. We shall prove that
UNSATa∪b (H ′) = Ω(

√
t · ε) · δ. As in [D05, D07], let b1 be the assign-

ment to prep (G) decoded from b using a plurality vote, and let b0 the
assignment to G decoded from b1 using plurality vote. The case where
dist (b0|X , a) ≤ δ/2 can be proved using the same proof as in [D05, D07],
since in this case dist (b0|X ,SAT (Φ)) ≥ δ/2 (by the triangle inequality),
and the argument focuses on this fact only (while ignoring a). therefore
by the definition of G it holds that UNSATb0 (G) ≥ ε · δ/2. Specifically, in
this case, by the definition of G, it holds that UNSATb0 (G) ≥ ε · δ/2, and
applying the reasoning of [D05, D07] which rely on the properties of pre-
processing and graph powering), it holds that UNSATb (H) = Ω(

√
t · ε) · δ.

7

Finally, since the edges of H form half of the edges of H ′, it follows that
UNSATa∪b (H ′) = Ω(

√
t · ε) · δ, as required.

We turn to the case where dist (b0|X , a) > δ/2, where we must rely
on a and refer to the current modified construction. We shall prove that
UNSATa∪b (H ′) = Ω(δ), which implies the required result. Recall that b0(v)
is defined by plurality vote of b1 in [v]. In contrast, we define b′0 to be an
assignment for G such that for every v ∈ V the value b′0(v) is the plurality
vote among the values assigned by b1 to the vertices in [v]′ (i.e., b′0(v) is
the value that maximizes Pru∈[v]′ [b1(u) = b′0(v)]). Indeed, the key question
is whether these two assignments are close or not, and we consider the two
possible cases: (1) dist(b0|X , b′0|X) ≤ δ/4 and (2) dist(b0|X , b′0|X) > δ/4.

1. Suppose that dist(b0|X , b′0|X) ≤ δ/4. We show that in such case a∪ b
violates at least δ/16 of the consistency edges of H ′, by considering
the action of the modified randomized procedure defined above. Using
the triangle inequality, it holds that dist(b′0|X , a) > δ/4; hence, in this
case, with probability at least δ/4, the procedure chooses in Step 1 a
vertex x ∈ X such that b′0(x) 6= a(x). Recall that the value b′0(x) is
defined to be the most popular value assigned by b1 to the vertices of
[x]′, and therefore with probability at least 1

2 the procedure chooses in
Step 2 a vertex z ∈ [x]′ such that b1(z) 6= a(x). Similiarly, conditioned
on b1(z) 6= a(x), with probability at least 1

2 , the procedure chooses
in Step 3 a vertex w such that b(w)z 6= a(x). Putting all of these
together, it follows that in this case the randomized procedure rejects
a ∪ b with probability at least

δ

4
· 1

2
· 1

2
=

δ

16

and therefore UNSATa∪b (H ′) = Ω(δ), as required.

2. Suppose that dist(b0|X , b′0|X) > δ/4. We show that in such case
UNSATb (H) = Ω(δ), due to the violation of the equality constraints
of prep(G). Recall that prep (G) is constructed by replacing every
vertex v of G with a set of copies [v] of size degG(v), placing the
edges of an expander on [v] and associating those edges with equality
constraints. Observe that the inequality b0(x) 6= b′0(x) can only hold
for variables x ∈ X for which [x]′ 6= [x], and in this case it follows
that |[x]′| = size(H)/|X|, since |[x]′| = min(|[x]| , size(H)/|X|) and
[x]′ ⊆ [x]. Now, observe for every x ∈ X that satisfies b0(x) 6= b′0(x),
it holds that Ω(|[x]′|) equality edges of [x] (i.e., edges between the
majority vertices of [x]′ and the majority vertices of [x]) are violated

8

by b1, due to the mixing property of the expander that was used for
the construction of prep(G). It follows that in this case the number of
edges of prep(G) that are violated by b1 is at least

∣

∣

{

x ∈ X : b0(x) 6= b′0(x)
}∣

∣ · Ω
(

size(H)

|X|

)

= dist(b0|X , b′0|X) · Ω(size (H))

= Ω(δ · size (H)).

The latter equality implies that UNSATb (H) = Ω(δ), and therefore
UNSATa∪b (H ′) = Ω (δ), as required.

This completes the proof of the lemma.

4 Digest

The issue at hand is augmenting the construction of the intermediate con-
traint graph, which is the pivot of the gap amplification, used in order to
adapt it from the PCP setting to the setting of assignment-testers (resp.,
PCPPs). The natural augmentation calls for connecting each input variable
(i.e., a variable representing a bit in the input assignment (resp., a location
in the input oracle)) to all auxiliary copies of this variable (i.e., auxiliart
variables (resp., locations in the proof oracle)) that were produced in the
preprocessing step.

The problem is that this natural augmentation may yield too large of
an overhead in the case that the original constraint graph is not (almost)
regular. The solution is to connect each input variable only to a number
of copies that does not exceed the average degree of input variables in the
original graph. The reason that this works is that expanders were placed (in
the preprocessing step) among the copies of each variable, and so a mismatch
between the majority of the “connected copies” and the majority of all copies
will violate a large number of edges (i.e., a number that is linearly related
to the number of connected copies). Hence, the number of violated edges is
linearly related to the minimum between the degree of the input variable in
the original constraint graph and the average degree of all input variables in
that graph. The latter term suffices since the distance between assignments
treats all input variables equally.

The last assertion also explians why it is unlikely that the given assign-
ment tester will contain input variables of significantly different degrees.
Hence, we expect that in most applications, all input variables will have (al-
most) the same degree, and in that case the original analysis of [D05, D07]

9

suffices. Still, it feels better not to augment the definition of assignment
testers to to require this.

References

[BGHSV04] E. Ben-Sasson, O. Goldreich, P. Harsham, M. Sudan and
S. Vadhan, Robust PCPs of Proximity, Shorter PCPs and Ap-
plications to Coding, SIAM Journal of Computing, Vol. 36 (4),
pages 889–974, 2006. Preliminary version in STOC 2004, pages
120-134.

[D05] I. Dinur. The PCP theorem by gap amplification, ECCC TR05-
046.

[D07] I. Dinur. The PCP theorem by gap amplification, Journal of

ACM, Vol. 54 (3), 2007. Preliminary version in STOC 2006,
pages 241–250.

[DR06] I. Dinur and O. Reingold. Assignment testers: Towards com-
binatorial proofs of the PCP theorem. SIAM Journal of Com-

puting, Vol. 36 (4), pages 975–1024, 2006. Preliminary version
in FOCS 2004, pages 155–164.

10

