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Abstract

The known emulation of general interactive proof systems by public-coins interactive proof
systems proceeds by selecting, at each round, a message such that each message is selected with
probability that is at most polynomially larger than its probability in the original protocol.
Specifically, the possible messages are essentially clustered according to the probability that
they are selected in the original protocol, and the emulation selects a message at random among
those that belong to the heaviest cluster.

We consider the natural alternative in which, at each round, if the parties play honestly,
then each message is selected with probability that approximately equals the probability that
it is selected in the original (private coins) protocol. This is done by selecting a cluster with
probability that is proportional to its weight, and picking a message at random in this cluster.
The crux of this paper is showing that, essentially, no matter how the prover behaves, it cannot
increase the probability that a message is selected by more than a constant factor (as compared
to the original protocol). We also show that such a constant loss is inevitable.

An early version of this work appeared as TR16-066 of ECCC.

1 Introduction

The notion of interactive proof systems was introduced by Goldwasser, Micali, and Rackoff [7]
in order to capture the most general way in which one party can efficiently verify claims made
by another, more powerful party. Interactive proofs generalize and contain as a special case the
traditional NP-proof systems. However, we gain a lot from this generalization: the IP Character-
ization Theorem of Lund, Fortnow, Karloff, Nisan and Shamir [9, 10] states that every language in
PSPACE has an interactive proof system.

An interactive proof system is a two-player protocol between a computationally bounded verifier,
and a computationally unbounded prover whose goal is to convince the verifier of the validity of
some claim. The verifier employs a probabilistic polynomial-time strategy and sends the prover
messages, to which the prover responds in order to convince the verifier. It is required that if
the claim is true then there exists a prover strategy that causes the verifier to accept with high
probability, whereas if the claim is false then the verifier rejects with high probability (no matter
what strategy the prover employs). A formal definition of an interactive proof system is provided
in Section 2. The class of sets having an interactive proof system is denoted by IP.

Public coins versus private coins. A crucial aspect of interactive proofs is the verifier’s
randomness. Whereas we can assume, without loss of generality, that the prover is deterministic,
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the verifier must be randomized to benefit from the power of interactive proofs. Specifically, without
randomness on the verifier’s side, interactive proof systems exist only for sets in NP. The verifier’s
messages in a general interactive proof system are determined based on the input, the interaction
preformed so far, and the its internal coin tosses (i.e., the verifier’s coin tosses). In that case, we
may assume, without loss of generality, that the verifier tosses all coins at the very beginning of the
interaction, and it is crucial that (with the exception for the last message) the verifier’s messages
only reveal partial information about its coins (and keep the rest secret). In contrast, in public-coin
proof systems, introduced by Babai [1] as Arthur-Merlin games, the message sent by the verifier in
each round contains (or totally reveals) the outcome of all coin it has tossed at the current round.
Thus, these messages reveal the randomness used toward generating them; that is, this randomness
becomes public. The class of sets having an interactive public coin proof system is denoted AM.

The relative power of public coin interactive proofs, as compared to general interactive proofs,
was first studied by Goldwasser and Sipser [8] who showed that every interactive proof can be
emulated using only public coins; hence, IP = AM. Intuitively, this means that, in order to test
the prover, the verifier does not need to ask clever questions, which hide some secrets, but it rather
suffices to ask random questions (which hide nothing). The fact that IP = AM also follows from
the IP characterization theorem of [9, 10], since the proof of this theorem actually establishes
PSPACE ⊆ AM, whereas IP ⊆ PSPACE .

A finer notion of interactive proofs refers to the number of prover–verifier communication rounds.
For an integer function r, the complexity class IP(r) consists of sets having an interactive proof
system in which, on common input x, at most r(|x|) rounds of communication take place. The orig-
inal proof of Goldwasser and Sipser that IP = AM actually provides a round efficient emulation
of IP by AM. Specifically, they show that, for any polynomially bounded function r : N → N, it
holds that IP(r) ⊆ AM(r + 2).

In addition to being of intrinstic interest, the emulation of general interactive proofs by public-
coin interactive coins is instrumental for several fundamental results regarding general interactive
proof systems, which are established by reducing them to the analogous results regarding public coin
interactive coin systems. Examples include the round-reduction (a.k.a. speed-up) theorem of Babai
and Moran asserting that IP(2r) ⊆ IP(r), the zero-knowledge emulation asserting that IP = ZK
(provided that one-way functions exist), and the equivalence between one-sided and two-sided error
versions of interactive proof systems. In all three cases, the result is easier to establish for public
coin interactive proof systems (see [2, 3], and [4], respectively); actually, no “direct proof” that
works with arbitrary interactive proof systems is known (and it is even hard to imagine one). We
stress that the use of a round-efficient emulation (of general interactive proofs by public coin ones)
means that taking this (“via AM”) route incurs (almost) no cost in terms of the round complexity
of the resulting proof systems.

1.1 The Goldwasser-Sipser emulation of IP by AM

The basic idea used in emulating a general interactive proof by a public coin one is changing the
assertion, from proving that one (random) interaction using a specific sequence of private coins
leads the verifier to accept, to proving that most of the sequences of coin tosses lead the verifier to
accept. Calling such coin sequences good, the claim that there are many good coin sequences for a
potential r-round interaction reduces to showing that the product of the number of verifier-messages
(for the first round) times the number of good coin sequences that are consistent with each of these
messages (and some prover response to it) is large. Hence, lower-bounding the number of good
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sequences for the r-round interaction is reduced to lower-bounding the number of good sequences
for the remaining r − 1 rounds.

The foregoing description makes sense when the next verifier message is uniformly distributed in
some set, denoted X. In this case, the claim that there are M good coin sequences for the r-round
interaction reduces to asserting that there are |X| verifier messages such that each of them yields
a (r − 1)-round interaction with M/|X| good coin sequences. The problem is that the foregoing
uniformity condition may not hold in general.

Goldwasser and Sipser [8], who suggested this emulation strategy, resolved the foregoing problem
by picking a set of messages that have roughly the same number of good coin sequences. Specifically,
they clustered the potential messages that the original verifier could have sent on the next round
into clusters according to the (approximate) number of good coin sequences that support each
message. A constant-round, public-coin sampling protocol is utilized in order to sample from the
cluster of messages that have the largest number of good coin sequences. Hence, the chosen cluster is
determined as the “heaviest” one. (We go over the original emulation in more detail in Section 2.2.)
The emulation succeeds when assuming an initial gap between the number of good coin sequences
for yes-instances and for no-instances.1

Theorem 1 (Original emulation of IP by AM, as in [8]): Suppose that S has a r = r(|x|)
round interactive proof system that utilizes n = n(|x|) random coins for an instance x, and a gap of
Ω(n)r between the number of accepting coins of yes-instances and no-instances. Then, the foregoing
emulation (where the chosen cluster is the heaviest one) yields a (r+2-round) public-coin interactive
system proof for S.

1.2 Our contribution

We propose an alternative method for preforming a public-coin emulation of IP. Our method is
similar to the method of Goldwasser and Sipser [8], but differs in the way the chosen cluster of
messages (from which the sampling is preformed) is determined. Whereas in the original emulation
the chosen cluster is determined as the one with the largest number of coins, in our emulation
the chosen cluster is selected probabilistically according to its weight (i.e., the number of good
coins in the cluster). Intuitively, this method gets closer to sampling from the real distribution
of prover-verifier transcripts (see farther discussion in Section 1.3). Furthermore, as explained in
Section 2, while the original method looses a factor of Θ(n) (in the gap between accepting coins of
yes- and no-instances) in each round, the new method only looses a constant factor (in each round).
Consequently, this method requires a smaller initial gap between the number of accepting coins of
yes-instances and no-instances (in order to emulate interactive proofs using public coins).

Theorem 2 (New emulation of IP by AM): Suppose that S has a r = r(|x|) round interactive
proof system for an instance x, and a gap of Br, for some universal constant B > 1, between the
number of accepting coins of yes-instances and no-instances. Then, the new emulation (where the
chosen cluster is selected at random according to its weight) yields a ((r + 2)-round) public coin
interactive proof system for S.

We present the emulation and the proof of Theorem 2 in Section 3.

1Such a gap can be created by (sufficiently many) parallel executions of the original interactive proof systems.
Indeed, this increases the length of messages but not the number of rounds.
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We further show that, for the new emulation, the gap that we use is asymptotically tight.
Namely, when the initial gap is O(Cr) for some constant C > 1, we provide an interactive proof
and a prover strategy that fails the new emulation.

Theorem 3 (Tightness of Theorem 2): For some universal constant C > 1, there exists an inter-
active proof system for a set S that proceeds in r = r(|x|) rounds and has a gap of Ω(Cr) between the
number of accepting coins of yes-instances and no-instances such that emulating this proof system
(as described above) fails to yield an interactive proof system for S.

We provide the proof of Theorem 3 in Section 3.3.

1.3 An alternative perspective

As stated in Section 1.2, the new emulation can be viewed as an attempt to tightly emulate the
original prover-verifier interaction. When choosing a cluster according to its weight, and sampling
a message uniformly from this cluster, we are actually selecting a verifier-message with distribution
that is quite close to the original, where the deviation is due to approximation that underlies
the definition of a cluster (i.e., each cluster contains messages that have approximately, but not
necessarily exactly, the same number of coins supporting them). Furthermore, essentially, even
malicious behavior of the prover can increase the probability that a specific message is chosen in a
specific round by at most a constant factor (as compared to the original interaction).

In contrast, the previous emulation strategy (of Goldwasser and Sipser [8]) selects messages
with a distribution that is very far from the original interaction, even in the case that both parties
are honest. Recall that this emulation always selects messages from the heaviest cluster, and so it
may increase the probability that a message is chosen in a certain round by a factor of Θ(n). This
seems less natural than the emulation we use.

Hence, our contribution is in showing that the natural emulation that emulates the original
interaction more quite tightly works too, and in fact that it works better. In particular, while the
analysis of Goldwasser and Sipser [8] shows that their emulation strategy loses a factor of O(n) in
each round, we show that the new emulation strategy loses a constant factor in each round (and
that such a factor must be lost).

We comment that choosing clusters according to their weight was also employed by Goldreich,
Vadhan, and Wigderson [6], but in their work several such clusters are selected at each round,
which makes the analysis of the protocol easier. We cannot afford doing so.

2 Preliminaries

Let us start by providing a formal definition of an interactive proof system. We use a formulation
in which the completeness and soundness bounds are parameters (rather than fixed constants such
as 2/3 and 1/3).

Definition 4 (Interactive Proof Systems): Let c, s : N → [0, 1]. An interactive proof system for
a set S is a two-party game, between a verifier executing a probabilistic polynomial-time strategy,
denoted V , and a prover executing a (computationally unbounded) strategy satisfying the following
two conditions:

• Completeness with bound c: For every x ∈ S, with probability at least c(|x|), the verifier V
accepts after interacting with the prover P on common input x.
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• Soundness with bound s: For every x /∈ S and every prover strategy P ∗, with probability at
most s(|x|), the verifier V accepts after interacting with P ∗ on common input x.

When c and s are not specified, we mean c ≡ 2/3 and s ≡ 1/3. We denote by IP the class of sets
having interactive proof systems.

A finer definition of interactive proofs refers to the number of prover-verifier communication rounds
(i.e., number of pairs of verifier-message followed by a prover-message). For an integer function r,
the complexity class IP(r) consists of sets having an interactive proof system in which on common
input x, at most r(|x|) rounds of communication are executed between the parties.

An interactive proof system is said to be of the public coin type if the verifier strategy V consists
of sending, in each round, the outcome of all coin tosses it made in that round. That is, the verifier
makes all randomness used to generate its current message public; it keeps no secrets. Given
an arbitrary interactive proof system for S, our goal is to obtain a public coin interactive proof
system for S, while preserving the number of rounds (up to a constant factor). Furthermore, the
public coin system that we construct will emulate the original system in a round-by-round manner,
performing a constant number of rounds per each original round. (The same holds also in the
systems constructed by [8].)

2.1 Accepting coins

In order to provide a precise description of the original and new emulations, we formally define
the set of accepting coins for input x and partial transcript γ. The following definition refers to
any fixed pair of deterministic strategies, (P, V ), where V is provided with an auxiliary (random)
input ρ (which represents the outcomes of coin tosses). When using the following definition in the
rest of this paper, we shall always fix V to be the verifier strategy given to us (where the verifier’s
internal coin tosses are viewed as input to V ) and let P be a fixed optimal strategy that maximizes
the acceptance probability of V .

Definition 5 (accepting coins):

• Let us denote by 〈P, V (ρ)〉(x) the full transcript of the interaction of P and V on input x,
when V uses coins ρ; that is,

〈P, V (ρ)〉(x) = (α1, β1, . . . , αr, βr, (σ, ρ)) (1)

where σ = V (x, ρ, β1, . . . , βr) ∈ {0, 1} is V ’s final verdict and for every i = 1, . . . , r it holds
that αi = V (x, ρ, β1, . . . , βi−1) and βi = P (x, α1, . . . , αi) are the messages exchanged in round
i.

• For any partial transcript ending with a P -message, γ = (α1, β1, . . . , αi−1, βi−1), we denote
by ACCx(γ) the set of coin sequences that are consistent with the partial transcript γ and
lead V to accept x when interacting with P . Formally

ACCx(γ) =
{

ρ ∈ {0, 1}n : ∃γ′ ∈ {0, 1}poly(|x|) s.t 〈P, V (ρ)〉(x) =
(

γ, γ′, (1, ρ)
)

}

(2)

When x and γ are clear from the context we refer to ACCx(γ) as the set of accepting coins.
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Note that we assume, without loss of generality, that the verifier reveals its private coins ρ on the
last round, which also includes its output (or verdict) bit (denoted by σ in Eq. (1)). In Eq. (2), we
mandated an accepting verdict. Also note that n = |ρ| serves as our main parameter (rather than
|x|). Indeed n ≤ poly(|x|), and we may also assume (w.l.o.g.) that n ≥ |x|.

2.2 The emulation of Goldwasser and Sipser [8]

In [8], providing the first proof of IP = AM, the public coin emulation was preformed by clustering
the possible messages that the verifier may send (at each round) into n clusters according to the
approximate number of accepting coins that they have; that is, according to |ACCx(γ)|. Specifically,
in [8], the ith cluster contained messages with approximately 2i accepting coins, but (mainly for
clarity) we prefer to use a generic (constant) basis b > 1 (while noting that a choice of b = 2 is

quite good). Thus, we shall use n′ def
= n/ log2 b = Θ(n) clusters (rather than n clusters). Thus, for

the emulation of round r′ with partial transcript γ we denote these clusters by C0, . . . , Cn′ , where
Ci is defined as

Ci =
{

α : bi ≤ |ACCx(γα)| < bi+1
}

. (3)

Namely, Ci is the set of messages α that the verifier can send (on round r′) that have approximately
bi coins that are consistent with the transcript γα, and lead the verifier to accept.

The emulation of [8] proceeds as follows. Denoting by c the completeness parameter of the
interactive proof system, the prover’s initial claim is that there are at least c · 2n accepting coins
for x (i.e., that |ACCx(∅)| ≥ c · 2n). The prover supplies the verifier with the sizes of the clusters
|C0| , . . . , |Cn′ |, and the verifier checks that the number of accepting coins approximately sums up

to the claim; that is, that
∑n′

i=0 |Ci| · b
i+1 > c · 2n. It then chooses the cluster Ci with the largest

number of accepting coins; that is, i is chosen so as to maximize bi · |Ci|. In order to validate that
the claim is true, and to sample a message α from Ci, the prover and the verifier run a (constant-
round) sampling protocol which utilizes only public coins. Next, the prover supplies its answer β
to the sampled message α, and the parties proceed to the next round, where the prover claims that
there are at least 2i accepting coins that are consistent with the interaction αβ preformed so far.
After the last round the complete prover-verifier transcript is determined, which also contains the
verifier’s internal coins tosses. The verifier then checks that the entire transcript is consistent and
accepting.

We note that throughout the emulation the verifier does not “challenge” the prover on the
number of accepting coins in the clusters other than the selected cluster Ci, and the prover can
use this to overstate the total number of accepting coins. For example, even if all of the accepting
coins lie in cluster Ci, the prover can claim that there are |Ci| · bi − 1 accepting coins in each
other cluster, and get away with this cheating, which allows it to overstate the total number of
accepting coins (almost) by a factor of n′. In this way (i.e., by such an unchecked overstating),
the gap between the actual number of accepting coins that are consistent with the interaction and
the prover’s claim regarding this number can be cut by a factor of Θ(n) in each round. For this
reason, the emulation requires an initial gap of Θ(n)r between the accepting coins in yes-instances
and no-instances, where r is the number of rounds of the original interactive proof.
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3 The new emulation

As mentioned in Section 2.2, an essential cause for the large initial gap required in the emulation
of [8] is the deterministic way in which a cluster of messages is chosen by the verifier. Therefore,
a promising approach is to have the verifier choose a cluster with probability proportional to the
number of accepting coins that the prover claims are in that cluster. This follows the intuition that
we would like to challenge the prover by choosing “heavy” clusters, which contain many accepting
coins, with higher probability than “lighter” clusters. The same intuition also underlies [8], but we
apply it in a more smooth fashion.

We note that the prover still has a potential of fooling the verifier by supplying a message that
does not belong to Ci but rather to some other cluster, when Ci is chosen. Nevertheless, we show
that even an untrusted prover will not be able to fool the verifier too much.

3.1 The actual protocols

The original r-round interaction (P, V ) is “emulated” in r iterations (each consisting of a constant
number of message exchanges). The ith iteration starts with a partial prover-verifier interaction
γi−1 = (α1β1 . . . αi−1βi−1) and a claimed bound Mi−1 regarding the size of ACCx(γi−1). In the
first iteration γ0 is the empty sequence and M0 = c · 2n, where c > 0 is the completeness parameter
of the interactive proof system. The ith iteration proceeds as follows.

Construction 6 (the ith iteration): On input γi−1 and Mi−1.

1. Providing the clusters’ sizes: The prover computes the number of messages in each cluster,
and sends the sizes of the clusters N0, . . . , Nn′ to the verifier, where Nj is the number of
messages in cluster Cj as defined in Eq. (3).

Recall that each message in cluster Cj has between bj and bj+1 consistent and accepting coins.

2. Verifier’s initial checks: If
∑n′

j=0 Nj · b
j+1 < Mi−1, then the verifier aborts and rejects.

3. Verifier’s selection of of a cluster: The verifier samples a cluster j according to the probability
distribution J that assigns j ∈ [n] probability proportional to bj · Nj. That is,

Pr [J = j] =
Nj · b

j

∑n′

ℓ=0 Nℓ · bℓ
(4)

4. Sampling the selected cluster: The verifier and the prover run a sampling protocol (as defined
below) to obtain a message αi which the prover claims is in cluster Cj. The protocol is invokes
with completeness parameter ǫ = 1

3r and soundness parameter δ = b. Specifically, the parties
use Construction 7.

If no output is provided by the sampling protocol, then the verifier rejects.

5. Completing the current iteration: Next, the prover determines a message βi such that ACCx(γi−1, αi, βi) =
ACCx(γi−1, αi); that is, the prover selects a message that maximized the number of accepting
coins, and sends it to the verifier.

Toward the next iteration, the parties set Mi = 2j and γi = γi−1αiβi.
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By our conventions, the last message the verifier sends contains the outcomes ρ ∈ {0, 1}n of the n
coins tossed by the verifier. Thus, ρ can be easily extracted from γr = (α1, β1, . . . , αr, βr, (1, ρ)).
After the last iteration the verifier performs final checks and accepts if all of them hold:

(i) Checking that ρ is accepting for γr; that is, V (x, ρ, β1, . . . , βr) = 1, and for every i = 1, . . . , r
it holds that αi = V (x, ρ, β1, . . . , βi−1).

Note that the verifier needs γr in order to verify these conditions, so it can only be done after
the last iteration. Also note that if these checks pass then |ACCx (γr)| = 1.

(ii) Checking that Mr = 1; that is, checking that the prover’s last claim was that there is a single
sequence of coin tosses (rather than more than one) that is consistent with the complete
interaction γr, which includes ρ.

The sampling protocol used. Our protocol utilizes a constant-round, public-coin sampling
protocol for sampling in arbitrary sets. The verifier is assisted by a computationally unbounded
prover that the verifier does not trust. The prover provides the verifier with an integer N , which
is supposed to be a lower bound on the size of the set (in our case the set of messages) denoted
S ⊆ {0, 1}ℓ. (We assume for simplicity that the length of the verifier’s messages is exactly ℓ =
poly (|x|) (which can be justified by padding the messages to be of size ℓ).) The sampling protocol
with parameters ǫ > 0 and δ > 1, satisfies the following two properties:

Completeness (w.r.t ǫ): If the lower bound on |S| is valid (i.e. |S| ≥ N), and the prover is honest,
then with probability 1 − ǫ, the verifier will output an element of S.

Soundness (w.r.t δ): For every T such that |T | < N , no matter how the prover plays, the probability

that verifier will output an element of T is at most δ · |T |
N .

Note that the set T in the soundness condition stands for any set that the provere would like to
hit; for example, T may be a small subset of S or S itself (when the lower bound claimed by the
prover is wrong).

Using any “effective” ensemble of hash functions
{

Ht
ℓ

}

ℓ>t
such that Ht

ℓ is family of pairwise-

independent2 hash functions mapping {0, 1}ℓ to {0, 1}t, the sampling protocol proceeds as follows.

Construction 7 (the sampling protocol): Using parameters ǫ > 0 and δ > 1, on input ℓ and N ,
the parties proceed as follows.

(i) For t = ⌊log2(ǫN⌋ − ⌈2 log2(δ/(δ − 1))⌉, the verifier uniformly selects and sends the prover a
random hash function h ∈ Ht

ℓ, and a random element from the image y ∈ {0, 1}t.

(Recall that h : {0, 1}ℓ → {0, 1}t.)

(ii) The prover is supposed to answer with K
def
= ⌊2−tN/δ⌋ elements of S that are preimages of y

under h; that is, with x1, ..., xK ∈ S such that h (xi) = y for every i ∈ [K].

2A set H of functions from D to R is called pairwise-independent if for every x 6= y in D and u, v ∈ R it holds that
Prh∈H [h(x) = u & h(y) = v] = 1/|R|2. Note that such “effective” sets are known; for example, for D = {0, 1}ℓ and
R = {0, 1}t, the set of all affine transformation will do (e.g., hA,b(x) = Ax + b, where A is a t-by-ℓ Boolean matrix
and b (resp., x) is a t-dimensional (resp., ℓ-dimensional) Boolean vector). By effective we mean that it is easy to
select functions in the set and easy to evaluate them on a given input. For more details, see [5, Apdx. D.2].
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(iii) The verifier checks that the K elements are indeed preimages of y under h. Next, the verifier
selects i uniformly in [K], and outputs xi; that is, it outputs one of these K elements selected
uniformly using public randomness.

If less than K elements are provided, or some of the elements are not preimages, then the verifier
has no output.

Assuming that the ensemble of hashing function is efficiently sampleable and allows for efficient
evaluation, the computational complexity of the protocol for the verifier is polynomial in ℓ/ǫ. This
is because K = 2−tN/δ = Oδ(1/ǫ), and the verifier’s actions can be implemented in poly(ℓ)·K-time.

Lemma 8 (analysis of the sampling protocol): For any constant δ > 1 and all sufficiently small
ǫ > 0, the protocol of Construction 7 satisfies the foregoing completeness and soundness conditions.

Proof: We start with the completeness condition. The family of pairwise independent hash
functions satisfies an “almost uniform cover” condition (cf. [5, Lem. D.4]); that is, for every S ⊆
{0, 1}ℓ and every y ∈ {0, 1}t, for all but at most a 2t

(1−(1/δ))2 ·|S|
fraction of h ∈ Ht

ℓ it holds that

|{x ∈ S : h(x) = y}| >
|S|

δ · 2t

(since the expected size of the set is |S|/2t and δ > 1). On the other hand, using |S| ≥ N , we have
K = ⌊2−tN/δ⌋ ≤ 2−t|S|/δ. Hence, given that the verifier selects h ∈ Ht

ℓ uniformly at random, the
prover will fail in supplying K preimages with probability of at most

2t

(1 − (1/δ))2 · |S|
≤

δ2 · 2t

(δ − 1)2 · N
≤ ǫ

since t ≤ log2(ǫN) − 2 log2(δ/(δ − 1)).
Turning to the soundness condition, we consider an arbitrary set T ⊆ {0, 1}ℓ. Let Y be a random

variable denoting the “cell” that the verifier chooses (i.e., the set h−1(y)). For every y ∈ {0, 1}t,

denote by Ty the set of preimages of y under h that are in T ; that is, Ty
def
= {α ∈ T : h (α) = y}.

Then, it holds that
∑

y∈{0,1}t |Ty| = |T |. In Step (ii), the prover provides K preimages (of y under

h), some of them may be in T , and the verifier selects one of them, which we denote by z. Hence,
for y with |Ty| preimages in T , the probability that the sampled element resides in T is at most
|Ty|
K (it may be less if the the prover does not provide all the elements in Ty, for example when
|Ty| > K, or if the prover just acts “foolishly”). Hence, the probability that the output z is in T is
at most

Pr[z ∈ T ] =
∑

y∈{0,1}t

Pr[Y = y ∧ z ∈ Ty]

=
∑

y∈{0,1}t

Pr[Y = y] ·Pr[z ∈ Ty]

≤
∑

y∈{0,1}t

1

2t
·
|Ty|

K
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=
|T |

K · 2t

≤
|T |

((2−t · N/δ) − 1) · 2t

= δ ·
|T |

N − δ · 2t

where the second inequality uses K = ⌊2−tN/δ⌋. Using N > 2t/ǫ, we get δ · |T |
N−δ·2t < δ

1−δǫ ·
|T |
N ,

which means that the claim holds for soundness parameter δ
1−δǫ . (The original claim follows by

replacing δ with δ/(1 + δǫ), which is approximately δ in the typical cases where ǫ ≪ 1/δ.)

The round complexity of the emulation. In the Construction 6, the prover sends messages in
Steps (1), (4) and (5), while the verifier sends messages in Steps (3) and (4), where Step (4) invokes
the three-message protocol of Construction 7 (in which the verifier sends messages in Steps (i)
and (iii), and the prover sends a message in Step (ii)). Denoting these messages by the sender’s
initial and the step number, we get the sequence P1, V3, V4i, P4ii, V4iii, P5, which means
that we have two and a half rounds.

It is possible to avoid this blowup in the number of rounds by combining the message sent by
the prover in Step (ii) of the sampling protocol with its Step (5) message and the Step (1) message
of the next iteration in one message. This is possible since the prover can provide the messages that
it would have sent for each of the K possible messages of the verifier in Step (iii) of the sampling
protocol. Details follow.

Recall that in Step (ii) of the sampling protocol the prover sends K messages allegedly belonging
to Cj, and the verifier selects and sends one of these messages, denoted αi, in Step (iii). The idea is
to have the prover provide its response (i.e., βi) to each of these possible αi as well as the sizes of the
clusters for the next round. All these messages are sent in one new message that the prover sends
in a Step (ii) of the modified protocol. So the sequence of messages has the form V3+V4i, P4ii,

V4iii, where the possible P5-messages of the current iteration as well as the possible P1-messages of
the next iteration are included in the P4ii-message. Lastly, the V4iii-message of the i-th iteration
is combined with the V3+V4i-message of the i + 1st iteration. Hence, an r-round interactive proof
system is emulated by an (r + 1)-rounds public-coin interactive proof system.

3.2 Analysis of the emulation

We introduce some notation and terminology that will be useful for the analysis of the proposed
emulation. Fixing a generic input x and letting n = n(|x|), we consider an interactive proof system
with completeness and soundness parameters c = c(|x|) and s = s(|x|), respectively. Hence if x is
yes-instance (resp., a no-intance), then it has at least c · 2n accepting coins (resp., at most s · 2n

accepting coins). Put differently, there is a gap of g0
def
= c

s between the number of accepting coins of
yes-instances and no-instances. In the each iteration, the prover’s goal is to lower the gap regarding
the number of accepting coins, where we refer to the following definition.

Definition 9 (gaps): The gap on the ith iteration, denoted gi, is the ratio between the claimed
bound regarding to the number of accepting coins on the ith round (i.e. Mi) and the number of
accepting coins consistent with the partial transcript γi (i.e., |ACCx(γi)|). In case |ACCx (γi)| = 0
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we set gi = ∞. That is,

gi =

{

Mi

|ACCx(γi)|
if |ACCx (γi)| > 0

∞ otherwise
(5)

(Indeed, we may assume, without loss of generality that Mi > 0, since the verifier rejects whenever
Mi = 0 for some i.) Note that if the prover claims that some no-instance is a yes-instance, then at
the beginning of the emulation M0 ≥ c·2n whereas |ACCx(γ0)| ≤ s·2n, and so g0 ≥ c

s . If the verifier
accepts the complete emulation, then (in particular) the final checks pass and Mr = |ACCx(γr)| = 1
holds, and so gr = 1.

3.2.1 The effect of a single iteration

Recall that we have fixed an arbitrary interactive proof system (P, V ), and an input x to it. We
consider the public coin emulation of (P, V ) defined in Section 3.1, and fix an interaction index
i ∈ [r] as well as the transcript of the first i−1 iterations. Hence, the values γi−1, gi−1 and Mi−1 are
fixed. Denote by Gi the random variable that represents gi at the end of the ith iteration, which is
a function of the public randomness of the emulation protocol (of Construction 6 and the sampling
protocol of Construction 7). Towards proving Theorem 2, we analyze the change in the gap on the
ith iteration, and show that for every t ∈ N the gap Gi is reduced by a factor of b−t with probability
at most O(b−t). It is convenient to prove this claim by letting j ∈ N be such that gi−1 ∈ (bj−1, bj].
Hence if Gi ∈ (bj−t−1, bj−t], this implies that the gap changed by a factor of approximately b−t.
The following lemma shows the probability that the gap changed by some factor F can be bounded
in a way that is independent of the previous gap, and depends only on the factor F .

Lemma 10 (Main Lemma): Suppose that gi−1 ∈ (bj−1, bj ] and t < j. Then,

Pr[Gi ∈ (bj−t−1, bj−t]] ≤ b−t+3.

That is, the probability that the gap Gi got reduced by a factor of b−t is at most b−t+4 = O(b−t).

Proof: Recall that Gi is defined as the random variable representing the gap gi, which is the ratio
between the number of accepting coins that the prover claimns to be consistent with the emulation
and the actual number of such accepting coins. The gap Gi is determined by the cluster the verifier
chooses in Step (3), and by the cluster that the message sampled in Step (4) resides in. We are
interested in calculating the probability that Gi ∈ (2j−t−1, 2j−t] for j > t. We can write this event
as the union of disjoint events regarding to the cluster Ck that the verifier chooses in Step (3) of
the emulation.

Pr
[

Gi ∈ (bj−t−1, bj−t]
]

=
n′

∑

k=0

Pr
[

Ck is chosen ∧ Gi ∈ (bj−t−1, bj−t]
]

(6)

Assume that cluster Ck is chosen by the verifier, which implies that Mi = bk. Recalling that
Gi = Mi

|ACCx(γi−1αi)|
, it holds that if Gi ∈ (bj−t−1, bj−t], then

bj−t−1 <
bk

|ACCx(γi−1αi)|
≤ bj−t

11



or equivalently
bk−(j−t) ≤ |ACCx(γi−1αi)| < bk−(j−t)+1.

In other words, Gi ∈ (bj−t−1, bj−t] if and only if the sampled message αi resides in Ck−(j−t) (for
k ≥ j − t). For each k ∈ {0, . . . , n}, we introduce the following Boolean indicator variables:

Yk: The event that cluster Ck is chosen by the verifier in Step (3).

Zk: The event that the sampled message in Step (4) resides in cluster Ck

Using the aforementioned observation and the new notations introduced, we can write Eq. (6) as

Pr[Gi ∈ (bj−t−1, bj−t]] =

n′

∑

k=j−t

Pr[Yk ∧ Zk−(j−t)]. (7)

Next, we calculate the probabilities that the events in Eq. (7) occur. We first note that the verifier
chooses a cluster according to the distribution in Eq. (4), hence

Pr [Yk] =
Nk · bk

∑n′

ℓ=0 Nℓ · bℓ
(8)

Assume that cluster Ck was chosen by the verifier, which the prover claims is of size Nk. We can
use the soundness property of the sampling protocol (with T = Cℓ and N = Nk) to upper-bound
the probability that the sampled message resides in Cℓ.

Pr[Zℓ |Yk] ≤
b · |Cℓ|

Nk
(9)

(since the soundness parameter δ was set to b). Combining Equations (8) and (9), we get

Pr[Yk ∧ Zk−(j−t)] = Pr[Yk] · Pr[Zk−(j−t) |Yk]

≤
Nk · bk

∑n′

ℓ=0 Nℓ · bℓ
·
b · |Ck−(j−t)|

Nk

=
bk+1 · |Ck−(j−t)|

∑n′

ℓ=0 Nℓ · bℓ

=
bj−t+1 · bk−(j−t) · |Ck−(j−t)|

∑n′

ℓ=0 Nℓ · bℓ
(10)

Note that this quantity does not depend on Nk, which is the purported size of the cluster Ck as
claimed by the prover. Moreover, Eq. (10) is proportional to the number of coins in the cluster
Ck−(j−t), which is approximately bk−(j−t) ·

∣

∣Ck−(j−t)

∣

∣. Hence, plugging in the quantity from Eq. (10)
in Eq. (7), we get

Pr[Gi ∈ (bj−t−1, bj−t]] ≤
n′

∑

k=j−t

bj−t+1 · bk−(j−t) · |Ck−(j−t)|
∑n′

ℓ=0 Nℓ · bℓ
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=
bj−t+1

∑n′

ℓ=0 Nℓ · bℓ
·

n′

∑

k=j−t

|Ck−(j−t)| · b
k−(j−t)

=
bj−t+1

∑n′

ℓ=0 Nℓ · bℓ
·

n′−(j−t)
∑

ℓ=0

|Cℓ| · b
ℓ

Thus,

Pr[Gi ∈ (bj−t−1, bj−t]] ≤
bj−t+1

∑n′

ℓ=0 Nℓ · bℓ
·

n′

∑

ℓ=0

|Cℓ| · b
ℓ. (11)

The accepting coins, ACCx (γi−1), are partitioned between the clusters C0, . . . , Cn′ . Furthermore,
the number of accepting coins in cluster Cℓ is at least bℓ · |Cℓ|. Thus,

n′

∑

ℓ=0

|Cℓ| · b
ℓ ≤ |ACCx(γi−1)| . (12)

Recall that passing Step (2) of the emulation protocol mandates that
∑n′

ℓ=0 Nℓ ·b
ℓ+1 ≥ Mi−1. Hence

n′

∑

ℓ=0

Nℓ · b
ℓ ≥

1

b
· Mi (13)

Using Eq. (12) and Eq. (13), we can upper-bound Eq. (11) as follows

Pr[Gi ∈ (bj−t−1, bj−t]] ≤
bj−t+1

1
b · Mi

· |ACCx(γi−1)|

=
bj−t+2 · |ACCx(γi−1)|

Mi

=
bj−t+2

gi−1

where the last equality is due to Mi−1

ACCx(γi−1) = gi−1. Lastly, recalling that gi−1 > bj−1, we get

Pr[Gi ∈ (bj−t−1, bj−t]] ≤
bj−t+2

bj−1

= b−t+3

which completes the proof.

3.2.2 Proof of Theorem 2

We shall show that the emulation protocol of Construction 6 (combined with the sampling protocol
of Construction 7) yields a public-coin interactive proof system for any set having r rounds and a
gap of at least Br, where B is some universal constant. Recall that when these two constructions
are combined as detailed at the end of Section 3.1, the resulting public-coin protocol has r + 1
rounds. The completeness feature of this protocol is quite straightforward (but will be spelled out
next). The soundness feature will be proven later, while relying on Lemma 10.
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Completeness. We claim that if x is a yes-instance, and the prover is honest, then the verifier
accepts with probability greater than 2

3 . We first show that if the sampling goes well, namely the
message sampled reside in the chosen cluster in all of the iterations, then the verifier accepts. We
then show that the sampling goes well with probability greater than 2

3 .
We prove that if the sampling goes well, then in each iteration i the verifier does not abort and

|ACCx(γi)| ≥ Mi. We prove this by induction on the iteration index, while noting that it holds for
i = 0. By the induction hypotheses, we assume that the verifier does not abort up to iteration i ≥ 0
of the emulation. For iteration i + 1, when the prover sets Nℓ = |Cℓ| as directed by the emulation
protocol, the verifier doesn’t abort in the Step (2) since the prover is honest and

n′

∑

ℓ=0

Nℓ · b
ℓ+1 =

n′

∑

ℓ=0

|Cℓ| · b
ℓ+1 > |ACCx(γi)| ≥ Mi

Now, assume the verifier chooses cluster Ck. When a message αi+1 from the chosen cluster Ck is
sampled, the prover supplies its response βi+1 to the message αi+1 so that |ACCx(γi, αi+1, βi+1)| ≥
bk = Mi+1. In particular, after the last iteration, γr consists of a full transcript that is consistent
with verifier’s coins ρ and |ACCx(γr)| = Mr = 1, so the verifier accepts.

It is left to show that, with probability greater than 2
3 , the sampled messages reside in the

chosen cluster in all of the iterations. Recall that we run the sampling protocol with completeness
parameter 1

3r . Since the prover and the verifier follow the sampling protocol, by the properties of
the sampling protocol, on each iteration the sampled message resides in the chosen cluster with
probability at least 1 − 1

3r . Therefore, with probability greater than 2
3 , elements from the chosen

clusters are sampled in all the iterations.

Soundness. We show that if x is a no-instance, then for any prover strategy the verifier accepts
with probability at most 1

3 . If the verifier accepts after a complete transcript γr is sampled, then
Mr = |ACCx (γr)| = 1 must hold; namely, there is one sequence of coin tosses consist with the
interaction, and this is what the prover claims on the last round. In this case, the “gap” after the
last round is 1 (i.e. gr = 1). Therefore, in order to upper-bound the probability the verifier accepts,
it suffices to upper-bound the probability that the gap after the last round, gr, is smaller than or
equal to 1. As in the proof of Lemma 10, for i ∈ {0, . . . , r}, we denote by Gi the random variable

that represent the gap after the ith iteration. We set G0
def
= g0, where g0 is the initial gap between

the number of accepting coins for yes-instances and no-instances. Hence, it is enough to show that
if g0 = Br, then Pr[Gr ≤ 1] < 1

3 , where B is a constant that will be determined later.
Intuitively, we have a randomized process that starts at a large value (i.e., Br), and takes few

(i.e., r) steps such that each may reduce the value by a facor of F with probability O(1/F ). (The
latter probability bound is what Lemma 10 essentially says.) In this case, it is quite unlikely that
this process will end with a small value (i.e., the value 1). It may be easier to see this when
taking a log scale; that is, we take r steps such that in each step we gain t units with probability
that is exponentially vanishing with t. So the expected gain in such a process is O(r), and with
probability at least 2/3 we are not going to exceed thrice this expectation. The following detailed
analysis merely amounts to this.

To simplify the analysis, we present a “(lower) bounding” process G′
0, G

′
1, ..., G

′
r such that

G′
0 = b⌊logb G0⌋ and G′

i = min(G′
i−1, b

⌊logb(max(Gi−1,1))⌋) for every i ∈ [r], and focus at upper-
bounding Pr[G′

r ≤ 1]. Using Lemma 10, we infer that for every t < j it holds that Pr[G′
i =
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bj−t−1|G′
i−1 = bj−1] ≤ b−t+3, which yields

Pr[G′
i = b−t · G′

i−1] ≤ b−t+3. (14)

Next, we let Li = logb(G
′
i/G

′
i−1), for i ∈ [r], and assuming (w.l.o.g.) that B is a power of b, we get

Pr[Gr ≤1] ≤ Pr[G′
0/G

′
r =1] (15)

≤ Pr





∑

i∈[r]

Li ≥ r · logb B



 . (16)

We shall upper-bound the latter probability by lower-bounding the expectaion of
∑

i∈[r] Li. Using
Eq. (14), we get

E





∑

i∈[r]

Li



 ≤
∑

i∈[r]

∑

t≥1

t · Pr[Li = t] (17)

≤
∑

i∈[r]



3 +
∑

t≥4

(t − 3) · Pr[Li = t]





≤ r ·



3 +
∑

t≥4

(t − 3) · b−t+3





= r ·

(

3 +
b

(b − 1)2

)

(18)

where the last equality uses
∑

t≥1 t · b−t = b/(b − 1)2. Fixing the constant B such that logb B >

3 · (3 + (b/(b − 1)2) and combing Eq. (15-16) and Eq. (17-18), we get

Pr[Gr ≤1] ≤ Pr





∑

i∈[r]

Li ≥ r · logb B





≤ Pr





∑

i∈[r]

Li > 3 ·E





∑

i∈[r]

Li









which is smaller than 1/3. This establishes the soundness condition, and the theorem follows.

On the choice of the base parameter b. Recall that we essentially set B = b(9(b−1)2+3b)/(b−1)2 ,
where Br is the initial gap required by our emulation. Wishing to minimize B calls for minimizing

f(b) = (9b2−15b+9) ln b
(b−1)2

. It turns out that the optimun value is obtained at b ≈ 1.79521, and its value

is ≈ 10.2494. This yields B ≈ 28266, which is not that far from the value B = 37768 obtained at
b = 2.

15



3.3 Lower bounds

We first observe that for any base parameter b > 1, the gap may be reduced by a factor of b in
each iteration (of the emulation protocol) due to the mere fact that each element in each Cj is
counted as if it has a weight of bj+1 whereas its actual weight may be merely bj . Thus, if b is a
constant, then Theorem 3 follows (with C = b). So we should deal with the case of b = 1 + o(1),
or, equivalently, establish a bound that is independent of b. Hence, we may assume that b ∈ (1, 2].

The key observation is that the prover can easily reduce the gap when neighboring clusters have
similar weight. That is, suppose that |Cj | · b

j = |Cj+1| · b
j+1 (and that all messages in Ck have

weight exactly bk). Further suppose that the prover claims that Nj+t = |Cj | and Nj+t+1 = |Cj+1|,
which supports a gap of bt (since Nk is supposed to equal |Ck|). Now, the verifier will select the
index j + t with probability half, but the prover can try to let it sample from a set that contains
as many elements of Cj+1 as possible (and use elements of Cj only to fill-up the rest). Indeed, the
prover should provided Nt+j = |Cj | elements, whereas |Cj+1| = |Cj |/b. Still, when the prover does
so, the verifier selects an element of |Cj+1| with probability (approximately) 1/b, and when this

happens the parties continue to the next iteration with a gap of bt+j

bj+1 = bt−1 rather than bt. These
considerations establish the fact that with probability at least 1/2b, the prover can decrease the gap
by a factor of b. In light of the first paragraph (which established a decrease of b with certainty),
this alternative argument seems quite useless, but the point is that the argument can be extended
to clusters that are a distance k apart.3 Specifically:

Claim 11 (unavoidable gap decrease): For any k ≥ 1, with probability 1/2bk, the prover can
decrease the gap by a factor of bk.

Proof: We mimic the foregoing argument, but use |Cj | · b
j = |Cj+k| · b

j+k instead. Suppose that
the prover claims that Nj+t = |Cj| and Nj+t+k = |Cj+k|, which supports a gap of bt. Now, the
verifier will select the index j + t with probability half, and the prover can try to let it sample from
a set that contains as many elements of Cj+k as possible. When the prover does so, the verifier
selects an element of |Cj+k| with probability (approximately) 1/bk, and when this happens the

parties continue to the next iteration with a gap of bt+j

bj+k = bt−k.

Proof of Theorem 3. For c > 1 to be determined, we consider two cases. If the base b is greater
than c, then Theorem 3 follows with C = b > c (by the first argument in this section). Otherwise,
we just choose k such that bk ∈ [e, c · e], where e is the natural logarithm base, and apply Claim 11.
It follows that, in each iteration, with probability 1/2bk > 1/2ec, the prover can decrease the gap
by a factor of at least e. Hence, Theorem 3 follows with C = e1/2ec−o(1), since (for sufficiently large
r), with high probability, the prover will be successful in at least 1/ec− o(1) of the iterations. The
expression min(c, e1/2ec) is optimized at c ≈ 1.17, and so Theorem 3 holds for C = 7/6.
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