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Abstract

A tolerant tester with one-sided error for a property is a tester
that accepts every input that is close to the property, with probability
1, and rejects every input that is far from the property, with positive
probability. In this note we show that such testers require a linear
number of queries.

This work appeared as TR16-032 of ECCC. The current revision is minimal.

1 Introduction

This note deals with property testing, and assumes familiarity with the basic
notions involved; for an expository text, see, e.g., [1]. We will specifically be
interested in tolerant testers, introduced by Parnas, Ron, and Rubinfeld [2].
These are testers that distinguish, with high probability, between inputs
that are close to the property, and inputs that are far from the property.

We prove that it is impossible to test a property tolerantly with both a
sub-linear number of queries and one-sided error. Specifically, for a property
Π and two constants ǫ > 0 and ǫ′ < ǫ, an ǫ′-tolerant ǫ-tester with one-sided

error for Π accepts inputs that are ǫ′-close to Π, with probability 1, and rejects
inputs that are ǫ-far from Π, with positive probability. We show that for
essentially any Π, and any pair of constants ǫ > 0 and ǫ′ < ǫ, any ǫ′-tolerant
ǫ-tester with one-sided error for Π requires a linear number of queries. The
proof is based on a simple claim that is implicit in the proofs of two similar
previous results (see [3, Thm 1.5 and Prop. 3.3]). In Section 4 we reproduce
the proofs of these two results, as corollaries of the said claim.
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2 Preliminaries

We will be interested in properties of Boolean strings. The distance be-
tween two n-bit strings, denoted by δ, is the relative Hamming distance (i.e.,

δ(x, y) = |{i∈[n]:xi 6=yi}|
n

). The distance between a string x ∈ {0, 1}n and a
non-empty set S ⊆ {0, 1}n is
mins∈S δ(x, s). We say that a string is ǫ-close to a set (resp., ǫ-far from
a set), if its distance from the set is at most ǫ (resp., at least ǫ). In the
following definition we refer to algorithms that get oracle access to a string
x ∈ {0, 1}n; by this we mean that for any i ∈ [n], the algorithm can query
for the value of the ith bit of x.

Definition 1 (tolerant testers with one-sided error). Let Πn ⊆ {0, 1}n, and

let ǫ > 0 and ǫ′ < ǫ. An ǫ′-tolerant ǫ-tester with one-sided error for Πn is a

probabilistic algorithm T that satisfies the following conditions:

1. For every x that is ǫ′-close to Πn it holds that Pr[T x(1n) = 1] = 1.

2. For every x that is ǫ-far from Πn it holds that Pr[T x(1n) = 0] > 0.

Note that in Condition (2) of Definition 1 we only require rejection of
“far” inputs with positive probability, rather than with high probability.
Indeed, the lower bound holds even for this relaxed definition.

3 The new result

The following claim is implicit in the proof of [3, Claim 3.3.1].

Claim 2. Let n ∈ N, and let S ⊆ {0, 1}n. Assume that there exists a

probabilistic algorithm A that queries any input string in q locations, and

satisfies the following conditions:

• For every s ∈ S it holds that A accepts s, with probability 1.

• There exists w /∈ S such that A rejects w, with positive probability.

Then, every x ∈ {0, 1}n is (q/n)-close to S = {0, 1}n \ S.

Proof. Let r be random coins such that when A queries w with coins r it
holds that A rejects w. Denote by (i1, ..., iq) the corresponding q locations
in w that A queries, given coins r. Now, let x ∈ {0, 1}n. Let x′ be the
string obtained by modifying the q locations (i1, ..., iq) in x to the values
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(wi1 , ..., wiq ). Observe that when A queries x′ with coins r, it queries loca-
tions (i1, ..., iq), sees the values (wi1 , ..., wiq ), and thus rejects x′. Hence, it
cannot be that x′ ∈ S (otherwise A would have to accept x′ with probability
1). It follows that δ(x, S) ≤ δ(x, x′) = q/n.

Note that Claim 2 also holds if we switch the roles of “accept” and
“reject” in it (i.e., if we assume that A rejects every s ∈ S with probability
1, and accepts some w ∈ S with positive probability); we will use this fact in
Section 4. Our lower bound on tolerant testers with one-sided error follows
easily from Claim 2:

Theorem 3 (tolerant testing with one-sided error). Let Πn ⊆ {0, 1}n, and

let ǫ > 0. Assume that there exists p ∈ Πn and z ∈ {0, 1}n such that

δ(z,Πn) ≥ ǫ. Then, for every ǫ′ < ǫ, every ǫ′-tolerant ǫ-tester with one-

sided error for Π uses more than ǫ′ · n queries.

Proof. For ǫ′ < ǫ, let T be an ǫ′-tolerant ǫ-tester with one-sided error for
Πn, and denote the query complexity of T by q = q(n). Let S be the
set of strings that are ǫ′-close to Πn, and let z be such that δ(z,Πn) ≥ ǫ.
Note that T accepts every s ∈ S, with probability 1, and rejects z, with
positive probability. Invoking Claim 2 with the tester T , with the set S,
and with w = z, we deduce that every x ∈ {0, 1}n is (q/n)-close to being
at distance more than ǫ′ from Πn (i.e., x is (q/n)-close to S). This applies
in particular to the string p ∈ Πn. However, the distance of p from any
string y ∈ S is more than ǫ′, because ǫ′ < δ(y,Πn) ≤ δ(y, p). It follows that
q/n ≥ δ(p, S) > ǫ′.

Note that the two requirements in Theorem 3 (about the existence of p
and of z) only exclude “degenerate” cases: If either of the two requirements
does not hold, then the testing problem is trivial to begin with.

4 Previous results as corollaries of Claim 2

As mentioned in Section 1, Claim 2 is implicit in the proofs of two similar
results, which we now reproduce.

4.1 Testers for dual problems with one-sided error

Dual problems were introduced in [3], and involve the testing of properties
of the form “all inputs that are far from the set” (e.g., testing the property
of graphs that are far from being connected). Specifically, a tester for the
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dual problem of a set Π accepts, with high probability, every input that is
far from Π, and rejects, with high probability, every input that is far from
being so; that is, it rejects every input that is far from the set of inputs that
are far from Π.

While dual testing problems turn out to be very interesting in general,
solving dual problems with one-sided error (i.e., accepting inputs that are
far from Π with probability 1) requires a linear number of queries. Let us
formally state and prove this.

Definition 4 (testers with one-sided error for dual problems). Let Πn ⊆
{0, 1}n, and let ǫ > 0 and ǫ′ ≤ ǫ. An ǫ′-tester with one-sided error for the

ǫ-dual problem of Πn is a probabilistic algorithm T that satisfies the following

conditions:

1. For every x that is ǫ-far from Πn it holds that Pr[T x(1n) = 1] = 1.

2. For every x that is ǫ′-far from the set of strings that are ǫ-far from

Πn, it holds that Pr[T x(1n) = 0] > 0.

Theorem 5 (dual problems with one-sided error; see [3, Thm 1.5]). Let

Πn ⊆ {0, 1}n, and let ǫ > 0. Assume that there exists p ∈ Πn and z ∈ {0, 1}n

such that δ(z,Πn) ≥ 2 · ǫ. Then, for every ǫ′ ≤ ǫ, every ǫ′-tester with one-

sided error for the ǫ-dual problem of Π uses more than ǫ · n queries.

Proof. For ǫ′ ≤ ǫ, let T be an ǫ′-tester with one-sided error for the ǫ-dual
problem of Π, and denote the query complexity of T by q = q(n). Let S be
the set of strings that are ǫ-far from Πn, and let w be the string p ∈ Πn.
Note that T accepts every s ∈ S, with probability 1. Also observe that p is
at distance at least ǫ ≥ ǫ′ from any z′ ∈ S (because ǫ ≤ δ(z′,Πn) ≤ δ(z′, p)),
and thus T rejects p with positive probability. We can thus invoke Claim 2
with the tester T , and with S and w = p as above, and deduce that every
x ∈ {0, 1}n is (q/n)-close to being at distance less than ǫ from Πn; that is,
δ(x,Πn) < (q/n) + ǫ. However, by our hypothesis, there exists z such that
δ(z,Πn) ≥ 2 · ǫ. It follows that 2 · ǫ ≤ δ(z,Πn) < (q/n) + ǫ, which implies
that q(n) > ǫ · n.

4.2 Testers with perfect soundness

Testers with perfect soundness are testers that accept every input in Π,
with positive probability, and reject every input that is far from Π, with
probability 1. It turns out that this task also requires a linear number of
queries. The proof of this result, which we now detail, is very similar to the
proof of Theorem 5.
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Definition 6 (testers with perfect soundness). Let Πn ⊆ {0, 1}n, and let

ǫ > 0. An ǫ-tester with perfect soundness for Πn is a probabilistic algorithm

T that satisfies the following conditions:

1. For every x ∈ Πn it holds that Pr[T x(1n) = 1] > 0.

2. For every x that is ǫ-far from Πn it holds that Pr[T x(1n) = 0] = 1.

Theorem 7 (testing with perfect soundness; see [3, Prop. 3.3]). Let Πn ⊆
{0, 1}n, and let ǫ > 0. Assume that there exists p ∈ Πn and z ∈ {0, 1}n such

that δ(z,Πn) ≥ 2 · ǫ. Then, every ǫ-tester with perfect soundness for Π uses

more than ǫ · n queries.

Proof. Let T be an ǫ-tester with perfect soundness for Π, and denote its
query complexity by q = q(n). Let S be the set of strings that are ǫ-far from
Πn, and let w be the string p ∈ Πn. Note that T rejects every s ∈ S, with
probability 1, and accepts w, with positive probability. Invoking Claim 2
with the tester T , and with these S and w, we deduce that every x ∈ {0, 1}n

is (q/n)-close to being at distance less than ǫ from Πn. However, by our
hypothesis, there exists z such that δ(z,Πn) ≥ 2 · ǫ, which implies (as in the
proof of Theorem 5) that q(n) > ǫ · n.
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