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Abstract

For every polynomial q, we present worst-case to average-case (almost-linear-time) reductions
for a class of problems in P that are widely conjectured not to be solvable in time q. These
classes contain, for example, the problems of counting the number of t-cliques in a graph, for
any fixed t ≥ 3.

Specifically, we consider the class of problems that consist of counting the number of local
neighborhoods in the input that satisfy some predetermined conditions, where the number of
neighborhoods is polynomial, and the neighborhoods as well as the conditions can be specified
by small uniform Boolean formulas. We show an almost-linear-time reduction from solving any
such problem in the worst-case to solving some other problem (in the same class) on typical
inputs. Furthermore, for some of these problems, we show that their average-case complexity
almost equals their worst-case complexity.

En route we highlight a few issues and ideas such as sample-aided reductions, average-
case analysis of randomized algorithms, and average-case emulation of arithmetic circuits by
Boolean circuits. We also observe that adequately uniform versions of AC0[2] admit worst-case
to average-case reductions that run in almost linear-time.

Keywords: Worst-case to average-case reductions, fine-grained complexity,
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1 Introduction

While most research in the theory of computation refers to worst-case complexity (cf., e.g., [13,
Chap. 1–10.1] versus [13, Sec. 10.2]), the importance of average-case complexity is widely recognized.
Worst-case to average-case reductions, which allow for bridging the gap between the two theories,
are of natural appeal (to say the least). Unfortunately, until recently worst-case to average-case
reductions were known only either for “very high” complexity classes, such as E and #P (see [4]
and [22, 9, 15]1, resp.), or for problems of “very low” complexity, such as Parity (cf. [1, 3]). In
contrast, presenting a worst-case to average-case reduction for NP is a well-known open problem,
which faces significant obstacles [10, 8].

A recent work by Ball, Rosen, Sabin, and Vasudevan [5] initiated the study of worst-case to
average-case reductions in the context of fine-grained complexity.2 The latter context focuses on
the exact complexity of problems in P (see, e.g., survey by V. Williams [30]), attempting to classify
problems into classes of similar polynomial-time complexity (and distinguishing, say, linear-time
from quadratic-time and cubic-time). Needless to say, reductions used in the context of fine-grained
complexity must preserve the foregoing classification, and the simplest choice – taken in [5] (and
followed here) – is to use almost linear-time reductions.3

The pioneering paper of Ball et al. [5] shows that there exist (almost linear-time) reductions
from the worst-case of several natural problems in P, which are widely believed to be “somewhat
hard” (i.e., have super-linear time complexity (in the worst case)), to the average-case of some other
problems that are in P. In particular, this is shown for the Orthogonal Vector problem, for the
3-SUM problem, and for the All Pairs Shortest Path problem. Hence, the worst-case complexity of
problems that are widely believed to be “somewhat hard” is reduced to the average-case complexity
of some problems in P. Furthermore, the worst-case complexity of the latter problems matches
(approximately) the best algorithms known for the former problems (but note that the latter
problems may actually have higher complexity than the former problems).

1.1 Our results

In this paper we strengthen the foregoing results in two ways. First, we present worst-case to
average-case reductions (of almost linear-time) for a wide class of problems within P (see Theo-
rem 1.1). Second, we show that the average-case complexity of some of these problems approxi-
mately equals their worst-case complexity, which is conjectured to be an arbitrary high polynomial
(see Corollary 1.2). Details follow.

1The basic idea underlying the worst-case to average-case reduction of the “permanent” is due to Lipton [22], but
his proof implicitly presumes that the field is somehow fixed as a function of the dimension. This issue was addressed
independently by [9] and in the proceeding version of [15]. In the current work, we shall be faced with the very same
issue.

2Actually, a worst-case to average-case reduction for a problem of this flavor was shown before by Goldreich and
Wigderson [18]. They considered the problem of computing the function fn(A1, ..., Aℓ(n)) =

P

S⊆[ℓ(n)] DET(
P

i∈S Ai),

where the Ai’s are n-by-n matrices over a finite field and ℓ(n) = O(log n), conjectured that it cannot be computed in
time 2ℓ(n)/3, and showed that it is random self-reducible (by O(n) queries). They also showed that it is downwards
self-reducible when the field has the form GF (2m(n)) such that m(n) = 2⌈log2 n⌉ (or m(n) = 2 · 3⌈log3 n⌉). We stress
that the (subquadratic-time) reduction of [18] does not run in almost-linear time, and that the foregoing problem is
not as well-studied as the problems considered in [5].

3Furthermore, typically, these reductions make a small number of queries (since their queries are of at least linear
length). In any case, composing them with a T -time algorithm for the target problem yields an “almost T -time”
algorithm for the reduced problem, provided that T (n) ∈ [Ω(n), poly(n)].
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Complexity classes having worst-case to average-case reductions. First, for each poly-
nomial p, we define a worst-case complexity class C(p) that is a subset of Dtime(p1+o(1)), and then
show, for any problem Π in C(p), an almost linear-time reduction of Π to the average-case of some
problem Π′ in C(p). Loosely speaking, the class C(p) consists of counting problems that refer to
p(n) local conditions regarding the n-bit long input, where each local condition refers to no(1) bit
locations and can be evaluated in no(1)-time. These classes are defined in Section 2, and they are
related to the class of locally characterizable sets defined by us in [16] (see also Appendix A.1).
In particular, for any constant t > 2 and pt(n) = nt, the class C(pt) contains problems such as
t-CLIQUE and t-SUM (e.g., the number of t-cliques in an n-vertex is expressed as the sum of

(n
t

)
local

conditions, each referring to the subgraph induced by t specific vertices). We show that all theses
classes have worst-case to average-case reductions.

Theorem 1.1 (worst-case to average-case reduction, loosely stated):4 For every polynomial p, and

every (counting) problem Π in C(p), there exists a (counting) problem Π′ in C(p) and an almost-

linear time randomized reduction of solving Π on the worst-case to solving Π′ on the average (i.e.,
on at least a 0.76 fraction of the domain).5

Hence, worst-case to average-case reductions are shown to be a rather general phenomenon: They
exist for each problem in a class that is defined in general terms (i.e., counting the number of local
conditions that are satisfied by the input, where the local conditions are specified by formulae of
bounded complexity). Moreover, the reductions preserve membership in this class (rather than
moving to a problem of a different (arithmeticized) flavor as in [5]). In particular, Theorem 1.1
asserts that the average-case complexity of C(p) is lower-bounded by the worst-case complexity of
C(p), provided that the latter is at least almost-linear. (Recall that the worst-case complexity of
C(p) is at most p1+o(1), and it is most likely that it is not almost-linear.)

A follow-up work of the authors [17] showed a worst-case to average-case reduction for t-CLIQUE,
the problem of counting the number of t-cliques in a graph, for each t ≥ 3. In contrast, the focus of
the current work is on classes of problems, that are defined in terms of general complexity bounds.
Specifically, the classes of counting problems studied here refer to a polynomially large (uniform)
collection of small formulae that are applied to the same input.

Computational problems with average-case complexity that almost equals their worst-

case complexity. In Theorem 1.1 the average-case complexity of Π′ is sandwiched between the
worst-case complexities of Π and Π′, where the worst-case complexities of Π′ is at most p1+o(1).
This might leave a rather wide gap between the average-case complexity of Π′ and its worst-case
complexity (if the worst-case of Π is significantly smaller than the worst-case of Π′). Our second
improvement over [5] is in narrowing the potential gap between the complexities of Π and Π′ (and,
consequently, between the average-case and worst-case complexities of Π′).

We do so by taking advantage of the fact that our reduction preserves membership in the class
C(p). Specifically, for every ǫ > 0, assuming that the worst-case complexity of Π ∈ C(p) is at least q,
and invoking Theorem 1.1 for O(1/ǫ) times, we obtain a problem in C(p) \Dtime(q) whose average-

case complexity is at most nǫ times smaller than its worst-case complexity. Hence, the average-case
complexity of this problem is approximately equal to its worst-case complexity.

4See Theorem 3.1 for a precise statement.
5Here 0.76 stands for any constant greater than 3/4.
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Corollary 1.2 (average-case approximating worst-case): For polynomials p > q, suppose that C(p)

contains a problem of worst-case complexity greater than q. Then, for every constant ǫ > 0, there

exists c′ ∈ [logn q(n), logn p(n)] such that C(p) contains a problem of average-case complexity at least

nc′ and worst-case complexity at most nc′+ǫ.

A result analogous to Corollary 1.2 was proved in our follow-up work [17], while assuming that
t-CLIQUE is adequately hard. In contrast, the hypothesis of Corollary 1.2 requires only that some

problem in the class C(p) is adequately hard.

Proof: Starting with Π(0) ∈ C(p) \ Dtime(q), we consider a sequence of O(1/ǫ) problems in C(p)

such that the problem Π(i) is obtained by applying (the worst-case to average-case reduction of)
Theorem 1.1 to Π(i−1). Recall that the average-case complexity of Π(i) is sandwiched between the
worst-case complexities of Π(i−1) and Π(i). Hence, the worst-case complexities of these problems
(i.e., the Π(i)’s) constitute a non-decreasing sequence that is lower-bounded by q and upper-bounded
by p(n)1+o(1), which is an upper bound on the complexity of any problem in C(p). It follows that
for some i ∈ [O(1/ǫ)], the ratio between the worst-case complexities of Π(i) and Π(i−1) is at most
nǫ, and the claim follows.

Reductions to rare-case. The notion of average-case complexity that underlies the foregoing
discussion (see Theorem 1.1) refers to solving the problem on at least 0.76 fraction of the instances.
This notion may also be called typical-case complexity. A much more relaxed notion, called rare-

case complexity, refers to solving the problem on a noticeable fraction of the instances (say, on
a n−o(1) fraction of the n-bit long instances).6 Using non-uniform reductions, we show that the
rare-case complexity of C(p) is lower-bounded by its (non-uniform) worst-case complexity (provided
that the latter is at least almost-linear).

Theorem 1.3 (worst-case to rare-case reduction, loosely stated):7 For every polynomial p, and

every problem Π in C(p), there exists a problem Π′ in C(p) and an almost-linear time non-uniform
reduction of solving Π on the worst-case to solving Π′ on a noticeable fraction of the instances (e.g.,
on at least exp(− log0.999 n) fraction of the n-bit long instances).

We also provide a uniform reduction from the worst-case complexity of the problem Π ∈ C(p) to
the rare-case complexity of some problem in Dtime(p′), where p′(n) = p(n) · n1+o(1). For details,
see Theorem 4.4.

1.2 Comparison to the known average-case hierarchy theorem

We mention the existence of an (unconditional) average-case hierarchy theorem of Goldmann,
Grape, and Hastad [12], which is essentially proved by diagonalization. While that result offers no
(almost linear-time) worst-case to average-case reduction, it does imply the existence of problems
in P that are hard on the average (at any desired polynomial level), let alone that this result is

6Here a “noticeable fraction” is the ratio of a linear function over an almost linear function. We stress that this
is not the standard definition of this notion (at least not in cryptography).

7See Theorem 4.2 for a precise statement. Note that Theorem 4.2 refers to sample-aided reductions, which imply
non-uniform reductions. Theorem 1.3 refers to a liberal notion of almost-linearity that includes any function of the
form f(n) = n1+o(1). Under a strict notion that postulates that only functions of the form f(n) = n1+o(1) are deemed
almost-linear, the rare-case refers to an 1/poly(log n) fraction of the n-bit long instances.
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unconditional. We point out several advantages of the current reductions (as well as those of [5])
over the aforementioned hierarchy theorem.

1. Worst-case to average-case reductions yield hardness results also with respect to probabilistic
algorithms, whereas the known hierarchy theorem does not hold for that case. Recall that an
honest-to-God hierarchy theorem is not known even for worst-case probabilistic time (cf. [6]).

2. Worst-case to average-case reductions are robust under the presence of auxiliary inputs (or,
alternatively, w.r.t non-uniform complexity), whereas the aforementioned hierarchy theorem
is not.

3. Our worst-case to average-case reductions (as well as those in [5]) do not depend on huge and
unspecified constants.

More importantly, while the standard interpretation of worst-case to average-case reductions is
negative (i.e., establishes hardness of the average-case problem based on the worst-case problem),
such reductions have also a positive interpretation (which is not offered by results of the type
of [12]): They can be used to actually solve a worst-case problem when given a procedure for the
average-case problem. Similarly, they may allow to privately compute the value of a function of a
secret instance by making queries that are distributed independently of that instance (see, e.g., [7]).

1.3 Techniques

The proofs of all our results are pivoted at arithmetic versions of the (Boolean) counting problems
belonging to the class C(p). These arithmetic versions refer to evaluating a small arithmetic formula
on p(n) different (short) projections of the n-symbol input, which is a sequence over a finite field
(of varying size). The counting problem is easily reduced to the arithmetic problem, which is
(implicitly) known to have a worst-case to average-case reduction (as well as an average-case to
rare-case reduction). The tricky part is presenting a reduction of the arithmetic problem “back to”
a Boolean counting problem in C(p), where the reduction preserves the error rate (i.e., average-case
or rare-case complexity).

1.3.1 On the proof of Theorem 1.1

A first attempt at a reduction from the arithmetic problem to a Boolean (counting) problem in
C(p), captured by Proposition 3.6, increases the error rate of the solver for the Boolean problem
by a non-constant factor, yielding average-case hardness only with respect to error rate that tends
to zero. Even this reduction is not straightforward; see discussion at the beginning of the proof of
Proposition 3.6.

Deriving average-case hardness with respect to constant error rate requires a few refinements of
the basic approach. First, rather than reducing the n-bit instance of the original counting problem
to a single instance of the Arithmetic problem defined over a finite field of size Ω(p(n)), we reduce it
to O(log p(n)) instances defined over different fields of much smaller size.8 Since all these instances
will be reduced to the same average-case complexity problem, some of the values obtained in these

8The sizes of these fields are lower bounded not only by Ω(log p(n)) but also by the size of the Boolean formula
used in the original counting problem. The latter lower bound guarantees that the field is larger than the degree of
the polynomial that is computed by the Arithmetic problem used in the reduction.
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reductions may be wrong, and Chinese Remaindering with errors (cf. [15]) is used in combining
them.

We still face the problem of reducing the Arithmetic problem (over fields of size no(1) (rather
than nΩ(1))) to a counting problem in the class C(p), while preserving the average-case complexity
(equiv., the error rate of potential solvers). To do so, we use (a non-constant number of) Boolean
formulae that compute each of the bits in the representation of the output of the arithmetic formula
(which is a field element). However, we cannot afford to deal with each of the resulting formulae
separately, since this will increase the error rate by a non-constant factor. Instead, we reduce
evaluation of the arithmetic formula to solving a single counting problem in the class C(p).

To do so, we construct a single Boolean formula that, when fed with an appropriate auxiliary
input, outputs the corresponding bit in the representation of the arithmetic formula’s output (which
is a field element). The (weighted) summation of the Boolean outputs on the different auxiliary
inputs (one per each bit in the representation of the field element) is performed by the counting
problem itself (i.e., by the summation). This is done by using additional variables that emulate the
weights (as detailed in Section 3.2), and yields a single-query reduction of the Arithmetic problem
to the Boolean problem.

1.3.2 On the proofs of Theorems 1.3 and 4.4

Turning from average-case hardness to rare-case hardness (i.e., from the proof of Theorem 1.1 to
the proofs of Theorems 1.3 and 4.4), we employ worst-case to rare-case reduction techniques at the
Arithmetic level. Specifically, we use the list decoder of Sudan, Trevisan, and Vadhan [29].

For the proof of Theorem 4.4, we also employ a methodology heralded by Impagliazzo and
Wigderson [20], which we distill here. The methodology is pivoted at the notion of sample-aided

reductions, which is a relaxed notion of reduction between problems. Specifically, a sample-aided
reduction from problem A to problem B receives random solved instances of problem A, which
means that it implies an ordinary non-uniform reduction (of A to B). Furthermore, when coupled
with a downwards self-reduction for the problem A, a sample-aided reduction of A to B implies a
standard (uniform) reduction of A to B.

In the following definition, a task consists of a computational problem along with a required
performance guarantee; for example, A may be “solving problem Π on the worst-case” and B may
be “solving Π with success rate ρ”. For sake of simplicity, we consider the case that the first task
(i.e., A) is a worst-case function computation task (and that Π is a function (i.e., solving Π means
computing Π)).

Definition 1.4 (sample-aided reductions): Let ℓ, s : N → N, and suppose that M is an oracle

machine that, on input x ∈ {0, 1}n, obtains a sequence of s = s(n) pairs of the form (r, v) ∈
{0, 1}n+ℓ(n) as an auxiliary input. We say that M is an sample-aided reduction of solving Π in the
worst-case to the task T if, for every procedure P that performs the task T, it holds that

Prr1,...,rs∈{0,1}n

[
∀x∈{0, 1}n

Pr
[
MP (x; (r1,Π(r1)), ..., (rs,Π(rs))) = Π(x)

]
≥ 2

3

]
>

2

3
(1)

where the internal probability is taken over the coin tosses of the machine M and the procedure P .

As stated upfront, a sample-aided reduction implies an ordinary non-uniform reduction. In fact,
many known non-uniform reductions (e.g., [29]) are actually sample-aided reductions. Furthermore,
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coupled with a suitable downwards self-reduction for Π, a sample-aided reduction of solving Π in the
worst-case to solving Π′ on the average (resp., in the rare-case) implies a corresponding standard
reduction (of worst-case to average-case (resp., to rare-case)).

Specifically, letting Πn denote the restriction of Π to n-bit instances, suppose that solving Πn

on the worst-case reduces to solving Π′
n on the average, when provided a sample of solved instances

of Πn, and that we have an average-case solver for Π′. Then, using the downwards self-reduction of
Π, a sample of solved instances of Πn can be generated by employing the downwards reduction of
Πn to Πn−1 and using the worst-case to average-case reduction of Πn−1 (to Π′

n−1), which in turn
requires a sample of solved instances of Πn−1. Similarly, generating a sample of solved instances for
Πn−1 is reduced to generating a sample of solve instances for Πn−2, and ditto for Πn−i via Πn−i−1.
We stress that the size of the sample remains unchanged at all levels: a sample of solved instances
for Πn−i allows for solving all instances of Πn−i (by using the average-case solver of Π′

n−i).
The actual process of generating samples of solved instances goes in the other direction; that

is, going from j = 1 to j = n−1, we use the sample of solved instances of Πj in order to generate a
sample of solved instances of Πj+1 (while using the sample-aided reduction of solving Πj+1 on the
worst-case to solving Π′

j+1 on the average-case). At the end, we solve the instance of Πn given to
us, by using the sample of solved instances of Πn (while using the sample-aided reduction of solving
Πm on the worst-case to solving Π′

n on the average-case). Recall that, by the hypothesis, we have
an average-case solver for Π′, and that we can generate solved instances of Π1 by ourselves (at the
beginning of this process (i.e., for j = 1)).

Using the foregoing methodology we establish Theorem 4.4, which provides a uniform reduction
from the worst-case complexity of the problem Π ∈ C(p) to the rare-case complexity of some
problem in Dtime(p′), where p′(n) = p(n) · n1+o(1). The proof of Theorem 1.3, which asserts a
non-uniform worst-case to rare-case reduction for C(p), does not use this methodology; it rather
uses the straightforward emulation of sample-aided reductions by non-uniform reductions.

We mention that in our follow-up [17] we have extended the notion of sample-aided reductions,
allowing the s(n) samples to be drawn from arbitrary distributions and be possibly dependent on
one another. We believe that the notion of sample-aided reductions is of independent interest.

1.4 Worst-case to Average-case reduction for uniform AC0[2]

One may view our classes of counting problems as classes of (adequately uniform) circuits that
consist of a top threshold gate that is fed by very small formulae (on joint variables). Given this
perspective, one may ask which other classes of circuits admit worst-case to average-case reductions.

We show that adequately uniform versions of AC0[2] (i.e., constant-depth polynomial-size cir-
cuits with parity gates) admit worst-case to average-case reductions that run in almost linear-time.
Note that, while AC0[2] cannot count, these classes contain “seemingly hard problems in P” (e.g.,
the t-CLIQUE problem for n-vertex graphs can be expressed as a highly uniform DNF with nt terms
(each depending on

(t
2

)
variables)).

Specifically, letting AC0
d[2] denote the class of decision problems regarding n-long inputs and

the question of whether such an input satisfies some (adequately uniform) poly(n)-size circuit of
depth d, we show an almost linear-time reduction of solving problems in AC0

d[2] on the worst-case
to solving problems in AC0

O(d)[2] on 90% of the instances, where the constant in the O-notation is

universal and small (but larger than 2).
The foregoing reduction uses some of the ideas that are used in the proof of Theorem 1.1. Again,

the pivot is an arithmetic problem which admits a worst-case to average-case reduction, and the
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point is reducing the Boolean problem to it and reducing it back to a Boolean problem.
For the first reduction we use the approximation method of Razborov [25] and Smolensky [28].

Specifically, we obtain a poly(n)-size depth O(d) Arithmetic circuit, over a sufficiently large exten-
sion field of GF(2), so that the standard worst-case to average-case reduction can be used; that is,
the size of the extension field should exceed the degree of the polynomial computed by the Arith-
metic circuit, which is low (i.e., polylogarithmic).9 The approximation error is a non-issue, since
we are only interested in the value of the original circuit at a given input, and the random choices
made in the approximation method can be implemented by pseudorandom (i.e., small-bias) ones.

For the backward reduction we show that (adequately uniform) AC0[2]-circuits can emulate the
computation of the foregoing Arithmetic circuit. In doing so, we rely on the following facts:

1. The multiplication gates (in the resulting Arithmetic circuit) have logarithmic fan-in.

2. The Arithmetic circuit is defined for an extension field of GF(2), and the size of this field is
only polylogarithmic.

3. The class of Boolean circuits (i.e., AC0[2]) allows for parity gates of unbounded arity.

Combining Facts 1 and 2, each multiplication gate in the arithmetic circuit can be emulated by
a constant-depth circuit of size no(1). Facts 2 and 3 are used for emulating the addition gates.
Finally, we let the circuit obtain an additional input, and output the corresponding bit in the
Hadamard encoding of the output of the arithmetic circuit. This allows us to handle a constant
error rate (rather than an error rate that is inversely related to the length of the representation of
field elements). For more details, see Appendix A.2.

1.5 On average-case randomized algorithms

Our randomized of solving problem Π on the worst-case to solving problem Π′ on the average-case
(or rare-case) are naturally interpreted as implying a randomized procedure for solving Π that
succeeded (with probability at least 1/3) on each instance of Π, when given oracle access to any

deterministic solver that is correct on a specified fraction of the instances of Π′. Obviously, the same
guaranteed holds when using any randomized procedure that for the same fraction of instances of
Π′ answers correctly with probability at least 1/3. (Indeed, error reduction may be applied both to
the randomized solver of Π′ and to the randomized reduction of Π to Π′; in fact, employing error
reduction is typically essential before using the randomized procedure for Π′ in order to derive a
randomized procedure for Π.)10

In some of our intermediate results, it will be beneficial to use a seemingly relaxed notion of
an average-case randomized solver. Specifically, we say that a randomized algorithm A solving P
has success rate ρ : N → [0, 1] if the probability that A solves a random n-bit instance of P is at

least ρ(n), where the probability is over the uniform choice of an n-bit input and the internal coin

tosses of A. Clearly, a randomized procedure that solves P on a ρ fraction of the instances can
be converted to an (almost as efficient) algorithm for P that has error rate (1 − o(1)) · ρ, by first
reducing the error probability of A to o(1). We observe that the converse holds too (essentially).
Actually, we prove a stronger result.

9Indeed, the original goal of the approximation method in to obtain low degree approximations of AC0[2] circuits.
10This is the case since typically the randomized procedure makes several queries to Π′.
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Proposition 1.5 (from randomized to deterministic error rate): Let A be a randomized procedure

that solves P with error rate ρ such that ρ(n) > 2−n/3. Then, there exists a randomized algorithm

of about the same complexity as A that, on input 1n, with probability 1− 2−n/4, outputs a Boolean

circuit that solves P on an (1− o(1)) · ρ(n) fraction of the instances of length n.

Proof: Letting t denote the running time of A, consider the corresponding residual deterministic al-
gorithm A′ that, on input (x, r) such that |r| = t(|x|), invokes A on input x and coins r. Our circuit-
generating algorithm selects a pairwise-independent (“hash”) function h : {0, 1}n → {0, 1}t(n)

(cf. [13, Apdx. D.2]), and outputs the circuit Ch such that Ch(x) = A′(x, h(x)). Using Chebyshev’s
inequality11, it follows that, with probability at least 1−ǫ−2 ·2−n/3 over the choice of h, the success
rate of Ch is at least (1− ǫ) · ρ(n). Using ǫ = 2−n/24, the claim follows.

1.6 Terminology and organization

For a function f : N→ N, we often use exp(f(n)) to denote 2O(f(n)). When we neglect to mention
the base of a logarithmic function, the reader may assume it is 2. Integrality issues are often
ignored. For example, log n may mean ⌈log2 n⌉.

Throughout the paper, n denotes the length of the input (either in terms of bit or in terms of
sequences over larger alphabet). For a set S = {i1, ..., is} ⊆ [n] such that i1 < i2 < · · · < is and
x = x1x2 · · · xn ∈ Σn, we denote by xS = xi1xi2 · · · xis the projection of x at the coordinates S.

Almost linear functions. The notion of “almost linear” functions is given a variety of inter-
pretations, in the literature, ranging from saying that a function f : N → N is almost linear if
f(n) = n1+o(1) to requiring that f(n) = Õ(n). We shall restrict the range of interpretations to the
case of f(n) ≤ exp(f ′(n)) · n, where at the very maximum f ′(n) = (log n)/(log log n)ω(1) (which

means that f(n) ≤ n1+(log log n)−ω(1)
) and at the very minimum f ′(n) = Õ(log log n) (which means

that f(n) ≤ (log n)(log log log n)O(1) · n). In these cases, we shall consider exp(f ′(n)) = poly(f(n)/n)
to be small, and exp(−f ′(n)) = poly(n/f(n)) to be noticeable.

Organization. In Section 2 we define the classes of counting problems that will be studied in this
work. In Section 3 we present the proof of Theorem 1.1; our presentation proceeds in two steps:
First, in Section 3.1, we prove a weaker result (which refers to an error rate that is noticeable but

11For each x ∈ {0, 1}n, define a 0-1 random variable ζx = ζx(h) such that ζx(h) = 1 if and only if Ch(x) is correct.

Then, µx
def
= E[ζx] equals the probability that A(x) is correct, and S

def
=

P

x∈{0,1}n µx ≥ ρ(n) · 2n. Using Chebyshev’s
inequality, we get

Pr

2

4

˛

˛

˛

˛

˛

˛

X

x∈{0,1}n

ζx − S

˛

˛

˛

˛

˛

˛

≥ 2n · ǫ · ρ(n)

3

5 ≤
Var

h

P

x∈{0,1}n ζx

i

(2n · ǫ · ρ(n))2

=

P

x∈{0,1}n Var[ζx]

22nǫ2ρ(n)2

<
1

2nǫ2ρ(n)2

where the equality is due to the pairwise-independence of the ζx’s. Using ρ(n) > 2−n/3, we obtain the desired bound
(of 2−n/3/ǫ2).
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tends to zero), and later (in Section 3.2) we derive the original claim. The proof of Theorem 1.3 is
presented in Section 4.1, and in Section 4.2 we prove the incomparable result stated in Theorem 4.4.

2 Counting local patterns: defining the class of counting problems

We consider a class of counting problems that are solvable in polynomial time. Such a counting
problem specifies a polynomial number of local conditions, where each local condition consists of a
short sequence of locations (in the input) and a corresponding predicate, and the problem consists
of counting the number of local conditions that are satisfied by the input.

An archetypical example is the problem of counting t-cliques, for some fixed t ∈ N, where the
local conditions correspond to all t-subsets of the vertex set, and each local condition mandates
that the corresponding vertices are adjacent in the graph. Hence, for an n-vertex input graph, rep-
resented by its adjacency matrix X = (xi,j), we have local conditions of the form

∧
j<k∈[t] xij ,ik for

every t-subset {i1, ..., it} ∈
(
[n]
t

)
. Hence, counting t-cliques in a graph represented by X corresponds

to counting the number of local conditions that are satisfied by X.

In general, for relatively small and efficiently described subsets S
(n)
1 , ..., S

(n)
poly(n) ⊂ [n] and for-

mulae φ
(n)
1 , ..., φ

(n)
poly(n), we consider the problem of counting, on input x ∈ {0, 1}n, the number

of subsets S
(n)
i such that φ

(n)
i (xSi) = 1. Hence, the S

(n)
i ’s represents portions of (locations in)

the input and the φ
(n)
i ’s represents the (local) conditions imposed on them. (Indeed, this class of

counting problems is related to the class of locally characterizable sets defined by us in [16]; see
more details in Appendix A.1.)

Key issues that were intentionally left unspecified in the foregoing description are what is the

size of the subsets S
(n)
i ’s and formulae φ

(n)
i ’s and what is meant by efficiently describing them.

Starting from the latter question, we postulate that all subsets (i.e., S
(n)
1 , ..., S

(n)
poly(n) ⊂ [n]) are

described by an explicit sequence of formulae σn : {0, 1}ℓ(n) →
( [n]
m(n)

)
, where ℓ(n) = O(log n),

such that σn(i) = S
(n)
i for every i ∈ [2ℓ(n)] ≡ {0, 1}ℓ(n). Indeed, 2ℓ(n) equals the number of local

conditions imposed on inputs of length n, and m(n) is the number of locations considered in each

local condition. Likewise, all (“local condition”) formulae (i.e., φ
(n)
1 , ..., φ

(n)
poly(n)) are described by

an explicit sequence of formulae φn : {0, 1}ℓ(n) × {0, 1}m(n) → {0, 1} such that φn(i, z) = φ
(n)
i (z)

for every i ∈ [2ℓ(n)] ≡ {0, 1}ℓ(n) and z ∈ {0, 1}m(n).
Still, we need to specify the function m : N → N, a bound on the size of formulae σn and

φn, and be more concrete regarding what we mean by “being explicit” (i.e., the complexity of
constructing σn and φn). We actually prefer to leave these issues semi-open and only state minimal
conditions regarding these aspects. For sure m(n) and the formulae sizes should be between no(1)

and poly(log n), and, by default, explicit means that the object can be generated in time that is
polynomial in its size.

In addition, since the bounds on the formulae sizes will be used to define complexity classes,
we need to define families of bounds that are closed under some operations (so that the complexity
classes may be closed under some natural algorithmic compositions). This will be done in Sec-
tion 2.1, and once done we shall spell out the corresponding definition of the counting classes (in
Section 2.2).
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2.1 Admissible bounding functions

Our main complexity measure will be formula size (i.e., bounds on the sizes of the formulae σn

and φn). Equivalently, we may just discuss formula depth, which is logarithmically related to their
size. Recalling our minimal requirements reagrding the sizes of the formulae σn and φn, we focus
on depth bounds that are between o(log n) and Ω(log log n).

Since our reductions may increase the depth of the formulae by a poly-logarithmic factor (i.e.,
go from d(n) to Õ(d(n))), we consider classes of (depth) bounding functions that are closed under
multiplication by such a factor. Although this choice seems opportunistic, it is quite natural in the
context of complexity measures: One typically allows closure under constant factors, and closure
under polylogarithmic factors is but the next step. Lastly, we make the standard simplifying
assumption that the bounding function is monotonically non-decreasing. Hence, we obtain the
following admissible classes of bounding functions.

Definition 2.1 (admissible classes of functions): A class of functions D ⊆ {f : N → N} is

admissible if for every d ∈ D it holds that

1. Minimal condition (i.e., d is neither too big nor too small): The function d is sub-logarithmic

and at least double-logarithmic; that is, d(n) ∈ [Ω(log log n), o(log n)].

2. Closure: The function d′ such that d′(n) = Õ(d(n)) is in D.

(Given that d(n) = Ω(log log n), it follows that d′′(n) = d(n) + log log n is also in D).

3. Non-decreasing: d(n + 1) ≥ d(n).

Examples of admissible classes of functions include

D1 = {d ∈ L : d(n) ≤ Õ(log log n)}
D2 = {d ∈ L : d(n) ≤ poly(log log n)}
D3 = {d ∈ L : d(n) ≤ O(log n)c} for any c ∈ (0, 1)

D4 =

{
d ∈ L : d(n) ≤ log n

(log log n)ω(1)

}

where L denotes the class of functions that are at least double-logarithmic, and the unspecified
constants (in the O-notation) allow for ignoring finitely many n’s.

Definition 2.2 (a corresponding notion of almost-linear functions): For a fixed admissible class

D, we say that the function f : N→ N is almost linear if f(n) ≤ exp(d(n)) · n for some d ∈ D.

Indeed, this is shorthand for D-almost-linear. Note that, for any admissible class D, saying that f
is D-almost-linear means that f(n) = n1+o(1), although it may be that f(n) > Õ(n). (Even saying
that f is D1-almost-linear only means that f(n) ≤ exp(Õ(log log n)) · n, which means that f(n)/n
is quasi-poly-logarithmic.)
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2.2 The counting classes

Turning back to the Boolean formulae φn : {0, 1}ℓ(n)+m(n) → {0, 1} and σn : {0, 1}ℓ(n) → [n]m(n),
note that their size is upper-bounded by the time that it takes to construct them. Recalling that
we may assume, without loss of generality, that the depth of a formula is logarithmic in its size,
we make the running time of the constructing algorithm our main parameter. Hence, for any
admissible class D, which provides bounds for the depth of formuale, we shall consider algorithms
that on input n run in time that is exponential in some function in D.

For sake of convenience, we also replace σn : {0, 1}ℓ(n) → [n]m(n) by σn,1, ..., σn,m(n) : {0, 1}ℓ(n) →
[n], where σn,j(i) specifies the jth element in σn(i) (which is the ith subset specified by σn). With
these preliminaries in place, we are finally ready to state the definition of the class of counting
problems that we consider. Actually, we present a family of such classes, each corresponding to a
different set of admissible functions (and to a logarithmic function ℓ).

Definition 2.3 (counting local patterns): Let D be a set of admissible functions. For every d ∈ D
and ℓ,m : N → N such that ℓ : N → N is a logarithmic function (i.e., ℓ(n) = ⌈c · log n⌉ for some
constant c > 0), let A be an algorithm that, on input n, runs for exp(d(n))-time and outputs

Boolean formulae φn : {0, 1}ℓ(n) × {0, 1}m(n) → {0, 1} and σn,1, ..., σn,m(n) : {0, 1}ℓ(n) → [n]. The

counting problem associated with A, denoted #A, consists of counting, on input x ∈ {0, 1}∗, the

number of w ∈ {0, 1}ℓ(|x|) such that

Φx(w)
def
= φn(w, xσn,1(w), ..., xσn,m(n)(w)) (2)

equals 1. The class of counting problems associated with ℓ and D is denoted Cℓ,D.

Hence, each problem in Cℓ,D is specified by 2ℓ(n) local conditions reagrding the n-bit input. Each
local condition refers to m(n) locations in the input, and the predicate Φx(w) indicates whether or
not the local condition associated with the index w ∈ {0, 1}ℓ(n) ≡ [2ℓ(n)] is satisfied by the input x.
The corresponding counting problem is to compute the number of local conditions that are satisfies
by x (i.e., the number of w’s such that Φx(w) = 1).

Note that any problem in the class Cℓ,D can be solved in polynomial-time; specifically, n-bit
long instances can be solved in time 2ℓ(n) · exp(d(n)) = 2(1+o(1))·ℓ(n) on a direct access machine. We
mention that the doubly-efficient interactive proof systems presented by us in [16] apply to these
counting problems, provided that the verifier is allowed to run in time exp(d(n)) · n = n1+o(1), for
some d ∈ D.

A simplified form. In many natural cases, the local condition may depends only on the values of
the bits in the input, and be oblivious of the index of the condition; that is, φn(w, z) may be oblivious
of w. In this case, we may write φn : {0, 1}m(n) → {0, 1} (insread of φn : {0, 1}ℓ(n)+m(n) → {0, 1}),
and have Φx(w) = φn(xσn,1(w), ..., xσn,m(n)(w)). This holds for the problem of counting t-cliques,
discussed in the beginning of this section. Likewise, this holds for the problem of counting t-tuples
of integers in the input sequence x = (x1, ..., xn) ∈ [−b, b]n that sum-up to zero. Specifically, with
some abuse of notation, this problem is captured by Φx(i1, ..., it) = 1 if and only if

∑
j∈[t] xij = 0;

that is, we use φn : [−b, b]t → {0, 1} such that φn(z1, ..., zt) = 1 if and only if
∑

j∈[t] zj = 0 (and

σn,j : {0, 1}t log n → [n] such that σn,j(i1, ..., it) = ij for j ∈ [t]).
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3 The worst-case to average-case reduction

We are now ready to (re)state our main result.

Theorem 3.1 (worst-case to average-case reduction, Theorem 1.1 formalized): Let D be a set of

admissible functions and ℓ be a logarithmic function. Then, for every counting problem Π in Cℓ,D,

there exists a counting problem Π′ in Cℓ,D and an almost-linear time randomized reduction of solving

Π on the worst case to solving Π′ on at least 0.75+ ǫ fraction of the domain, where ǫ is any positive

constant.

Recall that, for every d ∈ D, the function n 7→ exp(d(n)) · n = n1+o(1) is considered almost linear.
Actually, we may replace ǫ by exp(−d(n)) = o(1).

Outline of the proof. The reduction consists of two main steps.

1. An almost-linear time randomized reduction of solving Π on the worst case to evaluating
certain Arithmetic expressions over a field of size exp(d(n)), where the evaluation subroutine
is correct on at least a 0.5 + o(1) fraction of the instances.

2. An almost-linear time reduction of evaluating the foregoing Arithmetic expressions on at
least a 0.5 + o(1) fraction of the instances to solving Π′ on at least 0.75 + o(1) fraction of the
instances.

We start by presenting the aforementioned arithmetic problem. Recall that an Arithmetic circuit
(resp., formula) is a directed acyclic graph (resp., directed tree) with vertices (of bounded in-
degree) that are labeled by multiplication-gates and linear-gates (i.e., gates that compute linear
combination of their inputs). Actually, since we consider generic Arithmetic circuits, which are well
defined for any field, the scalars allowed in the linear gates are only 0, 1 and −1.

Definition 3.2 (evaluating arithmetic expressions of a local type): For d ∈ D and ℓ,m : N→ N as

in Definition 2.3, let A′ be an algorithm that, on input n, runs for exp(d(n))-time and outputs an

Arithmetic formula φ̂n : Fℓ(n)×Fm(n) → F and Boolean formulae σn,1, ..., σn,m(n) : {0, 1}ℓ(n) → [n],
where F ⊇ {0, 1} is a generic finite field. Fixing a finite field F , the evaluation problem associated
with A′ and F , denoted EVA′,F , consists of computing the function Φ̂A′ : Fn → F such that

Φ̂A′(X1, ...,Xn)
def
=

∑

w∈{0,1}ℓ(n)

φ̂n(w,X
i
(1)
n,w

, ...,X
i
(m(n))
n,w

), (3)

where i
(j)
n,w = σn,j(w).

Indeed, as in Eq. (3), we shall often abuse notation and view binary strings as sequences over F
(e.g., in Eq. (3) w ∈ {0, 1}ℓ(n) is viewed as an ℓ(n)-long sequence over F). The formally inclined
reader should consider a mapping ξ : {0, 1} → F such that ξ(0) = 0 ∈ F and ξ(1) = 1 ∈ F , and
write φ̂n(ξ(w1), ..., ξ(wℓ(n)),Xi

(1)
n,w

, ...,X
i
(m(n))
n,w

) instead of φ̂n(w,X
i
(1)
n,w

, ...,X
i
(m(n))
n,w

).

We shall first prove a weaker version of Theorem 3.1 in which the tolerated error rate is
1/O(log n) rather than 0.25 − o(1). This proof is presented in Section 3.1, and it will serves
as a basis for the proof of Theorem 3.1 itself, which is presented in Section 3.2.
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3.1 The vanilla version

Slightly detailing the proof outline provided above, we note that it amounts to composing three
basic reductions.

1. A (worst-case to worst-case) reduction of the Boolean counting problem to a corresponding
Arithmetic evaluation problem.

2. A worst-case to average-case reduction of the Arithmetic evaluation problem to itself.

3. An average-case to average-case reduction of the Arithmetic evaluation problem to a new
Boolean counting problem.

All reductions are performed in almost-linear time and preserve the relevant parameters (e.g., ℓ and
d ∈ D). These reduction are presented in Section 3.1.1, and the reduction deserving most attention
is the third one (i.e., reducing the arithmetic problem to a Boolean problem), where the point is
that this reduction is performed in the context of average-case analysis. Later, in Section 3.1.2, we
shall combine these reductions and derive a weak version of Theorem 3.1.

3.1.1 Three basic reductions

Our first step is reducing the (Boolean) counting problem to the Arithmetic evaluation problem.
This reduction is based on the folklore emulation of Boolean circuits by Arithmetic circuits, which
yields a worst-case to worst-case reduction. The validity of the reduction in our context (of counting
and summation problems) relies on the choice of the field for the Arithmetic evaluation problem;
specifically, we choose a finite field of characteristic that is larger than the number of terms in the
counting problem. We note that, for the sake of the worst-case to average-case reduction (for the
Arithmetic evaluation problem), which will be performed in the next step, it is important to keep
track of the degree of the polynomial that is computed by the Arithmetic circuit that is derived by
the Boolean-to-Arithmetic reduction.

Proposition 3.3 (reducing worst-case Boolean counting to worst-case arithmetic evaluation): Solv-

ing the counting problem associated with an algorithm A (and functions ℓ,m and d ∈ D) is reducible

in almost-linear time to the evaluation problem that is associated with a related algorithm A′, and

any finite field of prime cardinality greater than 2ℓ(n). Furthermore, the reduction makes a single

query, the degree of the polynomial Φ̂A′ is at most exp(d(n)), and the functions ℓ,m and d equal

those in the counting problem.

Proof: The basic idea is to emulate the Boolean formula φn by the Arithmetic formula φ̂n, where
we shall first transform the former formula into an almost-balanced one. The almost-balanced
structure will yield a bound on the degree of the derived Arithmetic formula.

Let ℓ = ℓ(n) = O(log n). We may assume, without loss of generality, that the depth the
Boolean formula φn is logarithmic in its size, which is upper-bounded by s = exp(d(n)). Observe
that the transformation of arbitrary formula to this (almost-balanced) form can be performed
in polynomial (in s) time. Within the same complexity bound, we can construct an Arithmetic
formula φ̂n : Fℓ(n)+m(n) → F that agrees with φn on {0, 1}ℓ(n)+m(n); that is, φ̂n(w, z) = φn(w, z)
for every (w, z) ∈ {0, 1}ℓ(n)+m(n). This construction is obtained by replacing each and-gate by a
multiplication gate, and replacing each negation-gate by a gate that computes the linear mapping
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v 7→ 1− v. The crucial point is that φ̂n preserves the depth of φn, and so the degree of the function
computed by φ̂n is upper-bounded by D = exp(O(log s)) = poly(s) ≪ |F|, where F is chosen to
be a finite field of prime cardinality that is larger than 2ℓ (and s = no(1)).

Hence, we reduce the counting problem #A (associated with an algorithm A) to the arithmetic
evaluation problem EVA′,F associated with an algorithm A′ that computes the foregoing φ̂n and

σn,j’s, by first invoking algorithm A, and then proceeding as outlined above. Defining Φ̂A′ as in
Eq. (3), for every x = x1 · · · xn ∈ {0, 1}n ⊂ Fn, it holds that

Φ̂A′(x1, ..., xn) =
∑

w∈{0,1}ℓ

φ̂n(w, x
i
(1)
n,w

, ..., x
i
(m(n))
n,w

)

=
∑

w∈{0,1}ℓ

φn(w, xσn,1(w), ..., xσn,m(n)(w))

=
∑

w∈{0,1}ℓ

Φx(w)

where the equalities hold both over F and over the integers, because each term is in {0, 1} and
F is a finite field of prime cardinality that is larger than 2ℓ. Hence, #A(x) = EVA′,F (x) for every
x ∈ {0, 1}n ⊂ Fn. Recalling that D = poly(s) = exp(d(n)), the furthermore clause follows.

The second step: A worst-case to average-case reduction. The fact that the arithmetic
evaluation problem (i.e., EVA′,F ) admits a worst-case to average-case reduction is a special case of
the well-known fact that such a reduction holds for any polynomial provided that the field is large
enough (i.e., significantly larger than the degree of the polynomial). The latter fact is rooted in
Lipton’s work [22].

Proposition 3.4 (folklore worst-case to average-case reduction for evaluating polynomials of bounded
degree): Let P : Fn → F be a polynomial of total degree smaller than D < |F|/3. Then, evaluating

P on any input can be randomly reduced to evaluating P correctly on at least a 8/9 fraction of the

domain, by invoking the latter evaluation procedure for 3D times.

We stress that the reduction is randomized, and, on each input, it yields the correct answer with
probability at least 2/3.

Proof: On input x ∈ Fn, we select r ∈ Fn uniformly at random, and invoke the evaluation
procedure on the points x + ir, where i = 1, ..., 3D. (This description presumes that F is a prime
field; but otherwise, we may use 3D distinct non-zero elements of F instead of the i’s.) Note that
the queried points are uniformly distributed in Fn, and so the evaluation procedure is expected
to answer correctly at least an 8/9 fraction of these queries. It follows that, with probability at
least 2/3, the evaluation procedure answers correctly on at least 2D of the queried points. Using
the Berlekamp–Welch algorithm, we reconstruct the unique degree D − 1 polynomial that agrees
with at least 2D of the answers, and return its free-term (i.e., its value at 0, which corresponds to
P (x)).12 Hence, the recovered value is correct with probability at least 2/3.

12This polynomial is unique since we cannot have two different polnomials of degree D − 1 that each agree with
2D of the 3D points.
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Towards the third step: A difficulty. Combining Propositions 3.3 and 3.4, we obtain a
reduction of solving the (Boolean) counting problem, on the worst-case, to solving the Arithmetic
problem on the average (i.e., for a 8/9 fraction of the instances). In order to prove Theorem 3.1, we
have to reduce the latter problem to a (Boolean) counting problem, and this reduction has to be
analyzed in the average-case regime. This raises a difficulty, since the Arithmetic problem (denoted
EVA′,GF(p)) refers to any fixed prime p > 2ℓ(n), and the reduction (provided by Proposition 3.3)
does not specify such a prime (i.e., Proposition 3.3 merely states that the reduction is valid for any
sufficienyly large prime). This becomes a problem when we want to reduce the Arithmetic problem
(which refers to an unspecified large field) to a Boolean problem.

Of course, an adequate prime can be selected at random by the reduction (of Proposition 3.3),
but in such a case different invocations will yield different primes, and so we shall not have a single
Arithmetic problem but rather a distribution over such problems. This difficulty could have been
avoided if we had a deterministic exp(d(n))-time algorithm for generating primes that are larger
than 2ℓ(n), but such an algorithm is not known (since exp(d(n)) = no(1) whereas 2ℓ(n) = nΩ(1)).

We resolve this difficulty by considering an extension of Definition 2.3 in which the algorithm
that generates the Boolean formulae is given an auxiliary input (in addition to the length parameter
n). Indeed, providing the algorithm associated with the Boolean problem with an auxiliary input
that specifies the field used in the Arithmetic problem, allows us to reduce the Arithmetic problem
to a Boolean problem. Actually, it suffices to let the algorithm use this auxiliary information for the
construction of the local conditions only (whereas the location formulae σn,j’s may remain oblivious
of it).

Definition 3.5 (Definition 2.3, extended): For d ∈ D and ℓ,m : N → N as in Definition 2.3, let

B be an algorithm that, on input (n, z) such |z| ≤ exp(d(n)), runs for exp(d(n))-time and outputs

Boolean formulae φn,z : {0, 1}ℓ(n) × {0, 1}m(n) → {0, 1} and σn,1, ..., σn,m(n) : {0, 1}ℓ(n) → [n]. The

counting problem associated with B(n, z) consists of counting, on input x ∈ {0, 1}n, the number of

w ∈ {0, 1}ℓ(n) such that φn,z(w, xσn,1(w), ..., xσn,m(n)(w)) = 1.

With this definition in place, we can reduce the Arithmetic problem EVA′,GF(p), which refers to
n-long sequences over GF(p), to a counting problem associated with B(n, p), where B is as in
Definition 3.5. We warn, however, that the following result reduces solving the arithmetic problem
on 8/9 fraction on the instances to solving the Boolean problem on an 1 − Ω(1/ log n) fraction of
the instances; that is, the following result refers only to potential solvers (of the Boolean ptroblem)
that err on a vanishing yet noticeable fraction of the domain.

Proposition 3.6 (reducing average-case Arithmetic evaluation to average-case Boolean counting):
Let A′ be as in Definition 3.2, and Φ̂A′ be the corresponding polynomial. Then, for every prime p ≤
poly(n), the problem of evaluating Φ̂A′ on at least a 8/9 fraction of the domain GF(p)n is randomly

reducible in almost-linear time to solving the counting problem associated with B(n′′, p) on at least

1 − (1/O(log p)) fraction of the domain {0, 1}n′′
, where B is as in Definition 3.5 and n′′ = Õ(n).

Furthermore, if ℓ′, d′ and m′ (resp., ℓ′′, d′′ and m′′) are the functions used in the Arithmetic (resp.,
Boolean) problem, then ℓ′′ = ℓ′, d′′(Õ(n)) ≤ poly(log log p) ·d′(n), and m′′(Õ(n)) = O(log n) ·m′(n).

Note that we are only guaranteed that d′′(Õ(n)) ≤ poly(log log n) · d′(n), which means that the
Boolean counting problem is in Cℓ,D only if D has a stronger closure property than postulated in
Definition 2.1 (i.e., we need closure under multiplication by poly(log log n), whereas Definition 2.1
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only postulates closure under multiplication by poly(log d′(n))). This drawback will be removed at
a later stage (i.e., in Section 3.2), when dealing with the more acute drawback of referring only to
vanishing error rates.

Proof: The basic idea is to let the Boolean formula emulate the computation of the Arithmetic
formula φ̂n that appears in Eq. (3). This will be done by using small Boolean formulae φ′

n,p that

emulate the operations of the field GF(p), which are performed in φ̂n. This suggestion raises a
couple of issues.

1. A straightforward representing of elements of GF(p) by ⌈log2 p⌉-bit long strings is good enough
for worst-case to worst-case reductions, but in the context of average-case to average-case
reductions this may fail badly. The problem is that a constant fraction of the ⌈log2 p⌉-bit
long strings may have no preimage under the straightforward encoding, which means that the
straightforward encoding may map n-long sequences of field elements to an exp(−n) fraction
of the n · ⌈log2 p⌉-bit long strings.

Our solution is to use a randomized encoding of the elements of GF(p); specifically, e ∈ GF(p)
will be encoded by a randomly selected element of {e′ ∈ [2O(log(pn))] : e′ ≡ e (mod p)}.

2. The Boolean formula outputs a single bit, whereas the Arithmetic formula outputs an element
of GF(p). Hence, in order to emulate a computation of the arithmetic formula, we need to
combine log2 p Boolean results. Furthermore, we need to compute the sum (in GF(p)) ef many
evaluations of an arithmetic formula, given a procedure that counts the number of times that
a Boolean formula evaluates to 1.

Our solution is to compute the sum of the GF(p)-elements over the integers, and do so by
computing the sum of each bit in the canonical representation of these elements (rather than
in their randomized encodings per Item 1). The Boolean formula that we constructs starts by
mapping the random representation to the canonical one, emulates the arithmetic formula,
and then outputs the desired bit, which is specified as part of its input. The corresponding
answer to the Boolean counting problem will give us the sums of the value of this bit over
the poly(n)-many evaluations of the Arithmetic formula.

The small error rate that we can tolerate is due to the fact that we need to get the correct
values to all log2 p queries, which correspond to all bits in the binary expansion of the canonical
representation of the elements of GF(p). (This can be improved upon using an additional
idea, which we postpone to Section 3.2.)

Details follow.
We shall represent each element of F = GF(p) by an O(log n)-bit long string. Actually, each

element of GF(p) will have poly(n)-many possible representation by bit strings of length log2 p +
O(log n) = O(log n). When reducing the Arithmetic evaluation problem to a Boolean counting
problem, we shall select at random one of these representations; that is, for each input symbol
e ∈ GF(p), we shall select at random e′ ∈ [poly(n)] such that e′ ≡ e (mod p). This redundant
representation is used in order to guarantee that all field elements have approximately the same
number of representations (as O(log n)-long bit strings).

We construct a Boolean formula φ′
n,p, which gets an input a sequence of m′(n) redundant

representations of elements in GF(p). It first map each such representation to the canonical rep-
resentation, and then emulate the computation of the Arithmetic circuit (over GF(p)) using the

16



canonical representations all along. Specifically, the canonical representation of e ∈ GF(p) is the
(zero-padded) binary expansion of e, and the other representations correspond to the binary expan-
sions of e + i · p for each i ∈ [poly(n)]. Hence, the output will be t = ⌈log2 p⌉ bits long, whereas in
the input of the Boolean circuit each field element will be represented by a block of t′ = t+O(log n)
bits.

Next, the Boolean formula φ′
n,p emulates the computation of the corresponding φ̂n (over GF(p)).

Specifically, each arithmetic gate will be replaced by an NC circuit that emulates the corresponding
field operation.13 Note that these gate-emulation circuits operate on (pairs of) inputs of length
log2 |GF(p)| = log2 p, and so their depth is poly(log log p), and that their construction depends on
the prime p.

In addition, we need to slightly modify the sequence of functions that determines the indices
of the field elements fed to φ̂n. Suppose that the sequence fed to φ̂n(w, ·) is determined by
σ′

n,1, ..., σ
′
n,m(n) : {0, 1}ℓ′ → [n]. Then, each σ′

n,j determines the index of a field element in the

input to φ̂n, and so it should be replaced by functions σ′′
n,(t′−1)j+1, ..., σ

′′
n,t′j : {0, 1}ℓ′ → [t′n] that

determine the corresponding bits in the input to φ′
n,p (i.e., σ′′

n,(t′−1)j+k(w) = (t′ − 1) · σ′
n,j(w) + k

for k ∈ [t′]).
Note that the formula φ′

n,p outputs t = log2 p bits, whereas we seek a Boolean formula with a
single output bit. Such a Boolean formula is obtained by using an auxiliary input i ∈ [t], which
determines the bit to be output; that is, φ′′

n,p(w, (·, i)) equals the ith bit of φ′
n,p(w, ·). Hence, on

input (y, i) ∈ {0, 1}n·O(log n) × [t], where y = (y1, ..., yn) is a redudent representation of a sequence
of n elements in GF(p), we consider the counting problem that corresponds to Φ′′

y,i such that
Φ′′

y,i(w) = φ′′
n,p(w, (y, i)σ′′

n(w)), where σ′′
n denote the sequence of σ′′

n,j’s (augmented by functions that
indicate the bit positions of i in the input (y, i)).

In summary, we reduce the evaluation of of Φ̂A′ on input x ∈ GF(p)n to counting the number
of w’s that satisfy Φ′′

y,i(w) = 1, for each i ∈ [t], where y ∈ {0, 1}t′n is a random representation of x.

Specifically, the value of Φ̂A′ on x = (x1, ..., xn) ∈ GF(p)n is obtained as follows.

1. For each k ∈ [n], we randomly map xk ∈ GF(p) to a t′-bit string, denoted yk, that represents
it. Recall that yk ∈ {0, 1}t

′ ≡ [2t′ ] is a random integer that is congruent to xk modulo p.

2. For each i ∈ [t], we compute the number of w’s that satisfy Φ′′
y,i(w) = 1 by invoking the algo-

rithm that supposedly solves the Boolean counting problem (on input (y, i) = (y1, ..., yn, i)),
where Φ′′

y,i is as above (i.e., Φ′′
y,i(w) = φ′′

n,p(w, (y, i)σ′′
n(w)), where σ′′

n denote the sequence of
σ′′

n,j’s).

Recall that the formulae σ′′
n,j determine integers in [t′n + log t] such that the value σ′′

n,j(w)

determines the (|w| + j)th bit that will be fed to φ′′
n,p(w, ·). (Note that the bits in locations

t′n + 1, ..., t′n + log t, which represent i ∈ [t], will always be fed to φ′′
n,p.)

3. Denoting by ci the count obtained by the ith call, we output the value
∑t

i=1 ci · 2i−1 mod p.

The key observation is that

∑

w∈{0,1}ℓ′(n)

Φ̂A′(x1, ..., xn) =
∑

w∈{0,1}ℓ′(n)

φ̂n(w, x
i
(1)
n,w

, ..., x
i
(m(n))
n,w

)

13Recall that integer arithmetics is in NC; see, e.g., [23, Lect. 30].
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≡
∑

w∈{0,1}ℓ′(n)

∑

i∈[t]

φ′′
n,p(w, (y, i)σn(w)) · 2i−1 (mod p)

≡
∑

i∈[t]

2i−1 ·
∑

w∈{0,1}ℓ′(n)

φ′′
n,p(w, (y, i)σn(w)) (mod p).

Hence, EVA′,GF(p)(x) =
∑

i∈[t] 2
i−1 ·#B(n,p)(y, i), where B is the algorithm that (on input n and p)

generates φ′′
n,p (and σn).

Note that, when given a uniformly distributed x ∈ GF(p)n, the ith query made by our reduction

is almost uniformly distributed in Si
def
= {(y, i) : y ∈ {0, 1}n·t′}, where the small deviation arises

from the fact that some elements in GF(p) have ⌊2t′/p⌋ representations, whereas others have ⌈2t′/p⌉
representations.

Now, suppose that we are given an algorithm for the Boolean counting problem associated
with B(n, p) such that for every i ∈ [t] the algorithm errs on an ηi fraction of the inputs in
Si. Then, the probability that our reduction solves EVA′,GF(p) on a random x ∈ GF(p)n is at least
1−∑

i∈[t] ηi−n/p, where the n/p term is due to the aforementioned deviation. Letting η = Ei∈[t][ηi]

denote the fraction of the instances ({0, 1}n·t′ × [t]) on which the counting algorithm errs, it follows
that our reduction has error rate at most t · η + n/p.

Hence, our reduction errs with probability exceeding 1/3 on at most an 3 · (t · η + n/p) < 4tη
fraction of the instances (in GF(p)n). Recalling that we seek to solve EVA′,GF(p) on at least a 8/9
fraction of the inputs in GF(p)n, we need a counting algorithm that errs on at most an η = 1/36t =
1/O(log n) fraction of its inputs.

The claim follows, except that our counting problem refers to 2ℓ′(n) = 2ℓ′′(n) terms and to input-
length of n′′ = t′n+log t = Õ(n), whereas the claim asserts a reduction to a counting problem that
refers to 2ℓ′′(n′′) terms. This formal discrepancy can be fixed by introducing 2ℓ′′(n′′)− 2ℓ′′(n) dummy
terms. Specifically, for λ = ℓ′′(n′′) − ℓ′′(n) ≈ c · log(n′′/n) ≈ c · log t′, we consider counting the
number of (w, v) ∈ {0, 1}ℓ′′(n)+λ that satisfy Φy,i, where Φy,i(w, 1λ) = Φ′′

y,i(w) and Φy,i(w, v) = 0

for every v 6= 1λ.

3.1.2 An intermediate conclusion

Combining Propositions 3.3, 3.4 and 3.6, we obtain a weaker version of Theorem 3.1 in which
the tolerated error rate is smaller and the class of admissible functions is slightly more restricted.
Specifically:

Corollary 3.7 (weak version of Theorem 3.1): Let D be a set of admissible functions that is further

closed under multiplication by poly(log log n) factors, and ℓ be a logarithmic function. Then, for

every counting problem Π in Cℓ,D, there exists a counting problem Π′ in Cℓ,D and an almost-linear

time randomized reduction of solving Π on the worst case to solving Π′ on at least 1− (1/O(log n))
fraction of the domain.

Note that the extra hypothesis regarding D is satisfied in the case that D contains a function d
such that d(n) ≥ exp((log log n)Ω(1)).

Proof: We select a prime number p ∈ (2ℓ(n), 2ℓ(n)+1) at random, and observe that (by Proposi-
tion 3.3) the original (worst-case) counting problem #A is reduced to the Arithmetic evaluation
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problem EVA′,GF(p) (i.e., evaluating the Arithmetic formula Φ̂A′ over GF(p)). We apply the worst-

case to average-case reduction of Proposition 3.4 to the evaluation of Φ̂A′ over GF(p), and next
apply the reduction of Proposition 3.6, which yields a counting problem #B(p) for some adequate

algorithm B (as in Definition 3.5). Hence, we map the parameter d′ ∈ D of Φ̂A′ to a parameter
d′′ of the new counting problem such that d′′(Õ(n)) = poly(log log n) · d′(n). Actually, since both
reduction are randomized, we first apply error reduction so that for instances that are originally
solved correctly (with probability at least 2/3) are solved correctly with probability at least 0.9.

We stress that the prime p is selected, upfront, by our composed reduction; that is, it is
determined prior to applying Propositions 3.3, 3.4 and 3.6. Thus, the algorithm underlying the
final counting problem (i.e., B) views p as part of its input (as in Definition 3.5), whereas the
algorithm in Definition 2.3 gets no such input. To bridge the gap, we include this part of B’s input
(i.e., p) in the input to the counting problem to which we reduce; that is, the input to the counting

problem is now (p, (y, i)) rather than being y′
def
= (y, i) as in the proof of Proposition 3.6. Hence,

we consider the counting problem #B′ such that #B′(p, y′) = #B(p)(y
′).

We stress that B′ is a small variation on B (rather than being B itself): This is obvious given
that B gets the input (n, p), whereas B′ gets the input n only. In addition, B′(n) should construct
small circuits that emulate GF(p) operations, when p ∈ (2ℓ(n), 2ℓ(n)+1) is part of their input, whereas
B(n, p) constructs small circuits that emulate GF(p) operations for a fixed p. Such circuits are still
in uniform NC. We also augment the formula σ′′

n′′ such that p is always fed to the formula φ′′
n′′

(where σ′′
n′′ and φ′′

n′′ are as in the proof of Proposition 3.6). The minor increase in the length of the
input of the counting problem may require additional padding of the index of the summation (but
this is needed only if ℓ(n′ + ℓ(n′)) > ℓ(n′), which is quite unlikely since ℓ(n) = O(log n)).

The analysis uses the fact that if the final counting problem (i.e., #B′) is solved correctly with
probability 1− η, when the probability is take over pairs of the form (p, y′), then, with probability
at least 0.9 over the choice of p, the residual counting problem #B′(p, ·) ≡ #B(p) is solved correctly
with probability 1 − 10η. Hence, the resulting composed reduction reduces solving #A on the
worst-case to solving #B′ on a 1 − η fraction of the instances, provided that 10η ≤ 1/36t, where
t = ⌈log2 p⌉ = ℓ(n) + 1 is as in the proof of Proposition 3.6. The success probability of the entire
(composed) reduction (on each input) is at least 0.93 > 2/3, where one 0.9 factor arises from the
choice of p, and the other two factors are due to the two randomized reductions that we use (whose
error probability was reduction to 0.1 (see above)).

Digest. When tracing the cost of the reduction captured by Corollary 3.7, one should focus on
the depth of the various formulae, while assuming that they are in balanced form (i.e., that their
depth is logarithmic in their size). The reduction in Proposition 3.3 preserves the depth, while
the reduction in Proposition 3.6 increases the depth by a poly(log log p) ≤ poly(log log n) factor,
where p is the size of the field in use. Recall that Proposition 3.4 does not change the formula, and
that the depth overhead in Proposition 3.6 is due to the implementation of the field’s operations
by Boolean formulae. Jumping ahead, we note that using the following Proposition 3.8 allows
using p = exp(d(n)) (rather than p = poly(n)), which means that the depth increase is only a
poly(log d(n)) factor.
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3.2 Deriving the original conclusion

The small level of error rate that is allowed by Corollary 3.7 is rooted mainly in the fact that the

arithmetic evaluation over a field of size p > 2ℓ(n) (which refers to φ̂n (and to the i
(j)
n,w’s)) is emulated

by t = log2 p invocations of a Boolean counting problem, which refers to the Boolean formula φ′′
n,p

(and to σ′′
n). The key observation, made in the proof of Proposition 3.6, is that

∑

w∈{0,1}ℓ(n)

φ̂n(w, x
i
(1)
n,w

, ..., x
i
(m(n))
n,w

) ≡
∑

w∈{0,1}ℓ(n)

∑

i∈[t]

φ′′
n,p(w, (y, i)σ′′

n(w)) · 2i−1 (mod p). (4)

In the proof of Proposition 3.6, we computed the r.h.s of Eq. (4) by counting, separately, for each

i ∈ [t], the number of w’s that satisfy φ′′
n(w, (y, i)σ′′

n(w)), and taking a weighted (by 2i−1) sum
of these counts (modulo p). But an alternative solution is to replace these weights by auxilary
summations; that is, the r.h.s of Eq. (4) can be computed by

∑

i∈[t]

∑

w∈{0,1}ℓ(n)

∑

u∈{0,1}t

φ′′′
n,p(w, u, (y, i)σ′′

n (w)) (5)

such that φ′′′
n,p(w, u, (y, i)σ′′

n(w)) = φ′′′
n,p(w, (y, i)σ′′

n(w)) if u ∈ {0, 1}t ends with t − (i − 1) ones (i.e.,

u ∈ {u′1t−(i−1) : u′ ∈ {0, 1}i−1}) and φ′′′
n,p(w, u, (y, i)σ′′

n(w)) = 0 otherwise. The problem with this
solution is that it doubles the length of the index of the summation (i.e., |(i, w, u)| > ℓ(n) + t ≥
2ℓ(n) = 2|w|). The source of the trouble is that the reduction of the (Boolean) counting to the
Arithmetic evaluation (i.e., Proposition 3.3) uses a setting of p > 2ℓ(n) (which implies t = log2 p >
ℓ(n)).

Instead, we can use a reduction of the Boolean counting problem to O(ℓ(n)/d(n)) arithmetic
problems that refer to fields of size exp(d(n)) = no(1) (rather than of size 2ℓ(n) = poly(n)), where
the field size should be at least exp(d(n)) for the application of Proposition 3.4 (which requires the
field to be larger than the degree bound). The corresponding O(ℓ(n)/d(n)) values will be combined
using Chinese Remaindering with errors (cf. [15]) so that we only incur a constant loss in the
error rate (rather than a loss factor of O(ℓ(n)/d(n))). This “CRT with errors” is reminiscent of
the Berlekamp–Welch algorithm, which was employed in the proof of Proposition 3.4 (in order to
obtain a constant error rate rather than an error rate that is inversely proportional to the degree
of the polynomial).

3.2.1 Revisiting the three basic reductions

We start by presenting revised versions of the three reductions presented in Section 3.1 (i.e., Propo-
sitions 3.3, 3.4 and 3.6). In the revised versions of Propositions 3.3 and 3.6 we use a field of size
exp(d(n)) (rather than of size poly(n)). This already yields improvement in some parameters. In
the revised version of Proposition 3.4 (i.e., the worst-case to average-case reduction for the arith-
metic problem) we use a more refined analysis that allows to reduce the required success rate from
8/9 to 0.5+ ǫ, for any ǫ > 0, while requiring a field size that is O(1/ǫ2) times larger than the degree
of the polynomial. The most important improvement comes from the last reduction (i.e., a revision
of Propositions 3.6), which executes the emulation of Eq. (4) by Eq. (5).

Revised reduction of the Boolean problem to the Arithmetic one. For sake of simplicity,
we first present an alternative to Proposition 3.3 using CRT with no errors. Recall that Proposi-
tion 3.3 (as well as the following alternative) is a deterministic reduction from solving the Boolean

20



problem (in the worst-case) to solving the Arithmetic problem (in the worst-case). In the following
alternative, we consider the same evaluation problem for several fields, while assuming that the
answers obtained for these different fields are all correct. In contrast, we shall use “CRT with
errors” when actually proving Theorem 3.1, which will require dealing with a situation in which
only the answers obtained for 51% of these fields are correct.

Proposition 3.8 (Proposition 3.3, revised): Solving the counting problem associated with an algo-

rithm A and functions ℓ,m and d ∈ D is reducible in almost-linear time to O(ℓ(n)/d(n)) = o(log n)
evaluation problems that are all associated with the same algorithm A′, and finite fields of prime

cardinality at least s = exp(d(n)). Furthermore, the reduction makes a single query to each problem,

the degree of the polynomial Φ̂A′ is o(s), and the functions ℓ,m and d equal those in the counting

problem.

Note that s is set as small as possible subject to being sufficiently larger than the degree of Φ̂A′ . We
wish s to be small because it determines the various overheads that we shall incur when emulating
the Arithmetic formula by Boolean formula (in Proposition 3.10). (On the other hand, using
Proposition 3.9 requires that s be sufficiently larger than the degree of Φ̂A′ .)

Proof: Following the proof of Proposition 3.3, while using the field GF(p) for an arbitrary prime
p, yields a (worst-case) reduction of the “counting (mod p) problem #A” to the evaluation prob-
lem associated with A′ and GF(p), where by counting (mod p) problem #A we mean computing∑

w∈{0,1}ℓ(n) Φx(w) mod p. Invoking this reduction for τ = O(ℓ(n)/d(n)) primes p of size exp(d(n)),
we obtain the sum modulo each of these primes. Finally, invoking the Chinese Remainder Theorem,
the claim follows provided that exp(d(n))τ > 2ℓ(n), which holds for any τ > ℓ(n)

O(d(n)) .

Revised worst-case to average-case reduction for the Arithmetic problem. Foreseeing
that it will be more convenient to perform the third reduction when referring to the notion of
success rate (see Section 1.5), we also present the second reduction in these terms.

Proposition 3.9 (Proposition 3.4, revised): Let P : Fn → F be a polynomial of total degree

D = o(ǫ2 · |F|). Then, evaluating P on any input can be randomly reduced to evaluating P with

success rate at least 0.5 + ǫ, by invoking the latter evaluation procedure for O(D/ǫ2) times.

Recall that the reduction is randomized, and, on each input, it yields the correct answer with
probability at least 2/3.

Proof: On input x ∈ Fn, we select a random curve of degree two that passes through x, and
invoke the evaluation procedure on the first m = O(D/ǫ2) points of this curve. Note that the
queried points are pairwise independent and uniformly distributed in Fn. Hence, with probability
at least 2/3, the evaluation procedure answers correctly on at least a 0.5 + 0.5ǫ fraction of the
queried points. (Indeed, this move from success rate (of 0.5+ ǫ) to (a 0.5+ 0.5ǫ) fraction of correct
answers is analogous to the proof of Proposition 1.5; in the current context we get it “for free”.)

Using the Berlekamp–Welch algorithm, we reconstruct the unique degree D polynomial that
agrees with at least (0.5 + 0.5ǫ) · m of the answers, and return its value at x. (Uniqueness is
guaranteed by D < ǫ ·m.) Hence, the returned value is correct with probability at least 2/3.
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Revised average-case reduction from the Arithmetic problem to the Boolean one. We
finally get to the core of the entire revision, which is the improved reduction that takes us back from
the Arithmetic world to the Boolean world. This improved reduction is based on the emulation of
Eq. (4) by Eq. (5).

Proposition 3.10 (Proposition 3.6, revised): Let A′ be as in Definition 3.2 and Φ̂A′ be the cor-

responding polynomial, where ℓ′, d′ and m′ are the corresponding functions. Then, for every prime

p ≤ poly(n), the problem of evaluating Φ̂A′ : GF(p)n → GF(p) with success rate at least ρ is

randomly reducible in almost-linear time to solving the counting problem associated with B(n′′, p)
with success rate at least ρ + (1/poly(n)), where B is as in Definition 3.5 and n′′ = exp(d′(n)) · n.

Furthermore, the reduction makes a single query, and the functions corresponding to the Boolean

problem are ℓ′′ = ℓ′, d′′(n′′) ≤ poly(log log p) · d′(n), and m′′(n′′) = O(log n) ·m′(n).

We shall use the setting ρ = 0.5 + ǫ > 0.5. We stress that Proposition 3.10 improves over Proposi-
tion 3.6 in its preservation of the success rate (where in Proposition 3.6 solving problem of evaluating
Φ̂A′ with success rate 8/9 was reduced to solving the counting problem associated with B(n′′, p)
with success rate 1− 1/O(log n)).

Proof: Following the proof of Proposition 3.6, we derive the same formula φ′
n,p, and recall that

the formula φ′
n,p outputs t = log2 p bits, whereas we seek a Boolean formula with a single output

bit. Again, the latter formula is derived by using an auxiliary input i ∈ [t], which determines the
bit to be output; that is, φ′′

n(w, i, z) equals the ith bit of φ′
n(w, z), where z = yσ′′

n(w) is a projection
of the bits of the input y to the counting problem. Unlike in the proof of Proposition 3.6, we shall
not view i as part of the input to the counting problem (which is fed into φ′′

n,p, just like z), but
rather as part of the index of summartion (i.e., just as w). The corresponding Boolean formula
Φ′′

y (per Eq. (2)) is such that Φ′′
y(w, i) = φ′′

n,p(w, i, yσ′′
n(w)), where σ′′

n denote the sequence of σ′′
n,j’s.

(That is, the input to this counting problem is y, and the desired output is the number of pairs
(w, i) that satisfy Φ′′

y.) Recall that, on input x ∈ GF(p)n, which is encoded by y ∈ {0, 1}t′n, we do
not wish to obtain

∑
w,i Φ

′′
y(w, i), but rather wish to obtain the related sum

∑

w∈{0,1}ℓ′(n)

∑

i∈[t]

2i−1 · Φ′′
y(w, i), (6)

where y ∈ {0, 1}t′n is a random representation of x. The difficulty is that Eq. (6) does not correspond
to a counting problem, but this can be fixed by replacing the scalar multiplication by 2i−1 with a sum
over 2i−1 terms. Specifically, consider Φ′′′

y : {0, 1}ℓ′(n)× [t]×{0, 1}t such that Φ′′′
y (w, i, u) = Φ′′

y(w, i)

if u ∈ {u′1t−(i−1) :u′∈{0, 1}i−1} and Φ′′′
y (w, i, u) = 0 otherwise. Thus, Eq. (6) equals

∑

w∈{0,1}ℓ′(n)

∑

i∈[t]

∑

u∈{0,1}t

Φ′′′
y (w, i, u). (7)

Hence, we reduce the evaluation of Φ̂A′ on x ∈ GF(p)n to counting the number of (w, i, u)’s that
satisfy Φ′′′

y , where y ∈ {0, 1}t′n is a random representation of x. Specifically, the value of Φ̂A′ on
x = (x1, ..., xn) ∈ GF(p)n is obtained as follows.

1. As in the proof of Proposition 3.6, for each k ∈ [n], we randomly map xk ∈ GF(p) to a
random t′-bit string, denoted yk, that represents it. Recall that yk ∈ {0, 1}t

′ ≡ [2t′ ] is a
random integer that is congruent to xk modulo p (and that t′ = t + O(log n)).
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2. Compute the number of (w, i, u)’s that satisfy Φ′′′
y (w, i, u) = 1 by invoking the algorithm that

supposedly solves the counting problem (on input y = (y1, ..., yn)), where Φ′′′
y is as in Eq. (7).

3. Denoting by c the count obtained by the foregoing invocation, output the value c mod p.

As outlined in the begining of this section (see Eq. (4)-(5)), the key observation is that
∑

w∈{0,1}ℓ′(n)

Φ̂A′(x1, ..., xn) =
∑

w∈{0,1}ℓ′(n)

φ̂n(w, x
i
(1)
n,w

, ..., x
i
(m(n))
n,w

)

≡
∑

w∈{0,1}ℓ′(n)

∑

i∈[t]

φ′′
n,p(w, (y, i)σ′′

n(w)) · 2i−1 (mod p)

≡
∑

i∈[t]

∑

(w,u)∈{0,1}ℓ′(n)+t

φ′′′
n,p(w, i, u, yσ′′

n(w)) (mod p).

where φ′′′
n,p(w, i, u, z) = φ′′

n,p(w, i, z) if u ∈ {0, 1}i−1 × {1}t−i−1 and φ′′′
n,p(w, i, u, z) = 0 otherwise.

Hence, EVA′,GF(p)(x) = #B(p)(y, i), where B is the algorithm that (on input p) generates φ′′′
n,p (and

σ′′
n).

Note that the single query made by our algorithm is almost uniformly distributed in {0, 1}n·t′ ,
where the small deviation arises from the fact that some elements in GF(p) have ⌊2t′/p⌋ represen-
tations, whereas others have ⌈2t′/p⌉ representations. Hence, if the invoked algorithm has success
rate ρ′ (on inputs in {0, 1}nt′ ), then our algorithm will will have success rate at least ρ′−n · (p/2t′)
(on inputs in Fn).

The claim follows, except that our counting problem refers to 2ℓ′(n)+t+log t terms and to input-
length of t′n+log t = Õ(n), whereas the claim asserts a reduction to a counting problem that refers
to 2ℓ′′(n′′) terms and to input length n′′ = exp(d′(n)) · n. This can be fixed by artificially padding
the input to length n′′ and noting that ℓ′′(n′′) ≥ ℓ′(n) + t + log t (where t = log p = d′(n)).14

3.2.2 Proof of Theorem 3.1

The claim of Theorem 3.1 follows by combining the revised reductions provided by Propositions 3.8–
3.10. Specifically, using (a generalization of) Proposition 3.8, we reduce the original counting prob-
lem #A to τ = O(ℓ(n)/d(n)) instances of the Arithmetic evaluation problem, where all instances
refer to the same algorithm A′ but to different primes p > s = exp(d(n)). Note that we can afford
to find and use the first τ such primes (since we can run for poly(s)-time). Hence, in the final
counting problem, denoted #B , the input will be prepended by an index j ∈ [τ ] of one of these
primes, and Propositions 3.9 and 3.10 will be applied to each of these primes.

As hinted above, we shall be using a generalization of Proposition 3.8, rather than Proposi-
tion 3.8 itself. This generalization will allow us to solve #A on the worst-case even when solving,
on the worst-case, only most of the Arithmetic evaluation problems associated with A′, rather than
all of them. Hence, in this step, we lose a factor of 2 + o(1) in the error rate, rather than losing
a factor of τ . The foregoing generalization is obtained by combining the τ results, which refer to
the count modulo different primes, using Chinese Remaindering with errors (cf. [15]). Indeed, the
error-correcting version of the CRT will be used instead of the plain version used in Proposition 3.8,
and the number of primes is increased (from (ℓ(n)/d(n))+O(1) to O(ℓ(n)/d(n)) = τ) so as to allow
for such an error correcting feature.

14This uses the hypothesis that ℓ′′(n) = c log n, which implies that ℓ′′(exp(d′(n)) · n) = O(d′(n)) + ℓ′′(n).
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(Recall that applying Proposition 3.10 increases the depth of the formula by a factor of poly(log d(n))
(rather than poly(log log n)), and increases the length of the input by a factor of exp(d(n)). This
is all due to our using smaller primes (i.e., primes of size exp(d(n)) rather than poly(n)).)

Let us spell out the reduction that is obtained by combining all the above. Recall that we are
given an input x ∈ {0, 1}n to a counting problem #A associated with an algorithm A. For an
arbitrary small constant ǫ > 0, we proceed in three steps, which correspond to the three foregoing
reductions.

1. Denoting the first τ = O(ǫ−1 · ℓ(n)/d(n)) primes that are greater than s = exp(d(n)) by
p1, ..., pτ , we consider the τ evaluation problems obtained by applying the generalized Propo-
sition 3.8 to algorithm A (i.e., all these problems are associated with algorithm A′). The
ith such problem, denoted EVA′,GF(pi), consists of evaluating the polynomial Φ̂A′ at points in
GF(pi)

n, and we shall apply it at the point x ∈ {0, 1}n, viewed as an element of GF(pi)
n.

The difference between Proposition 3.8 and its generalization will arise when we reconstruct
the answer to #A: We shall be employing CRT with errors and reconstruct #A(x) even when
obtaining the correct value of EVA′,GF(pi)(x) only for (0.5 + ǫ) · τ of the i’s.

2. For each i ∈ [τ ], we use Proposition 3.9 to reduce the evaluation of Φ̂A′ at x ∈ GF(pi)
n to

its evaluation at s′ = O(s/ǫ2) points in GF(pi)
n, denoted x(i,j). Actually, this procedure is

repeated for O(log τ) times, and the plurality value is used, so that the probability of error
is smaller than 0.1/τ (rather than smaller than 1/3).

We stress that at this point we only determined the x(i,j)’s, where i ∈ [τ ] and j ∈ [s′′] (where
s′′ = O(s′ log τ)).

3. For each i ∈ [τ ], we apply Proposition 3.10 to Φ̂A′ , while providing pi as an auxiliary input.
Denoting the resulting Boolean formulae by Φ(i)’s, we consider the Boolean formula Φ that is
given i as auxiliary input and applies the relevant Φ(i); that is, Φ(i, z) =

∨
j∈[τ ](i=j∧Φ(j)(z)).

Denoting the corresponding algorithm that produces Φ by B, the foregoing specifies the
counting problem #B .

At this point, for each i ∈ [τ ] and j ∈ [s′′], we select uniformly at random a representation
y(i,j) ∈ {0, 1}n′

of x(i,j) ∈ GF(pi)
n, where n′ = exp(d(n)) · n.

The actual computation (of the reduction) goes in the opposite direction. For every i ∈ [τ ] and
j ∈ [s′′], let v(i,j) denote the answer provided (by a hypothetical solver of the counting problem
#B) for the input y(i,j); that is, v(i,j) is supposed to equal #B(i, y(i,j)), where #B(i, y(i,j)) ≡
EVA′,GF(pi)(x

(i,j)) (mod pi). Now, for each i ∈ [τ ], we apply the decoding procedure (of Proposi-

tion 3.9, with error reduction) to the values v(i,1), ..., v(i,s′′), and obtain a value v(i) ∈ GF(pi), which
is supposed to equal #A(x) mod pi. Finally, we perform Chinese Remaindering with errors on the
v(i)’s, and obtain the desired value of #A(x), with high probability.

In the analysis, we observe that if some procedure P solves the final counting problem (i.e.,
#B) with success rate at least a 0.75 + ǫ (on instances (i, y) ∈ [τ ] × {0, 1}n′

), then, for at least
0.5 + ǫ of the i ∈ [τ ], the procedure P solves this counting problem with success rate at least a
0.5 + ǫ (on instances of the form (i, ·)). Hence, for each of these majority i’s, Proposition 3.10
yields a procedure that solves EVA′,GF(pi) with success rate at least (0.5 + ǫ− o(1)) (over instances
in GF(pi)

n). This means that, for each of these i’s, the hypothesis of Proposition 3.9 holds, and
so (for each of these i’s) the decoding procedure (of Proposition 3.9) obtains (w.h.p.) the value of
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#A(x) mod pi. In this case, Chinese Remaindering with errors works, since the error rate is below
its resiliency rate (i.e., log p1

log p1+log pτ
− ǫ

2 ). The theorem follows.

4 The average-case to rare-case reduction

Fixing any admissible class D and a logarithmic function ℓ, and letting C = Cℓ,D, Theorem 3.1
provides an almost-linear time randomized reduction of solving any problem Π in C on the worst-
case to solving such some problem Π′ in C on the average-case, where the notion of average-case
requires solving the problem on at least a 0.76 fraction of the instances. In this section we show
that, for every d ∈ D, the latter (average-case) task can be reduced to solving a related problem
on at least a exp(−d(n)) fraction of the instances. Combined, these reductions show that solving
the latter related problem on a noticeable fraction of its domain is essentially as hard as solving Π
on the worst-case.

We show two related results of this flavor. The first result, stated in Theorem 1.3, shows a
non-uniform reduction from the average-case task Π′ to solving some problem Π′′ in C on at least
a exp(−d(n)) fraction of the instances. The second result, stated in Theorem 4.4, shows a uniform

reduction to solving some problem Π̂. While Π̂ is not in C, it can be solved in Dtime(p(n) ·n1+o(1)),
where p(n) = 2ℓ(n) · exp(d(n)) bounds the worst-case time of solving Π′. On a technical level,
both results use sample-aided reductions: reductions that are given uniformly-distributed “solved
instances” of the problem that they aim to solve. We provide a definition of this relaxed notion of
a reduction between problems, which has been implicit in several past works, and which we find to
be of independent interest.

Overview. Our starting point is the realization that when referring to such low success rate (i.e.,
a exp(−d(n)) fraction for some d ∈ D), we are in the regime of list decoding. Hence, for starters,
Proposition 3.9 should (and can) be replaced by the list decoding result of Sudan, Trevisan, and
Vadhan [29, Thm. 29]. This result essentially asserts the existence of an explicit list of oracle

machines such that, for every low-degree polynomial P : Fn → F and every F : Fn → F that

agrees with P on a noticeable fraction of the instances, one of these machines computes P correctly

on all instances when given oracle access to F .
Trying to integrate this result in the procedure presented in Section 3.2 means that we proceed

as follows: First, we reduce solving the Boolean counting problem Π′ on the average-case (i.e., on
76% of the instances) to evaluating a polynomial Φ̂ over exp(d(n))-many different prime fields (on
all instances). Next, we apply the foregoing reduction of [29, Thm. 29] in each of these fields, and
finally we reduce the oracle calls made by the latter reductions to solving the Boolean counting
problem Π′′ (on a noticeable fraction of the instances). (Although the statement of [29, Thm. 29]
only claims running time that is polynomial in all relevant parameters, it is clear that the running
time is linear in the number of variables.)

As in Section 3.2, the input to Π′′ is a pair of the form (p, y), where p is a prime and y represents
an input to the problem of evaluating Φ̂ in GF(p). Hence, solving Π′′ on a noticeable fraction of its
inputs implies that for a noticeable fraction of the primes p, we correctly solve Π′′ on a noticeable
fraction of the inputs of the form (p, ·). This implies that, when given oracle access to such a
rare-case solver for Π′′(p, ·), one of the foregoing oracle machines computes Φ̂ : GF(p)n → GF(p)
correctly on all inputs. If we can identify these primes p and the corresponding oracle machines,
then we can solve Π′ (on all its instances). (Jumping ahead, we mention that we shall only solve Π′
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on 1− o(1) > 76% fraction of its instances, because our identification of the good machines will be
approximate in the sense that machines that are correct on almost all their inputs may also pass.)

To see how we can identify these primes and machines, suppose that we have access to uniformly
distributed “solved instances” of Π′ (i.e., we get a sample of pairs (r,Π′(r)) for uniformly distributed
r’s). Using such a sample of solved instances it is easy to estimate the probability that a procedure
(e.g., an oracle machine equipt with an adequate oracle) correctly computes Π′ mod p: We just
compare the value provided for each of the sample points r to the value computed by the procedure.
In particular, we can distinguish a procedure that is always correct from a procedure that errs on at
least 1/ log n of the inputs. Hence, given a list of oracle machines for each of the (exp(d(n))-many)
primes, we can pick ℓ(n)/d(n) distinct primes (i.e., p’s), and an oracle machine for each such prime
p such that the chosen machine computes Π′ mod p correctly on at least 1 − (1/ log n) fraction of
the inputs. Using Chinese Remaindering without errors, this allows us to compute Π′ correctly on
at least 1− ℓ(n)

d(n) · 1
log n = 1− o(1) fraction of the inputs. For details see Section 4.1.

Three ways of obtaining a sample of solved instances. The foreging discussion leaves us
with the problem of obtaining uniformly distributed “solved instances” of Π′. There are two trivial
solutions to this problem: The first is that such random solved instances may be available to
us in the application, and the second is that such solved instances can be “hard-wired” in the
reduction. The second solution yields a non-uniform reduction, which establishes Theorem 1.3. A
third solution, detailed in Section 4.2, is that such samples can be obtained by a downwards self-
reduction, whereas each problem in C can be reduced to a problem that has a suitable downwards
self-reduction.15 Unfortunately, we were not able to apply this idea to the reduction of Π′ to Π′′;
instead, we apply it to the (“internal”) reduction of the Arithmetic problem (i.e., to the reduction
between the worst-case and rare-case versions of the Arithmetic problem). This yields the result
stated in Theorem 4.4.

4.1 A sample-aided reduction

We start by spelling out the notion of a reduction that obtains uniformly distributed “solved
instances” of the problem that it tries to solve. We call such a reduction sample-aided, and formulate
it in the context of average-case to average-case reductions (while noting that worst-case settings
can be derived as special cases).

Definition 4.1 (sample-aided reductions, Definition 1.4 revisited): Suppose that M is an oracle

machine that, on input x ∈ {0, 1}n, obtains as an auxiliary input a sequence of s = s(n) pairs of

the form (r, v) ∈ {0, 1}n+ℓ(n). We say that M is an sample-aided reduction of solving Π′ on ρ′ of the
instances to solving Π′′ on ρ′′ of the instances if, for every procedure P that answers correctly on at

least a ρ′′ fraction of the instances of length n′′, it holds that

Prr1,...,rs∈{0,1}n

[∣∣∣corrP,Π′

M (r1, ..., rs)
∣∣∣ ≥ ρ′ · 2n

]
> 2/3 (8)

where corr
P,Π′

M (r1, ...., rs) denotes the set of inputs on which the reduction returns the correct an-

swer; that is,

corr
P,Π′

M (r1, ...., rs)
def
=

{
x ∈ {0, 1}n : Pr[MP (x; (r1,Π

′(r1)), ..., (rs,Π
′(rs))) = Π′(x)] ≥ 2/3

}
(9)

15Indeed, this follows a paradigm that can be traced to the work of Impagliazzo and Wigderson [20].
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and the latter probability is taken over the coin tosses of the machine M and the procedure P .

The error probability bounds in Eq. (8)-(9) can be reduced at a moderate cost. This is straight-
forwards for Eq. (9), but the error reduction for Eq. (8) comes at a (small) cost and requires some

care. Specifically, we have to approximate the size of the set corrP,Π′

M (r1, ...., rs). This can be done
using an auxiliary sample of the solved instances; in particular, for every ǫ > 0 and k ∈ N, using
O(k · s) + O(k/ǫ2) solved samples, we can output a sequence of s solved samples r such that, with

probability at least 1− exp(−k), it holds that
∣∣∣corrP,Π′

M (r)
∣∣∣ > (ρ′ − ǫ) · 2n.

Although Definition 4.1 is stated in terms that fit average-case to rare-case (or average-case)
reductions, the definition also applies to reductions from worst-case problems (by setting ρ′ = 1).

We mention that sample-aided reductions are implicit in many known results (see, for exam-
ple, [14, 29, 21]). Furthermore, any average-case to rare-case reduction of the “list-decoding” type
(i.e., which outputs a short list of oracle machines that contains the correct one) yields a sample-
aided reduction (as in Definition 4.1).16

Our sample-aided reduction. Turning back to our specific context, we present a sample-aided
reduction of solving any counting problem in Cℓ,D on at least 99% of the inputs to solving some
other problem in Cℓ,D on 1% of the inputs. Actually, 99% and 1% can be replaced by 1−exp(−d(n))
and exp(−d(n)), respectively, for any d ∈ D.

Theorem 4.2 (sample-aided reduction of average-case to rare-case for counting problems): Let

D be a set of admissible functions, d ∈ D, and ℓ be a logarithmic function. For every counting

problem Π′ in Cℓ,D, there exists a counting problem Π′′ in Cℓ,D and an almost-linear time sample-

aided reduction of solving Π′ : {0, 1}n′ → N on at least 1 − exp(−d(n′)) fraction of the domain to

solving Π′′ : {0, 1}n′′ → N on at least exp(−d(n′′)) fraction of the domain.

In particular, Theorem 4.2 yields an almost-linear time non-uniform reduction of solving Π′ on at
least 1− exp(−d(n′)) fraction of the domain to solving Π′′ on at least exp(−d(n′′)) fraction of the
domain. Combining this non-uniform reduction with Theorem 3.1, we obtain Theorem 1.3.

Proof Sketch: Given an input x ∈ {0, 1}n, we seek to output Π′(x), and we are required to
provide the correct output (with high probability) on at least a 1 − exp(−d(n)) fraction of the
possible x’s. The general plan is to mimic the proof of Theorem 3.1, while replacing the worst-case
to average-case reduction (of the arithmetic problem) by a worst-case to rare-case reduction, and
coping with the difficulties that arise. Hence, we first reduce the counting problem Π′ to the task
of evaluating a polynomial Φ̂ in many prime fields, then move from a worst-case version of the
aritmetic problem to a rare-case version of it, and reduce the latter to a rare-case version of solving
the counting problem Π′′.

We start by employing a reduction as in Proposition 3.8, except that here we use poly(D) primes
of size poly(D), where D = exp(d(n)) denotes the degree of the polynomial Φ̂ that is derived in
Proposition 3.8; specifically, we refer to the first Θ(D · ℓ(n)) primes that are larger than poly(D).

16The auxiliary sample can be used to test the candidate oracle machines (as outlined in the foregoing discussion).
Note that this allows to distinguish machines that are correct on all inputs from machines that err on a noticeable
fraction of the inputs, but not to rule out machines that err on a negligible fraction of the inputs. Hence, a worst-case
to rare-case reduction of the list-decoding type only yields a sample-aided reduction from solving the original problem
on a 1 − o(1) fraction of the instances.

27



Note that at this point we only produce the polynomial Φ̂ and determine the fields in which it will
be evaluated. (Recall that Φ̂ is a generic polynomial that will be evaluated over different finite
fields. Jumping ahead, we note that, on input x, we shall only use the evaluation of Φ̂ at x in
ℓ(n)/d(n) of these fields, and combine these values using Chinese Remaindering (without errors).)

Next, for each prime p, we invoke [29, Thm. 29] to obtain O(1/ǫ) oracle machines that supposedly
evaluate Φ̂ on GF(p)n, when given oracle access to a procedure that computes Φ̂ correctly on an ǫ
fraction of the inputs, where ǫ = exp(−d(n)). Now, for each prime p, we invoke Proposition 3.10
in order to answer the queries of these oracle machines such that query q ∈ GF(p)n is answered
by querying Π′′ on the pair (p, y), where y is a (random) representation of q. Let us denote the
random-representation generator by rr; that is, y ← rr(q). We also note that Π′′ is actually fed the
index of p in the said set of primes (or some other representation that selects such primes almost
uniformly).17

(Recall that if the counting problem Π′′ is solved correctly on an 2ǫ fraction of the inputs, then,
for at least an ǫ fraction of the p’s, the solution provided for at least ǫ fraction of the fairs (p, ·) is
correct. For each such p, at least one of the foregoing oracle machines will evaluate Φ̂ correctly on
GF(p)n when fed with answers obtained from this “rare-case Π′′-solver”.)

For each prime p and for each of the corresponding oracle machines M , we approximate the
success probability of M in evaluating Φ̂ over a random element in {0, 1}n, which is viewed as an
element of GF(p)n. Recall that when restricted to {0, 1}n, the polynomial Φ̂ equals the value of
the counting problem Π′. Hence, we can approximate the success probability of M in evaluating
Φ̂ over {0, 1}n by using the solved sample for Π′. (We stress that while Φ̂ and M are defined over
GF(p)n, we approximate their agreement rate over {0, 1}n, which suffices for our application.)18

Specifically, for each pair (r, v) ∈ {0, 1}n+ℓ(n) in the sample (such that v = Π′(r)), we compare
v to the output of M on input r, while answering the queries of M with the values obtained by
the reduction to solving the counting problem Π′′ such that the query q ∈ GF(p)n is answered by
taking the count provided for the input (p, rr(q)) and reducing it modulo p. If any mismatch is
found, then M is discarded as a candidate reduction, and if all oracle machines that correspond to
p are eliminated then so is p itself.

Note that a (solved) sample of size exp(d(n)) suffices to approximate all poly(D) = exp(d(n))
quantities such that, with high probability, all values that are below 1− exp(−d(n)) are estimated
as smaller than 1. Hence, with high probability, the list of surviving machines will only contain
machines that are correct on at least a 1− exp(−d(n)) fraction of the inputs in {0, 1}n. Needless to
say, with high probability, the said list contains all machines that are correct on all inputs, where
the small probability of error is due to the error probability of the (randomized) oracle machines.
Hence, the said list contains more that ℓ(n)/d(n) machines that correspond to different primes,
since we can have ǫ · poly(D) > ℓ(n).

Lastly, we pick any ℓ(n)/d(n) surviving primes, and pick any surviving oracle machine for each
of them. For each such prime p and machine M , we use M to solve “Π′ mod p” on the original
input x ∈ {0, 1}n, which is viewed as an element of GF(p)n. As above, this is done while answering
the queries of M with the values obtained by the reduction to solving the counting problem Π′′ such
that the query q ∈ GF(p)n is answered by taking the count-value provided for the input (p, rr(q))

17Note that the formula Φ that underlies the counting problem Π′′ can be implemented as a selector function that
picks the corresponding formula Φ(p) that emulates the computation of bΦ in GF(p)n.

18In contrast, it is not clear how to approximate the agreement of bΦ and M over GF(p)n, since we only have a
solved sample of instances that are uniformly distributed in {0, 1}n.
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and reducing it modulo p. Finally, we combine the values obtained for the count modulo each
of these primes, by using Chinese Remaindering (without errors). Assuming that the surviving
machines that we picked are typically correct on x, with high probability, the resulting value equals
the value of Π′(x).

The analysis amounts to showing that, with very high probability, each of the surviving machines
is correct on at least a 1−exp(−d(n)) fraction of the inputs in {0, 1}n, whereas all correct machines

survived. Hence, the value computed via the CRT is correct on at least a 1 − ℓ(n)
d(n) · exp(−d(n))

fraction of {0, 1}n. The claim follows.

Digest. The sample-aided reduction used in the proof of Theorem 4.2 is the result of composing
three reduction, where the second reduction (i.e., the worst-case to average-case reduction of the
evalutation of the polynomial Φ̂) is actually the one that is sample-aided. However, this second
reduction is sample-aided with respect to the set of instances GF(p)n, where p is a generic prime
(which is sufficiently larger than the degree of Φ̂), and the reduction uses its solved sample in order
to estimate the success probability over GF(p)n of several candidate solvers. If we were to compose
this reduction with the (worst-case) reduction of solving the counting problem Π′ to evalutating Φ̂,
we would not have obtained a sample-aided reduction of Π′ to Φ̂, since the solved sample would
have been of n-bit inputs to Π′ whereas the sample-aided reduction for Φ̂ requires solved instances
drawn uniformly from GF(p)n. Instead, we composed the first two reductions, while using the
sample of solved instances for Π′ in order to estimate the success rate of candidate solvers for Φ̂
in solving random instances in {0, 1}n. This yields a sample-aided reduction of Π to Φ̂, which
reduces solving Π′ with success rate 1− o(1) to solving Φ̂ with success rate o(1). (Combined with
the success-rate preseving reduction of Φ̂ to Π′′, we establish Theorem 4.2.)

4.2 Obtaining solved samples via downwards self-reduction

A general paradigm that can be traced to the work of Impagliazzo and Wigderson [20] asserts
that if Π′ is “downward self-reducible” and Π′ has a sample-aided reduction to Π′′, then Π′ has

a standard reduction to Π′′. Loosely speaking, on input x ∈ {0, 1}n, the standard reduction first
generates a (solved) sample for Π′, for each length m ≤ n, where these samples are generated
starting at m = 1 and going upwards to m = n. Specifically, when generating the sample for
length m, we produce the answers by using the downwards self-reduction, which generates queries
of length m− 1, which in turn are answered by the sample-aided reduction of Π′ to Π′′, while using
the (already generated) sample for length m− 1. At the end, the answer to the original input x is
found using the sample-aided reduction of Π′ to Π′′ , while using the sample for length n.

4.2.1 Difficulties and resolving them

The foregoing outline works well in the context of worst-case to rare-case reductions, since in that
case the solved sample generated for length m−1 is perfect (i.e., free of errors). But when using an
average-case to rare-case reduction (as in Section 4.1), we run into a problem: In that case, we can
only guarantee that 1−ρ′ fraction of the solutions obtained for the sampled (m−1)-bit instances are
correct, and in such a case the fraction of errors in the solved sample of m-bit instances generated
via downwards self-reduction may increase by a factor that equals the query complexity of the
latter reduction, which is typically at least two. The error-doubling effect is disastrous, because
the downwards self-reduction is applied many times.
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In light of the above, we wish to apply the foregoing process to a worst-case to a rare-case re-
duction, and recall that the reduction of [29, Thm. 29] is actually of that type. Hence, starting from
an arbitrary problem Π in C, we first reduce it to a problem of evaluating low-degree polynomials
that is downwards self-reducible, and apply the methodology at that level (i.e., on the worst-case
to rare-case of the polynomial evaluation problem). This problem will be a generalization of the
evaluation problem presented in Definition 3.2, where the generalization is aimed at supporting an
adequate notion of downwards self-reducibility.

Refining the notion of downwards self-reducibility. Before presenting this generalization,
we introduce a more stringent notion of downwards self-reducibility, which is essential to our ap-
plication. In particular, we require the reduction to work in almost-linear time (rather than in
polynomial-time), and that the iterative process of downward self-reduction terminates after few
steps (when reaching input length that is only slightly smaller than the original one). Specifically,
we say that a problem Π is downward self-reducible if there exists an almost-linear time oracle ma-

chine that, on input x ∈ {0, 1}n, makes queries of length n − 1 only, and outputs Π(x) provided

that its queries are answered by Π.
In addition, we require that for a sufficiently dense set of input lengths, the problem can be

solved in almost linear time without making any queries to shorter input lengths (i.e., for these input
lengths, the oracle machine makes no queries at all). Specifically, for some d ∈ D, we require that for

every n ∈ N the interval [n+1, n+exp(d(n))] contains such a length. This additional requirement,
hereafter referred to as Condition A, offers a crucial saving in the foregoing transformation from
sample-aided reductions to standard reductions: The iterative downwards reduction procedure
reaches the “base case” rather quickly; that is, on input x ∈ {0, 1}n, the iterative downwards
reduction stops at length n′ such that n′ ≥ n− exp(d(n)) (i.e., the downwards self-reduction makes
no queries on inputs of length n′). Consequently, it suffices for the standard reduction to generate
samples for lengths n′, n′ + 1, ..., n.

Generalizing the evaluation problem. Turning to the generalization of the evaluation problem
presented in Definition 3.2, we seize the opportunity to pack together the different problems defined
for the various fields. Recalling that the proof of Proposition 3.8 utilizes only ℓ(n)/d(n) different
fields, which correspond to the first ℓ(n)/d(n) primes that are larger than 2d(n), we make the index
of the field part of the input. Furthermore, we present the index of the field in unary so that inputs
that correspond to different fields have different lengths, and rely on the fact that the rare-case
solver is supposed to work for all input lengths.19

To obtain a downward self-reduction, we reduce the original n-bit long instance, which sums
over the entire range of indices {0, 1}ℓ(n) (i.e., the index w in Eq. (3) of Definition 3.2), to (two
instances of) summation over a smaller range {0, 1}ℓ(n)−1. This is accomplished in the natural way
by fixing the first bit of the summation-index (to 0 or 1), and making this bit part of an augmenged
input. Similarly, for any j ∈ [ℓ(n)− 1], summation over a restricted range {0, 1}ℓ(n)−j is reduced to
(two instances of) summation over the smaller range {0, 1}ℓ(n)−j−1, which yields inputs that have

19We shall reduce solving the original (worst-case) instance of length n to rare-case solving instances of various
lengths, which correspond to different prime fields. Hence, for each input length for the original problem, we rely on
being able to rarely solve the reduced problem on several input lengths (rather than on one input length as in the
reductions presented so far). We note that this disadvantage is inherent to the downwards self-reduction paradigm
of [20], so we may just take advantage of it for this additional purpose.

30



j +1 bits of augmentation. Finally, when the “summation” is over a single element, which happens
when the augmented input has length n + ℓ(n), the problem can be solved directly in nearly-linear
time, which satisfies the additional condition (Condition A) of downward self-reducibility.

Note that the foregoing iterative process increases the length of the input in each iteration by
one bit, whereas we want the input length to decrease in the iterations. This is achieved by padding
the original input, and removing two bits of this padding in each iteration.

Thus, we divide the input to the problem into three parts, denoted u, v and x. The first part
(i.e., u) includes the index of the field in unary, as described above, as well as the padding for
guaranteeing that the input length shrinks when we fix an additional bit of the summation-index.
The second part (i.e., v) represents the prefix of the summation-index (which has been fixed), and
x is the “main” input. We shall use a multi-linear extension SEL : GF(p)log2 n ×GF(p)n → GF(p)
of the selection function sel : {0, 1}log2 n×GF(p)n → GF(p), which satisfies sel(α, x) = xint(α)+1,
where int(α) is the integer represented by the binary string α; that is,

SEL(ζ, x) =
∑

β∈{0,1}log2 n

∏

k∈[log2 n]

(βkζk + (1− βk)(1− ζk)) · xint(β)+1

(i.e., crucial point is that SEL(ζ, x) is the sum of n terms such that the ith term is a multilinear
function of the ζk’s and xi).

Definition 4.3 (generalization of Definition 3.2): For d ∈ D and n ∈ N, let p1, ..., pℓ′(n) denote the

first ℓ′(n) = ℓ(n)/d(n) primes that are larger than 2d(n), and Ln = {0, 1, ..., ℓ(n)}. For A′, φ̂n and

πn,1, ..., πn,m(n) as in Definition 3.2, the generalized evaluation problem associated with A′ consists

of computing the function

Φn :
⋃

i∈[ℓ′(n)],j∈Ln

GF(pi)
ℓ(n)2·n+(ℓ(n)+1)·i−j ×GF(pi)

n →
⋃

i∈[ℓ′(n)]

GF(pi)

defined as follows: For every i ∈ [ℓ′(n)] and j ∈ Ln, and every x = (x1, ..., xn) ∈ GF(pi)
n and

(u, v) ∈ GF(pi)
ℓ(n)2·n+(ℓ(n)+1)·i−2j ×GF(pi)

j , it holds that

Φn(uv, x)
def
=

∑

w′∈{0,1}ℓ(n)−j

φ̂n(vw′, F1(vw′, x), ..., Fm(n)(vw′, x)) mod pi, (10)

where Fk(w, x) = SEL(π̂n,k(w), x) and π̂n,k : GF(pi)
ℓ(n) → GF(pi)

log n is a low degree polynomial

that agrees with πn,k : {0, 1}ℓ(n) → [n] (cf. the proof of Proposition 3.3).

Note that uv is a sequence of ℓ(n)2 · n + (ℓ(n) + 1) · i − j elements of GF(pi), and that the said
length determines both i and j.

The generalized evaluation problem is suitable for our application. We first observe that
Definition 4.3 is suitable for our application, since it is downward self-reducible in an adequate sense
and generalizes Definition 3.2. For simplicity, the reader may consider the length of the instance
(uv, x) in terms of GF(pi)-elements (i.e., as equal (ℓ(n)2 +1) ·n+(ℓ(n)+1) · i− j), but the following
observations remain valid also when defining the length of that instance as d(n) + 1 times longer
(and observing that all pi’s satisfy ⌈log pi⌉ = d(n) + 1).
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1. The problem in Definition 3.2 (when restricted to any of the fields GF(pi)) is (worst-case)
reducible to the problem in Definition 4.3 (equiv., each counting problem in C is reducible to
the generalized evaluation problem).

The reduction consists of mapping the instance x ∈ GF(pi)
n to the instance (1ℓ(n)2·n+(ℓ(n)+1)·i, x),

where 1ℓ(n)2·n+(ℓ(n)+1)·i is viewed as a sequence of length ℓ(n)2 · n + (ℓ(n) + 1) · i over GF(pi).
(Equivalently, the proof of Proposition 3.8 can be similarly adapted.)

2. The mapping (n, i, j) → (ℓ(n)2 + 1) · n + (ℓ(n) + 1) · i − j is injective when restricted to
i ∈ [ℓ′(n)] and j ∈ Ln, since ℓ′(n) < ℓ(n) (and Ln = {0, 1, ..., ℓ(n)}).
This means that instances associated with different (n, i, j)’s have different lengths, as posu-
lated in the motiovating discussion (see also Footnote 19).

3. The function Φ satisfies the main condition of downward self-reducibility, since for every
x ∈ GF(pi)

n and (u, v) ∈ GF(pi)
ℓ(n)2·n+(ℓ(n)+1)·i−2j × GF(pi)

j , where i ∈ [ℓ′(n)] and j ∈
{0, 1, ..., ℓ(n) − 1}, it holds that Φ(uv, x) = Φ(u′0v, x) + Φ(u′1v, x), where u′ is the (ℓ(n)2 ·
n + i · ℓ(n)− 2(j + 1))-long prefix of u (i.e., u = u′τ1τ2 for some τ1, τ2 ∈ GF(pi)).

(Indeed, the fact that u′ is two field-elements shorter than u, allows to extend v by one
field-element, while yielding an input that is shorter than the original one.)

4. The function Φ satisfies the additional condition (Condition A) of downward self-reducibility,
since for every x ∈ GF(pi)

n and (u, v) ∈ GF(pi)
ℓ(n)2·n+(ℓ(n)+1)·i−2ℓ(n) × GF(pi)

ℓ(n), where
i ∈ [ℓ′(n)], it holds that Φ(uv, x) = φ̂n(v, F1(v, x), ..., Fm(n)(v, x)) mod pi, because in this case
j = ℓ(n).

(Note that computing φ̂n(v, F1(v, x), ..., Fm(n)(v, x)) essentially reduces to computing Fk(w, x) =
SEL(π̂n,k(w), x) for every k ∈ [m(n)], we can be computed in almost-linear time.)

These observations will be used when proving the following.

Theorem 4.4 (worst-case to rare-case reduction): Let D be a set of admissible functions, d ∈ D,

and ℓ be a logarithmic function. For every counting problem Π in C = Cℓ,D, there exist a generalized

evaluation problem Φ (as in Definition 4.3) and an almost-linear time randomized reduction of

solving Π (in the worst-case) to solving Φ on at least exp(−d(n)) fraction of the domain.

Recall that the foregoing evaluation problem can be solved in time 2ℓ(n) · n1+o(1). Hence, we have
reduced the worst-case complexity of C to the rare-case complexity of Φ, while upper-bounding the
worst-case complexity of Φ (alas not reducing Φ to C).
Proof Sketch: By the forgeoing discussion, solving Π reduces to solving Φ. Specifically, for every
z ∈ {0, 1}n, the value of Π(z) is obtained by applying the Chinese Remaindering (without errors)
to the values of Φ on the ℓ′(n) instances (1ℓ(n)2·n+(ℓ(n)+1)·i, z) for i ∈ [ℓ′(n)]. Hence, fixing any
(n ∈ N and) i ∈ [ℓ′(n)] and following the length convention stated above (i.e., considering the
length of GF(pi) sequences), we focus on reducing the task of computing Φ on any instance of
length ñi = (ℓ(n)2 + 1) · n + (ℓ(n) + 1) · i to obtaining this value of an ǫ = exp(−d(n)) fraction of
these instances (i.e., members of GF(pi)

eni).
(Note that we reduced obtaining the value of Π on an arbitrary (worst-case) z ∈ {0, 1}n to

obtaining values of Φ on ℓ′(n) related instances, having varying lengths, where the ith instance has
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length ℓ(n)2 · n + (ℓ(n) + 1) · i + n = ñi (i.e., it consists of padding z with ñi − n ones). Thus, we
presented a (worst-case to worst-case) reduction from solving Π for every input length on all inputs

to solving Φ for every input length on all inputs. We stress that this reduction does not reduce
solving Π on all inputs of a specific length n to solving Φ on all inputs of some (possibly other)
length n′. The next step, which is based on a downward self-reduction, will have a similar flavour
(w.r.t input lengths): We shall present a worst-case to rare-case reduction from solving Φ for every

input length on all inputs to solving Φ for every input length on rare inputs. Indeed, using many
input lengths in the target of the reduction is inherent to the use of downward self-reductions.)

Focusing on the goal of presenting a worst-case to rare-case reduction for the evaluation of Φ
over GF(pi)

eni , we observe that the list-decoder algorithm of [29, Thm. 29] yields a sample-aided
reduction that achieves the desired goal. Specifically, as stated, their algorithm outputs a list of
O(1/ǫ) oracle machines that contain machines that compute any polynomial that has agreement
at least ǫ with the given oracle, and it works in time poly(1/ǫ) · Õ(n) = exp(d(n)) · n, which is
almost-linear time.20 The foreging list may contain also other machines. Still, using low-degree
tests (e.g., [27]), we can guarantee that all machines on the list are very close to computing some
low degree polynomial, and by employing self-correction procedures (e.g., [11]) we obtain machines
that compute low degree polynomials.

We next convert the list-decoder of [29, Thm. 29] into a sample-aided reduction, by identifying
the machines that compute the correct polynomial. Specifically, using a solved sample for the
evalution problem of the polynomial that we seek to compute (i.e., Φ : GF(pi)

eni → GF(pi)), we
can identify machines that computes the correct polynomial (since the other machines compute
polynomials that disagree with the correct polynomial on most inputs).21 Although this machine
may not be unique, all surviving machines compute the same polynomial, and we may use any of
them. Note that a sample of size O(log(1/ǫ)) = O(d(n)) suffices for identifying all bad machines
with high probability.

The solved sample for Φ : GF(pi)
eni → GF(pi) is obtained by the foregoing downwards self-

reduction, while using the fact that, for every j ∈ Ln, we can apply the foregoing argument to
Φ : GF(pi)

eni−j → GF(pi). Specifically, on input y ∈ GF(pi)
eni , we proceed as follows.

1. Generate a random sample of O(d(n)) solved instances for Φ : GF(pi)
eni−ℓ(n) → GF(pi),

while relying on the fact that, for such an input length, the function Φ can be computed in
almost-linear time (see Condition A of downward self-reducibility).

2. For k = ñi − ℓ(n) + 1, ..., ñi (equiv., using k = ñi − j for j = ℓ(n) − 1, ..., 0), generate a
random sample of O(d(n)) solved instances for Φ : GF(pi)

k → GF(pi), where the values
of Φ on each (random sample point) r = (uv, x) ∈ GF(pi)

k−n × GF(pi)
n is obtained by

invoking the downwards self-reducibilirty on input r and answering its queries by using the
sample-aimed reduction for inputs of length k − 1 (while using the samples generated in the
previous iteration). Recall that on input r = (uv, x) ∈ GF(pi)

eni−2(eni−k)+(eni−k)−n × GF(pi)
n

the value of Φ(r) is obtained by querying Φ on (u′v0, x) and on (u′v1, x), where u′ is the
(ñi−2(ñi−k)−2)-long prefix of u, and that these inputs are of length ñi−(ñi−k)−1 = k−1.

20As noted in Section 4.1, although the statement of [29, Thm. 29] only claims running time that is polynomial in
all relevant parameters, it is clear that the running time is linear in the number of variables.

21We could not do this in Section 4.1, since the solved instances we obtained there were all in {0, 1}eni , whereas
different low degree polynomials over GF(pi)

eni may agree on {0, 1}eni .
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3. Lastly, obtain the value of Φ̂(y) by invoking the sample-aimed reduction for inputs of length
ñi (while using the samples generated in the previous step).

We stress that the invocations of the sample-aided reductions are provided with a number of samples
that guarantees that the probability of error in the invocation is smaller than exp(−d(n))≪ 1/ℓ(n).
Hence, with very high probability, our reduction provides the correct value of Φ(y). Recalling that
y = y(i) was actually derived from the input z such that Φ(y(i)) ≡ Π(z) (mod pi), we recover
Π(z) by applying Chinese Remaindering (without errors) to the values of Φ on the Φ(y(i))’s for
i ∈ [ℓ′(n)].

Digest of the reduction of Π to Φ(r). The description of the reduction goes top-down (i.e., from
Π to the generalized problem, then uses its worst-case to average-case reduction, and the downwards
self-reduction that goes from the top level to the bottom one), but the algorithm that computes Π
goes bottom-up. The original input z ∈ {0, 1}n is transformed into ℓ′(n) inputs for the generalized
problem, denoted y(1), ..., y(ℓ′(n)), such that y(i) = (1eni−n, z) and ñi = (ℓ(n)2 + 1) · n + (ℓ(n) + 1) · i.
The instance y(i) is viewed both as an (f(n)+1) · ñi-bit long string and as an ñi-long sequence over
GF(pi). (The value Π(z) will be computed at the end of the process, based on the Φ(y(i))’s.)

Likewise, the process of downwards self-reduction goes from length ñi to length ñi − ℓ(n),
whereas the actual generation of solved samples goes the other way around (i.e., from ñi − ℓ(n) to
ñi). Specifically, a sample for length ñi − ℓ(n) is generated by straightforward compuation of the
value of Φ on random instances length ñi − ℓ(n), while relying on the fact that instances of such
length are easy to solve, whereas a sample for length k = ñi− j is generated by using the downward
self-reduction to length k − 1 and applying the sample-aided worst-case to rare-case reduction for
length k− 1 while using the solved sample generated in the previous iteration. Lastly, the solution
to y(i) = (1eni−n, z) is found using the sample-aided worst-case to rare-case reduction for length ñi

while using the solved sample generated above. Finaly, the solution to z is obtained by combining
the solutions to the various y(i)’s (using the CRT).

Appendices

Appendix A.1 relates Definition 2.3 to [16, Def. 2], and Appendix A.2 presents a worst-case to
average-case reduction for uniform AC0[2].

A.1 A related class (for context only)

In this appendix, we review the definition of locally-characterizable sets [16], and discuss its relation
to Definition 2.3.

Definition A.5 (locally-characterizable sets [16, Def. 2]):22 A set S is locally-characterizable if

there exist a constant c, a polynomial p and a polynomial-time algorithm that on input n out-

puts poly(log n)-sized formulae φn : {0, 1}c log n × {0, 1}p(log n) → {0, 1} and πn,1, ..., πn,p(log n) :

22Actually, this is a slightly revised version, which is essentially equivalent to the original: In [16, Def. 2], the formula
φn got as input the sequence (πn,1(w), ..., πn,p(log n)(w)) (rather than w) as well as (xπn,1(w), ..., xπn,p(log n)(w)). This

is essentially equivalent to the form used here, since on the one hand φn can compute the πn,i’s (given w), and on
the other hand w can be reconstructed from c auxiliary πn,i’s.

34



{0, 1}c log n → [n] such that, for every x ∈ {0, 1}n, it holds that x ∈ S if and only if for all

w ∈ {0, 1}c log n

Φx(w)
def
= φn(w, xπn,1(w), ..., xπn,p(log n)(w)) (11)

equals 0.23

That is, each value of w ∈ {0, 1}c log n yields a local condition that refers to polylogarithmically
many locations in the input (i.e., the locations πn,1(w), ..., πn,p(log n)(w) ∈ [n]). This local condition
is captured by φn, and in its general form it depends both on the selected locations and on the value
on the input in these locations. A simplified form, which suffices in many case, uses a local condition
that only depends on the values of the input in these locations (i.e., φn : [n]p(log n)×{0, 1}p(log n) →
{0, 1} only depends on the p(log n)-bit long suffix).

A locally-characterizable set corresponds to the set of inputs for the counting problem (of Defi-
nition 2.3) that have value 0 (i.e., the number of satisfied local conditions is 0). The correspondence
is not an equality, beacuse the sizes of the formulae in the two definitions are different. Whereas in
Definition 2.3 the number of formulae and their sizes are exponential in a function d that is in the
admissible class, in Definition A.5 the number and size is poly-logarithmic in n. In both definitions,
the formulae are constructed in time that is polynomial in their number and size.

A.2 Worst-case to Average-case reduction for uniform AC0[2]

For constants c, d ∈ N, let C(d,c) denote the class of decision problems on n-bit inputs that can be
solved by uniform families of (unbounded fan-in) Boolean circuits of depth d and size nc, with and,
or, parity, and not gates. Specifically, a problem is parameterized by an efficient algorithm that
on input n and i, j ∈ [nc] returns the type of the ith gate and whether or not the jth gate feeds
into it (in the circuit that corresponds to n-bit inputs). The term “efficient” is left unspecified on
purpose; possible choices include poly(n)-time and O(log n)-space. Note that any decision problem
having sufficiently uniform AC0[2] circuits is in C(d,c) for some constants c, d ∈ N.

Theorem A.6 (worst-case to average case reduction for AC0): There exists a universal constant

γ such that for any c, d ∈ N, solving any problem in C(d,c) on the worst-case reduces in almost linear

time to solving some problem in C(γ·d,c+o(1)) on at least 90% of the instances.

Proof Sketch: We proceed in three steps: First we reduce the Boolean problem (in C(d,c)) to an
Arithmetic problem, next we show that the latter problem supports a worst-case to average-case
reduction, and lastly we reduce the Arithmetic problem to a Boolean problem (in C(γ·d,c+o(1))).
This is very similar to what was done in the main part of this work, except that the first step is
fundamentally different.

A straightfoward emulation of the Boolean circuit by the Arithmetic circuit would yield multi-
plication gates of polynomial fan-in, which in turn would mean that the polynomial computed by
this circuit is of polynomial degree. In contrast, using the approximation method of Razborov [25]
and Smolensky [28], we can get multiplication gates of logarithmic fan-in, and arithmetic circuits
that compute polynomials of polylogarithmic degree. The approximation error is of no real concern,

23Indeed, it is required that in case of inputs in S, the predicate φn evaluates to 0 (rather than to 1). This choice
was made in [16] in order to simplify the exponsion. We stress that since n is presented in binary, the algorithm runs
in poly(log n)-time.
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since we are actually interested in the value of the circuit at a single point. We need, however, to
perform the foregoing randomized reduction using an almost linear amount of randomness, since
we need to run in almost linear time, but this is possible using small-bias generators (cf. [24]).
Details follow.

The first step is a randomized reduction of solving the Boolean problem in the worst-case
to solving a corresponding Arithmetic problem on the worst-case. This reduction uses the ideas
underlying the approximation method of Razborov [25] and Smolensky [28], while working with
the field GF(2) (as [25], rather than with GF(p) for some prime p > 2 (as [28])).24 When doing
so, we replace the random choices made at each gate by pseudorandom choices that are generated
by a small bias generator [24]; specifically, we use a highly uniform generator G : {0, 1}O(log nc) →
{0, 1} eO(nc) such that each bit of G(s) is computed by a no(1)-size circuit of constant depth (and
parity gates) [2, 19].25

Hence, for a fixed Boolean circuit Cn, on input x ∈ {0, 1}n, we uniformly select a seed
s ∈ {0, 1}O(log n) for the aforementioned small-bias generator G, and consider the corresponding

Arithmetics circuit A
(s)
n : GF(2)n → GF(2), in which or-gates of Cn are replaced by O(c log n)-way

multiplications of linear combinations of the original gates that are determined by G(s). For any

fixed x, we may have Prs[A
(s)
n (x) 6=Cn(x)] = 1/poly(n). Note that the depth of A

(s)
n is only O(1)

times larger than the depth of Cn, where the constant is determined by various (local) manipula-
tions (which include replacing and-gates by or-gates, computing inner products of gates’ values and

generator outputs, and adding O(log n)-wise multiplication gates). Furthermore, A
(s)
n uses multi-

plication gates of O(c log n) arity, its size is at most O(log n)d · nc, and it computes a polynomial
of degree O(c log n)d.

The next step is to embed GF(2) in an extension field of size greater than the foregoing degree

so that the standard process of self-correction of polynomials can be performed. Hence, A
(s)
n is now

viewed as an arithmetic circuit over F = GF(2ℓ) (i.e., A
(s)
n : Fn → F), where ℓ = d log log n+O(d),

since we need 2ℓ ≥ O(c · log n)d. Now, a worst-case to average-case reduction is applied to A
(s)
n (i.e.,

evaluating A
(s)
n on the worst case reduces to evaluating A

(s)
n correctly on at least a 51% fraction of

the instances).
Lastly, we wish to get back to a class of Boolean problems. We can do so as follows. First,

we replace each (unbounded) addition gate by ℓ parity gates (which add-up the ℓ corresponding
bits in the sequence of field elements). Next, we replace each multiplication gate of arity at most
m = O(log n) by a multiplication gate of arity

√
m that is fed by

√
m multiplication gate that

cover the original m wires. Finally, we implement each of the latter gates by a small Boolean
circuit of depth two (via a look-up table of size |F|

√
m = exp(Õ(

√
log n)) = no(1)). Hence, given the

Arithmetic circuit A
(s)
n : GF(2ℓ)n → GF(2ℓ), we obtain a Boolean circuit B

(s)
n : {0, 1}nℓ → {0, 1}ℓ

24Recall that this construction replaces each or-gate by a O(log nc)-way conjunction of random linear combination
of the values that feed the original or-gate.

25Using the third construction in [2], we need to perform exponentiation in a field of size 2k/2, where k = O(log nc)
is the length of the seed. By [19, Thm. 4], this operation can be performed by a constant-depth circuit (with parity

gates) of size exp( eO(
p

k/2)) = no(1). The same pseudorandom sequence can be used for all gates in the circuit, and
in each gate we can use O(log nc) disjoint portions of the pseudorandom sequence for the O(log nc) different linear
combinations. (Recall that taking t independent linear combinations of the output of an ǫ-bias generator yields a
distribution that equal 0t with probability at most 2−t + ǫ. Also recall that the aforementioned generator of [2]
produces a nc-bit long ǫ-biased sequence using a seed of length O(log(nc/ǫ)), and so we can set t = O(c log n) and
ǫ = 2−t.)
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that emulates A
(s)
n . Furthermore, using the small circuits that produce the output bits of the

small-bias generator G on seed s ∈ {0, 1}k , where k = O(log n), we obtain a Boolean circuit

Bn : {0, 1}nℓ+k → {0, 1}ℓ such that Bn(y, s) = B
(s)
n (y). Recalling that the aforementioned circuits

that compute the bits of G have constant depth and size no(1), it follows that Bn has depth
O(d) + O(1) and size nc+o(1).

We are almost done, except that we need to reduce the evaluation of Bn : {0, 1}nℓ+k → {0, 1}ℓ to
the evaluation of a Boolean circuit that has a single output bit, and we need this reduction to work
in the average-case setting. We can do so by using the Boolean circuit B′

n : {0, 1}nℓ+k+ℓ → {0, 1}
that, on input (z, r) ∈ {0, 1}nℓ+k × {0, 1}ℓ, returns the inner product mod 2 of Bn(z) and r. Note
that the depth of B′

n exceeds the depth of Bn only by a constant term, and that we can correctly
retrieve Bn(z) (with high probability) if we can obtain the correct value of B′

n(z, r) correctly on
0.76% of the r’s. Recalling that evaluating Cn on x was reduced to evaluating Bn correctly on
0.51% of the instances, it follows that it suffices to compute B′

n correctly on a ρ fraction of the
instances, provided that ρ ≥ 1 − 0.24 · 0.49. (Of course, 0.24 and 0.49 stand for any constants
smaller than 0.25 and 0.5 respectively.)

To summarize, evaluating Cn : {0, 1}n → {0, 1} in the worst case reduces to evaluating B′
n :

{0, 1}log log n+O(log n) → {0, 1} on at least 1 − 0.24 · 0.49 ≈ 0.88 fraction of the instances. Using an
adequate indexing of the gates in B′

n, the uniformity of B′
n follows from the uniformity of Cn, since

all modifications we have performed are local.
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