On the Existence of Pseudorandom Generators

(Extended Abstract)
Oded Goldreich Hugo Krawczyk Michael Luby
Dept. of Computer Sc. Dept. of Computer Sc. Dept. of Computer Sc.
Technion Technion University of Toronto

Haifa, Israel Haifa, Israel Ontario, Canada

ABSTRACT - Pseudorandom generators (suggested and developed by Blum and Micali [BM]
and Yao [Y]) are efficient deterministic programs that expand a randomly selected & -bit seed into
a much longer pseudorandom bit sequence which is indistinguishable in polynomial time from an
(equally long) sequence of unbiased coin tosses. Pseudorandom generators are known to exist
assuming the existence of functions that cannot be efficiently inverted on the distributions
induced by applying the function iteratively polynomially many times (Levin [L]). (This general-
izes previous results of {[BM] and [Y].) This sufficient condition is also a necessary one, but it
seems difficult to check whether particular functions, assumed to be one-way, are also one-way
on their iterates. This raises the fundamental question whether the mere existence of one-way
function suffices for the construction of pseudorandom generators.

In this paper we present progress towards resolving this question. We consider regular
functions, in which every image of a £ -bit string has the same number of preimages of length k.
We show that if a regular function is one-way then pseudorandom generators do exist. In particu-
lar, assuming the intractability of general factoring, we can now prove that pseudorandom genera-
tors do exist. Another application is the construction of a pseudorandom generator based on the
assumed intractability of decoding random linear codes.

1. INTRODUCTION

In recent years randomness has become

(modeled by a polynomial time computation)
can be decreased to an arbitrarily small

a central notion in the theory of computation.
It is heavily used in the design of sequential,
parallel and distributed algorithms, and is of
course crucial to cryptography. Once so fre-
quently used, randomness itself has become a
resource, and economizing on the amount of
randomness required for an application has
become a natural concern, It is in this light
that the notion of pseudorandom generators
was first suggested and the following funda-
mental result was derived: the number of
coin tosses used in any practical application

power of the input length.

The key to the above informal state-
ment is the notion of a pseudorandom gen-
erator suggested and developed by Blum and
Micali [BM] and Yao [Y]. A pseudorandom
generator is a deterministic polynomial time
algorithm which expands short seeds into
longer bit sequences, such that the output
ensemble is polynomially-indistinguishable
from the uniform probability distribution.
More specifically, the generator (denoted G)
expands a k-bit seed into a longer, say 2k-

Research done while the third author was visiting the Computer Science Department of the Technion. First
author was supported by grant No. 86-00301 from the United States - Israel Binational Science Foundation
(BSF), Jerusalem, Israel. Third author was partially supported by a Natural Sciences and Engineering
Research Council of Canada operating grant No. A8092 and by a University of Toronto grant.

0272-5428/88/0000/0012$01.00 © 1988 IEEE

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 29,2023 at 12:04:39 UTC from IEEE Xplore. Restrictions apply.

bit, sequence so that for every polynomial
time algorithm (distinguishing test) T, any
constant ¢ >0, and sufficiently large &

| Prob[T(G X)) = 1]

—Prob[T(ng)=1J | < k-,

where X, is a random variable assuming as
values strings of length m, with uniform pro-
bability distribution. It follows that the
strings output by a pseudorandom generator
G can substitute the unbiased coin tosses
used by any polynomial time algorithm A,
without changing the behavior of algorithm
A in any noticeable fashion. This yields an
equivalent polynomial time algorithm, A’
which randomly selects a seed, uses G to
expand it to the desired amount, and then
runs A using the output of the generator as
the random source required by A. The
theory of pseudorandomness was further
developed to deal with function generators
and permutation generators and additional
important applications to cryptography have
emerged [GGM, LR]. The existence of such
seemingly stronger generators was reduced to
the existence of pseudorandom (string) gen-
erators.

In light of their practical and theoretical
value, constructing pseudorandom generators
and investigating the possibility of such con-
structions is of major importance. A neces-
sary condition for the existence of pseu-
dorandom generators is the existence of one-
way functions (since the generator itself con-
stitutes a one-way function). However, it is
not known whether this necessary condition
is sufficient. Instead, stronger versions of the
one-wayness condition were shown to be
sufficient. Before reviewing these results, let
us recall the definition of a one-way function.

Definition 1: A function f:{0,1}* —>{0,1}*
is called one-way if it is polynomial time
computable, but not "polynomial time inver-
tible". Namely, there exists a constant ¢ >0
such that for any probabilistic polynomial
time algorithm A, and sufficiently large k

Prob[A(f(X),l") ¢ f‘l(f(X))J > k™, ()

where the probability is taken over all x’s of
length k£ and the internal coin tosses of A4,
with uniform probability distribution.
(Remark: The role of 1* in the above
definition is to allow algorithm A to run for
time polynomial in the length of the preim-
age it is supposed to find. Otherwise, any
function which shrinks the input by more
than a polynomial amount would be con-
sidered one-way.)

1.1. Previous Results

The first pseudorandom generator was
constructed and proved valid, by Blum and
Micali, under the assumption that the discrete
logarithm problem is intractable on a non-
negligible fraction of the instances [BM]. In
other words, it was assumed that exponenti-
tion modulo a prime (i.e. the 1-1 mapping of
the triple (p,g,x) to the triple
(p.g,8*modp), where p is prime and g is
a primitive element in Z;) is one-way.
Assuming the intractability of factoring
integers of the form N =p-q, where p and ¢
are primes and p =q =3mod4, a simple
pseudorandom generator exists [BBS,
ACGS] (M. Under this assumption the per-
mutation, defined over the quadratic residues
by modular squaring, is one-way.
m general result, concerning in-

tegers with all prime divisors congruent to 3 mod
4, also holds [CGG].

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 29,2023 at 12:04:39 UTC from IEEE Xplore. Restrictions apply.

Yao has presented a much more general
condition which suffices for the existence of
pseudorandom generators; namely, the
existence of one-way permutations [Y] @,

Levin has weakened Yao’s condition,
presenting a necessary and sufficient condi-
tion for the existence of pseudorandom gen-
erators [L]. Levin’s condition, hereafter
referred to as one-way on iterates, can be
derived from Definition 1 by substituting the
following line instead of line (*)

(Vi,1<i <k¥?)

Prob AGFO®, 1) ¢ FGFOEY) > k<,

where f ¢)(x) denotes f iteratively applied i
times on x. (As before the probability is
taken uniformly over all x’s of length k.)
Clearly, any one-way permutation is one-way
on its iterates. Itis also easy to use any pseu-
dorandom generator in order to construct a
function which satisfies Levin’s condition.

Levin’s condition for the construction
of pseudorandom generators is somewhat
cumbersome. In particular, it seems hard to
test the plausibility of the assumption that a
particular function is one-way on its iterates.
Furthermore, it is an open question whether
Levin’s condition is equivalent to the mere
existence of one-way functions

1.2. Our Results

In this extended abstract we present
progress towards resolving the above open
problem. We consider "regular” functions, in

2) In fact, Yao’s condition is slightly more general.
He requires that f is 1-1 and that there exists a
probability ensemble I1 which is invariant under
the application of f and that inverting f is "hard
on the average" when the input is chosen accord-
ing to I'TL.

which every element in the range has the
same number of preimages. More formally,
we call a function f regular if there is a
function m(-) such that Vn and for every
x € {0,1}* the cardinality of f~1(f (x)) is
m(n). Clearly, every 1-1 function is regular
(withm(n)=1, Vn). Our main result is

Main Theorem (special case): If there exists
a regular one-way function then there exists
a pseudorandom generator.

Regularity appears to be a simpler con-
dition than the intractability of inverting on
the function’s iterates. Furthermore, many
natural functions (e.g. squaring modulo an
integer) are regular and thus, using our result,
a pseudorandom generator can be efficiently
constructed assuming that any of these func-
tions is one-way. In particular, if factoring is
weakly intractable (i.e. every polynomial
time factoring algorithm fails on a non-
negligible fraction of the integers) then pseu-
dorandom generators do exist. This result
was not known before. (It was only known
that the intractability of factoring a special
subset of the integers implies the existence of
a pseudorandom generator.) Using our
results, we can also construct a pseudoran-
dom generator based on the (widely
believed) conjecture that decoding random
linear codes is intractable.

The main theorem is
transforming any given regular one-way
function into a function that is one-way on its
iterates (and then applying Levin’s result
[L]). It is interesting to note that not every
(regular) one-way function is "one-way on its
iterates”. To emphasis this point, we show
(in Appendix A) that from a (regular) one-

proved by

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 29,2023 at 12:04:39 UTC from IEEE Xplore. Restrictions apply.

way function we can construct a (regular)
one-way function which is easy to invert on
the distribution obtained by applying the
function mwice. The novelity of this work is
in presenting a direct way to construct a
function which is one-way on its iterates
from any regular one-way function (which is
not necessarily one-way on its iterates).

2. MAIN RESULT

2.1. Preliminaries

In the sequel we make use of the fol-

lowing definition of strongly one-way func-
tion. (When referring to Definition 1, we
shall call the function weak one-way or sim-
ply one-way).
Definition 2: A polynomial time computable
function f :{0,1}* —={0,1}* is called
strongly one-way if for any probabilistic
polynomial time algorithm A, any positive
constant ¢, and sufficiently large &,

Prob{A(f(x),l") € f‘l(f(x))J < k~°,

where the probability is taken over all x’s of
length & and the intemnal coin tosses of A,
with uniform probability distribution.
Theorem 1 (Yao [Y]): There exists a strong
one-way function if and only if there exists a
(weak) one-way function. Furthermore, given
a one-way function, a strong one can be con-
structed.

It is important to note that Yao’s con-
struction preserves the regularity of the func-
tion. Thus, we may assume without loss of
generality, that we are given a function f
which is strongly one-way and regular. For
the sake of simplicity, we assume f is length
preserving (.. Vx,lf(x)I=ix1). Our
results hold also without this assumption (see

subsection 2.6).

Notation: For a finite set S, the notation
§ € g S means that the element s is randomly
selected from the set S with uniform proba-
bility distribution.

2.2. Main Ideas

Suppose we are given a regular and
strongly one-way function f . We construct a
new function f’ that is also strongly one-
way, not only for its first application but for
k32 iterations, where k is the length of the
input to f’. Using Levin’s results [L], this
construction suffices for proving our Main
Theorem.

The following are the main ideas
behind this construction. Since the function
f is strongly one-way, any algorithm trying
to invert f can succeed only with negligible
probability. Here the probability distribution
on the range of f is induced by choosing a
random element from the domain and apply-
ing f. However, this condition says nothing
about the capability of an algorithm to invert
f when the distribution on the range is sub-
stantially different. For example, there may
be an algorithm which is able to invert f if
we consider the distribution on the range ele-
ments induced by choosing a random ele-
ment from the domain and applying f twice
or more (see Appendix A). To prevent this
possibility, we "randomly” redistribute, after
each application of f, the elements in the
range to locations in the domain. We prove
the validity of our construction by showing
that the probability distribution induced on
the range of f by our "random" transforma-
tions is close to the distribution induced by
the first application of f .

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 29,2023 at 12:04:39 UTC from IEEE Xplore. Restrictions apply.

The function £’ we construct must be
deterministic, and therefore the "random”
redistribution must be deterministic (i.e.
uniquely defined by the input to f’). To
achieve this, we use high quality hash func-
tions. More specifically, we use hash func-
tions which map n-bit strings to n-bit
strings, such that the locations assigned to the
strings by a randomly selected hash function
are uniformly distributed
independent. For properties and implementa-
tions of such functions see [CW, J, CG, Lu].
We denote this set of hash functions by
H(n). Elements of H(n) can be described
by bit strings of length n2. In the sequel
h(e H(n)) refers to both the hash function
and to its representation.

and n-wise

2.3. The Construction of f’

We view the input string to f“ as con-
taining two types of information. One part of
the string is the description of hash functions
that implement the "random" redistributions
and the other part is interpreted as inputs for
the original function f. Each of the hash
functions described in the input is used in
several iterations of f’.

The following is the definition of the
function f

flrsizsho, - shiy1.X0, - -y Xen)-1)
=(i’11i,2vh0v U 1hl(n)-],x0s T X1
i (f X)) s Xiw1s * "0 s Xsn)1)

where 0<i1<5s(n)-1,0<i,<t(n)-1,
xj € {0,1}*, and hj € H(n). The quantities
i and i’y are defined as
i’=(+1)modt(n) and i’1=i;+1 if

ir=t(n)-1andi’ =i, otherwise.

We fix s(n)=nSt(n)=n5 and use
s(n)t(n)=nl iterations of f’ starting with
i1=i,=0. The length of the input to f’ is
k=0(ogn)+t(n)n2+s(n)n<3n’,
thus the number of iterations is at least k372,
as required from the function f . The rest of
this section is devoted to the proof of the fol-
lowing theorem.

and

Theorem 2: Let f be a regular and strongly
one-way function. Then the function f’
defined above is strongly one-way for k32
iterations on strings of length & .

Our Main Theorem follows from Theorem 2
and Levin’s result (see [L] and Appendix B).

Let ho,hy, - ,h,(,,)_l be t(n) func-
tions from the set H(n). For
r=1,---,t(n), let g be the function
& =fhaf haf --- hof acting on

strings of length n, let G, (n) be the set of all
such functions g,, let g be g;,) and let
G (n) be the set of such functions g. From
the above description of the function f* it is
apparent that the inversion of an iterate of f’
boils down to the problem of inverting f
when the probability distribution on the
range of f is g, (x) where x ep {0,1}*. We
show that, for most g € G (n), the number of
preimages under g for each element in its
range is close (up to a polynomial factor) to
the number of preimages for the same range
element under . This implies that the same
statement is true for most g, € G,(n) for all
r=1,---,t(n). The proof of this result
reduces to the analysis of the combinatorial
game that we present in the next subsection.

2.4. The game

Consider the following game played
with M balls and M cells where
t(n) <M <2" . Initially each cell contains a

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 29,2023 at 12:04:39 UTC from IEEE Xplore. Restrictions apply.

single ball. The game has ¢ (n) iterations. In
each iteration, cells are mapped randomly to
cells by means of an independently and ran-
domly selected hash function & eg H(n).
This mapping induces a transfer of balls so
that the balls residing (before an iteration) in
cell o are transferred to cell A(c). We are
interested in bounding the probability that
some cells contain "too many" balls when the
process is finished. We show that after ¢(n)
iterations the probability that there is any cell
containing more than some polynomial in »
balls is negligibly small (i.e. less than any
polynomial in n fraction).

We first proceed to determine a bound
on the probability that a specific set of »
balls is mapped after ¢ (n) iterations to a sin-
gle cell.

Lemma 3: The probability that a specific set
of n balls is mapped after ¢(n) iterations to

the same cell is bounded above by
-1
_ | ntm)|"”
pn) [i

Proof Sketch: Let B ={b,,by, --- ,b,} be
a set of n balls. Notice that each execution
of the game defines for every ball b; a path
through ¢(n) cells. In particular, fixing ¢(n)
hash functions hg,hq, - - »Bimy-1, a path
corresponding to each b; is determined.
Clearly, if two such paths intersect at some
point then they coincide beyond this point.
We modify these paths in the following way.
The initial portion of the path for b; that does
not intersect the path of any smaller indexed
ball is left unchanged. If the path for b;
intersects the path for b; for some j <i then
the remainder of the path for b; is chosen
randomly and independently of the other
paths from the point of the first such intersec-
ton.

Because the functions h; are chosen totally
independently of each other and because
each of them has the property of mapping
cells in an n-independent manner, it follows
that the modified process just described is
equivalent to a process in which a totally ran-
dom path is selected for each ball in B. Con-
sider the modified paths. We say that two
balls b; and b; join if and only if their
corresponding paths intersect. Define merge
to be the reflexive and transitive closure of
the relation join (over B). The main obser-
vation is that if kg, k2, - - -, b(n)-; map the
balls of B to the same cell, then
by,by, -+ ,b, are all in the
equivalence class with respect to the relation
merge. In other words, the probability that
the balls in B end up in the same cell in the
original game is bounded above by the pro-
bability that the merge relation has a single
equivalence class (containing all of B). Let
us now consider the probability of the latter
event.

same

If the merge relation has a single equivalence
class then the join relation defines a con-
nected graph with the n balls as vertices and
the join relation as the set of edges. The
"join graph" is connected if and only if it
contains a spanning tree. Thus, an upper
bound on the probability that the "join graph”
is connected is obtained by the sum of the
probabilities of each of the possible spanning
trees which can be embedded in the graph.
Each particular tree has probability at most
(¢(r)M)*-! to be embedded in the graph
(t(n)/M is an upper bound on the probability
of each edge to appear in the graph). Multi-
plying this probability by the (Cayley)
number of different spanning trees (n"~2 cf.
[E, Sec. 2.3]), the lemma follows. O

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 29,2023 at 12:04:39 UTC from IEEE Xplore. Restrictions apply.

A straightforward upper bound on the

probability that there is some set of n balls
which are merged is the probability that n
specific balls are merged multiplied by the
number of possible distinct subsets of n
balls. Unfortunately, this bound is worthless

M
(@ |, |p(@m)>1 (This phenomena is

independent of the choice of the parameter
n.). Instead we use the following technical
lemma.

Lemma 4: Let S be a finite set, and let IT
denote a partition of S. Assume we have a
probability distribution on partitions of S.
For every A c S, we define y, IT)=1if A is
contained in a single class of the partition IT
and x4 (II)=0 otherwise. Let n and n’ be
integers such that n <n’. Let p(n) be an
upper bound on the maximum over all A c §
such that |A1=n of the probability that
Xa =1. Let g(n”) be an upper bound on the
probability that there is some B < S such that
IB12n’and 3 =1. Then

Proof: For B ¢ S we define E5 (IN)=1if B is
exactly a single class of the partition IT and
Eg (IT)=0 otherwise. For every fixed parti-
tion IT,
pesdy, B S £
cS,TBlzn n AcCS
n

2, xalD

The lemma follows.]

Remark: Lemma 4 is useful in situations

-g%r%))- is smaller than

Assuming that n’< IS |, this

when the ratio

IS 1—n
n’-n

happens when p(n) is greater than |S [,

Lemma 3 is such a case, and thus the applica-
tion of Lemma 4 is useful.
Combining Lemmi 3 and 4, we get

Theorem 5: Consider the game played for
t(n) iterations. Then, the probability that
there is 4¢(n)-n +n balls which end up in the
same cell is bounded above by 2.

Proof: By straightforward calculation, apply-
ing Lemma 4 with ISI=M and
n’=4t(nyn+n.0

2.5. Proof of Theorem 2

We now apply Theorem 5 to the
analysis of the function f’. As before, let
G(n) be the set of functions of the form
g=f by f -~ hof. The functions
h =h; are hash functions used to map the
range of f to the domain of f. We let
ho, -+ ,h(zy1 be randomly chosen uni-
formly and independently from H(n), and
this induces a probability distribution on
G (n). Denote the range of f (on strings of
length n) by R(n)={z1,22,...,24}. Let
each z; represent a cell. Consider the func-
tion 4 as mapping cells to cells. We say that
h maps the cell z; to the cell z; if
h(zi)e f7(z;), or in other words
S (h(z;))=z;. By the regularity of the func-
tion f, we have that the size of f~1(z;) is
equal for all z; € R(n), and therefore the
mapping induced on the cells is uniform. It
is now apparent that g er G(n) behaves
exactly as the random mappings in the game
described in Section 2.4, and thus Theorem 5
can be applied. We get

Lemma 6: There is a constant cg, such that
for any constant ¢ >0 and sufficiently large n

Prob[Elz with 1g-1(z) | 2n°°~m(n)] snlc,

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 29,2023 at 12:04:39 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 29,2023 at 12:04:39 UTC from IEEE Xplore. Restrictions apply.

where g ep G (n).

Let us denote by G “(n) the set of func-
tions g € G(n) such that for all z in the
range of f 1g7(z)l <n“m(n). By the
above lemma, G’(n) contains almost all of
G (n). It is clear that if g € G’(n) then for
all z in the range of f and for all
r=1, --- ,t(n) the function g, defined by
the first r iterations of ¢
g Hz)l <n®“m(n).

satisfies

Lemma 7: For any probabilistic polynomial
time algorithm A, for any positive constant ¢
and sufficiently large n and for all
r=1, - ,t(n),

Prob(A(g, ,z)e f1(z)) <n—

where g €rG,(n) and
x ep {0,1}".

z=g,(x),

Proof: We prove the claim for r =¢(n) and
the claim for r=1, --- ,t(n) follows
directly. Assume to the contrary that there is
a probabilistic polynomial time algorithm A
that

where

and a such
Prob(A(g.z)e f(z)) > n™,

gerG(n)andz=g(x),x eg (0,1}".

constant ¢y

By using A, we can demonstrate an algo-
rithm A’ that inverts f, contradicting the
one-wayness of f. The input to A’ is
z=f(x) where x eg {0,1}*. A’ chooses
g €r G(n) and outputs A(g,z). We show
that A’ inverts f with non-negligible proba-
bility. By assumption there is a non-
negligible subset G”(n) of G’(n) such that,
for each geG”(n), A succeeds with
significant probability to compute a
y € f1(z) where z =g(x) and x € {0,1}".
Since g € G’(n), for all z in the range of f
the probability induced by g on z differs by
at most a polynomial factor in n from the
probability induced by f. Thus, for

g € G”(n), A succeeds with significant pro-

“bability to compute a y e f}(z) where

z=f(x) and x eg {0,1}*. This is exactly
the distribution of inputs to A’, and thus A’
succeeds to invert f with non-negligible pro-
bability, contradicting the strong one-
wayness of f. [

Theorem 2 follows from Lemma 7 by
noting that an algorithm A, given g and g (x)
as inputs, can simulate the extra information
given to the inverter of f’. Q.E.D

2.6. Extensions

In the above exposition we assumed for
simplicity that the function f is length
preserving, i.e. x € {0,1}* implies that the
length of f(x) is n. This condition is not
essential to our proof and can be dispensed
with in the following way. If f is not length
preserving then it can be modified to have the
following property: There is an n’ such that
x € {0,1}* implies that the length of f (x) is
n’. This modification can be carried out
using a padding technique that preserves the
regularity of f. We can then modify our
description of f’ to use hash functions map-
ping n’-bit strings to n-bit strings.

Another extension is a relaxation of the
regularity condition. A useful notion in this
context is the histogram of a function.
Definition 3: The histogram of the function
f :{0,1}" ={0,1}* is a function
hists NXN—N such that hists(n,k) is the
cardinality of the set

(xe (0.1): {logzlf-%f(x»lj =k}

Regular functions have trivial histograms.
Let f be a regular function such that for all
x e (0,1}, IfY(f(x))| =m(n). The histo-
gram satisfies histy(n,k)=2" for

k= togatm(n))

and hists (n,k)=0 otherwise. Weakly regu-
lar functions have slightly less dramatic his-
tograms.

Definition 4: The function f is weakly regu-
lar if there is a constant € >0, a polynomial
p () and a function b (-) such that the histo-
gram of f satisfies (for all n)

i) hist;(n,b(n)) > p%"ﬂ

.. 2 . 2
ii) k=b§)+lhlsrf (n,k)< p B (A

Clearly, this definition extends the original
definition of regularity. Using our tech-
niques one can show that the existence of
weakly regular strongly one-way functions
implies the existence of pseudorandom gen-
erators. For weakly regular functions with
constant € > 5 (used in Definition 4) the argu-
ment follows in a straightforward way
(Details of this will be included in the final
version of this paper.). To prove the state-
ment for arbitrary € > 0, we use a slightly dif-
ferent construction in which the generator
outputs the description of the hashing func-
tions (as part of its output). (The argument is
further simplified by using a recent result of
Goldreich and Levin [GL] (see Appendix
(&)

For the applications in Section 3, and
possibly for other cases, the following exten-
sion (referred to as semi-regular) is useful.
Let {fx}; e (0.1)- be a family of regular func-
tions, then our construction can be still
applied to the function f defined as
&, y)=(,fx(»)) The idea is to use the
construction for the application of the func-
tion f, while keeping x unchanged.

20

3. APPLICATIONS Pseudorandom
Generators Based on Particular Intracta-
bility Assumptions

In this section we apply our results in
order to construct pseudorandom generators
(PRGS) based on the assumption that one of
the following two computational problems is
"hard on a non-negligible fraction of the
instances". The first problem is factoring
(arbitrary!) integers. The second problem is
decoding random linear codes.

3.1. PRG Based on the Intractability of
the General Factoring Problem

It is known that pseudorandom genera-
tors can be constructed assuming the intracta-
bility of factoring integers of a special form
[Y]. More specifically, in [Y] it is assumed
that any polynomial time algorithm fails to
factor a non-negligible fraction of integers
that are the product of primes congruent to 3
modulo 4. With respect to such an integer
N, squaring modulo N defines a permutation
over the set of quadratic residues mod N, and
therefore the intractability of factoring (such
N ’s) yields the existence of a one-way per-
mutation [R]. It was not known how to con-
struct a one-way permutation or a pseudoran-
dom generator assuming that factoring a
non-negligible fraction of all the integers is
intractable. In such a case modular squaring
is a one-way function, but this function does
not necessarily induce a permutation. For-
tunately, modular squaring is a semi-regular
function (see subsection 2.6), so we can
apply our results.

Assumption IGF (Intractability of the Gen-
eral Factoring Problem). There exists a con-
stant ¢>0 such that for any probabilistic

polynomial time algorithm A, and

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 29,2023 at 12:04:39 UTC from IEEE Xplore. Restrictions apply.

sufficiently large &
Prob[A(N) does not split N] >k°,
where N € g (0,1},

Corollary 8: The IGF assumption implies
the existence of pseudorandom generators.

Proof: Define the following function
f(N x)=(N,x?modN). Clearly, this func-
tion is semi-regular. The one-wayness of the
function follows from IGF (using Rabin’s
argument [R]).
Theorem 2 (see subsection 2.6) the corollary
follows. (J

Using an extension of

Subsequently, J. (Cohen) Benaloh has
found a way to construct a one-way permuta-
tion based on the IGF assumption. This
yields an alternative proof of Corollary 8.

3.2. PRG Based on the Intractability of
Decoding Random Linear Codes

One of the most outstanding open prob-
lems in coding theory is that of decoding ran-
dom linear codes. Of particular interest are
random linear codes with constant informa-
tion rate which can correct a constant fraction
of errors. An (n,k,d)-linear code is an k-
by-n binary matrix in which the bit-by-bit
XOR of any subset of the rows has at least d
The Gilbert-Varshamov bound for
linear codes guarantees the existence of such
a code provided that k/n <1-Hy(d/n),
where H, is the binary entropy function

ones.

[McS, ch. 1, p. 34]. The same argument can
be used to show (for every €>0) that if
k/n < 1-Hy((14€)-d/n), then almost all k-
by-n binary matrices constitute (n,k,d)-
linear codes.

We suggest the following function
£:{0,1}* >{0,1}*. Let C be an k-by-n

21

binary matrix, x € {0,1}%, and
e € Efc{0,1}" be a binary string with at
most t = L(d—l)/2_| ones, where d satisfies
the condition of the Gilbert-Varshamov
bound (see above). Clearly £ can be uni-
formly sampled by an algorithm S running in
time polynomial in n (i.e.
S:{0,1}Po) SER). Letr € {0,1}P™) be a
string such that S(r) € EP. Then,
FCx,r)=(C,Cx)+S(r)),

where C (x) is the codeword of x (i.e. C (x)
is the vector resulting by the matrix product
xC). One can easily verify that f just
defined is semi-regular (.e.
fc@,r)=C(x)+S(r) is regular for all but a
negligible fraction of the C’s). The vector
xC +e (e=S(r)) represents a codeword per-
turbed by the error vector e .

Assumption IDLC (Intractability of Decod-
ing Random Linear Codes):. There exists a
constant ¢ >0 such that for any probabilistic
polynomial time algorithm A,
sufficiently large k&

Prob[A(C,C(x)+e)¢x] > k¢,

and

where C is a randomly selected k-by-n
matrix, x € g {0,1}* and e € g EP.

Now, either assumption IDLC is false
which would be an earth-shaking result in
coding theory or pseudorandom generators
do exist.

Corollary 9: The IDLC assumption implies
the existence of pseudorandom generators.

Proof: The one-wayness of the function f
follows from IDLC. Using an extension of
Theorem 2 (see subsection 2.6) the corollary
follows. O

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 29,2023 at 12:04:39 UTC from IEEE Xplore. Restrictions apply.

4. CONCLUDING REMARKS

We have shown a construction that
when applied to a weakly regular one-way
function yields a function which is one-way
on its iterates. We believe that our construc-
tion may have the same affect when applied
to arbitrary one-way functions.
such a result cannot be proven by a better
analysis of the game presented in subsection
2.4. (Consider for example a one-way func-
tion with a smoothly decreasing histogram.
Then, after ¢ iterations in the corresponding
game all but approximately 1/¢ of the non-
empty cells will be occupied with balls much
heavier than the cell’s size.) A possible line
of attack is to try to take advantage of the
nature of a polynomial time algorithm trying
to invert the function on various inputs, and
in particular with different hash functions.

However,

ACKNOWLEDGEMENTS

We are grateful to Josh (Cohen)
Benaloh, Leonid Levin, Charlie Rackoff,
Ronny Roth and Avi Wigderson for very
helpful discussions concerning this work.

The first author wishes to express spe-
cial thanks to Leonid Levin and Silvio Micali
for infinitely many discussions concerning
pseudorandom generators.

REFERENCES

[ACGS]W. Alexi, B. Chor, O. Goldreich and
C.P. Schnorr, "RSA and Rabin Func-
tions: Certain Parts Are As Hard As the
Whole", SIAM Jour. on Computing, Vol.
17, 1988, pp. 194-209.

L. Blum, M. Blum and M. Shub, A Sim-
ple Secure Unpredictable Pseudo-
Random Number Generator, SIAM Jour.
on Computing, Vol. 15, 1986, pp. 364-
383.

Blum, M., and Micali, S., "How to Gen-
erate Cryptographically Strong

[BBS]

(BM]

22

Sequences of Pseudo-Random Bits",
SIAM Jour. on Computing, Vol. 13,
1984, pp. 850-864.

Carter, J., and M. Wegman, "Universal
Classes of Hash Functions", JCSS, 1979,
Vol. 18, pp. 143-154.

Chor, B., and O. Goldreich, "On the
Power of Two-Point Sampling”, to
appear in Jour. of Complexity.

Chor, B., O. Goldreich, and S.
Goldwasser, "The Bit Security of Modu-
lar Squaring Given Partial Factorization
of the Modulos", Advances in Cryptology
- Crypto 85 Proceedings, ed. H.C. Willi-
ams, Lecture Notes in Computer Sci-
ence, 218, Springer Verlag, 1985, pp.
448- 457.

W. Diffie, and M. E. Hellman, "New
Directions in Cryptography", IEEE tran-
sactions on Info. Theory, 1T-22 (Nov.
1976), pp. 644-654

S. Even, Graph Algorithms, Computer
Science Press, 1979.

[GGM] Goldreich, O., S. Goldwasser, and S.
Micali, "How to Construct Random
Functions”, Jour. of ACM, Vol. 33, No.
4, 1986, pp. 792-807.

[CW]

[CG]

[CGG]

[DH]

[E]

[GL] Goldreich, O., and L.A. Levin, "A
Hard-Core Predicate for any One-Way
Function", in preparations.

[GM] Goldwasser, S., and S. Micali, "Proba-

bilistic Encryption”, JCSS, Vol. 28, No.
2, 1984, pp. 270-299.

(8} A. Joffe, "On a Set of Almost Deter-
ministic k-Independent Random Vari-
ables", the Annals of Probability, 1974,
Vol. 2, No. 1, pp. 161-162.

L.A. Levin, "One-Way Function and
Pseudorandom Generators", Combina-
torica, Vol. 7, No. 4, 1987, pp. 357-363.
A preliminary version appeared in Proc.
17th STOC, 1985, pp. 363-365.

L.A. Levin, "Homogenous Measures and
Polynomial Time Invariants", these
proceedings.

M. Luby, "A Simple Parallel Algorithm
for the Maximal Independent Set Prob-
lem", SIAM J. Comput., Vol. 15, No. 4,
Nov. 1986, pp. 1036-1054.

M. Luby and C. Rackoff, "How to Con-
struct Pseudorandom Permutations From

(L]

(L2]

[Lu]

{LR]

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 29,2023 at 12:04:39 UTC from IEEE Xplore. Restrictions apply.

Pseudorandom Functions", SIAM Jour.
on Computing, Vol. 17, 1988, pp. 373-
386.

McWilliams, F.J., and NJ.A. Sloane,
The Theory of Error Correcting Codes,
North-Holland Publishing Company,
1977.

M.O. Rabin, "Digitalized Signatures and
Public Key Functions as Intractable as
Factoring”, MIT/LCS/TR-212, 1979.

R. Rivest, A. Shamir, and L. Adleman,
"A Method for Obtaining Digital Signa-
tures and Public Key Cryptosystems”,
Comm. ACM, Vol. 21, Feb. 1978, pp
120-126

A. Shamir, "On the Generation of Cryp-
tographically Strong Pseudorandom
Sequences”, ACM Transaction on Com-
puter Systems, Vol. 1, No. 1, February
1983, pp. 38-44.

Yao, A.C., "Theory and Applications of
Trapdoor Functions", Proc. of the 23rd
IEEE Symp. on Foundation of Computer
Science, 1982, pp. 80-91.

[McS]

[R]

[RSA]

[S]

[Y]

Appendix A: One-way functions which are
not one-way on their iterates

Assuming that f is a (regular) one-way
function, we construct a (regular) one-way
function f_ which is easy to invert on the dis-
tribution obtained by iterating f_ twice.
Assume for simplicity that f is length
preserving (i.e. IfOx)I=1x1). Let
Ix =1yl and let

_ fy)=0"f @)
Clearly, f is one-way. On the other hand,
for every xy e (0,1}, f (f (xy)=0"f (0")
and 0" f (0") e £71(0" f (0")).

Appendix B: A survey of Levin’s work [L]

The Main Theorem stated in the intro-
duction is proved by combining Theorem 2
with the following result of Levin.

23

Theorem [L]: If there exists a function which
is one-way on iterates then there exists a
pseudorandom generator.

In the sequel we provide a sketch of
Levin’s proof [L], which follows Yao’s argu-
ment [Y]. The proof consists of four parts,
and is sketched here since the original proof
is complete except for "obvious details” (i.e.
obvious to Levin).

Levin starts with a function f which is
one-way on its iterates. The first two steps in his
argument are intended to achieve a function f»
together with a polynomial time computable
predicate b, so that by(z) is hard to predict (better
than 50-50) given f »(z), where z is taken from a
distribution obtained by applying f, several
times. (An alternative argument has been
recently presented in [GL].)

First, it is shown that the function f can be
slightly modified into a function f so that there
exist a predicate b, satisfying the following two
conditions: (1) the predicate is polynomial time
computable (i.e. there exist a polynomial time
algorithm A such that A (x)=5,(x)); but (2) the
predicate cannot be efficiently 0.99-approximated
from the value of the function (i.e. every polyno-
mial time algorithm A’ trying to guess b,(x) from
fix) has success probability
Prob(A’(f 1(x))=b1(x))<0.99, where x is taken
from a distribution generated by repeated applica-
tions of f). For this argument, Levin uses an
error-correcting code which can correct a con-
stant fraction (say 4%) of errors and has polyno-
mial time encoding and decoding algorithms. Let
C(x) denote the codeword of the information
word x, and let 1<i<IC(x)!. Define
f1Ex)=(3 S (x)) and b,(i x) as the i-th bit of
C(x). Clearly, f is one-way and b, is polyno-
mial time computable. Now, assume that A’
guesses bi1(i x) correctly with probability 0.99,
when the probability is taken over all choices of i
and x. Then at least half the probability mass of
the x’s is concentrated on x’s for which A’ has
success probability >0.98. Running A’ on
A &x)), @.f (1)) 5. (1C(x) 1 f (x)), with proba-
bility >1/2, we obtain at least 0.96 of the
b1(ix)’s. Applying the decoding algorithm, in

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 29,2023 at 12:04:39 UTC from IEEE Xplore. Restrictions apply.

this case, we retrieve x, contradicting the one-
wayness of f. This concludes the first part of the
proof, strengthening Yao’s argument that f has a
bit b such that b(x) cannot be approximated
(given f (x)) better than with probability 1—-|xl|—.

Second, it is shown that by applying f; in
parallel sufficiently many times and XORing the
corresponding values of b, one gets a function f 5
and a predicate b, such that by(y) can be
efficiently guessed from f,(y) only with proba-
bility negligibly close to half. (This statement is
known as "Yao’s XOR technique" and its proof is
quite involved.) In this case the number of copies
should only be more than logarithmic, since we
started with a predicate which cannot be guessed
better than with some constant probability.

Next, one applies the construction (and rea-
soning) of Blum and Micali [BM] to obtain a gen-
erator which outputs bit sequences which cannot
be efficiently predicted. More specifically,
G (y)=01""021y1, the output of the generator on
input y, is a 2lyl-bit long string where
o; =ba(f £217'-))(y)). Ability to predict the i-th
bit of the output given the previous bits is
translated to approximating bx(z) given f(z),
where z is taken from the probability distribution
induced by applying f ; iteratively 21y |—i times.

Finally, one uses Yao’s theorem [Y] (see
also [GGM]) that an ensemble is unpredictable if
and only if it is pseudorandom.

It is important to note that the length of the
argument to the functions, constructed throughout
Levin’s proof, increases while the number of
iterations on which these functions are guaranteed
to be one-way remains as in the original function
f. Let k be the length of the argument to the ori-
ginal function. Then the argument to f; has
length £ +0 (logk)=0 (k) and the length of the
argument to f; is O (k-(log k)?). When using the
Blum and Micali construction we need to be able
to apply the function £, a number of times which
is twice the length of its argument. The function
f2 needs only be one-way for this number of
iterations. Thus, if f is one-way on its first
k-(log k)% < k32 iterates then we are done.

Remark: The above argument gives a pseu-
dorandom generator which expands k -bit
strings to 2k -bit strings. Using such a pseu-

24

dorandom generator, one can construct a
pseudorandom function [GGM], which
clearly yield a pseudorandom generator
which expands k-bit strings to p (k)-bit
strings, for an arbitrary polynomial p .

Appendix C: Announcement of a New
Result {GL]

A central tool for the construction of
pseudorandom generators and secure encryp-
tion functions is the "hard-core predicate of a
function”. This is a predicate b (x) which is
polynomial time computable given x, but
cannot be efficiently approximated (i.e.
guessed better than 50-50) given only the
value of the function f (x).

Assuming the existence of one-way
functions, it is known how to construct such
predicates. The known construction, due to
Yao, uses the one-way function f to con-
struct a more complicated one-way function
which has a hard-core predicate [Y]. The
construction applies the original one-way
function f many times just to get one "hard-
core" bit, and thus is undesirable from a prac-
tical point of view.

A new result of Goldreich and Levin
[GL] shows that every one-way function has
a hard-core predicate, and thus there is no
need to apply the function many times in
order to get one hard-core bit. More
specifically, it is shown that the exclusive-or
of a random subset of the bits of x is "a
hard-core" predicate of f (x), provided that f
is a one-way function. The result extends to
log Ix | such subsets and to any distribution
on the x ’s for which f is hard to invert.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 29,2023 at 12:04:39 UTC from IEEE Xplore. Restrictions apply.

