
XRDS • s p r i n g 2 0 1 2 • V o l . 1 8 • n o . 318

Invitation to
Complexity Theory

In focusing attention on computa-
tional tasks and algorithms, comput-
ability theory has set the stage for the
study of the computational resources
(like time) required by such algo-
rithms. When this study focuses on
the resources that are necessary for
any algorithm that solves a particular
task (or a task of a particular type), it
is viewed as belonging to the theory
of computational complexity (also
known as “complexity theory”). In con-
trast, when the focus is on the design
and analysis of specific algorithms
(rather than on the intrinsic complex-
ity of the task), the study is viewed as
belonging to a related area that may be
called “algorithmic design and analy-
sis.” Furthermore, algorithmic design
and analysis tends to be subdivided
according to the domain of math-
ematics, science, and engineering in
which the computational tasks arise.
In contrast, complexity theory typi-
cally maintains a unity of the study of
computational tasks that are solvable
within certain resources (regardless of
the origins of these tasks).

Complexity theory is a central field
of the theoretical foundations of com-
puter science. It is concerned with the

study of the intrinsic complexity of
computational tasks. That is, a typi-
cal complexity theoretic study refers to
the computational resources required
to solve a computational task (or a
class of such tasks), rather than refer-
ring to a specific algorithm or an algo-
rithmic schema. Actually, research in
complexity theory tends to start with
and focuses on the computational re-
sources themselves, and addresses the
effect of limiting these resources on
the class of tasks that can be solved.
Thus, computational complexity is the
general study of what can be achieved
within limited time (and/or other limi-
tations on natural computational re-
sources).

ABSOLUTE GOALS AND RELATIVE
RESULTS
Saying that complexity theory is con-
cerned with the study of the intrinsic
complexity of computational tasks
means that its “final” goal is the de-
termination of the complexity of any
well-defined task. An additional goal
would be obtaining an understand-
ing of the relations between various
computational phenomena (e.g., relat-

The striving for efficiency is ancient and universal, as time and other resources are
always in shortage. Thus, the question of which tasks can be performed efficiently
is central to the human experience. A key step toward the systematic study of the
aforementioned question is a rigorous definition of the notion of a task and of

procedures for solving tasks. These definitions were provided by computability theory,
which emerged in the 1930s with the work of Alan Turing (and others). This theory focuses
on computational tasks, considers automated procedures (i.e., computing devices and
algorithms) that may solve such tasks, and studies the class of solvable tasks.

Complexity theory provides new viewpoints on various phenomena that were
once considered by past thinkers.
By Oded Goldreich
DOI: 10.1145/2090276.2090285

As stated in the body of this article,
absolute results are not known
for many of the “big questions” of
complexity theory (most notably the P
versus NP question). However, several
highly non-trivial absolute results
have been proved. For example, it was
shown that using negation can speed-
up the computation of monotone
functions (which do not require
negation for their mere computation).
In addition, many promising
techniques were introduced and
employed with the aim of providing a
low-level analysis of the progress of
computation. The interested reader
is referred to Arora and Barak’s
textbook Complexity Theory: A Modern
Approach (Cambridge University
Press, 2009).

Absolute
Results
(a.k.a. Lower-
Bounds)

XRDS • s p r i n g 2 0 1 2 • V o l . 1 8 • n o . 3 19

ing one fact regarding computational
complexity to another). Indeed, we may
say that the former is concerned with
absolute answers regarding specific
computational phenomena, whereas
the latter is concerned with questions
regarding the relation between com-
putational phenomena.

Interestingly, so far complexity the-
ory has been more successful in cop-
ing with goals of the latter (“relative”)
type. In fact, the failure to resolve ques-
tions of the “absolute” type led to the
flourishing of methods for coping with
questions of the “relative” type. Let
us say that, in general, the difficulty
of obtaining absolute answers may
naturally lead to seeking conditional
answers, which may in turn reveal in-
teresting relations between phenom-
ena. Furthermore, the lack of absolute
understanding of individual phenom-
ena seems to facilitate the develop-
ment of methods for relating different
phenomena. Anyhow, this is what hap-
pened in complexity theory.

Putting aside for a moment the frus-
tration caused by the failure of obtain-
ing absolute answers, there is some-
thing fascinating in the success to
relate different phenomena: In some
sense, relations between phenomena
are more revealing than absolute state-
ments about individual phenomena.
Indeed, the first example that comes
to mind is the theory of NP-complete-
ness. Let us consider this theory, for a
moment, from the perspective of these
two types of goals.

P, NP, AND NP-COMPLETENESS
Complexity theory has failed to deter-
mine the intrinsic complexity of tasks
such as finding a satisfying assign-
ment to a given (satisfiable) proposi-
tional formula or finding a 3-coloring
of a given (3-colorable) graph. But it has
succeeded in establishing that these
two seemingly different computation-
al tasks are in some sense the same
(or, more precisely, are computation-
ally equivalent). This success is amaz-
ing and exciting; hopefully the reader
shares these feelings. The same feeling
of wonder and excitement is generated
by many of the other discoveries of
complexity theory. Indeed, the reader
is invited to join a fast tour of some of

the other questions and answers that
make up the field of complexity theory.

We will start with the P versus NP
question. Our daily experience is that it
is harder to solve a problem than it is to
check the correctness of a solution (e.g.,
think of either a puzzle or a homework
assignment). Is this experience merely
a coincidence or does it represent a fun-
damental fact of life (i.e., a property of
the world)? Could you imagine a world
in which solving any problem is not
significantly harder than checking a
solution to it? Would the term “solv-
ing a problem” not lose its meaning in
such a hypothetical (and impossible in
our opinion) world? The denial of the
plausibility of such a hypothetical world
(in which “solving” is not harder than
“checking”) is what “P different from
NP” actually means, where P represents
tasks that are efficiently solvable and
NP represents tasks for which solutions
can be efficiently checked.

The mathematically (or theoreti-
cally) inclined reader may also con-
sider the task of proving theorems ver-
sus the task of verifying the validity of
proofs. Indeed, finding proofs is a spe-
cial type of the aforementioned task of
“solving a problem” (and verifying the
validity of proofs is a corresponding
case of checking correctness). Again,
“P different from NP” means that there
are theorems that are harder to prove
than to be convinced of their correct-
ness when presented with a proof. This
means that the notion of a “proof” is
meaningful; that is, proofs do help
when seeking to be convinced of the
correctness of assertions. Here NP rep-

resents sets of assertions that can be
efficiently verified with the help of ad-
equate proofs, and P represents sets of
assertions that can be efficiently veri-
fied from scratch (i.e., without proofs).

In light of the foregoing discussion,
it is clear that the P versus NP question
is a fundamental scientific question
with far-reaching consequences. The
fact that this question seems beyond
our current reach led to the develop-
ment of the theory of NP-complete-
ness. Loosely speaking, this theory
identifies a set of computational prob-
lems that are as hard as NP. That is, the
fate of the P versus NP question lies
with each of these problems: If any of
these problems is easy to solve then
so are all problems in NP. Thus, show-
ing that a problem is NP-complete
provides evidence to its intractability
(assuming, of course, P different than
NP). Indeed, demonstrating the NP-
completeness of computational tasks
is a central tool in indicating hardness
of natural computational problems,
and it has been used extensively both
in computer science and in other disci-
plines. NP-completeness indicates not
only the conjectured intractability of a
problem but rather also its “richness,”
in the sense that the problem is rich
enough to encode any other problem
in NP. The use of the term “encoding”
is justified by the exact meaning of NP-
completeness, which in turn establish-
es relations between different compu-
tational problems (without referring to
their absolute complexity).

SOME ADVANCED TOPICS
The foregoing discussion of NP-
completeness hints to the importance
of representation, since it referred to
different problems that encode one an-
other. Indeed, the importance of rep-
resentation is a central aspect of com-
plexity theory. In general, complexity
theory is concerned with problems for
which the solutions are implicit in the
problem’s statement (or rather in the
instance). That is, the problem (or rath-
er its instance) contains all necessary
information, and one merely needs to
process this information in order to
supply the answer [1]. Thus, complexity
theory is concerned with manipulation
of information, and its transformation

Invitation to
Complexity Theory

Complexity theory
is concerned with
the study of the
intrinsic complexity
of computational
tasks means that its
“final” goal is the
determination of the
complexity of any
well-defined task.

XRDS • s p r i n g 2 0 1 2 • V o l . 1 8 • n o . 320

from one representation (in which the
information is given) to another rep-
resentation (which is the one desired).
Indeed, a solution to a computational
problem is merely a different repre-
sentation of the information given;
that is, a representation in which the
answer is explicit rather than implicit.
For example, the answer to the ques-
tion of whether or not a given Boolean
formula is satisfiable is implicit in the
formula itself (but the task is to make
the answer explicit). Thus, complexity
theory clarifies a central issue regard-
ing representation; that is, the distinc-
tion between what is explicit and what
is implicit in a representation. Further-
more, it even suggests a quantification
of the level of non-explicitness.

In general, complexity theory pro-
vides new viewpoints on various phe-
nomena that were considered also by
past thinkers. Examples include the
aforementioned concepts of solutions,
proofs, and representation as well as
concepts like randomness, knowledge,
interaction, secrecy, and learning. We
next discuss the latter concepts and
the perspective offered by complexity
theory.

Randomness. The concept of ran-
domness has puzzled thinkers for
ages. Their perspective can be de-
scribed as ontological: They asked
“what is randomness” and wondered
whether it exists at all (or is the world
deterministic). The perspective of
complexity theory is behavioristic: It
is based on defining objects as equiva-
lent if they cannot be told apart by any
efficient procedure. That is, a coin toss
is (defined to be) “random” (even if one
believes that the universe is determin-
istic) if it is infeasible to predict the
coin’s outcome. Likewise, a string (or
a distribution on strings) is “random”
if it is infeasible to distinguish it from
the uniform distribution (regardless
of whether or not one can generate the
latter). Interestingly, randomness (or
rather pseudorandomness) defined
this way is efficiently expandable; that
is, under a reasonable complexity as-
sumption (to be discussed next), short
pseudorandom strings can be deter-
ministically expanded into long pseu-
dorandom strings. Indeed, it turns
out that randomness is intimately
related to intractability. Firstly, note

that the very definition of pseudoran-
domness refers to intractability (i.e.,
the infeasibility of distinguishing
a pseudorandom object from a uni-
formly distributed object). Secondly,
as stated, a complexity assumption,
which refers to the existence of func-
tions that are easy to evaluate but hard
to invert (called “one-way functions”),
implies the existence of deterministic
programs (or “pseudorandom genera-
tors”) that stretch short, random seeds
into long pseudorandom sequences.
In fact, it turns out that the existence
of pseudorandom generators is equiv-
alent to the existence of one-way func-
tions.

Knowledge. Complexity theory of-
fers its own perspective on the concept
of knowledge (and distinguishes it
from information). Specifically, com-
plexity theory views knowledge as the
result of a hard computation. Thus,
whatever can be efficiently done by
anyone is not considered knowledge.
In particular, the result of an easy com-
putation applied to publicly available
information is not considered knowl-
edge. In contrast, the value of a hard-
to-compute function applied to public-
ly available information is knowledge,
and if somebody provides you with
such a value then it has provided you
with knowledge. This discussion is re-
lated to the notion of zero-knowledge
interactions, which are interactions
in which no knowledge is gained (see
Figure 1). Such interactions may still
be useful, because they may convince a
party of the correctness of specific data
that was provided beforehand. For ex-
ample, a zero-knowledge interactive

proof may convince a party that a given
graph is 3-colorable without yielding
any 3-coloring.

Interaction. The foregoing para-
graph has explicitly referred to interac-
tion, viewing it as a vehicle for gaining
knowledge and/or gaining confidence.
Let us highlight the latter application
by noting that it may be easier to verify
an assertion when allowed to interact
with a prover rather than when read-
ing a proof. Put differently, interaction
with a good teacher may be more ben-
eficial than reading any book. The add-
ed power of such interactive proofs is
rooted in their being randomized (i.e.,
the verification procedure is random-
ized), because if the verifier’s questions
can be determined beforehand then
the prover may just provide the tran-
script of the interaction as a traditional
written proof.

Secrecy. Another concept related
to knowledge is that of secrecy. Knowl-
edge is something that one party may
have while another party does not have
(and cannot feasibly obtain by itself)—
thus, in some sense knowledge is a
secret. In general, complexity theory
is related to cryptography, where the
latter is broadly defined as the study of
systems that are easy to use but hard to
abuse. Typically, such systems involve
secrets, randomness, and interaction
as well as a complexity gap between
the ease of proper usage and the infea-
sibility of causing the system to devi-
ate from its prescribed behavior. Thus,
much of cryptography is based on com-
plexity-theoretic assumptions and its
results are typically transformations of
relatively simple computational primi-

Figure 1. An illustration of the concept of zero-knowledge proof.

XRDS • s p r i n g 2 0 1 2 • V o l . 1 8 • n o . 3 21

Acomputational
complexity gap,
captured in the defi-
nition of one-way

functions, is a necessary and
sufficient condition for much
of modern cryptography.
Loosely speaking, one-way
functions are functions that
are easy to compute but hard
to invert (in an average-case
sense). The existence of
one-way functions implies
that P is different from NP,
which means that such a
complexity gap is only widely
conjectured to exist (rather
than known for a fact). We
demonstrate the use of
this gap in the case of the
archetypical cryptographic
task of providing secret com-
munication, which in turn is
reduced to the construction
of encryption schemes.

Encryption schemes are
supposed to provide secret
communication between
parties in a setting in which
these communications
may be eavesdropped by an
adversary. There are two
cases differing according
to whether or not the
communicating parties have
agreed on a common secret
prior to the communication.
In both cases, the encryption
scheme consists of three
efficient procedures: key
generation, encryption
(denoted by E), and
decryption (D). Loosely
speaking, on input a
security parameter n, the

key-generation procedure
outputs a (random) pair of
corresponding (n-bit long)
encryption and decryption
keys, (e, d), such that for
every bit string x, it
holds that Dd(Ee(x)) = x,
where Ee(x) (resp., Dd(y))
denotes the output of the
encryption (resp., decryption)
procedure on input (e, x)
(resp., (d, y)).

The difference between
the two cases lies in the
way in which the scheme is
employed and this will be
reflected in the definition of
security. In the first case,
known as the private-key
case, a set of mutually
trustful parties jointly
employ the key-generation
process, prior to the actual
communication, obtaining a
pair of keys (e, d). We stress,
in this case, the encryption
key e is known to all trusted
parties and to them only.
Later, each trusted party
may encrypt messages by
applying Ee, and retrieve
them (i.e., decrypt) by
applying Dd. The information
available to the adversary,
in this case, is a sequence of
encrypted messages, sent
over the channel, using a
fixed encryption key unknown
to it. (The total amount
of information encrypted
using this encryption key
may be much greater than
the length of the key, and so
perfect information theoretic
secrecy is not possible).

In the second case,
known as the public-key
case, the receiver invokes
the key-generation process,
publicizes the encryption
key e (but not the decryption
key d), and the sender uses
e to generate encryptions
as before. This allows
everybody (not only parties
that the receiver trusts) to
send encrypted messages
to the receiver; however, in
such a case the adversary
also knows the encryption
key e. Thus, the information
available to the adversary
in this case is a sequence
of encrypted messages,
sent over the channel,
using a fixed encryption key
that is also known. In both
cases, security amounts
to asserting that it is
infeasible for the adversary
to learn anything from the
information available to
it. That is, whatever the
adversary can efficiently
compute from the public
information can be efficiently
computed from scratch.

Note that in the private-
key case, we may assume,
without loss of generality,
that e = d; whereas in the
public-key case, d must
be hard to compute from
e. Private-key encryption
schemes exist if and only
if one-way functions exist.
Public-key encryption
schemes can be constructed
based on a seemingly
stronger assumption, yet

this assumption is implied by
widely believed conjectures
such as the conjectured
intractability of factoring
integers.

BEYOND ENCRYPTION
SCHEMES
Cryptography encompasses
much more than methods
for providing secret
communication. Another
basic cryptographic
task is that of providing
authenticated
communication, which
in turn is reduced to
the construction of
signature (and/or message
authentication) schemes.
In general, cryptography
is concerned with the
construction of schemes
that maintain any desired
functionality under malicious
attempts aimed at making
these schemes deviate from
their prescribed functionality.
Loosely speaking, a secure
implementation of a multi-
party functionality is a multi-
party protocol in which the
impact of malicious parties
is effectively restricted to
application of the prescribed
functionality to inputs
chosen by the corresponding
parties. One major result
in this area states that,
under plausible assumptions
regarding computational
difficulty, any efficiently
computed functionality can
be securely implemented.

On the Use of Complexity
In Cryptography

XRDS • s p r i n g 2 0 1 2 • V o l . 1 8 • n o . 322

tives (e.g., one-way functions) into
more complex cryptographic applica-
tions (e.g., secure encryption schemes).
(See Sidebar “On the Use of Complexity
in Cryptography.”)

Learning. We have already men-
tioned the concept of learning when re-
ferring to learning from a teacher ver-
sus learning from a book. Recall that
complexity theory provides evidence
to the advantage of the former. This
is in the context of gaining knowledge
about publicly available information.
In contrast, computational learning
theory is concerned with learning ob-
jects that are only partially available to
the learner (i.e., reconstructing a func-
tion based on its value at a few random
locations or even at locations chosen
by the learner). Still, complexity theory
sheds light on the intrinsic limitations
of learning (in this sense).

Other computational tasks. Com-
plexity theory deals with a variety of
computational tasks. We have already
mentioned two fundamental types of
tasks: searching for solutions (or rather
finding solutions) and making deci-
sions (e.g., regarding the validity of as-
sertions). We have also hinted that in
some cases these two types of tasks can
be related. Now consider two additional
types of tasks: counting the number of
solutions and generating random solu-
tions. Clearly, both are at least as hard
as finding arbitrary solutions to the cor-
responding problem, but it turns out
that for some natural problems they are
not significantly harder. Specifically,
under some natural conditions on the
problem, approximately counting the
number of solutions and generating an
approximately random solution is not
significantly harder than finding an ar-
bitrary solution.

Approximation. Having mentioned
the notion of approximation, the study
of the complexity of finding “approxi-
mate solutions” is also of natural im-
portance. One type of approximation
problems refers to an objective func-
tion defined on the set of potential so-
lutions: Rather than finding a solution
that attains the optimal value, the ap-
proximation task consists of finding a
solution that attains an “almost opti-
mal” value, where the notion of almost
optimal may be understood in different
ways giving rise to different levels of

approximation. Interestingly, in many
cases, even a very relaxed level of ap-
proximation is as difficult to obtain as
solving the original (exact) search prob-
lem (i.e., finding an approximate solu-
tion is as hard as finding an optimal
solution). Surprisingly, these hardness
of approximation results are related
to the study of probabilistically check-
able proofs, which are proofs that allow
for ultra-fast probabilistic verification.
Amazingly, every proof can be efficient-
ly transformed into one that allows
for probabilistic verification based on
probing a constant number of bits (in
the alleged proof). Turning back to ap-
proximation problems, in other cases
a reasonable level of approximation is
easier to achieve than solving the origi-
nal (exact) search problem.

Average-case complexity. Approxi-
mation is a natural relaxation of vari-
ous computational problems. Another
natural relaxation is the study of aver-
age-case complexity, where the “aver-
age” is taken over some “simple” dis-
tributions (representing a model of the
problem’s instances that may occur in
practice). Although it was not stated
explicitly, the entire discussion so far
has referred to “worst-case” analysis of
algorithms. Worst-case complexity is a
more robust notion than average-case
complexity. For starters, one avoids
the controversial question of what are
the instances that are “important in
practice” and correspondingly the se-
lection of the class of distributions for
which average-case analysis is to be
conducted. Nevertheless, a relatively
robust theory of average-case complex-
ity has been suggested, albeit it is less
developed than the theory of worst-
case complexity.

Randomness extractors. In view of
the central role of randomness in com-
plexity theory (as evident, say, in the
study of pseudorandomness, proba-
bilistic proof systems, and cryptogra-
phy), one may wonder as to whether the
randomness needed for the various ap-
plications can be obtained in real life.
One specific question, which received a
lot of attention, is the possibility of “pu-
rifying” randomness (or “extracting
good randomness from bad sources”).
That is, can we use “defective” sources
of randomness in order to implement
almost perfect sources of randomness.

The answer depends, of course, on the
model of such defective sources. This
study turned out to be related to com-
plexity theory, where the tightest con-
nection is between a certain type of
randomness extractor and a certain
type of pseudorandom generator.

Space complexity. So far we have fo-
cused on the time complexity of com-
putational tasks, while relying on the
natural association of efficiency with
time. However, time is not the only
resource one should care about. An-
other important resource is space: The
amount of (temporary) memory con-
sumed by the computation. The study
of space complexity has uncovered
several fascinating phenomena, which
seem to indicate a fundamental dif-
ference between space complexity and
time complexity. For example, in the
context of space complexity, verifying
proofs of validity of assertions (of any
specific type) has the same complexity
as verifying proofs of invalidity for the
same type of assertions.

SUMMARY
In case the reader feels dizzy, it is no
wonder. We took an ultra-fast aerial
tour of some mountain tops, and diz-
ziness is to be expected. More leisurely
paced touring experiences are prob-
ably offered in courses given by your
university.

Further Reading

The P versus NP question and NP-completeness are
covered in many basic textbooks. I’ve written about
this subject in P, NP, and NP-Completeness: The
Basics of Complexity Theory, published by Cambridge
University Press. If you are interested in advanced
topics, Computational Complexity: A conceptual
perspective (Cambridge University Press, 2008) is more
comprehensive.

Biography

Oded Goldreich is a professor of computer science at the
Weizmann Institute of Science, Israel. He is an active
researcher with numerous contributions to complexity
theory, cryptography and related areas in the theory of
computation. He has published a number of books in these
domains, including Foundations of Cryptography, Vol 1:
Basic Tools (2001) and Vol 2: Basic Applications (2004),
Cambridge University Press.

Note

[1] In contrast, in other disciplines, solving a problem
may require gathering information that is not available in
the problem’s statement. This information may either be
available from auxiliary (past) records or be obtained by
conducting new experiments.

© 2012 ACM 1528-4972/12/03 $10.00

