
Lecture Notes on Testing by Implicit Sampling

Oded Goldreich∗

April 20, 2016

Summary: Building on the junta tester, we present a general methodology for con-
structing testers for properties of Boolean functions (of the form f : {0, 1}ℓ → {0, 1})
that can be approximated by small juntas. This methodology yields testers of low query
complexity for many natural properties, which contain functions that depend on rela-
tively few relevant variables; specifically, the query complexity is related to the size of
the junta and is independent of the length of the input to the function (i.e., ℓ).

These notes are based on the work of Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Servedio and
Wan [1]. The paradigm introduced in their work is often called testing by implicit learning (see,
e.g., [4]), but I prefer the term “implicit sampling” for reasons that will be clarified later. This
lecture builds on the lecture on testing juntas; thus, the latter lecture is a prerequisite to the current
one.

1 Introduction

The natural interest in Boolean functions that have few relevant variables leads to an interest
in functions of this type that have additional properties. We focus on the case that these addi-
tional properties are actually properties of the residual function, where the residual function of
f : {0, 1}ℓ → {0, 1} that depends on the variable set I ⊆ [ℓ] is the function f ′ : {0, 1}|I| → {0, 1}
such that f(x) = f ′(xI). In other words, we are interested in properties of the form Π such that
there exists Π′ ⊆ {f ′ : {0, 1}k → {0, 1}} so that f ∈ Π if an only if for some k-subset I and f ′ ∈ Π′

it holds that f(x) = f ′(xI).
The study of testers for such properties leads to a technique that illustrates the usefulness of

partial information of the type that is provided by property testers. We refer to information of
the form “the set S contains no relevant variables” (of the function f). Specifically, given oracle
access to f such that f(x) = f ′(xI) for some small but unknown I ⊂ [ℓ], we show how to use
partial information of the foregoing type in order to efficiently generate random pairs of the form
(z, f ′(z)). We stress that this generation is performed without knowing I and without trying to
find it.

2 Testing subclasses of k-Juntas

Recall that that a function f : {0, 1}ℓ → {0, 1} is called a k-junta if there exists k indices i1, ..., ik ∈
[ℓ] and a Boolean function f ′ : {0, 1}k → {0, 1} such that f(x) = f ′(xi1 · · · xik) for every x =

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.

1

x1 · · · xℓ ∈ {0, 1}ℓ. Here, we assume, without loss of generality, that i1 < · · · < ik. In other words,
f(x) = f ′(xI), where I = {i1, ..., ik} ⊆ [ℓ] such that i1 < · · · < ik and xI denotes the k-bit long
string xi1 · · · xik . Natural subclasses of k-juntas arise when restricting f ′ to reside in a predeterimed
set of functions. Specifically, we refer to the following definition.

Definition 1 ((k,Φ)-juntas): Let Φ be a set of Boolean functions over {0, 1}k. A function f :
{0, 1}ℓ → {0, 1} is called a (k,Φ)-junta if there exist k-subset I and a Boolean function f ′ : {0, 1}k →
{0, 1} in Φ such that f(x) = f ′(xI) for every x ∈ {0, 1}ℓ.

Properties of this form (i.e., (k,Φ)-juntas) may be viewed as properties of functions that have only
k relevant inputs (called “relevant attributes” in the machine learning literature). Hence, it is
reasonable to hope that computational tasks related to these properties will have query complexity
that does not depend on ℓ, and may only depend on k ≪ ℓ.

A natural way to test whether a function is a (k,Φ)-junta is to first check that it is a k-junta,
then find the corresponding set I, and finally test whether the corresponding f ′ is in Φ. The
point (of “testing by implicit sampling”) is that we want to avoid finding the set I, since in general
finding the set I requires more than log

(
ℓ
k

)
queries (see Exercise 1), whereas we may wish the query

complexity to be independent of ℓ. The paradigm of implicit sampling offers a way of skipping the
second step (of finding I), and generating a random sample of labeled k-tuples that can be used
for testing f ′. Note, however, that the testing of f ′ is performed by samples only; that is, we
invoke a tester for Φ that only uses f ′-labeled samples (and makes no queries to f ′).1 The relevant
definition of such testers was briefly mentioned in the first lecture; they are called sample-based,
and are defined as follows.

Definition 2 (sample-based tester for property Φ): Let Φ = ∪n∈NΦn such that Φn contains func-
tions defined over [n], and s : N × (0, 1] → N. A sample-based tester of (sample) complexity s for Φ
is a probabilistic machine, denoted T , that satisfies the following two conditions.

1. T accepts inputs in Φ: For every n ∈ N and ǫ > 0, and for every f ∈ Φn, it holds that
Pr[T (n, ǫ; ((i1, f(i1))..., (is, f(is)))=1] ≥ 2/3, where s = s(n, ǫ) and i1, ..., is are drawn inde-
pendently and uniformly in [n].

2. T rejects inputs that are ǫ-far from Φ: For every n ∈ N and ǫ > 0, and for every f with
domain [n] such that δΦ(f) > ǫ, it holds that Pr[T (n, ǫ; ((i1, f(i1))..., (is, f(is))) = 0] ≥ 2/3,
where δΦ(f) denotes the distance of f from Φ, and i1, ..., is are as in Item 1.

If the first condition holds with probability 1, then we say that T has one-sided error.

The sequence ((i1, f(i1))..., (is, f(is))) is called an f -labeled sample of s points (in the domain of
f). Recall that any class Φ = ∪n∈NΦn can be tested by using a sample of size O(ǫ−1 log |Φn|), via
reducing (sample-based) testing to (sample-based) proper learning (see the first lecture). Now, we
are ready to state a general result that is obtained by the “implicit sampling” paradigm.

Theorem 3 (testing by implicit sampling): Let Φ be a property of k-variate Boolean functions
(i.e., functions from {0, 1}k to {0, 1}) such that Φ is invariant under permuting the bits of the
argument to the function (i.e., f ′ ∈ Φ if and only if for every permutation π : [k] → [k] it holds

1The reason that we cannot support queries will be clarified in the proof of Theorem 3.

2

that f ′
π(y) = f ′(yπ(1), ..., yπ(k)) is in Φ). Suppose that there exists a sample-based tester of sample

complexity sk : (0, 1] → N for Φ such that sk(ǫ) ≥ 1/ǫ. Then, (k,Φ)-juntas can be tested within
query complexity q(n, ǫ) = poly(k) · Õ(sk(0.9ǫ))

2. Furthermore, each of the queries made by this
tester is uniformly distributed in {0, 1}ℓ.

Needless to say, this result is beneficial only when k ≪ ℓ (since we can always find the junta within
complexity Õ(k log ℓ/ǫ); see Exercise 2). Note that all properties of ℓ-variate Boolean functions dis-
cussed in prior lectures are invariant in the foregoing sense (i.e., they are invariant under renaming
of the variables; see Exercise 3). In contrast, properties that do not satisfy this condition refer to
the identity of the variables (e.g., all Boolean functions that are influenced by their first variable),
and seem less natural (especially in the current context).

Proof: Recall that we plan to test whether f : {0, 1}ℓ → {0, 1} is a (k,Φ)-junta by first testing
whether f is a k-junta, which means that f(x) = f ′(xI) for some k-subset I and f ′ : {0, 1}k → {0, 1},
and then testing whether f ′ is in Φ. We have seen a junta tester in a previous lecture, so the real
challenge here is to test f ′ for membership in Φ while only having access to f . Recall that passing
the k-junta test only assures us that f is close to being a k-junta (rather than actually being a
k-junta). Nevertheless, let us assume for a moment that f is a k-junta. Furthermore, suppose that
we are given a k-partition of [ℓ], denoted (S1, ..., Sk), such that each part has exactly one member
of the junta (i.e., |Sj ∩ I| = 1 for every j ∈ [k]).

In such a case, things would have been easy. We could have emulated a standard tester for Φ
as follows. When the tester issues a query y = y1 · · · yk, we would query f on the string z such that
for every j ∈ [k] and i ∈ Sj it holds that zi = yj. This relies on the hypothesis that f(x) = f ′(xI),
which implies that zI equals yπ(1) · · · yπ(k) for some permutation π : [k] → [k], and on the hypothesis
that membership in Φ is invariant under permuting the bits of the argument to f ′.

Unfortunately, the k-junta test only assures us that f is closed to being a k-junta, and so we
cannot rely on the answers that f provides on the 2k possible z’s used in the foregoing construction.
In other words, after verifying that f : {0, 1}ℓ → {0, 1} is close to being a k-junta, denoted g (such
that g(x) = g′(xI) for some I and g′ : {0, 1}k → {0, 1}), we can safely obtain g’s values only at
uniformly distributed points. We shall show that this suffices for generating g′-labeled samples (in
the domain of g′), which is far from being obvious. (For this reason, we can emulate a sample-based
tester, but not a tester that makes queries.)

The key question, indeed, is how can we generate these g′-labelled samples, without knowing I.
Suppose that f is ǫ′-close to a k-junta g (such that g(x) = g′(xI) for some k-subset I), and suppose
again that we are given a k-partition of [ℓ], denoted (S1, ..., Sk), such that each part has exactly one
member of the junta (i.e., |Sj ∩ I| = 1 for every j ∈ [k]). The difference, of course, is that this junta
refers to g, not to f (which is only close to g). Now suppose that we pick x ∈ {0, 1}ℓ uniformly at
random, and obtain f(x) (which equals g(x) = g′(xI) with probability at least 1 − ǫ′). So we got
the g′-label of xI , but we don’t know xI (although we know x, since we don’t know I). Actually,
having xS1∩I · · · xSk∩I is good enough, since we can consider testing g′π(z) = g′(zπ(1) · · · zπ(k)) (for
a suitable π)2 whose distance from Φ equals the distance of g′ from Φ. Hence, for each j ∈ [k], we
wish to obtain xSj∩I .

In other words, given x ∈ {0, 1}ℓ and S = Sj ⊂ [ℓ] such that exactly one bit-location in S
influences the value of g, we wish to find out the value assigned to this bit-location in x. So we
need to find out whether S0 = S ∩ {i : xi = 0} influences g, since if the answer is positive then

2If I = {i1, .., ik} such that i1 < · · · < ik, then π is defined such that {ij} = Sπ(j)∩I . Hence, zπ(j) = xSπ(j)∩I = xij
.

3

S0 ∩ I = S ∩ I and xS∩I = 0, and otherwise xS∩I = 1 holds (since we have assumed that S does
influence g). Furthermore, the influence of S on g is closely related to the influence of S on f (i.e.,
these influences differ by at most 2ǫ′), since g is close (i.e., ǫ′-close) to f . Finally, recall that we
know how to test whether a set of locations influences a function; this is part of the junta tester
(presented in the prior lecture). We review this part next.

Algorithm 3.1 (testing influence of a set of locations on a function f): On input a set S ⊆ [ℓ]
and a parameter m, and oracle access to f : {0, 1}ℓ → {0, 1}, select uniformly m random pairs
(r, s) such that r and s agree on bit positions [ℓ]\S (i.e., rS = sS), and indicate that S is influential
if and only if f(r) 6= f(s) for any of these pairs (r, s). Actually, output the fraction of pairs (r, s)
such that f(r) 6= f(s) as an estimate of the influence of S.

Recalling that the influence of S on f , denoted IS(f), equal the probability that a single pair
yields different values (i.e., Prr,s:r

S
=s

S
[f(r) 6= f(s)]), it follows that S is deemed influential with

probability 1−(1−IS(f))m, which equals 1−exp(−Θ(m ·IS(f))) if IS(f) > 0 (and zero otherwise).
Furthermore, the estimate output by Algorithm 3.1 distinguishes, with success probability 1 −
exp(−Ω(m · ν)), between the case that IS(f) ≥ 2ν and the case that IS(f) ≤ ν. This is done
by ruling according to whether or not the said estimate (i.e., the fatction of pairs (r, s) such that
f(r) 6= f(s)) exceeds 1.5ν.

Returning to the foregoing k-partition (S1, ..., Sk), we observe that a procedure for finding such
a k-partition is also implicit in the k-junta tester we saw (in the prior lecture): It amounts to
selecting a O(k2)-partition at random, and testing whether more than k of the parts influence f . If
the answer is positive, then we shall reject, and otherwise we can use this O(k2)-partition for our
purposes (either by merging the O(k2) parts into k sets such that each set contains at most one
influential part or by just using the influential parts and ignoring the rest).

There is one problem with the forgoing suggestion. Taking a close look at the paragraph
preceding Algorithm 3.1, note that we have assumed that each Sj contains a single influential
variable; that is, we assumed that the singleton I ∩ Sj has positive influence on f . This is not
necessarily the case. For starters, it may be that g is actually a (k − 1)-junta. Moreover, even
if g depends on all variables in I, it may be the case that some of these variables have negligible
influence on g. Lastly, recall that we are estimating the influence of sets on F rather than on g,
and the difference is not necessarily zero, although it is small. The reason that this is a problem
is that if we determine the jth bit in the k-bit sample (i.e., xSj∩I) according to the influence of S0

j

on f , then we may almost always set this value to 1 when Sj ∩ I has negligible influence on f . In
such a case we shall end-up invoking the sample-based tester on a sample that is not uniformly
distributed.

The foregoing problem is resolved by estimating the influence of Sj on f . If this influence is
noticeable, then we set the jth bit of the sample as suggested (i.e., we set it to 0 if and only if S0

j has
positive influence of f). Otherwise (i.e., when Sj has negligible influence on F), we just set this bit
at random (i.e., to be 0 with probability 1/2). The foregoing ideas yield the following algorithmic
schema, which utilizes a sample-based tester of complexity sk for Φ. In this schema the proximity
parameters for the “tests of influence” (denoted ǫ2 and ǫ3) are set to a value that is smaller than ǫ
(but related to it).

Algorithm 3.2 (testing (k,Φ)-juntas): Let c > 0 be a sufficiently small constant (e.g., c = 0.01).
On input parameters ℓ and ǫ, and oracle access to a function f : {0, 1}ℓ → {0, 1}, the tester sets
t = Θ(k2), and proceeds as follows.

4

1. Select a random t-way partition of [ℓ], denoted (R1, ..., Rt), by assigning each i ∈ [ℓ] a uni-
formly selected j ∈ [t], which means that i is assigned to Rj.

2. For each j ∈ [t], check whether Rj influences f (i.e., Rj has positive influence on f). The
aim is distinguishing, with success probability 1 − c/t, between the case that IRj

(f) = 0 and

the case that IRj
(f) ≥ ǫ2

def
= c/(2t · k · sk(0.9ǫ)).

This is done by using Algorithm 3.1, while setting the parameter m to m2 = O(ǫ−1
2 log t), and

asserting that Rj influences f if and only if the estimate output by the algorithm is positive.

Let J denote the set of j’s for which Rj was found to influence f . If |J | > k, then the
algorithm rejects. Otherwise, assume, without loss of generality, that |J | = k, by possibly
considering a k-superset of J . For notational simplicity, we assume that J = [k].3

3. For each j ∈ J , estimate the influence of Rj on f with the aim of distinguishing, with success
probability 1− c/k, between the case that IRj

(f) ≥ 4ǫ3 and the case that IRj
(f) < 3ǫ3, where

ǫ3 = 4tǫ2 = 2c/(k · sk(0.9ǫ)) ≤ 2c · ǫ.

This is done by using Algorithm 3.1, while setting the parameter m to m3 = O(ǫ−1
3 log k), and

deciding based on the estimate that it outputs.

Let J ′ ⊂ J denote the set of j’s for which the foregoing estimate exceeds 3.5ǫ3.

4. Generate sk(0.9ǫ) labelled samples for the (sample-based) tester of Φ, where each labelled
sample is generated as follows.

(a) Select uniformly x ∈ {0, 1}ℓ and query f at x.

(b) For every j ∈ J ′, estimate the influence of Rx
j on f , where Rx

j = {i ∈ Rj : xi =0}. Here
the aim is to distinguish, with success probability 1 − c/(k · sk(0.9ǫ)), between the case
that IRx

j
(f) ≤ ǫ3 and the case that IRx

j
(f) ≥ 2ǫ3.

This is done by using Algorithm 3.1, while setting the parameter m to m4 = O(ǫ−1
3 log(k ·

sk(0.9ǫ))), and asserting that Rx
j has high influence on f if and only if the output estimate

exceeds 1.5ǫ3. In the first case (i.e., Rx
j was asserted to have high influence), set yj = 0

and otherwise set yj = 1.

(c) For every j ∈ J \ J ′, select yj uniformly at random in {0, 1}.

The labelled sample is (y1 · · · yk, f(x)).

5. Invoke the sample-based tester for Φ, while using proximity parameter 0.9ǫ, and assuming it
has error probability at most c. Provide this tester with the sk(0.9ǫ) labeled sample generated
in Step 4, and output its verdict (i.e., accept if and only if the latter tester has accepted).

We first note that each query made by Algorithm 3.2 is uniformly distributed in {0, 1}ℓ. The query
complexity of the algorithm is t · 2m2 + k · 2m3 + sk(0.9ǫ) · (1 + k · 2m4), where the first term is due
to Step 2 the second term is due to Step 3, and the third term is due to Step 4. (We may ignore

3In general, one should use a one-to-one mapping φ : J → [k]. In this case, in Step 4b, for every j ∈ J , we set
yφ(j) according to Rx

j .

5

the second term since it is dominated by the second.) Using m2 = O(ǫ−1
2 log t) = Õ(tk) · sk(0.9ǫ)

and m4 = O(ǫ−1
3 log(k · sk(0.9ǫ))) = Õ(sk(0.9ǫ) · k), we obtain a complexity bound of

O(t · m2 + sk(0.9ǫ) · k · m3) = Õ(k5 · sk(0.9ǫ) + k2 · sk(0.9ǫ)
2).

We now turn to the analysis of Algorithm 3.2.
First, suppose that f is a (k,Φ)-junta. Let f ′ ∈ Φ be such that f(x) = f ′(xI) for some k-subset

I and all x ∈ {0, 1}ℓ. Then, with probability at least 1 − c over the choice of the t-partition
(selected in Step 1), it holds that |Rj ∩ I| ≤ 1 for each j ∈ [t]. In this case, with probability at least
1 − c, the set J determined in Step 2 contains all j’s such that IRj

(f) ≥ ǫ2 (which implies that it
contains contains all j’s such that IRj

(f) ≥ 4ǫ3). Likewise, with probability at least 1 − c, the set
J ′ determined in Step 3 satisfies

{j ∈ [t] : IRj
(f) ≥ 4ǫ3} ⊆ J ′ ⊆ {j ∈ [t] : IRj

(f) > 3ǫ3}. (1)

Now, for each x selected in Step 4 and for each j ∈ J ′, with probability at least 1− c/(k · sk(0.9ǫ)),
the algorithm determines yj such that yj = xRj∩I .

4 As for j ∈ J\J ′, with probability at least 1−4ǫ3

(over the choice of x), it holds that replacing xRj∩I by yj does not affect the value of f . Hence (using

ǫ3 = 2c/(ksk(0.9ǫ))), with probability at least (1−c)3 ·(1−c/(k ·sk(0.9ǫ)))k·sk(0.9ǫ)−k ·sk(0.9ǫ)·4ǫ3 >
(1 − c)4 − 8c > 1 − 12c, the sample-based tester for Φ is invoked with a uniformly distributed f ′-
labeled sample. It follows that f is accepted with probability at least (1 − 12c) · (1 − c) > 2/3.

Next, we consider the case that f is ǫ-far from being a (k,Φ)-junta. As shown in the prior
lecture, if f is 2tǫ2-far from being a k-junta, then it will be rejected in Step 2 (with high probability
over the choice of the t-partition and the execution of Step 2). Hence, we focus on the case that
f is 2tǫ2-close to a k-junta g, which in turn is (ǫ − 2tǫ2)-far from being a (k,Φ)-junta; that is,
g(x) = g′(xI) for some g′ 6∈ Φ and some k-subset I (and all x ∈ {0, 1}ℓ). It follows that g′ is
(ǫ − 2tǫ2)-far from Φ. Now, as before, with probability at least 1 − c over the partition selected
in Step 1, it holds that |Rj ∩ I| ≤ 1 for each j ∈ [t]. Furthermore, with probability at least 1 − c,
either Step 2 rejects or the set J ′ determined in Step 3 satisfies Eq. (1). Using the fact that the
influence of a set on the function g is within an additive distance of 2 · 2tǫ2 from the influence of
the same set on the function f (see Exercise 4)) and 4tǫ2 ≤ ǫ3, we have

{j ∈ [t] : IRj
(g) ≥ 5ǫ3} ⊆ J ′ ⊆ {j ∈ [t] : IRj

(g) > 2ǫ3}. (2)

Hence, for every j ∈ J ′ it holds that IRj
(g) > 2ǫ3, whereas for every i ∈ I \ ∪j∈J ′Rj it holds that

I{i}(g) ≤ 5ǫ3.
Now, note that, with probability at least 1 − sk(0.9ǫ) · 2tǫ2 > 1 − c, it holds that f(x) = g(x)

(which equals g′(xI)) for all x’s generated in Step 4, since each x is uniformly distributed in {0, 1}ℓ

(and f is 2tǫ2-close to g). Again, for each x generated in Step 4 and each j ∈ J ′, with probability at
least 1−c/(k ·sk(0.9ǫ)), the algorithm determines correctly the jth bit of xI . As before, the random
setting of the bits in positions J \ J ′ has lmited affect. Hence (using ǫ3 = 2c/(ksk(0.9ǫ))), with
probability at least (1−c)3 ·(1−c) ·(1−0.1/(k ·sk(0.9ǫ)))k·sk(0.9ǫ)−k ·s3(0.9ǫ) ·5ǫ3 > (1−c)5−10c >

4This description assumes, for notational simplicity, that J = [k] and that Rj ∩ I = {ij} where I = {i1, ..., ik}
and i1 < · · · < ik. Eliminating the first assumption requires using yφ(j) instead of yj , where φ is as in Footnote 3.
Eliminating the second assumption requires referring to f ′

π (rather than to f ′) for an adequate permutation π over
[k] (i.e., π sorts the k-sequence (Rj ∩ I)j∈J), as in the motivating discussion. The same comment applies to the next
couple of paragraphs (which deals with f that is ǫ-far from being a (k, Φ)-junta).

6

1−15c, either Step 2 rejects or the sample-based tester for Φ is invoked with a uniformly distributed
g′-labeled sample. Since g′ is (ǫ − 2tǫ2)-far from Φ and ǫ − 2tǫ2 ≥ ǫ − c/sk(0.9ǫ) > 0.9ǫ, it follows
that, in this case, f is rejected with probability at least (1 − 15c) · (1 − c) > 2/3. The theorem
follows.

Applications. To illustrate the applicability of Theorem 3, we consider the problems of testing
whether a function f : {0, 1}k → {0, 1} is a (monotone and general) k-monomial, which were
studied in a previous lecture. Clearly, the set of k-monomials is a subset of k-juntas, and testing
that a Boolean function f ′ : {0, 1}k → {0, 1} is a k-monomial is quite straightforward (since there
are only 2k such functions that are k-monomials (and a single monotone k-monomial)).5 Hence,
invoking Theorem 3, we get –

Corollary 4 (testing monotone and general k-monomials): The following two properties of Boolean
functions over {0, 1}ℓ can be tested within query complexity poly(k/ǫ):

1. The set of monotone k-monomials; that is, functions f : {0, 1}ℓ → {0, 1} such that for some
k-subset I ⊆ [ℓ] it holds that f(x) = ∧i∈Ixi.

2. The set of k-monomials; that is, functions f : {0, 1}ℓ → {0, 1} such that for some k-subset
I ⊆ [ℓ] and σ = σ1 · · · σℓ ∈ {0, 1}ℓ it holds f(x) = ∧i∈I(xi ⊕ σi).

Proof: Starting with the set of monotone k-monomials, let Φ denote the set of k-variate functions
that are monotone k-monomials. Indeed, Φ is a singleton; that is, there is only one such function.
Hence, testing whether f ′ : {0, 1}k → {0, 1} is in Φ amounts to estimating the distance of f ′ from
the unique monotone k-monomial, which can be done by using O(1/ǫ) random samples. Applying
Theorem 3, Part 1 follows.

Turning to the set of k-monomials, let Φ denote the set of k-variate functions that are k-
monomials. Indeed, Φ is of size 2k, and each function in it evaluates to 1 on a single point (out
of the 2k possible points). Now, if ǫ > 3 · 2−k, then every function f ′ that evaluates to 1 on more
than an ǫ/3 fraction of the domain is not in Φ and can be safely rejected. On the other hand,
every function that evaluates to 1 on at most an 2ǫ/3 fraction of the domain is ǫ-close to Φ and
can be safely accepted. Thus, in this case, using O(1/ǫ) random samples, we estimate the fraction
of points on which the input function f ′ evaluates to 1, and accept if and only if this estimate
is at most ǫ/2. Lastly, if ǫ ≤ 3 · 2−k, then by using O(k · 2k) = Õ(1/ǫ) random samples, we can
reconstruct f ′ and check if it belongs to Φ. Now, applying Theorem 3, Part 2 follows.

3 Extension to properties approximated by subclasses of k-Juntas

In this section we extend the result of the previous section to properties that can be approximated
by classes of (k,Φ)-juntas, for adequate choices of k and Φ. The notion of approximation is defined
next.

Definition 5 (approximation of a property): The property Π is δ-approximated by the property Π′

if each function in Π is δ-close to some function in Π′, and vice versa.

5We shall use a better tester for the case of general monomials.

7

For example, the class of (monotone) k-monomials, considered in Corollary 4, is 2−k′

-approximated
by the class of (monotone) k′-monomials, which in turn is a subclass of k′-juntas. Specifically,
any k-monomial can be replaced by a monomial that contains only k′ < k of the original literals.
Note that in this case the approximation error decreases exponentially with k′, whereas the query
complexity increases polynomially with k′. Hence, for sufficiently large k′, the approximation error
is smaller than the reciprocal of the query complexity. This is the setting envisioned in the following
general result.6

Theorem 6 (testing via an approximating property): Let Π = ∪n∈NΠn such that Πn contains
functions defined over [n] and q′ : N × (0, 1] → N such that q′(n, ǫ) ≥ 1/ǫ. Suppose that for every
ǫ > 0 there exists a property Πǫ = ∪n∈NΠǫ

n such that

1. Πn is 0.1/q′(n, 0.9ǫ)-approximated by Πǫ
n; and

2. Πǫ
n can be ǫ′-tested by using q′(n, ǫ′) queries that are each uniformly distributed in [n].

Then, Π can be tested within query complexity q(n, ǫ) = O(q′(n, 0.9ǫ)).

Note that the transformation presented in the proof does not preserve one-sided error probability.
Using Theorem 6 calls for presenting a sequence of parameterized properties (i.e., (Πǫ)ǫ>0) such
that the approximation distance (to Π) decreases with the parameter (.e., the parameter ǫ of the
property Πǫ). It is likely that the query complexity increases with that parameter, and using
Theorem 6 requires that the rate in which the query complexity increases is slower than the rate
in which the approximation distance decreases. See further discussion following the proof.

Proof: On input parameters n, ǫ and oracle access to f , we invoke the guranateed tester for Πǫ,
denoted T , providing it with the parameters n and 0.9ǫ as well as with access to f , and output
whatever T does. The analysis of T f (n, 0.9ǫ) is based on the observation that if f is δ-close to some
function f ′, then

|Pr[T f (n, 0.9ǫ) = 1] − Pr[T f ′

(n, 0.9ǫ) = 1]| ≤ q′(n, 0.9ǫ) · δ, (3)

since (by the hypothesis) each query is uniformly distributed in [n].
Let δ = 0.1/q′(n, 0.9ǫ), and suppose that f ∈ Πn. Then, there exists f ′ ∈ Πǫ

n that is δ-close
to f , and it follows that T accepts f ′ with probability at least 5/6. By Eq. (3), it follows that T
accepts f with probability at least 2/3 − 0.1 > 0.55, since q′(n, 0.9ǫ) · δ = 0.1.

On the other hand, for f that is ǫ-far from Πn, we observe that f must be (ǫ − δ)-far from Πǫ
n,

because otherwise f is (ǫ − δ)-close to a function g′ ∈ Πǫ
n, which is δ-close to some g ∈ Πn, which

implies that f is ((ǫ − δ) + δ)-close to Πn. Using ǫ − δ = ǫ − (0.1/q′(n, 0.9ǫ)) ≥ 0.9ǫ, where the
inequality is due to the hypothesis q(n, ǫ) ≥ 1/ǫ, it follows that f is 0.9ǫ-far from Πǫ, and so T
must reject f with probability at least 2/3. Using error reduction, the theorem follows.

Applications. In the current context, we approximate a given property Π by a sequence of (k, ·)-
junta properties such that the approximation distance to Π decreases with the junta-size parameter
k. It is likely that the query complexity increases with k, and using Theorem 6 requires that the

6We chose not to state the approximation parameter as an explicit parameter but rather postulate that it upper
bounded by 0.1/q′, where q′ is the query complexity.

8

rate in which the query complexity increases is slower than the rate in which the approximation
distance decreases. In many cases (see examples in Diakonikolas et al. [1]), the approximation
distance decreases exponentially with k, whereas the query complexity only grows polynomially
with k. In such cases, we can apply Theorem 6.

As with Theorem 3, we shall illustrate this application by considering the class of functions that
are (monotone or general) monomials, but this time we refer to monomials of unbounded arity.
Clearly, the class of (monotone or general) monomials is 2−k-approximated by the corresponding
class of monomials of size at most k. The latter class is merely the union of k classes that are each
easily testable (i.e., the classes of i-monomials, for i ∈ [k]). Hence, we get –

Corollary 7 (testing monotone and general monomials): The following two properties of Boolean
functions over {0, 1}ℓ can be tested withing query complexity poly(1/ǫ):

1. The set of monotone monomials; that is, functions f : {0, 1}ℓ → {0, 1} such that for some set
I ⊆ [ℓ] it holds that f(x) = ∧i∈Ixi.

2. The set of monomials; that is, functions f : {0, 1}ℓ → {0, 1} such that for some set I ⊆ [ℓ]
and σ = σ1 · · · σℓ ∈ {0, 1}ℓ it holds f(x) = ∧i∈I(xi ⊕ σi).

Proof: As stated above, the relevant set of monomials, denoted Π, is 2−k-approximated by the
corresponding set of monomials of size at most k, denoted Π′. The latter set is the union over i ∈ [k]
of the sets of corresponding i-monomials. Hence, by Corollary 4 (and the closure of testability
under unions)7, testing Π′ has query complexity poly(k/ǫ). Setting k = O(log(1/ǫ)) and applying
Theorem 6 , while noting that 2−k < 0.1/poly(k/ǫ), the corollary follows.

More generally, combining Theorems 3 and 6, we get –

Corollary 8 (testing via an approximating (·, ·)-juntas property): Let Π = ∪n∈NΠn such that Πn

contains functions defined over [n]. Suppose that there exist a function κ : (0, 1] → N and a sequence
of properties (Φk)k∈N such that Φk ⊆ {f ′ : {0, 1}k → {0, 1}} and it holds that

1. For every k ∈ N, the property Φk is invariant under permuting the bits of the argument
to the function8 and Φk has a sample-based tester of sample complexity sk(ǫ), where sk is
monotonically non-decreasing.

2. Πn is δ(κ(ǫ))-approximated by the union over i ∈ [κ(ǫ)] of the sets of (i,Φi)-juntas and

δ(κ(ǫ)) <
0.1

poly(κ(ǫ)) · Õ(sκ(ǫ)(0.8ǫ))2 .

Then, Π can be tested within query complexity poly(κ(ǫ)) · Õ(sκ(ǫ)(0.8ǫ))
2.

Note that the two conditions correspond to the hypotheses in Theorems 3 and 6, respectively. In
many cases, sk(ǫ) = poly(k/ǫ) and δ(k) = exp(kΩ(1)), which allows setting κ(ǫ) = poly(log(1/ǫ)).

7See the first lecture.
8As in Theorem 3, this means that f ′ ∈ Φk if and only if for every permutation π : [k] → [k] it holds that

f ′

π(y) = f ′(yπ(1), ..., yπ(k)) is in Φk.

9

Proof: By Theorem 3 and the first hypothesis, for each i we can test (i,Φi)-juntas by a tester
that makes poly(i) · Õ(si(0.9ǫ)

2) uniformly distributed queries. The same holds with respect to the
union of the first k such properties; that is, it can be ǫ′-tested using poly(k)·Õ(sk(0.9ǫ

′)2) uniformly
distributed queries).9 Fixing any ǫ > 0, let Π′

n be the union of the first κ = κ(ǫ) foregoing
properties. Then, by the foregoing, Π′

n can be ǫ′-tested using q′(ǫ′) = poly(κ) · Õ(sκ(0.9ǫ′))2

uniformly distributed queries. By the second hypothesis, Πn is δ(κ)-approximated by Π′
n, whereas

δ(κ) <
0.1

poly(κ) · Õ(sκ(0.8ǫ))2

≤
0.1

poly(κ) · Õ(sκ(0.9 · 0.9ǫ))2

=
0.1

q′(0.9ǫ) ,

where the inequality uses the hypothesis that sk is monotonically non-decreasing and the equality
uses q′(0.9ǫ) = poly(κ) · Õ(sκ(0.9 · 0.9ǫ))2. Applying Theorem 6, it follows that Πn can be tested
within query complexity q(ǫ) = O(q′(0.9ǫ)) = poly(κ) · Õ(sκ(0.92ǫ))2, and the corollary follows
(recalling that κ = κ(ǫ) and using the hypothesis that sk is monotonically non-decreasing).

4 Comments and Exercises

The “testing by implicit sampling” methodology originates in the work of Diakonikolas, Lee, Mat-
ulef, Onak, Rubinfeld, Servedio, and Wan [1], which presents numerous applications of it. In
particular, their paper uses this methodology to derive testers for several natural properties includ-
ing sets of functions computable by bounded size devices such as decision trees, branching programs,
Boolean formulas, and Boolean circuits.

This methodology is often called testing by implicit learning (see, e.g., [4]), but we prefer the
term “implicit sampling” for reasons that are closely related to the fact that our presentation of the
said methodology differs from the one in [1] in several aspects. Firstly, we decouple the reduction
of testing a property Π to testing (·, ·)-junta properties that approximate Π from the actual testing
of (·, ·)-junta properties: The former reduction is captured by Theorem 6, which is actually more
general, whereas the testing of (·, ·)-junta properties is captured by Theorem 3.

Secondly, we reduce the testing of (k,Φ)-junta properties to testing Φ, which is a property of k-
variate functions, where the testing is by sample-based testers. In contrast, Diakonikolas et al. [1]
reduce the testing of (k,Φ)-junta properties to the proper learning of Φ (also via sample-based
algorithms). Indeed, such a learning algorithm implies a sample-based tester of about the same
sample complexity (see first lecture), but there is no reason to restrict the methodology to this
special case (since sample-based testing may be easier than learning, see, e.g., [3]). For this reason
we prefer to avoid a term that associates this methodology with learning. Furthermore, the core
of the methodology is the technique of generating a labeled sample that refers to the (unknown)
relevant variables, and it is nice to reflect this fact in the name of the methodology.

Exercises

Exercise 1 (on the complexity of finding the junta – lower bounds): For each k-subset I ⊆ [ℓ],

9See the first lecture (for the closure of testability under unions).

10

consider the function fI : {0, 1}ℓ → {0, 1} defined by fI(x) = ⊕i∈Ixi. Prove that finding I requires
at least log2

(
ℓ
k

)
− 1 queries, when given access to an arbitrary fI , even if one is allowed to fail with

probability at most 1/3.

Guideline: consider first the case of deterministic algorithms. The computation of such an algorithm
is captured by a decision tree in which the vertices correspond to queries, and the edges represent
to the corresponding answers. Hence, a deterministic algorithm that finds the set I corresponds to
a decision tree that has at least

(
ℓ
k

)
different leaves (which implies that its depth is at least log2

(
ℓ
k

)
).

Turning to randomized algorithms, note that each such algorithm can be viewed as a distribution
on such decision trees, and the distribution must contain a tree that corresponds to an algorithm
that succeeds on at least a 2/3 fraction of the possible functions (which means that this tree must
have at least 2

3 ·
(

ℓ
k

)
different leaves).

Exercise 2 (on the complexity of finding the junta – upper bounds): Present a randomized al-
gorithm that when given access to a k-junta f : {0, 1}ℓ → {0, 1} in which each junta variable has
influence at least ǫ, finds the junta with probability at least 2/3 while making Õ(k) ·(log ℓ)/ǫ queries.

Guideline: On input f , for t = O(k2), we first select a random t-partition, (R1, ..., Rt), as in Step 1
of Algorithm 3.2, and find J = {j ∈ [ℓ] : IRj

(f) ≥ ǫ}. Next, for each j ∈ J , we find i ∈ Rj such
that I{i}(f) ≥ ǫ by a binary search, while using Algorithm 3.1 to estimate the influence of the

various relevant subsets. This algorithm makes (Õ(t) + Õ(k) log ℓ)/ǫ queries, but the first step can
be made more efficient.10

Exercise 3 (properties of Boolean functions that are invariant under renaming of variables): Prove
that all properties of ℓ-variate Boolean functions discussed in prior lectures are invariant under
renaming of the variables; that is, f : {0, 1}ℓ → {0, 1} has the property for every permutation
π : [ℓ] → [ℓ] it holds that fπ(x) = f(xπ(1), ..., xπ(ℓ)) has the property. Specifically, consider the
following properties: linearity (and being a low degree polynomial), monotonicity, being a monotone
dictatorship, being a (monotone or general) monomial, and being a k-junta.

Exercise 4 (the influences of a set on close functions): Prove that if f : {0, 1}ℓ → {0, 1} is ǫ-close
to g : {0, 1}ℓ → {0, 1}, then |IS(f) − IS(g)| ≤ 2 · ǫ for every S ⊆ [ℓ].

Guideline: Fixing S, let Df (resp., Dg) denote the set of pairs (r, s) ∈ {0, 1}ℓ × {0, 1}ℓ such that
rS = sS and f(r) 6= f(s) (resp., g(r) 6= g(s)). Then, |Df |− |Dg| ≤ |Df ▽Dg|, where A▽B denotes
the symmetric difference between A and B. It follows that

|IS(f) − IS(g)| ≤ Prr,s:r
S
=s

S
[(r, s) ∈ Df ▽ Dg]

= Prr,s:r
S
=s

S
[f(r) − f(s) 6= g(r) − g(s)]

≤ Prr,s:r
S
=s

S
[f(r) 6=g(r) ∨ g(s) 6=g(s)].

Exercise 5 (an easy case of approximation): Show that the class of functions that are ǫ-close to
Π is ǫ-approximated by Π.

10Place R1, ..., Rt at the t leaves of a balanced binary tree and let each internal vertex hold the union of the sets
placed at its children. Now conduct a DFS from the root while continuing only on vertices that were found to hold
an influential set.

11

Exercise 6 (an easy case of approximation): Suppose that any two functions in Π are at distance
at least ǫ of one another, and let Π′ be the class of functions that are at distance approximately ǫ/2
from some function in Π (i.e., Π = {f : δΠ(f) ∈ [0.4ǫ, 0.6ǫ}). Show that Π′ is 0.6ǫ-approximated by
Π.

References

[1] I. Diakonikolas, H.K. Lee, K. Matulef, K. Onak, R. Rubinfeld, R.A. Servedio, and A. Wan.
Testing for Concise Representations. In 48th IEEE Symposium on Foundations of Com-
puter Science, pages 549–557, 2007.

[2] O. Goldreich (ed.). Property Testing: Current Research and Surveys. Springer, LNCS,
Vol. 6390, 2010.

[3] O. Goldreich and D. Ron. On Sample-Based Testers. In 6th Innovations in Theoretical
Computer Science, pages 337–345, 2015.

[4] R. Servedio. Testing by Implicit Learning: A Brief Survey. In [2].

12

