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Abstract

The interplay of randomness and computation is at the heart of
modern Cryptography and plays a fundamental role in the design of
algorithms and in the study of computation at large. Specifically, this
interplay is pivotal to several intriguing notions of probabilistic proof
systems (e.g., interactive proofs, zero-knowledge proofs, and probabilis-
tically checkable proofs), is the focal of the computational approach to
randomness, and is essential for various types of sub-linear time algo-
rithms. This essay provides a brief outline of these connections.
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1 Introduction

While it is safe to assume that any living adult is aware of the revolutionary
impact of the computing technology on our society, we fear that few readers
have a sense of the theory of computation. This contrast is not so surpris-
ing, because people seem so overwhelmed by the wonders of this technology
that they do not get to wonder about the theory underlying it. Further-
more, people tend to think of computing in the concrete terms in which
they have lastly encountered it rather than in general terms. Consequently,
the fascinating intellectual contents of the theory of computation is rarely
understood by non-specialists.

One goal of this essay is making a tiny contribution towards a possible
change in this sour state of affairs, by discussing one aspect of the theory of
computation: its connection to randomness. Our guess is that the suggestion
that there is a connection between computation and randomness may meet
the skepticism of some readers, because computation seems the ultimate
manifestation of determinism.

To address this skepticism, we suggest considering what happens when
a deterministic machine (or any deterministic process) is fed with a random
input or just with an input that looks random. Indeed, one contribution
of the theory of computation (further discussed in Section 2) is a definition
of “objects that look random” (a notion which makes sense even if the real
world is actually deterministic).

Still one may wonder whether we can obtain or generate objects that
look random. For example, can we toss a coin (in the sense that one cannot
feasibly predict the answer before seeing it)? Assuming a positive answer,
we may also assume that unpredictable values can be obtained by other
mechanical and/or electrical processes, which suggest that computers can
also obtain such values. The question then is what benefit can be achieved
by using such random (or unpredictable) values.

A major application of random (or unpredictable) values is to the area
of Cryptography (see Section 4). In fact, the very notion of a secret refers
to such a random (or unpredictable) value. Furthermore, various natural
security concerns (e.g., private communication) can be met by employing
procedures that make essential use of such secrets and/or random values.

Another major application of random (or unpredictable) values is to
various sampling procedures. In Section 5, we consider a wider perspective
on such procedures, viewing them as a special type of super fast procedures
called sub-linear time algorithms. Such a procedure cannot afford to scan
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the entire input, but rather probes few (randomly) selected locations in it
and, based on these few values, attempts to make a meaningful assertion
regarding the entire input. Indeed, we assume that the reader is aware of
the fact that random sampling allows to approximate the fraction of the
population that votes for a particular candidate. Our point is that other
global properties of the input, which are not merely averages of various
types, can also be approximated by sampling.

Lastly, we mention that randomized verification procedures yield fasci-
nating types of probabilistic proof systems, which are discussed in Section 3.
In particular, such proof systems demonstrate the advantage of interaction
(over one-directional communication) and the possibility of decoupling prov-
ing from learning (i.e., the possibility of proving an assertion without yield-
ing anything beyond its validity). Other forms of probabilistic proof systems
allow for super fast verification (based on probing few locations in a redun-
dant proof, indeed as in the aforementioned sublinear-time algorithms).

Before discussing the foregoing applications of randomness in greater
length, we provide a somewhat wider perspective on the theory of computa-
tion as well as present some of its central conventions. We will also clarify
what randomness means in that theory (and in this article).

1.1 A wider perspective on the theory of computation

The theory of computation aims at understanding general properties of com-
putation be it natural, man-made, or imaginary. Most importantly, it aims
to understand the nature of efficient computation. We demonstrate these
issues by briefly considering a few typical questions.

A key question is which functions can be efficiently computed? For exam-
ple, it is (relatively) easy to multiply integers, but it seems hard to take the
product and factor it into its prime components. In general, it seems that
there are one-way computations, or put differently one-way functions: Such
functions are easy to evaluate but hard to invert (even in an average-case
sense). But do one-way functions exist? It is widely believed that the answer
is positive, and this question is related to other fundamental questions.

A related question is that of the comparable difficulty of solving problems
versus verifying the correctness of solutions. Indeed our daily experience is
that it is harder to solve a problem than it is to check the correctness of
a solution (e.g., think of either a puzzle or a research problem). Is this
experience merely a coincidence or does it represent a fundamental fact of
life (or a property of the world)? Could you imagine a world in which solving
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any problem is not significantly harder than checking a solution to it? Would
the term “solving a problem” not lose its meaning in such a hypothetical
(and impossible in our opinion) world? The denial of the plausibility of such
a hypothetical world (in which “solving” is not harder than “checking”)
is what the celebrated “P different from NP” conjecture means, where P
represents tasks that are efficiently solvable and NP represents tasks for
which solutions can be efficiently checked for correctness.

The theory of computation is also concerned with finding the most ef-
ficient methods for solving specific problems. To demonstrate this line of
research we mention that the simple (and standard) method for multiplying
numbers that is taught in elementary school is not the most efficient one
possible. Multiplying two n-digit long numbers by this method requires n2

single-digit multiplications (and a similar number of single-digit additions).
In contrast, consider writing these numbers as 10n/2 ·a′+a′′ and 10n/2 ·b′+b′′,
where a′, a′′, b′, b′′ are n/2-digit long numbers, and note that

(10n/2 · a′ + a′′)× (10n/2 · b′ + b′′) = 10n · P1 + 10n/2 · (P2 − P1 − P3) + P3

where P1 = a′ × b′, P2 = (a′ + a′′)× (b′ + b′′), and P3 = a′′ × b′′.

Thus, multiplying two n-digit long numbers requires only three (rather than
four) multiplications of n/2-digit long numbers (and a constant number of
additions of n/2-digit long numbers and “shifts” of n-digit long numbers
(indicated by ·)). Letting M(n) denote the complexity of multiplying two
n-digit long numbers, we obtain M(n) < 3 · M(n/2) + c · n, where c is
some constant (independent of n), which solves to M(n) < c′ · 3log2 n =
c′ ·nlog2 3 < n1.6 (for some constant c′). We mention that this is not the best
known algorithm; the latter runs in time poly(log n) · n.

The theory of computation provides a new viewpoint on old phenom-
ena. We have already mentioned the computational approaches to random-
ness (see Section 2) and to proofs, interaction, knowledge, and learning (see
Section 3). Additional natural concepts given an appealing computational
interpretations include the importance of representation, the notion of ex-
plicitness, and the possibility that approximation is easier than optimization
(see Section 5). Let us say a few words about representation and explicitness.

The foregoing examples hint to the importance of representation, be-
cause in all these computational problems the solution is implicit in the
problem’s statement. That is, the problem contains all necessary informa-
tion, and one merely needs to process this information in order to supply

4



the answer.1 Thus, the theory of computation is concerned with the manip-
ulation of information, and its transformation from one representation (in
which the information is given) to another representation (which is the one
desired). Indeed, a solution to a computational problem is merely a different
representation of the information given; that is, a representation in which
the answer is explicit rather than implicit. For example, the answer to the
question of whether or not a given system of quadratic equations has an
integer solution is implicit in the system itself (but the task is to make the
answer explicit). Thus, the theory of computation clarifies a central issue
regarding representation; that is, the distinction between what is explicit
and what is implicit in a representation. Furthermore, it also suggests a
quantification of the level of non-explicitness.

1.2 Important conventions for the theory of computation

In light of the foregoing discussion it is important to specify the represen-
tation used in computational problems. Actually, a computational problem
refer to an infinite set of finite objects, called the problem’s instances, and
specifies the desired solution for each instance. For example, the instances of
the multiplication problem are pairs of natural numbers, and the desired
solution is the corresponding product. Objects are represented by finite bi-
nary sequences, called strings.2 For a natural number n, we denote by {0, 1}n

the set of all strings of length n, hereafter referred to as n-bit strings. The
set of all strings is denoted {0, 1}∗; that is, {0, 1}∗ = ∪n∈N{0, 1}

n.
Another piece of terminology is the term algorithm, which refers to an

automated procedure designed to solve some computational task. A rigorous
definition requires specifying a reasonable model of computation, but the
specifics of this model are not important for the current essay. We focus
on efficient algorithms, which are commonly defined as making a number of
steps that is polynomial in the length of their input.3 Indeed, asymptotic
analysis (or rather a functional treatment of the running time of algorithms
in terms of the length of their input) is a central convention in the theory

1In contrast, in other disciplines, solving a problem may also require gathering infor-
mation that is not available in the problem’s statement. This information may either be
available from auxiliary (past) records or be obtained by conducting new experiments.

2Indeed, in the foregoing example, we used the daily representation of numbers as
sequences of decimal digits, but in the theory of computation natural numbers are typically
represented by their binary expansion.

3In Section 5 we consider even faster algorithms, which make (significantly) less steps
than the length of their input, but such algorithms can only provide approximate solutions.
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of computation.4

Typically, our notion of efficient algorithms will include also probabilis-
tic (polynomial-time) algorithms; that is, algorithms that can “toss coins”
(i.e., make random choices). For each reasonable model of computation,
probabilistic (or randomized) algorithms are defined as standard algorithm
augmented with the ability to choose uniformly among a finite number of
(say two) predetermined possibilities. That is, at each computation step,
such an algorithm makes a move that is chosen uniformly among two pre-
determined possibilities.

1.3 Randomness in the context of computation

Throughout the entire essay we will refer only to discrete probability distri-
butions. The support of such distributions will be associated with a set of
strings, typically of the same length.

For the purpose of asymptotic analysis, we will often consider probability
ensembles, which are sequences of distributions that are indexed either by
integers or by strings. For example, throughout the essay, we let {Un}n∈N

denote the uniform ensemble, where Un is uniform over the set of strings of
length n; that is, Prz∼Un

[z=α] equals 2−n if α ∈ {0, 1}n and equals 0 oth-
erwise. We will often denote by {Dn}n∈N (or {Ds}s∈S , where S ⊆ {0, 1}∗)
a generic probability ensemble, and typically it will be the case that there
exists some function ` : N→N such that Prz∼Dn

[z ∈ {0, 1}`(n)] = 1 (resp.,
Prz∼Ds

[z ∈ {0, 1}`(n)] = 1, where n denotes the length of s). Furthermore,
typically, ` will be a polynomial.

One important case of probability ensembles is that of ensembles that
represent the output of randomized processes (e.g., randomized algorithms).
Letting A(x) denote the output of the probabilistic (or randomized) algo-
rithmA on input x, we may consider the probability ensemble {A(x)}x∈{0,1}∗ .
Indeed, if A is a probabilistic polynomial-time algorithm then A(x) is dis-
tributed over strings of length that is bounded by a polynomial in the length
of x.

On the other hand, we say that a probability ensemble {Dn}n∈N (resp.,
{Ds}s∈S) is efficiently sampleable if there exists a probabilistic polynomial-
time algorithm A such that for every n ∈ N it holds that A(1n) ≡ Dn (resp.,

4We stress, however, that asymptotic (or functional) treatment is not essential to this
theory, but rather provides a convenient framework. One may develop the entire theory
in terms of inputs of fixed lengths and concrete bounds on the number of steps taken by
corresponding algorithms. However, such an alternative treatment is more cumbersome.
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for every s ∈ S it holds that A(s) ≡ Ds). That is, algorithm A makes a
number of steps that is polynomial in n, and produces a sample distributed
according to Dn (resp., Ds, where n denotes the length of s).

We will often talk of “random bits” and mean values selected uniformly
and independently in {0, 1}. In particular, randomized algorithms may be
viewed as deterministic algorithms that are given an adequate number of
random bits as an auxiliary input. This means that rather than viewing
these algorithms as making random choices, we view them as determining
these choices according to a sequence of random bits that is generated by
some outside process.

1.4 The rest of this essay

In the rest of this essay we briefly review the theory of pseudorandom-
ness (Section 2), three types of probabilistic proof systems (Section 3), the
theoretical foundations of Cryptography (Section 4), and sublinear-time al-
gorithms (Section 5). Needless to say, these overviews are the tip of an
iceberg, and the interested reader will be referred to related texts for fur-
ther information. In general, the most relevant text is [7], which provides
more extensive overviews of the first three areas.

In addition, we recommend textbooks such as [20, 24] for background on
the aspects of the theory of computation that are most relevant for the cur-
rent essay. We note that randomized algorithms and procedures are valuable
also in settings not discussed in the current essay (e.g., for polynomial-time
computations as well as in the context of distributed and parallel computa-
tion). The interested reader is referred to [19].

An apology. Our feeling is that in an essay written for a general reader-
ship it makes no sense to provide the standard scholarly citations. The most
valuable references for such readers are relevant textbooks and expository
articles, written with the intension of communicating to non-experts. On
the other hand, the general reader may be interested in having some sense
of the history of the field, and thus references to few pioneering works seem
adequate. We are aware that in trying to accommodate the non-experts, we
may annoy the experts, and hence the current apology to all experts who
made an indispensable contribution to the development of these areas and
who’s work was victim to our referencing policy.
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2 Pseudorandomness

Indistinguishable things are identical.5

G.W. Leibniz (1646–1714)

A fresh view at the question of randomness has been taken in the theory of
computation: It has been postulated that a distribution is pseudorandom
if it cannot be told apart from the uniform distribution by any efficient
procedure. The paradigm, originally associating efficient procedures with
polynomial-time algorithms, has been applied also with respect to a variety
of limited classes of such distinguishing procedures.

At the extreme, this approach says that the question of whether the
world is deterministic or allows for some free choice (which may be viewed
as sources of randomness) is irrelevant. What matters is how the world
looks to us and to various computationally bounded devices. That is, if
some phenomenon looks random then we may just treat it as if it were
random. Likewise, if we can generate sequences that cannot be told apart
from the uniform distribution by any efficient procedure, then we can use
these sequences in any efficient randomized application instead of the ideal
random bits that are postulated in the design of this application.

2.1 A wider context and an illustration

The second half of this century has witnessed the development of three
theories of randomness, a notion which has been puzzling thinkers for ages.
The first theory (cf., [4]), initiated by Shannon, is rooted in probability
theory and is focused at distributions that are not perfectly random (i.e., are
not uniform over a set of strings of adequate length). Shannon’s Information
Theory characterizes perfect randomness as the extreme case in which the
information contents is maximized (i.e., the strings contain no redundancy
at all). Thus, perfect randomness is associated with a unique distribution:
the uniform one. In particular, by definition, one cannot (deterministically)
generate such perfect random strings from shorter random seeds.

The second theory (cf., [17]), initiated by Solomonov, Kolmogorov, and
Chaitin, is rooted in computability theory and specifically in the notion of

5This is the Principle of Identity of Indiscernibles. Leibniz admits that counterexam-
ples to this principle are conceivable but will not occur in real life because God is much
too benevolent. We thus believe that he would have agreed to the theme of this section,
which asserts that indistinguishable things should be considered as identical.
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a universal language (equiv., universal machine or computing device). It
measures the complexity of objects in terms of the shortest program (for a
fixed universal machine) that generates the object. Like Shannon’s theory,
Kolmogorov Complexity is quantitative and perfect random objects appear
as an extreme case. However, in this approach one may say that a single
object, rather than a distribution over objects, is perfectly random. Still,
Kolmogorov’s approach is inherently intractable (i.e., Kolmogorov Complex-
ity is uncomputable), and – by definition – one cannot (deterministically)
generate strings of high Kolmogorov Complexity from short random seeds.

The third theory, initiated by Blum, Goldwasser, Micali and Yao [13, 3,
25], is rooted in the notion of efficient computations and is the focus of this
section. This approach is explicitly aimed at providing a notion of random-
ness that nevertheless allows for an efficient generation of random strings
from shorter random seeds. The heart of this approach is the suggestion to
view objects as equal if they cannot be told apart by any efficient proce-
dure. Consequently, a distribution that cannot be efficiently distinguished
from the uniform distribution will be considered as being random (or rather
called pseudorandom). Thus, randomness is not an “inherent” property
of objects (or distributions) but is rather relative to an observer (and its
computational abilities). To demonstrate this approach, let us consider the
following mental experiment.

Alice and Bob play “head or tail” in one of the following four
ways. In each of them Alice flips an unbiased coin and Bob is
asked to guess its outcome before the coin hits the floor. The
alternative ways differ by the knowledge Bob has before making
his guess.

In the first alternative, Bob has to announce his guess before Al-
ice flips the coin. Clearly, in this case Bob wins with probability
1/2.

In the second alternative, Bob has to announce his guess while
the coin is spinning in the air. Although the outcome is deter-
mined in principle by the motion of the coin, Bob does not have
accurate information on the motion and thus we believe that also
in this case Bob wins with probability 1/2.

The third alternative is similar to the second, except that Bob
has at his disposal sophisticated equipment capable of providing
accurate information on the coin’s motion as well as on the en-
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vironment effecting the outcome. However, Bob cannot process
this information in time to improve his guess.

In the fourth alternative, Bob’s recording equipment is directly
connected to a powerful computer programmed to solve the mo-
tion equations and output a prediction. It is conceivable that
in such a case Bob can improve substantially his guess of the
outcome of the coin.

We conclude that the randomness of an event is relative to the information
and computing resources at our disposal. Thus, a natural concept of pseudo-
randomness arises: a distribution is pseudorandom if no efficient procedure
can distinguish it from the uniform distribution, where efficient procedures
are associated with (probabilistic) polynomial-time algorithms. This notion
of pseudorandomness is indeed the most fundamental one, and the current
section is focused on it.6

The foregoing discussion has focused at one aspect of the pseudoran-
domness question: the resources or type of the observer (or potential dis-
tinguisher). Another important aspect is whether such pseudorandom se-
quences can be generated from much shorter ones, and at what cost (i.e.,
at what computational effort). A natural approach is that the generation
process has to be at least as efficient as the distinguisher (equiv., that the
distinguisher is allowed at least as much resources as the generator). Cou-
pled with the aforementioned strong notion of pseudorandomness, this yields
the archetypical notion of pseudorandom generators – these operating in
polynomial-time and producing sequences that are indistinguishable from
uniform ones by any polynomial-time observer. Such (general-purpose) pseu-
dorandom generators enable reducing the randomness complexity of any ef-
ficient application, and are thus of great relevance to randomized algorithms
and Cryptography (see Sections 2.5 and 4). Indeed, these general-purpose
pseudorandom generators will be the focus of the current section.7 Fur-

6We mention that weaker notions of pseudorandomness arise as well; they refer to indis-
tinguishability by weaker procedures such as space-bounded algorithms (see [7, Sec. 3.5]),
constant-depth circuits, etc. Stretching this approach even further one may consider
algorithms that are designed on purpose so not to distinguish even weaker forms of “pseu-
dorandom” sequences from random ones (such algorithms arise naturally when trying to
convert some natural randomized algorithm into deterministic ones; see [7, Sec. 3.6]).

7We mention that there are important reasons for considering also an alternative that
seems less natural; that is, allowing the pseudorandom generator to use more resources
(e.g., time or space) than the observer it tries to fool. This alternative is natural in
the context of derandomization (i.e., converting randomized algorithms to deterministic
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ther discussion of the conceptual contents of this approach is provided in
Section 2.6.

2.2 The notion of pseudorandom generators

Loosely speaking, a pseudorandom generator is an efficient program (or
algorithm) that stretches short random strings into long pseudorandom se-
quences. We stress that the generator itself is deterministic and that the
randomness involved in the generation process is captured by its input. We
emphasize three fundamental aspects in the notion of a pseudorandom gen-
erator:

1. Efficiency. The generator has to be efficient. Since we associate effi-
cient computations with polynomial-time ones, we postulate that the
generator has to be implementable by a deterministic polynomial-time
algorithm.

This algorithm takes as input a string, called its seed. The seed cap-
tures a bounded amount of randomness used by a device that “gener-
ates pseudorandom sequences.” The formulation views any such device
as consisting of a deterministic procedure applied to a random seed.

2. Stretching. The generator is required to stretch its input seed to a
longer output sequence. Specifically, it stretches n-bit long seeds into
`(n)-bit long outputs, where `(n) > n. The function ` is called the
stretching measure (or stretching function) of the generator.

3. Pseudorandomness. The generator’s output has to look random to
any efficient observer. That is, any efficient procedure should fail to
distinguish the output of a generator (on a random seed) from a truly
random bit-sequence of the same length. The formulation of the last
sentence refers to a general notion of computational indistinguishability
that is the heart of the entire approach.

To demonstrate the foregoing, consider the following suggestion for a pseu-
dorandom generator. The seed consists of a pair of 500-bit integers, denoted
x and N , and a million-bit long output is obtained by repeatedly squaring

ones), where the crucial step is replacing the “random source” of a fixed algorithm by a
pseudorandom source, which in turn can be deterministically emulated based on a much
shorter random source. For further clarification and demonstration of the usefulness of
this approach the interested reader is referred to [7, Sec. 3.4&3.5].
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the current x modulo N and emitting the least significant bit of each in-
termediate result (i.e., let xi ← x2

i−1 mod N , for i = 1, ..., 106, and output

b1, b2, ..., b106 , where x0
def
= x and bi is the least significant bit of xi). This

process may be generalized to seeds of length n (here we used n = 1000)
and outputs of length `(n) (here `(1000) = 106). Such a process certainly
satisfies Items (1) and (2) above, whereas the question whether Item (3)
holds is debatable (once a rigorous definition is provided). As a special case
of Theorem 2.6 (which follows), we mention that, under the assumption that
it is difficult to factor large integers, a slight variant of the foregoing process
is indeed a pseudorandom generator.

Computational indistinguishability. Intuitively, two objects are called
computationally indistinguishable if no efficient procedure can tell them
apart. Here the objects are (fixed) probability distributions (or rather en-
sembles), and the observer is given a sample drawn from one of the two
distributions and is asked to tell from which distribution it was taken (e.g.,
it is asked to say “1” if the sample is taken from the first distribution). Fol-
lowing the asymptotic framework (see Sections 1.2 and 1.3), the foregoing
discussion is formalized as follows.

Definition 2.1 (computational indistinguishability [13, 25]). Two proba-
bility ensembles, {Xn}n∈N and {Yn}n∈N, are called computationally indistin-
guishable if for any probabilistic polynomial-time algorithm A, any positive
polynomial p, and all sufficiently large n

∣

∣

∣ Prx∼Xn
[A(x) = 1] − Pry∼Yn

[A(y) = 1]
∣

∣

∣ <
1

p(n)
. (1)

The probability is taken over Xn (resp., Yn) as well as over the internal coin
tosses of algorithm A.

Algorithm A, which is called a potential distinguisher, is given a sample
(which is drawn either from Xn or from Yn) and its output is viewed as
an attempt to tell whether this sample was drawn from Xn or from Yn.
Eq. (1) requires that such an attempt is bound to fail; that is, the outcome 1
(possibly representing a verdict that the sample was drawn from Xn) is
essentially as likely to occur when the sample is drawn from Xn as when it
is drawn from Yn.

A few comments are in order. Firstly, the distinguisher (i.e., A) is al-
lowed to be probabilistic. This makes the requirement only stronger, and
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seems essential to several important aspects of our approach. Secondly,
we view events occuring with probability that is upper bounded by the re-
ciprocal of polynomials as negligible (e.g., 2−

√
n is negligible as a function

of n). This is well-coupled with our notion of efficiency (i.e., polynomial-
time computations): an event that occurs with negligible probability (as
a function of a parameter n), will also occur with negligible probability if
the experiment is repeated for poly(n)-many times. Thirdly, for efficiently
sampleable ensembles, computational indistinguishability is preserved also
when providing the distinguisher with polynomially many samples (of the
tested distribution). Lastly we note that computational indistinguishability
is a coarsening of statistical indistinguishability; that is, waiving the com-
putational restriction on the distinguisher is equivalent to requiring that the
variation distance between Xn and Yn (i.e.,

∑

z |Xn(z)−Yn(z)|) is negligible
(in n).

An important case in which computational indistinguishability is strictly
more liberal than statistical indistinguishability arises from the notion of a
pseudorandom generator.

Definition 2.2 (pseudorandom generators [3, 25]). A deterministic polynomial-
time algorithm G is called a pseudorandom generator if there exists a stretch-
ing function, ` :N→N (i.e., `(n) > n), such that the following two probability
ensembles, denoted {Gn}n∈N and {Rn}n∈N, are computationally indistin-
guishable.

1. Distribution Gn is defined as the output of G on a uniformly selected
seed in {0, 1}n.

2. Distribution Rn is defined as the uniform distribution on {0, 1}`(n).

Note that Gn ≡ G(Un), whereas Rn = U`(n). Requiring that these two
ensembles are computationally indistinguishable means that, for any proba-
bilistic polynomial-time algorithm A, the detected (by A) difference between
Gn and Rn, denoted

dA(n)
def
=

∣

∣

∣ Prs∼Un
[A(G(s)) = 1] − Prr∼U`(n)

[A(r) = 1]
∣

∣

∣

is negligible (i.e., dA(n) vanishes faster than the reciprocal of any poly-
nomial). Thus, pseudorandom generators are efficient (i.e., polynomial-
time) deterministic programs that expand short randomly selected seeds into
longer pseudorandom bit sequences, where the latter are defined as computa-
tionally indistinguishable from truly random bit-sequences by efficient (i.e.,
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polynomial-time) algorithms. It follows that any efficient randomized algo-
rithm maintains its performance when its internal coin tosses are substituted
by a sequence generated by a pseudorandom generator. That is:

Construction 2.3 (typical application of pseudorandom generators). Let
A be a probabilistic polynomial-time algorithm, and ρ(n) denote an upper
bound on the number of coins that A tosses on n-bit inputs (e.g., ρ(n) = n2).
Let A(x, r) denote the output of A on input x and coin tossing sequence
r ∈ {0, 1}ρ(n), where n denotes the length of x. Let G be a pseudorandom
generator with stretching function ` :N→N (e.g., `(k) = k5). Then AG is a
randomized algorithm that on input x ∈ {0, 1}n, proceeds as follows. It sets
k = k(n) to be the smallest integer such that `(k) ≥ ρ(n) (e.g., k5 ≥ n2),
uniformly selects s ∈ {0, 1}k, and outputs A(x, r), where r is the ρ(|x|)-bit
long prefix of G(s).

Thus, using AG instead of A, the number of random bits used by the algo-
rithm is reduced from ρ to `−1 ◦ ρ (e.g., from n2 to k(n) = n2/5), while it is
infeasible to find inputs (i.e., x’s) on which the noticeable behavior of AG is
different from the one of A. That is, we save randomness while maintaining
performance (see Section 2.5).

Amplifying the stretch function. Pseudorandom generators as in Defi-
nition 2.2 are only required to stretch their input a bit; for example, stretch-
ing n-bit long inputs to (n+1)-bit long outputs will do. Clearly, generators
with such moderate stretch functions are of little use in practice. In con-
trast, we want to have pseudorandom generators with an arbitrary long
stretch function. By the efficiency requirement, the stretch function can be
at most polynomial. It turns out that pseudorandom generators with the
smallest possible stretch function can be used to construct pseudorandom
generators with any desirable polynomial stretch function. That is:

Theorem 2.4 [8, Sec. 3.3.2]. Let G be a pseudorandom generator with
stretch function `(n) = n + 1, and `′ be any positive polynomial such that
`′(n) ≥ n + 1. Then there exists a pseudorandom generator with stretch
function `′. Furthermore, the construction of the latter consists of invoking
G for `′ times.

Thus, when talking about the existence of pseudorandom generators, we
may ignore the stretch function.
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2.3 How to Construct Pseudorandom Generators

The known constructions of pseudorandomness generators are based on one-
way functions. Loosely speaking, a polynomial-time computable function is
called one-way if any efficient algorithm can invert it only with negligible
success probability. For simplicity, we consider only length-preserving one-
way functions.

Definition 2.5 (one-way function). A one-way function, f , is a polynomial-
time computable function such that for every probabilistic polynomial-time
algorithm A′, every positive polynomial p(·), and all sufficiently large n

Prx∼Un

[

A′(f(x))∈f−1(f(x))
]

<
1

p(n)
,

where f−1(y) = {z : f(z)=y}.

It is widely believed that one-way functions exists. Popular candidates for
one-way functions are based on the conjectured intractability of integer fac-
torization, the discrete logarithm problem, and decoding of random linear
code. Assuming that integer factorization is indeed infeasible, one can prove
that a minor modification of the construction outlined at the beginning of
Section 2.2 constitutes a pseudorandom generator. More generally, it turns
out that pseudorandom generators can be constructed based on any one-way
function.

Theorem 2.6 (existence of pseudorandom generators [15]). Pseudorandom
generators exist if and only if one-way functions exist.

To show that the existence of pseudorandom generators implies the existence
of one-way functions, consider a pseudorandom generator G with stretch

function `(n) = 2n. For x, y ∈ {0, 1}n, define f(x, y)
def
= G(x), so that f

is polynomial-time computable (and length-preserving). It must be that f
is one-way, or else one can distinguish G(Un) from U2n by trying to invert
and checking the result: Inverting f on its range distribution refers to the
distribution G(Un), whereas the probability that U2n has inverse under f
is negligible. The interesting direction is the construction of pseudorandom
generators based on any one-way function. A treatment of some natural
special cases is provided in [8, Sec. 3.4-3.5].
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2.4 Pseudorandom Functions

Pseudorandom generators allow one to efficiently generate long pseudoran-
dom sequences from short random seeds (e.g., using n random bits, we can
efficiently generate a pseudorandom bit-sequence of length n2). Pseudoran-
dom functions (defined below) are even more powerful: they allow efficient
direct access to a huge pseudorandom sequence (which is infeasible to scan
bit-by-bit). For example, based on n random bits, we define a sequence of
length 2n such that we can efficiently retrieve any desired bit in this sequence
while the retrieved bits look random. In other words, pseudorandom func-
tions can replace truly random functions in any efficient application (e.g.,
most notably in Cryptography). That is, pseudorandom functions are in-
distinguishable from random functions by any efficient procedure that may
obtain the function values at arguments of its choice. Such procedures are
called oracle machines, and if M is such machine and f is a function, then
Mf (x) denotes the computation of M on input x when M ’s queries are an-
swered by the function f (i.e., during its computation M generates special
strings called queries such that in response to the query q machine M is
given the value f(q)).

Definition 2.7 (pseudorandom functions [10]). A pseudorandom function
(ensemble), with length parameters `D, `R :N→N, is a collection of functions
{Fn}n∈N, where

Fn
def
= {fs :{0, 1}`D(n)→{0, 1}`R(n)}s∈{0,1}n ,

satisfying

• (efficient evaluation). There exists an efficient (deterministic) algo-
rithm that when given a seed, s, and an `D(n)-bit argument, x, returns
the `R(n)-bit long value fs(x), where n denotes the length of s.

(Thus, the seed s is an “effective description” of the function fs.)

• (pseudorandomness). For every probabilistic polynomial-time oracle
machine M , every positive polynomial p, and all sufficiently large n

∣

∣

∣ Prs∼Un
[Mfs(1n) = 1]− Prρ∼Rn

[Mρ(1n) = 1]
∣

∣

∣ <
1

p(n)
,

where Rn denotes the uniform distribution over all functions mapping
{0, 1}`D(n) to {0, 1}`R(n).
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Suppose, for simplicity, that `D(n) = n and `R(n) = 1. Then a function uni-
formly selected among 2n functions (of a pseudorandom ensemble) presents
an input-output behavior indistinguishable in poly(n)-time from the one of a
function selected at random among all the 22n

Boolean functions. Contrast
this with a distribution over 2n sequences, produced by a pseudorandom
generator applied to a random n-bit seed, which is computationally indis-
tinguishable from the uniform distribution over {0, 1}poly(n) (which has a
support of size 2poly(n)). Still pseudorandom functions can be constructed
from any pseudorandom generator.

Theorem 2.8 (how to construct pseudorandom functions [10]). Let G be a
pseudorandom generator with stretching function `(n) = 2n. For s ∈ {0, 1}n,
let G0(s) (resp., G1(s)) denote the first (resp., last) n bits in G(s), and let

Gσn···σ2σ1(s)
def
= Gσn

(· · ·Gσ2(Gσ1(s)) · · ·).

That is, Gx(s) is computed by successive applications of either G0 or G1 to
the current n-bit long string, where the decision which of the two mappings

to apply is determined by the corresponding bit of x. Let fs(x)
def
= Gx(s)

and consider the function ensemble {Fn}n∈N, where Fn = {fs : {0, 1}n →
{0, 1}n}s∈{0,1}n . Then this ensemble is pseudorandom (with length param-
eters `D(n) = `R(n) = n).

The foregoing construction can be easily adapted to any (polynomially-
bounded) length parameters `D, `R :N→N.

2.5 The Applicability of Pseudorandom Generators

Randomness is playing an increasingly important role in computation: it is
frequently used in the design of sequential, parallel, and distributed algo-
rithms, and is of course central to Cryptography. Whereas it is convenient
to design such algorithms making free use of randomness, it is also desirable
to minimize the use of randomness in real implementations since generat-
ing perfectly random bits via special hardware is quite expensive. Thus,
pseudorandom generators (as in Definition 2.2) are a key ingredient in an
“algorithmic tool-box”: they provide an automatic compiler of programs
written with free use of randomness into programs that make an economical
use of randomness.

Indeed, “pseudo-random number generators” have appeared with the
first computers. However, typical implementations use generators that are
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not pseudorandom according to Definition 2.2. Instead, at best, these gen-
erators are shown to pass some ad-hoc statistical test. We warn that the
fact that a “pseudo-random number generator” passes some statistical tests
does not mean that it will pass a new test and that it is good for a fu-
ture (untested) application. Furthermore, the approach of subjecting the
generator to some ad-hoc tests fails to provide general results of the type
stated above (i.e., of the form “for all practical purposes using the output of
the generator is as good as using truly unbiased coin tosses”). In contrast,
the approach encompassed in Definition 2.2 aims at such generality, and in
fact is tailored to obtain it: the notion of computational indistinguishability,
which underlines Definition 2.2, covers all possible efficient applications pos-
tulating that for all of them pseudorandom sequences are as good as truly
random ones.

Pseudorandom generators and functions are of key importance in Cryp-
tography. In particular, they are typically used to establish private-key en-
cryption and authentication schemes. For further discussion see Section 4.

2.6 The Intellectual Contents of Pseudorandom Generators

We shortly discuss some intellectual aspects of pseudorandom generators as
defined above.

Behavioristic versus ontological. Our definition of pseudorandom gen-
erators is based on the notion of computational indistinguishability. The be-
havioristic nature of the latter notion is best demonstrated by confronting it
with the Kolmogorov-Chaitin approach to randomness. Loosely speaking, a
string is Kolmogorov-random if its length equals the length of the shortest
program producing it. This shortest program may be considered the “true
explanation” to the phenomenon described by the string. A Kolmogorov-
random string is thus a string that does not have a substantially simpler (i.e.,
shorter) explanation than itself. Considering the simplest explanation of a
phenomenon may be viewed as an ontological approach. In contrast, consid-
ering the effect of phenomena (on an observer), as underlying the definition
of pseudorandomness, is a behavioristic approach. Furthermore, there exist
probability distributions that are not uniform (and are not even statistically
close to a uniform distribution) but nevertheless are indistinguishable from
a uniform distribution by any efficient procedure. Thus, distributions that
are ontologically very different are considered equivalent by the behavioristic
point of view taken in the Definition 2.1.
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A relativistic view of randomness. Pseudorandomness is defined in
terms of its observer: It is a distribution that cannot be told apart from a
uniform distribution by any efficient (i.e., polynomial-time) observer. How-
ever, pseudorandom sequences may be distinguished from random ones by
infinitely powerful computers (not at our disposal!). Furthermore, a machine
that runs in exponential-time can distinguish the output of a pseudorandom
generator from a uniformly selected string of the same length (e.g., just by
trying all possible seeds). Thus, pseudorandomness is subjective, dependent
on the abilities of the observer.

Randomness and computational difficulty. Pseudorandomness and
computational difficulty play dual roles: The definition of pseudorandom-
ness relies on the fact that placing computational restrictions on the observer
gives rise to distributions that are not uniform and still cannot be distin-
guished from uniform. Furthermore, the known constructions of pseudoran-
dom generators relies on conjectures regarding computational difficulty (e.g.,
the existence of one-way functions), and this is inevitable: the existence of
pseudorandom generators implies the existence of one-way functions.

Randomness and Predictability. The connection between pseudoran-
domness and unpredictability (by efficient procedures) plays an important
role in the analysis of several constructions of pseudorandom generators (see
[8, Sec. 3.3.5&3.5]). We wish to highlight the intuitive appeal of this con-
nection.

2.7 Suggestions for further reading

A detailed textbook presentation of the material that is reviewed in this
section is provided in [8, Chap. 3]. For a wider perspective, which treats
this material as a special case of a general paradigm, the interested reader
is referred to [7, Chap. 3].

3 Probabilistic Proof Systems

The glory attributed to the creativity involved in finding proofs, makes us
forget that it is the less glorified procedure of verification which gives proofs
their value. Philosophically speaking, proofs are secondary to the verifica-
tion procedure; whereas technically speaking, proof systems are defined in
terms of their verification procedures.
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The notion of a verification procedure assumes the notion of compu-
tation and furthermore the notion of efficient computation. This implicit
assumption is made explicit in the following definition in which efficient
computation is associated with deterministic polynomial-time algorithms.

Definition 3.1 (NP-proof systems): Let S ⊆ {0, 1}∗ and ν : {0, 1}∗ ×
{0, 1}∗ → {0, 1} be a function such that x ∈ S if and only if there exists a
w ∈ {0, 1}∗ that satisfies ν(x,w) = 1. If ν is computable in time bounded
by a polynomial in the length of its first argument then we say ν defines
an NP-proof system for S and that S is an NP-set. The class of NP-sets is
denoted NP.

Indeed, ν represents a verification procedure for claims of membership in
a set S, a string w satisfying ν(x,w) = 1 is a proof that x belongs to
S, whereas x 6∈ S has no such proofs. For example, consider the set of
systems of quadratic equations that have integer solutions, which is a well-
known NP-set. Clearly, any integer solution v to such a system Q con-
stitutes an “NP-proof” for the assertion the system Q has an integer

solution (the verification procedure consists of substituting the variables
of Q by the values provided in v and computing the value of the resulting
arithmetic expression).

We seize the opportunity to note that the celebrated “P different from
NP” conjecture asserts that NP-proof systems are useful in the sense that
there are assertions for which obtaining a proof provides help to somebody
that wishes to verify the correctness of the assertion.8 This conforms with
our daily experience by which reading a proof eases the verification of an
assertion.

The formulation of NP-proofs restricts the “effective” length of proofs to
be polynomial in length of the corresponding assertions (since the running-
time of the verification procedure is restricted to be polynomial in the length
of the assertion). However, longer proofs may be allowed by padding the
assertion with sufficiently many blank symbols. So it seems that NP gives
a satisfactory formulation of proof systems (with efficient verification pro-
cedures). This is indeed the case if one associates efficient procedures with

8NP represents sets of assertions that can be efficiently verified with the help of ade-
quate proofs, whereas P represents sets of assertions that can be efficiently verified from
scratch (i.e., without proofs). Thus, “P different from NP” asserts the existence of asser-
tions that are harder to prove than to be convinced of their correctness when presented
with a proof. This means that the notion of a proof is meaningful (i.e., that proofs do
help when trying to be convinced of the correctness of assertions).
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deterministic polynomial-time algorithms. However, we can gain a lot if we
are willing to take a somewhat non-traditional step and allow probabilistic
verification procedures. In particular:

• Randomized and interactive verification procedures, giving rise to in-
teractive proof systems, seem much more powerful than their deter-
ministic counterparts (see Section 3.1).

• Such randomized procedures allow the introduction of zero-knowledge
proofs, which are of great conceptual and practical interest (see Sec-
tion 3.2).

• NP-proofs can be efficiently transformed into a (redundant) form (called
a probabilistically checkable proof) that offers a trade-off between the
number of bit-locations examined in the NP-proof and the confidence
in its validity (see Section 3.3).

In all the abovementioned types of probabilistic proof systems, explicit
bounds are imposed on the computational resources of the verification pro-
cedure, which in turn is personified by the notion of a verifier. Furthermore,
in all these proof systems, the verifier is allowed to toss coins and rule by sta-
tistical evidence. Thus, all these proof systems carry a probability of error;
yet, this probability is explicitly bounded and, furthermore, can be reduced by
successive application of the proof system.

Clarifications. Like the definition of NP-proof systems, the abovemen-
tioned types of probabilistic proof systems refer to proving membership in
predetermined sets of strings. That is, the assertions are all of the form
“the string x is in a set S”, where S is a fixed infinite set and x is a variable
input. The definition of an interactive proof system makes explicit reference
to a prover, which is only implicit in the definition of an NP-proof system
(where the prover is the unmentioned entity providing the proof). We note
that, as a first approximation, we are not concerned with the complexity
of the prover or the proving task. Our main focus is on the complexity of
verification. This is consistent with the intuitive notion of a proof, which
refers to the validity of the proof and not to how it was obtained.

3.1 Interactive Proof Systems

In light of the growing acceptability of randomized and distributed computa-
tions, it is only natural to associate the notion of efficient computation with
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probabilistic and interactive polynomial-time computations. This leads nat-
urally to the notion of an interactive proof system in which the verification
procedure is interactive and randomized, rather than being non-interactive
and deterministic. Thus, a “proof” in this context is not a fixed and static
object but rather a randomized (dynamic) process in which the verifier in-
teracts with the prover. Intuitively, one may think of this interaction as
consisting of “tricky” questions asked by the verifier, to which the prover
has to reply “convincingly”. The above discussion, as well as the following
definition, makes explicit reference to a prover, whereas a prover is only
implicit in the traditional definitions of proof systems (e.g., NP-proofs).

Loosely speaking, an interactive proof is a game between a computation-
ally bounded verifier and a computationally unbounded prover whose goal
is to convince the verifier of the validity of some assertion. Specifically, the
verifier is probabilistic polynomial-time. It is required that if the assertion
holds then the verifier always accepts (i.e., when interacting with an appro-
priate prover strategy). On the other hand, if the assertion is false then the
verifier must reject with probability at least 1

2 , no matter what strategy is
being employed by the prover.

Definition 3.2 (Interactive Proofs – IP [14]): An interactive proof system
for a set S is a two-party game, between a verifier executing a probabilistic
polynomial-time strategy (denoted V ) and a prover which executes a compu-
tationally unbounded strategy (denoted P ), satisfying

• Completeness: For every x ∈ S the verifier V always accepts after
interacting with the prover P on common input x.

• Soundness: For every x 6∈ S and every possible strategy P ∗, the veri-
fier V rejects with probability at least 1

2 , after interacting with P ∗ on
common input x.

The class of sets having interactive proof systems is denoted by IP.

Recall that the error probability in the soundness condition can be reduced
by successive application of the proof system. To clarify the definition and
illustrate the power of the underlying concept, we consider the following
story.

One day on the Olympus, bright-eyed Athena claimed that Nec-
tar poured out of the new silver-coated jars tastes less good than
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Nectar poured out of the older gold-decorated jars. Mighty Zeus,
who was forced to introduce the new jars by the practically ori-
ented Hera, was annoyed at the claim. He ordered that Athena
be served one hundred glasses of Nectar, each poured at random
either from an old jar or from a new one, and that she tell the
source of the drink in each glass. To everybody’s surprise, wise
Athena correctly identified the source of each serving, to which
the Father of the Gods responded “my child, you are either right
or extremely lucky.” Since all gods knew that being lucky was
not one of the attributes of Pallas-Athena, they all concluded
that the impeccable goddess was right in her claim.

Note that the proof system underlying this story establishes the dissimilarity
of two objects. This idea can be used to provide an interactive proof system
for the set of “pairs of non-isomorphic graphs” [12], which informally refer to
the dissimilarity of two given objects.9 Indeed, typically, proving similarity
between objects is easy, because one can present a mapping (of one object
to the other) that demonstrates this similarity. In contrast, proving dissim-
ilarity seems harder, because in general there seems to be no succinct proof
of dissimilarity. More generally, it is typically easy to prove the existence of
an easily verifiable structure in the given object by merely presenting this
structure, but proving the non-existence of such a structure seems hard.

Formally speaking, proving the existence of an easily verifiable structure
corresponds to NP-proof systems. The forgoing discussion suggests that
interactive proof systems can be used to demonstrate the non-existence of
such structures. Specifically, the set of pairs of non-isomorphic graphs is
not known to have an NP-proof system, and does have an interactive proof
system. In general, interactive proof systems can be used to prove the non-
existence of any easily verifiable structure; that is, for every S ∈ NP, the set
{0, 1}∗ \S has an interactive proof system (i.e., the class coNP is contained

in IP). We stress that it is widely believed that coNP
def
= {{0, 1}∗ \ S : S∈

NP} is not contained in NP. For example, the set of systems of quadratic
equations that have no integer solutions has an interactive proof system,
but is believed not to have an NP-proof system. Furthermore, the class
of sets having interactive proof systems coincides with the class PSPACE

9A graph G = (V, E) consists of a finite set of vertices V and a finite set of edges
E, where each edge is an unordered pair of vertices. Two graphs, G1 = (V1, E1) and
G2 =(V2, E2), are called isomorphic if there exists a 1-1 and onto mapping φ :V1→V2 such
that {u, v}∈E1 if and only if {φ(u), φ(v)}∈E1.
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containing all sets for which membership is decidable by an algorithm that
uses a polynomial amount of work-space.

Theorem 3.3 [18, 24]: IP = PSPACE.

We mention that NP ∪ coNP ⊆ PSPACE and that it is widely believed
that NP contain “little” of PSPACE . Thus, interactive proofs seem to be
more powerful than NP-proofs. This conforms with our daily experience by
which interaction facilitates the verification of assertions. As we shall argue
next, randomness (and the error probability in the soundness condition)
play a key role in this phenomenon.

Interactive proof systems extend NP-proof systems in allowing extensive
interaction as well as randomization (and ruling based on statistical evi-
dence). As hinted, extensive interaction by itself does not provide any gain
(over NP-proof systems). The reason being that the prover can predict the
verifier’s part of the interaction and thus it suffices to let the prover send
the full transcript of the interaction and let the verifier check that the inter-
action is indeed valid.10 The moral is that there is no point to interact with
predictable parties that are also computationally weaker. This moral rep-
resents the prover’s point of view (with respect to deterministic verifiers).
Certainly, from the verifier’s point of view it is beneficial to interact with
the prover, since it is computationally stronger.

We mention that the power of interactive proof systems remains un-
changed under several natural variants. In particular, it turns out that, in
this context, asking clever questions is not more powerful than asking totally
random questions. The reason being that a powerful prover may assist the
verifier, which may thus avoid being clever, while the verifier can check (by
using only random questions) that the help extended to it is indeed valid.
Also, the power of interactive proof systems remains unchanged when al-
lowing two-sided error probability (i.e., allowing bounded error probability
also in the completeness condition). Recall that, in contrast, one-sided error
probability (i.e., error probability in the soundness condition) is essential to
the power of interactive proofs.

3.2 Zero-Knowledge Proof Systems

Standard proofs are believed to yield knowledge and not merely establish
the validity of the assertion being proven. Indeed, it is commonly believed

10In case the verifier is not deterministic, the transcript sent by the prover may not
match the outcome of the verifier coin tosses.
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that (good) proofs provide a deeper understanding of the theorem being
proved. At the technical level, assuming that NP-proof are useful at all
(i.e., assuming that P 6= NP), an NP-proof of membership in some sets
S ∈ NP \ P yields something (i.e., the NP-proof itself) that is typically
hard to find (even when assuming that the input is in S). For example,
an integer solution to a system of quadratic equations constitutes an NP-
proof that this system has an integer solution, but it yields information (i.e.,
the solution) that is infeasible to find (when given an arbitrary system of
quadratic equations that has an integer solution). In contrast to such NP-
proofs, which seem to yield a lot of knowledge, zero-knowledge proofs yield
no knowledge at all; that is, the latter exhibit an extreme contrast between
being convincing (of the validity of a statement) and teaching something on
top of the validity of the statement.

Loosely speaking, zero-knowledge proofs are interactive proofs that yield
nothing beyond the validity of the assertion. These proofs, introduced
in [14], are fascinating and extremely useful constructs. Their fascinating
nature is due to their seemingly contradictory definition: zero-knowledge
proofs are both convincing and yet yield nothing beyond the validity of the
assertion being proven. Their applicability in the domain of Cryptography
is vast; they are typically used to force malicious parties to behave accord-
ing to a predetermined protocol. In addition to their direct applicability in
Cryptography, zero-knowledge proofs serve as a good bench-mark for the
study of various problems regarding cryptographic protocols.

Zero-knowledge is a property of some interactive proof systems, or more
accurately of some specified prover strategies. Specifically, it is the property
of yielding nothing beyond the validity of the assertion; that is, a verifier
obtaining a zero-knowledge proof only gains conviction in the validity of the
assertion. This is formulated by saying that anything that can be feasibly
obtained from a zero-knowledge proof is also feasibly computable from the
(valid) assertion itself. Details follow.

The formulation of the zero-knowledge condition refers to two types of
probability ensembles, where each ensemble associates a distribution to each
valid assertion. The first ensemble represents the output distribution of
the verifier after interacting with the specified prover strategy P , where
the verifier is not necessarily employing the specified strategy (i.e., V ) but
rather any efficient strategy. The second ensemble represents the output
distribution of some probabilistic polynomial-time algorithm (which does
not interact with anyone). The basic paradigm of zero-knowledge asserts
that for every ensemble of the first type there exist a “similar” ensemble of
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the second type. The specific variants differ by the interpretation given to
the notion of similarity. The most strict interpretation, leading to perfect
zero-knowledge, is that similarity means equality.

Definition 3.4 (perfect zero-knowledge, a simplified version11): A prover
strategy, P , is said to be perfect zero-knowledge over a set S if for every
probabilistic polynomial-time verifier strategy, V ∗, there exists a probabilis-
tic polynomial-time algorithm, M ∗, such that for every x ∈ S it holds that
(P, V ∗)(x) ≡ M∗(x), where (P, V ∗)(x) denote the distribution that repre-
sents the output of verifier V ∗ after interacting with the prover P on common
input x.12

A somewhat more relaxed interpretation of similarity, leading to almost-
perfect zero-knowledge, is that similarity means statistical closeness (i.e.,
negligible difference between the ensembles). The most liberal interpre-
tation, leading to the standard usage of the term zero-knowledge, is that
similarity means computational indistinguishability (i.e., failure of any ef-
ficient procedure to tell the two ensembles apart). The actual definition is
obtained from Definition 2.1, by considering ensembles indexed by strings
and providing the distinguisher with the relevant index. That is, the proba-
bility ensembles, {Yx}x∈S and {Zx}x∈S, are indistinguishable by an algorithm
A if

dA(n)
def
= max

x∈S∩{0,1}n
{|prob(A(x, Yx)=1)− Pr(A(x, Zx)=1)|}

is a negligible function.13 The ensembles {Yx}x∈S and {Zx}x∈S are compu-
tationally indistinguishable if they are indistinguishable by every probabilistic
polynomial-time algorithm.

The foregoing discussion refers to simplified versions of the actual defi-
nitions. Specifically, in order to guarantee that zero-knowledge is preserved
under sequential composition it is necessary to slightly augment the defini-
tions. For details see [8, Sec. 4.3.3-4.3.4].

11The actual definition allows for a rare event (which occurs with negligible probability)
in which M∗ halts with no output, and the output of M∗ is considered condition on this
event not occuring.

12As usual, M∗(x) denotes a distribution representing the output of algorithm M ∗ on
input x.

13If S ∩ {0, 1}n = ∅ then we define dA(n) = 0.
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The Power of Zero-Knowledge. We consider the set of 3-colorable
graphs, where a graph14 G=(V,E) is said to be 3-colorable if there exists a
function π :V →{1, 2, 3} (called a 3-coloring) such that π(v) 6= π(u) for every
{u, v} ∈ E. It is easy to prove that a given graph G is 3-colorable by just
presenting a 3-coloring of G, but this NP-proof is not a zero-knowledge proof
(unless P = NP). In fact, assuming P 6= NP, graph 3-colorability has no
zero-knowledge NP-proofs, but as we shall see it has zero-knowledge interac-
tive proofs. We first describe these proof systems using (abstract) “boxes”
in which information can be hidden and later revealed. Such “boxes” can
be implemented using one-way functions.

Construction 3.5 (Zero-knowledge proof of 3-colorability [12]): On com-
mon input, G=(V,E), The following steps are repeated |V | · |E| times.

• Prover’s first step: Let ψ be a 3-coloring of G. The prover selects a

random permutation, π, over {1, 2, 3}, and sets φ(v)
def
= π(ψ(v)), for

each v ∈ V . Hence, the prover forms a random relabeling of the 3-
coloring ψ. The prover sends the verifier a sequence of |V | locked and
non-transparent boxes such that the vth box contains the value φ(v).

• Verifier’s first step: The verifier uniformly selects an edge {u, v} ∈ E,
and sends it to the prover. Intuitively, the verifier asks to inspect the
colors of vertices u and v.

• Prover’s second step: The prover sends to the verifier the keys to boxes
u and v.

• Verifier’s second step: The verifier opens boxes u and v, and checks
whether or not they contain two different elements in {1, 2, 3}.

The verifier accepts if and only if all checks turn out positive.

The foregoing verifier strategy is easily implemented in probabilistic polynomial-
time. The same holds with respect to the prover’s strategy, provided it is
given a 3-coloring of G as auxiliary input. Clearly, if the input graph is 3-
colorable then the prover can cause the verifier to accept with probability 1.
On the other hand, if the input graph is not 3-colorable then any contents
put in the boxes must be invalid on at least one edge, and consequently each
time the foregoing steps are repeated the verifier rejects with probability at

14See Footnote 9.
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least 1
|E| . Repeating these steps t · |E| times has the effect of reducing the

soundness error probability to

(

1−
1

|E|

)t·|E|
≈ e−t.

The zero-knowledge property follows easily, in this abstract setting, because
one can simulate the real interaction by placing a random pair of different
colors in the boxes indicated by the verifier. This indeed demonstrates
that the verifier learns nothing from the interaction (since it expects to
see a random pair of different colors and indeed this is what it sees). We
stress that this simple argument is not possible in the digital implementation
because the boxes are not totally unaffected by their contents (but are rather
affected, yet in an indistinguishable manner).

As stated, in order to obtain a real interactive proof, the (abstract or
physical) “boxes” need to be implemented digitally. This can be done using
an adequately defined “commitment scheme” (see [8, Sec. 4.4.1]). Loosely
speaking, such a scheme is a two phase game between a sender and a receiver
so that after the first phase the sender is “committed” to a value and yet, at
this stage, it is infeasible for the receiver to find out the committed value.
The committed value will be revealed to the receiver in the second phase
and it is guaranteed that the sender cannot reveal a value other than the one
committed. Such commitment schemes can be implemented assuming the
existence of one-way functions. Thus, the existence of one-way functions
implies a zero-knowledge proofs for 3-colorability. In fact, one gets zero-
knowledge proofs for any NP-set.

Theorem 3.6 [12]: Assuming the existence of one-way functions, any NP-
proof can be efficiently transformed into a zero-knowledge interactive proof.
That is, the prover strategy in the zero-knowledge interactive proof can be
implemented in probabilistic polynomial-time provided that it is given an
adequate NP-proof as auxiliary input.

Theorem 3.6 has a dramatic effect on the design of cryptographic protocols
(cf., [8, 9]). In a different vein and for the sake of elegance, we mention
that, using further ideas and under the same assumption, any set having an
interactive proof system also has a zero-knowledge interactive proof system.

The Role of Randomness. Again, randomness is essential to all the
aforementioned results. Namely, zero-knowledge proof systems in which
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either the verifier or the prover is deterministic exist only for sets in BPP,
where BPP is the class of sets for which membership is decidable by some
probabilistic polynomial-time algorithm. Note that such sets have trivial
zero-knowledge proofs in which the prover sends nothing and the verifier
just test the validity of the assertion by itself. Thus, randomness is essential
to the usefulness of zero-knowledge proofs.

3.3 Probabilistically Checkable Proof Systems

When viewed in terms of an interactive proof system, the probabilistically
checkable proof setting consists of a prover that is memoryless (and responds
to each verifier message as if it were the first such message). However, it is
more appealing to view probabilistically checkable proof systems as standard
(deterministic) proof systems that are augmented with a probabilistic pro-
cedure capable of evaluating the validity of the assertion by examining few
locations in the alleged proof. In fact, we focus on the latter probabilistic
procedure, which is given direct access to the individual bits of the alleged
proof (and need not scan it bit-by-bit). Thus, the alleged proof is a string,
as in the case of a traditional proof system, but we are interested in prob-
abilistic verification procedures that access only few locations in the proof,
and yet are able to make a meaningful probabilistic verdict regarding the
validity of the alleged proof. Specifically, the verification procedure should
accept any valid proof (with probability 1), but rejects with probability at
least 1/2 any alleged proof for a false assertion.

The main complexity measure associated with probabilistically check-
able proof (PCP) systems is indeed their query complexity (i.e., the number
of queries bits accessed in the alleged proof). Another complexity measure
of natural concern is the length of the proofs being employed, which in
turn is related to the randomness complexity of the system. The random-
ness complexity of PCPs plays a key role in numerous applications (e.g.,
in composing PCP systems as well as when applying PCP systems to de-
rive non-approximability results), and thus we specify this parameter rather
than the proof length.

Loosely speaking, a probabilistically checkable proof system consists of
a probabilistic polynomial-time verifier having access to an oracle that rep-
resents an alleged proof (in redundant form). Typically, the verifier accesses
only few of the oracle bits, and these bit positions are determined by the out-
come of the verifier’s coin tosses. As in the case of interactive proof systems,
it is required that if the assertion holds then the verifier always accepts (i.e.,
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when given access to an adequate oracle); whereas, if the assertion is false
then the verifier must reject with probability at least 1

2 , no matter which
oracle is used. The basic definition of the PCP setting is given in Item (1)
of Definition 3.7. Yet, the complexity measures introduced in Item (2) are
of key importance for the subsequent discussions.

Definition 3.7 (Probabilistically Checkable Proofs – PCP):

1. A probabilistically checkable proof system (PCP) for a set S is a prob-
abilistic polynomial-time oracle machine (called verifier), denoted V ,
satisfying

• Completeness: For every x ∈ S there exists an oracle πx so that
V , on input x and access to πx, always accepts x.

• Soundness: For every x 6∈ S and every oracle π, machine V , on
input x and access to π, rejects x with probability at least 1

2 .

2. Let r and q be integer functions. The complexity class PCP(r(·), q(·))
consists of sets having a probabilistically checkable proof system in
which the verifier, on any input of length n, makes at most r(n) coin
tosses and at most q(n) oracle queries, where each query is answered by
a single bit. For sets of integer functions, R and Q, we let PCP(R,Q)
equal ∪r∈R,q∈QPCP(r(·), q(·)).

We stress that the oracle πx in a PCP system constitutes a proof in the
standard mathematical sense. Yet, this oracle has the extra property of
enabling a lazy verifier, to toss coins, take its chances and “assess” the
validity of the proof without reading all of it (but rather by reading a tiny
portion of it).

Letting poly denote the set of all polynomials, one may verify that
PCP(0, poly) = NP. Letting log denote the set of all logarithmic functions
(i.e., ` ∈ log if there exists a constant b such that `(n) ≤ logb n for all suf-
ficiently large n), one may also verify that PCP(log, poly) ⊆ NP (because
the relevant oracles are of polynomial length). It follows that, for every
constant c, it holds that PCP(log, c) ⊆ NP. This upper bound turned
out to be tight, but proving this is much more difficult (to say the least).
The following result is a culmination of a sequence of great works (see [7,
Sec. 2.6.2] for a detailed account).

Theorem 3.8 [2, 1]: There exists a constant c such that NP ⊆ PCP(log, c).
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Thus, probabilistically checkable proofs in which the verifier tosses only
logarithmically many coins and makes only a constant number of queries
exist for every set in the complexity class NP. (Essentially, this constant
is three.) Furthermore, NP-proofs can be efficiently transformed into NP-
proofs that offer a trade-off between the portion of the proof being read
and the confidence it offers. Specifically, if the verifier is willing to tolerate
an error probability of ε then it suffices to let it examine c · log2(1/ε) bits
of the (transformed) NP-proof.15 These bit locations need to be selected
at random. We mention that the length of the redundant NP-proofs that
provide the aforementioned trade-off can be made almost linear in the length
of the standard NP-proofs.

PCP and the study of approximation. Following [5] and [1], the char-
acterization of NP in terms of probabilistically checkable proofs has played
a central role in developments concerning the study of approximation prob-
lems. For details, see [16, Chap. 10]. We merely mention that Theorem 3.8
implies that, assuming P 6= NP, there exists a constant δ < 1 such that
given a system of quadratic equations it is infeasible to distinguish the case in
which the system has an integer solution from the case that any assignment
of integers satisfies at most a δ fraction of the equations.

The Role of Randomness. No trade-off between the number of bits
examined and the confidence is possible if one requires the verifier to be
deterministic. In particular, PCP(0, log) = P.

3.4 Suggestions for further reading

More detailed overviews of the three types of probabilistically proof sys-
tems can be found in [7, Chap. 2]. A detailed textbook treatment of zero-
knowledge is provided in [8, Chap. 4].

4 Cryptography

In this section, we focus on the role of randomness in Cryptography. As
stated at the beginning of the introduction, the very notion of a secret,

15In fact, c can be made arbitrarily close to one, when ε is small enough.
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which is central to Cryptography, refers to randomness in the sense of un-
predictability (i.e., unpredictability of the secret by other parties). Further-
more, the use of randomized algorithms and/or strategies is essential for
achieving almost any security concern. We start with the concrete example
of providing secret and authenticated communication, and end with a wider
perspective.

4.1 Secret and authenticated communication

The problem of providing secret communication over insecure media is the
traditional and most basic problem of Cryptography. The setting of this
problem consists of two parties communicating through a channel that is
possibly tapped by an adversary. The parties wish to exchange information
with each other, but keep the “wire-tapper” as ignorant as possible regard-
ing the contents of this information. The canonical solution to the above
problem is obtained by the use of encryption schemes.

Loosely speaking, an encryption scheme is a protocol allowing these par-
ties to communicate secretly with each other. Typically, the encryption
scheme consists of a pair of algorithms. One algorithm, called encryption, is
applied by the sender (i.e., the party sending a message), while the other al-
gorithm, called decryption, is applied by the receiver. Hence, in order to send
a message, the sender first applies the encryption algorithm to the message,
and sends the result, called the ciphertext, over the channel. Upon receiv-
ing a ciphertext, the other party (i.e., the receiver) applies the decryption
algorithm to it, and retrieves the original message (called the plaintext).

In order for the foregoing scheme to provide secret communication, the
communicating parties (at least the receiver) must know something that
is not known to the wire-tapper. (Otherwise, the wire-tapper can decrypt
the ciphertext exactly as done by the receiver.) This extra knowledge may
take the form of the decryption algorithm itself, or some parameters and/or
auxiliary inputs used by the decryption algorithm. We call this extra knowl-
edge the decryption-key. Note that, without loss of generality, we may
assume that the decryption algorithm is known to the wire-tapper, and
that the decryption algorithm operates on two inputs: a ciphertext and a
decryption-key. (The encryption algorithm also takes two inputs: a cor-
responding encryption-key and a plaintext.) We stress that the existence
of a decryption-key, not known to the wire-tapper, is merely a necessary
condition for secret communication.

The point we wish to make is that the decryption-key must be generated
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by a randomized algorithm. Suppose, in contrary, that the decryption-key
is a predetermined function of publicly available data (i.e., the key is gener-
ated by employing an efficient deterministic algorithm to this data). Then,
the wire-tapper can just obtain the key in exactly the same manner (i.e.,
invoking the same algorithm on the said data). We stress that saying that
the wire-tapper does not know which algorithm to employ or does not have
the data on which the algorithm is employed just shifts the problem else-
where; that is, the question remains as to how do the legitimate parties select
this algorithm and/or the data to which it is applied? Again, deterministi-
cally selecting these objects based on publicly available data will not do.
At some point, the legitimate parties must obtain some object that is unpre-
dictable by the wire-tapper, and such unpredictability refers to randomness
(or pseudorandomness).

However, the role of randomness in allowing for secret communication is
not confined to the generation of secret keys. To see why this is the case,
we need to understand what is “secrecy” (i.e., to properly define what is
meant by this intuitive term). Loosely speaking, we say that an encryption
scheme is secure if it is infeasible for the wire-tapper to obtain from the ci-
phertexts any additional information about the corresponding plaintexts. In
other words, whatever can be efficiently computed based on the ciphertexts
can be efficiently computed from scratch (or rather from the a priori known
data). Now, assuming that the encryption algorithm is deterministic, en-
crypting the same plaintext twice (using the same encryption-key) results
in two identical ciphertexts, which are easily distinguishable from any pair
of different ciphertexts resulting from the encryption of two different plain-
texts. This problem does not arise when employing a randomized encryption
algorithm (as presented next).

As hinted, an encryption scheme must specify also a method for selecting
keys. In the following encryption scheme, a uniformly chosen n-bit key, s,
is used for specifying a pseudorandom function fs (as in Definition 2.7). A
plaintext x ∈ {0, 1}n is encrypted (using the key s) by uniformly selecting
r ∈ {0, 1}n and producing the ciphertext (r, fs(r)⊕x), where α⊕β denotes
the bit-by-bit exclusive-or of the strings α and β. A ciphertext (r, y) is
decrypted (using the key s) by computing fs(r) ⊕ y. The security of this
scheme follows from the security of an imaginary (ideal) scheme in which fs

is replaced by a totally random function F : {0, 1}n → {0, 1}n.
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Public-key encryption schemes. The foregoing description corresponds
to the so called model of a private-key encryption scheme, and requires the
communicating parties to agree beforehand on a corresponding pair of en-
cryption/decryption keys. This need is removed in public-key encryption
schemes, envisioned by Diffie and Hellman (and materialized by the RSA
scheme of Rivest, Shamir, and Adleman). In a public-key encryption scheme,
the encryption-key can be publicized without harming the security of the
plaintexts encrypted using it, allowing anybody to send encrypted messages
to Party X by using the encryption-key publicized by Party X. But in such
a case, the need for randomized encryption is even more clear. Indeed, if a
deterministic encryption algorithm is employed and the wire-tapper knows
the encryption-key, then it can identity of the plaintext in the case that the
number of possibilities is small. In contrast, using a randomized encryption
algorithm, the encryption of plaintext yes under a known encryption-key
may be computationally indistinguishable from the encryption of the plain-
text no under the say encryption-key. For further discussion of the security
and construction of encryption schemes, the interested reader is referred
to [9, Chap. 5].

Authenticated communication. Message authentication is a task re-
lated to the setting considered for private-key encryption schemes. Again,
there are two designated parties that wish to communicate over an insecure
channel. This time, we consider an active adversary that is monitoring the
channel and may alter the messages sent on it. The parties communicating
through this insecure channel wish to authenticate the messages they send
such that their counterpart can tell an original message (sent by the sender)
from a modified one (i.e., modified by the adversary). Loosely speaking, a
scheme for message authentication should satisfy the following:

• each of the communicating parties can efficiently produce an authen-
tication tag to any message of its choice;

• each of the communicating parties can efficiently verify whether a
given string is an authentication tag of a given message; but

• it is infeasible for an external adversary (i.e., a party other than the
communicating parties) to produce authentication tags to messages not
sent by the communicating parties.

Again, such a scheme consists of a randomized algorithm for selecting keys
as well as algorithms for tagging messages and verifying the validity of tags.
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In the following message authentication scheme, a uniformly chosen n-bit
key, s, is used for specifying a pseudorandom function (as in Definition 2.7).
Using the key s, a plaintext x ∈ {0, 1}n is authenticated by the tag fs(x),
and verification of (x, y) with respect to the key s amounts to checking
whether y equals fs(x). For further discussion of message authentication
schemes and the related notion of signature schemes, the interested reader
is referred to [9, Chap. 6].

4.2 A wider perspective

Modern Cryptography is concerned with the construction of information sys-
tems that are robust against malicious attempts to make these systems de-
viate from their prescribed functionality. The prescribed functionality may
be the private and authenticated communication of information through
the Internet, the holding of incoercible and secret electronic voting, or con-
ducting any “fault-resilient” multi-party computation. Indeed, the scope of
modern Cryptography is very broad, and it stands in contrast to “classical”
Cryptography (which has focused on the single problem of enabling secret
communication over insecure communication media).

The design of cryptographic systems is a very difficult task. One cannot
rely on intuitions regarding the “typical” state of the environment in which
the system operates. For sure, the adversary attacking the system will try
to manipulate the environment into “untypical” states. Nor can one be
content with counter-measures designed to withstand specific attacks, since
the adversary (which acts after the design of the system is completed) will try
to attack the schemes in ways that are different from the ones the designer
had envisioned. The validity of the above assertions seems self-evident, still
some people hope that in practice ignoring these tautologies will not result
in actual damage. Experience shows that these hopes rarely come true;
cryptographic schemes based on make-believe are broken, typically sooner
than later.

In view of the foregoing, we believe that it makes little sense to make
assumptions regarding the specific strategy that the adversary may use. The
only assumptions that can be justified refer to the computational abilities
of the adversary. Furthermore, the design of cryptographic systems has to
be based on firm foundations; whereas ad-hoc approaches and heuristics are
a very dangerous way to go. A heuristic may make sense when the designer
has a very good idea regarding the environment in which a scheme is to
operate, yet a cryptographic scheme has to operate in a maliciously selected
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environment which typically transcends the designer’s view.
The foundations of Cryptography are the paradigms, approaches and

techniques used to conceptualize, define and provide solutions to natural
“security concerns”. For a presentation of these foundations, the interested
reader is referred to [8, 9]. Here we merely note that randomness plays a
central role in each definition and technique presented there. In almost every
case, the inputs of the legitimate parties are assumed to be unpredictable
by the adversary, and the task is performing some manipulation (of the
inputs) while preserving or creating some unpredictability. In all cases, this
is obtained by using randomized algorithms.

5 Sub-linear time algorithms

For starters, let us consider a well-known example in which fast approxima-
tions are possible and useful. Suppose that some cost function is defined
over a huge data-set, and that one wants to approximate the average cost of
an element in the set. To be more specific, let µ : S → [0, 1] be a cost func-

tion, and suppose we want to estimate µ
def
= 1

|S|
∑

e∈S µ(e). Then, for some

constant c, uniformly (and independently) selecting m
def
= c · ε−2 log2(1/δ)

sample points, s1, ..., sm, in S we obtain with probability at least 1 − δ an
estimate of µ within ±ε:

Prs1,...,sm∈S

[∣

∣

∣

∣

∣

1

m

m
∑

i=1

µ(si) − µ

∣

∣

∣

∣

∣

> ε

]

< δ .

We stress the fact that the number of samples only depends on the desired
level of approximation (and is independent of the size of S). In this section
we discuss analogous phenomena that occur with respect to objectives that
are beyond gathering statistics of individual values. We focus on more com-
plex features of a data-set; specifically, relations among pairs of elements
rather than values of single elements. Such binary relations are captured
by graphs (as defined in Footnote 9); that is, a symmetric binary relation
R ⊆ S × S is represented by a graph G = (S,R), where the elements of S
are called vertices and the elements of R are called edges. Each edge consists
of a pair of vertices, called its end-points.

One natural computational question regarding graphs is whether or not
they are bi-partite; that is, whether there exists a partition of S into two
subsets S1 and S2 such that each edge has one end-point in S1 and the
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other endpoint in S2. For example, the graph consisting of a cycle of four
vertices is bi-partite, whereas a triangle is not bi-partite. We mention that
there exists an efficient algorithm that given a graph G determines whether
or not G is bi-partite. Needless to say, this algorithm must inspect all
edges of G, whereas we seek sub-linear time algorithms (i.e., algorithms
operating in time smaller than the size of the input). In particular, sub-
linear time algorithms cannot afford reading the entire input graph. Instead,
these algorithm can inspect portions of the input graph by querying for the
existence of specific edges (i.e., query whether there is an edge between a
specific pair of vertices). It turns out that, by making a number of queries
that is independent of the size of the graph, one may obtain meaningful
information regarding its “distance” to being bi-partite. Specifically:

Theorem 5.1 [11]: There exists a randomized algorithm that, on input a
parameter ε and access to a graph G = (S,R), makes poly(1/ε) queries to
G and satisfies the following two conditions:

1. If G is bi-partite then the algorithm accepts with probability 1.

2. If any partition of S into two subsets S1 and S2 has at least ε|S|2

edges with both end-points in the same Si then the algorithm rejects
with probability at least 99%.

The algorithm underlying Theorem 5.1 uniformly selects m = poly(1/ε)
vertices, and checks whether the induced graph is bi-partite; that is, for a
sample of vertices v1, ..., vm, it checks whether there exists a partition of
{v1, ..., vm} into two subsets V1 and V2 such that for every i ∈ {1, 2} and
every u, v ∈ Vi it holds that (u, v) 6∈ R.

We stress that the said algorithm does not solve the question of whether
or not the graph is bi-partite, but rather a relaxed (or approximated) version
of this question in which one needs to distinguish graphs that are bi-partite
from graphs that a very far from being bi-partite. This phenomenon is anal-
ogous to the case of approximating the average value of µ : S → [0, 1]. Also,
as in the case of approximating the average value of µ : S → [0, 1], it is essen-
tial that the approximation algorithm be randomized. A similar phenomena
occurs with respect to several other natural properties of graphs, but is not
generic. That is, there exist graph properties for which even inspecting a
constant fraction of the graph does not allow for an approximate decision
regarding satisfiability of the property. For details, the interested reader is
directed to [6, 21].

37



We note that the notion of approximation underlying Theorem 5.1 refers
to disregarding ε|S|2 edges, where |S|2 is the maximum possible number of
edges over S. This notion of approximation is appealing in the case that R
is dense (i.e., contains a constant fraction of all possible edges). Going to
the other extreme, we may consider the case that R contains only a linear
in S number of edge, or even the case that each vertex participates only
in a constant number of edges. In this case, we may want to distinguish
the case that the graph is bi-partite from the case that any partition of S
into two subsets S1 and S2 has at least ε|S| edges with both end-points
in the same Si. It turns out that this problem can be solved by an al-
gorithm that makes poly((log |S|)/ε) ·

√

|S| queries (to an adequate data
structure), and that these many queries are essentially necessary. We note
that this sub-linear time algorithm operates by inspecting a graph induced
by poly((log |S|)/ε) ·

√

|S| vertices that are selected by taking many (rel-
atively short) random walks from few randomly selected starting vertices.
For details, the interested reader is directed to [21, Sec. 3].

The aforementioned type of approximation is known by the name prop-
erty testing, and was initiated and developed in [22, 11]. One archetypical
problem, which played a central role in the construction of PCP systems
(see Section 3.3), is distinguishing low-degree polynomials from functions
that are far from any such polynomial. Specifically, let F be a finite field
and m, d be integers. Given access to a function f : Fm → F , we wish to
make few queries and distinguish the case that f is am m-variate polyno-
mial of total degree d from the case it disagrees with any such polynomial
on at least 1% of the domain. It turns out that making poly(d) random (but
dependent) queries to f suffices for making a decision that is correct with
high probability.
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