
Chinese Remaindering with ErrorsOded Goldreich� Dana Rony Madhu SudanzOctober 7, 1998AbstractThe Chinese Remainder Theorem states that a positive integer m is uniquely speci�ed byits remainder modulo k relatively prime integers p1; : : : ; pk, provided m < Qki=1 pi. Thus theresidues of m modulo relatively prime integers p1 < p2 < � � � < pn form a redundant represen-tation of m if m � Qki=1 pi and k < n. This suggests a number-theoretic construction of an\error-correcting code" that has been implicitly considered often in the past. In this paper weprovide a new algorithmic tool to go with this error-correcting code: namely, a polynomial-timealgorithm for error-correction. Speci�cally, given n residues r1; : : : ; rn and an agreement param-eter t, we �nd a list of all integers m <Qki=1 pi such that (m modpi) = ri for at least t values ofi 2 f1; : : : ; ng, provided t = 
(qkn logpnlogp1 ). We also give a simpler algorithm to decode from asmaller number of errors, i.e., when t > n� (n� k) log p1log p1+log pn . In such a case there is a uniqueinteger which has such agreement with the sequence of residues.One consequence of our result is that is a strengthening of the relationship between average-case complexity of computing the permanent and its worst-case complexity. Speci�cally weshow that if a polynomial time algorithm is able to guess the permanent of a random n � nmatrix on 2n-bit integers modulo a random n-bit prime with inverse polynomial success rate,then #P = BPP. Previous results of this nature typically worked over a �xed prime modulior assumed very small (though non-negligible) error probability (as opposed to small but non-negligible success probability).
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1 IntroductionThe Chinese Remainder Theorem states that a positive integer m is uniquely speci�ed by itsremainder modulo k relatively prime integers p1; : : : ; pk, provided m < Qki=1 pi. Thus if we pickn > k relatively prime integers p1 < � � � < pn such that m < Qki=1 pi, then the remainders ofm modulo the pi's form a very redundant encoding of m. Speci�cally, m can be recovered givenany k of the n remainders. Thus this representation of integers yields a natural error-correctingcode: given any two integers m;m0 < Qki=1 pi, the sequences f(m mod p1); : : : ; (m mod pn)g andf(m0 mod p1); : : : ; (m0 mod pn)g di�er in at least n� k coordinates.This redundancy property of the Chinese remainder representation has been exploited often intheoretical computer science. The Karp-Rabin pattern matching algorithm is based on this redun-dancy [17]. This representation was used to show the strength of probabilistic communication overdeterministic communication protocols. The representation allows for easy arithmetic | addition,multiplication, subtraction and division | on large integers and was even proposed as a potentialrepresentation for numbers in computers1. The ability to reduce computation over large integers tothat over small integers is also employed in complexity-theoretic settings, with a notable examplebeing its use in showing the hardness of permanent of 0=1 matrices. In fact it is this applicationthat motivates the main question studied here.The redundancy of the Chinese remainder representation of integers and its similarity to error-correcting codes raises a natural algorithmic question:Given a sequence of residues hr1; : : : ; rni that are obtained from taking residues of aninteger m < Qki=1 pi modulo primes p1 < � � � < pn, where some of the residues areerroneous, can we �nd m?If the number of residues that are erroneous is less than n�k2 , then m is uniquely speci�ed bythe vector hr1; : : : ; rni. However this fact is not algorithmic { it is not clear how to recover m inpolynomial time (i.e., in time polynomial in n and log pn). Even in the case where the number oferrors e is larger (but not larger than n�pnk), there exists a small list containing all integers whoseChinese remainder representations di�er from the vector hr1; : : : ; rni in at most e coordinates [13].Again it is not clear how to recover this list in polynomial time.In this paper we present e�cient algorithms for solving the above problems. Speci�cally we providepolynomial-time algorithms for the following two tasks:1. Unique Decoding: Given n relatively prime integers p1 < � � �< pn; n residues r1; : : : ; rn, with0 � ri < pi; and an integer k; �nd an integer m < Qki=1 pi satisfying (m mod pi) 6= ri for atmost (n� k) log p1log p1+log pn values of i 2 f1; : : : ; ng, if such an integer exists. (Theorem 6.)2. List Decoding (for large error): Given n relatively prime integers p1 < � � � < pn; n residuesr1; : : : ; rn, with 0 � ri < pi; and an integer k; construct a list of all integers m satisfyingm < Qki=1 pi and (m modpi) = ri for at leastq2n(k + 2) logpnlogp1 + k+32 +2 logn = �(qnk logpnlogp1 )values of i 2 f1; : : : ; ng. (Theorem 11.) (We comment that this list contains at most p2n=kintegers; cf., [13].)1Unfortunately, it does not allow for easy inequality comparisons | which is presumably why it was not employed.1



In the context of coding theory, our algorithms add a new dimension to the family of codes thatare e�ciently correctable. The known examples of asymptotically good error-correcting codes withe�cient algorithms can be classi�ed in one of two categories:1. Algebraic codes: These are codes de�ned using the properties of low-degree polynomials over�nite �elds and include a wide variety of codes such as Reed-Solomon codes, BCH codes,Alternant codes and algebraic-geometry codes. Such codes admit e�cient error-correctionalgorithms; in fact all the algorithms (for unique-decoding) are similar in spirit and can beuni�ed quite nicely [25, 18, 8].2. Combinatorial codes: A second class of codes with e�cient decoding algorithms evolve fromcombinatorial concepts such as expanders, super-concentrators etc. Examples of this familyinclude the codes of Sipser and Spielman [28], and Spielman [29]. In both cases, the descriptionof the code is captured by a graph; and the existence of a decoding algorithm is then relatedto combinatorial properties of the graph.Our work provides the �rst example of a number theoretic code that is e�ciently correctable. Tothe best of our knowledge - this is the only example which does not fall into one of the two classesabove.Our algorithms are obtained by abstracting from known paradigms for correcting algebraic codes:The �rst of our algorithms abstracts from a large collection of (unique) error-correcting algorithmsfor algebraic codes [26, 4, 24, 33]. In fact, an elegant uni�cation of these results (see [25, 18,8]) provides the inspiration for our algorithm. The second algorithm described above abstractsfrom the recent works on \list-decoding" algorithms [3, 30, 27, 15]. We stress however, that thetranslation of the above mentioned algorithms to our case is not immediate. In particular, theusual \interpolation" methods, that come in very handy in the algebraic case are not applicablehere. In fact our code is not even linear in the usual sense and so even linear algebra is notapplicable in our case. Thus for solving analogies of \simple" problems in the algebraic case, weemploy integer programming algorithms (in �xed dimensions) [20] for the Unique Decoding task,and the approximate basis reduction algorithm (in varying dimension) [19] for the List Decodingtask. Our �nal algorithms achieve decoding capabilities comparable to those in algebraic cases andin particular, if pn = pO(1)1 we can decode uniquely from a constant fraction of errors. We also geta list-decoding algorithm to recover from n � o(n) errors, provided k = o(n).Permanent of random matrices One primary motivation for studying the Chinese remainderrepresentation of integers was to study the \random self-reducibility" property of the permanent[21].The standard presentation of this property �xes a prime p > n + 1, and consists of a randomizedreduction of computing the permanent modulo p of a given n�nmatrix to computing the permanentmodulo p over uniformly distributed n� n matrices. Thus we are taking a two parameter problem(such as Quadratic Non-Residuosity and DLP) and the process of self-reduction �xes one parameter(here, the prime p) and randomizes over the second (here, the matrix). This is analogous to theresults of [14, 6] but not to the recent result of Ajtai [1]. Thus, unlike Ajtai's result, the above onlyrelates the average and worst case complexities of computing the permanent modulo p for any �xedp. What we want is a relation between the average and worst case complexities, when average-casecomplexity refers to all parts of the input. 2



Consider, for example, the product distribution on pairs (p;M), parameterized by sizen, where p is a uniformly distributed n-bit prime and M is a uniformly distributedn-by-n matrix with 2n-bit entries.A naive analysis of the complexity of the permanent on such instances would work as follows.Suppose we have a heuristic to compute the permanent on instances from the above distribution.Then, given any pair (p;M), pick at random many primes p1; : : : ; pt, and then compute the per-manent of M modulo pi for every i. In each case use the random-self-reducibility of the permanentmodulo pi to reduce the computation of the permanent of M modulo pi to n + 1 \random" (butnot independent) instances of the permanent modulo pi. If the heuristic does not make errors veryoften (say has error probability less than 13(n+1)t) then with high probability (resp., probability atleast 2=3) all calls to the heuristic get answered correctly. Thus if t is large enough (e.g., t = O(n)will do), then (applying the Chinese Remainder Theorem) we obtain the value of the permanentof M (over the integers), and can now reduce this modulo p to get the desired output.However the reduction as described above is not very tolerant of errors. This problem has beenaddressed before in the case of one of the two parameters, namely in the choice of the matrix: Theresults of [11, 12, 30] imply that if for any prime p, the heuristic computes (M; p) on even a tiny butnon-negligible fraction of the instances correctly then the permanent can be computed correctly onworst case instances of matrices, but over the same �xed prime p.Our result complements the above, by allowing a similar treatment of the second parameter as well.Thus by combining the two results, we get the following natural statement:If there exists a heuristic that computes the permanent of a random pair (M; p), fromthe above distribution, with non-negligible probability (over the choice of (M; p)), thenP#P = BPP.Organization of this paper: In Section 2 we de�ne the Chinese Remainder Code. In Sec-tions 3 and 4 we give decoding algorithms for the Chinese Remainder Code, for small and largeerror, respectively. Section 5 gives the application to the permanent.2 The Chinese Remainder CodeNotation: For positive integersM;N , LetZM denote the set f0; : : : ;M�1g, and let [N ]M denotethe remainder of N when divided by M . Note [N ]M 2ZM.De�nition 1 (Chinese Remainder Code) Let p1 < � � � < pn be relatively prime integers, andk < n an integer. The Chinese Remainder Code with basis p1; : : : ; pn and rate k is de�ned formessage space ZK, where Kdef= Qki=1 pi. The encoding of a message m 2ZK, denoted Ep1;:::;pn(m),is the n-tuple h[m]p1; : : : ; [m]pni.Thus the Chinese Remainder Code does not have a \�xed alphabet" (the alphabet depends on thecoordinate position) and it is not linear in the usual sense (as the natural arithmetic here is donemodulo pi for the i'th coordinate). Distance of a code can however be de�ned as usual; i.e., thedistance between two \words" of block length n is the number of coordinates on which they di�er.The distance properties of this code however are very similar to those of Reed-Solomon and BCHcodes; and follow immediately from the Chinese Remainder Theorem:3



Theorem 2 (Chinese Remainder Theorem | CRT) If q1; : : : ; q` are relatively prime posi-tive integers and r1; : : : ; r` are integers such that ri 2 Zqi, then there exists a unique integerr 2 ZQì=1 qi such that [r]qi = ri. Furthermore, r = [Pni=1 ci �Qi � ri]Q, where Q = Qj̀=1 qj,Qi = Q=qi, and ci is the multiplicative inverse modulo qi of Qi.Corollary 3 For any n relatively prime integers p1; : : : ; pn and any integer k < n, the ChineseRemainder Code with basis p1; : : : ; pn and rate k has distance n�k. That is, for any two messagesm1; m2, the code words Ep1;:::;pn(m1) and Ep1;:::;pn(m2) disagree on at least n � k coordinates.Thus if p1; : : : ; pn are all (1 + o(1)) � logn-bit primes, then the information rate and the distanceof the Chinese Remainder Code are comparable with those of the Reed-Solomon code or the BCHcode. For our purposes, it is more useful to consider a variant of the notions of block length, rateand distance as de�ned below.De�nition 4 (amplitude) For a Chinese Remainder Code with basis p1; : : : ; pn and rate k, theamplitude of the encoding is de�ned to be N = Qni=1 pi; the amplitude of the message spaceis de�ned to be K = Qki=1 pi. For vectors ~v = hv1; : : : ; vni and ~w = hw1; : : : ; wni 2 Zn withvi; wi 2 Zpi, the amplitude of the distance between ~v and ~w is de�ned to be Qi:vi 6=wi pi. Theamplitude of agreement between ~v and ~w is de�ned to be Qi:vi=wi pi. Notice that the product of theamplitudes of agreement and distance equals the amplitude of the encoding.It is easy to see that if the distance between ~v and ~w is d, and the amplitude of the distancebetween ~v and ~w is D; then d log p1 � logD � d log pn. In case of traditional codes that arede�ned over �xed alphabets, i.e., p1 = p2 = � � � = pn, d is directly proportional to logD and hencethere is no need to consider the latter separately. In our case, the latter parameter provides a morere�ned look at the performance of the algorithms. From the Chinese Remainder Theorem it followsimmediately that the amplitude of distance between any two codewords is larger than N=K.Our goal is to solve the following error-correction problems (for as large an error parameter aspossible).The Error-correction/List decoding ProblemGiven: (1) n relatively prime integers p1 < � � � < pn and rate parameter k specifying a ChineseRemainder Code; (2) n integers r1; : : : ; rn, with ri 2Zpi and an error-parameter e.Task: Find (all) message(s) x 2ZK, where K = Qki=1 pi, s.t. [x]pi 6= ri for at most e values of i.It follows from the distance of the Chinese RemainderCode that the answer is unique if e < n�k2 . In this case the problem corresponds to the traditionalerror-correction problem for error-correcting codes. If e is larger, then there may be more than onesolution. We will expect the algorithm to return a list of all codewords x with at most e errors.3 The Decoding Algorithm for Small ErrorThe �rst algorithm we present is a simple algorithm to recover from a small number of errors. Thealgorithm recovers from error of amplitude at most pN=K. Translating to classical measures thisyields an error-correcting algorithm for e � (n� k) logp1logp1+log pn .4



The algorithm is described below formally. The intuition behind the algorithm comes from a generalparadigm for decoding of many algebraic codes (see [25, 18, 8]). Given a received word hr1; : : : ; rnithat is close to the encoding of (a unique) message m, we try and detect the indices for whichri 6= [m]pi. We then reconstruct the message, using CRT, from those ri's which we believe arecorrect. The above detection is done using an integer y which we show satis�es [y]pi = 0 wheneverri 6= [m]pi. By restricting y to be relatively small we ensure that [y]pi does not equal 0 for manyi satisfying ri = [m]pi (so that CRT can in fact be applied). However to �nd this y, we needsome way to (describe and) exploit the fact there exists some small m s.t., for every i, [y]pi = 0 or[m]pi = ri; or equivalently [y]pi � [m]pi � [y]pi � ri (mod pi). The �nal condition suggest that wemay attempt to �nd zdef= y �m such that [z]pi � [y]pi � ri (mod pi). While ideally we would like tospecify further that z is a multiple of y, we relax this and simply use the fact that z is also small(since both y and m are small). This leads to the following algorithm:Unique-Decode(p1 ; : : : ; pn; k; r1; : : : ; rn).{ Set K = Qki=1 pi, N = Qni=1 pi, and F = (K � 1)E, with E to be determined later.{ Let r 2ZN be s.t. ri = [r]pi.1. Find integers y; z s.t. 1 � y � E0 � z � Fy � r � z (modN) 9>=>; (1)2. Let Idef= fi : [y]pi = 0g. For every i 2 I , set xi = ri.3. Find x 2ZK s.t. [x]pi = xi for every i 2 I (if such an x exists) and output it.The above algorithm can be implemented in polynomial time in the bit sizes of p1; : : : ; pn. Themain realization is that Step 1 can be computed using an algorithm for integer programming in�xed number of variables, due to [20]. To see how to formulate our problem in this way, we let the�nal equality be expressed as y � r = z + j �N . Our task thus reduces to computing y and j s.t0 < y � E and 0 � y �r� j �N < F . Step 2 is straightforward, while Step 3 is just an application ofthe Chinese Remainder Theorem (i.e., �nd x 2ZQi2I pi via CRT and check if it is . smaller thanK).We now analyze the performance of this algorithm. We �rst describe it in terms of the amplitudeof the distance between the message m and r.Lemma 5 If r is such that for some m 2 ZK the amplitude of the distance between hr1; : : : ; rniand h[m]p1; : : : ; [m]pni is at most E, and N > E2 �K then Unique-Decode(p1 ; : : : ; pn; k; r1; : : : ; rn)returns m.Proof: We prove the lemma using a sequence of claims.Claim 5.1 For r as in the lemma, there exist y; z satisfying Eq. (1).5



Proof: Let y = Qfijri 6=[m]pig pi (so that y equals the amplitude of the distance between hr1; : : : ; rniand h[m]p1; : : : ; [m]pni), and z = y �m. Then notice that y 6= 0, and y � E. Since m < K, we havez = m � y � (K� 1) �E. Finally, by CRT, the condition y � r � z (modN) holds since the conditionholds modulo every pi: For any �xed i 2 f1; : : : ; ng, either ri = [m]pi or [y]pi = 0. In either case,we have z = ym � yr (mod pi).Claim 5.2 Let r and m be as stated in the lemma, and N � (K � 1) � E2. For any pair (y; z)satisfying Eq. (1) it holds that y �m = z.Proof: For every i s.t. [m]pi = ri, we havem � y � ri � y � y � r � z (mod pi) :Thus, by CRT, y � m � z (mod T ) where T = Qfi j [m]pi=rig pi � N=E is the amplitude ofthe agreement between hr1; : : : ; rni and h[m]p1; : : : ; [m]pni. But z and m � y are both at most(K � 1)E < N=E. Thus z = m � y.By Claim 5.1, Step 1 of the algorithm always returns a pair (y; z) satisfying Eq. (1). By Claim 5.2,any pair (y; z) that may be the outcome of Step 1 satis�es y �m = z. Since y � r � z (modN), itfollows that for every i y �r � y �m (modpi), and so for every i 2 I = fj : y 6= 0 (modpj)g, we haver � m (mod pi). Thus, m 2ZK is a valid solution for the task in Step 3 (since 8i 2 I; xi = [r]pi).It remains to show that m is the only possible solution. For this, let �I = f1; : : : ; ng n I (i.e.,8i 2 I; y � 0 (mod pi)). By CRT, y � 0 (mod Qi2�I pi), and since y > 0 it follows thaty � Qi2�I pi. Since y � E, we have Qi2�I pi � N=E > K. Thus, again by CRT, the messagem 2ZK is the only solution to the system fx � r (mod pi)gi2I.As an immediate consequence of the above lemma, and the observation relating amplitudes ofdistance to classical distance, we get the following theorem.Theorem 6 Unique-Decode(p1 ; : : : ; pn; k; r1; : : : ; rn) solves the error-correction problem in polyno-mial time for values of any value of the error parameter up to (n � k) log p1log p1+log pn , with the settingE = Qni=n�e+1 pi.Proof: Using N = Qni=1 pi, K = Qki=1 pi and E � Qni=n�e+1 pi, Lemma 5 can be applied ifQni=1 pi > (Qki=1 pi) � (Qni=n�e+1 pi)2, which is equivalent to Qn�ei=k+1 pi > Qni=n�e+1 pi. In turn thiscondition holds if pn�(e+k)1 > pen. The theorem follows by taking logarithms of both sides.4 Decoding for Large ErrorIn this section we will describe an algorithm that recovers from possibly many more errors thandescribed in the previous section. In particular, if we �x k = �n and let n!1, the fraction of errorsthat can be corrected goes to 1�q2� log pnlog p1 . As �! 0, this quantity approaches 1. This algorithmis inspired by the recent progress in list-decoding algorithms [3, 30, 27, 15]. Our algorithm and6



analysis follow the same paradigm, though each step is di�erent. A closer comparison is includedat the end of this section.Instead of describing the algorithm in terms of the amount of error, we will try to describe it interms of the amount of agreement t that it requires between the codeword and the received word.We use T to denote the amplitude of agreement.List-Decode(p1; : : : ; pn; k; r1; : : : ; rn).Set N = Qni=1 pi; K = Qki=1 pi; and F = 2(`+2)=2 � p`+ 2 �N1=(`+1) �K(`+1)=2, with ` tobe determined shortly.Let r 2ZN s.t. [r]pi = ri for every i.1. Find integers c0; : : : ; c` satisfying80 � i � l jcij � FKis.t. Pì=0 ciri = 0(modN)hc0; : : : ; c`i 6= ~0 9>=>; (2)2. Output all roots of the integer polynomial C(x) =Pì=0 cixi.The running time of Step 2 above is bounded by a polynomial in n; `; logN and logF (one can useLLL's algorithm for factoring polynomials over the integers if required, though faster algorithmsexist for this simpler task of \root-�nding"). We need to show how to implement Step 1. We will doso after the following lemma. Mainly the idea is to set up a lattice whose short vectors correspondto small values of the coe�cients ci's. We show �rst that very small vectors of this form exist;and then use the basis reduction algorithm of LLL to �nd short (but not shortest) vectors in thislattice; and this will su�ce for Step 1.Lemma 7 For integers r;N if B0; : : : ; B` are positive integers such that Qì=0Bi > N , then thereexist integers c0; : : : ; c`, such that jcij < Bi, hc0; : : : ; c`i 6= ~0 and Pì=0 ciri � 0 (mod N).Proof: Consider the function f : ZB0 � � � � �ZB` ! ZN given by f(c0; : : : ; c`) = [Pì=0 ciri]N .Since the domain has larger cardinality than the range, there exist di�erent hd0; : : : ; d`i andhe0; : : : ; e`i s.t. f(d0; : : : ; d`) = f(e0; : : : ; e`). Setting ci = di � ei, we get jcij < Bi, Pi ciri = 0, andhc0; : : : ; c`i 6= ~0 as required.Lemma 8 (Algorithm for Step 1.) ci's as required in Step 1 of List-Decode exists and can befound in polynomial time.Proof: We set up an `+2-dimensional integer lattice using basis vectors v0; : : : ; v` and w describednext. Let M be a very large integer (to be determined later as a function of N and `). Forj 2 f0; : : : ; `+ 1g, the jth coordinate of the vector vi, denoted (vi)j is given by:(vi)j = 8><>: Ki if j = iM � ri if j = `+ 10 otherwise.7



The vector w is zero everywhere except in the last coordinate where (w)`+1 = M �N .A generic vector in this lattice is of the form u = Pì=0 civi + dw, for integers c0; : : : ; c` and d.Explicitly the jth coordinate of u is given by:(u)j = ( cjKj 0 � j � `M � (Pì=0 ciri + dN) if j = `+ 1:Using Lemma 7 with Bi = N1=(`+1) � K(`+1)=2�i, we observe that this lattice has a (short) non-zero vector (where the ci's are as guaranteed by the lemma and d = �Pì=0 ciri=N) with thelast coordinate identically 0, and each other coordinate has absolute value at most Bi � Ki =N1=(`+1) �K(`+1)=2. Thus, the L2-norm of this vector is at most p`+ 2 � N1=(`+1) � K(`+1)=2. Byusing the \approximate shortest vector" algorithm of [19], we �nd, in polynomial time, a vector ofL2-norm at most F = 2(`+2)=2 � p`+ 2 �N1=(`+1) �K(`+1)=2. For su�ciently large M (any M > Fwill do), all vectors with L2-norm at most F have a last coordinate identical to 0, and thus yield asequence of ci's satisfying Pi ciri � 0 (mod N) and jci �Kij � F . This sequence is as required inStep 1.Now we move on to Step 2 of List-Decode. We argue next any solution to the list-decoding problemis a root of the polynomial whose coe�cients are given by any solution to Step 1.Lemma 9 If r is such that for some m 2ZK the amplitude of the agreement between hr1; : : : ; rniand h[m]p1; : : : ; [m]pni is greater than 2(`+ 1)F , and c0; : : : ; c` are integers satisfying Eq. (2), thenPj̀=0 cjmj = 0 (i.e., m is a root of the polynomial C(x)).Proof: We �rst observe that since the cj 's are small, Pj cjmj is small in absolute value:������X̀j=0 cjmj������ � (`+ 1) �maxj fjcjmj jg� (`+ 1) �maxj fjcjKj jg� (`+ 1) � F:Now we observe that for i such that [m]pi = ri it holds thatX̀j=0 cjmj � X̀j=0 cj [m]jpi � X̀j=0 cjrji � X̀j=0 cjrj � 0 (mod pi):De�ne P = Qfijri=[m]pig pi. By CRT, Pj̀=0 cjmj � 0 (mod P ). Since the sum Pj̀=0 cjmj hasabsolute value at most (`+1)F , the hypothesis P > 2 � (`+1)F implies that the sum is identicallyzero as required.As an immediate consequence of the last two lemmas, we get a proof of the correctness of List-Decode. The following lemma describes the performance in terms of amplitude (for any choice of`).Proposition 10 For any choice of the parameter `, List-Decode(p1; : : : ; pn; k; r1; : : : ; rn) producesa list of up to ` integers which includes all messages m 2ZK such that the amplitude of agreementbetween h[m]p1; : : : ; [m]pni and ~r is at least 2(`+ 2)3=22(`+2)=2N1=(`+1)K(`+1)=2.8



Proof: By Lemma 8, ci's satisfying Eq. (2) exist and are found in Step 1. By Lemma 9, any mas in the lemma is a root of the polynomial Pj cjxj , and thus is included in the output.The following theorem is obtained by optimizing the choice of the parameter ` in the above propo-sition. See appendix for a proof.Theorem 11 List-Decode(p1; : : : ; pn; k; r1; : : : ; rn) with parameter ` = lq2n log pnk log p1 � 1m solves theerror-correction problem in polynomial time, for e < n �q2(k+ 3)n logpnlogp1 � k+62 .Remark: If k=n = �, then the above theorem indicates that approximately 1�r2 � � logpnlogp1 � � ���=2fraction of errors can be corrected. In particular this fraction approaches 1 as �! 0.Comparison with [3, 30] Our algorithm List-Decode is similar to those of [3, 30] in the basicsteps. In their case also, they �rst �nd a polynomial \explaining" the corrupted word and thenfactor it to retrieve a list of messages. However the speci�cs are quite di�erent: They look for abivariate polynomial explanation; their criterion is to �nd a non-zero polynomial of low degree;they �nd it by solving a linear system; and then employ a bivariate factorization step. We lookfor a univariate polynomial explanation; our criterion is the size of the coe�cients; we �nd it by(essentially) solving Diophantine systems; and �nally employ univariate factorization. Similarly ouranalysis follows the same steps. The existence proof (Lemma 7) is similar to an analogous step in[30]; though our proof here appears to be more general than his proof. In particular, the pigeonholeargument could also be applied to his case achieving analogous results. Finally, Lemma 9 is alsoanalogous in spirit to similar lemmas in [3, 30] - again our proofs are di�erent since our criteria aredi�erent.5 The Permanent of Random MatricesIn this section we show that computing the permanent of a random matrix modulo a random primeis very hard. The distribution of matrices and primes we consider is the following:D is an ensemble of distributions fDsg where Ds consists of pairs (T; p) where T is an s� s matrixwhose entries are chosen uniformly and independently fromZ22s, and p is a prime chosen uniformlyfromZ2s.The distributional problem we consider is: Given a randomly chosen pair (T; p) from Ds, computethe permanent of T modulo p. We show that no polynomial time algorithm is likely to have inversepolynomial probability of solving this distributional problem.Lemma 12 ([2] following [22]; cf., [7]) Suppose there exists a probabilistic polynomial time al-gorithm A0 and a polynomial r : Z! Zsuch that on input M , an s � s matrix of 2s-bit integerelements, A0(M) outputs a list of r(s) integers such that the permanent of M is included in thislist (with probability at least, say, 12 over the internal coin tosses of A0). Then P#P = BPP.We complement this lemma with an algorithm that utilizes a subroutine for computing the perma-nent on random instances, and uses it to compute a list of values of the permanent on worst-caseinstances. 9



Lemma 13 Suppose there exists a polynomial time algorithm A and a function � :Z! [0; 1] suchthat for every positive integer s, Pr(T;p)2Ds [A(T; p) = [perm(T )]p] � �(s):Then there exists a randomized poly(s=�(s))-time algorithm A0 that on input an s � s matrix Mwith entries from Z22s, outputs a list of at most O(1=�(s)4) integers, which includes the permanentof M with high probability.Proof: Assume, w.l.o.g, that when given a pair (T; p), algorithm A �rst reduces each entry ofT modulo p. Our algorithm for reconstructing the permanent of any s-by-s matrix, M , is givenbelow:Algorithm Perm(M).{ Parameters n = poly(s=�(s)), n0 = O(s=�(s)2){ Uniformly select n random primes p1; : : : ; pn in the interval [2s=2; 2s].{ For i = 1 to n do /* try to obtain [perm(M)]pi */Subroutine Mod-Perm(M; pi).� Uniformly select an s� s random matrix R with entries fromZpi.� For j = 1 to n0 do /* try to obtain [perm(M + jR)]pi */Let vj = A(M + j �R; pi);� Reconstruct a list of all degree s univariate polynomials ff1; : : : ; f`0g that satisfyfh(j) = vj for at least an �(s)=16 fraction of the vj 's.� Uniformly select a random h 2 f1; : : : ; `0g and set ri = fh(0)./* with probability poly(�(s)) (taken over the choice of pi and the internal coinsof Mod-Perm), we will have ri = [perm(M)]pi */{ Reconstruct a list of all integers x � s!2s2 such that [x]pi = ri for at least t = O(�(s)4) �nof the i's, and output this list. Namely, apply List-Decode with parameters p1; : : : ; pn,k = 6s (as K = s!2s2 < 23s2 and 8i; pi � 2s=2), and r1; : : : ; rn.The polynomial reconstruction step may be performed using the algorithm of [30], which requiresn0 � 2s � (�(s)=16)�2. (To recover polynomials of degree s from a list of values at n0 places, thealgorithm requires the agreement t0 to satisfy t0 > p2sn0.) The reconstruction of integers satisfyingthe Chinese Remainder Property uses Theorem 11 and works when n = 
(s=�(s)8). (Here to recoverall sequences with agreement t out of n places, the algorithm requires t = 
(pkn) = 
(psn).)Let Ps denote the set of primes in the interval [2s=2; 2s]. Let D0s be the distribution over pairs(T 0; p0) where p0 is chosen uniformly in Ps (rather than among the primes in Z2s, as de�ned byDs), and then T 0 is chosen uniformly from the set of s � s matrices with entries from Zp0 (ratherthan by reducing modulo p0 a matrix with entries chosen independently and uniformly inZ22s). Wenotice that the statistical di�erence between the two distributions is at most O �2s=2=(s=2)2s=s �+s2 � 2s22s ,which is negligible (where the �rst term comes from the probability that in Ds a prime smaller10



than 2s=2 is selected, and the second from uneven wrap-around in the reduction module a prime).In particular this implies that Pr(T 0;p0)2D0s �A(T 0; p0) = [perm(T 0)]p0� � �(s)2 :Say that a prime p0 (from Ps) is good ifPrT 02Zs�sp0 �A(T 0; p0) = [perm(T 0)]p0 ]� � �(s)4 :A simple counting argument shows that at least �(s)=4 fraction of the primes in Ps are good.For any �xed good prime p0, and for any j 2 f1; : : : ; n0g, we thus have thatPrR2Zs�sp0 �A(M + jR; p0) = [perm(M + jR)]p0� � �(s)4 :Say that a matrix R is compatible with p0 ifPr � �� �j : A(M + jR; p0) = [perm(M + jR)]p0	 �� > �(s)16 n0� > �(s)16 ;(where the probability here is taken only over the coin 
ips of A). It is not hard to verify thatthe probability that a random R is compatible with p0 is at least �(s)=8. It follows that for anygood p0, the probability that Mod-Perm(M;p0) returns the correct value of [perm(M)]p0 is at least�(s)8 � �(s)16 � 1̀0 { the �rst term is of the probability that R is compatible with p0; the second is theprobability that A returns the correct output for at least �(s)=16 fraction of the j's (so that thepolynomial reconstruction can work), conditioned on R being compatible; and the third terms is theprobability of selecting the correct index h. As `0 � 2 � (�(s)=16)�1 (cf., [30]), the above probabilityis 
(�(s)3).Recall that the probability that each pi (uniformly selected in Ps) is good is at least �(s)=4. Hence,the probability, taken over the choice of pi and the random coin 
ips of Mod-Perm that Mod-Perm(M; pi) = [perm(M)]pi, is 
(�(s)4). Finally, since the success events of the various i's areindependent, by applying a Cherno� bound, we get that with high probability, the number ofpi's for which ri = [perm(M)]pi is at least 
(�(s)4) � n. In this case List-Decode will succeed inreconstructing a list that includes perm(M).By combining Lemma 12 and Lemma 13 we getTheorem 14 Suppose there exists a polynomial time algorithm A and a positive polynomial func-tion q :Z!Zsuch that for every positive s,Pr(T;p)2Ds [A(T; p) = [perm(T )]p] � 1q(s)Then P#P = BPP. 11
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AppendixProof of Theorem 11: Suppose we want to �nd all codewords which agree with hr1; : : : ; rni ont coordinates. Setting f1def=(` + 2)3=2 and f2def=2(`+2)=2, and applying Proposition 10, it su�ces toshow that tYi=1 pi � f1 � f2 �  nYi=1 pi!1=(`+1) � kYi=1 pi!(`+1)=2Setting t = t1 + t2 + t3, we will �nd t1; t2; t3 s.t.pt11 � f1 (3)pt21 � f2 (4)and t3Yi=1 pi �  nYi=1 pi!1=(`+1) �  kYi=1 pi!(`+1)=2 (5)We start with an analysis of the last inequality. For this we need t3Yi=1 pi!1� 1`+1 � 0@ nYi=t3+1 pi1A1=(`+1) �  kYi=1 pi!(`+1)=2Let q = (Qki=1 pi)1=k. Then q � p1 and (Qt3i=1 pi) � qt3 , provided t3 � k. Thus it su�ces to showqt3`=(`+1) � p(n�t3)=(`+1)n � qk�(`+1)=2 (6)Fact: Eq. (6) holds if t3 � k(`+1)2 + n logpn(`+1) logp1 and ` � 1.Proof: By the hypothesis, t3 � k and so�t3 � k(`+ 1)2 � log p1 � n`+ 1 log pn) � ``+ 1 t3 � k(`+ 1)2 � log q � n � t3`+ 1 log pn) `t3`+ 1 log q � n� t3`+ 1 log pn + k(`+ 1)2 log qand Eq. (6) follows. 2Setting ` + 1 = lq2n log pnk log p1 m, shows that t3 = q2kn log pnlog p1 + k2 su�ces to achieve Eq. (5). Thissetting of ` also implies that to satisfy Eq. (4), which is equivalent to t2 � `+22 logp1 , it su�ces to sett2 = q2n log pnk log p1 + 32 . Finally, to satisfy Eq. (3), which is equivalent to t1 � 3 log(`+2)2 log p1 , it su�ces toset t1 = log(2n logpn=k log p1)log p1 , which is smaller than 2 log t2= log p1 � t2.Thus we �nd that it su�ces to havet = 2s2n log pnk log p1 + 3 +s2kn log pnlog p1 + k2= �1 + 2k� �s2kn log pnlog p1 + k + 6214



< r1 + 3 � 2k �s2kn log pnlog p1 + k + 62= s2(k+ 3)n log pnlog p1 + k + 62Setting e < n � t yields the theorem.
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