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1 IntroductionTwo basic computational problems regarding integer lattices are the Shortest Vector Problem(SVP), and the Closest Vector Problem (CVP). Loosely speaking, the input to SVP is a lattice, andone is required to �nd the shortest (non-zero) vector in the lattice. In CVP the input is a latticetogether with a target vector, and one is required to �nd the lattice vector closest to the target.Lengths and distances may be measured in a variety of norms, but the case of the Euclidean (L2)Norm is considered the most interesting one.It is widely believed that SVP is not harder than CVP, and many even believe that SVP isstrictly easier. Empirical evidence to these beliefs is provided by the gap between known hardnessresults for both problems. Whereas it is easy to establish the NP-Hardness of CVP (cf., [vEB]),the question of whether SVP is NP-Hard was open for almost two decades (until being recentlyresolved in the a�rmative, for randomized reductions, by Ajtai [A]). Furthermore, approximatingCVP in n-dimensional lattices to within a 2log0:999 n factor is NP-Hard (cf., [ABSS, DKS]), whereasSVP is only known to be NP-Hard to approximate to within constant factors smaller than p2(cf., [M]).Note that for all Euclidean norms (Lp; p � 1), SVP can be easily reduced to CVP using the NP-hardness of the latter. However, this general NP-completeness argument produces CVP instancesof dimension much bigger than the original SVP problem. An interesting question is whethera direct reduction is possible that preserves the dimension. More importantly, the NP-hardnessresults do not elucidate on the relation between approximate SVP and approximate CVP when theapproximation factor is polynomial (or super-polynomial) in the dimension, or the norm is di�erentfrom the Euclidean ones. We recall that the only when the approximation factor is exponential thetwo problems are known to be solvable in polynomial time (cf. [LLL, B]).The �rst non-empirical evidence that SVP is not harder than CVP (in the same dimension) wasrecently given by Henk [H], who showed that solving SVP (in the exact sense) is reducible to solvingCVP (also in the exact sense). Moreover, the result in [H] holds for a wide variety of norms (notonly Euclidean ones). Here we provide an analogous (and thus stronger) result for approximation,and unlike Henk's proof we do not employ any non-elementary result about lattices.We show how to reduce the task of �nding an f -approximation for SVP to the task of �nding anf -approximation for CVP (in the same dimension and with the same approximation factor). Thisresolves a decade old question of L�aszl�o Babai [B], who actually suggested as a challenge to reducethe task of approximating SVP to within any sub-exponential factor to the task of approximatingCVP (in the same dimension) quite well (e.g., upto a constant factor c > 1). Our result holds forany function f (and thus, in particular, for f � 1), for any norm, and for both the decision andthe search versions.In section 2 we introduce some notation and formally de�ne the problems. In sections 3 and 4we establish the above claims. Section 5 adapts the proof techniques to establish an analogousresult for linear codes. Section 6 concludes with some remarks and open problems.2 PreliminariesIn the following, we use lowercase letters for scalars, boldface lowercase letters for vectors, andcapital letters for sets, matrices, and sequences of vectors. The sets of reals, integers and naturalnumbers are denoted by R, Z, and N, respectively.Rm is the m-dimensional Euclidean real vector space, and k � k is an arbitrary norm Rm 7! R.A lattice L is a discrete additive subgroup of Rm . Its rank, denoted by rank(L), is the dimension2



of the R-subspace, denoted span(L), that it spans. Each lattice L of rank n has a basis, i.e., asequence [b1; : : : ;bn] of n elements of L that generate L as an Abelian group. Thus, the latticeis obtained by all integer linear combinations of the basis vectors, whereas the span of the latticecorresponds to all real linear combinations of the basis vectors.In the following de�nitions we state two fundamental computational problems regarding lattices.Both problem are stated with respect to the same (arbitrary) norm k � k. We always assume thata lattice L is given by a basis [b1; : : : ;bn] generating L. The approximation factor is measured interms of n (the rank of the lattice).De�nition 1 (Shortest Vector Problem): In the f -Shortest Vector Problem, denoted SVPf , one isgiven a lattice L and the task is to �nd a non-zero vector v 2 L so thatkvk � f(n) � kukfor any other non-zero vector u 2 L. In the decision version, denoted GapSVPf , one should distin-guish pairs (L; d) for which the shortest (non-zero) lattice vector has length at most d from pairsfor which the shortest (non-zero) lattice vector has length greater than f(n) � d.De�nition 2 (Closest Vector Problem): In the f -Closest Vector Problem, denoted CVPf , one isgiven a lattice L and a vector w 2 span(L) and the task is to �nd a vector v 2 L so thatkv �wk � f(n) � ku�wkfor any other vector u 2 L. In the decision version, denoted GapSVPf , one should distinguishbetween triples (L;w; d) for which there exists a lattice vector within distance d from w and triplesfor which there exists no lattice vector within distance f(n) � d from w.3 Reducing approximate SVP to approximate CVPThere are two di�erences between the Shortest Vector Problem (SVP) and the Closest VectorProblem (CVP). On one hand, SVP asks for a lattice point close to the all-zero vector, whileCVP asks for a lattice point close to an arbitrary target vector; on the other hand, SVP disallowsthe all-zero solution whereas CVP accepts the target vector as an admissible solution (provided itbelongs to the lattice). Thus, the two problems are not trivially related. In particular, the trivialreduction from SVP to CVP (i.e., L 7! (L; 0m)) may not work since the CVP oracle may returnthe all-zero vector. Our aim is to prevent this possibility. The intuitive idea is the following (seeFigure 1). First of all, instead of looking for a lattice point close to the all-zero vector, we look fora lattice point close to some other lattice vector w 2 L. Moreover, to avoid w being returned asa solution, we run the CVP oracle on a sub-lattice L0 � L not containing w. The problem is nowhow to select a sub-lattice L0 � L without removing the L-vectors closest to w. We start with thefollowing observation.Proposition 3.1 Let v =Pni=1 cibi be a shortest non-zero vector in L. Then, there exists an i sothat ci is odd.Proof: Otherwise, all ci's are even, and 12 � v =Pni=1 ci2 bi is a shorter vector in L.We now show how to reduce the shortest vector problem to the solution of n instances of theclosest vector problem. 3



b1 = w 2b1min. dist.b2 wb2closest vect.
Figure 1: Reducing SVP to CVPinput: A pair (B; d), where B = [b1; :::;bn] and d 2 R.For j = 1 to n, invoke the oracle on input (B(j);bj ; d), where B(j) is as in Eq. (1).output: the or of all oracle replies.Figure 2: The reduction { decision versionThe reduction: Given a basis B = [b1; :::;bn] to the lattice L(B) = fPni=1 cibi : c1; :::; cn 2 Zg,we construct n instances of CVP. The jth instance consists of the basisB(j) def= [b1; :::;bj�1; 2bj ;bj+1; :::;bn] (1)and the target vector bj. In the search version we uses these n instances of CVP in n correspondingqueries to the CVPf oracle, and output the shortest di�erence returned in all these calls (i.e., if vjis the vector returned by the jth call on input (B(j);bj), we return the shortest of the vectorsv1 � b1; : : : ;vn � bn). In the decision version, we augment these queries by the same parameter dgiven in the GapSVP instance, and return yes if and only if one of the oracle calls was answered byyes. The reduction for the decision version is depicted in Fig. 2.The validity of the reduction follows from the correspondence between solutions to the inputSVP instance and solutions to the CVP instances used in the queries. Speci�cally:Proposition 3.2 Let v = Pni=1 cibi be a lattice vector in L(B) so that cj is odd. Then u =cj+12 (2bj) +Pi 6=j cibi is a lattice vector in L(B(j)) and the distance of u from the target bj equalsthe length of v. 4



Proof: Firstly, note that u 2 L(B(j)) since cj+12 is an integer (as cj is odd). Secondly, observethat u� bj = cj + 12 2bj +Xi 6=j cibi � bj= cjbj +Xi 6=j cibi = vand the proposition follows.Proposition 3.3 Let u = c0j(2bj) +Pi 6=j cibi be a lattice vector in L(B(j)). Then v = (2c0j �1)bj +Pi 6=j cibi is a non-zero lattice vector in L(B) and the length of v equals the distance of ufrom the target bj.Proof: Firstly, note that v is non-zero since 2c0j � 1 is an odd integer. Secondly, observe thatv = (2c0j � 1)bj +Xi 6=j cibi= c0j(2bj) +Xi 6=j cibi � bj = u� bjand the proposition follows.Combining Propositions 3.1 and 3.2, we conclude that one of the CVP-instances has an optimumwhich is at most the optimum of the given SVP-instance. On the other hand, by Proposition 3.3, theoptimum of each of the CVP-instances is lower bounded by the optimum of the given SVP-instance.Details follow.Theorem 3 For every function f : N 7! fr 2 R : r � 1g, SVPf (resp., GapSVPf ) is Cook-reducibleto CVPf (resp., GapCVPf ). Furthermore, the reduction is non-adaptive, and all queries maintain therank of the input instance.Proof: We prove the theorem for the decisional version. The search version is analogous. Let(B; d) be a GapSVPf instance, and de�ne GapCVPf instances (B(j);bj ; d) for j = 1; : : : ; n, whereB(j) is as in Eq. (1). We want to prove that if (B; d) is a yes instance, then (B(j);bj ; d) is a yesinstance for some j = 1; : : : ; n, and if (B; d) is a no instance, then (B(j);bj ; d) is a no instance forall j = 1; : : : ; n.First assume (B; d) is a yes instance and let v = Pni=1 cibi be the shortest non-zero latticevector in L(B). We know kvk � d, and (by Proposition 3.1) cj is odd for some j. The vector uas de�ned in Proposition 3.2 belongs to L(B(j)) and satis�es ku � bjk = kvk � d, proving that(B(j);bj ; d) is a yes instance.Now assume (B(j);bj ; d) is not a no instance for some j. There exists a vector u in L(B(j))such that ku� bjk � f(n) � d. The vector v de�ned in Proposition 3.3 is a non-zero lattice vectorin L(B) and satis�es kvk = ku� bjk � f(n) � d, proving that (B; d) is not a no instance.4 A Randomized ReductionIn the previous section we showed that solving an instance of SVPf can be deterministically reducedto solving n instances of CVPf , where n is the rank of the lattices. A natural question if whether it5



is possible to reduce an SVP problem to a single instance of CVP. The proof of Theorem 3 suggeststhat this is possible for randomized reductions. Namely, on input (B; d), choose j 2 f1; : : : ; ng atrandom and output (B(j);bj ; d). We notice that yes instances are mapped to yes instances withprobability at least 1=n, and no instances are always mapped to no instances. We now show thatwe can actually do better than that. We give a probabilistic reduction from SVPf to CVPf thatsucceeds with probability at least 1=2.Theorem 4 For every function f : N 7! fr 2 R : r � 1g, there is a probabilistic many-onereduction from SVPf (resp., GapSVPf ) to CVPf (resp., GapCVPf ) that has one-sided error probabilitybounded above by 1=2. Furthermore, the CVP instance produced has the same rank as the originalSVP problem.Proof: Again, we prove the theorem for the decisional version, and the search version is analogous.Let (B; d) be an SVP instance, where B = [b1; : : : ;bn]. Output CVP instance (B0;b1; d) whereB0 = [b01; : : : ;b0n] is de�ned as follows. Let c1 = 1 and choose ci 2 f0; 1g (i = 2; : : : ; n) uniformlyand independently at random. For all i, let b0i = bi + cib1. We want to prove that if (B; d) is ayes instance then (B0;b1; d) is a yes instance with probability at least 1=2, while if (B; d) is a noinstance then (B0;b1; d) is always a no instance. Notice that L(B0) is a sub-lattice of L(B) andthat b1 is not in L(B0).Let's start with the no case �rst. Assume (B0;b1; d) is not a no instance. By de�nition, thereexists a vector u in L(B0) such that ku� b1k � f(n) � d. Since L(B0) is a sub-lattice of L(B) andb1 is not in L(B0), v = u�b1 is a non-zero vector in L(B) of length at most f(n) � d, proving that(B; d) is not a no instance.Now assume (B; d) is a yes instance and let v = Pni=1 xibi be the shortest vector in L(B).From Proposition 3.2, xj is odd for some j. Let � = x1 + 1 �Pi>1 cixi. Notice that if xi is evenfor all i > 1, then x1 must be odd and � is even. On the other hand, if xi is odd for some i > 1then � is even with probability 1=2. In both cases, with probability at least 1=2, � is even andu = �2b01 +Pi>1 xib0i is a lattice vector in L(B0). Finally notice thatu� b1 =  �b1 +Xi>1 xi(bi + cib1)! � b1=  x1 �Xi>1 cixi!b1 +Xi>1 xibi +Xi>1 xicib1 = vand therefore ku� b1k � d, proving that (B0;b1; d) is a yes instance.5 Adaptation to Linear CodesTwo well-known problems in coding theory, analogous to SVP and CVP for lattices, are the Mini-mum Distance Problem (MDP) and the Nearest Codeword Problem (NCP), for linear codes. In theMinimum Distance Problem, the input is a linear code over a �nite �eld F (the alphabet) and onemust �nd a non-zero codeword of minimum Hamming weight. In the Nearest Codeword Problem,the input is a linear code and a target string (over the same alphabet), and one must �nd thecodeword closest (in the Hamming metric) to this string.A linear code of length n over a �nite �eld F is a linear subspace C of Fn . The rate of a code C isits dimension as a vector space over F. Codes can be represented by a generator matrix, analogous6



to the basis representation of lattices. The most interesting case is when the alphabet F = Z=2Zis the binary �eld. In this case, a code is given by a full rank m-by-n Boolean matrix C and thecodewords are all linear combinations of the columns of C (where the sum is taken modulo 2). TheHamming weight of a word w 2 Fn , denoted wt(w) is the number of non-zero elements in w. Thedistance between words is usually measured by the Hamming metric d(v;w) = wt(v �w).The Minimum Distance Problem and the Nearest Codeword Problem are obviously related tothe problems of �nding good error correcting codes and decoding them respectively. Although,historically, the prevailing approach in coding theory has been to study the complexity of codeconstruction, while completely ignoring the complexity of decoding the resulting code (cf. [FFMMV,V]), the relation between the two problems is clear: we would like to �nd good linear codes that canalso be e�ciently decoded. As in the lattice case, empirical evidence shows that MDP is not harderthan NCP: whereas it is easy to establish the NP-hardness of NCP (cf. [BMT]), the question forMDP was open until recently being resolved in the a�rmative by Vardy (cf. [V]). Furthermore, theNP-hardness of approximating NCP to within any constant factor was proved in [ABSS], whereasMDP was proved NP-hard to approximate within any constant only recently (cf. [DMS]).However, to the best of out knowledge, the exact relationship between the complexity of thesetwo fundamental coding problems, has never been investigated. We prove a result for codingproblems analogous to the result on lattices: approximating the Minimum Distance of a code is notharder than approximating the Nearest Codeword to a target string. In light of the result (cf. [TV],p. 77) that almost all linear codes are good (in the sense that they attain the Gilbert-VarshamovboundR = 1�H(d), where R is the rate, d the relative distance andH the binary entropy function),we have the following interesting implication: if an e�cient algorithm to (approximately) solve thedecoding problem (for linear codes) exists, then we can also e�ciently �nd good codes. Interestingly,algebraic geometry codes performing better than the Gilbert-Varshamov bound have been used toprove the NP-hardness of approximating the Minimum Distance Problem (cf. [DMS]).The reduction from MDP to NCP is basically the same as the lattice one. Actually, it iseven easier to establish for binary codes, as the analogue of Proposition 3.1 is trivial (and in factholds for any non-zero codeword). Eq. (1) simpli�es too, since here multiplying a column by 2results in the all-zero column (which may in fact be omitted altogether). Finally, the analogues ofPropositions 3.2 and 3.3 follow easily as above (actually, even more easily). We conclude thatTheorem 5 For every function f : N 7! fr 2 R : r � 1g, the problem of approximating the distanceof a given Boolean linear code upto factor f is Cook-reducible to the problem of approximating thedistance of a given string from a given Boolean linear code upto factor f .The above theorem actually holds for linear codes over an arbitrary �nite �eld F = GF (q).Theorem 6 For every function f : N 7! fr 2 R : r � 1g and any �eld F = GF (q), the problem ofapproximating the minimum distance of a given linear code over F upto factor f is Cook-reducibleto the problem of approximating the distance of a given string from a linear code over F within thesame approximation factor. Moreover, the reduction preserves the length and decreases the rate ofthe code.Proof: Let C = [c1; : : : ; cn] be a linear code over GF (q). For all i = 1; : : : ; n, de�ne the sub-codeC(i) = [c1; : : : ; ci�1; ci+1; : : : ; cn] and look for the codeword in C(i) (approximately) closest to ci.Let di be this codewords. Return the C-codeword di � ci of minimum weight.Since ci does not belong to the code C(i), the result is always a non-zero C-codeword. We nowprove that for any codeword u = Pni=1 xici in C, there exists an i 2 f1; : : : ; ng such that ci is at7



distance at most kuk from C(i). Since u is non-zero, it must be xi 6= 0 for some i. Let y be themultiplicative inverse of �xi in F (i.e., yxi = �1), and de�ne the codeword v =Pj 6=i(yxj)cj 2 C(i).Then, v � ci = yx1ci +Xj 6=i(yxj)cj= y nXj=1 xjcj = yuThus, we have wt(v � ci) = wt(yu) = wt(u) (since multiplication by a non-zero scalar does notchange the Hamming weight of a vector).As in the previous section, we can use randomness to reduce the shortest codeword problemto a single instance of the nearest codeword problem. This time the success probability (on yesinstances) can be made as high as 1� 1=q (while the zero-error on no instances is preserved).Theorem 7 For every function f : N 7! fr 2 R : r � 1g and any �nite �eld F = GF (q),there exists a probabilistic polynomial time algorithm that reduces the problem of approximating theminimum distance of a given linear code over GF (q) upto factor f to solving a single instanceof approximating the distance of a given string from a given linear code over F within the sameapproximation factor. Yes instances are mapped to yes instances with probability 1� 1q , while noinstances are always mapped to no instances. Moreover, the reduction preserves the length anddecreases the rate of the code.Proof: We only describe the reduction. The rest of the proof is analogous to that of Theorem 4.Let C = [c1; : : : ; cn] be the input code. Output target string c1 and code C 0 = [c02; : : : ; c0n] de�nedas follows. Choose �i 2 GF (q) (i = 2; : : : ; n) uniformly and independently at random and letc0i = ci + �ic1.6 DiscussionWe proved that approximating the Shortest Vector Problem can be reduced in polynomial timeto approximating the Closest Vector Problem. Our reduction preserves the approximation factorand the rank of the lattice, and can be adapted to other problems with similar structure, like theMinimum Distance Problem and the Nearest Codeword Problem for linear codes. In both cases,we reduced a homogeneous problem to the corresponding inhomogeneous one.The results in [M] and [DMS] are in a certain sense a converse to our result. In [M] and[DMS] the Shortest Vector Problem and the Minimum Distance Problem are proved NP-hard toapproximate by reduction from the Closest Vector Problem and the Nearest Codeword Problemrespectively. Therefore the inhomogeneous problem is reduced to the corresponding homogeneousone. However, these reductions do not preserve the approximation factor, and produce instancesmuch bigger than the original problems. It is an interesting open problem whether an approximationand size preserving reduction is possible from the Closest Vector Problem to the Shortest VectorProblem.Another open problem is whethere there exists a Karp-reduction (deterministic many-to-onepolynomial-time reduction) of the approximate SVP problem to the approximate CVP problem.8
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