Honest Verifier vs Dishonest Verifier
in Public Coin Zero-Knowledge Proofs

Ivan Damgard®* Oded Goldreicht ~ Tatsuaki Okamoto?
Avi Wigderson®

September 12, 1995

Abstract

This paper presents two transformations of public-coin/Arthur-Merlin proof sys-
temswhich arezero-knowledge withrespect to the honest verifier into (public-coin/Arthur-
Merlin) proof systems which are zero-knowledge with respect to any verifier.

Thefirst transformation applies only to constant-round proof systems. It builds on
Damgard's transformation (see Crypto93), using ordinary hashing functions instead
of the interactive hashing protocol (of Naor, Ostrovsky, Venkatesan and Yung — see
Crypto92) which was used by Damgard. Consequently, the protocol sresulting from our
transformation have much lower round-complexity than those derived by Damgard's
transformation. As in Damgard's transformation, our transformation preserves sta-
tistical/perfect zero-knowledge and does not rely on any computational assumptions.
However, unlike Damgard’s transformation, the new transformation is not applicable
to argument systems or to proofs of knowledge.

The second transformation can be applied to proof systems of arbitrary number of
rounds, but it only preserves statistical zero-knowledge. It assumes the existence of
secure commitment schemes and transforms any public-coin proof which is statistical
zero-knowledge with respect to the honest into one which is statistical zero-knowledge
(in general). It follows, by a result of Ostrovsky and Wigderson (1993), that any
language which is “hard on the average” and has a public-coin proof system whichis
statistical zero-knowledge with respect to the honest verifier, has a proof system which
is statistical zero-knowledge (with respect to any verifier).

*Dept. of Computer Science, Aarhus Univesity, Denmark and BRICS, Basic Research In Computer Science,
center of the Danish National Research Foundation.

tDept. of Computer Science and Applied Math., Weizmann Ingtitute of Science, Rehovot, Isragl. Work done
while visiting BRICS, Basic Research In Computer Science, center of the Danish National Research Foundation.
Supported in part by grant No. 92-00226 from the United States — | srael Binational Reseach Foundation (BSF),
Jerusdlem, lsradl.

INTT Laboratories, Yokosuka-shi, 238-03 Japan. Work done whilevisiting AT& T Bell Laboratories, Murray
Hill, NJ, USA

8| ntitutefor Computer Science, Hebrew University, Jerusalem, Isragl. Work donewhilevisiting BRICS, Basic
Research In Computer Science, center of the Danish National Research Foundation. Thisresearch was partially
supported by a grant from the Wolfson Research Awards, administered by the Israeli Academy of Sciences and
Humanities.

Part |
Hashing Functions can Simplify
Z ero-K nowledge Protocol Design (too) !

1 IntroductiontoPart |

Zero-knowledge proof systems, introduced by Goldwasser, Micali and Rackoff [16], are akey tool in
thedesign of cryptographic protocols. Theresultsof Goldreich, Micali and Wigderson [14] guarantee
that such proof systems can be constructed for any NP-statement, provided that one-way functions
exist. However, the general construction presented in [14] and subsequent works may yield quite
inefficient proof systems for particular applications of interest. Thus, developing methodoligies for
the design of zero-knowledge proofsis still of interest.

Designing proof systemswhicharemerely zero-knowledge with respect to the honest verifier (i.e.,
the verifier specified for the system) is much easier than constructing proof systemswhich are zero-
knowledge in general (i.e., with respect to any efficient strategy of trying to extract knowledge from
the specified prover). For example, the simple 1-round interactive proof for Graph Non-1somorphism
2 is zero-knowledge with respect to the honest verifier. Yet, cheating verifiers may extract knowledge
from this system and a non-trivial modification, which utilizes proofs of knowledge and increases
the number of rounds, is required to make it zero-knowledge in general. Likewise, assuming the
existence of one-way function, there exist constant-round interactive proofs for any NP-language
which are zero-knowledge with respect to the honest verifier. Yet, constant-round interactive proofs
for NP which are zero-knowledge in general are known only under seemingly stronger assumptions
and are aso more complex (cf., [11]).

In view of the relative simplicity of designing protocols which are zero-knowledge with respect
to the honest verifier, atransformation of such protocols into protocolswhich are zero-knowledge in
general (i.e., w.r.t. any verifier) may be very valuable. Assuming various intractability assumptions,
such transformations have been presented by Bellare et. a. [2], and Ostrovsky et. a. [23]. A
transformation which does not rely on any intractability assumptions has been presented by Damgard
in Crypto93. His transformation (of honest-verifier zero-knowledge into genera zero-knowledge)
hastwo shortcomings. Firstly, it can be applied only to constant-round protocols of the Arthur-Merlin
type (i.e., in which the verifier's messages are uniformly distributed in the set of strings of specified
length). Secondly, the transformation produces protocols of very high round complexity; specificaly,
the round complexity of the resulting protocol is linear in the randomness complexity of the original
one.

In this part of paper, we improve the round complexity of Damgard’s transformation, while
preserving the class of interactive proofs to which it can be applied. Our transformation only
increases the number of rounds by afactor of two. However, it also increases the error probability of
the proof system by a non-negligible amount which can be made arbitrarily small. Thisincreaseis
inevitiblein view of aresult of Goldreich and Krawcyzk [12], see discussion in subsection 3.4. Thus,
to get proof systems with negligible error probability, one may repeat the protocols resulting from
our transformation a non-constant number of times. Still, the resulting proof systemswill have much
lower round complexity than those resulting from Damgard’s transformation.

We preserve someof the positive properties of Damgéard’ stransformation. |n particular, our trans-
formation does not rely on any computational assumptions and preserves perfect and amost-perfect
(statistical) zero-knowledge. However, unlike Damgérd’s transformation, the new transformation is
not applicable to argument systems (i.e., the BCC model [4]) or to proofs of knowledge.

Our transformation builds on Damgéard's work [6]. In his transformation, the random messages

by Ivan Damgérd, Oded Goldreich and Avi Wigderson.

2To be convinced that G and G are not isomorphic, the verifier randomly selects » random isomorphic
copies of each graph, randomly shuffles all these copies together, and asks the prover to specify the origin of each
copy.

sent by the verifier (in each round) are replaced by a multi-round interactive hashing protocol, which
inturn originatesin thework of Ostrovsky, Venkatesan and Yung [22]. Instead, in our transformation,
therandom messages sent by theverifier arereplaced by a %-round protocol, called Random Selection.
The Random Selection protocol uses a family of ordinary hashing functions; specifically, we use a
family of ¢-wiseindepedent functions, for some parameter ¢ (whichis polynomial intheinput length).

We believe that the Random Selection protocol may be of independent interest. Thus, a few
wordsarein place. The goal of this protocol isto alow two partiesto select a“random” rn-bit string.
There isa parameter £ which governs the quality of this selection and the requirement is asymmetric
with respect to the two parties. Firstly, it isrequired that if the first party follows the protocol then,
no matter how the second player plays, the output of the protocol will be at most e away (in norm-1)
from uniform. Secondly, it is required that if the second party follows the protocol then, no matter
how thefirst player plays, no string will appear as output of the protocol with probability greater than
poly(n/e) - 27™. Our Random Selection protocol has the additional property of being simulatable
in the sense that, given a possible outcome, it is easy to generate a (random) transcript of the protocol
which ends with this outcome.

Other Related Work

The idea of transforming honest verifier zero-knowledge into zero-knowledge in general was first
studied by Bellare, Micali and Ostrovsky [2]. Their transformation needed a computational assump-
tion of a specific algebraic type. Since then several constructions have reduced the computational
assumptions needed. Thelatest in thisline of work is by Ostrovsky, Venkatesan and Yung [23], who
give atransformation which isbased on interactive hashing and preserved statistical zero-knowledge.
Their transformation relies on existence of aone-way permutation. The transformation worksfor any
protocol, provided that the verifier is probabilistic polynomial-time.

In the other part of this paper, a secure commitment scheme® is used to transform honest-
verifier zero-knowledge Arthur-Merlin proofs (with unbounded number of rounds) into (general)
zero-knowledge Arthur-Merlin proofs. This transformation increases the round-complexity of the
proof system by an additive term which is linear in the number of coin tosses used in the original
proof system.

An indirect way of converting protocols which are zero-knowl edge with respect to the honest
verifier into ones which are zero-knowledge in general, is available through a recent result of Os-
trovsky and Wigderson [24]. They have proved that the existence of honest verifier zero-knowledge
proof system for alanguage which is “hard on the average” implies the existence of one-way func-
tions. Combined with the results of [14] and [19, 3], this yields a (computational and general)
zero-knowledge proof for the same language. Thus, computational honest-verifier zero-knowledge
interactive proofs, for “hard on the average” languages, get transformed into computational zero-
knowledge interactive proofs for these languages. However, perfect honest-verifier zero-knowledge
proofs (for such languages) do not get transformed into perfect zero-knowledge proofs.

A two-party protocol for random selection, with unrelated properties, has been presented in [10].
This protocol guarantees that, as long as one party plays honestly, the outcome of the protocol hits

any set S C {0,1}™ with probability at most O(+/[S[/2"), where O(e) ' e - polylog(1/e).
Another two-party protocol for random selection, with other unrelated properties, has been

presentedin[13]. Loosely speaking, thisprotocol allowsacomputationally restricted party, interacting

with a powerful and yet untrustful party, to uniformly select an element in an easily recognizable set

S c{o,1}".

Remarks Concerning this Part of the Paper

We use the standard definitions of interactive proofs and zero-knowledge, except for the following
minor modification. We require the simulator (in the definition of zero-knowledge) to to run in

3 Secure commitment schemes exist provided that one-way functions exist [18, 20] and the latter exist if some
languages which is hard on the average have proof systems which are zero-knowledge with respect to the honest
verifier [24].

strictly polynomial-time (rather than in expected polynomial-time), but we allow it to produce output
only with some non-negligible probability (rather than always). Clearly, this definition implies the
standard one, but the converse is not known to hold — see [9]. This definition is more convenient for
establishing zero-knowledge claims and in particular for our purposes, but our results do not depend
on it (and can be derived under the standard definitions).

Due to space limitations the proofs of al propositions have been omitted. The complete proofs

appear in our technical report [7].

2 Random Sdlection

We consider arandomized two-party protocol for selecting strings. Thetwo partiesto the protocol are
called the challenger and the responder. These names are supposed to reflect the asymmetric require-
ments (presented below) as well as the usage of the protocol in our zero-knowledge transformation.
Loosely speaking, we require that

o if the challenger follows the protocol then, no matter which strategy is used by the responder,
the output of the protocol is amost uniformly distributed;

o if theresponder follows the protocol then, no string may appear with probability much greater
than its probability under the uniform distribution. Furthermore, for any string which may
appear as output, when an arbitrary challenger strategy is used, one can efficiently generate a
random transcript of that protocol ending with this output.

We postpone the formal specification of these properties to the analysis of the protocol presented
below. Actually, we present two version of the protocol.

Construction 1 (Random Selection Protocol — two versions): Let n and m < n beintegers®, and

H,,,m beafamily of functions, each mapping the set of n-bit long strings onto® the set of m-bit long

strings.

C1: thechallenger uniformly selectsh € H, ., and sendsit to the responder;

R1: o (version 1): theresponder uniformly selectsz € {0,1}", computeso = k() and sends
« to the challenger;

o (version?2): theresponder uniformly selectsa € {0, 1}™ and sendsit to the challenger;
C2: thechallenger uniformly selectsa preimage of « under k and outputsit.

Weremark that if version 1isused and both partiesfollow the protocol then the output isuniformly
distributed in {0,1}™. However, the interesting case is when one of the parties deviates from the
protocol. In this case, the protocol can be guaranteed to produce “good” output, provided that “good”
families of hash functions are being used as H, ,». These functions must have relatively succient
representation aswell as strong random properties. Furthermore, given afunction £, it should be easy
to evaluate k on a given image and to generate a random preimage (of a given range element) under
h. Using the algorithmic properties of H, ,, it follows that the instructions specified in the above
protocol can be implemented in probabilistic poly (n/<)-time, which for ¢ = 1/poly(n) means
poly (n)-time.

Construction 2 (Preferred family H) ,.): Let n, m < n and ¢ = poly(r) be integers. We
associate {0, 1}™ with the finite field G F'(2™) and consider the set of (¢ — 1)-degree polynomials
over thisfield. For each such polynomial f, we consider thefunction & sothat, for everyz € {0,1}7,
h(z) isthe m most significant bits of £(=). The family H, ,,, consists of all such functions 4. The
canonical description of afunctionz € Hy, ,,, is merely the sequence of ¢ smallest coefficients of the
corresponding polynomial. Finaly, we modify the functionsin H,ﬁym sothat for each b € H,ﬁym and

every s’ € {0, 1} itholds h(z'0"~™) ' ¢,

*1n particular, we will use m R log,(n/<), where e isan error-bound parameter.
5We siress that each function in Hy, 1, rages over al {0,1}™. Thus, the challenger may always respond in
step C2 even if the responder deviates from the protocol or version 2 is used.

In the sequel, we will use the family Hy, o Hy .. Wenow list the following, easy to verify,

properties of the above family.

P1 Thereisapoly (n)-timealgorithmthat, oninput afunction k € H; ,, andastringz € {0,1}",
outputs A (x).

P2 The number of preimages of an image y under h € HY, .. is bounded above by 2™~™ . t;

”,1m

furthermore, there exists a poly (2"~ ¢)-time algorithm that, on input y and &, outputs the

seth™(y) e {z:h(z)=y}. (Theagorithmworksby trying all possible extensions of y to
an element of G F'(2"); for each such extension it remains to find the roots of adegree t — 1
polynomial over the field.)

P3 H}, ., isafamily of almost t-wise independent hashing functionsin thefollowing sense: for every ¢
distinctimages, z1, ..., z+ € ({0,1}" —{0,1}"0™~™), for auniformly chosen k € H}, ..,
therandomvariables i (1), ..., h(z¢) areindepedently and uniformly distributed in {0, 1}™.

2.1 Theoutput distribution for honest challeger

We now turn to analyze the output distribution of the above protocol, assuming that the challenger
plays according to the protocol. In the analysis we allow the responder to deviate arbitrarily from
the protocol and thus as far as this analysis goes the two versions in Construction 1 are equivalent.
The analysis is done using the “random” properties of the family H. fhm. Recall that the statistical
difference between two random varisble X and Y is

1
3 Z |Prob(X =a) — Prob(Y =a)|

We say that X ise-away from Y if the statistical difference between themise.

Proposition 1 Let » be an integer, e € [0,1] and m Ern - 4log,(n/c). Supposethat Hy . is

a family of almost »-wise independent hashing functions. Then, no matter which strategy is used by
the responder, provided that the challenger follows the protocol, the output of the protocol is at most
(2e + 27™)-away from uniform distribution.

2.2 Theoutput distribution for honest responder

We now show that no matter what strategy is used by the challenger, if the responder follows the
protocol then the set of possible outputs of the protocol must constitute a non-negligible fraction of
the set of n-bit long strings. This claim holds for both versions of Construction 1. Furthermore,
we show that no single string may appear with probability which is much more than 27" (i.e,, its
probability weight under the uniform distribution).

Proposition 2 Supposethat Hyrm = H,ﬁym isafamily of hashing functions satisfying property (P2),
for somet = poly(n). Let C* be an arbitrary challenger strategy. Then, for every z € {0,1}",
the probability that an execution of version 1 of the protocol with challenger strategy C™* ends with
output z isat most (¢ - 2"7™) - 27",

Proposition 3 Let C* be an arbitrary challenger strategy. Then, for every z € {0,1}", the
probability that an execution of version 2 of the protocol with challenger strategy C* ends with output
z isat most 27", Furthermore, for every deterministic challenger strategy c, exactly 2™ strings
may appear as output, each with probability exactly 27™.

2.3 Simultability property of the protocol

We conclude the analysis of the above protocol by showing that, one can efficiently generate random
transcripts of the protocol having a given outcome. Throughout this analysis, we assume that the
responder followstheinstruction specified by theprotocol. Asintheproof of thelast two propositions,
it suffices to consider an arbitrary deterministic challenger strategy, denoted c.

Now, suppose that Hy,m = H, ., isafamily of hashing functions satisfying property (P1), for
some ¢ = poly(n). Then, oninput z and accessto afunctionc: {0,1}* — {0, 1}*, we can easily

test if ¢(h(z)) = =, where k = c(X). In case the above condition holds, the triple (k, h(z), z)
is the only transcript of the execution of the protocol, with challenger strategy ¢, which ends with
output . Otherwise, there is no execution of the protocol, with challenger strategy ¢, which ends
with output z. Thus,

Proposition 4 Consider executionsof the Random Sel ection protocol inwhichthechallenger strategy,
denoted ¢, isan arbitrary function and the responder plays according to the protocol. There existsa
polynomial-time oracle machine that, oninput z € {0,1}™ and k € H, ., and oracle access to a
function ¢, either generates the unique transcript of a c-execution which outputs = or indicates that
no such execution exists.

2.4 Settingthe Parameters

Proposition 1 motivates us to set ¢ (the parameter governing the approximation of the output in
case of honest challenger) as small as possible. On the other hand, Propositions 2 and 3 motivates
us to maintain the difference » — m small and in paricular logarithmic (in »). Recalling that
n —m = 4log,(n/e), thissuggests setting ¢ = 1/p(n) for some fixed positive polynomial p.

3 TheZero-Knowledge Transfor mation

Our transformation is restricted to interactive proofsin whi ch the verifier sends the outcome of every
coin it tosses. Such interactive proofs are called Arthur-Merlin games[1] or public-coinsinteractive
proofs (cf., [17]). Note that in such interactive proofs the verifier moves, save the last, may consist
merely of tossing coins and sending their outcome. (In itslast move the verifier decides, based on the
entire history of the communication, whether to accept the input or not.) Without loss of generality,
we may assume that in every round of such an interactive proof the verifier tossesat least 4log (|« |/<)
coins, where = is the common input to the interactive proof and e specifies the desired bound on
the statistical distance (between one round in the resulting interactive proof and the original one).
Furthermore, assume for sake of simplicity that at each round the verifier tosses the same number of
coins, denoted n.

3.1 TheTransformation

In the following description, we use the second version of the Random Selection protocol presented
in Construction 1. This simplifies the construction of the simulator for the transformed interactive
proof. The first version can be used as well, at the expense of some modification in the simulator
construction.

The protocol transformation consists of replacing each verifier move (except the last, decision
move) by an execution of the Random Selection protocol, in which the verifier plays the role of the
challenger and the prover plays therole of the responder.

Construction 3 (transformation of round i in (P, V') interaction): Let (P, V') be an interactive
proof system in which the verifier V' only uses public coins, let (n) = 1/poly(n) be the desired
error in the Random Selection protocol, m m(n) - 4log,(n/e(n)) and Hy . be as
specified in Construction 2 (for ¢ = n). The i*! round of the (P, V) interaction, on common
input z, is replaced by the following two rounds of the resulting interactive proof (7', V'). Let

(h1, 01,71, 81, ..., hi—1,ai—1,7i—1, 3i—1) bethe history so far of the interaction between prover
P’ and verifier V. Then, the next two rounds consist of an execution of the (second version of the)
Random Selection protocol follows by P’ mimicing the response of P. Namely, in the first round, the
verifier V' uniformly selects #; € Ho,» and sendsit to the prover P’ who replieswith a; uniformly
selected in {0, 1}"™. In the second round, the verifier V' uniformly selectsr; € h;*(a;) and sends

it to the prover P’ who replies with 3; def P(z,r1,.00,75).
Thefinal decision of the new verifier V' mimics the one of the original verifier V; namely,

V/(h1, a7, T1,ﬁ1, ...,ht, A, Tt,ﬁt) = V(T1,ﬁ1, ~~~,Tt,6t)

3.2 Preservation of Completeness and Soundness

Inthissubsection, wemay assumethat V" followstheinteractive proof. Thus, if for somez € {0, 1}*,
prover P always convinces V' on common input = then P’ always convinces V' on this common
input. We stress that both V' and P’ run in polynomial-time when given oracle access to V' and
P, respectively. Thus, the new verifier is a legitimate one. Furthermore, if the origina prover P,
workingin polynomial-timewith hel p of asuitable auxiliary input, could convincetheoriginal verifier
to accept some common input, then the resulting prover P’ could do the same (i.e., can convince
V' to accept this common input, while working in polynomial-time with help of the same auxiliary
input).

We have just seen that the completeness properties of the original interactive proof is preserved,
by the transformation, in a strong sense. Soundness properti es are preserved as well, but with some
slackness which results from the imperfectness of the Random Selection protocol. In particular,

Proposition 5 Let x : {0,1}* — [0,1] be a function bounding the probability that verifier V'
acceptsinputs when interacting with any (possibly cheating) prover. Namely, x«(«) is a bound on the
probability that V' accepts «. Suppose that on input =, the interactive proof (P, V') runsfor ¢(|z|)

rounds. Then, p' () = p(z)+O(t(]z|) - e(]=|)) isafunction bounding the probability that verifier
V' accepts inputs when interacting with any (possibly cheating) prover.

proof: Recall that V' plays the role of the challenger in the Random Selection protocol. Thus, the
proposition follows quite immediately from Proposition 1.

We stress that the above proposition remains valid no matter which of the two version of Random
Selection is used. The same holds with respect to the comments regarding completeness (made
above).

3.3 Zero-Knowledge

In this subsection, we may assume that P’ follows the interactive proof. Assuming that P is
zero-knowledge with respect to the verifier V', we prove that P’ is zero-knowledge with respect to
any probabilistic polynomial-time verifier strategy. This statement holds for the three versions of
zero-knowledge; specifically, perfect, almost-perfect (statistical), and computational zero-knowledge.

Proposition 6 Let (P, V') be a constant-round Arthur-Merlin interactive proof. Suppose that P is
perfect (resp. almost-perfect) [resp. computational] zero-knowledge with respect to the honest verifier
V over theset I C {0,1}*. Then P’ is perfect (resp. almost-perfect) [resp. computational]
zero-knowl edge (with respect to any probabilistic polynomail-time verifier) over theset . C {0, 1}*.

A few comments regarding the proof: Let M/ beasimulator witnessing the hypothesisof the proposition.
Then, for every ¢ € L, with non-negligible probability M (z) halts with output, and given that this
happens the output has distributed indistinguishable from that of (P, V')(z). For every verifier

strategy V'™ interacting with P’, we construct a simulator A/ *, which uses M and V* as black-
boxes, as follows. By uniformly selecting and fixing coin tosses for V*, we may assume that V'* is
deterministic.

Oninput z, thesimulator M * invokes M andassuming M () haltswithoutput, sets(r1, f1, ..., re, ft) def
M (z); otherwise M * also halts with no output. The simulator A/ * now tries to form transcripts
of the Random Selection protocol which end with output r1, r2 through r., respectively. (Here we
use the simulatability of the Random Selection protocol.) A transcript with output r; isformed as
follows. M* feeds V* with input # and obtains k1, which can be assumed as in Propositions 2
and 3tobein Hy, .. Next, M* computesa; = hi(r1) and feeds V* with (¢, a1). If V* replies
with 1, we've succeeded in forming a transcript for the first invokation of Random Selection and
we proceed to the next. (This happens with non-negligible probability.) Otherwise, M * halts with
no output. We note that for the next invokations of Random Selection, V'* is fed with the entire
history so far; for example, to obtain k> we feed V* with (z, a1, #1) and next we feed it with
(z,a1,p1,as), where az = ha(r2). If al ¢ rounds were completed successfully®, M* halts with
output (h1, ai,r1, [5‘1, ceey ht, at, Tt, 6t)

To complete the proof we prove six claims. Firstly, we show that in each of the three cases
(perfect, almost-perfect, or computational zero-knowledge), the simulator M * produces output with
non-negligible probability. Secondly, for each of thethree cases, we establish the required rel ationship
between the transcript of the real interaction and the output of the simulator. As expected, the proofs
become more involved as we move from perfect to computational zero-knowledge.

The above proposition remains valid even if one uses the first version of the Random Selection
protocol. However, a dightly more complex simulator will have to be used. The reason being that
in the first version (of the Random Selection protocol) the a;’s are not selected uniformly but are
rather weighted by the number of their preimages under the corresponding %;’s. Thus, r;’swhich are
mapped to a;’s with small preimage may be less likely in the real interactions. To compensate for
this phenomenon, one may modify the simulator so that it skewsthe probabilitiesin the same manner.
Namely, when producing a transcript with less likely r;’s, the simulator will discard it with some
probability. The required probability (with which to discard transcripts) can be easily computed.

3.4 Conclusions
Combining Propositions 5 and 6, we get

Theorem 1 Let x: N — [0, 1]. Suppose L has a constant-round Arthur-Merlin proof system, with
error bound g, which is perfect (resp. almost-perfect) [resp. computational] zero-knowledge with
respect to the honest verifier. Then, for every positive polynomial p(-), L hasa constant-round Arthur-
1

Merlin proof system, with error bound p'(n) o p(n)+ L which isperfect (resp. almost-perfect)
[resp. computational] zero-knowledge (with respect to any probabilistic polynomial-time verifier).
Furthermore, the zero-knowledge property can be demonstrated using a black-box simulation. Also,
if the original systemhad no error oninputsin Z then the same holds for the new system.

Theorem 1 does not preserve the error probability of the original system. This seemsinevitible,
inlight of [12]. Recall that there are languages believed not to bein BPP which have constant-round
Arthur-Merlin proof systems, with exponentially small error probability, which are zero-knowledge
with respect to the honest verifier. For example, Graph Isomorphism has such a system (for perfect
zero-knowledge), and assuming the existence of one-way functions, every languagein A/P has such
asystem (for computational zero-knowledge) [14]. Now, astronger version of Theorem 1, say onein
which p/(n) — p(n) is anegligible function of », would imply that these languages have constant-
round Arthur-Merlin (balck-box) zero-knowledge proof systems (with negligible error probability).
But, according to [12], languages having constant-round Arthur-Merlin (balck-box) zero-knowledge
proof systemsliein BPP. Needlessto say that P and even Graph Non-1somorphism are believed
not to liein BPP.

6This happens with probability p(|=|)¢, where p(-) is the non-negligible probability that we've completed
successfuly asingle round. Thisis the reason we can handle any constant number of rounds.

We now compare theround complexity of the protocolsresulting from our transformation to those
resulting from Damgard'’ stransformation of [6]. Suppose we start with a c-round proof systemwhich
usesr(n) random coinsand has error y(n). Clearly, u(n) > 277" and r(n) > log, n (ctherwise
the language is in BPP [15]). Now, the proof system resulting from Damgard’s transformation will
have ¢ 4+ r(n) rounds and maintain the error bound of the original proof system. On the other hand,
the protocol resulting from our transformation will have 2c rounds and error p(n) + m. In
case p1(n) is non-negligible, we have a clear advatage. Otherwise, to make the comparison fair, we
use sequentail repetitions to reduce the error in the protocol s resulting from our transformation to the
bound 1(n). This requireslog ;. ,,(1/p(n)) repetitions yielding round complexity bounded by

loga(1/un) < lorg)n (Typically, pu(n) is much larger than 27("))

logon

Part 11
Using Commitment Schemesto Simplify
Zero-K nowledge Protocol Design *

4 IntroductiontoPart |1

In this part, we will show another transformation, which can be applied to arbitrary number of
round statistical zero-knowledge proofs, assuming the existence of secure commitment schemes(i.e.,
one-way functions [18, 20]). This assumption can be replaced by the restriction on the applicable
languages, that they are “hard on the average” (not in AV BPP) [24].

This result can be considered to improve the two previous results partially: one is the result
by Ostrovsky, Venkatesan and Yung [23] and the other is by Damgéard[6] (see Introduction of Part
1). That is, our result generalizes the assumption of [23], from one-way permutations to one-way
functions, athough our transformation is only applicable to public coin proof systems. On the other
hand, thisresult relaxes the round complexity restriction for applicable proof systems, from constant
number of rounds to arbitrary number of rounds, athough our transformation does not preserve
perfect zero-knowledge, and the applicable languages should not bein AVBPP.

The technique of using the bit-commitment for the transformation can be also applied to the
argument model [4]. In this transformation, the roles of the committer and receiver arereversed (i.e.,
the verifier isthe committer.)

5 The Zero-Knowledge Transfor mation

Theorem 2 If language I has a statistical zero-knowledge public-coin proof against a “ honest
verifier” , then I has a statistical zero-knowledge public-coin proof against “ any verifier” , assuming
the existence of secure bit-commitment schemes (i.e., one-way functions).

Proof

Let (M, A) be a statistical zero-knowledge public-coin proof against a “honest verifier”, A,
for language L. Then we will construct a statistical zero-knowledge public-coin proof, (M*, A*),
against any verifier, A*, for L.

We assume

1. Ifz € L,then Prob[(M, A)(x) accepts] > 1 — 1/2"
2. Itz ¢ L, thenforany M, Prob[(M,A)(x) accepts] < 1/27,

Thy Tatsuaki Okamoto.

where n isthesizeof z.
Suppose that the conversation of (M, A)(z) is(a1, B1,. .., ok, Br), wherea; 1 =1,..., k)
isthe :-th public coin message by A, and f; isthe :-th message by M. Letl; bethe (bit) size of «;.
Let BC be Naor's bit-commitment function based on a pseudo-random generator, &, [20]. That
is, Naor's bit-commitment protocol is asfollows:

1. [Commit stage:]
Recelver (R) sends a (3n bits) random string, ¢, to Committer (C).
C randomly selects a (n bits) seed, s, of a pseudo-random generator, G, and calculates
BCO(s,t,b) = G®™(s) @ bt, where b € {0, 1} is the bit C is committed to, bt is ¢ (if
b = 1) or 0°" (if b = 0), and GC™(s) is the first 3n bits output of G(s). P sends
BC(s,t,b)to R.

2. [Reved stage:]
C sends s and b to R, and R checksthe validity.

A pseudo-random generator exitsif and only if aone-way function exists [18].

Next, we show the protocol of (44 *, A*) using Naor's bit-commitment protocol.
Protocol (M™, A*)

Common input:

What to prove: = € L.

Repeat the following protocol for ¢ from 1 to & sequentially. Here, when : = j, we suppose that
(M™, A*) has aready executed the protocol for ¢ from 1 through j — 1. (When ¢ = 1, suppose that
no protocol has been executed before.)

1. Repeat the following protocol for 7 from 1 to {; sequentialy.
(@) A* sendsa(3n bits) random string, tgi), to M*™.
(b) M* randomly selectsa(n bits) seed, sgi), of apseudo-random generator, and arandom
bit, 5 € {0,1}. M* calculates BC(s\, (", 5("), and sendsit to A*.
(c) A* sends arandom bit, cgi) e {0,1},toM*.
(d) M* sendss\” andd'" to A*.

(e) A* checksthe validity of s\ and b\, and if it isinvalid A* halts. Otherwise, go to
the next step.
2. M* sets) o)))
vy — (b(ll) fast c(ll), b(;) fast c(;), e bgi) D cgz)).

M™ runs M with «; as the i-th message by A and gets the i-th message by B, 3:. Here,
we suppose that M, given (a1, ..., a;—1), hasaready outputs (31, . .., fi—1) sequentially.
M* sends 3; to A*.

Finaly,fori =1,...,k, A* sets
vy — (b(li) fast c(li), b(;) fast c(;), e bgj) D cgf)).

Then, A* runs A with (a1, ..., ax) as A’srandom string, and (51, . . ., 3«) as messages from A .
If A accepts, then A* accepts.

[End of Protocol (M™, A*)]

[Completeness)|

If¢ € Land M* and A* arehonest, then, clearly, (M *, A*) acceptsz with the same probability
by (M, A), where M and A are also honest.
[Soundness]

If z ¢ L, wewill show that for any prover, M, (MV*,A*)(x) accepts with probability lessthan
e(n).

First, we assume that there exist M/ * and a constant a such that (M*, A*)(z) accepts with
probability greater than 1/n. Here, we suppose that M * is deterministic, by selecting the optimum
coin flips of M * which maximize the accept probability of (M *, A*)(z).

Then we will show that M * must bresk the condition of Naor’s bit-commitment.

For any M, Prob[(M, A)(z) accepts] < 1/2",and (M*, A*) isthesame as (M, A) except
the procedure of determining {«;}. Hence, if (M *, A*)(«) accepts with probability greater than
1/n“ for aconstant a, then (a1, . . ., ax), whichisinput to A by A* to decide the acceptance, must
beinanegligible (< 1/2") fraction, T, of {(a, ..., ax)} with probability greater than 1/n“ for a
constant a. Here, I isfixed when M * isfixed. .

On the other hand, from the condition of Naor's bit-commitment, the committer (M *) can
change the committed value with probability at most 1 /2™. Since A* sends a true random bits
crforl =1,...0i;i=1,...,k), ¢ is uniformly distributed with probability greater than
1—1/2". Hence, (a1, ...,ax) = (e(ll), ce egf)) isuniformly distributed with probability greater

k

than (1 — 1/2")Z,=1 - €(n). Therefore, the probability that (a1, ..., ax) € I' isat most
(1/2")(1—6@)+6(n) < €(n). .

Thus, if (M*, A*)(z) accepts with probability greater than 1/n® for a constant «, then M*
must break the condition of Naor’s bit-commitment.
[Zero-knowledgeness (Black-box simulation zer o-knowledgeness]

Whenz € L, for any verifier A*, simulator .S for (M ™, A*), which utilizes A* as ablack-box,
can be constructed as follows:
[Simulator S]

1 Forz € L,grunsSimuIatorSfor(M, A), thengetsthesimulated conversation, (a1, f1, .. ., ax)
of (M, A)(z). Let o ‘

(e(ll), 6(21), e egz)) = ay,
fore=1,...,k.

2. Repeat the following procedure for : from 1 to k, and for I from 1 to ;, sequentialy. (So,
totaly, (Zle 11) procedures are repeated sequentially.) We denote each procedure by [z, I].
Here, when: = j and [= J, we suppose that S has already executed the procedures for ¢
from 1 through j — 1 and the procedures for / from 1 through J — 1 in the procedure for
Z:] (i.e.,[l,l],...,[l,h],...,[j— lal]a“'a[j_ lalj—1]7[ja1]a~~~a[jaj_1]')

So, the initial status of A* in the following procedure is the final status of A* just before the
procedure. Let Init}; ;) betheinitial status of A™ in procedure [z, 1],

During the following procedure [, 1], S can make A* to Inity; ; from thefirstinitial status
of A* (i.e., Init}; 17). Sinceasimulated conversation from [1,1] through [z, I — 1] has been

fixed, S can make A* to Inity; 1 just by simulating the fixed simulated conversation from
[1,1] through [z, I — 1] again. (Then the execution is straightforward and no trial and error.)
(Note: [¢,0] means[: — 1, 1;—1].) When = 1, suppose that no procedure has been executed
before.

(@ S runs A* and getsa (3n bits) string, t(I’) from A*.

(b) S randomly selects a (n bits) seed, sgi), of a pseudo-random generator, and a random
bit, 5 € {0,1}. S calculates BC(s\, 1", 5"}, and givesit to A*.
(@) S runs A* and gets abit, cgi) € {0,1}, from A*.

10

(d) S checkswhether the followi ng equation holds or not:
B @) = o),

If it holds, then S goes to the next procedure, [¢,] + 1]. (Note: [7,I; + 1] means
[4+ 1,1].) Otherwise, S makes A* to Init}; 7 and returns to the first step of this
procedure, [z, I].

3. Finally S arranges these valuesin the order of (M *, A*) protocol, and outputs them.

Next, we will show that S terminatesin expected polynomial-time.
Since A* isapolynomial timebounded Turing machine, from the property of the bit-commitment
protocaol,

|Pr0b[c(1i) | b(Ii) =0]— Prob[c(;) | b(Ii) = 1]| < e(n).

Therefore, if bgi) israndomly selected,
Prob[b(;) @ c(Ii) = e(Ii)] > 1/2 — e(n).

Thus, in each procedure, the expected repetition number islessthan 1/(1/2 — e(n)) < 2 + 4e(n).
Clearly, after procedure [z, I] is completed, the simulated conversation from [1,1] to [z, I] is not
affected by the following procedures. (i.e., there is no back-track.) Hence, totaly, .S terminates
in expected time of polynomial (i.e., O(Z(Z:f:1 l1) x T); where T" is the running time of each
procedure described above).

Next, we will show that the simulated conversation is statistically close to the real conversation.

Since thisis ablack-box simulation, if the simulated messages of M * is statistically closeto the

real messages, then the total smulation is also statistically close to the real conversation.
To provethis, itissufficient to show that thesimulated «; isstatistically closetothereal one. Since

(M, A) isastatistical zero-knowledge proof, the distribution of the simulated o; = (e(li), ce egf))
(output of simulator .S for (M, A)) is statistically close to the uniform distribution. On the other
hand, thereal «o; isalso statistically close to the uniform distribution. Thisis because: (same as the

related part of the proof that S terminatesin expected polynomial-time)
|Problc” | 4 = 0] = Problc}"’ | b} = 1]| < e(n),
and bgi) istruly random in the real conversation. Hence,
Prob[e(;) = b(Ii) @ c(Ii) =0] > 1/2 —e(n).

Thus, the simulated «; is statistically close to the real one.

We can immediately obtain the following corollary from Theorem 2 and [24].

Corollary 1 If language 1 has a statistical zero-knowledge public-coin proof and I is not in
AVBPP, then L has a statistical zero-knowledge public-coin proof against “ any verifier” .

By using the commitment scheme reversely, we can obtain the following:
Corollary 2 If language . has a statistical zero-knowledge public-coin argument against a “ honest

verifier”, then I has a statistical zero-knowledge public-coin argument against “any verifier”,
assuming the existence of secure bit-commitment schemes (i.e., one-way functions).

11

References

(1
(2

(3

(4
(9]

(6l
(1
(8l
(9
(10
(11
(12

[13]
[14]

(19]
(16]
(17

[18]

[19]

[20]
[21]

[22]
[23]

[24]

L. Babai. Trading Group Theory for Randomness, Proc. of 17th STOC, pages 421420, 1985.

M. Bellare, S. Micali and R. Ostrovsky: The (true) Complexity of Statistical Zero-Knowledge, Proc. of STOC
90.

M. Ben-Or, O. Goldreich, S. Goldwasser, J. Hastad, J. Killian, S. Micai and P. Rogaway: Everything
Provableis Provable in Zero-Knowledge, Proc. of Crypto 88.

G. Brassard, D. Chaum and C. Crépeau: Minimum Disclosure Proofs of Knowledge, JCSS.

G. Brassard, C. Crépeau and M. Yung: Everything in NP can be Argued in Perfect Zero-Knowledge in a
Constant Number of Rounds, 16th ICALP, pp. 123-136, 1989.

I. Damgard: Interactive Hashing can Smplify Zero-Knowledge Protocol Design Wthout Computational
Assumptions, Proc. of Crypto 93.

I. Damgérd, O. Goldreich, and A. Wigderson: Hashing Functions can Simplify Zero-Knowledge Protocol
Design (too), BRICS Technical Rerport RS-94-39, Nov. 1994.

U. Feige and A. Shamir: Zero-Knowledge Proofs of Knowledge in Two Rounds, Advances in Cryptology —
Crypto89 (proceedings), pp. 526-544, 1990.

O. Goldreich: Foundation of Cryptography — Fragments of a Book, February 1995. Available from the
Electronic Colloquium on Computational Complexity (ECCC), ht t p: / / waw. eccc. uni -trier. de/ eccc/ .

O. Goldreich, S. Goldwasser and N. Linia: Fault-Tolerant Computation without Assumptions. the Two-Party
Case, 32nd FOCS, pp. 447-457, 1991.

0. Goldreich and A. Kahan: How to Construct Constant-Round Zero-Knowledge Proof Systems for NP, to
appesar in Journal of Crypology,

O. Goldreich and H. Krawcyzk: On the Composition of Zero-Knowledge Proof Systems, 17th ICALP, pp.
268-282, 1990.

O. Goldreich, Y. Mansour and M. Sipser: Proofsthat Never Fail and Random Selection, Proc. of FOCS 87.

O. Goldreich, S. Micali and A. Wigderson: Proofsthat yield Nothing but their Validity and a Methodol ogy
of Cryptographic Protocol Design, Proc. of FOCS 86.

O. Goldreich and Y. Oren: Definitions and Properties of Zero-Knowledge Proof Systems Jour. of Crypto.,
Vol. 7, pp. 1-32, 1994.

S. Goldwasser, S. Micali and C. Rackoff: The Knowledge Complexity of Interactive Proof Systems, SIAM
J. Computing, Vol. 18, pp. 186—208, 1989.

S. Goldwasser and M. Sipser. Private Coins versus Public Coinsin Interactive Proof Systems, Proc. of 18th
STOC, pages 59-68, 1986.

J Hastad, R. Impagliazzo, L.A. Levin and M. Luby: Construction of Pseudorandom Generator from any
One-Way Function, manuscript, 1993. See preliminary versions by Impagliazzo et. a. in 21st STOC and
Hastad in 22nd STOC.

R. Impagliazzo and M. Yung, Direct Minimum-Knowledge Computations, Advances in Cryptology - Crypto87
(proceedings), 1987, pp. 40-51.

M. Naor: Bit Commitments from Pseudorandomness, Proc. of Crypto 89.

M. Naeor, R. Ostrovsky, R. Venkatesan and M. Yung: Zero-Knowledge Arguments for NP can be Based on
General Complexity Assumptions, Proc. of Crypto 92.

R. Ostrovsky, R. Venkatesan and M. Yung: Fair Games Against an All-Powerful Adversary, presented at
DIMACS Complexity and Cryptography Workshop, October 1990, Princeton.

R. Ostrovsky, R. Venkatesan and M. Yung: Interactive Hashing S mplifies Zero-Knowl edge Protocol Design,
Proc. of EuroCrypt 93.

R. Ostrovsky and A. Wigderson: One-Way Functions are Essential for Non-Trivial Zero-Knowledge,
Proc. 2nd Israel Symp. on Theory of Computing and Systems, 1993.

12

