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� e�ciency requirements{ the protocol uses constant number of rounds;{ the challenger strategy (determined by the protocol) is probabilistic polynomial-time and reveals all coins it tosses (i.e., it uses \public coins");� statistical properties1{ if the challenger follows the protocol then, no matter which strategy is used bythe responder, the output of the protocol is almost uniformly distributed;{ if the responder follows the protocol then, no string may appear with probabilitymuch greater than its probability under the uniform distribution.We postpone the formal speci�cation of the statistical properties to the analysis of theprotocol presented below.2 The Random Selection ProtocolActually, we present two version of the protocol.Construction 1 (Random Selection Protocol { two versions): Let n and m < n beintegers2, and Hn;m be a family of functions, each mapping the set of n-bit long stringsonto3 the set of m-bit long strings.C1: the challenger uniformly selects h 2 Hn;m and sends it to the responder;R1: � (Version 1): the responder uniformly selects x 2 f0; 1gn, computes � = h(x) andsends � to the challenger;� (Version 2): the responder uniformly selects � 2 f0; 1gm and sends it to thechallenger;C2: the challenger uniformly selects a preimage of � under h and outputs it.1 In the following we use two unrelated statistical requirement. The �rst requirement refers to thestatistical (\variation") distance between two distribution, whereas the second refers to a \domination"condition. See statements of the corresponding propositions in Section 3.2In particular, we will use m def= n� 4 log2(n="), where " is an error-bound parameter.3We stress that each function in Hn;m rages over all f0; 1gm. Thus, the challenger may always respondin step C2 even if the responder deviates from the protocol or Version (2) is used.2



We remark that if Version (1) is used and both parties follow the protocol then theoutput is uniformly distributed in f0; 1gn. However, the interesting case is when one ofthe parties deviates from the protocol. In this case, the protocol can be guaranteed toproduce \good" output, provided that \good" families of hash functions are being usedas Hn;m. These functions must have relatively succient representation as well as strongrandom properties. Furthermore, given a function h, it should be easy to evaluate h on agiven image and to generate a random preimage (of a given range element) under h. Usingthe algorithmic properties of Hn;m it follows that the instructions speci�ed in the aboveprotocol can be implemented in probabilistic poly(n=")-time, which for " = 1=poly(n)means poly(n)-time.Construction 2 (Preferred family H tn;m): Let n, m < n and t = poly(n) be integers.We associate f0; 1gn with the �nite �eld GF (2n) and consider the set of (t � 1)-degreepolynomials over this �eld. For each such polynomial f , we consider the function h sothat, for every x 2 f0; 1gn, h(x) is the m most signi�cant bits of f(x). The family H tn;mconsists of all such functions h. The canonical description of a function h 2 H tn;m ismerely the sequence of t smallest coe�cients of the corresponding polynomial. Finaly, wemodify the functions in H tn;m so that for each h 2 H tn;m and every x0 2 f0; 1gm it holdsh(x00n�m) def= x0.In the sequel, we will use the family Hn;m def= Hnn;m. We now list the following, easy toverify, properties of the above family.P1 There is a poly(n)-time algorithm that, on input a function h 2 H tn;m and a stringx 2 f0; 1gn, outputs h(x).P2 The number of preimages of an image y under h 2 H tn;m is bounded above by 2n�m �t; furthermore, there exists a poly(2n�mt)-time algorithm that, on input y and h,outputs the set h�1(y) def= fx :h(x)=yg. (The algorithm works by trying all possibleextensions of y to an element of GF (2t); for each such extension it remains to �ndthe roots of a degree t� 1 polynomial over the �eld.)P3 H tn;m is a family of almost t-wise independent hashing functions in the following sense:for every t distinct images, x1; :::; xt 2 (f0; 1gn � f0; 1gm0n�m), for a uniformly cho-sen h 2 H tn;m, the random variables h(x1); :::; h(xt) are indepedently and uniformlydistributed in f0; 1gm. 3



3 The Statistical Behaviour of the ProtocolIn the sequel, we will be discussing a computational analogue of the statement proven inthe �rst subsection. Thus, the reader may ignore the rest of this section.3.1 The output distribution for honest challegerWe now turn to analyze the output distribution of the above protocol, assuming thatthe challenger plays according to the protocol. In the analysis we allow the responder todeviate arbitrarily from the protocol and thus as far as this analysis goes the two versionsin Construction 1 are equivalent. The analysis is done using the \random" properties ofthe family H tn;m. Recall that the statistical di�erence between two random variable X andY is 12X� jProb(X=�)� Prob(Y =�)jWe say that X is "-away from Y if the statistical di�erence between them is ".Proposition 1 Let n be an integer, " 2 [0; 1] and m def= n � 4 log2(n="). Suppose thatHn;m is a family of almost n-wise independent hashing functions. Then, no matter whichstrategy is used by the responder, provided that the challenger follows the protocol, theoutput of the protocol is at most (2"+ 2�n)-away from uniform distribution.Proof: Recall that an equivalent de�nition of the statistical di�erence between two randomvariables, X and Y , is maxS fjProb(X 2S)� Prob(Y 2S)jgIn our case, one random variable is the output of the protocol whereas the other is uniformlydistributed. Thus, it su�ces to upper bound the di�erence between the probability thatthe output hits an arbitrary set S and the density of S (in f0; 1gn). Furthermore, it su�cesto consider sets S of density greater/equal to one half (i.e., jSj � 12 � 2n). Let us denoteby �� : Hn;m 7! f0; 1gm an arbitrary strategy employed by the responder. Then, underthe conditions of the proposition, the output of the protocol uniformly distributed in therandom set h�1(��(h)), where h is uniformly selected in Hn;m. Thus, for a set S, theprobability that the output is in S equalsExph2Hn;m  jh�1(��(h)) \ Sjjh�1(��(h))j ! (1)For an arbitrarily �xed set S, we can bound the expression in Eq. (1) by considering theevent in which a uniformly chosen h 2 Hn;m satis�esjh�1(�) \ Sjjh�1(�)j 62 [(1� 2")�(S)] for all � 2 f0; 1gm. (2)4



where �(S) def= jSj2n . Whenever this event occurs, Eq. (1) is in the interval [(1�2")�(S); (1+2")�] and so the statistical di�erence is at most 2". Thus, it remains to upper boundthe probability that the above event does not hold. We �rst note that when estimatingthe cardinality of the sets h�1(�) and h�1(�) \ S we may ignore the contribution of thepreimages in f0; 1gm0n�m, since there is at most one such elements (i.e., �0n�m). Fixingan arbitrary � and using the t-moment method, with t = n, we getProbh2Hn;m �jh�1(�) \ Sj 62 [(1� ")�(S)2n�m]� <  t" � �(S) � 2�(n�m)=2!n< � nn2�n< 2�2nThus, with overwhelmingly high probability, jh�1(�) \ Sj 2 [(1 � ")�(S) � 2n�m], for all� 2 f0; 1gm. By a similar argument, with overwhelmingly high probability, jh�1(�)j 2[(1 � ") � 2n�m], for all � 2 f0; 1gm. Thus, with overwhelmingly high probability (i.e., atleast 1 � 2�n), the event in Eq. (2) holds.Corollary 1 Suppose that S � f0; 1gn is a set of density � and that the challenger followsthe protocol. Then, no matter which strategy is used by the responder, the output of theprotocol hits S with probability at most 2" + 2�n + �.3.2 The output distribution for honest responderWe now show that no matter what strategy is used by the challenger, if the responderfollows the protocol then the set of possible outputs of the protocol must constitute a non-negligible fraction of the set of n-bit long strings. This claim holds for both versions ofConstruction 1. Furthermore, we show that no single string may appear with probabilitywhich is much more than 2�n (i.e., its probability weight under the uniform distribution).Proposition 2 Suppose that Hn;m = H tn;m is a family of hashing functions satisfyingproperty (P2), for some t = poly(n). Let C� be an arbitrary challenger strategy. Then,for every x 2 f0; 1gn, the probability that an execution of Version (1) of the protocol withchallenger strategy C� ends with output x is at most (t � 2n�m) � 2�n.Proof: We consider an arbitrary (probabilistic) strategy for the challenger, denoted C�.Without loss of generality, we may assume that the �rst message of this strategy is anelement of Hn;m (messages violating this convention are treated/interpreted as a �xedfunction h0 2 Hn;m). Similarly, we may assume that the second message of the challenger,5



given partial history (h; �), is an element of h�1(�) (again, messages violating this con-vention are interpreted as, say, the lexicographically �rst element of h�1(�)). Finally, itsu�ces to consider deterministic strategies for the challenger; since, given a probabilisticstrategy C�, we can uniformly select a sequence r respresenting the outcome of the cointosses of C� and consider the strategy c(�) def= C�r (�) def= C�(r; �).We now upper bound the probability that an execution of the protocol with challengerstrategy c ends with output x. We denote by h def= c(�) the �rst message of strategy c. Now,the protocol may end with output x only if the responder chose the message � def= h(x).Thus, the probability that the responder choose � is exactly jfx0 : h(x0) = �gj � 2�n. Byproperty (P2), for each h 2 Hn;m and � 2 f0; 1gm, the cardinality of the set h�1(�) is atmost t � 2n�m. The proposition follows.Proposition 3 Let C� be an arbitrary challenger strategy. Then, for every x 2 f0; 1gn,the probability that an execution of Version (2) of the protocol with challenger strategy C�ends with output x is at most 2�m. Furthermore, for every deterministic challenger strategyc, exactly 2m strings may appear as output, each with probability exactly 2�m.Proof: Fix a deterministic strategy c and a string x 2 f0; 1gn. As in the previous proof,we may assume that h def= c(�) 2 Hn;m and c(�) 2 h�1(�). Denoting h def= c(�), Version (2)terminates with output x if and only if the responder chooses the message � def= h(x) andx = c(�). Since � is selected uniformly in f0; 1gm, the proposition follows.The original motivation: simultability of the ProtocolThe above protocol has the additional usefuly property of being \simulateable" in the sensethat one can e�ciently generate random transcripts of the protocol having a given outcome.This property, restricted to the case in which the responder follows the instruction speci�edby the protocol, is important for the application in [3, 2].As in the proof of the last two propositions, it su�ces to consider an arbitrary deter-ministic challenger strategy, denoted c. Suppose that Hn;m = H tn;m is a family of hashingfunctions satisfying property (P1), for some t = poly(n). Then, on input x and access toa function c :f0; 1g� 7!f0; 1g�, we can easily test if c(h(x)) = x, where h def= c(�). In casethe above condition holds, the triple (h; h(x); x) is the only transcript of the execution ofthe protocol, with challenger strategy c, which ends with output x. Otherwise, there is noexecution of the protocol, with challenger strategy c, which ends with output x. Thus,Proposition 4 Consider executions of the Random Selection protocol in which the chal-lenger strategy, denoted c, is an arbitrary function and the responder plays according to6



the protocol. There exists a polynomial-time oracle machine that, on input x 2 f0; 1gn andh 2 Hn;m and oracle access to a function c, either generates the unique transcript of ac-execution which outputs x or indicates that no such execution exists.Proposition 1 motivates us to set " (the parameter governing the approximation of theoutput in case of honest challenger) as small as possible. On the other hand, Propositions 2and 3 motivates us to maintain the di�erence n�m small and in paricular logarithmic (inn). Recalling that n � m = 4 log2(n="), this suggests setting " = 1=p(n) for some �xedpositive polynomial p.4 Open Problem: the Computational Behaviour ofthe ProtocolWe ask whether the following computational analogue of Corollary 1 holds.Let f : f0; 1g� 7!f0; 1g� be a length preserving function which is hard to com-pute on the average. Namely, suppose that for any probabilistic polynomial-time algorithm A (resp., any non-uniform family of polynomail-size circuitsfCng) the probability that A(x) = f(x), when x 2 f0; 1gn is uniformly chosen,is negligible. Does this mean that there exists no e�cient strategy for the re-sponder allowing it to play the protocol so that it can always evaluate f on theoutcome of the protocol? And if so, is it infeasible to play the protocol so thatf can be evaluate on the outcome with probability, say, at least 1=2?A naive approach which fails is to consider all poly(n)-size circuits. Indeed, for each suchcircuit, the set of inputs for which f can be evaluated is of negligible density and byCorollary 1 there is no way to have the outcome of the protocol hit it with substaintialprobability. Still, there are too many circuits and in particular for every possible choiceof h 2 Hn;m there is a poly(n)-size circuit which evaluates f correctly on all points inh�1(1m). Thus, one cannot settle the above question by a mere counting argument alongthese lines.One motivation for the above question is that it is related to showing that the transfor-mation presented in [3] is applicable to argument systems and proof of knowledge. However,for this purpose one would need even stronger results. One generalization (which su�cesonly for 1-round zero-knowledge protocols) is to replace f by a relation R. Namely, sup-pose that given a random x it is hard to �nd y so that (x; y) 2 R. Does it follow that it isinfeasible to play the protocol so that on outcome x it is also hard to �nd such a y?7



For our application, and also in general, one may relax the open problem and phrase itwith respect to the (Random Selection) protocol problem as presented in Section 1 (ratherthan with respect to the particular protocol presented in Section 2). We stress that theconditions of Section 1 requite a constant-round public-coin protocol and so the InteractiveHashing protocol of [4] and Coin Tossing into the well [1] are ruled-out.References[1] M. Blum, Coin Flipping by Phone, IEEE Spring COMPCOM, pp. 133{137, February1982. See also SIGACT News, Vol. 15, No. 1, 1983.[2] I. Damg�ard, O. Goldreich, T. Okamoto, and A. Wigderson: Honest Veri�er vs Dis-honest Veri�er in Public Coin Zero-Knowledge Proofs, in the proceedings of Crypto95.[3] I. Damg�ard, O. Goldreich, and A. Wigderson: Hashing Functions can Simplify Zero-Knowledge Protocol Design (too), BRICS Technical Rerport RS-94-39, Nov. 1994.[4] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung: Zero-Knowledge Arguments forNP can be Based on General Complexity Assumptions, Proc. of Crypto 92.
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