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1 IntroductionThe problem of constructing small sample spaces that \approximate" the independent distributionon n random variables has received considerable attention recently (cf. [7, 1, 19, 2, 4]). The primarymotivation for this line of research is that random variables that are \approximately" independentsu�ce for the analysis of many interesting randomized algorithm, and hence, constructing a smallprobability space that \approximates" the independent distribution yields a way to \derandomize"these algorithms, i.e., convert them to deterministic algorithms of reasonable complexity by usingthe deterministically constructed sample space in place of the \internal coin tosses" of the algo-rithm. A typical example of the use of this methodology has been provided by Luby in his workon the maximal independent set problem [17]. Surprisingly, it is often ignored that the randomvariables used in that work are neither identically distributed nor uniformly distributed over somesets, and furthermore that this is likely to be the case in many applications. In contrast, all generalconstructions (for limited independence), presented so far, apply to random variables uniformlydistributed over the same set (in most cases the two-element set f0; 1g). Hence, it is of primaryimportance to investigate the extent to which these constructions can be generalized to deal withthe \k-wise approximation" of arbitrary stochastically independent events.1.1 De�nitions of ApproximationThroughout the paper we consider the approximation of product distributions; namely, distributionswhich are the product of many (say n) independent distributions. Without loss of generality, weassume that each of the individual distributions has a support which is a subset of f0; 1; :::;m� 1g.Thus, a product distribution on n general m-valued random variables is described by a n-by-mprobability matrix Pn;m = fpi;v : i 2 f1; : : : ; ng; v 2 f0; : : : ;m � 1gg, which is a matrix of non-negative entries such that the sum of the entries in each row equals 1. We refer to this matrix as tothe speci�cation matrix. The (i; v)-entry, pi;v, speci�es the probability that the ith random variableshould take on value v.From Pn;m we want to produce a �nite set S that induces a distribution on n random variablesX1; : : : ;Xn which approximates (in the sense de�ned below) the independent distribution for Pn;m.We view S as a sample space that induces a distribution on X1; : : : ;Xn de�ned by choosing asample point uniformly from S. That is, for each point s 2 S and each index i, we have Xi(s) 2f0; : : : ;m� 1g, where Xi(s) is the value of the random variable Xi on the sample point s. We letXI denote the subsequence of random variables indexed by I, and XI = V denote the event thatthe subsequence XI takes on the value sequence V 2 f0; : : : ;m� 1gjIj. By PrS [XI = V ] we denotethe probability that event XI = V occurs in the distribution induced by S.� We say that S is perfect for Pn;m if it induces a distribution on X1; : : : ;Xn such that, for allV =< v1; : : : ; vn >2 f0; : : : ;m� 1gn,PrS [Xh1;:::;ni = V ] = ph1;:::;ni;Vwhere pI;V def= Qj̀=1 pij ;vj for I = hi1; :::; i`i and V = hv1; :::; v`i.� We say that S is a (k; �)-approximation for Pn;m if for any subsequence I of size ` � k and forany set of possible values V 2 f0; : : : ;m� 1g`,jPrS [XI = V ]� pI;V j � � (1)1



We stress that Eq. (1) asserts a bound on the Max-Norm of the di�erence between XI and thepI;� vector. Bounds in other norms (e.g., Norm-1) can be easily derived from the Max-Normbound. Speci�cally, we say that S is a (k; �)-L1-approximation of Pn;m if for all subsequencesI of size k, 12 � XV 2f0;:::;m�1gk jPrS [XI = V ]� pI;V j � � (2)� We say that S is an �-approximation for Pn;m if the above holds for k = n (i.e., Eq. (1) holdsfor all I's and all V 2 f0; : : : ;m� 1gjIj).� We say that S is a k-wise independent approximation for Pn;m if Eq. (1) holds with � = 0.(Hereafter, the quanti�cation \for Pn;m" is omitted for brevity whenever Pn;m is clear from thecontext.)All constructions for sample spaces considered in this paper are e�cient in the sense that thereis a deterministic algorithm which produces the sample space S in time polynomial in the lengthof the description of S, where the sample space is described as a list of sample points and eachsample point is described by an n-ary sequence over f0; : : : ;m� 1g.1.2 Previous Work on ApproximationAll previous work in this area deal with the approximation of identical random variables which areuniformly distributed over a �nite set.1 Let Un;m be the probability matrix with all entries equalto 1=m that describes the special case of n identically and uniformly distributed m-valued randomvariables. Thus, Un;2 is the important subcase where all entries are 1=2 (describing n identicallyand uniformly distributed boolean-valued random variables). It is easy to prove that S has to be ofsize at least 2n to in order to be perfect for Un;2 (or any other joint distribution of n non-degeneraterandom variables). Previously known approximations to Un;m are of three forms.� k-wise independent approximations: constructions of sample spaces of size maxfn;mgk thatare k-wise independent approximations for Un;m are given in [7, 1].� �-approximations: constructions of sample spaces of size poly(n=�) that are �-approximationsfor Un;2 are given in [19, 2].� (k; �)-approximations: constructions of sample spaces of size poly((k log n)=�) that are (k; �)-approximations for Un;2 can be derived from the above (via the reduction of [19]).E�cient constructions of (k; �)-approximations for general Pn;m with size (maxfn; k=�g)k , are im-plicit in many works (cf., [17, 1]): In fact, any k-wise independent approximation to Un;k=� can betransformed into a (k; �)-approximation for any Pn;m (by rounding the entries in Pn;m to integermultiples of �=k).2 For constant k and � = poly(1=n), this yields a sample space of size polynomialin n. On the other hand, it has been shown that the sample space has to be of size at least nbk=2cin order to be a k-wise approximation for Un;2 [6], and for non-constant k this is not polynomial inn. 1This sentence refers to work prior to the conference publication [9] of the current work. In addition to thediscussion in Section 1.6, the reader is referred to [14, 11].2This simple argument does not extend to (k; �)-approximation of Un;k=�, because we need a bound (of �) on theNorm-1 of the distance to Un;k=� rather than a Max-Norm bound. Indeed, we may obtain such Norm-1 bound byusing a (k; �=mk)-approximation of Un;k=�, but then the sample space will be mk times bigger.2



For some applications the constructions described above su�ce. For example, in the analysis ofsome of the randomized algorithms for graph problems presented in [17] (and in [1]), approximatepairwise independence of the random variables su�ces. Thus, a construction of a sample space(of polynomial size) that is a pairwise independent approximation for general Pn;m, can be usedto convert these (polynomial-time) randomized algorithms into deterministic (polynomial-time)algorithms. In other applications (see [19]), approximations of identically and uniformly distributedboolean-valued random variables su�ce. However, in the other applications the random variablesare general and more than a constant amount of independence may be required in the analysis.Thus it is of primary importance to develop constructions for these cases.1.3 New Results on ApproximationIn this paper, we describe a construction of small sample spaces that are approximations of theindependent distribution for any Pn;m. The construction yields a sample space that is a (k; �)-approximation, where the size of the sample space is polynomial in log(n), 2k, and 1=�. Previousresults (cf., [1, 17]) that achieve the same kind of approximation yield a sample space of sizepolynomial in log(n) and (k=�)k. In contrast to previous results, when k = O(log(n)) and � =poly(1=n), the size of the sample space in our construction is polynomial in n. This case is importantto some applications (e.g., this construction improves the running time of some of the algorithmspresented in [18]). Two natural examples where we obtain a signi�cant improvement follow.Example 1 Suppose we wish to approximate n independently distributed 0-1 random variables,each assigned 1 with probability 12 + 2� and 0 otherwise. Using previously known techniques, oneobtains a sample space of size polynomial in log(n) and (k=�)k, which is a (k; �)-approximationof the above. In contrast to previous results, our construction results in a sample space of sizepolynomial in log(n), 1=�, and 2k.Example 2 Suppose we wish to approximate n independently distributed random variables, wherethe ith random variable is uniformly distributed over the set f1; 2; :::;mig with the mi's being ar-bitrary. Using previously known techniques, one obtains a sample space of size polynomial in(maxfn; k=�g)k that is a (k; �)-approximation of the above. Again, our construction improves overthe above by providing a sample space of size polynomial in log(n), 1=�, and 2k.1.4 An overview of the main constructionOur main construction is described in this paragraph. For simplicity, we consider here the specialcase of approximating the joint distribution of n independent 0-1 random variables. Namely, eachrandom variable Xi satis�es Xi 2 f0; 1g. Let pi = Pr(Xi=0). To construct a (k; �)-approximationof X = X1 � � �Xn, we use a (`; �=2`+1)-approximation of the uniform distribution over f0; 1gn`,where ` def= O(k+log(1=�)). We partition the latter n` Boolean random variables into n consecutiveblocks with ` random variables in each block. We interpret each block as the binary representationof an integer, and let Bi denote the integer represented by the ith block. The approximation to X,denoted Y = Y1 � � � Yn, is determined by letting Yi = 0 if Bi < pi � 2`, and Yi = 1 otherwise.If the Bi's are a (k; �=2k`)-approximation of the uniform distribution over f0; 1; :::; 2`�1gn thenthe Yi's de�ned above would be a (k; �)-approximation of the speci�cation Pn;2. This, however,requires the individual bits of all the Bi's to be a (` � k; �=2k`)-approximation of the uniform distri-bution over f0; 1g`n. However, we want to (and do) use a much weaker approximation; that is, a(`; �=2`+1)-approximation of the uniform distribution over f0; 1g`n.3



Our analysis uses the observation that, typically, each Yi is determined by a few of the (mostsigni�cant) bits of the corresponding Bi. Speci�cally, we show that only with small probability arethe values of the Yi's determined by more than ` = O(k + log(1=�)) bits in the representation ofthe Bi's. Thus, it su�ces that the bit string, obtained by concatenating the binary representationsof the Bi's, is an (`; �=2`+1)-approximation (of the uniform distribution over f0; 1g`n).We end this overview by presenting an alternative construction of unknown quality. The problemof constructing (k; �)-approximations to arbitrary product distributions, is reminiscent of the classicproblem of generating arbitrary probability distributions by using a uniform probability distributionover binary strings (or in other words by using an unbiased coin). In particular, Knuth and Yaohave extensively analyzed the expected number of coin tosses required in such schemes [13]. Theinput to such a scheme is a uniformly distributed binary sequence and the output is a sequencewhich approximates the desired distribution. A natural suggestion is to use one of these schemesto produce an a (k; �)-approximation to the n-fold distribution, by feeding it as input a (O(k); �0)-approximation to the uniform binary distribution, for some appropriate �0. We do not know whetherthis alternative approach works; actually, we conjecture that, in general, it does not.1.5 Omitted from this versionThe conference version [9] of the current paper contains some material which is omitted here. Thisincludes:� Discussing the problem of constructing small sets with low discrepancy with respect to cer-tain families of (axis-parallel) rectangles in high dimensional spaces. We comment that, insubsequent literature, the rectangles considered in [9] are referred to as geometric rectangles.� Relating the problem of constructing approximations of product distributions to the problemof constructing small sets with low discrepancy (as above). In particular, the main construc-tion presented in this write-up was presented in [9] using the terminology of low discrepancysets.� [9] contains two additional constructions of small sets with low discrepancy. The �rst suchconstruction has been superseded by Chari et. al. [5] and by Armoni et. al. [3], whereas thesecond construction follows immediately from a theorem in [20]. Both constructions apply alsoto combinatorial rectangles (although the statement in [9] refers only to geometric rectangles).In light of the above developments, we chose to omit all these results from the current write-up. Inparticular, we have omitted a result of [9] which has found further application in subsequent work(e.g., [5]). We refer to the fact that, for any speci�cation matrix Pn;m, any k-wise independentapproximation to Pn;m constitutes a 2�
(k)-approximation to Pn;m. (A proof can be found ineither [9, 10, 5].)1.6 Subsequent WorkIn the �ve years which have elapsed since the conference presentation of this work (cf., [9]), a fewrelated works were done. We brie
y describe the related results in [16, 5].The work of Chari et. al. [5, Sec. 3] is most relevant to the current write-up. It presentsconstructions which match or improve over the sizes of all constructions presented in [9]. However,for some natural setting of the parameters, the size of the main construction of the current write-upis only matched by [5, Sec. 3]. Speci�cally, their construction has size polynomial in log(n), 1=�,4



and minf2k; klog(1=�)g (whereas our construction has size polynomial in log(n), 1=�, and 2k). Thus,[5, Sec. 3] yields no improvement when � < 2�k, which is the typical case when one requires abound on the approximation in the Norm-1 measure (rather than in Max-Norm as de�ned above).3Linial et. al. [16] consider a one-sided version of the discrepancy problem. That is, rather thanconstructing sets which approximate the volume of all rectangles they construct sets which hit allsu�ciently big rectangles. Their construction is polynomial in all relevant parameters (includingthe bound on the density of rectangles which must be hit).The problem of constructing low discrepancy sets of polynomial size in all relevant parametersis still open. In particular, it is an open problem to construct sample spaces of size poly(n; k; ��1)which (k; �)-approximate any n-fold product distribution. We comment that if one drops therequirement that the sets be e�ciently constructible, then sets (resp., spaces) of the desired sizescan be easily shown to exist using a random construction. This suggests the following (probablyeasier, de�nitely no harder) open problem: Using randomness to produce certi�ed low discrepancysets (i.e., a Las-Vegas rather than Monte-Carlo randomized construction).2 Main ConstructionTheorem 1 (general product approximator): There is a deterministic algorithm, which on inputa speci�cation matrix Pn;m = fpi;j : i= 1; :::; n ; j = 0; :::;m � 1g, and parameters (k; �), outputsa sample space of size poly(2k; ��1; log n) which constitutes a (k; �)-approximation for Pn;m. Thealgorithm works in time poly(n; 2k; ��1; logm).The above yields a (k;mk � �)-L1-approximation of Pn;m.We �rst present our construction for the special (yet interesting) case of approximating Boolean-valued random variables. We later generalize the construction to handle random variables rangingover arbitrary sets.2.1 Special Case: Boolean-valued random variablesAssume we are given a Boolean speci�cation matrix, Pn;2 = fpi;j : i = 1; :::; n ; j = 0; 1g (i.e.,m = 2). Clearly, it su�ces to specify the probability that each of the n variables is to be assigned0. Let pi def= pi;0, for every i �n, and denote by pi(1); pi(2); ::: the bits in the binary expansion ofpi (i.e., pi =Pj�1 pi(j) � 2�j). We construct a (k; �)-approximation of Pn;2 as follows.Let ` and t be integer parameters to be determined later (e.g., ` = t = 4(k + log(2=�)) will do).In our construction we use an arbitrary (e�ciently constructible) (t; (�=2t+1))-approximation of theuniform distribution over f0; 1g`n. Let us denote the 0-1 random variables in this approximation byZ1(1); :::; Z1(`); Z2(1); :::; Z2(`); :::; Zn(1); :::; Zn(`). Intuitively, ` denotes the number of 0-1 randomvariables which may e�ect a single random variable in the result, and t denotes the total numberof 0-1 variables which will be actually considered in the analysis.Construction 1 Let Z1(1); :::; Z1(`); Z2(1); :::; Z2(`); :::; Zn(1); :::; Zn(`) be a (t; �=2t+1)-approximationof the uniform distribution over f0; 1g`n. For every i, if the string Zi(1) � � �Zi(`) is smaller (in lex-icographic order) than the string pi(1) � � � pi(`) then set Yi = 0, otherwise set Yi = 1.3Recall that an (k; �)-approximation (in Max-Norm) to, say, Un;2 yields variation distance (i.e., Norm-1 approx-imation) of at most 2k� over windows of size k. Thus, to derive a meaningful result for Norm-1, one needs to have� < 2�k. 5



In other words, the sample space S (over which the Zi(j)'s are de�ned) also serves as the probabilityspace for the Yi's. Each sample point in S, denoted by z1(1); :::; z1(`); :::; zn(1); :::; zn(`), is mappedto a point, y1; :::; yn, in the new sample space (where yi = 0 i� zi(1) � � � zi(`) < pi(1) � � � pi(`)).Our analysis of the above construction is somewhat analogous to the proof of Theorem 3 in [18].We �x k variables Yi1 ; :::; Yik out of Y1; :::; Yn, and consider the quality of the approximation whichthey provide. Without loss of generality, we consider the random variables Y1; :::; Yk. Rather thanbounding the Max-Norm performance of the approximation (as required in the theorem), we willactually bound the variation distance:12 � X�1����k �����Pr(Y1 � � � Yk=�1 � � � �k)� kYi=1 pi;�i����� (3)Consider the following cards game. The values of the random variables Zi(j) are written on cardsthat are placed face down. We turn the cards over, one by one, starting with the card holding Z1(1),and continue turning the cards over in the �rst block until the value of Y1 is determined (whichhappens when the sequence of Z1(j)'s deviates from the binary expansion of p1). Then, we skip tothe next block, and continue in the same fashion. Our goal is to prove that if t = ` = 4(k+log2(2=�)),then the probability that we will turn over more than t cards is bounded by �=2. This will enableus to take advantage of variables Zi(j) that are a (t; �=2t+1)-approximation of n` perfectly randombits. Our proof is divided into two stages: First, we assume that the bits Zi(j) are perfectly random,and we bound the probability of having to turn over more than t cards. Then, we add the errorterm due to the fact that the Zi(j)'s are not perfectly random.We model this cards game by considering an in�nite random walk in a labeled in�nite binarytree as follows.1. Each node has two children, one reachable by an edge labeled 0 and the other reachable byan edge labeled 1. We associate to each path the binary string obtained by the edge labelsalong the string. Moreover, this binary string is interpreted as the binary representation offraction 0:b1b2 : : :, where the most signi�cant bit appears closer to the root. The random walkstarts at the root and at each node a random step is made so that each of the two childrenis reached with equal probability (of one-half). A step in the random walk corresponds toturning a card over in the cards game.2. The nodes in the tree are labeled by pairs of the form (i; �), where i 2 f1; ::; kg and � 2f0; 1; �g. The i component in a node-label signi�es the block that we are now dealing with.The � component signi�es the status of the block as follows: � 2 f0; 1g means that Yi hasbeen determined (i.e., Yi set to �), and � = � means that Yi is not determined yet, and thatwe need to reveal more bits from the i'th block.3. We now describe how the node labels are de�ned. We start by describing how the labelscorresponding to Y1 are \hung" from the root. The root is labeled (1; �). Consider the in�nitepath, denoted by path(root; p1) = p1(1); p1(2); :::, starting from the root, that correspondsto the binary representation of p1. All the nodes along path(root; p1) are labeled (1; �). Allthe nodes that are exactly an edge away from path(root; p1) are labeled either (1; 0) or (1; 1)according to the following rule: Consider the fractions corresponding to the labels along paths,and consider the order induced by this correspondence on paths that have the same startingpoint. A deviation from path(root; p1) that de�nes a path \smaller" than path(root; p1) endswith a node label (1; 0), and a deviation that de�nes a path \greater" than path(root; p1)6



ends with a node label (1; 1). For example, suppose that p1(j) = 0, then the node reachedby the path p1(1); :::; p1(j � 1); 1 has label (1; 1). This completes the description of the nodelabels corresponding to Y1.4. We continue to label the tree with node labels corresponding to Y2 by \hanging" them fromsubtrees rooted at nodes labeled (1; 0) or (1; 1). Given a node v labeled (1; �), where � 2f0; 1g, let path(v; p2) = p2(1); p2(2); ::: denote the in�nite path starting at v correspondingto the binary representation of p2. All the nodes along path(v; p2) (except v) are labeled(2; �). Deviations from path(v; p2) are labeled (2; 0) or (2; 1) according to whether they are\smaller" or \greater" than path(v; p2). We continue in this fashion until the nodes labels ofY1; : : : ; Yk are given.5. We de�ne a node to be complete if it has the label (k; 0) or (k; 1). For sake of simplicity, welabel by (k; �) the children of any node labeled (k; �) for � 2 f0; 1g. Recall that reachinga complete node via a random walk results in setting values to all the (relevant) variablesY1; : : : ; Yk.The following claims are easily veri�ed.Claim 2 Consider a random in�nite path going down the tree and set eYi = �i if and only if thepath goes through a node labeled (i; �i), where �i 2 f0; 1g. Then for every � = �1 � � � �k 2 f0; 1gk,Pr(eY1 � � � eYk=�) = kYi=1 pi;�iProof: The process by which the eYi's are set is identical to independently and uniformly selecting(real numbers) ri's in the interval [0; 1] and setting eYi = 0 if ri < pi (and eYi = 1 if ri > pi). 2Claim 3 The number of non-complete nodes at level t is Pk�1i=0 �ti�� 2 34 t+k.Proof: Consider an incomplete node v and the path p from the root to v. Let i denote themaximum index for which a label (i; 0) or (i; 1) exists along the path p. The path p is uniquelydetermined by the i� 1 levels that contain nodes with labels (i0; 0) or (i0; 1) (where i0 � i) along p.The reason is that, between two such levels, the path p follows the edge labels equal to the binaryrepresentation of the fraction pi0 , where (i0 � 1; �) is the last non-* node label reached. Thus,the number of non-complete nodes at level t equals Pk�1i=0 �ti�. Clearly, for t � 4k this expressionis bounded by 2t � 2 34 t+k. For t > 4k, the expression is bounded by 2H2(k=t)�t < 2 34 t+k (sinceH2(�) < 34 + � for all � < 1, where H2 is the binary entropy function). 2Claim 4 Consider a random path of length t going down the tree and set eYi = �i if the pathgoes through a node labeled (i; �i), where �i 2 f0; 1g. In case the path does not go through anynode labeled (i; �) (with � 2 f0; 1g), set eYi arbitrarily. Then the variation distance between thedistribution of eY1 � � � eYk and the speci�cation Pn;2 is bounded by 2�( t4�k).Proof: By Claim 2, the variation distance is due to non-complete nodes in the tth level. UsingClaim 3, such nodes are reached with probability bounded by 2� t4+k. 2The de�nition of the eYi's in Claim 4 di�ers from the setting of the Yi in Construction 1 only inthe independence requirements. Speci�cally, the proof of Claim 4 assumes that each path in the7



tree is equally likely, whereas in Construction 1, the Zi(j) are a (t; �=2t+1)-approximation of theuniform distribution over f0; 1g`n. We show below that using the Zi(j)'s to de�ne the probabilitiesof taking the paths down the tree merely adds an error term bounded by �=2. Hence, we getProposition 5 Let ` = t = 4(k + log2(2=�)). Then Yi's presented in Construction 1 constitute a(k; �)-L1-approximation of Pn;2.Proof: Our aim is to establish an upper bound on the variation distance of Expression (3) for theYi's presented in Construction 1. By Claim 4 and the setting of t, it follows that for the eYi's, asde�ned in Claim 4, we have12 �X� �����Pr(eY1 � � � eYk=�)� kYi=1 pi;�i����� < 2�( t4�k) = �2 (4)However, we claim that the eYi's are set exactly as they would have been set in the construction ifthe Zi(j)'s were to be a t-wise independent approximation of the uniform distribution over f0; 1g`n.Intuitively, the eYi's are de�ned by limiting the length of the random walk down the tree to t levels,and the same should hold even when the moves down the tree are governed by a non-disjointsequence of random variables as long as the random variables along each path are independent anduniformly distributed in f0; 1g.Claim: Suppose that the Zi(j)'s are a t-wise independent approximation of the uniform distributionover f0; 1g`n. Then Yi's presented in Construction 1 constitute a (k; �=2)-L1-approximation of Pn;2.Proof: Recall that the values of the Zi(j)'s determine the random walk down the tree. Speci�cally,the steps taken until node (1; �) (with � 2 f0; 1g) is reached are determined by the random variablesin the �rst block Z1(1); Z1(2); ::; Z1(j1);where j1 � t � ` is the number of such steps. The next steps, taken until node (2; �) is reached, aredetermined by the random variables Z2(1); Z2(2); ::; Z2(j2), where j2 � t is the number of such steps,and so on. It is important to observe that, although di�erent paths make us consider (or reveal)di�erent Zi(j)'s, the hypothesis that the Zi(j)'s constitute a t-wise independent approximation (tothe uniform distribution over f0; 1g`n) implies that each node in level t is reached with probability2�t.This important observation follows from the fact that we reach a speci�c node v in level t if andonly if we reveal t speci�c values on t speci�c Zi(j)'s. The cards we reveal from the i'th block aredetermined by the subpath from the root to v the nodes of which are labeled (i; �), and the valuesthat we reveal in the i'th block are the edge labels along this subpath. Thus, as claimed, each nodein level t is reached with probability 2�t, and so (Y1; ::; Yk) is distributed identically to (eY1; ::; eYk).Using Eq. (4), the claim follows. 2Turning to the actual Zi(j)'s which are \only" a (t; �=2t+1)-approximations of the uniform distribu-tion over f0; 1g`n, we conclude that if the walk on the tree is determined by the actual Zi(j)'s, then,for every node v in level t, the probability of reaching v is in the interval [2�t��=2t+1; 2�t+�=2t+1].Thus, the Yi's deviate from the eYi's by at most 2t � 2�(t+1) � �, and the proposition follows.
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Comment 1: Proposition 5 holds also when setting ` = log2(4k=�) and t = 4(k+log2(4=�). Thiscan be accomplished by rounding the probabilities to O(log(k=�)) bits of precision, and modifyingthe tree labeling so that paths labeled (i; �) are �nite. However, the gain is negligible since thevalue of ` has only a poly-log e�ect on the size of the sample space for the Zi(j)'s (speci�cally, thesize is exponential in k and logarithmic in `, and so reducing ` from O(k+log(1=�)) to O(log(k=�))has little impact).2.2 The General CaseThe construction for the general case extends Construction 1 in the obvious manner. That is, letPn;m = fpi;j : 1� i�n; 0� j�m� 1g be a speci�cation matrix. For i = 1; :::; n and j = 0; 1:::;m,let qi;j def= Pj�1v=0 pi;v (and qi;0 = 0). Denote by qi;j(1); qi;j(2); ::: the bits in the binary expansion ofqi;j. Let ` and t be integers to be determined later (e.g., ` = t = 4(2k + log(2=�)) will do).Construction 2 Let Z1(1); :::; Z1(`); Z2(1); :::; Z2(`); :::; Zn(1); :::; Zn(`) be a (t; (�=2t+1))-approximationof the uniform distribution over f0; 1g`n. For every i, if the string Zi(1) � � �Zi(`) is (in lexicographicorder) between the string qi;j(1) � � � qi;j(`) and the string qi;j+1(1) � � � qi;j+1(`) then set Yi = j. Incase Zi(1) � � �Zi(`) = qi;j(1) � � � qi;j(`), set Yi = j.Extending the argument used in the previous subsection we can easily evaluate the quality ofapproximation provided by Construction 2. Again, we consider without loss of generality, thevariables Y1; :::; Yk. This time, we upper bound for each � = �1 � � � �k 2 f0; 1; :::;m � 1gk, theabsolute di�erence �����Pr(Y1 � � � Yk=�)� kYi=1 pi;�i����� (5)The cards game we play this time depends on �1 � � � �k, and the purpose of the game is to decidewhether Yi = �i, for i = 1; :::; k. This means that we turn over cards from each block until we candecide whether Yi = �i, or not. In case Yi 6= �i, we do not care about the exact value of Yi.The labeling of the binary tree, that models the cards game, depends on �1 � � � �k and is describedbelow. For each i = 1; :::; k, we are interested in the binary expansions of both qi;�i and qi;�i+1.Each node in the tree is labeled by a pair of the form (i; �), where i = 1; :::; k and � 2 f+;�; �g.Intuitively, a node labeled (i;+) corresponds to a setting Yi = �i, a node labeled (i;�) correspondsto a setting Yi 6= �i, and a node labeled (i; �) indicates that Yi is yet to be set. (Indeed, in thebinary case setting Yi 6= �i means Yi = �i � 1.)The root is labeled (1; �), and there are two in�nite paths going down from the root with all nodeson it labeled (1; �). These are the paths corresponding to the binary expansion of q1;�1 and q1;�1+1,respectively. All the nodes reached by following such a path up to some node and then taking asingle step away from the path are labeled (1; �), where � 2 f+;�g. Speci�cally, if q1;�1(j) = 0then the path going down from the root following the edge labeling hq1;�1(1); :::; q1;�1 (j � 1); 1ireaches a node labeled (1;+). In case q1;�1(j) = 1, the path going down from the root fol-lowing the edge labeling hq1;�1(1); :::; q1;�1 (j � 1); 0i reaches a node labeled (1;�). Similarly, ifq1;�1+1(j) = 0 (resp., q1;�1+1(j) = 1) then the path going down from the root following the edgelabeling hq1;�1+1(1); :::; q1;�1+1(j � 1); 1i (resp., labeling hq1;�1+1(1); :::; q1;�1+1(j � 1); 0i) reaches anode labeled (1;�) (resp., labeled (1;+)). Recall, when a random walk reaches a node labeled(1;+) (resp., labeled (1;�)), the random variable Y1 is set to �1 (resp., to �0 6= �1).From each node labeled (i; �), with i < k and � 2 f+;�g, there are two in�nite paths going downthe tree with all nodes labeled (i+1; �). These are the paths corresponding to the binary expansion9



of qi+1;�i+1 and qi+1;�i+1+1, respectively. The nodes reached from a node labeled (i; �) by followingthe \qi+1;�i+1 -expansion path" (resp., \qi+1;�i+1+1-expansion path") up to some node and then tak-ing a single step away from the path are labeled (i+1; � 0), where � 0 2 f+;�g. Again, if qi+1;�i+1(j) =0 (resp., qi+1;�i+1(j) = 1) then the path going down from the root following the edge labelinghqi+1;�i+1(1); :::; q1;�i+1 (j � 1); 1i (resp., labeling hqi+1;�i+1(1); :::; q1;�i+1 (j � 1); 0i) reaches a nodelabeled (i+1;+) (resp., labeled (i+1;�)). Also, if qi+1;�i+1+1(j) = 0 (resp., qi+1;�i+1+1(j) = 1) thenthe path going down from the root following the edge labeling hqi+1;�i+1+1(1); :::; q1;�i+1+1(j � 1); 1i(resp., labeling hqi+1;�i+1+1(1); :::; q1;�i+1+1(j � 1); 0i) reaches a node labeled (i + 1;�) (resp., la-beled (i + 1;+)). Reaching a node labeled (i + 1;+) (resp., labeled (i + 1;�)), sets the randomvariable Yi+1 to �i+1 (resp., to �i+1 � 1). We de�ne a node to be complete if it has the label(k;+) or (k;�). For sake of simplicity, we label by (k; �) the children of any node labeled (k; �) for� 2 f+;�g. Intuitively, reaching a complete node via a random path from the root means that wecan determine for every i 2 [1::k] whether Yi = �i.The following (analogous to the above) claims are easily veri�edClaim 6 Let � = �1 � � � �k 2 f0; 1gk, and consider a random in�nite path going down the tree inwhich nodes are labeled according to � (as described above). Suppose we set eYi = �i if and only ifthe path goes through a node labeled (i;+). ThenPr(eY1 � � � eYk=�) = kYi=1 pi;�iClaim 7 The number of nodes at level t which are not complete is Pk�1i=0 �ti� � 2i+1 � 2 34 t+2k.The extra 2i+1 factor (compared to Claim 3) is due to the fact that incomplete paths are not fullydetermined by the levels in which the path is not marked by � (as before): From each vertex marked(j; �), with j � i and � 2 f+;�g, there are two paths (rather than one) marked by (j + 1; �), andso an incomplete path is determined by both the non-� levels and the identity of one of the twocorresponding possible paths.Claim 8 Let � = �1 � � � �k 2 f0; 1gk, and consider a random path of length t going down the treein which nodes are labeled according to �. Suppose we set eYi = �i if the path goes through a nodelabeled (i;+), and set eYi 6= �i if the path goes through a node labeled (i;�). In case the path doesnot go through any node labeled (i; �), with � 2 f+;�g, we set eYi arbitrarily. Then�����Pr(eY1 � � � eYk=�)� kYi=1 pi;�i����� < 2�( t4�2k) :The de�nition of the eYi's in Claim 8 corresponds to the setting of the Yi's in Construction 2,provided that the Zi(j)'s constitute a t-wise independent approximation of the uniform distributionover f0; 1g`n, and that ` � t. As in the proof of Proposition 5, setting ` = t and allowing the Zi(j)'sto constitute a (t; (�=2t+1))-approximation of the uniform distribution over f0; 1g`n, merely addsan error term bounded by �=2. Hence, we getProposition 9 Let ` = t = 4 � (2k + log2(2=�)). Then Yi's presented in Construction 2 constitutea (k; �)-approximation of Pn;m.The reason that we are able to prove (k; �)-L1-approximation in the binary case and only (k; �)-approximation in the general case is due to the fact that the tree labeling in the general casedepends on the values �1 � � � �k, whereas in the binary case the tree labeling depends only on theprobed indices (which for simplicity were chosen to be 1; : : : ; k).10



Proof of Theorem 1: Using the known results on (t; �0)-approximation of the uniform distri-bution over f0; 1g`n, Theorem 1 follows. Speci�cally, we need a (t; 2�(t+1) � �)-approximation ofthe uniform distribution over f0; 1g`n, where ` = t = 4 � (2k + log2(2=�)). By results of [2], suchapproximations can be e�ciently constructed having sample space of size� t � log2(`n)2�t�1� �2 = 22t+2 � (t log2(`n))2�2= eO 216k � (log n)2�10 !where eO(x) = poly(log x) � x. The theorem follows.Comment 2: The complexity of our construction is determined by the complexity of the (t; �0)-approximation to the uniform distribution over f0; 1g`n, for �0 = �=2t+1. The overhead added byour construction is merely performing the easily computed mapping of `n-bit long sequences (i.e.,points in the latter sample space) to n-sequences over f0; : : : ;m � 1g (i.e., points in the formersample space). Recall that this mapping amounts to comparisons of `-bit strings.Comment 3: Construction 2 corresponds to a small set of low discrepancy with respect to (axis-parallel) (geometric) rectangles with at most k non-degenerate coordinates. This claim follows fromthe fact that the underlying sample space (i.e., the random variables Z1(1); :::; Zn(`)) do not de-pend on the speci�cation matrix Pn;m. Thus, for any speci�cation matrix Pn;m, the approximationY1; :::; Yn is determined by the same Zi(j)'s (using the actual speci�cation matrix Pn;m). Further-more, it is important that each Yi is determined only by the random variables Zi(j)'s, j = 1; :::; `,and that the setting of Yi (under any speci�cation matrix) corresponds to settings of Zi(1); :::; Zi(`)which correspond to intervals in [0; 1]. For details see [9]. Actually, to derive such low discrepancysets, it su�ces to use our construction while setting m = 3.3 Alternative construction for a special caseIn the special case where all the entries in the speci�cation matrix, Pn;m, are rationals of theform qp , for some small prime p or prime power (e.g., p = 3), better (k; �)-approximation schemescan be constructed. In this case, a (k; �)-approximation of Pn;m is constructed (in the obviousmanner) using a (k; �)-approximation of the uniform distribution over GF (p)n. Recall that (k; �)-approximation of the uniform distribution over GF (p)n can be constructed using support of thesame cardinality as in the construction of such approximations for the uniform binary distribution[2, 4, 8] (cf., [10, Chap. 3]).4 We getTheorem 10 Let p be a prime and Mpn;m denote the set of all n-by-m speci�cation matrices inwhich every entry is an integer multiple of 1p . Then, there is a deterministic algorithm, which oninput a prime p, a speci�cation matrix Pn;m = fpi;j : i=1; :::; n ; j =0; :::;m � 1g 2 Mpn;m, and4We stress that when constructing a small-bias probability space overGF (p)n, the size of the space does not dependon p, provided small-bias is de�ned in terms of an upper bound on the Fourier coe�cients. The transformation frommax-norm in the Fourier basis to max-norm in the (standard) pointwise basis preserves this upper bound. (Notethat the Fourier basis is not normal, and while normalizing you gain a ppk factor, lost in the cosequetive basistransformation.) For details see [10, Chap. 3]. 11
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