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Abstract

A new type of signature scheme is proposed. It consists of two phases. The first phase is
performed off-line, before the message to be signed is even known. The second on-line phase
is performed once the message to be signed is known, and is supposed to be very fast. A
method for constructing such on-line/off-line signature schemes is presented. The method
uses one-time signature schemes, which are very fast, for the on-line signing. An ordinary
signature scheme is used for the off-line stage.

In a practical implementation of our scheme, we use a variant of Rabin’s signature scheme
(based on factoring) and DES. In the on-line phase, all we use is a moderate amount of
DES computation and a single modular multiplication. We stress that the costly modular
exponentiation operation 1s performed off-line. This implementation is 1deally suited for
electronic wallets or smart cards.
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1 Introduction

Informally, in a digital signature scheme, each user U publishes a public key while keeping secret
a secret key. U’s signature of a message m is a value o, depending on m and his secret key,
such that U can (quickly) generate o and anyone can (quickly) verify the validity of o, using U’s
public key. However, it is hard to forge U’s signatures without knowledge of his secret key. We
stress that signing is a non-interactive process involving only the signer, and that one can sign
arbitrarily many messages, with one pair of keys.

Many signature schemes are known by now. Based on various intractability assumptions,
several schemes have been proved secure even against chosen message attack [8, 1, 12, 19]. Unfor-
tunately, in these schemes, the signing process is not sufficiently fast for some practical purposes.
Furthermore, even more efficient schemes like RSA [16] and Rabin’s scheme of [15], are consid-
ered too slow for many practical applications (e.g., electronic wallets [5, 4]). In particular, these
signature schemes require to perform modular exponentiation with large moduli as part of the
signing process, and these in turn require many modular multiplications. Furthermore, these
costly operations can start only once the message to be signed becomes known. Consequently,
these signature schemes will become much more attractive if only a few (say, two or three) modu-
lar multiplications need to be performed after the message becomes known, while the more costly
operations can be preprocessed. This leads to the notion of an on-line/off-line signature scheme.

A New Notion

To summarize, in many applications signatures have to be produced very fast once the message
is presented. However, one can tolerate slower precomputations, provided that they do not
have to be performed on-line (i.e., once the message to be signed is handed to the signer and
while the verifier is waiting for the signature). This suggests the notion of an on-line/off-line
signature scheme, in which the signing process can be broken into two phases. The first phase,
performed off-line, is independent of the particular message to be signed; while the second phase
is performed on-line, once the message is presented. We will be interested in on-line/off-line
signature schemes in which the off-line stage is feasible (though relatively slow) and both on-line
signing and verification are fast.

A General Construction

We present a general construction transforming an ordinary, digital signature scheme to an on-
line/off-line one. This is done by properly combining three main ingredients:

1. An (ordinary) signature scheme;

2. A fast one-time signature scheme (i.e., a signature scheme known to be unforgeable, pro-
vided it is used to sign a single message);



3. A fast collision-free hashing scheme (i.e., a hashing scheme for which it is infeasible to find

two strings which hash to the same value).

The essence of the construction is to use the ordinary signature scheme to sign (off-line) a ran-
domly constructed instance of the information which enables one-time signature, and later to
sign (on-line) the message using the one-time signature scheme which is typically very fast. The
hashing scheme is most likely to be used in practice for compressing long messages into shorter
tags, but it is not essential for the basic construction.

We present several practical implementation of the general scheme. In these implementations,
we use a modification of Rabin’s signature scheme [15] in the role of the ordinary signature scheme,
and DES as a basis for a one-time signature scheme. The security of these implementations is
based on the intractability of factoring large integers and the assumption that DES behaves like
a random cipher. The only computations (possibly) required, in the on-line phase of the signing
process, are applications of DES. Verification requires some DES computations (yet not too many)
and a single modular multiplication. The costly modular computation, of extracting square roots
modulo a large (e.g. 512-bit) composite integer with known factorization, is performed off-
line. A reasonable choice of parameters allows to sign 100-bit tags using only 200 on-line DES

computations (which can be performed much faster than exponentiation).

One-time Signature Schemes

One-time signature schemes play a central role in our construction of on-line/off-line signature
schemes. This is due to the fact that they seem to offer a much faster signing process than
ordinary signature schemes. The disadvantage of one-time signature scheme, namely the fact
that the signing-key can only be used once, turns out to be irrelevant for our purposes.

A general method for constructing one-time signatures was proposed in the late 70’s by
Rabin [14] and several variants of it have appeared since (cf. [11]). Yet, a rigorous analysis of
their security has never appeared. Furthermore, the known constructions can be improved in
several respects. In particular, the length of the signatures can be decreased and the security
of the schemes can be enhanced. We describe several techniques for achieving these goals. In
particular, we observe that signing error-corrected encoding of messages requires the forger to
come-up with signatures of strings which are very different from the strings for which it has
obtained signatures via a chosen message attack. This translates to enhanced security especially
when the signature scheme in used is the one described in [14, 11].

Security

To discuss, even informally, the issue of security, we need some terminology. A chosen message
attackis an attempt of an adversary to forge a signature of a user after getting from him signatures
to messages of the adversary’s choice; in this scenario, the user behaves like an oracle which
answers the adversary’s queries. The adversary’s choice of (message) queries may depend on the
user’s public key and the previous signatures the adversary has received. A known message attack



is an attempt of an adversary to forge a signature of a user after getting from him signatures
to messages which are randomly selected in the message space. (These messages are selected
independently of the adversary’s actions.) In both cases (chosen and known message attacks),
security means the infeasibility of forging a signature to any message for which the user has not
supplied the signature (i.e., existential forgery in the terminology of [8]).

A sufficient condition for the resulting signature scheme to withstand chosen message attack is
that both signature schemes used in the construction (i.e., (1) and (2)) do withstand such attacks.
However, in particular implementations it suffices to require that these underlying schemes only
withstand known message attack. This is demonstrated in the following theoretical result, where
we use a signature scheme, secure against known message attack, both in the role of the ordinary
signature scheme and in order to implement a one-time signature scheme. One-way hashing is
not used at all. The resulting scheme is secure against chosen message attack. Hence we get

Theorem: Digital signature schemes that are secure against chosen message attack exist if and

only if signature schemes secure against known message attack exist.

We remark that the above Theorem can be derived from Rompel’s work by observing that the
existence of a signature scheme secure against known message attack implies the existence of
one-way functions, while the latter imply the existence of signature schemes which are secure
against a chosen message attack [19]. However, this alternative proof is much more complex and
is obtained via an impractical construction. Furthermore, the preliminary version of our work [6]
(which includes a proof of the above Theorem), predates Rompel’s work [19].

Organization

Basic definitions concerning signature schemes are presented in Section 2. In Section 3, the
general construction of on-line/off-line signature scheme is presented. The construction of one-
time signature scheme is addressed in Section 4. Concrete implementations of the general scheme,
which utilize different constructions of one-time signature schemes, are presented in Section 5.
We conclude with a proof of the Theorem stated above (Sec. 6).

2 Some Basic Definitions

Following the informal presentation in the introduction, we recall the following definitions due to
Goldwasser et. al. [8].
Signature schemes

Definition 1 (signature schemes): A signature scheme is a triplet, (G,S,V), of probabilistic
polynomial-time algorithms satisfying the following conventions:

o Algorithm G is called the key generator. There exists a polynomial, k(-), called the key
length, so that on input 1", algorithm G outputs a pair (sk,vk) so that sk,vk € {0, 1}V,



The first element, sk, is called the signing key and the second element is the (corresponding)
verification key.

o Algorithm S is called the signing algorithm. There exists a polynomial, m(-), called the
message length, so that on input a pair (sk, M), where sk € {0,1}*) and M € {0,1}"()
algorithm S outputs a string called a signature (of message M with signing-key sk). The
random variable S(sk, M) is sometimes written as Sy (M).

o Algorithm V is called the verification algorithm. For every n, every (sk,vk) in the range of
G(1™), every M € {0,1}™") and every o in the range of Sy (M), it holds that

V(M,vk,o)=1

(One may also require that V(M, vk,o) = 1 implies that ¢ is in the range of Sy (M) for a
signing-key sk corresponding to the verification-key vk. However, this intuitively appealing
requirement is irrelevant to the real issues — in view of the security definitions which follow.)

Note that n is a parameter which determines the lengths of the keys and the messages as
well as the security of the scheme as defined below. We emphasize that the above definition does
not say anything about the security of the signature scheme which is the focus of the subsequent
definitions. We remark that signature schemes are defined to deal with messages of fixed and
predetermine length (i.e., m(n)). Messages of different lengths are deal by one of the standard
conventions. For example, shorter messages can always be padded to the desired length, and
longer messages can be broken into many pieces each bearing an ID relating the piece to the
original message (e.g., the :™ piece will contain a header reading that it is the ¢"* piece out of ¢
pieces of message with a specific (randomly chosen) ID number). Alternatively, longer messages
can be hashed into the desired length by use of a collision-free hashing function. For more details
see Section 3.3.

Types of attacks

Goldwasser et. al. discuss several types of attacks ranging in severeness from a totally non-adaptive
one (in which the attacker only has access to the verification key) up to the most severe attack
ever considered (i.e., chosen message attack, in which the attacker gets the verification-key and
may get signatures to many messages of its choice). In this paper we discuss the chosen message
attack as well as a special (and hence weak) form of known message attack (which we call random
message attack).

Definition 2 (types of attacks):

e A chosen message attack on a signature scheme (G, S,V) is a probabilistic oracle machine
that on input (a parameter) 1" and (a verification-key) vk also gets oracle access to Sy (),
where (sk, vk) is in the range of G(1"). The (randomized) oracle Sy answers a query



q € {0,130 with the random variable Sy (q) = S(sk,q). (For simplicity we assume that

the same query is not asked twice.)

¢ A random message attack on a signature scheme (G, S, V) is a probabilistic oracle machine
that on input 1® and vk also gets access to a random oracle that on query i returns a pair
(74, Ssk(7:)), where (sk,vk) is in the range of G(1*) and each of the r;’s is uniformly and
independently selected from {0,1}™"),

The above definition does not refer to the complexity of the attacking machines. In our results
we will explicitly specify the running-time of the attackers as well as the number of queries that

they make (resp., number of signatures that they receive).

Success of attacks

Goldwasser et. al. also discuss several levels of successfulness of the (various) attacks, ranging
from total forgery/breaking (i.e., ability to forge a signature for every message) up to existential

forgery/breaking (i.e., ability to forge a signature for some message).

Definition 3 (success of attacks): Consider an attack on input parameter 1" and a verification-

key vk.

o We say that an attack has resulted in total forgery if it oulputs a program © for a time-
bounded' universal machine, U, so that V(M,vk,U(x,M)) = 1 holds, for every M €
[0, 1},

o We say that an attack has resulted in existential forgery if it outputs a pair (M,o), so that
M € {0,1}"") and V(M,vk,o) = 1, and M is different from all messages for which a
signature has been handed over (by the signing oracle) during the attack.

The above definition does not refer to the success probability of the attacking machines. In
our results we will explicitly specify the success probability of the attackers. The probability will
be taken over all possible (sk, vk) pairs according to the distribution defined by G/(1"), and over
all internal coin flips of the attacking machines and the answering oracles.

Security definitions

Security definitions for signature schemes are derived from the above by combining a type of an
attack with a type of forgery and requiring that such attacks, restricted to specified time bounds,
fail to produce the specified forgery, except for with a specified probability. For example, consider

the following standard definition.

!The time bound can be fixed to be a specific polynomial. Using padding arguments, one can show that the

choice of the polynomial, as long as it is greater than - say - n?, is immaterial (cf., [9]).



Definition 4 (standard definition of secure signature schemes): A signature scheme is said to be
secure if every probabilistic polynomial-time chosen message attack succeeds in existential forgery
with negligible probability.

(A function is f:N+— N is called negligible if for every polynomial p(-) and all sufficiently large
n’s it holds that f(n) < 1/p(n).)

Notice that there is nothing sacred in the choice of polynomials as specification for the time-
bound or success-probability. This choice is justified and convenient for a theoretical treatment
of the various notions, but for deriving results concerning practical schemes one should pre-
fer the more cumbersome alternative of specifying feasible time-bounds and noticeable success-
probabilities.

3 The General Construction
Let us first define digital signature schemes with less stringent security properties. Namely,

Definition 5 A one-time signature scheme is a digital signature scheme which can be used to
legitimately sign a single message. A one-time signature scheme is secure against known (resp.,
chosen) message attack (of certain time-complexity and success-probability) if it is secure against

such attacks which are restricted to a single query.

Notice the analogy with a one-time pad, which allows one to send private messages securely as
long as one does not use the secret pad twice. An early version of one-time signature was suggested
by Rabin [14]. It required an exchange of messages between the signer and signee. Schemes which
avoid such an exchange were suggested by Lamport, Diffie, Winternitz and Merkle; see [11]. In
particular, a one-time signature scheme can be easily constructed using any one-way function.
For further details see Section 4.

We believe that the importance of one-time signature schemes stems from their simplicity
and the fact that they can be implemented very efficiently. Our construction demonstrates that
one-time signatures can play an important role in the design of very powerful and useful signature
schemes.

As our construction uses both a one-time signature scheme and an ordinary signature scheme,
we will always attach the term “one-time” to terms such as “signing-key” and “verification-key”
associated with the one-time signature scheme. Hopefully, this will help to avoid confusion.

3.1 The Basic Scheme

Let (G,5,V) denote an ordinary signature scheme and (g,s,v) denote a one-time signature
scheme. Bellow we describe our general on-line/off-line signature scheme. In our description we

assume that the security parameter is n.



Key Generation

The key generation for our on-line/off-line scheme coincides with the one of the ordinary scheme.
Namely, the signer runs G on input 1" to generate a pair of matching verification and signing
keys (VK,SK). He announces his verification-key, VK, while keeping in secret the corresponding

signing key, SK.

Off-Line Computation

The off-line phase consists of generating a pair of one-time signing/verifying keys, and producing
an ordinary signature of the one-time verification key. Both one-time keys and the signature
are stored for future use in the on-line phase. We stress that the off-line phase is performed
independently of the message (to be later signed). Furthermore, the message may even not be
determined at this stage. Following is a detailed description of the off-line phase. The signer
runs algorithm g on input 1* to randomly select a one-time verification-key vk and its associated
one-time signing-key sk. (This pair of one-time keys is unlikely to be used again.) He then
computes the signature of vk, using the ordinary signing algorithm 5 with the key SK. Namely,

% Y S (vk)

The signer stores the pair of one-time keys, (vk, sk), as well as the “precomputed signature”, X.

On-Line Signing

The on-line phase is performed once a message to be signed is presented. It consists of retrieving
a precomputed unused pair of one-time keys, and using the one-time signing-key to sign the
message. The corresponding one-time verification key and the precomputed signature to the
one-time verification key are attached to produce the final signature. Namely, to sign message
M, the signer retrieves from memory the precomputed signature X, and the pair (vk,sk). He

then computes a one-time signature
def

0= su(M)

The signature of M consists of the triplet (vk,X, o).

Verification

To verify that the triple (vk, X, o) is indeed a signature of M with respect to the verification-key
VK, the verifier acts as follows. First, he uses algorithm V' to check that X is indeed a signature
of (the one-time verification-key) vk with respect to the verification-key VK. Next, he checks, by
running v, that ¢ is indeed a signature of M with respect to the one-time verification-key vk.

Namely, verification procedure amounts to evaluating the following predicate

Vie(vk, ) A vy (M, o)



Key, Message and Signature Lengths

Let us denote by k(-) and m(-) the key and message length functions for the ordinary signature
scheme. Let [:IN — N be a function bounding the length of the signature in the ordinary signature
scheme, as a function of the parameter n (rather than as function of the message length, m(n)).
Similarly, we denote by the corresponding functions for the one-time signature scheme by ki(-),
my(-) and [4(-), and the functions for the resulting on-line/off-line scheme by k*(-), m*(:) and
I*(+). Then, the following equalities hold

m*(n) = my(n)
m(n) = ki(n)

Namely, the key-length of the on-line/off-line scheme equals the one of the ordinary scheme,
whereas the message-length for the on-line/off-line scheme equals the one of the one-time scheme.
In addition, the ordinary scheme must allow signatures to messages of length equal to the key-
length of the one-time scheme. Efficiency improvements can be obtained by using collision-free
hashing functions. This may allow setting m*(n) = n and dealing with longer messages by
hashing, as well as allow m(n) < ki(n) and signing the one-time verification-key by hashing it
first. For details see subsection 3.3.

Finally, we remark that the length of the signatures produced by the resulting scheme grow
linearly with the key-length of the one-time scheme, even in case hashing is used! Namely,

(n) = ky(n) + U(n) + l(n)

3.2 Security

The basic on-line/off-line signature scheme can be proven secure against adaptive chosen message
attacks provided that both the original schemes (i.e., the ordinary scheme (G, .5, V') and the one-
time scheme (g,s,v)) are secure against chosen message attack. As usual in complexity-based
cryptography, the above statement is not only valid in asymptotic terms but also has a concrete
interpretation which is applicable to specific key lengths. Due to the practical nature of the
current work, we take the uncommon approach of making this concrete interpretation explicit?.
Namely,

Lemma 1 Suppose that Q, T : N — N and ¢: N — R are functions so that the resulting on-
line/off-line signature scheme can be existentially broken, via a chosen Q(-)-message attack, in
time T'(-) and probability e(-). Then, for every n € N at least one of the following holds:

o The underlying one-time signature scheme can be existentially broken, via a chosen (single)
message attack, with probability at least (n)/(2Q(n)) and within time tg(n)+1(n)+(t,(n)+
ts(n) +1ts(n))-Q(n), where ta(n) is a bound on the time complexity of algorithm A.

2This clearly results in a more cumbersome statement, but we believe that in the context of the current paper
the price 1s worth paying.



o The underlying ordinary signature scheme can be existentially broken, via a chosen Q(n)-
message attack, with probability at least ¢(n)/2 and within time T'(n)+(t,(n)+1t5(n))-Q(n).

The lemma is to be understood in the counter-positive. Namely, if both the underlying (ordinary
and one-time) signature schemes can not be broken within the parameters specified in the con-
clusion of the lemma then the on-line/off-line scheme cannot be broken within the parameters
specified in the hypothesis.

Proof: Let us denote the resulting on-line/off-line signature scheme by (G*,5*, V*). Suppose
that F™ is a probabilistic algorithm which in time 7'(-) forges signatures of (G*,5*,V*), with
success probability e(n), via a chosen Q(n)-message attack. In the rest of the discussion we fix n
and consider the forged signature output by F* (at the end of its attack). This forged signature
either uses a one-time verification-key, vk, which has appeared in a previous signature (supplied
by the signer under the chosen message attack), or uses a one-time verification-key vk which has

not appeared previously. Thus, one of the following two cases occurs.

Case 1: With probability at least €(n)/2, algorithm F* forms a new signature using a one-time
verification-key used in a previous signature. In this case we use algorithm F* to construct an
algorithm, Fi, forging signatures of the one-time signature scheme (g,s,v). Loosely speaking,
algorithm F) operates as follows. It creates an instance of the ordinary signature scheme and
many additional instances of the one-time signature scheme. For all these instances, algorithm F}
will be able to produce signatures. Algorithm F; will use the attacked instance of the one-time
signature scheme in one of its responses to F”. In case F™ halts with a forge signature in which
the attacked instance of the one-time scheme appears, then algorithm F) has succeeded in its
attack. Details follow.

On input vk and access to a chosen (single) message attack on the corresponding signing
operator sy, algorithm F) proceeds as follows. Algorithm F; runs G to obtain a pair of cor-
responding keys (SK,VK) for the ordinary signature scheme. Without loss of generality, assume
that F™* always asks Q(n) queries (i.e., messages to be signed). Algorithm F} uniformly selects an
integer ¢ € {1,2,...,Q(n)}, and invokes algorithm F™* on input VK. (Motivating remark: algorithm
Fy will use the very instance it attacks in the " message to be signed for F*.)

In the sequel, F; supplies F* with signatures to messages of F*’s choice. The signature to
the ;™ message, denoted M;, is produced as follows. If j # i, algorithm F} runs g to generate a
pair of one-time keys?®, denoted (sk;, vk;), and answers with the triplet (vk;, Ssk(vk;), sa, (M;).
Note that F} has no difficulty doing so since, having produced SK and skj;, it knows the required
signing keys. In case j = 2, algorithm F) uses its the single message attack, which it is allowed,
to obtain a signature o to the message M; (relative to the verification-key vk). Using ¢ and the
ordinary signing-key SK, algorithm F) supplies the required signature (vk, Ssk(vk), o).

®We remark that it is very unlikely that vk, equals vk. Yet, if this happens then algorithm Fy can use sk;

(which it knows) in order to forge signatures, relative to vk (= vk;), to any message.



Eventually, with probability at least €(n)/2, algorithm F™* halts yielding a signature to a new
message, denoted M, in which the one-time verification-key is identical to one of the one-time
verification-keys which has appeared before. With probability 1/Q(n), conditioned on the event
that such a forged signature is output by F*, the forged signature output by F* uses the same
one-time verification-key used in the :** signature, namely the one-time verification-key vk. Since
M # M;, algorithm F) obtains (and indeed outputs) a signature to a new message relative to the
one-time verification-key vk. Hence, the attack on the one-time signature scheme succeeds with
probability at least %(ﬁ% We observe that the time complexity of algorithm F; can be bounded

by ta(n)+ T(n)+ Q(n) - (t,(n) + ty(n) + ts(n)).

Case 2: With probability at least €(n)/2, algorithm F™* forms a new signature using a one-time
verification-key not used in previous signatures. In this case we use algorithm F* to construct an
algorithm, F5, forging signatures of the ordinary signature scheme (G, 5, V). Loosely speaking,
algorithm F, operates as follows. It creates many instances of the one-time signature scheme.
For each of these instances, algorithm F3 will be able to produce signatures. Algorithm Fy will
use the chosen message attack on the ordinary signature scheme to obtain signatures to these
one-time verification-keys and using the corresponding one-time signing-keys F, will be able to
supply F™ with signatures to messages of its choice. In case F* halts with a forge signature in
which a new instance of the one-time scheme appears, then algorithm F3 has succeeded in its
attack. Details follow.

On input VK (and access to chosen message attack on the corresponding signing operator
Ssk ), algorithm F, invokes F™* on input VK and supplies F™* with signatures to messages of F™*’s
choice as follows. To supply a signature to the j* message, denoted M;, algorithm F, starts
by running ¢ to generate a pair of one-time keys, denoted (sk;, vk;). Algorithm F, then uses
the chosen message attack to obtain an ordinary signature, denoted X;, to vk; (relative to the
ordinary verification-key VK) and replies with the triplet (vk;, ¥;, s, (M;). (Note that F, has no
difficulty producing su,(M;) since it knows the required signing key.)

Eventually, with probability at least €(n)/2, algorithm F* yields a signature to a new message
which contains an Sg-signature of a one-time verification-key which has not appeared so far. In
this case, algorithm F; obtains (and indeed outputs) a signature to a new message relative to the
ordinary verification-key VK. Hence, the attack on the ordinary signature scheme succeeds with
probability at least izﬂ We observe that the time complexity of algorithm F, can be bounded
by T'(n) + Q(n) - (t,(n) + t;(n)) and that it asks @)(n) queries. The lemma follows. O

Remark: The chosen message attacks described in the above proof, both in Case 1 and Case
2, are oblivious of the corresponding verification-key. Hence, the resulting on-line/off-line sig-
nature scheme resists general chosen message attacks (which may depend on the corresponding
verification-key), even if the underlying ordinary and one-time signature schemes only resists
chosen message attacks which are oblivious of the corresponding verification-key.

Recalling the standard definition of security (i.e., Def. 4), we get

10



Theorem 1 The resulting on-line/off-line signature scheme is secure (in the standard sense)
provided that the underlying ordinary and one-time signature schemes are secure.

3.3 Efficiency Considerations

The off-line computation, in our scheme, reduces to generating an instance of the one-time signa-
ture scheme and computing the signature of a single string (specifically, the one-time verification-
key) in the ordinary scheme. The on-line phase of the signing process merely requires applying
the signing process of the one-time signature scheme. Hence, our on-line/off-line scheme is ad-
vantageous for the signer only if the signing algorithms of one-time signature schemes are much
faster than signing algorithms of ordinary schemes. Indeed this seem to be the case if one uses the
one-time signature schemes based on one-way functions, described in Section 4, and especially if
DES is used as a one-way function.

In case the verification procedure in the ordinary signature scheme (and in the one-time
signature scheme) is much faster than signing in the ordinary scheme, the entire on-line (signing
and verification) process is sped-up. The condition (i.e., much faster verification) is satisfied in
Rabin’s scheme as well as in RSA when used with small verification exponent (e.g., 3). Hence,
attractive implementation of the general scheme can be presented — see Section 5.

A major factor effecting the efficiency of the above scheme is the length of the strings to which
the ordinary and one-time signing algorithms are applied. A standard practice used to reduce
the time required for signing (as well as verification) is to use very fast hashing functions which
map long strings into much shorter ones. This hashing functions have to be secure in the sense
that it is hard to form collisions; namely, find two strings which are mapped by the function to
the same image.* Assuming the intractability of factoring (alternatively of extracting Discrete
Logarithms), such functions can be constructed [3, 8]. Yet, in practical implementations, one
may use much faster hashing schemes. A typical example is the MDJ5 recently suggested by
Rivest [17, 18].

The security of a scheme which uses hashing can be proven in a way analogous to the proof
of Lemma 1. Namely, one considers two cases: the case that a forged signature is formed using a
hashed value which has appeared in previous signatures, and the case that such a hashed value
does not appear in the forged signature. In the first case, we derive an algorithm which contradicts
the collision-free property of the hashing function, whereas in the second case we proceed as in
the proof of Lemma 1.

* Actually, a lower level of security suffices for our purposes. Specifically, it suffices that the function is one-way
hashing; namely, given a preimage to the function it is infeasible to find a different preimage which is mapped,
under the hashing function, to the same image [12]. It is known that one-way hashing functions can be constructed
using any one-way function [12, 19], but this construction is very far from being practical.

11



3.4 A Remark

Most ordinary signing algorithms are based on the computational difficulty of integer factor-
ization. Should some moderately faster factoring algorithm come about, then longer ordinary
verification and secret keys will be necessary. This will cause a slowdown in the off-line stage,
but not in the on-line one. Thus, our construction may become even more useful if ordinary
signature schemes will become slower due to increasing security requirements.

4 One-Time Signature Schemes Based on One-Way Function

One-time signatures schemes play a central role in our construction of on-line/off-line signature
schemes. A general method for constructing one-time signatures has been known for a relatively
long time; cf., [14, 11]. Yet, a rigorous analysis of their security has never appeared. Furthermore,
the known constructions can be improved — as shown below.

4.1 The Basic Construction

We start with the basic construction (of one-time signature schemes based on one-way functions).
Let f be a one-way function; namely, we assume that f is polynomial-time computable but it
is infeasible to invert f with noticeable success probability (taken over the distribution resulting
from applying f to a uniformly chosen preimage). The signing-key consists of a sequence of m
pairs of n-bit long strings, (29, 27),..., (22, 2L ), and the verification-key consists of the result of
applying the one-way function f to each of the 2m strings (i.e., the verification-key consists of the
sequence (f(z9), f(x])), ..., (f(22), f(z})), where f is the one-way function). To sign the message
01...0,,, the signer reveals z{*, ..., z7™, and the signee applies f to the revealed strings and checks
whether they match the corresponding strings in the verification-key. Loosely speaking, this
scheme is secure since otherwise we get a way to invert the one-way function f. Further details

will become obvious later.

4.2 Shortening the lengths of keys and signatures

A somewhat repelling property of the basic construction is that it uses very long keys and sig-
natures. Additional ideas can be used to reduce these lengths. We start with an idea which
is attributed in [11] to Winternitz. The idea is to use only m + 1 strings, each of length n,
instead of the 2m strings used above. The signing-key consists of a sequence of m+1 (n-bit long)
strings, @, &1, ..., Tm, and the verification-key consists of the sequence f™(z¢), f(z1),..., f(@m),
where f'(z) denotes the string resulting from x by applying f successively m times. To sign the
message 01...0,,, the signer reveals the z;’s for which o; = 1 as well as y def fz 7"(zg). Verifica-
tion is done in the obvious manner (i.e., applying f to the supplied z;’s and applying fm_z"’ to
y). Intuitively, the zero-component serves as an “accumulator” for the rest. To prove that the
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signature scheme is secure we need to assume that f is one-way also on the distribution obtained
by iterating it upto m times (cf., [9]). Details follow.

Another idea is to break the message to be signed into blocks and to use each block as an
indicator determining how many times f has to be applied to each of the individual strings in
the signing-key so to form the signature. Note that in the previous construction, depending on
the bits of the message to be signed, the function f is applied between m and 0 times to z,, and
either once or not at all to each z;, for ¢ # 0. A precise description, which combines both ideas,

follows.

Construction 1 (based on accumulator and block partition): Let ¢ : N — N be an integer
function so that 1 < t(n) = poly(n) and f: {0,1}* — {0,1}* be a function, both computable
in polynomial-time. We consider the following one-time signature scheme for message length
function m(-).
o key generation: On input 17, the key-generator uniformly selects xq, 1, ..., Zm € {0,1}7,
where m = m(n) and t < #(n). The signing-key consists of these a;’s, whereas the

verification-key is
g DDy P ), e £ () -

o signing: To sign a message M € {0,1}™, its ¢-bit long blocks, o1, ...,0,,, are interpreted
as integers® and the signature

PR @), [T @) 2T ()
is computed.

o verification: the components of the signature vector are subjected to the corresponding
number of applications of f and the result is compared to the verification-key. Namely,
to verify that (zo, 21, ..., 2,¢) constitutes a signature to M = (04,...,0,,,) relative to the

verification-key ¥ = (Yo, ¥1, ---» Ym/1), ONE computes
FEDOIDZL ), (), e S (2

and compares the resulting vector to the vector ¥.

Lemma 2 Suppose that T : N — N and ¢ : N — R are functions so that the above one-time
signature scheme can be existentially broken, via a chosen (single) message attack, in time T'(-)
and probability €(-). Then, for every n € N and some 1 < (m/t)- (2" — 1) the function f can be
inverted on distribution f'(U,) in time T(n) and success probability %, where U, denotes

a random variable uniformly distributed over {0,1}".

®i.e., the string 0 is interpreted as 0, the string 0°7'1 as 1, etc.
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In the statement of Lemma 2, as well as in all other lemmata in this section, we ignore the time
required to compute the function f (in the forward direction!). Namely, the inverting algorithm
(of the conclusion) actually runs in time 7'(n) 4+ 2* - (m/t) - T4(n) (rather than 7'(n)), where
T denotes the complexity of computing f. This omission is justified since the additive term is

negligible in all reasonable applications of such lemmata.

proof: Let F be a probabilistic algorithm that existentially breaks the one-time scheme, via a
chosen (single) message attack, in time 7'(-) and probability €(-). Hence, for every n € N, with
probability e(n), algorithm F' first asks for a signature of M € {0,1}”™ and then produces a
signature to M’ # M. Let M =by---bys and M' = ¢, ---¢cp,/4. Then, one of the following two

cases occurs.

Case I: there exists an j so that b; < ¢;. In this case we can use F to invert f on the (2—1—b;)™
iterate of f.

Case 2: Y7, b; > 577, ¢;. In this case we can use F to invert f on the (37 0;)™ iterate of f.

The actual inverting algorithm is similar in the two cases. On input y, the inverting algorithm
selects j = 0 with probability £ and j uniformly in {1,...,(m/t)} otherwise. In case j = 0,
the algorithm selects b uniformly in {1,...,(m/t)2'}, and otherwise b is selected uniformly in
{1,..,2}. Set b = (m/t)-(2'=1)—bif j = 0 and b = 2! —1 —b otherwise. The verification-key is
formed as in the key-generation, except that the 5™ component is fg(y) We invoke F' with this
verification-key. With probability at least %, algorithm F asks for the signature that we
can supply (i.e., the j*" component is not smaller than b) and returns a signature of a message in
which the 7™ component is smaller than b. This yields an inverse of y under f, and the lemma

follows. O

Remark: For t = 1, the statement of Lemma 2 is tight in the following sense. Any algorithm
inverting f with probability e(n) (in time T'(n)) yields a (m - T'(n)-time) chosen message attack
on the one-time signature scheme which existentially forges a signature with probability 1 — (1 —
e(n))™ = m-e(n) (for e(n) < 1/m). Hence, in case t = 1, the security loss of a factor m is
inevitable. Similarly, for general ¢ > 1, we get an inevitable loss of security by a “* factor.

4.3 Enhancing security by use of error-correcting codes

As just remarked, the security loss of a factor of m/t in the above construction is inevitable.
To avoid this loss, we need a new idea. Loosely speaking, the idea is to encode messages via a
good error-correcting code and sign the encoded message rather than the original one. This idea
stands in contrast to the common practice of trying to shorten the message to be signed. Yet,
the moderate increase in the length of the message to be signed will provide a substantial benefit.
The reason being that in order to forge a signature the adversary needs to invert the one-way
function on many points rather than on a single one. For sake of simplicity, let us apply the idea
first to the basic construction (of subsection 4.1).
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Background on error-correcting codes

Definition 6 (error-correcting code [10]): A (m(-), m/(-),d(+))-code is an (efficiently computable)
mapping, p, of m(-)-bit long strings to m'(-)-bit long strings so that, for every two x # y €
{0,137,

dist(p(2), u(y)) = d(n)

where dist(a, 3) denotes the Hamming distance (i.e., number of mismatches) between o and 3.

For our purposes, we don’t require the code to have an efflicient decoding algorithm. Hence, for
our purposes, we can use random linear codes (i.e., a mapping defined by multiplication by a
random m-by-m’ Boolean matrix). By the Gilbert-Varshamov bound [10, 20] a uniformly chosen
m-by-m’ matrix defines a (m,m’, d)-code with probability 1 — p provided that

d—1 ( m/ )
i=1 ¢
1

For example, we can set m’' = 2m, p = 27"/2 and d = p - m/ where H,(p) < 1 (p = & will do).

5 Alternatively, m’ = 3m, p = 2="/? and d = p- m’ where H5(p) < 1 (p = % will do). For small
values of m’ and m larger values of p are attainable by specially designed codes. For example, for
m =79 and m’ = 128 there exists a code with distance d = 15 (p > 0.117), whereas for m = 80
and m’ = 160 one gets d = 23 (p > 0.143) [10, Appendix A.1]. For m = 128, we use a code with

distance d = 13 and codewords of length m’ = 185, yielding p > 0.07.

Basic scheme with error-correcting codes

Loosely speaking, to sign a message M one first computes the codeword o u(M) and then
signs C'. In addition to verifying, as usual, that C' is properly signed, the verification procedure
checks that C indeed equals p(M ). Hence, a chosen message attack needs to produce a signature
to a string €' that is not only different from C', but is also at distance at least d from C.

Construction 2 (using error-correcting codes): Let f: {0,1}*—{0,1}* be a one-way function
and p:{0,1}*—{0,1}* be a (m(-), m'(+), d(-))-code. We consider the following one-time signature
scheme for message length function m(-).

o key generation: On input 1", the key-generator uniformly selects a0, a1, ..., 22, 2}, € {0,1}",
where m' = m/(n). The signing-key consists of these xf’s, whereas the verification-key is

f(x(lJ)v f(x%)v i) f($?n/), f(xrln’)

def

e signing: To sign a message M € {0,1}™, one computes o, -- -0, = p(M) and reveals
ST Tk
as the signature to M.
b As usual, Ha(z) def —(zlog, z + (1 — #)log,(1 — z)) denotes the binary entropy function.
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o verification: The codeword C' = p(M) is computed and the function f is applied to the
revealed strings. The result is checked against the corresponding strings in the verification-
key.

Lemma 3 Suppose that T : N — N and ¢ : N — R are functions so that the above one-time
signature scheme can be existentially broken, via a chosen (single) message attack, in time T'(-)
and probability €(-). Then, for every n € N, the function f can be inverted in time T(n) and
success probability ﬁéﬂ - e(n), where p(n) % 4L

m'(n)”

As a special case, we derive a bound for the security of the basic construction. Namely,

Corollary 4 Suppose that T:N+— N and ¢:IN— R are functions so that the basic construction
(of subsection 4.1) can be existentially broken, via a chosen (single) message attack, in time T'(-)
and probability €(-). Then, for every n € N, the function f can be inverted in time T(n) and
success probability 5 - ¢(n).

proof of Lemma 3: Let F be a probabilistic algorithm that existentially breaks the one-time
scheme, via a chosen (single) message attack, in time 7'(-) and probability €(-). Hence, for every
n € N, with probability e(n), algorithm F' first asks for a signature of M € {0,1}™ and then
produces a signature to M’ # M. Let (M) =by---b, and p(M') = ¢y -+ - ¢ By definition of
the code, b; # ¢; for at least a p fraction of the i € {1,...,m'}.

The inverting algorithm, A, operates as follows. On input y, algorithm A uniformly selects
i€ {l,...,m'} and j € {0,1}. Next, A forms a verification-key as in the key-generation, except
that the (2(¢—1)+7)*" component is y, and invokes F' with this verification-key. With probability
%, algorithm F asks for the signature, to a message denoted M, that A can supply. In this case,
with probability €(n), algorithm F' returns a signature of a message M’ and with probability at
least p the ™" bit of (M) is different from the ¢ bit of u(M). This yields an inverse of y under
f, and the lemma follows. O

Scheme with block coding

We now combine the shortening ideas of subsection 4.2 with the coding idea just presented.
In fact, we only use of the shortening ideas; specifically, the partition of the binary string into
t-bit long blocks. Fach block is assigned a pair of strings in the signing-key (resp., verification-
key). The partition into blocks fits very nicely with error-correcting codes, provided mTI < 24
Namely, we partition the m-bit long message into m/¢ blocks (each of length ) and encode these
m/t blocks using m’/t blocks (each of length t). Our encoding scheme views the m/¢ blocks as
elements in G F(2") specifying a polynomial of degree (m/t) — 1 over this field, and the codeword
is the sequence of values this polynomial yields on (m’/t) different elements of the field (hence
the requirement mTI < 2'). This encoding, known as block-coding and specifically as BCH code,
has the property that different messages (viewed as polynomials) are mapped to codewords that
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agree on at most (m/t) — 1 values. Hence, the ‘block distance’ between codewords corresponds
to (m' —m)/t.

Construction 3 (based on block partition and coding): Let t:N+— N be an integer function so
that 1 <t(n)=poly(n) and % <21 and f:4{0,1}*—{0,1}* be a function, both computable
in polynomial-time. We consider the following one-time signature scheme for message length
Junction m(-) < m/(+).

e key generation: On input 1", the key-generator uniformly selects x9, z1, ...,xgl,/t,x,ln,/t €
{0,1}", where m’ = m’(n) and t < t(n). The signing-key consists of these 2!’s, whereas
the verification-key is

PP, LT @) s ST @ ST )

o signing: To sign a message M € {0,1}™, its ¢-bit long blocks, o1, ..., 0,,/4, are interpreted as
elements in GF(2') specifying a polynomial of degree t—1 over the field (i.e., 0; is interpreted
as the ¢ — 1°° coefficient of the polynomial). The values of the polynomial at some m'/t
field elements are now interpreted as integers, denoted 74, ..., 7y € {0,1,...,2° — 1}, and
the signature

Fr@D) 2T @) [T (), T ()

is computed.

e verification: The polynomial and its values at the m’/t points is constructed as above, the
components of the signature vector are subjected to the corresponding number of applica-
tions of f and the result is compared to the verification-key.

Lemma 5 Let m/(n) = (14 «) - m(n), for some constant o > 0. Suppose that T: N — N and
¢:IN— R are functions so that the above one-time signature scheme can be existentially broken,
via a chosen (single) message attack, in time T(-) and probability €(-). Then, for every n € N
and some i < (2 — 1) the function f can be inverted on distribution f'(U,) in time T(n) and

success probability m - €(n), where U, denotes a random variable uniformly distributed over

{0, 13"
proof: Using the same ideas as in the proofs of the last two lemmata. O

Remark: We can set 2 = mTI and a = 1. Then, for t > 4, we get security at least as in the basic
construction while using keys and signatures which are only 4 times as large as those used in
Construction 1. In general, the bound on success probability of attacks in the new construction
is related to the bound in the basic construction by a factor of QH'T?E, which is typically smaller
than 1.
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4.4 Further enhancing security

The reader may note that in the enhanced security asserted in the previous subsection stems from
the fact that when using a forging algorithm we have a better chance that it inverts the function on
the desired component (provided that we choose the desired component at random). We did not
take advantage of the fact that this forging algorithm inverts the function on many components.
To do so we have to consider the problem of simultaneously inverting a one-way function on many
images, and to show how this problem reduces to forging signatures in Constructions 2 and 3.
Once this is done, the security of the signature scheme is based on the difficulty of inverting the
function on many images, a task that may be more difficult than inverting the function on a single
image. For example, time-probability trade-offs in exhaustive search for inverting a function are
less favorable when one needs to invert the function on several instances (see Assumption 2 in

the subsequent section).

Lemma 6 Suppose that T:IN+— N and ¢ : N — R are functions so that Construction 2 can be
existentially broken, via a chosen (single) message attack, in time T(-) and probability €(-). Let
k:N— N so that k(n) < d(n). Then, for every n € N, the function f can be simultaneously
inverted on k(n) images, in time T'(n) and success probability
k(n)
’“ﬁ‘l d(n)—1 ()
S — . 6 n
= 20m'(n)—=1)

proof: Similar to the proof of Lemma 3. Fixing any n € N, the inverting algorithm, A, oper-
ates as follows. On input yy, ..., y;, algorithm A uniformly selects k different elements, denoted
01509,y ey Iy 10 {1, ...,m'} and ji,...,jx € {0,1}. Next, A forms a verification-key as in the key-
generation, except that for every [ <k the (2(i; — 1) + 5;)*" component is y;, and invokes the
forging algorithm, F, with this verification-key. With probability 2%, algorithm F' asks for the
signature, to a message denoted M, that A can supply. In this case, with probability €(n), algo-
rithm F returns a signature of a message M’'. With probability at least % . % e %, the
bit locations 4, through ¢ of u(M’) and p(M) are all in disagreement. This yields inverse of ¥,
through y, under f, and the lemma follows. O

Using similar ideas, we get

Lemma 7 Let m/(n) = (14 «) - m(n), for some constant o > 0. Suppose that T: N — N and
e:IN—R are functions so that Construction 3 can be existentially broken, via a chosen (single)
message attack, in time T'(-) and probability €(-). Let k: N — N so that k(n) < am(n) and U,
denote a random variable uniformly distributed over {0,1}"*. Then, for every n € N and some

By ey Up(n) < (2!") — 1) the function f can be simultaneously inverted on k(n) images, taken from
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the distributions f'*(U,) through fix«(U,), in time T(n) and success probability
k(ﬁ—l o — (l/m) ‘ €(n)
(o ()2

=0

5 Concrete Implementations

We now suggest concrete implementations of our general on-line/off-line signature scheme offering
fast on-line computations (both for signer and verifier).

5.1 The Ingredients

All the concrete implementation use Rabin’s scheme [15] in role of the ordinary signature scheme
and the DES as a one-way function used to construct a one-time signature scheme. The imple-
mentations differ by the construction they use for a one-time signature scheme. The constructions
of one-time signature scheme used are those presented in the previous section.

The ordinary signature scheme

In the role of the ordinary signature scheme we use a modification of Rabin’s scheme [15]. In this
modification, we use integers which are the product of two large (say 256 bits long) primes, one
congruent to 3 modulo 8 and the other congruent to 7 modulo 8. For such an integer N and for
every integer v € Z% (the multiplicative group modulo N) exactly one of the elements in the set
5, = {v,—v,2v,—2v} is a square modulo N (see [21, 8]). Moreover, each square modulo N has
exactly 4 distinct square roots mod N. Let us define the extended square root of v modulo NV,
denoted /v mod N, to be a distinguished square root modulo N (say, the smallest one) of the
appropriate member of 5,. Computing /v mod N is feasible if the factorization of N is known,
and is considered intractable otherwise.

The message space is associated with the elements of the above multiplicative group. Larger
messages are first hashed into such an element. It is assumed that the message space satisfies the
following condition: If v # u then 5, NS, = 0. This can be enforced by using only values of the
2nd eighth of Z (ie., {v € Zy : & <v< §}).

Consider a user A, whose public-key is a modulo N4. User A alone knows the factorization
of N,. Signing message M, in the modified Rabin scheme, amounts to extracting an extended
square root of M, modulo N,. Anyone can verify that « is a legitimate signature of M by
computing a? mod N, and checking that it indeed belongs to the set Sy;.

The scheme described so far is not secure against existential forgery. It is not clear whether
this problem is really important to our application, nevertheless padding by a random suffix (cf.,
[15]) overcomes the obvious attack.
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We assume that it is infeasible to break the modified Rabin scheme, even after a chosen
message attack, when the integers which are used are the product of two large (say 256 bits long)
primes.

The one-time signature scheme

For the one-time signature scheme, we use any of the constructions presented in Section 4. These
constructions exhibit a trade-off between key and signature size, on one hand, and computation-
time and security on the other hand. In particular, we propose to use the DES algorithm as
a one-way function f(x) ! DES,(M); that is, the value obtained by encrypting a standard

message, M, using DES with key z.

The collision-free hashing scheme

In role of the collision-free hashing function we use any standard way of using DES in a hashing
mode. (See, for example, [14].) Alternatively, one may use the recently suggested MD4 or MD5
(cf., [17, 18]). We recommend that H maps arbitrarily long strings to 128-bit long strings (i.e.,

m = 128). For some applications, one may be content with m = 64.

5.2 Four Implementations

We now describe four versions of the concrete implementation. We start with a straightforward
implementation of the general scheme with the modified Rabin scheme playing the role of the
ordinary signature scheme and the DES as a one-way function used for a one-time signature
scheme (as in the basic construction of Section 4). The other three implementations, differ from
the first one only in the way in which the one-way function is used to construct a one-time
signature scheme.

Implementation 1 The modified Rabin scheme, with primes of length 256, is used as the ordi-
nary signature scheme. As one-time signature scheme, for message length m = 128, we use the
basic construction of Section 4 with DES in role of the one-way function. Finally, fast collision-
free hashing functions are used to hash arbitrarily long strings to m-bit strings.

The key-length for the one-time signature scheme is 2m - n, where in case of DES-based one-
way function n = 56. The total length of the signature in the resulting on-line/off-line scheme is
3m - n 4+ 512, which for our choice of parameters (i.e., m = 128 and n = 56) yields 22,016. The
most time-consuming operation in the off-line signing phase is the computation of an ordinary
signature in the modified Rabin scheme, which amount to extracting square roots modulo 256-bit
primes. On-line signing only involves retrieving relevant information from memory. Verification
amounts to m DES computations, that may be performed in parallel, and a single multiplication
modulo a 512-bit integer (i.e., verification in the modified Rabin scheme). The signatures and keys
can be shortened by a factor of & ¢ if we are willing to increase the number of DES computations
by a factor of 2° — 1. For ¢ = 4 this tradeofl seems worthwhile. Namely,
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Implementation 2 The ordinary signature scheme and the collision-free hashing function are
as in the previous implementation. As one-time signature scheme, for message length m = 128,
we use Construction 1 (of Section 4), with t = 4. Again, DES is used in role of the one-way

function.

Now, the key-length for the one-time signature scheme is (14 %) - n, and total length of the
signature in the resulting on-line/off-line scheme is thus 2(1 + %) -n + 512. For our choice of
parameters (i.e., m = 128, ¢ = 4 and n = 56) we get signature length of 4,208. The number
of DES operations increases by a factor of 2' — 1 = 15. However, the security of the current
implementation is decreased by a factor of 22—_1 = 3.75. Improved security can be obtained by

using Construction 3 as a basis for the one-time signature scheme. Namely,

Implementation 3 The ordinary signature scheme and the collision-free hashing function are
as in the previous implementations. As one-time signature scheme, for message length m = 120,
we use Construction 3 (of Section 4), with m’ = 160 and t = 5. Again, DES is used in role of

the one-way function.

Now, the key-length for the one-time signature scheme is 2 - mTI -n, and the total length of the
signature in the resulting on-line/off-line scheme is 4 - mTI -n 4+ 512. For our choice of parameters
(i.e., m = 120, m’ = 160, t = 5 and n = 56) we get signature length of 7,680. The number
of DES operations is about three times as much as in the previous implementation. However,
the security of the current implementation is even better than in Implementation 1. To get even

better security we used Construction 2

Implementation 4 The ordinary signature scheme and the collision-free hashing function are
as in the previous implementations. As one-time signature scheme, for message length m = 120,
we use Construction 2 (of Section 4), with m’ = 185 and d = 13. Again, DES is used in role of

the one-way function.

Now, the key-length for the one-time signature scheme is 2 - m’ - n, and total length of the
signature in the resulting on-line/off-line scheme is thus 3-m’-n+512. For our choice of parameters
(i.e., m = 128, m’ = 185 and n = 56) we get signature length of 31,592. The number of DES

operations is 185 (instead of 128 in Implementation 1).

The complexity bounds for the four implementations are tabulated below (for the choice of
parameters specified above). For the reader’s convenience we also present the relative security
of these implementations. The security figures are upper bound on the success probability of
some reasonably restricted attacks fully described and analyzed below. (Hence, the lower the
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security-figures are — the better.)

Implem. 1 Implem. 2 Implem. 3 Implem. 4

message len. 128 128 120 128
key len. 14,336 1848 3584 20,720
signature len. 22,016 4208 7680 31,592
DES operations 128 1920 4800 185
security 500 56 5700 550m0

Security

Our analysis is based on two assumptions. The first is that it in practically infeasible to exis-
tentially forge signatures to the modified Rabin scheme, even after a chosen message attack. In
other words, we assume that the probability that such a practical attack succeeds is negligible
and hence we ignore it all together. Our second assumptions is that the DES-based one-way
function can not be inverted better than by exhaustive search (in the {0,1}°° key space), and,
furthermore, that it behaves as a random function over a domain with 2°¢ elements. A more ac-
curate statement follows. We stress that this assumption is not in contradiction with the current
knowledge concerning the cryptanalysis of DES [2].

By the proof of Lemma 1, a breach of security in the on-line/off-line scheme yields either a
breach of security in the modified Rabin scheme or a breach of security in the one-time scheme.
We stress that this lemma asserts that if the on-line/off-line scheme is broken with probability
€(n) then either Rabin’s scheme is broken with probability ¢(n)/2 (within the same time and
query complexities) or, with probability e(n)/2, one of the instances of the one-time scheme is
broken. Assuming that a breach of security in the modified Rabin scheme is infeasible, we ignore
the first possibility and are left with the second. Before continuing, we now explicitly state our

assumption concerning the security of the DES-based one-way function.

Assumption 1 Let D L' 956 denote the number of elements in the domain of the DES-based

one-way function. Then, a randomized algorithm running in time that allows making only T'" DES
evaluations, succeeds in inverting the DES-based function on a given image, with probability at
most %.

We start by evaluating the security of the first implementation presented above (i.e., Imple-
mentation 1). Combining Assumption 1, Lemma 1 and Corollary 4, we conclude that a chosen
T(2m-Q)

D

()-message attack of time T succeeds in existential forgery with probability at most . In

realistic implementations at most ¢ = 10,000 messages are likely to be signed and each is of
length m = 128. Let R ! Q- m =~ 1.3-10° Thus, the success probability of an attack which

asks for () messages to be signed and runs in time allowing 7" DES computations is bounded by

2.-T-R
D
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Several estimates for the success probability of forging signatures by attacking the DES-based
one-way function are tabulated below. As above, T' denotes the time spent (i.e., number of
function evaluations) in the attack, R denotes the total number of bits in all (hashed) message
signed, and ¢ denotes an upper bound on the success probability

R T €
10° 10° 36,1000
1
10 107 361%
6 8
10° 10 360

We conclude by evaluating the security of the other three implementations. This is done using
the corresponding lemmata of Section 4. First, using Lemma 5, we observe that Implementation 3
(withm/ = 2.m =2'tand ¢t > % = $) maintains the security of Implementation 1. Actually,
security is increased by a factor of % (which for ¢ = 5 yields ~ 2). Inspecting Lemma 2, it
follows that the probability of breaking Implementation 2 is at most 22—_1 times bigger than the
bound presented for Implementation 1 (which for ¢ = 4 means a factor of 3.75). Finally, using
Lemma 3, it follows that the probability of breaking Implementation 4 is smaller by a factor 9
than the bound presented for the probability of breaking Implementation 1. The bounds for the
success probability of forging signatures in the last three implementations are tabulated below.
The bounds on the success probabilities of Implementations 2, 3 and 4, are denoted ¢, €5 and ¢,
respectively, and R and T are as above.

R T €o €3 €4

6 6 1 1 1
10° 10 9,600 67,000 320,000
6 7 1 1 1
10° 10 960 6700 32,000
6 108 L 1 1
10° 10 96 670 3200

The bounds on the success probabilities of Implementations 3 and 4, can be improved using
the following reasonable assumption.

Assumption 2 A randomized algorithm running in time that allows making only T DES eval-
uations, succeeds in simultaneously inverting the DES-based function on k given images, with
probability at most (L ).

In particular, using Lemma 6 with k& = 2,3 (k < d = 13), it follows that the probability of
breaking Implementation 4 is at most max{p, (15.4-p)?, (256-p)®}, where p is the bound computed
by using Lemma 3. Similarly, using Lemma 7 with £ = 2 (k < am = 40), it follows that the
probability of breaking Implementation 3 is at most max{p, (128 - p)?}, where p is the bound
computed by using Lemma 5. Hence, our security bounds are improved as tabulated below.

R T €3 €4
6 6 1 1
10 10 274,000 1.9-10°
6 7 1 1
10 10 6700 1.9-108
6 8 1 1
10 10 670 43,000
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6 A Related Theoretical Result

Theorem 2 Digital signature schemes that are secure against a chosen message attack exist if

and only if signature schemes secure against random message attack exist.

proof: The necessary condition is obvious. To prove the sufficient condition, we present the
following construction that uses much of the structure of our general construction.

Let (G, 5,V) be a signature scheme secure against random message attack. By a padding
argument, we may assume that the message length for parameter n equals n (i.e., m(n) = n). We
consider two instances of this scheme, the first with parameter n and the second with parameter
2n?. We now construct the signature scheme (G*, 5, V*) as follows.

The key generation algorithm, G, consists of using ' twice to produce two pairs of matching
public and secret keys, (VK;,SK;) and (VKs, SK;). The signing algorithm, S*, operates as follows.
First, obliviously of the message to be signed, algorithm S* selects randomly 2n strings of length
n each, denoted ry,...,7ry,. Let the concatenation of these strings be denoted 7. Second, S5*
computes X o Ssk, (T). The last step does depend on the message to be signed. To sign a message
M =by---b,, where each b; € {0, 1}, algorithm S* computes, for each i, o; def Ssk,(T2i-p,). The
signature of message M consists of 7, ¥ and o, where o ' 4, -+-0,. The verification algorithm

is obvious from the above.

Parenthetical Remark: By a minor modification we can obtain an on-line/off-line signature
scheme, in which no computation is necessary in the on-line signing phase. In the modified
scheme, s; ! Ssk,(r;) is precomputed for every j (1 < j < 2n), and in the on-line phase one
merely needs to retrieve the appropriate precomputed s; (i.e., these j which equal 27 — b; for
some ). Unfortunately, verification in the (G*, S, V*)-scheme is substantially more expensive
than in the original (G, S, V')-scheme, specifically by a factor of n+1. Hence, the scheme presented
in this section does not offer much hope in terms of practical implementations (since n should be
set large enough to resists a birthday attack”).

We now prove that if (G*,5*,V*) is existentially forgeable via a chosen message attack then
(G, S, V) is existentially forgeable via a random message attack. The proof is very similar to

the proof of Lemma 1.

Let F™* be a probabilistic polynomial-time algorithm which forges signatures of (G*, 5*, V*), with

success probability €(n) > via a chosen message attack. Such a forged signature either

_ 1
poly(n)’
uses a sequence T = (7q, ..., Ta,) Which has appeared in a previous signature or uses a sequence T

which has not appeared previously. Thus, one of the following two cases occurs.

"In practical implementations n will not be the actual length of the message, which is much too long, but rather
the length of the hashed value. In a birthday attack we use 2"/ “perturbations” of a desired message to match its
hashed value with one of 2"/2 values signed by the signer in a random message attack. Hence, n should be large

enough so that it is infeasible to obtain 2n/? signatures.
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Case 1: With probability at least e(n)/2, algorithm F* forms a new signature using a sequence
7 used in a previous signature.

In this case we construct an algorithm, Fj, forging signatures of (G,S5,V) as follows. On
input VK (and access to random message attack on the corresponding Ss), algorithm F) runs ¢
to obtain a new pair of corresponding keys (SK’,VK'). Then algorithm F) initiates algorithm F*
on input VK* = (VK',VK), and supplies it with signatures to messages of F"*’s choice. To get a
signature for the message M = by ---b,, requested by F~, algorithm F} asks for n new random
Ssk-signatures (i.e., signatures to n uniformly selected messages), each n bits long. (Here we
employ a random message attack on Ss.) Suppose that F) is given the message-signature pairs

(:ulv SSK(Nl))v RS (:um SSK(NH))

Algorithm F; sets rq;_, def u; and selects the other n strings r; at random. It uses its secret key
SK’' to compute X def Ssxi (71 -+ 72,), and gives F™* the triple

(Tl o Tap by ’ SSK(TZ—IM) o ‘SSK(TZn—bn))

as a signature of M. We stress that it is unlikely that the same r; appears in two different triples
given to F™* (since the r;’s are uniformly chosen from a huge space, i.e., of size 2"). Eventually,
with probability at least €(n)/2, algorithm F* yields a signature to a new message, denoted
M = by---b,, in which the 7-sequence is identical to a T-sequence used in a previous message,
denoted M’ = ¢, ---¢,. Since M # M’, there exists a position 7 in which they differ (i.e., b, # ¢;)
and it follows that the signature to M contains a signature Sg(r;), where r; is the 5™ block in 7
and j = 27 — b;. With very high probability, r; has not appeared as a block in any other position
except the 7®® position in 7, and hence we obtained a Sy signature to the string for which a
signature has not been seen so far . Outputting this (7;, Ss(7;)) pair, algorithm F; achieves

existential forgery, via a random message attack.

Case 2: With probability > €(n)/2, algorithm F* forms a new signature using a sequence 7 not
used in previous signatures.

In this case we construct an algorithm, F, forging signatures of (G, 9, V') as follows. On input
VK (and access to random message attack on Sg), algorithm F5 runs GG to obtain a new pair of
corresponding keys (SK', VK'). Then algorithm F; initiates algorithm F™* on input VK* = (VK, VK'),
and supplies it with signatures to messages of F’*’s choice. To get a signature for the message
M =by---b,, requested by F* algorithm F, asks for a new Sg-signature on a random message 7
of length 2n?. Suppose that F is given the message-signature pair (T, S (7)), where F = 71 -+ - 79,
and each of the r;’s is of length n. Algorithm Fy computes Sgi(72;_s,), for every ¢, and gives F™*
the triple

((7‘1 o ‘Tzn) ) SSK(Tl o 'Tzn) ) SSK’(TZ—bl) o 'SSK'(Tzn—bn))
as a signature of M. Eventually, with probability at least €(n)/2, algorithm F* yields a signature
to a new message which contains a Sg-signature of a new sequence 7. If this happens then F;
outputs (7, Ss(7)), hence committing existential forgery (via a random message attack).

Hence, in both cases contradiction is derived and the theorem follows. O
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